WO2001053341A1 - Nouveau polypeptide, proteine humaine 13 a doigt de zinc, et polynucleotide codant pour ce polypeptide - Google Patents

Nouveau polypeptide, proteine humaine 13 a doigt de zinc, et polynucleotide codant pour ce polypeptide Download PDF

Info

Publication number
WO2001053341A1
WO2001053341A1 PCT/CN2001/000023 CN0100023W WO0153341A1 WO 2001053341 A1 WO2001053341 A1 WO 2001053341A1 CN 0100023 W CN0100023 W CN 0100023W WO 0153341 A1 WO0153341 A1 WO 0153341A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
zinc finger
polynucleotide
finger protein
human zinc
Prior art date
Application number
PCT/CN2001/000023
Other languages
English (en)
French (fr)
Inventor
Yumin Mao
Yi Xie
Original Assignee
Biodoor Gene Technology Ltd. Shanghai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biodoor Gene Technology Ltd. Shanghai filed Critical Biodoor Gene Technology Ltd. Shanghai
Priority to AU29961/01A priority Critical patent/AU2996101A/en
Publication of WO2001053341A1 publication Critical patent/WO2001053341A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy

Definitions

  • the present invention belongs to the field of biotechnology. Specifically, the present invention describes a new polypeptide, a human zinc finger protein 1 3, and a polynucleotide sequence encoding the polypeptide. The invention also relates to a preparation method and application of the polynucleotide and the polypeptide. Background technique
  • transcriptional regulation of eukaryotic genes is very important for the normal expression of genes and their normal biological functions. Usually, transcriptional regulatory factors complete this regulatory process. Transcriptional regulatory factors are involved in the body to determine which tissues and developmental stages of genes begin to transcribe. If the genes encoding such proteins are mutated, not only the gene itself cannot be expressed normally, but many genes regulated by it cannot be normal Perform transcription and expression.
  • the regulation of gene expression by transcription factors is mainly accomplished through the binding of transcription factors to specific DNA sequences, the interaction between transcription factors, and the interaction of transcription factors with conventional transcriptional mechanisms.
  • DNA-binding proteins can be divided into two main categories: proteins containing helix-turn-helix motifs and zinc finger proteins [Kama l Chowdhury, Heidi Rohdekard et al., Nucleic Ac ids Research, 1988, 16: 9995-10011] 0
  • Zinc finger proteins are members of a multi-gene family encoding zinc ion-mediated nucleotide binding proteins.
  • the zinc finger structures of zinc finger proteins mainly include the following: C2H2 configuration, C2C2 configuration, C2HC configuration, C2HC4C configuration , C3H configuration, C3HC4 configuration (Da i KS et al., 1998).
  • Zinc finger proteins of various configurations were isolated from various organisms such as yeast, Drosophila, rat and human. Among them, the zinc finger protein genes containing C2H2 configuration constitute the largest family of genes in the human genome (Berker et al ., 1995). C2H2 zinc finger proteins are involved in the activation and suppression of gene transcription.
  • All C2H2 zinc finger proteins contain a conserved finger repeat (F / Y) XCXXCXXXFXXXXXLXXHXXXHTGEKP with a length of 28-30 amino acids, some of which are highly conserved in specific amino acid residues.
  • This sequence contains multiple copies in many different zinc finger proteins, with different copy numbers (different number of zinc fingers) and different functions.
  • the binding of zinc finger protein to DM with different lengths depends on the number of finger structures.
  • the multi-finger structure may be related to the binding stability of the complex, which is the site of action of RM polymerase transcription. Studies have found that the zinc finger domain interconnected regions of many zinc finger proteins are also high It is highly conserved.
  • This region usually contains the following sequences: Hi s- Thr- Gly- Gly- Lys- Pro- (Tyr, Phe)-X- Cys, in which histidine and cysteine are the binding sites of metal ions Point, and X is a variable amino acid residue.
  • This region is necessary for the formation of zinc finger structures.
  • the number of finger structures will directly affect the binding of zinc finger proteins to DNA of different lengths, and the multi-finger structure is related to the binding stability of the transcription regulation complex [Jeremy M. Berg, A. Rev. Biophys. Chem, 1990, 19: 405-421] 0
  • C2H2 zinc finger proteins can be divided into different protein families according to their different structural characteristics. Kruppe l-related zinc finger proteins are one of the most widely distributed. Its protein sequence also contains the characteristic structural motifs of the C2H2 zinc finger protein as described above, and has similar physiological functions in vivo. It regulates cell division and development in vivo by regulating the expression of tissue genes [; Teremy M. Berg, Annu. Rev. Biophys. Chem, 1990, 19: 405-421].
  • the new human zinc finger protein and the known human zinc finger protein ZNF11B have 50% identity and 61% similarity at the protein level, and therefore both are members of the Kruppe l family of human C2H2 zinc finger proteins And has similar biological functions.
  • Human zinc finger protein ZNF11B is located on chromosome 10, which is related to some genes, genome replication and chromosome rearrangement in the organism [Tunnac li ffe A, Liu L et al., 1993, Nuc le ic Ac ids Res, 21: 1409-1417] 0.
  • the new human zinc finger protein of the present invention is similar to the ZNFI IS protein, and also regulates the replication of some genes and genomes and the process of chromosomal rearrangement in vivo.
  • the abnormal expression of this protein will causes the abnormal proliferation of some genes, which causes developmental disorders of related tissues, tumors and cancers of related tissues, etc.
  • the protein can be used to diagnose and treat tumors and cancers of related tissues, developmental disorders, hematological diseases and neurological diseases.
  • the human zinc finger protein 13 protein plays an important role in regulating important functions of the body such as cell division and embryonic development, and it is believed that a large number of proteins are involved in these regulatory processes, so it has been necessary to identify more involved in these processes Human zinc finger protein 13 protein, especially the amino acid sequence of this protein. Isolation of the new human zinc finger protein 13 protein-coding gene also provides a basis for research to determine the role of this protein in health and disease states. This protein may form the basis for developing diagnostic and / or therapeutic drugs, so isolating its coding DNA is important. Disclosure of invention
  • Another object of the invention is to provide a polynucleotide encoding the polypeptide.
  • Another object of the present invention is to provide a recombinant vector containing a polynucleotide encoding human zinc finger protein 13.
  • Another object of the present invention is to provide a method for producing human zinc finger protein 13.
  • Another object of the present invention is to provide an antibody against the polypeptide-human zinc finger protein 13 of the present invention.
  • Another object of the present invention is to provide mimic compounds, antagonists, agonists, and inhibitors against the polypeptide of the present invention-human zinc finger protein 1 3.
  • Another object of the present invention is to provide a method for diagnosing and treating diseases associated with abnormalities in human zinc finger protein 13.
  • the present invention relates to an isolated polypeptide, which is of human origin and comprises: a polypeptide having the amino acid sequence of SEQ ID No. 2, or a conservative variant, biologically active fragment or derivative thereof.
  • the polypeptide is a polypeptide having the amino acid sequence of SEQ ID NO: 2.
  • the invention also relates to an isolated polynucleotide comprising a nucleotide sequence or a variant thereof selected from the group consisting of:
  • sequence of the polynucleotide is one selected from the group consisting of: (a) a sequence having positions 525-872 in SEQ ID NO: 1; and (b) a sequence having 1-1517 in SEQ ID NO: 1 Sequence of bits.
  • the present invention further relates to a vector, particularly an expression vector, containing the polynucleotide of the present invention; a host cell genetically engineered with the vector, including a transformed, transduced or transfected host cell; Host cell and method of preparing the polypeptide of the present invention by recovering the expression product.
  • the invention also relates to an antibody capable of specifically binding to a polypeptide of the invention.
  • the invention also relates to a method for screening compounds that mimic, activate, antagonize or inhibit the activity of human zinc finger protein 13 protein, which comprises utilizing the polypeptide of the invention.
  • the invention also relates to compounds obtained by this method. '
  • the present invention also relates to a method for detecting a disease or disease susceptibility related to abnormal expression of human zinc finger protein 13 protein in vitro, comprising detecting a mutation in the polypeptide or a sequence encoding a polynucleotide thereof in a biological sample, or detecting a biological sample.
  • the amount or biological activity of a polypeptide of the invention is not limited to a method for detecting a disease or disease susceptibility related to abnormal expression of human zinc finger protein 13 protein in vitro, comprising detecting a mutation in the polypeptide or a sequence encoding a polynucleotide thereof in a biological sample, or detecting a biological sample.
  • the invention also relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a polypeptide of the invention or a mimetic thereof, an activator, an antagonist or an inhibitor, and a pharmaceutically acceptable carrier.
  • the present invention also relates to the use of the polypeptide and / or polynucleotide of the present invention in the preparation of a medicament for treating cancer, developmental disease or immune disease or other diseases caused by abnormal expression of human zinc finger protein 1 3.
  • Nucleic acid sequence refers to an oligonucleotide, a nucleotide or a polynucleotide and a fragment or part thereof, and may also refer to a genomic or synthetic DNA or RM, they can be single-stranded or double-stranded, representing the sense or antisense strand.
  • amino acid sequence refers to an oligopeptide, peptide, polypeptide or protein sequence and fragments or portions thereof.
  • amino acid sequence in the present invention relates to the amino acid sequence of a naturally occurring protein molecule, such "polypeptide” or “protein” does not mean to limit the amino acid sequence to a complete natural amino acid related to the protein molecule .
  • a “variant" of a protein or polynucleotide refers to an amino acid sequence having one or more amino acids or nucleotide changes or a polynucleotide sequence encoding it.
  • the changes may include deletions, insertions or substitutions of amino acids or nucleotides in the amino acid sequence or nucleotide sequence.
  • Variants can have "conservative" changes, in which the amino acid substituted has a structural or chemical property similar to the original amino acid, such as replacing isoleucine with leucine.
  • Variants can also have non-conservative changes, such as replacing glycine with tryptophan.
  • “Deletion” refers to the deletion of one or more amino acids or nucleotides in an amino acid sequence or nucleotide sequence.
  • Insertion refers to an alteration in the amino acid sequence or nucleotide sequence that results in an increase in one or more amino acids or nucleotides compared to a naturally occurring molecule.
  • Replacement refers to the replacement of one or more amino acids or nucleotides with different amino acids or nucleotides.
  • Bioactivity refers to a protein that has the structure, regulation, or biochemical function of a natural molecule.
  • immunologically active refers to the ability of natural, recombinant or synthetic proteins and fragments thereof to induce a specific immune response in appropriate animals or cells and to bind to specific antibodies.
  • An "agonist” refers to a molecule that, when combined with human zinc finger protein 13, causes a change in the protein to regulate the activity of the protein.
  • An agonist may include a protein, a nucleic acid, a carbohydrate, or any other molecule that can bind human zinc finger protein 13.
  • Antagonist refers to a molecule that can block or regulate the biological or immunological activity of human zinc finger protein 13 when combined with human zinc finger protein 13.
  • Antagonists and inhibitors may include proteins, nucleic acids, carbohydrates or any other molecule that can bind human zinc finger protein 13.
  • Regulation refers to a change in the function of human zinc finger protein 13, including an increase or decrease in protein activity, a change in binding characteristics, and any other biological, functional, or immune properties of human zinc finger protein 13.
  • substantially pure is meant substantially free of other proteins, lipids, sugars or other substances with which it is naturally associated.
  • Those skilled in the art can purify human zinc finger protein 13 using standard protein purification techniques.
  • Substantially pure human zinc finger protein 13 produces a single main band on a non-reducing polyacrylamide gel.
  • the purity of the human zinc finger protein 13 polypeptide can be analyzed by amino acid sequence.
  • Complementary refers to the natural binding of polynucleotides by base-pairing under conditions of acceptable salt concentration and temperature.
  • sequence C-T-G-A
  • complementary sequence G-A-C-T.
  • the complementarity between two single-stranded molecules may be partial or complete.
  • the degree of complementarity between nucleic acid strands has a significant effect on the efficiency and strength of hybridization between nucleic acid strands.
  • “Homology” refers to the degree of complementarity and can be partially homologous or completely homologous.
  • Partial homology refers to a partially complementary sequence that at least partially inhibits hybridization of a fully complementary sequence to a target nucleic acid. This inhibition of hybridization can be detected by performing hybridization (Southern imprinting or Northern blotting, etc.) under conditions of reduced stringency. Substantially homologous sequences or hybridization probes can compete and inhibit the binding of fully homologous sequences to the target sequence under conditions of reduced stringency. This does not mean that conditions with reduced stringency allow non-specific binding, because conditions with reduced stringency require that the two sequences bind to each other as either specific or selective interactions.
  • Percent identity refers to the percentage of sequences that are the same or similar in a comparison of two or more amino acid or nucleic acid sequences. The percent identity can be determined electronically, such as by the MEGALIGN program (Lasergene software package, DNASTAR, Inc., Madison Wis.). The MEGALIGN program can compare two or more sequences according to different methods such as the Cluster method (Higgins, DG and PM Sharp (1988) Gene 73: 237-244). The Cluster method arranges the groups of sequences by checking the distance between all pairs. Into clusters. The clusters are then assigned in pairs or groups.
  • sequence A and sequence B The percent identity between two amino acid sequences such as sequence A and sequence B is calculated by the following formula: The number of matching residues between sequence A and sequence X 100 The number of residues in sequence A-the number of spacer residues in sequence A Number of interval residues in a sequence B
  • the percent identity between nucleic acid sequences can also be determined by the Cluster method or by methods known in the art such as Jotun Hein (Hein J., (1990) Methods in emzumology 183: 625-645) 0 "similarity" refers to the amino acid sequence The alignment of the corresponding amino acid residues at the corresponding position or Degree of conservative substitution.
  • Amino acids used for conservative substitutions may include aspartic acid and glutamic acid; positively charged amino acids may include lysine and arginine; having an uncharged head group is Similar hydrophilic amino acids may include leucine, isoleucine and valine; glycine and alanine; asparagine and glutamine; serine and threonine; phenylalanine and 'tyrosine .
  • Antisense refers to a nucleotide sequence that is complementary to a particular DNA or MA sequence.
  • Antisense strand refers to a nucleic acid strand that is complementary to a “sense strand.”
  • Derivative refers to a chemical modification of HFP or a nucleic acid encoding it. This chemical modification may be the replacement of a hydrogen atom with an alkyl, acyl or amino group. Nucleic acid derivatives can encode polypeptides that retain the main biological properties of natural molecules.
  • Antibody refers to a complete antibody molecule and its fragments, such as Fa,? 0113 ') 2 and? ⁇ It can specifically bind to the epitope of human zinc finger protein 13.
  • a “humanized antibody” refers to an antibody in which the amino acid sequence of a non-antigen binding region is replaced to become more similar to a human antibody, but still retains the original binding activity.
  • isolated refers to the removal of a substance from its original environment (for example, its natural environment if it is naturally occurring).
  • a naturally-occurring polynucleotide or polypeptide is not isolated when it is present in a living thing, but the same polynucleotide or polypeptide is separated from some or all of the substances that coexist with it in the natural system.
  • Such a polynucleotide may be part of a certain vector, or such a polynucleotide or polypeptide may be part of a certain composition. Since the carrier or composition is not part of its natural environment, they are still isolated.
  • isolated refers to the separation of a substance from its original environment (if it is a natural substance, the original environment is the natural environment).
  • polynucleotides and polypeptides in a natural state in a living cell are not isolated and purified, but the same polynucleotides or polypeptides are separated and purified if they are separated from other substances in the natural state .
  • isolated human zinc finger protein 1 3 means that human zinc finger protein 1 3 is substantially free of other proteins, lipids, sugars, or other substances with which it is naturally associated. Those skilled in the art can purify human zinc finger protein 1 3 using standard protein purification techniques. Substantially pure polypeptides produce a single main band on non-reducing polyacrylamide gels. The purity of human zinc finger protein 13 polypeptide can be analyzed by amino acid sequence.
  • the present invention provides a new polypeptide, human zinc finger protein 13, which basically consists of the amino acid sequence shown in SEQ ID NO: 2.
  • the polypeptide of the present invention may be a recombinant polypeptide, a natural polypeptide, or a synthetic polypeptide, and preferably a recombinant polypeptide.
  • the polypeptides of the present invention can be naturally purified products or chemically synthesized products, or can be obtained from prokaryotic or eukaryotic hosts (e.g., bacteria, yeast, higher plants, insects, and mammals) using recombinant techniques. Cells). Depending on the host used in the recombinant production protocol, the polypeptide of the invention may be glycosylated, or it may be non-glycosylated. Polypeptides of the invention may also include or exclude starting methionine residues.
  • the invention also includes fragments, derivatives and analogs of human zinc finger protein 1 3.
  • fragment refers to a polypeptide that substantially maintains the same biological function or activity of the human zinc finger protein 13 of the present invention.
  • a fragment, derivative, or analog of the polypeptide of the present invention may be: (I) a type in which one or more amino acid residues are replaced with conservative or non-conservative amino acid residues (preferably conservative amino acid residues), and the substitution is The amino acid may or may not be encoded by a genetic codon; or ( ⁇ ) a type in which a group on one or more amino acid residues is replaced by another group to include a substituent; or ( ⁇ ⁇ ) Such a type in which the mature polypeptide is fused with another compound (such as a compound that prolongs the half-life of the polypeptide, such as polyethylene glycol); or UV) a type in which the additional amino acid sequence is fused into the mature polypeptide to form a polypeptide sequence ( Such as the leader sequence or secreted sequence or the sequence used to purify this polypeptide or protease sequence) As explained herein, such fragments, derivatives and analogs are considered to be within the knowledge of those skilled in the art.
  • the present invention provides an isolated nucleic acid (polynucleotide), which basically consists of a polynucleotide encoding a polypeptide having the amino acid sequence of SEQ ID NO: 2.
  • the polynucleotide sequence of the present invention includes the nucleotide sequence of SEQ ID NO: 1.
  • the polynucleotide of the present invention is found from a cDNA library of human fetal brain tissue. It contains a polynucleotide sequence of 1,517 bases in length, and its open reading frame (525-872) encodes 1 15 amino acids. According to the amino acid sequence homology comparison, it was found that this polypeptide has 50% homology with the human zinc finger protein ZNF1 1B. It can be concluded that the human zinc finger protein 13 has a similar structure and function as the human zinc finger protein ZNF11B.
  • the polynucleotide of the present invention may be in the form of DNA or RNA.
  • DNA forms include cDNA, genomic DNA, or synthetic DNA.
  • DNA can be single-stranded or double-stranded.
  • DNA can be coding or non-coding.
  • the coding region sequence encoding a mature polypeptide may be the same as the coding region sequence shown in SEQ ID NO: 1 or a degenerate variant.
  • a "degenerate variant" refers to a nucleic acid sequence encoding a protein or polypeptide having SEQ ID NO: 2 but having a sequence different from the coding region sequence shown in SEQ ID NO: 1 in the present invention.
  • the polynucleotide encoding the mature polypeptide of SEQ ID NO: 2 includes: only the coding sequence of the mature polypeptide; the coding sequence of the mature polypeptide and various additional coding sequences; the coding sequence of the mature polypeptide (and optional additional coding sequences); Coding sequence.
  • polynucleotide encoding a polypeptide refers to a polynucleotide comprising the polypeptide and a polynucleotide comprising additional coding and / or non-coding sequences.
  • the invention also relates to variants of the polynucleotides described above, which encode polypeptides or fragments, analogs and derivatives of polypeptides having the same amino acid sequence as the invention.
  • Variants of this polynucleotide can be days Naturally occurring allelic or non-naturally occurring variants.
  • These nucleotide variants include substitution variants, deletion variants, and insertion variants.
  • an allelic variant is an alternative form of a polynucleotide that may be a substitution, deletion, or insertion of one or more nucleotides, but does not substantially change the function of the polypeptide it encodes .
  • the invention also relates to a polynucleotide that hybridizes to the sequence described above (having at least 50%, preferably 70% identity, between the two sequences).
  • the present invention particularly relates to polynucleotides that can hybridize to the polynucleotides of the present invention under stringent conditions.
  • “strict conditions” means: (1) hybridization and elution at lower ionic strength and higher temperature, such as 0.2xSSC, 0.1% SDS, 6 (TC; or (2) Add a denaturant during hybridization, such as 50% (v / v) formamide, 0.1% calf serum / 0.1% Ficol l, 42 ° C, etc .; or (3) only between two sequences Hybridization occurs only when the identity is at least 95%, and more preferably 97%.
  • the polypeptide encoded by the hybridizable polynucleotide has the same biological function and activity as the mature polypeptide shown in SEQ ID NO: 2.
  • nucleic acid fragments that hybridize to the sequences described above.
  • a "nucleic acid fragment” contains at least 10 nucleotides in length, preferably at least 20-30 nucleotides, more preferably at least 50-60 nucleotides, and most preferably at least 100 cores. Glycylic acid or more. Nucleic acid fragments can also be used in nucleic acid amplification techniques (such as PCR) to identify and / or isolate polynucleotides encoding human zinc finger protein 13.
  • polypeptides and polynucleotides in the present invention are preferably provided in an isolated form and are more preferably purified to homogeneity.
  • the specific polynucleotide sequence encoding the human zinc finger protein 13 of the present invention can be obtained by various methods.
  • polynucleotides are isolated using hybridization techniques well known in the art. These techniques include, but are not limited to: 1) hybridization of probes to genomic or cDNA libraries to detect homologous polynucleotide sequences, and 2) antibody screening of expression libraries to detect cloned polynucleosides with common structural characteristics Acid fragments.
  • the DNA fragment sequence of the present invention can also be obtained by the following methods: 1) isolating the double-stranded DNA sequence from the genomic DNA; 2) chemically synthesizing the DM sequence to obtain the double-stranded DNA of the polypeptide.
  • genomic DNA isolation is the least commonly used. Direct chemical synthesis of DM sequences is often the method of choice.
  • the more commonly used method is the isolation of cDNA sequences.
  • the standard method for isolating the cDNA of interest is to isolate mRNA from donor cells that overexpress the gene and perform reverse transcription to form a plasmid or phage cDNA library.
  • the construction of cDNA libraries is also a common method (Sambrook, et al., Molecular Cloning, A Laboratory Manua, Cold Laboratory Harbor Laboratory. New York, 1989).
  • Commercially available cDM libraries are also available, such as different cDNA libraries from Clontech. When polymerase reaction technology is used in combination, even very small expression products can be cloned.
  • genes can be screened from these cDNA libraries by conventional methods. These methods include (but not (Limited to): (l) DNA-DNA or DNA-MA hybridization; (2) appearance or loss of marker gene function; (3) determination of transcript levels of human zinc finger protein 13; (4) through immunological techniques or determination Biological activity to detect gene-expressed protein products. The above methods can be used singly or in combination.
  • the probe used for hybridization is homologous to any part of the polynucleotide of the present invention, and its length is at least 10 nucleotides, preferably at least 30 nucleotides, more preferably At least 50 nucleotides, preferably at least 100 nucleotides.
  • the length of the probe is usually within 2000 nucleotides, preferably within 1000 nucleotides.
  • the probe used here is generally a DNA sequence chemically synthesized based on the gene sequence information of the present invention.
  • the genes or fragments of the present invention can of course be used as probes.
  • DNA probes can be labeled with radioisotopes, luciferin, or enzymes (such as alkaline phosphatase).
  • the protein product of human zinc finger protein 13 gene expression can be detected by immunological techniques such as Western blotting, radioimmunoprecipitation, and enzyme-linked immunosorbent assay (ELISA).
  • immunological techniques such as Western blotting, radioimmunoprecipitation, and enzyme-linked immunosorbent assay (ELISA).
  • a method using PCR to amplify DNA / RNA is preferably used to obtain the gene of the present invention.
  • the RACE method RACE-rapid amplification of cDNA ends
  • the primers used for PCR can be based on the polynucleotide sequence information of the present invention disclosed herein. It is appropriately selected and synthesized by a conventional method.
  • the amplified DNA / RNA fragments can be isolated and purified by conventional methods such as by gel electrophoresis.
  • polynucleotide sequence of the gene of the present invention, or various fragments and the like obtained as described above can be determined by a conventional method such as dideoxy chain termination (Sanger et al. PNAS, 1977, 74: 5463-5467). Such polynucleotide sequences can also be determined using commercial sequencing kits and the like. In order to obtain the full-length cDM sequence, the sequencing must be repeated. Sometimes it is necessary to determine the cDNA sequence of multiple clones in order to splice into a full-length cDNA sequence.
  • the present invention also relates to a vector comprising a polynucleotide of the present invention, and a host cell produced by genetic engineering using the vector of the present invention or directly using a human zinc finger protein 13 coding sequence, and a method for producing a polypeptide of the present invention by recombinant technology.
  • a polynucleotide sequence encoding human zinc finger protein 13 can be inserted into a vector to 'constitute a recombinant vector containing the polynucleotide of the present invention.
  • vector refers to bacterial plasmids, phages, yeast plasmids, plant cell viruses, mammalian cell viruses such as adenoviruses, retroviruses, or other vectors well known in the art.
  • Vectors suitable for use in the present invention include, but are not limited to: T7 promoter-based expression vectors (Rosenberg, et al.
  • any plasmid and vector can be used to construct a recombinant expression vector.
  • An important feature of expression vectors Signs usually contain replication origins, promoters, marker genes, and translational regulatory elements.
  • Methods known to those skilled in the art can be used to construct expression vectors containing a DNA sequence encoding human zinc finger protein 13 and appropriate transcriptional / translational regulatory elements. These methods include in vitro recombinant DNA technology, DNA synthesis technology, in vivo recombination technology, etc. (Sambroook, eta l. Mo lecu lar Cloning, a Laboratory Manua, co ld Harbora tory. New York, 1989).
  • the DNA sequence can be operably linked to an appropriate promoter in an expression vector to guide mRNA synthesis. Representative examples of these promoters are: the lac or trp promoter of E.
  • the expression vector also includes a ribosome binding site and a transcription terminator for translation initiation. Insertion of enhancer sequences into the vector will enhance its transcription in higher eukaryotic cells. Enhancers are cis-acting factors for DNA expression, usually about 10 to 300 base pairs, which act on promoters to enhance gene transcription. Illustrative examples include SV40 enhancers of 100 to 270 base pairs on the late side of the origin of replication, polyoma enhancers on the late side of the origin of replication, and adenoviral enhancers.
  • the expression vector preferably contains one or more selectable marker genes to provide phenotypic traits for selection of transformed host cells, such as dihydrofolate reductase, neomycin resistance, and green for eukaryotic cell culture.
  • selectable marker genes to provide phenotypic traits for selection of transformed host cells, such as dihydrofolate reductase, neomycin resistance, and green for eukaryotic cell culture.
  • GFP fluorescent protein
  • tetracycline or ampicillin resistance for E. coli.
  • a polynucleotide encoding human zinc finger protein 13 or a recombinant vector containing the polynucleotide can be transformed or transduced into a host cell to constitute a genetically engineered host cell containing the polynucleotide or the recombinant vector.
  • the term "host cell” refers to a prokaryotic cell, such as a bacterial cell; or a lower eukaryotic cell, such as a yeast cell; or a higher eukaryotic cell, such as a mammalian cell.
  • Escherichia coli, Streptomyces bacterial cells such as Salmonella typhimurium
  • fungal cells such as yeast
  • plant cells insect cells
  • fly S2 or Sf 9 animal cells
  • animal cells such as CH0, COS or Bowes melanoma cells.
  • Transformation of a host cell with a DNA sequence according to the present invention or a recombinant vector containing the DM sequence can be performed using conventional techniques well known to those skilled in the art.
  • the host is a prokaryote such as E. coli
  • competent cells capable of absorbing DM can be harvested after the exponential growth phase and treated with the 01 12 method.
  • the steps used are well known in the art.
  • MgCl 2 is used.
  • transformation can also be performed by electroporation.
  • the host is a eukaryotic organism, the following DNA transfection methods can be used: calcium phosphate co-precipitation method, or conventional mechanical methods such as microinjection, electroporation, and liposome packaging.
  • the polynucleotide sequence of the present invention can be used to express or produce recombinant human zinc finger protein 13 (Science, 1984; 224: 1431). Generally there are the following steps:
  • the medium used in the culture may be selected from various conventional mediums. Culture is performed under conditions suitable for host cell growth. After the host cells have grown to an appropriate cell density, the selected promoter is induced by a suitable method (such as temperature conversion or chemical induction), and the cells are cultured for a period of time.
  • a suitable method such as temperature conversion or chemical induction
  • the recombinant polypeptide may be coated in a cell, expressed on a cell membrane, or secreted outside the cell.
  • recombinant proteins can be separated and purified by various separation methods using their physical, chemical and other properties. These methods are well known to those skilled in the art. These methods include, but are not limited to: conventional renaturation treatment, protein precipitant treatment (salting out method), centrifugation, osmotic disruption, ultrasonic treatment, ultracentrifugation, molecular sieve chromatography (gel filtration), adsorption chromatography, ion Exchange chromatography, high performance liquid chromatography (HPLC) and various other liquid chromatography techniques and combinations of these methods.
  • conventional renaturation treatment protein precipitant treatment (salting out method), centrifugation, osmotic disruption, ultrasonic treatment, ultracentrifugation, molecular sieve chromatography (gel filtration), adsorption chromatography, ion Exchange chromatography, high performance liquid chromatography
  • Fig. 1 is a comparison diagram of amino acid sequence homology of human zinc finger protein 13 and human zinc finger protein ZNF11B of the present invention.
  • the upper sequence is human zinc finger protein 13.
  • the lower sequence is human zinc finger protein ZNF11B.
  • Identical amino acids are represented by single-character amino acids between the two sequences, and similar amino acids are represented by "+”.
  • Figure 1 shows the polyacrylamide gel electrophoresis (SDS-PAGE) of human zinc finger protein 13 isolated. 13kDa is the molecular weight of the protein. The arrow indicates the isolated protein band. The best way to implement the invention
  • Total human fetal brain RNA was extracted by one-step method with guanidine isothiocyanate / phenol / chloroform.
  • MRNA is formed by reverse transcription cDNA Quik mRNA Isolation Kit (Qiegene Co.) isolated from the total poly RM in (A) mRNA 0 2ug poly ( A) used. Use Smart cDNA Cloning Kit (purchased from Clontech). The 0 ⁇ fragment was inserted into the multicloning site of the pBSK (+) vector (Clonteclv) and transformed into DH5a. The bacteria formed a cMA library.
  • Dye terminate cycle reaction sequencing kit Perkin-Elmer
  • ABI 377 automatic sequencer Perkin-Elmer
  • the determined cDNA sequence was compared with the existing public DM sequence database (Genebank), and it was found that the cDNA sequence of one of the clones 0827G01 was new DNA.
  • a series of primers were synthesized to determine the inserted cDNA fragments of the clone in both directions.
  • CDNA was synthesized using fetal brain cell total MA as a template and oligo-dT as a primer for reverse transcription reaction. After purification with Qiagene's kit, the following primers were used for PCR amplification:
  • Primer 1 5,-CAAGAGGAGTGGCATCATCTGGAC -3, (SEQ ID NO: 3)
  • Primer2 5'- CTGTGTATGTTCTATGATGTGCAA -3 '(SEQ ID NO: 4)
  • Primerl is a forward sequence located at the 5th end of SEQ ID NO: 1, starting at lbp;
  • Primer 2 is the 3, terminal reverse sequence of SEQ ID NO: 1.
  • RNA extraction in one step involves acid guanidinium thiocyanate phenol-chloroform extraction. 4M guanidinium isothiocyanate-25mM sodium citrate, 0.2M acetic acid Sodium (pH4.0) was used to homogenize the tissue, 1 volume of phenol and 1/5 volume of chloroform-isoamyl alcohol (49: 1) were added, and the mixture was centrifuged. The aqueous phase layer was aspirated and isopropyl alcohol (0.8 vol) was added and the mixture was centrifuged precipitate RNA. the resulting RNA pellet was washed with 70% ethanol, dried and dissolved in water.
  • RNA probe The DM probe used was the PCR amplified human zinc finger protein 13 coding region sequence ( 525 bp to 872 bp) shown in Figure 1.
  • a 32P-labeled probe (approximately 2 x 10 6 cpm / ml) Hybridize the RNA-transferred nitrocellulose membrane at 42 ° C overnight in a solution containing 5 formamide-25mM KH 2 P0 4 (pH7.4) -5 SSC-5 x Denhardt's solution Solution and 200 ⁇ l of salmon sperm DNA. After hybridization, the filter was washed in 1 x SSC-0.1 ° /. SDS at 55 ° C. for 30 min. Then, the Phosphor Imager was used for analysis and quantification.
  • Example 5 Recombinant human Expression, isolation and purification of zinc finger protein 13 in vitro
  • Primer3 5'- CCCCATATGATGTCATTTTTTATTACTCATCAG -3 '(Seq ID No: 5)
  • Primer4 5'- CATGGATCCTCATAGGGTTTTCCCTGTGTGTGT -3, (Seq ID No: 6)
  • the 5' ends of these two primers contain Ndel and BamHI restriction sites, respectively.
  • the coding sequences of the 5 'and 3' ends of the gene of interest are followed, respectively.
  • the Ndel and BamHI restriction sites correspond to the selectivity within the expression vector plasmid pET-28b (+) (Novagen, Cat. No. 69865.3). Digestion site.
  • the pBS-0827G01 plasmid containing the full-length target gene was used as a template for the PCR reaction.
  • the PCR reaction conditions were as follows: a total volume of 50 ⁇ l containing 10 pg of pBS-OS GOl plasmid, primers Primer-3 and Primer-4, and 1 J was lOpmol, Advantage polymerase Mix (Clontech) 1 ⁇ 1. Cycle parameters: 94. C 20s, 60. C 30s, 68 ° C 2 min, a total of 25 cycles. Ndel and BamHI were used to double-digest the amplified product and plasmid pET-28 (+), respectively, and large fragments were recovered and ligated with T4 ligase.
  • the ligation product was transformed by the calcium chloride method of coliform bacteria DH5cx, After the LB plate (final concentration 30 g / ml) was cultured overnight, positive clones were selected by colony PCR method and sequenced. A positive clone (pET-0827G01) with the correct sequence was selected, and the recombinant plasmid was transformed into E. coli BL21 (DE3) plySs (product of Novagen) using the calcium chloride method.
  • the host bacteria BL21 (pET-0827G01) was cultured at 37 ° C to the logarithmic growth phase, and IPTG was added to the final concentration of lomiol / L, and continued. Incubate for 5 hours. The bacteria were collected by centrifugation, and the supernatant was collected by centrifugation. The affinity chromatography column His s. Bind Quick Car tr idge was used to bind 6 histidines (6His-Tag).
  • a peptide synthesizer (product of PE company) was used to synthesize the following human zinc finger protein 13 specific peptides:
  • NH2-Met-Ser-Phe-Phe-I le-Thr-Hi s-Gln-Gln-Thr-Hi s-Pro-Arg-Glu-Asn- C00H (SEQ ID NO: 7).
  • the peptide was coupled to hemocyanin and bovine serum albumin to form a complex, respectively.
  • Rabbits were immunized with 1 ⁇ 2 of the above i-cyanin peptide complex plus complete Freund's adjuvant, and 15 days later, the hemocyanin peptide complex plus incomplete Freund's adjuvant was used to boost immunity once.
  • a titer plate coated with a 15 g / nil bovine serum albumin peptide complex was used as an ELISA to determine antibody titers in rabbit serum.
  • Protein A-Sepharose was used to isolate total IgG from antibody-positive rabbit serum.
  • the peptide was bound to a cyanogen bromide-activated Sepharose4B column, and anti-peptide antibodies were separated from the total IgG by affinity chromatography.
  • the immunoprecipitation method demonstrated that the purified antibody could specifically bind to human zinc finger protein 13.
  • Example 7 Application of the polynucleotide fragment of the present invention as a hybridization probe
  • Suitable oligonucleotide fragments selected from the polynucleotides of the present invention are used as hybridization probes in a variety of ways.
  • the probes can be used to hybridize to genomic or cDNA libraries of normal tissue or pathological tissue from different sources to It is determined whether it contains the polynucleotide sequence of the present invention and a homologous polynucleotide sequence is detected.
  • the probe can be used to detect the polynucleotide sequence of the present invention or its homologous polynucleotide sequence in normal tissue or pathology. Whether the expression in tissue cells is abnormal.
  • the purpose of this embodiment is to select a suitable oligonucleotide fragment from the polynucleotide SEQ ID NO: 1 of the present invention as a hybridization probe, and to identify whether some tissues contain the polynucleoside of the present invention by a filter hybridization method.
  • Filter hybridization methods include dot blotting, Southern blotting, Northern blotting, and copying methods, all of which fix the polynucleotide sample to be tested on the filter The membranes were hybridized using essentially the same procedure.
  • the sample-immobilized filter is first pre-hybridized with a probe-free hybridization buffer, so that the non-specific binding site of the sample on the filter is saturated with the carrier and the synthetic polymer.
  • the pre-hybridization solution is then replaced with a hybridization buffer containing the labeled probe and incubated to hybridize the probe to the target nucleic acid.
  • the unhybridized probes are removed by a series of membrane washing steps.
  • This embodiment utilizes higher-intensity washing conditions (such as lower salt concentration and higher temperature) to reduce the hybridization background and retain only strong specific signals.
  • the probes used in this embodiment include two types: the first type of probes are oligonucleotide fragments that are completely the same as or complementary to the polynucleotide SEQ ID NO: 1 of the present invention; the second type of probes are partially related to the present invention
  • the polynucleotide SEQ ID NO: 1 is the same or complementary oligonucleotide fragment.
  • the dot blot method is used to fix the sample on the filter membrane. Under the high-intensity washing conditions, the first type of probe and the sample have the strongest hybridization specificity and are retained.
  • oligonucleotide fragments from the polynucleotide SEQ ID NO: 1 of the present invention for use as hybridization probes should follow the following principles and several aspects to be considered:
  • the preferred range of probe size is 18-50 nucleotides
  • the GC content is 301 ⁇ 2-70%, and the non-specific hybridization increases when it exceeds;
  • Those that meet the above conditions can be used as primary selection probes, and then further computer sequence analysis, including the primary selection probe and its source sequence region (ie, SEQ ID NO: 1) and other known genomic sequences and their complements The regions are compared for homology. If the homology with the non-target molecular region is greater than 85% or there are more than 15 consecutive bases, the primary probe should not be used;
  • Probe 1 which belongs to the first type of probe, is completely homologous or complementary to the gene fragment of SEQ ID NO: 1 (41Nt):
  • Probe 2 which belongs to the second type of probe, is equivalent to the replacement mutant sequence of the gene fragment of SEQ ID NO: 1 or its complementary fragment (41Nt):
  • PBS phosphate buffered saline
  • step 8-13 are only used when contamination must be removed, otherwise step 14 can be performed directly.
  • NC membranes nitrocellulose membranes
  • Two NC membranes are required for each probe, so that they can be used in the following experimental steps.
  • the film was washed with high-strength conditions and strength conditions, respectively.
  • High-intensity washing film 1) Take out the hybridized sample membrane.
  • Gene chip or gene microarray is a new technology currently being developed by many national laboratories and large pharmaceutical companies. It refers to the orderly and high density arrangement of a large number of target gene fragments on glass. , Silicon and other carriers, and then use fluorescence detection and computer software to compare and analyze the data, in order to achieve the purpose of rapid, efficient, high-throughput analysis of biological information.
  • the polynucleotide of the present invention can be used as target DNA for gene chip technology for high-throughput research of new gene functions; search for and screen new tissue-specific genes, especially new genes related to diseases such as tumors; diagnosis of diseases such as hereditary diseases . The specific method steps have been reported in the literature.
  • a total of 4,000 polynucleotide sequences of various full-length cDNAs are used as target DNA, including the polynucleotide of the present invention. Amplify them separately by PCR, and adjust the concentration of the amplified products to About 500ng / ul, use a Cartesian 7500 spotter (purchased from Cartesian, USA) to spot on the glass medium. The distance between the points is 280 ⁇ ! .
  • the spotted slides were hydrated, dried, and cross-linked in a UV cross-linker. After elution, the slides were fixed to fix the DNA on the glass slides to prepare chips.
  • the specific method steps have been variously reported in the literature.
  • the post-spot processing steps of this embodiment are:
  • Total mRNA was extracted from normal liver and liver cancer by one-step method, and the mRNA was purified by Oligotex raRNA Midi Kit (purchased from QiaGen).
  • the fluorescent reagent Cy3dUTP (5-Amino- propargyl-2'-deoxyuridine 5) was separately reverse-transcribed.
  • polypeptide of the present invention and the antagonists, agonists and inhibitors of the polypeptide can be directly used in the treatment of diseases, for example, it can treat malignant tumors, adrenal deficiency, skin diseases, various inflammations, HIV infections and immune diseases.
  • Zinc-binding proteins are usually involved in gene expression and regulation as transcription factors and signal transduction molecules. Zinc finger proteins are expressed in various tissues of different organisms, including hematopoietic cells, brain, nervous system, various tumors and tumors. Related tissues and tissues of immortalized cell lines. C2H2 type zinc finger domain-containing proteins not only play an important role in regulating gene expression in some tissues, they also play a key role in developmental regulation. Kruppe l-type zinc finger proteins containing a KRAB domain constitute a subfamily. The KRAB domain is related to the correct localization and function of the protein.
  • C2H2 type zinc finger domains are related to the following diseases: solid tumors such as thyroid adenoma, uterine fibroids, neurological diseases such as extrapyramidal dysfunction, Parkinson syndrome, ataxia, nerve cells Tumors, glioblastomas, hematological malignancies such as leukemia, non-Hodgkin's lymphoma, developmental disorders such as Wi lli ams syndrome, cleft-hand and cleft foot disease, Bezier syndrome, other tumors such as neuroblasts Cell tumor, colon cancer, breast cancer, etc.
  • solid tumors such as thyroid adenoma, uterine fibroids
  • neurological diseases such as extrapyramidal dysfunction, Parkinson syndrome, ataxia
  • nerve cells Tumors such as leukemia, non-Hodgkin's lymphoma
  • developmental disorders such as Wi lli ams syndrome, cleft-hand and cleft foot disease
  • Bezier syndrome other tumors such as neuroblasts Cell tumor, colon cancer, breast cancer, etc.
  • the polypeptide of the present invention and the known human zinc finger protein ZNF11B are homologous proteins, both of which are members of the human zinc finger protein KRAB subfamily and have similar physiological functions.
  • human zinc finger protein 13 of the present invention will produce various diseases, especially various tumors, nervous system diseases, hematological malignant diseases, and developmental disorders.
  • diseases include but are not limited to: Tumors: Glandular tumors, uterine fibroids, neuroblastomas, ependymoma, colon cancer, breast cancer, leukemia, lymphoma, malignant histiocytosis, melanoma, sarcoma, gastric cancer, liver cancer, lung cancer, esophageal cancer , Myeloma, teratoma, adrenal cancer, bladder cancer, bone cancer, osteosarcoma, brain cancer, uterine cancer, gallbladder cancer, liver cancer, thymic tumor, uterine fibroids, astrocytoma, ependymoma, glial Cell tumors, neurofibromas, colon cancer, myeloma, bone marrow cancer, endometrial cancer, gallbladder cancer, nasal and sinus
  • Nervous system disorders neural tube insufficiency, brain developmental malformations, neuronal migration disorders, other malformations such as aqueduct malformations, cerebellar dysplasia, Down syndrome, spinal malformations, congenital hydrocephalus, congenital cerebral nucleus dysgenesis Disease, glioma, meningiomas, neurofibromatosis, pituitary adenoma, intracranial granulomatosis, dementia, Parkinson's disease, chorea, depression, amnesia, Huntington's disease, epilepsy, Migraine, dementia, multiple sclerosis, schizophrenia, depression, paranoia, anxiety, obsessive-compulsive disorder, phobia, neurodegeneration
  • Hematological malignancies Leukemia, non-Hodgkin's lymphoma
  • Abnormal expression of the human zinc finger protein 13 of the present invention will also produce certain genetic diseases, endocrine system diseases such as endocrine adenoma, and immune system diseases.
  • the polypeptide of the present invention and the antagonists, agonists and inhibitors of the polypeptide can be directly used in the treatment of diseases, for example, it can treat various diseases, especially various tumors, nervous system diseases, hematological malignant diseases, development disorders, etc. Some genetic diseases, endocrine system diseases such as endocrine adenoma, immune system diseases, etc.
  • the invention also provides methods for screening compounds to identify agents that increase (agonist) or suppress (antagonist) human zinc finger protein 13. Agonists enhance human zinc finger protein 13 to stimulate biological functions such as cell proliferation, while antagonists prevent and treat disorders related to excessive cell proliferation, such as various cancers.
  • mammalian cells or a membrane preparation expressing human zinc finger protein 1 3 can be cultured with labeled human zinc finger protein 1 3 in the presence of a drug. The ability of the drug to increase or block this interaction is then determined.
  • Antagonists of human zinc finger protein 13 include antibodies, compounds, receptor deletions, and the like that have been screened. Antagonists of human zinc finger protein 13 can bind to human zinc finger protein 13 and eliminate its function, or inhibit the production of the polypeptide, or bind to the active site of the polypeptide so that the polypeptide cannot perform biological functions.
  • human zinc finger protein 13 can be added to a bioanalytical assay to determine whether the compound is an antagonist by measuring the effect of the compound on the interaction between human zinc finger protein 13 and its receptor. Receptor deletions and analogs that act as antagonists can be screened in the same manner as described above for screening compounds.
  • Polypeptide molecules capable of binding to human zinc finger protein 13 can be obtained by screening a random peptide library composed of various possible combinations of amino acids bound to a solid phase. When screening, human zinc finger protein 13 molecules should generally be labeled.
  • the present invention provides a method for producing an antibody using a polypeptide, a fragment, a derivative, an analog thereof, or a cell thereof as an antigen. These antibodies can be polyclonal or monoclonal antibodies.
  • the invention also provides antibodies against human zinc finger protein 13 epitopes. These antibodies include (but are not limited to): polyclonal antibodies, monoclonal antibodies, chimeric antibodies, single chain antibodies, Fab fragments, and fragments produced by Fab expression libraries.
  • Polyclonal antibodies can be produced by injecting human zinc finger protein 13 directly into immunized animals (such as rabbits, mice, rats, etc.).
  • immunized animals such as rabbits, mice, rats, etc.
  • a variety of adjuvants can be used to enhance the immune response, including but not limited to Freund's adjuvant.
  • Techniques for preparing monoclonal antibodies to human zinc finger protein 13 include, but are not limited to, hybridoma technology (Koh ler and Mistein. Nature, 1975, 256: 495-497), triple tumor technology, human beta-cell hybridoma technology , EBV-hybridoma technology, etc.
  • the chimeric human antibody constant region and the variable region of non-human origin may be used in combination Pat some production techniques (Morr i son et al, PNAS , 1985, 81: 6851) 0 Ersi some production techniques of single chain antibodies ( US Pat No. 4946778) can also be used to produce single chain antibodies against human zinc finger protein 13.
  • Anti-human zinc finger protein 13 antibodies can be used in immunohistochemical techniques to detect human zinc finger protein 13 in biopsy specimens.
  • Monoclonal antibodies that bind to human zinc finger protein 13 can also be labeled with radioisotopes and injected into the body to track their location and distribution. This radiolabeled antibody can be used as a non-invasive diagnostic method to locate tumor cells and determine whether there is metastasis.
  • Antibodies can also be used to design immunotoxins that target a particular part of the body.
  • human zinc finger protein 13 high affinity monoclonal antibodies can covalently bind to bacterial or plant toxins (such as diphtheria toxin, ricin, ormosine, etc.).
  • a common method is to attack the amino group of an antibody with a thiol cross-linking agent such as SPDP and bind the toxin to the antibody through the exchange of disulfide bonds.
  • This hybrid antibody can be used to kill human zinc finger protein 13 positive cells.
  • the antibodies of the present invention can be used to treat or prevent human zinc finger protein 13-related diseases. Administration of an appropriate dose of antibody can stimulate or block the production or activity of human zinc finger protein 13.
  • the invention also relates to a diagnostic test method for quantitative and localized detection of human zinc finger protein 13 levels.
  • tests are well known in the art and include FISH assays and radioimmunoassays.
  • the levels of human zinc finger protein 13 detected in the test can be used to explain the importance of human zinc finger protein 13 in various diseases and to diagnose diseases in which human zinc finger protein 13 plays a role.
  • polypeptide of the present invention can also be used for peptide mapping analysis.
  • the polypeptide can be specifically cleaved by physical, chemical or enzymatic analysis, and subjected to one-dimensional or two-dimensional or three-dimensional gel electrophoresis analysis, and more preferably mass spectrometry analysis.
  • the polynucleotide encoding human zinc finger protein 13 can also be used for a variety of therapeutic purposes.
  • Gene therapy technology can be used to treat cell proliferation and development caused by non-expression or abnormal / inactive expression of human zinc finger protein 13 Or metabolic abnormalities.
  • Recombinant gene therapy vectors (such as viral vectors) can be designed to express mutated human zinc finger protein 13 to inhibit endogenous human zinc finger protein 13 activity.
  • a variant human zinc finger protein 13 may be a shortened human zinc finger protein 13 that lacks a signaling domain. Although it can bind to downstream substrates, it lacks signaling activity. Therefore, the recombinant gene therapy vector can be used to treat diseases caused by abnormal expression or activity of human zinc finger protein 13.
  • Virus-derived expression vectors such as retrovirus, adenovirus, adenovirus-associated virus, herpes simplex virus, parvovirus, etc. can be used to transfer a polynucleotide encoding human zinc finger protein 1 3 into a cell.
  • Methods for constructing a recombinant viral vector carrying a polynucleotide encoding human zinc finger protein 13 can be found in existing literature (Sambrook, et al.).
  • a polynucleotide encoding human zinc finger protein 1 3 can be packaged into liposomes and transferred into cells.
  • Methods for introducing a polynucleotide into a tissue or cell include: directly injecting the polynucleotide into a tissue in vivo; or introducing the polynucleotide into a cell in vitro through a vector (such as a virus, phage, or plasmid), and then transplanting the cell Into the body and so on.
  • a vector such as a virus, phage, or plasmid
  • Oligonucleotides including antisense RNA and DM
  • ribozymes that inhibit human zinc finger protein 1 3 mRNA are also within the scope of the present invention.
  • a ribozyme is an enzyme-like RNA molecule that can specifically decompose a specific MA. The mechanism is that the ribozyme molecule specifically hybridizes with a complementary target RNA and performs endonucleation.
  • Antisense RNA and DNA and ribozymes can be obtained by any of the existing RNA or DNA synthesis techniques, such as the solid-phase phosphate amide chemical synthesis technique for the synthesis of oligonucleotides has been widely used.
  • Antisense RNA molecules can be obtained by in vitro or in vivo transcription of a DNA sequence encoding the RM. This DNA sequence is integrated downstream of the RNA polymerase promoter of the vector. In order to increase the stability of the nucleic acid molecule, it can be modified in a variety of ways, such as increasing the sequence length on both sides, and the phosphorothioate or peptide bond instead of the phosphodiester bond is used for the ribonucleoside linkage.
  • the polynucleotide encoding human zinc finger protein 13 can be used for the diagnosis of diseases related to human zinc finger protein 13.
  • the polynucleotide encoding human zinc finger protein 1 3 can be used to detect the expression of human zinc finger protein 13 or the abnormal expression of human zinc finger protein 1 3 in a disease state.
  • the DM sequence encoding human zinc finger protein 1 3 can be used to hybridize biopsy specimens to determine the expression of human zinc finger protein 1 3.
  • Hybridization techniques include Southern blotting, Nor thern blotting, and in situ hybridization. These techniques and methods are publicly available and mature, and related kits are commercially available.
  • a part or all of the polynucleotide of the present invention can be used as a probe to be fixed on a micro array or a DNA chip (also referred to as a "gene chip") for analyzing differential expression analysis of genes and genetic diagnosis in tissues.
  • Human zinc finger protein 1 3 specific primers can also be used to detect the transcription products of human zinc finger protein 1 3 by RM-polymerase chain reaction (RT-PCR) in vitro amplification.
  • Detection of mutations in the human zinc finger protein 13 gene can also be used to diagnose human zinc finger protein 13-related diseases.
  • Human zinc finger protein 13 mutations include point mutations, translocations, deletions, recombinations, and any other abnormalities compared to the normal wild type human zinc finger protein 13 DNA sequence.
  • Use of existing techniques such as Southern blotting Methods, DNA sequence analysis, PCR and in situ hybridization to detect mutations.
  • mutations may affect protein expression. Therefore, the Nor thern blotting and Western blotting can be used to indirectly determine whether a gene is mutated.
  • the sequences of the invention are also valuable for chromosome identification.
  • the sequence specifically targets a specific position on a human chromosome and can hybridize to it.
  • specific sites for each gene on the chromosome need to be identified.
  • only a few chromosome markers based on actual sequence data are available for marking chromosome positions.
  • an important first step is to locate these DNA sequences on a chromosome.
  • the PCR primers (preferably 15-35b P ) are prepared based on the cDNA, and the sequence can be mapped on the chromosome. These primers were then used for PCR screening of somatic hybrid cells containing individual human chromosomes. Only those hybrid cells that contain the human gene corresponding to the primer will produce amplified fragments.
  • PCR localization of somatic hybrid cells is a quick way to localize DNA to specific chromosomes.
  • oligonucleotide primers of the present invention in a similar manner, a set of fragments from a specific chromosome or a large number of genomic clones can be used to achieve sublocalization.
  • Other similar strategies that can be used for chromosomal localization include in situ hybridization, chromosome pre-screening with labeled flow sorting, and pre-selection of hybridization to construct chromosome-specific cDNA libraries.
  • Fluorescent in situ hybridization of cDNA clones with metaphase chromosomes allows precise chromosomal localization in one step.
  • FISH Fluorescent in situ hybridization
  • the physical location of the sequence on the chromosome can be correlated with the genetic map data. These data can be found in, for example, V. Mckus i ck, Mendel i an Inher i tance in Man (available online with Johns Hopk ins University Wet ch Medica l L ibrary). Linkage analysis can then be used to determine the relationship between genes and diseases that have been mapped to chromosomal regions.
  • the difference in cDNA or genomic sequence between the affected and unaffected individuals needs to be determined. If a mutation is observed in some or all diseased individuals and the mutation is not observed in any normal individuals, the mutation may be the cause of the disease. Comparing affected and unaffected individuals usually involves first looking for structural changes in chromosomes, such as deletions or translocations that are visible at the chromosomal level or detectable with cDNA sequence-based PCR. According to the resolution capabilities of current physical mapping and gene mapping technology, the cDNA accurately mapped to the chromosomal region associated with the disease can be one of 50 to 500 potentially pathogenic genes (assuming 1 megabase mapping resolution) Capacity and each 20kb corresponds to a gene).
  • the polypeptides, polynucleotides and mimetics, agonists, antagonists and inhibitors of the present invention can be used in combination with a suitable pharmaceutical carrier.
  • suitable pharmaceutical carrier can be water, glucose, ethanol, salts, buffers Liquid, glycerin and their combinations.
  • the composition comprises a safe and effective amount of the polypeptide or antagonist, and carriers and excipients that do not affect the effect of the drug. These compositions can be used as drugs for the treatment of diseases.
  • the invention also provides a kit or kit containing one or more containers containing one or more ingredients of the pharmaceutical composition of the invention.
  • a kit or kit containing one or more containers containing one or more ingredients of the pharmaceutical composition of the invention.
  • these containers there may be instructional instructions given by government agencies that manufacture, use, or sell pharmaceuticals or biological products, which prompts permission for administration on the human body by government agencies that produce, use, or sell.
  • the polypeptides of the invention can be used in combination with other therapeutic compounds.
  • the pharmaceutical composition can be administered in a convenient manner, such as by a topical, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal route of administration.
  • Human zinc finger protein 1 3 is administered in an amount effective to treat and / or prevent a specific indication.
  • the amount and range of human zinc finger protein 13 to be administered to a patient will depend on many factors, such as the mode of administration, the health conditions of the person to be treated, and the judgment of the diagnostician.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

一种新的多肽一一人锌指蛋白 13和编码这种多肽的多核苷酸 技术领域
本发明属于生物技术领域, 具体地说, 本发明描述了一种新的多肽一一人 锌指蛋白 1 3 , 以及编码此多肽的多核苷酸序列。 本发明还涉及此多核苷酸和多 肽的制备方法和应用。 背景技术
真核基因的转录调控对于基因的正常表达及发挥正常生物学功能是十分重 要的, 通常由转录调控因子来完成这一调节过程。 转录调控因子在生物体内参 与决定基因在何种组织及何种发育阶段开始转录, 编码这类蛋白的基因如发生 突变, 不但该基因自身不能正常表达, 而且受其调节的许多基因也不能正常的 进行转录与表达。 转录因子对基因表达的调控主要通过转录因子与特定的 DNA 序列结合、 转录因子间的相互作用及转录因子与常规转录机构的相互作用在完 成。 根据结构基序的不同, 已知的 DNA 结合蛋白可主要分为两类: 含有螺旋- 转角-螺旋基序的蛋白及锌指蛋白 [Kama l Chowdhury, Heidi Rohdewohld et a l . , Nucleic Ac ids Research, 1988, 16: 9995-10011] 0
锌指蛋白为编码锌离子介导的核苷酸结合蛋白多基因家族中的成员, 锌指 蛋白的锌指结构主要有以下几种: C2H2构型、 C2C2构型、 C2HC构型、 C2HC4C 构型、 C3H构型、 C3HC4构型 (Da i KS et a l. , 1998 ) 。 人们巳从酵母、 果蝇、 鼠及人等多种生物体中分离得到了各种构型的锌指蛋白, 其中含 C2H2 构型的 锌指蛋白基因构成人类基因组最大的一族基因 (Berker et a l . , 1995 ) 。 C2H2 型锌指蛋白与基因的转录活化及抑制有关, 这些蛋白的表达异常将引发各种 发育紊乱性疾病、 各种肿瘤的发生、 各种遗传性疾病及免疫系统疾病 [Kama l Chowdhury, Hei di Rohdewohld et a l . , Nucl eic Ac i ds Res earch, 1988, 16: 9995-10011]。
所有的 C2H2 型锌指蛋白均含有 28-30 个氨基酸长的保守的指重复序列 ( F/Y ) XCXXCXXXFXXXXXLXXHXXXHTGEKP , 其中一些特定的氨基酸残基位点为高 度保守的。 这一序列在很多不同的锌指蛋白中均含有多个拷贝, 其拷贝数不同 (锌指个数不同)则功能也不同。 锌指蛋白与不同长度的 DM 的结合依赖于指结 构的数量, 多指结构可能与复合物的结合稳定性有关, 而复合物是 RM 聚合酶 转录的作用位点。 研究发现, 许多锌指蛋白的锌指结构域相互连接区域也是高 度保守的 , 这一 区域通常含有下列序列 : Hi s- Thr- Gly- Gly- Lys- Pro- (Tyr, Phe) - X- Cys ,其中组氨酸与半胱氨酸为金属离子的结合位点, 而 X 为可变 氨基酸残基。 这一区域对于锌指结构的形成是必需的, 指结构的数量将直接影 响锌指蛋白与不同长度的 DNA 结合, 且多指结构与转录调节复合物的结合稳定 性有关 [Jeremy M. Berg, A誦. Rev. Biophys. Chem, 1990, 19: 405-421 ] 0
C2H2 型锌指蛋白按其不同的结构特征又可分为不同的蛋白家族, Kruppe l 相关的锌指蛋白就是其中分布最广的一种。 其蛋白序列中亦含有如上所述的 C2H2 型锌指蛋白的特征性结构基序, 且在生物体内有着与之相似的生理学功 能。 其在生物体内通过调控各组织基因的表达来调节细胞的分裂与发育 [; Teremy M. Berg, Annu. Rev. Biophys. Chem, 1990, 19: 405-421]。
本发明的新的人锌指蛋白与已知的人锌指蛋白 ZNF11B在蛋白水平上有 50% 的同一性和 61%的相似性, 因而两者同为人 C2H2型锌指蛋白 Kruppe l家族的成 员, 并具有相似的生物学功能。 人锌指蛋白 ZNF11B定位于第 10条染色体上, 其在生物体内与一些基因、 基因组的复制及染色体的重排等过程相关 [Tunnac l i ffe A, Liu L et a l . , 1993, Nuc le i c Ac ids Res , 21: 1409-1417] 0. 本发明的新的人锌指蛋白与 ZNFI IS 蛋白相似, 亦在生物体内调控着一些基因 及基因组的复制及染色体重排过程, 该蛋白的表达异常将导致一些基因的异常 增殖, 从而引发一些相关组织的发育紊乱症、 相关组织的肿瘤及癌症等。 该蛋 白可用于诊断及治疗相关组织的肿瘤及癌症、 发育紊乱性疾病、 血液系统疾病 及神经系统疾病等。
由于如上所述人锌指蛋白 13 蛋白在调节细胞分裂和胚胎发育等机体重要功 能中起重要作用, 而且相信这些调节过程中涉及大量的蛋白, 因而本领域中一 直需要鉴定更多参与这些过程的人锌指蛋白 13 蛋白, 特别是鉴定这种蛋白的 氨基酸序列。 新人锌指蛋白 1 3 蛋白编码基因的分离也为研究确定该蛋白在健 康和疾病状态下的作用提供了基础。 这种蛋白可能构成开发疾病诊断和 /或治 疗药的基础, 因此分离其编码 DNA是非常重要的。 发明的公开
本发明的一个目的是提供分离的新的多肽一一人锌指蛋白 1 3 以及其片段、 类似物和衍生物。
本发明的另一个目的是提供编码该多肽的多核苷酸。 本发明的另一个目的是提供含有编码人锌指蛋白 13 的多核苷酸的重组载 体。
本发明的另一个目的是提供含有编码人锌指蛋白 13 的多核苷酸的基因工程 化宿主细胞。
本发明的另一个目的是提供生产人锌指蛋白 1 3的方法。
本发明的另一个目的是提供针对本发明的多肽一一人锌指蛋白 13的抗体。 本发明的另一个目的是提供了针对本发明多肽一一人锌指蛋白 1 3 的模拟化 合物、 拮抗剂、 激动剂、 抑制剂。
本发明的另一个目的是提供诊断治疗与人锌指蛋白 1 3 异常相关的疾病的方 法。
本发明涉及一种分离的多肽, 该多肽是人源的, 它包含: 具有 SEQ ID No. 2 氨基酸序列的多肽、 或其保守性变体、 生物活性片段或衍生物。 较佳地, 该多 肽是具有 SEQ ID NO: 2氨基酸序列的多肽。
本发明还涉及一种分离的多核苷酸, 它包含选自下组的一种核苷酸序列或 其变体:
(a)编码具有 SEQ ID No: 2氨基酸序列的多肽的多核苷酸;
(b)与多核苷酸(a)互补的多核苷酸;
(c)与(a)或(b)的多核苷酸序列具有至少 70%相同性的多核苷酸。
更佳地, 该多核苷酸的序列是选自下组的一种: (a)具有 SEQ ID NO: 1 中 525-872位的序列; 和(b)具有 SEQ ID NO: 1中 1-1517位的序列。
本发明另外涉及一种含有本发明多核苷酸的载体, 特别是表达载体; 一种 用该载体遗传工程化的宿主细胞, 包括转化、 转导或转染的宿主细胞; 一种包 括培养所述宿主细胞和回收表达产物的制备本发明多肽的方法。
本发明还涉及一种能与本发明多肽特异性结合的抗体。
本发明还涉及一种筛选的模拟、 激活、 拮抗或抑制人锌指蛋白 13蛋白活性 的化合物的方法, 其包括利用本发明的多肽。 本发明还涉及用该方法获得的化 合物。 '
本发明还涉及一种体外检测与人锌指蛋白 13 蛋白异常表达相关的疾病或疾 病易感性的方法, 包括检测生物样品中所述多肽或其编码多核苷酸序列中的突变, 或者检测生物样品中本发明多肽的量或生物活性。
本发明也涉及一种药物组合物, 它含有本发明多肽或其模拟物、 激活剂、 拮 抗剂或抑制剂以及药学上可接受的载体。 本发明还涉及本发明的多肽和 /或多核苷酸在制备用于治疗癌症、 发育性 疾病或免疫性疾病或其它由于人锌指蛋白 1 3 表达异常所引起疾病的药物的用 途。
本发明的其它方面由于本文的技术的公开, 对本领域的技术人员而言是显而 易见的。 本说明书和权利要求书中使用的下列术语除非特别说明具有如下的含义: "核酸序列" 是指寡核苷酸、 核苷酸或多核苷酸及其片段或部分, 也可以 指基因组或合成的 DNA或 RM , 它们可以是单链或双链的, 代表有义链或反义链。 类似地, 术语 "氨基酸序列" 是指寡肽、 肽、 多肽或蛋白质序列及其片段或部 分。 当本发明中的 "氨基酸序列" 涉及一种天然存在的蛋白质分子的氨基酸序 列时, 这种 "多肽" 或 "蛋白质" 不意味着将氨基酸序列限制为与所述蛋白质 分子相关的完整的天然氨基酸。
蛋白质或多核苷酸 "变体" 是指一种具有一个或多个氨基酸或核苷酸改变 的氨基酸序列或编码它的多核苷酸序列。 所述改变可包括氨基酸序列或核苷酸 序列中氨基酸或核苷酸的缺失、 插入或替换。 变体可具有 "保守性" 改变, 其 中替换的氨基酸具有与原氨基酸相类似的结构或化学性质, 如用亮氨酸替换异 亮氨酸。 变体也可具有非保守性改变, 如用色氨酸替换甘氨酸。
"缺失" 是指在氨基酸序列或核苷酸序列中一个或多个氨基酸或核苷酸的 缺失。
"插入" 或 "添加" 是指在氨基酸序列或核苷酸序列中的改变导致与天然存在 的分子相比, 一个或多个氨基酸或核苷酸的增加。 "替换 " 是指由不同的氨基酸或 核苷酸替换一个或多个氨基酸或核苷酸。
"生物活性" 是指具有天然分子的结构、 调控或生物化学功能的蛋白质。 类似 地, 术语 "免疫学活性" 是指天然的、 重组的或合成蛋白质及其片段在合适的动 物或细胞中诱导特定免疫反应以及与特异性抗体结合的能力。
"激动剂" 是指当与人锌指蛋白 13结合时, 一种可引起该蛋白质改变从而 调节该蛋白质活性的分子。 激动剂可以包括蛋白质、 核酸、 碳水化合物或任何 其它可结合人锌指蛋白 1 3的分子。
"拮抗剂" 或 "抑制物" 是指当与人锌指蛋白 1 3结合时, 一种可封闭或调 节人锌指蛋白 13的生物学活性或免疫学活性的分子。 拮抗剂和抑制物可以包括 蛋白质、 核酸、 碳水化合物或任何其它可结合人锌指蛋白 13的分子。 "调节" 是指人锌指蛋白 13的功能发生改变, 包括蛋白质活性的升高或降 低、 结合特性的改变及人锌指蛋白 13的任何其它生物学性质、 功能或免疫性质 的改变。
"基本上纯"是指基本上不含天然与其相关的其它蛋白、脂类、糖类或其它物质。 本领域的技术人员能用标准的蛋白质纯化技术纯化人锌指蛋白 13。 基本上纯的人 锌指蛋白 13 在非还原性聚丙烯酰胺凝胶上能产生单一的主带。 人锌指蛋白 13 多 肽的纯度可用氨基酸序列分析。
"互补的" 或 "互补" 是指在允许的盐浓度和温度条件下通过碱基配对的 多核苷酸天然结合。 例如, 序列 "C- T-G- A" 可与互补的序列 "G- A-C- T" 结合。 两个单链分子之间的互补可以是部分的或全部的。 核酸链之间的互补程度对于 核酸链之间杂交的效率及强度有明显影响。
"同源性" 是指互补的程度, 可以是部分同源或完全同源。 "部分同源" 是指一种部分互补的序列, 其至少可部分抑制完全互补的序列与靶核酸的杂 交。 这种杂交的抑制可通过在严格性程度降低的条件下进行杂交 (Southern印 迹或 Northern印迹等) 来检测。 基本上同源的序列或杂交探针可竟争和抑制完 全同源的序列与靶序列在的严格性程度降低的条件下的结合。 这并不意味严格 性程度降低的条件允许非特异性结合, 因为严格性程度降低的条件要求两条序 列相互的结合为特异性或选择性相互作用。
"相同性百分率" 是指在两种或多种氨基酸或核酸序列比较中序列相同或 相似的百分率。 可用电子方法测定相同性百分率, 如通过 MEGALIGN程序 ( Lasergene software package, DNASTAR, Inc. , Madison Wis. ) 。 MEGALIGN 程序可根据不同的方法如 Cluster法比较两种或多种序列(Higgins, D. G. 和 P.M. Sharp (1988) Gene 73: 237-244) , Cluster法通过检查所有配对之间的 距离将各组序列排列成簇。 然后将各簇以成对或成组分配。 两个氨基酸序列如 序列 A和序列 B之间的相同性百分率通过下式计算: 序列 A与序列 B之间匹配的残基个数 X 100 序列 A的残基数一序列 A中间隔残基数一序列 B中间隔残基数
也可以通过 Cluster法或用本领域周知的方法如 Jotun Hein 测定核酸序列 之间的相同性百分率(Hein J. , (1990) Methods in emzumology 183: 625-645) 0 "相似性 " 是指氨基酸序列之间排列对比时相应位置氨基酸残基的相同或 保守性取代的程度。 用于保守性取代的氨基酸例如, 带负电荷的氨基酸可包括 天冬氨酸和谷氨酸; 带正电荷的氨基酸可包括赖氨酸和精氨酸; 具有不带电荷 的头部基团有相似亲水性的氨基酸可包括亮氨酸、 异亮氨酸和缬氨酸; 甘氨酸 和丙氨酸; 天冬酰胺和谷氨酰胺; 丝氨酸和苏氨酸; 苯丙氨酸和'酪氨酸。
"反义" 是指与特定的 DNA或 MA序列互补的核苷酸序列。 "反义链" 是指 与 "有义链" 互补的核酸链。
"衍生物" 是指 HFP或编码其的核酸的化学修饰物。 这种化学修饰物可以是 用烷基、 酰基或氨基替换氢原子。 核酸衍生物可编码保留天然分子的主要生物 学特性的多肽。
"抗体" 是指完整的抗体分子及其片段, 如 Fa、 ?0113') 2及?^ 其能特异 性结合人锌指蛋白 1 3的抗原决定簇。
"人源化抗体" 是指非抗原结合区域的氨基酸序列被替换变得与人抗体更 为相似, 但仍保留原始结合活性的抗体。
"分离的" 一词指将物质从它原来的环境 (例如, 若是自然产生的就指其 天然环境) 之中移出。 比如说, 一个自然产生的多核苷酸或多肽存在于活动物 中就是没有被分离出来, 但同样的多核苷酸或多肽同一些或全部在自然系统中 与之共存的物质分开就是分离的。 这样的多核苷酸可能是某一载体的一部分, 也可能这样的多核苷酸或多肽是某一组合物的一部分。 既然载体或组合物不是 它天然环境的成分, 它们仍然是分离的。 如本发明所用, "分离的" 是指物质从其原始环境中分离出来 (如果是天 然的物质, 原始环境即是天然环境) 。 如活体细胞内的天然状态下的多聚核苷 酸和多肽是没有分离纯化的, 但同样的多聚核苷酸或多肽如从天然状态中同存 在的其他物质中分开, 则为分离纯化的。
如本文所用, "分离的人锌指蛋白 1 3" 是指人锌指蛋白 1 3 基本上不含天 然与其相关的其它蛋白、 脂类、 糖类或其它物质。 本领域的技术人员能用标准 的蛋白质纯化技术纯化人锌指蛋白 1 3。 基本上纯的多肽在非还原聚丙烯酰胺凝 胶上能产生单一的主带。 人锌指蛋白 1 3多肽的纯度能用氨基酸序列分析。
本发明提供了一种新的多肽一一人锌指蛋白 13 , 其基本上是由 SEQ ID NO: 2 所示的氨基酸序列组成的。 本发明的多肽可以是重组多肽、 天然多肽、 合成多肽, 优选重组多肽。 本发明的多肽可以是天然纯化的产物, 或是化学合成的产物, 或 使用重组技术从原核或真核宿主 (例如, 细菌、 酵母、 高等植物、 昆虫和哺乳动物 细胞)中产生。 根据重组生产方案所用的宿主, 本发明的多肽可以是糖基化的, 或 可以是非糖基化的。 本发明的多肽还可包括或不包括起始的甲硫氨酸残基。
本发明还包括人锌指蛋白 1 3 的片段、 衍生物和类似物。 如本发明所用, 术语 "片段" 、 "衍生物" 和 "类似物" 是指基本上保持本发明的人锌指蛋白 13相同的生物学功能或活性的多肽。 本发明多肽的片段、 衍生物或类似物可以 是: ( I ) 这样一种, 其中一个或多个氨基酸残基被保守或非保守氨基酸残基 (优选的是保守氨基酸残基) 取代, 并且取代的氨基酸可以是也可以不是由遗 传密码子编码的; 或者 ( Π ) 这样一种, 其中一个或多个氨基酸残基上的某个 基团被其它基团取代包含取代基; 或者 ( Π Ι ) 这样一种, 其中成熟多肽与另 —种化合物 (比如延长多肽半衰期的化合物, 例如聚乙二醇) 融合; 或者 UV ) 这样一种, 其中附加的氨基酸序列融合进成熟多肽而形成的多肽序列 (如前导 序列或分泌序列或用来纯化此多肽的序列或蛋白原序列) 通过本文的阐述, 这 样的片段、 衍生物和类似物被认为在本领域技术人员的知识范围之内。
本发明提供了分离的核酸 (多核苷酸) , 基本由编码具有 SEQ ID NO: 2 氨 基酸序列的多肽的多核苷酸组成。 本发明的多核苷酸序列包括 SEQ ID NO: 1 的 核苷酸序列。 本发明的多核苷酸是从人胎脑组织的 cDNA 文库中发现的。 它包 含的多核苷酸序列全长为 1517个碱基, 其开放读框 ( 525-872 ) 编码了 1 15个 氨基酸。 根据氨基酸序列同源比较发现, 此多肽与人锌指蛋白 ZNF1 1B有 50%的 同源性, 可推断出该人锌指蛋白 13具有人锌指蛋白 ZNF11B相似的结构和功能。
本发明的多核苷酸可以是 DNA形式或是 RNA形式。 DNA形式包括 cDNA、 基 因组 DNA或人工合成的 DNA。 DNA可以是单链的或是双链的。 DNA可以是编码链 或非编码链。 编码成熟多肽的编码区序列可以与 SEQ ID NO: 1 所示的编码区序 列相同或者是简并的变异体。 如本发明所用, "简并的变异体" 在本发明中是 指编码具有 SEQ ID NO: 2 的蛋白质或多肽, 但与 SEQ ID NO: 1所示的编码区序 列有差别的核酸序列。
编码 SEQ ID NO: 2的成熟多肽的多核苷酸包括: 只有成熟多肽的编码序列; 成熟多肽的编码序列和各种附加编码序列; 成熟多肽的编码序列 (和任选的附 加编码序列) 以及非编码序列。
术语 "编码多肽的多核苷酸" 是指包括编码此多肽的多核苷酸和包括附加 编码和 /或非编码序列的多核苷酸。
本发明还涉及上述描述多核苷酸的变异体, 其编码与本发明有相同的氨基 酸序列的多肽或多肽的片断、 类似物和衍生物。 此多核苷酸的变异体可以是天 然发生的等位变异体或非天然发生的变异体。 这些核苷酸变异体包括取代变异 体、 缺失变异体和插入变异体。 如本领域所知的, 等位变异体是一个多核苷酸 的替换形式, 它可能是一个或多个核苷酸的取代、 缺失或插入, 但不会从实质 上改变其编码的多肽的功能。
本发明还涉及与以上所描述的序列杂交的多核苷酸 (两个序列之间具有至 少 50%, 优选具有 70%的相同性) 。 本发明特别涉及在严格条件下与本发明所 述多核苷酸可杂交的多核苷酸。 在本发明中, "严格条件" 是指: (1)在较低 离子强度和较高温度下的杂交和洗脱, 如 0. 2xSSC, 0. 1%SDS, 6 (TC ;或(2)杂交 时加用变性剂, 如 50% (v/v)甲酰胺, 0. 1%小牛血清 / 0. l%Ficol l , 42 °C等; 或(3) 仅在两条序列之间的相同性至少在 95%以上,更好是 97%以上时才发生杂交。 并 且, 可杂交的多核苷酸编码的多肽与 SEQ ID NO: 2 所示的成熟多肽有相同的 生物学功能和活性。
本发明还涉及与以上所描述的序列杂交的核酸片段。 如本发明所用, "核 酸片段"的长度至少含 10个核苷酸, 较好是至少 20- 30个核苷酸, 更好是至少 50-60 个核苷酸, 最好是至少 100 个核苷酸以上。 核酸片段也可用于核酸的扩 增技术(如 PCR)以确定和 /或分离编码人锌指蛋白 13的多核苷酸。
本发明中的多肽和多核苷酸优选以分离的形式提供, 更佳地被纯化至均质。 本发明的编码人锌指蛋白 13的特异的多核苷酸序列能用多种方法获得。 例 如, 用本领域熟知的杂交技术分离多核苷酸。 这些技术包括但不局限于: 1)用 探针与基因组或 cDNA 文库杂交以检出同源的多核苷酸序列, 和 2)表达文库的 抗体筛选以检出具有共同结构特征的克隆的多核苷酸片段。
本发明的 DNA片段序列也能用下列方法获得: 1)从基因组 DNA分离双链 DNA 序列; 2)化学合成 DM序列以获得所述多肽的双链 DNA。
上述提到的方法中, 分离基因组 DNA 最不常用。 DM 序列的直接化学合成 是经常选用的方法。 更经常选用的方法是 cDNA序列的分离。 分离感兴趣的 cDNA 的标准方法是从高表达该基因的供体细胞分离 mRNA并进行逆转录, 形成质粒或 噬菌体 cDNA 文库。 提取 mMA 的方法已有多种成熟的技术, 试剂盒也可从商业 途径获得(Qi agene)。 而构建 cDNA 文库也是通常的方法(Sambrook, e t a l . , Mo l ecular Cloning, A Laboratory Manua l , Cold Spr ing Harbor Laboratory. New York , 1989)。还可得到商业供应的 cDM文库,如 Clontech公司的不同 cDNA 文库。 当结合使用聚合酶反应技术时, 即使极少的表达产物也能克隆。
可用常规方法从这些 cDNA 文库中筛选本发明的基因。 这些方法包括(但不 限于): (l)DNA-DNA 或 DNA- MA 杂交; (2)标志基因功能的出现或丧失; (3)测 定人锌指蛋白 13 的转录本的水平; (4)通过免疫学技术或测定生物学活性, 来 检测基因表达的蛋白产物。 上述方法可单用, 也可多种方法联合应用。
在第(1)种方法中, 杂交所用的探针是与本发明的多核苷酸的任何一部分同 源, 其长度至少 10个核苷酸, 较好是至少 30个核苷酸, 更好是至少 50个核苷 酸, 最好是至少 100个核苷酸。 此外, 探针的长度通常在 2000个核苷酸之内, 较佳的为 1000个核苷酸之内。 此处所用的探针通常是在本发明的基因序列信息 的基础上化学合成的 DNA序列。 本发明的基因本身或者片段当然可以用作探针。 DNA探针的标记可用放射性同位素, 荧光素或酶(如碱性磷酸酶)等。
在第(4)种方法中, 检测人锌指蛋白 13 基因表达的蛋白产物可用免疫学技 术如 Western印迹法, 放射免疫沉淀法, 酶联免疫吸附法(ELISA)等。
应 用 PCR 技 术 扩 增 DNA/RNA 的 方 法 (Saiki, et al. Science 1985; 230: 1350- 1354)被优选用于获得本发明的基因。 特别是很难从文库中得到 全长的 cDNA时, 可优逸使用 RACE法(RACE- cDNA末端快速扩增法), 用于 PCR 的引物可根据本文所公开的本发明的多核苷酸序列信息适当地选择, 并可用常 规方法合成。 可用常规方法如通过凝胶电泳分离和纯化扩增的 DNA/RNA片段。
如上所述得到的本发明的基因, 或者各种 編 片段等的多核苷酸序列可用 常规方法如双脱氧链终止法(Sanger et al. PNAS, 1977, 74: 5463- 5467)测定。 这类多核苷酸序列测定也可用商业测序试剂盒等。为了获得全长的 cDM序列, 测 序需反复进行。 有时需要测定多个克隆的 cDNA 序列, 才能拼接成全长的 cDNA 序列。
本发明也涉及包含本发明的多核苷酸的载体, 以及用本发明的载体或直接 用人锌指蛋白 13编码序列经基因工程产生的宿主细胞, 以及经重组技术产生本 发明所述多肽的方法。
本发明中, 编码人锌指蛋白 13的多核苷酸序列可插入到载体中, 以'构成含 有本发明所述多核苷酸的重组载体。 术语 "载体" 指本领域熟知的细菌质粒、 噬菌体、 酵母质粒、 植物细胞病毒、 哺乳动物细胞病毒如腺病毒、 逆转录病毒 或其它载体。 在本发明中适用的载体包括但不限于: 在细菌中表达的基于 T7启 动子的表达载体(Rosenberg, et al. Gene, 1987, 56: 125) ; 在哺乳动物细胞 中表达的 pMSXND表达载体(Lee and Nathans, J Bio Chem. 263: 3521, 1988)和 在昆虫细胞中表达的来源于杆状病毒的载体。 总之, 只要能在宿主体内复制和 稳定, 任何质粒和载体都可以用于构建重组表达载体。 表达载体的一个重要特 征是通常含有复制起始点、 启动子、 标记基因和翻译调控元件。
本领域的技术人员熟知的方法能用于构建含编码人锌指蛋白 13的 DNA序列 和合适的转录 /翻译调控元件的表达载体。 这些方法包括体外重组 DNA技术、 DNA 合成技术、 体内重组技术等 (Sambroook, e t a l. Mo lecu lar Cloning, a Laboratory Manua l , co l d Spr ing Harbor Labora tory. New York, 1989)。 所 述的 DNA序列可有效连接到表达载体中的适当启动子上, 以指导 mRNA合成。 这 些启动子的代表性例子有: 大肠杆菌的 lac或 trp启动子; λ噬菌体的 PL启动 子;真核启动子包括 CMV立即早期启动子、 HSV胸苷激酶启动子、早期和晚期 SV40 启动子、 反转录病毒的 LTRs和其它一些已知的可控制基因在原核细胞或真核细 胞或其病毒中表达的启动子。 表达载体还包括翻译起始用的核糖体结合位点和 转录终止子等。 在载体中插入增强子序列将会使其在高等真核细胞中的转录得 到增强。 增强子是 DNA表达的顺式作用因子, 通常大约有 10到 300个碱基对, 作用于启动子以增强基因的转录。 可举的例子包括在复制起始点晚期一侧的 100 到 270个碱基对的 SV40增强子、 在复制起始点晚期一侧的多瘤增强子以及腺病 毒增强子等。
此外, 表达载体优选地包含一个或多个选择性标记基因, 以提供用于选择 转化的宿主细胞的表型性状, 如真核细胞培养用的二氢叶酸还原酶、 新霉素抗 性以及绿色荧光蛋白(GFP) , 或用于大肠杆菌的四环素或氨苄青霉素抗性等。
本领域一般技术人员都清楚如何选择适当的载体 /转录调控元件 (如启动 子、 增强子等) 和选择性标记基因。
本发明中, 编码人锌指蛋白 1 3的多核苷酸或含有该多核苷酸的重组载体可 转化或转导入宿主细胞, 以构成含有该多核苷酸或重组载体的基因工程化宿主 细胞。 术语 "宿主细胞" 指原核细胞, 如细菌细胞; 或是低等真核细胞, 如酵 母细胞; 或是高等真核细胞, 如哺乳动物细胞。 代表性例子有: 大肠杆菌, 链 霉菌属; 细菌细胞如鼠伤寒沙门氏菌; 真菌细胞如酵母; 植物细胞; 昆虫细胞 如果蝇 S2或 Sf 9 ; 动物细胞如 CH0、 COS或 Bowes黑素瘤细胞等。
用本发明所述的 DNA序列或含有所述 DM序列的重组载体转化宿主细胞可 用本领域技术人员熟知的常规技术进行。 当宿主为原核生物如大肠杆菌时, 能 吸收 DM 的感受态细胞可在指数生长期后收获, 用 012法处理, 所用的步骤 在本领域众所周知。 可供选择的是用 MgCl2。 如果需要, 转化也可用电穿孔的方 法进行。 当宿主是真核生物, 可选用如下的 DNA 转染方法: 磷酸钙共沉淀法, 或者常规机械方法如显微注射、 电穿孔、 脂质体包装等。 通过常规的重组 DNA 技术, 利用本发明的多核苷酸序列可用来表达或生产 重组的人锌指蛋白 13(Science, 1984; 224: 1431)。 一般来说有以下步骤:
(1).用本发明的编码人 人锌指蛋白 13 的多核苷酸 (或变异体), 或用含有 该多核苷酸的重组表达载体转化或转导合适的宿主细胞;
(2).在合适的培养基中培养宿主细胞;
(3).从培养基或细胞中分离、 纯化蛋白质。
在步骤 (2 ) 中, 根据所用的宿主细胞, 培养中所用的培养基可选自各种 常规.培养基。 在适于宿主细胞生长的条件下进行培养。 当宿主细胞生长到适当 的细胞密度后, 用合适的方法(如温度转换或化学诱导)诱导选择的启动子, 将 细胞再培养一段时间。
在步骤 ( 3) 中, 重组多肽可包被于细胞内、 或在细胞膜上表达、 或分泌到 细胞外。 如果需要, 可利用其物理的、 化学的和其它特性通过各种分离方法分 离和纯化重组的蛋白。 这些方法是本领域技术人员所熟知的。 这些方法包括但 并不限于: 常规的复性处理、 蛋白沉淀剂处理(盐析方法)、 离心、 渗透破菌、 超声波处理、 超离心、 分子筛层析(凝胶过滤)、 吸附层析、 离子交换层析、 高 效液相层析(HPLC)和其它各种液相层析技术及这些方法的结合。 附图的简要说明
下列附图用于说明本发明的具体实施方案, 而不用于限定由权利要求书所 界定的本发明范围。
图 1是本发明人锌指蛋白 13和人锌指蛋白 ZNF11B的氨基酸序列同源性比较 图。 上方序列是人锌指蛋白 13, 下方序列是人锌指蛋白 ZNF11B。 相同氨基酸在 两个序列间用单字符氨基酸表示, 相似氨基酸用 "+" 表示。
图 1为分离的人锌指蛋白 13的聚丙烯酰胺凝胶电泳图(SDS- PAGE)。 13kDa 为蛋白质的分子量。 箭头所指为分离出的蛋白条带。 实现本发明的最佳方式
下面结合具体实施例, 进一步阐述本发明。 应理解, 这些实施例仅用于说 明本发明而不用于限制本发明的范围。 下列实施例中未注明具体条件的实验方 法,通常按照常规条件如 Sambrook等人, 分子克隆:实验室手册(New York: Cold Spring Harbor Laboratory Press, 1989)中所述的条件, 或按照制造厂商所 建议的条件。 实施例 1: 人锌指蛋白 13的克隆
用异硫氰酸胍 /酚 /氯仿一步法提取人胎脑总 RNA。 用 Quik mRNA Isolation Kit (Qiegene 公司产品) 从总 RM中分离 poly (A) mRNA0 2ug poly (A) mRNA经逆转录 形成 cDNA。用 Smart cDNA克隆试剂盒(购自 Clontech )将。0^片段定向插入到 pBSK (+) 载体 (Clonteclv^司产品)的多克隆位点上, 转化 DH5a, 细菌形成 cMA文库。 用 Dye terminate cycle reaction sequencing kit (Perkin - Elmer公司产品) 和 ABI 377 自动测序仪 (Perkin- Elmer公司)测定所有克隆的 5'和 3'末端的序列。 将测定的 cDNA 序列与已有的公共 DM序列数据库 (Genebank) 进行比较, 结果发现其中一个克隆 0827G01的 cDNA序列为新的 DNA。 通过合成一系列引物对该克隆所含的插入 cDNA片 段进行双向测定。 结果表明, 0827G01克隆所含的全长 cDNA为 1517bp (如 SeqIDN0:l 所示) , 从第 525bp至 S72bp有一个 348bp的开放阅读框架 ( 0RF ) , 编码一个新的 蛋白质 (如 Seq ID NO: 2所示) 。 我们将此克隆命名为 pBS-0827G01 , 编码的蛋白 质命名为人锌指蛋白 13。 实施例 2: cDNA 克隆的同源检索
将本发明的人锌指蛋白 13的序列及其编码的蛋白序列, 用 Blast程序
(Basiclocal Alignment search tool) [Altschul, SF et al.
J.Mol.Biol.1990; 215: 403-10] , 在 Genbank、 Swisspor t等数据库进行同源检索。 与本发明的人锌指蛋白 13同源性最高的基因是一种巳知的人锌指蛋白 ZNF11B, 其 编码的蛋白在 Genbank的准入号为 X68684。 蛋白质同源结果示于图 1, 两者高度同 源, 其相同性为 50°/。; 相似性为 61%。 实施例 3: 用 RT-PCR方法克隆编码人锌指蛋白 13的基因
用胎脑细胞总 MA为模板,以 oligo- dT为引物进行逆转录反应合成 cDNA,用 Qiagene的试剂盒纯化后,用下列引物进行 PCR扩增:
Primer 1: 5,- CAAGAGGAGTGGCATCATCTGGAC -3, (SEQ ID NO: 3)
Primer2: 5'- CTGTGTATGTTCTATGATGTGCAA -3' (SEQ ID NO: 4)
Primerl为位于 SEQ ID NO: 1的 5,端的第 lbp开始的正向序列;
Primer 2为 SEQ ID NO: 1的中的 3,端反向序列。
扩增反应的条件: 在 50μ1的反应体积中含有 50mmol/L KCl,10mmol/L Tris-
CI, (pH8.5), 1.5mmol/L MgCl2, 200 μ raol/L dNTP, lOpmol引物, 1U的 Taq DM聚合 酶 (Clontech公司产品)。 在 PE9600型 DM热循环仪(Perkin- Elmer公司)上按下列条 件反应 25个周期: 94。C 30sec; 55°C 30sec; 72°C 2min0 在 RT- PCR时同时设 β -act in 为阳性对照和模板空白为阴性对照。 扩增产物用 QIAGEN公司的试剂盒纯化, 用 TA 克隆试剂盒连接到 PCR载体上(Invitrogen公司产品) 。 DNA序列分析结果表明 PCR 产物的 DM序列与 SEQ ID NO: 1所示的 1- 1517bp完全相同。 实施例 4: Northern 印迹法分析人锌指蛋白 13基因的表达:
用一步法提取总 RNA[Anal. Biochem 1987, 162, 156-159]„ 该法包括酸性硫 氰酸胍苯酚-氯仿抽提。 即用 4M异硫氰酸胍 -25mM柠檬酸钠, 0.2M乙酸钠 ( pH4.0 ) 对组织进行匀浆, 加入 1倍体积的苯酚和 1/5体积的氯仿-异戊醇 (49: 1 ) , 混合 后离心。 吸出水相层, 加入异丙醇 (0.8体积) 并将混合物离心得到 RNA沉淀。 将 得到的 RNA沉淀用 70%乙醇洗涤, 干燥并溶于水中。 用 20 g RNA, 在含 20mM 3- (N- 吗啉代) 丙磺酸 (pH7.0) - 5mM乙酸钠 - ImM EDTA-2.2M甲醛的 1.2%琼脂糖凝胶上进 行电泳。 然后转移至硝酸纤维素膜上。 用 a- 32P dATP通过随机引物法制备 32P-标记 的 DM探针。 所用的 DM探针为图 1所示的 PCR扩增的人锌指蛋白 13编码区序列(525bp 至 872bp)。 将 32P-标记的探针 (约 2 x l06cpm/ml ) 与转移了 RNA的硝酸纤维素膜在 一溶液中于 42。C杂交过夜, 该溶液包含 5 甲酰胺 - 25mM KH2P04 ( pH7.4 ) -5 SSC-5 xDenhardt's溶液和 200 μ^ηι1鲑精 DNA。 杂交之后, 将滤膜在 1 x SSC-0.1°/。SDS中于 55。C洗 30min。 然后, 用 Phosphor Imager进行分析和定量。 实施例 5: 重组人锌指蛋白 13的体外表达、 分离和纯化
根据 SEQ ID NO: 1和图 1所示的编码区序列, 设计出一对特异性扩增引物, 序 列如下:
Primer3: 5'- CCCCATATGATGTCATTTTTTATTACTCATCAG -3' ( Seq ID No: 5 ) Primer4: 5'- CATGGATCCTCATAGGGTTTTCCCTGTGTGTGT -3, (Seq ID No: 6 ) 此两段引物的 5'端分别含有 Ndel和 BamHI酶切位点, 其后分别为目的基因 5'端 和 3,端的编码序列, Ndel和 BamHI酶切位点相应于表达载体质粒 pET- 28b(+) (Novagen 公司产品, Cat. No.69865.3)上的选择性内切酶位点。 以含有全长目的基因的 pBS- 0827G01质粒为模板, 进行 PCR反应。 PCR反应条件为: 总体积 50 μ 1中含 pBS- OS GOl 质粒 10pg、 引物 Primer - 3和 Primer- 4分另1 J为 lOpmol、 Advantage polymerase Mix (Clontech公司产品) 1 μ 1。 循环参数: 94。C 20s,60。C 30s, 68°C 2 min,共 25个 循环。 用 Ndel和 BamHI分别对扩增产物和质粒 pET- 28 (+)进行双酶切,分别回收大片 段,并用 T4连接酶连接。 连接产物转化用氯化钙法大肠杆细菌 DH5cx,在含卡那霉素 (终浓度 30 g/ml ) 的 LB平板培养过夜后, 用菌落 PCR方法筛选阳性克隆, 并进行 测序。 挑选序列正确的阳性克隆(pET- 0827G01 )用氯化钙法将重组质粒转化大肠 杆菌 BL21 (DE3) plySs (Novagen公司产品)。 在含卡那霉素 (终浓度 30 y g/ml ) 的 LB 液体培养基中, 宿主菌 BL21 ( pET-0827G01 ) 在 37°C培养至对数生长期, 加入 IPTG 至终浓度 lomiol/L, 继续培养 5小时。 离心收集菌体, 经超声波破菌,离心收集上清, 用能与 6个组氨酸 ( 6Hi s-Tag ) 结合的亲和层析柱 Hi s. Bind Quick Car tr idge
( Novagen公司产品)进行层析, 得到了纯化的目的蛋白人锌指蛋白 13。 经 SDS-PAGE 电泳, 在 13kDa处得到一单一的条带 (图 2 ) 。 将该条带转移至 PVDF膜上用 Edams水 解法进行 N-端氨基酸序列分析, 结果 N-端 15个氨基酸与 SEQ ID NO: 2所示的 N-端 15 个氨基酸残基完全相同。 实施例 6 抗人锌指蛋白 13抗体的产生
用多肽合成仪(PE公司产品)合成下述人锌指蛋白 13特异性的多肽:
NH2-Met-Ser-Phe-Phe-I le-Thr-Hi s-Gln-Gln-Thr-Hi s-Pro-Arg-Glu-Asn- C00H (SEQ ID NO: 7)。 将该多肽分别与血蓝蛋白和牛血清白蛋白耦合形成复合, 方法参见: Avraraeas, et al. Im讓 ocherai s try, 1969; 6: 43。 用½ 上述 i蓝蛋白 多肽复合物加上完全弗氏佐剂免疫家兔, 15天后再用血蓝蛋白多肽复合物加不完 全弗氏佐剂加强免疫一次。 采用经 15 g/nil牛血清白蛋白多肽复合物包被的滴定 板做 ELISA测定兔血清中抗体的滴度。 用蛋白 A- Sepharose从抗体阳性的家兔血清 中分离总 IgG。将多肽结合于溴化氰活化的 Sepharose4B柱上,用亲和层析法从总 IgG 中分离抗多肽抗体。 免疫沉淀法证明纯化的抗体可特异性地与人锌指蛋白 13结合。 实施例 7: 本发明的多核苷酸片段用作杂交探针的应用
从本发明的多核苷酸中挑选出合适的寡核苷酸片段用作杂交探针有多方面的 用途, 如用该探针可与不同来源的正常组织或病理组织的基因组或 cDNA文库杂交 以鉴定其是否含有本发明的多核苷酸序列和检出同源的多核苷酸序列,进一步还可 用该探针检测本发明的多核苷酸序列或其同源的多核苷酸序列在正常组织或病理 组织细胞中的表达是否异常。
本实施例的目的是从本发明的多核苷酸 SEQ ID NO: 1 中挑选出合适的寡核苷 酸片段用作杂交探针, 并用滤膜杂交方法鉴定一些组织中是否含有本发明的多核 苷酸序列或其同源的多核苷酸序列。 滤膜杂交方法包括斑点印迹法、 Southern 印' 迹法、 Northern 印迹法和复印方法等, 它们都是将待测的多核苷酸样品固定在滤 膜上后使用基本相同的步骤杂交。 这些相同的步骤是: 固定了样品的滤膜首先用 不含探针的杂交缓冲液进行预杂交, 以使滤膜上样品的非特异性的结合部位被载 体和合成的多聚物所饱和。 然后预杂交液被含有标记探针的杂交缓冲液替换, 并 保温使探针与靶核酸杂交。 杂交步骤之后, 未杂交上的探针被一系列洗膜步骤除 掉。 本实施例利用较高强度的洗膜条件 (如较低盐浓度和较高的温度), 以使杂交 背景降低且只保留特异性强的信号。 本实施例选用的探针包括两类: 第一类探针 是完全与本发明的多核苷酸 SEQ ID NO: 1相同或互补的寡核苷酸片段; 第二类探 针是部分与本发明的多核苷酸 SEQ ID NO: 1相同或互补的寡核苷酸片段。 本实施 例选用斑点印迹法将样品固定在滤膜上, 在较高强度的的洗膜条件下, 第一类探 针与样品的杂交特异性最强而得以保留。
一、 探针的选用
从本发明的多核苷酸 SEQ ID NO: 1中选择寡核苷酸片段用作杂交探针, 应遵 循以下原则和需要考虑的几个方面:
1 , 探针大小优选范围为 18-50个核苷酸;
2 , GC含量为 30½-70%, 超过则非特异性杂交增加;
3 , 探针内部应无互补区域;
4, 符合以上条件的可作为初选探针, 然后进一步作计算机序列分析, 包括将该 初选探针分别与其来源序列区域 (即 SEQ ID NO: 1 ) 和其它已知的基因组序 列及其互补区进行同源性比较, 若与非靶分子区域的同源性大于 85%或者有超 过 15个连续碱基完全相同, 则该初选探针一般就不应该使用;
5, 初选探针是否最终选定为有实际应用价值的探针还应进一步由实验确定。
完成以上各方面的分析后挑选并合成以下二个探针:
探针 1 ( probel ), 属于第一类探针, 与 SEQ ID NO: 1 的基因片段完全 同源或互补(41Nt ):
5'- TGTCATTTTTTATTACTCATCAGCAAACACATCCAAGAGAG -3' ( SEQ ID NO: 8 ) 探针 2 ( probe2 ), 属于第二类探针, 相当于 SEQ ID NO: 1 的基因片段 或其互补片段的替换突变序列 (41Nt ):
5'- TGTCATTTTTTATTACTCATCAGCAAACACATCCAAGAGAG -3' ( SEQ ID NO: 9 ) 与以下具体实验步骤有关的其它未列出的常用试剂及其配制方法请参考文 献: DNA PROBES G. H. Kel ler; M. M. Manak; Stockton Press, 1989 (USA)以及更常 用的分子克隆实验手册书籍如 《分子克隆实验指南》(1998 年第二版) [美]萨姆 布鲁克等著, 科学出版社。 样品制备:
1, 从新鲜或冰冻组织中提取 DNA
步骤: 1)将新鲜或新鲜解冻的正常肝组织放入浸在冰上并盛有磷酸盐缓冲液 (PBS) 的平皿中。 用剪刀或手术刀将组织切成小块。 搡作中应保持组织湿润。 2) 以 lOOOg离心切碎组织 10分钟。 3)用冷匀浆缓冲液 ( 0.25mol/L蔗糖; 25mmol/L Tris-HCl, pH7.5; 25誦 ol/LnaCl; 25mmol/L MgCl2 ) 悬浮沉淀(大约 10ml/g )。 4) 在 4°C用电动匀浆器以全速匀浆组织悬液, 直至组织被完全破碎。 5) lOOOg 离心 10分钟。 6)用重悬细胞沉淀 (每 O. lg最初组织样品加 1- 5ml), 再以 lOOOg离心 10分钟。 7)用裂解缓冲液重悬沉淀(每 O. lg最初组织样品加 lml ), 然后接以下 的苯酚抽提法。
2, DNA的苯酚抽提法
步骤: 1)用 1- lOral冷 PBS洗细胞, lOOOg 离心 10分钟。 2)用冷细胞裂解 液重悬浮沉淀的细胞 ( lxl 08细胞 /ml) 最少应用 lOOul 裂解缓冲液。 3)加 SDS 至终浓度为 1%, 如果在重悬细胞之前将 SDS直接加入到细胞沉淀中, 细胞可能会 形成大的团块而难以破碎, 并降低的总产率。 这一点在抽提 >107细胞时特别严重。 4)加蛋白酶 K 至终浓度 200ug/ml。 5) 50°C保温反应 1小时或在 37°C轻轻振摇 过夜。 6) 用等体积苯酚: 氯仿: 异戊醇 ( 25: 24: 1)抽提, 在小离心机管中离 心 10分钟。 两相应清楚分离, 否则重新进行离心。 7) 将水相转移至新管。 8)用 等体积氯仿: 异戊醇 (24: 1)抽提, 离心 10分钟。 9) 将含 DNA的水相转移至新 管。 然后进行 DNA的纯化和乙醇沉淀。
3, DNA的纯化和乙醇沉淀
步骤: 1 ) 将 1/10体积 2raol/L醋酸纳和 2倍体积冷 100%乙醇加到 DNA溶液 中, 混匀。 在 -20°C放置 1小时或至过夜。 2) 离心 10分钟。 3)小心吸出或倒出 乙醇。 4)用 70%冷乙醇 500ul洗涤沉淀, 离心 5分钟。 5)小心吸出或倒出乙醇。 用 500ul冷乙醇洗涤沉淀, 离心 5分钟。 6)小心吸出或倒出乙醇, 然后在吸水纸 上倒置使残余乙醇流尽。 空气干燥 10-15 分钟, 以使表面乙醇挥发。 注意不要使 沉淀完全干燥, 否则较难重新溶解。 7) 以小体积 TE或水重悬 DNA沉淀。 低速涡 旋振荡或用滴管吹吸, 同时逐渐增加 TE, 混合至 DM充分溶解, 每 1- 5xl06细胞 所提取的大约加 lul。
以下第 8-13步骤仅用于必须除去污染时, 否则可直接进行第 14步骤。
8 ) 将 RNA酶 A加到 DNA溶液中, 终浓度为 lOOug/ml, 37°C保温 30分钟。 9 )加 入 SDS和蛋白酶 K, 终浓度分别为 0.5%和 100ug/mh 37。C保温 30分钟。 10)用 等体积的苯酚: 氯仿: 异戊醇 ( 25: 24: 1)抽提反应液, 离心 10 分钟。 11) 小 心移出水相, 用等体积的氯仿: 异戊醇 (24: 1) 重新抽提, 离心 10 分钟。 12) 小心移出水相, 加 1 0体积 2mol/L醋酸钠和 2.5 体积冷乙醇, 混匀置 -20°C 1 小时。 13)用 70%乙醇及 100%乙醇洗涤沉淀, 空气干燥, 重悬核酸, 过程同第 3- 6步骤。 14 )测定 Α。和 A2S。以检测 DNA的纯度及产率。 15 )分装后存放于 - 20°C。 样膜的制备. -
1)取 4x2 张适当大小的硝酸纤维素膜(NC膜), 用铅笔在其上轻轻标出点样 位置及样号, 每一探针需两张 NC膜, 以便在后面的实验步骤中分别用高强度条件 和强度条件洗膜 。
2) 吸取及对照各 15微升, 点于样膜上, 在室温中晾干。
3 )置于浸润有 0. Imol/LNaOH, 1.5mol/LNaCl的滤纸上 5分钟 (两次), 晾干置 于浸润有 0.5mol/L Tris-HCl ( pH7.0 ), 3mol/LNaCl的滤纸上 5分钟 (两次), 晾 干。
4)夹于干净滤纸中, 以铝箔包好, 60-80 C真空干燥 2小时。
探针的标记
1 )3μ lProbe ( 0. IOD/Ιθ 1 ),加入 2 μ IKinase缓冲液, 8-10 uCi γ- 32P— dATP+2U Kinase, 以补加至终体积 20 μ 1。
2) 37 °C 保温 2小时。
3)加 1/5体积的溴酚蓝指示剂 (BPBX
4 )过 Sephadex G-50柱。
5 ) 至有 32P- Probe洗出前开始收集第一峰 (可用 Monitor监测)。
6) 5滴 /管, 收集 10-15管。
7)用液体闪烁仪监测同位素量
8 ) 合并第一峰的收集液后即为所需制备的 32P- Probe (第二峰为游离 γ- 32P - dATP )0
预杂交
将样膜置于塑料袋中,加入 3-10rag预杂交液( lOxDenhardt-s; 6xSSC, 0. lmg/ml CT DNA (小牛胸腺 DNA )。 ), 封好袋口后, 68。C水浴摇 2小时。
杂交
将塑料袋剪去一角, 加入制备好的探针, 封好袋口后, 42°C水洛摇过夜。 高强度洗膜: 1 )取出已杂交好的样膜。
2 ) 2xSSC, 0. Γ/oSDS中, 40。C洗 15分钟 ( 2次)。
3 ) 0. lxSSC, 0.1%SDS中 , 40。C洗 15分钟 ( 2次)。
4) 0. lxSSC, 0.1%SDS中, 55°C洗 30分钟 ( 2次), 室温晾干。 低强度洗膜:
1) 取出已杂交好的样膜。
2 ) 2xSSC, 0. /oSDS中, 37°C洗 15分钟 ( 2次)。
3 ) 0. lxSSC, 0.1%SDS中 , 37°C洗 15分钟 ( 2次)。
4) 0. lxSSC, 0.1°/。SDS中, 40°C洗 15分钟 ( 2次), 室温晾干。
X -光自显影:
-70°C, X-光自显影 (压片时间根据杂交斑放射性强弱而定)。
实验结果:
采用低强度洗膜条件所进行的杂交实验, 以上两个探针杂交斑放射性强弱没 有明显区别; 而釆用高强度洗膜条件所进行的杂交实验, 探针 1 的杂交斑放射性 强度明显强于另一个探针杂交斑的放射性强度。 因而可用探针 1 定性和定量地分 析本发明的多核苷酸在不同组织中的存在和差异表达。 实施例 8 DNA Microarray
基因芯片或基因微矩阵 (DNA' Microarray)是目前许多国家实验室和大制药 公司都在着手研制和开发的新技术, 它是指将大量的靶基因片段有序地、 高密度 地排列在玻璃、 硅等载体上, 然后用荧光检测和计算机软件进行数据的比较和分 析, 以达到快速、 高效、 高通量地分析生物信息的目的。 本发明的多核苷酸可作 为靶 DNA 用于基因芯片技术用于高通量研究新基因功能; 寻找和筛选组织特异性 新基因特别是肿瘤等疾病相关新基因; 疾病的诊断, 如遗传性疾病。 其具体方法 步骤在文献中已有多种报道, 如可参阅文献 DeRisi, J. L., Lyer, V. &Brown, P.0. (1997) Science278; 680-686.及文献 Helle, R. A. , Schema, M., Chai, A. , Shalom, D. , (1997)PNAS 94: 2150-2155.
(一) 点样
各种不同的全长 cDNA共计 4000条多核苷酸序列作为靶 DNA,其中包括本发明 的多核苷酸。 将它们分别通过 PCR 进行扩增, 纯化所得扩增产物后将其浓度调到 500ng/ul 左右, 用 Cartesian 7500 点样仪(购自美国 Cartesian公司)点于玻璃 介质上, 点与点之间的距离为 280μη!。 将点样后的玻片进行水合、 干燥、 置于紫 外交联仪中交联, 洗脱后干燥使 DNA 固定在玻璃片上制备成芯片。 其具体方法步 骤在文献中已有多种报道, 本实施例的点样后处理步骤是:
1. 潮湿环境中水合 4小时;
2. 0.2%SDS洗涤 1分钟;
3. ddH20洗涤两次, 每次 1分钟;
4. NaBH4封闭 5分钟;
5. 95°C水中 2分钟;
6. 0.2/。SDS洗涤 1分钟;
7. ddH20冲洗两次;
8. 凉干, 25°C储存于暗处备用。
(二)探针标记
用一步法分别从正常肝与肝癌中抽提总 mRNA, 并用 Oligotex raRNA Midi Kit (购自 QiaGen公司)纯化 mRNA,通过反转录分别将荧光试剂 Cy3dUTP (5-Amino- propargyl-2'-deoxyuridine 5'-tr iphate coupled to Cy3 fluorescent dye , 购自 Amersham Phamacia Biotech 公司)标记正常肝组织的 mRNA, 用荧光试剂 Cy5dUTP (5-Amino-propargy 1-2' -deoxyuri dine 5'-tr iphate coupled to Cy5 fluorescent dye, 购自 Amersham Phamacia Biotech公司)标记肝癌组织 raRNA, 经纯化后制备出探针。 具体步骤参照及方法见:
Schena,
M. , Shalon, D. , Heller, R. (1996) Proc. Natl. Acad. Sci. USA. Vol.93: 10614- 10619. Schena, M. , Shalon, Dar i. , Davis, R. W. (1995) Science.270. (20) : 467-480.
(三) 杂交
分别将来自 以上两种组织的探针与芯片一起在 UniHyb™ Hybridization
Solution (购自 TeleChem公司)杂交液中进行杂交 16 小时, 室温用洗涤液 (l x SSC, 0.2%SDS ) 洗涤后用 ScanArray 3000扫描仪 (购自美国 General Scanning公 司)进行扫描, 扫描的图象用 Imagene软件(美国 Biodi scovery公司) 进行数据 分析处理, 算出每个点的 Cy3/Cy5 比值, 该比值小于 0.5大于 2 的点被认为是表 达有差异的基因。 实 验 结 果 表 明 , Cy3signal=3159.79 ( 取 四 次 实 验 的 平 均 值) , Cy5s igna l=3048. 99 (取四次实验的平均值) , Cy3/Cy5=l. 03634,本发明的多 核苷酸在以上两种组织中的表达无明显差异。
工业实用性
本发明的多肽以及该多肽的拮抗剂、 激动剂和抑制剂可直接用于疾病治疗, 例如, 可治疗恶性肿瘤、 肾上腺缺乏症、 皮肤病、 各类炎症、 HIV 感染和免疫 性疾病等。
锌结合蛋白通常作为转录因子及信号转导分子参与基因的表达与调控, 锌 指蛋白在不同的生物的各种组织中均有表达, 这些组织包括造血细胞、 脑、 神 经系统、 各种与肿瘤相关的组织和无限增殖细胞系组织等。 含 C2H2 类型锌指 结构域的蛋白不仅在一些组织的基因表达过程中起重要的调节作用, 其在发育 调节过程亦起着非常关键的作用。 含 KRAB 结构域的 Kruppe l 型锌指蛋白构成 了一类亚家族, KRAB结构域与蛋白的正确定位及发挥功能有关。
研究发现, 一些含 C2H2 类型锌指结构域的蛋白与以下疾病有关: 实体瘤如 甲状腺腺瘤、 子宫肌瘤, 神经系统疾病如锥体外系功能异常、 帕金森综合征、 共济失调、 神经细胞瘤、 胶质细胞瘤, 血液性恶性疾病如白血病、 非何杰金氏 淋巴瘤, 发育紊乱症如 Wi l l i ams 综合症, 裂手裂脚症, 贝魏二氏综合症, 其 它肿瘤如成神经细胞瘤、 结肠癌、 乳腺癌等等。
本发明的多肽与已知的人锌指蛋白 ZNF11B是同源蛋白, 两者同为人锌指蛋 白 KRAB亚家族的成员且具有相似的生理学功能。 研究发现, 人锌指蛋白 ZNF11B 定位于第 10 条染色体上, 其在生物体内与一些基因、 基因组的复制及染色体 的重排等过程相关。
由此可见, 本发明的人锌指蛋白 13 的表达异常将产生各种疾病尤其是各种 肿瘤、 神经系统疾病、 血液性恶性疾病、 发育紊乱症, 这些疾病包括但不限于: 各种组织的肿瘤: 曱状腺肿瘤, 子宫肌瘤, 成神经细胞瘤, 室管膜瘤, 结 肠癌, 乳腺癌, 白血病, 淋巴瘤, 恶性组织细胞病, 黑色素瘤, 肉瘤, 胃癌, 肝癌, 肺癌, 食管癌, 骨髓瘤, 畸胎瘤, 肾上腺癌, 膀胱癌, 骨癌, 骨肉瘤, 脑癌, 子宫癌, 胆囊癌, 肝癌, 胸腺肿瘤, 子宫肌瘤, 星形细胞瘤, 室管膜瘤, 胶质细胞瘤, 神经纤维瘤, 结肠癌, 骨髓瘤, 骨髓癌, 子宫内膜癌, 胆囊癌, 鼻腔及鼻窦肿瘤, 鼻咽癌, 喉癌, 气管肿瘤, 纤维瘤, 纤维肉瘤, 脂肪瘤, 脂 肪肉瘤, 平滑肌瘤 发育紊乱性疾病: 锥体外系功能障碍, 畸胎, Wi l l iams 综合症, Alag i l le 综合症, 裂手裂脚病及贝魏二氏综合症, 先天性流产, 腭裂, 肢体缺如, 肢体 分化障碍, 透明膜病, 肺膨胀不全, 多囊肾, 隐睾, 先天性腹股沟疝, 双子宫, 阴道闭锁, 尿道下裂, 两性畸形, 房间隔缺损, 室间隔缺损, 肺动脉狭窄, 动 脉导管未闭, 虹膜缺损, 先天性青光眼或白内障, 先天性耳聋
神经系统疾病: 神经管闭合不全, 大脑发育畸形, 神经元迁徙障碍, 其它 畸形如导水管畸形、 小脑发育不全、 Down 综合症、 脊髓畸形、 先天性脑积水、 先天性脑神经核发育不全综合症, 神经胶质细胞瘤, 脑膜瘤, 神经纤维瘤, 垂 体腺瘤, 颅内肉芽肿, 老年痴呆症, 帕金森氏病, 舞蹈症, 抑郁症, 健忘症, 亨延顿病, 癫痫症, 偏头痛, 痴呆症, 多发性硬化 , 精神分裂症, 抑郁症, 偏执狂, 焦虑症, 强迫症, 恐惧症, 神经衰落
血液性恶性疾病: 白血病, 非何杰金氏淋巴瘤
本发明的人锌指蛋白 13 的表达异常还将产生某些遗传性疾病, 内分泌系统疾 病如内分泌腺瘤, 免疫系统疾病。
本发明的多肽以及该多肽的拮抗剂、 激动剂和抑制剂可直接用于疾病治疗, 例如, 可治疗各种疾病尤其是各种肿瘤、 神经系统疾病、 血液性恶性疾病、 发 育紊乱症, 某些遗传性疾病, 内分泌系统疾病如内分泌腺瘤, 免疫系统疾病等。 本发明也提供了筛选化合物以鉴定提高(激动剂)或阻遏(拮抗剂)人锌指蛋 白 13 的药剂的方法。 激动剂提高人锌指蛋白 1 3刺激细胞增殖等生物功能, 而 拮抗剂阻止和治疗与细胞过度增殖有关的紊乱如各种癌症。 例如, 能在药物的 存在下, 将哺乳动物细胞或表达人锌指蛋白 1 3的膜制剂与标记的人锌指蛋白 1 3 一起培养。 然后测定药物提高或阻遏此相互作用的能力。
人锌指蛋白 13的拮抗剂包括筛选出的抗体、 化合物、 受体缺失物和类似物 等。 人锌指蛋白 1 3 的拮抗剂可以与人锌指蛋白 1 3 结合并消除其功能, 或是抑 制该多肽的产生, 或是与该多肽的活性位点结合使该多肽不能发挥生物学功能。
在筛选作为拮抗剂的化合物时, 可以将人锌指蛋白 13 加入生物分析测定 中, 通过测定化合物对人锌指蛋白 13和其受体之间相互作用的影响来确定化合 物是否是拮抗剂。 用上述筛选化合物的同样方法, 可以筛选出起拮抗剂作用的 受体缺失物和类似物。 能与人锌指蛋白 13结合的多肽分子可通过筛选由各种可 能组合的氨基酸结合于固相物组成的随机多肽库而获得。 筛选时, 一般应对人 锌指蛋白 1 3分子进行标记。 本发明提供了用多肽, 及其片段、 衍生物、 类似物或它们的细胞作为抗原 以生产抗体的方法。 这些抗体可以是多克隆抗体或单克隆抗体。 本发明还提供 了针对人锌指蛋白 1 3抗原决定簇的抗体。 这些抗体包括 (但不限于): 多克隆抗 体、 单克隆抗体、 嵌合抗体、 单链抗体、 Fab片段和 Fab表达文库产生的片段。
多克隆抗体的生产可用人锌指蛋白 13直接注射免疫动物 (如家兔, 小鼠, 大鼠等) 的方法得到, 多种佐剂可用于增强免疫反应, 包括但不限于弗氏佐剂 等。 制备人锌指蛋白 13 的单克隆抗体的技术包括但不限于杂交瘤技术(Koh ler and Mi l s tein. Na ture, 1975, 256: 495-497) , 三瘤技术, 人 Β-细胞杂交瘤技 术, EBV -杂交瘤技术等。 将人恒定区和非人源的可变区结合的嵌合抗体可用巳 有的技术生产(Morr i son et a l , PNAS, 1985, 81 : 6851) 0 而巳有的生产单链抗体 的技术(U. S. Pa t No. 4946778)也可用于生产抗人锌指蛋白 13的单链抗体。
抗人锌指蛋白 13的抗体可用于免疫组织化学技术中, 检测活检标本中的人 锌指蛋白 13。
与人锌指蛋白 13结合的单克隆抗体也可用放射性同位素标记, 注入体内可 跟踪其位置和分布。 这种放射性标记的抗体可作为一种非创伤性诊断方法用于 肿瘤细胞的定位和判断是否有转移。
抗体还可用于设计针对体内某一特殊部位的免疫毒素。 如人锌指蛋白 13高 亲和性的单克隆抗体可与细菌或植物毒素(如白喉毒素, 蓖麻蛋白, 红豆碱等) 共价结合。 一种通常的方法是用巯基交联剂如 SPDP, 攻击抗体的氨基, 通过二 硫键的交换, 将毒素结合于抗体上, 这种杂交抗体可用于杀灭人锌指蛋白 13阳 性的细胞。
本发明中的抗体可用于治疗或预防与人锌指蛋白 13相关的疾病。 给予适当 剂量的抗体可以刺激或阻断人锌指蛋白 13的产生或活性。
本发明还涉及定量和定位检测人锌指蛋白 13水平的诊断试验方法。 这些试 验是本领域所熟知的, 且包括 FISH测定和放射免疫测定。 试验中所检测的人锌 指蛋白 1 3水平, 可以用作解释人锌指蛋白 13在各种疾病中的重要性和用于诊 断人锌指蛋白 1 3起作用的疾病。
本发明的多肽还可用作肽谱分析, 例如, 多肽可用物理的、 化学或酶进行 特异性切割, 并进行一维或二维或三维的凝胶电泳分析,更好的是进行质谱分 析。
编码人锌指蛋白 13的多核苷酸也可用于多种治疗目的。 基因治疗技术可用 于治疗由于人锌指蛋白 13 的无表达或异常 /无活性表达所致的细胞增殖、 发育 或代谢异常。 重组的基因治疗载体(如病毒载体)可设计用于表达变异的人锌指 蛋白 1 3 , 以抑制内源性的人锌指蛋白 1 3活性。 例如, 一种变异的人锌指蛋白 13 可以是缩短的、 缺失了信号传导功能域的人锌指蛋白 13 , 虽可与下游的底物结 合, 但缺乏信号传导活性。 因此重组的基因治疗载体可用于治疗人锌指蛋白 13 表达或活性异常所致的疾病。 来源于病毒的表达载体如逆转录病毒、 腺病毒、 腺病毒相关病毒、 单纯疱疹病毒、 细小病毒等可用于将编码人锌指蛋白 1 3 的多 核苷酸转移至细胞内。 构建携带编码人锌指蛋白 13 的多核苷酸的重组病毒载体 的方法可见于已有文献(Sambrook, et a l. )。 另外重组编码人锌指蛋白 1 3 的多 核苷酸可包装到脂质体中转移至细胞内。
多核苷酸导入组织或细胞内的方法包括: 将多核苷酸直接注入到体内组织 中; 或在体外通过载体(如病毒、 噬菌体或质粒等)先将多核苷酸导入细胞中, 再将细胞移植到体内等。
抑制人锌指蛋白 1 3 mRNA 的寡核苷酸(包括反义 RNA和 DM)以及核酶也在 本发明的范围之内。 核酶是一种能特异性分解特定 MA 的酶样 RNA分子, 其作 用机制是核酶分子与互补的靶 RNA特异性杂交后进行核酸内切作用。 反义的 RNA 和 DNA及核酶可用巳有的任何 RNA或 DNA合成技术获得, 如固相磷酸酰胺化学 合成法合成寡核苷酸的技术已广泛应用。 反义 RNA分子可通过编码该 RM的 DNA 序列在体外或体内转录获得。 这种 DNA序列巳整合到载体的 RNA聚合酶启动子 的下游。 为了增加核酸分子的稳定性, 可用多种方法对其进行修饰, 如增加两 侧的序列长度, 核糖核苷之间的连接应用磷酸硫酯键或肽键而非磷酸二酯键。
编码人锌指蛋白 1 3的多核苷酸可用于与人锌指蛋白 1 3的相关疾病的诊断。 编码人锌指蛋白 1 3 的多核苷酸可用于检测人锌指蛋白 13 的表达与否或在疾病 状态下人锌指蛋白 1 3 的异常表达。 如编码人锌指蛋白 1 3 的 DM序列可用于对 活检标本进行杂交以判断人锌指蛋白 1 3 的表达状况。 杂交技术包括 Southern 印迹法, Nor thern 印迹法、 原位杂交等。 这些技术方法都是公开的成熟技术, 相关的试剂盒都可从商业途径得到。 本发明的多核苷酸的一部分或全部可作为 探针固定在微阵列(Mi croarray)或 DNA 芯片(又称为 "基因芯片" )上, 用于分 析组织中基因的差异表达分析和基因诊断。 用人锌指蛋白 1 3 特异的引物进行 RM-聚合酶链反应(RT- PCR)体外扩增也可检测人锌指蛋白 1 3的转录产物。
检测人锌指蛋白 13基因的突变也可用于诊断人锌指蛋白 1 3相关的疾病。 人锌指蛋白 13 突变的形式包括与正常野生型人锌指蛋白 13 DNA序列相比的点 突变、 易位、 缺失、 重组和其它任何异常等。 可用已有的技术如 Southern印迹 法、 DNA序列分析、 PCR和原位杂交检测突变。 另外, 突变有可能影响蛋白的表 达, 因此用 Nor thern印迹法、 Wes tern印迹法可间接判断基因有无突变。
本发明的序列对染色体鉴定也是有价值的。 该序列会特异性地针对某条人 染色体具体位置且并可以与其杂交。 目前, 需要鉴定染色体上的各基因的具体 位点。 现在, 只有很少的基于实际序列数据(重复多态性)的染色体标记物可用 于标记染色体位置。 根据本发明, 为了将这些序列与疾病相关基因相关联, 其 重要的第一步就是将这些 DNA序列定位于染色体上。
简而言之, 根据 cDNA制备 PCR引物(优选 15- 35bP) , 可以将序列定位于染色 体上。 然后, 将这些引物用于 PCR筛选含各条人染色体的体细胞杂合细胞。 只 有那些含有相应于引物的人基因的杂合细胞会产生扩增的片段。
体细胞杂合细胞的 PCR定位法, 是将 DNA定位到具体染色体的快捷方法。 使 用本发明的寡核苷酸引物, 通过类似方法, 可利用一组来自特定染色体的片段 或大量基因组克隆而实现亚定位。 可用于染色体定位的其它类似策略包括原位 杂交、 用标记的流式分选的染色体预筛选和杂交预选, 从而构建染色体特异的 cDNA库。
将 cDNA克隆与中期染色体进行荧光原位杂交(FISH) , 可以在一个步骤中精 确地进行染色体定位。 此技术的综述, 参见 Verma等, Human Chromosomes : a Manua l of Bas i c Techniques , Pergamon Pres s , New York (1988)。
一旦序列被定位到准确的染色体位置, 此序列在染色体上的物理位置就可 以与基因图数据相关联。 这些数据可见于例如, V. Mckus i ck, Mendel i an Inher i tance in Man (可通过与 Johns Hopk ins Univers i ty We l ch Medica l L ibrary联机获得)。 然后可通过连锁分析, 确定基因与业已定位到染色体区域 上的疾病之间的关系。
接着, 需要测定患病和未患病个体间的 cDNA或基因组序列差异。 如果在一 些或所有的患病个体中观察到某突变, 而该突变在任何正常个体中未观察到, 则该突变可能是疾病的病因。 比较患病和未患病个体, 通常涉及首先寻找染色 体中结构的变化, 如从染色体水平可见的或用基于 cDNA序列的 PCR可检测的缺 失或易位。 根据目前的物理作图和基因定位技术的分辨能力, 被精确定位至与 疾病有关的染色体区域的 cDNA, 可以是 50至 500个潜在致病基因间之一种(假定 1兆碱基作图分辨能力和每 20kb对应于一个基因)。
可以将本发明的多肽、 多核苷酸及其模拟物、 激动剂、 拮抗剂和抑制剂与 合适的药物载体组合后使用。 这些载体可以是水、 葡萄糖、 乙醇、 盐类、 缓冲 液、 甘油以及它们的组合。 组合物包含安全有效量的多肽或拮抗剂以及不影响 药物效果的载体和赋形剂。 这些组合物可以作为药物用于疾病治疗。
本发明还提供含有一种或多种容器的药盒或试剂盒, 容器中装有一种或多 种本发明的药用组合物成分。 与这些容器一起, 可以有由制造、 使用或销售药 品或生物制品的政府管理机构所给出的指示性提示, 该提示反映出生产、 使用 或销售的政府管理机构许可其在人体上施用。 此外, 本发明的多肽可以与其它 的治疗化合物结合使用。
药物组合物可以以方便的方式给药, 如通过局部、 静脉内、 腹膜内、 肌内、 皮下、 鼻内或皮内的给药途径。 人锌指蛋白 1 3 以有效地治疗和 /或预防具体的 适应症的量来给药。 施用于患者的人锌指蛋白 1 3的量和剂量范围将取决于许多 因素, 如给药方式、 待治疗者的健康条件和诊断医生的判断。

Claims

杈利要求书
1、 一种分离的多肽-人锌指蛋白 13, 其特征在于它包含有: SEQ ID NO: 2 所 示的氨基酸序列的多肽、 或其多肽的活性片段、 类似物或衍生物。
2、 如杈利要求 1 所述的多肽, 其特征在于所述多肽、 类似物或衍生物的氨基 酸序列具有与 SEQ ID NO: 2所示的氨基酸序列至少 95%的相同性。
3、 如杈利要求 2 所述的多肽, 其特征在于它包含具有 SEQ ID NO: 2 所示的氨 基酸序列的多肽。
4、 一种分离的多核苷酸, 其特征在于所述多核苷酸包含选自下组中的一种:
(a) 编码具有 SEQ ID NO: 2所示氨基酸序列的多肽或其片段、 类似物、 衍生 物的多核苷酸;
(b) 与多核苷酸 (a ) 互补的多核苷酸; 或
(c) 与 ) 或 (b ) 有至少 70»/。相同性的多核苷酸。
5、 如杈利要求 4 所述的多核苷酸, 其特征在于所述多核苷酸包含编码具有 SEQ ID NO: 2所示氨基酸序列的多核苷酸。
6、如权利要求 4所述的多核苷酸,其特征在于所述多核苷酸的序列包含有 SEQ ID NO: 1中 525-872位的序列或 SEQ ID NO: 1中 1-1517位的序列。
7、 一种含有外源多核苷酸的重组载体, 其特征在于它是由杈利要求 4-6 中的 任一杈利要求所述多核苷酸与质粒、 病毒或运载体表达载体构建而成的重组载 体。
8、 一种含有外源多核苷酸的遗传工程化宿主细胞, 其特征在于它是选自于下 列一种宿主细胞:
(a) 用杈利要求 7所述的重组载体转化或转导的宿主细胞; 或
(b) 用杈利要求 4-6 中的任一杈利要求所述多核苷酸转化或转导的宿主细 胞。
9、 一种具有人锌指蛋白 1 3活性的多肽的制备方法, 其特征在于所述方法包括:
(a) 在表达人锌指蛋白 13条件下, 培养杈利要求 8所述的工程化宿主细胞;
(b) 从培养物中分离出具有人锌指蛋白 13活性的多肽。
10、 一种能与多肽结合的抗体,其特征在于所述抗体是能与人锌指蛋白 1 3 特异 性结合的抗体。
11、 一类模拟或调节多肽活性或表达的化合物, 其特征在于它们是模拟、 促进、 拮抗或抑制人锌指蛋白 13的活性的化合物。
12、 如杈利要求 11 所述的化合物, 其特征在于它是 SEQ ID N0: 1 所示的多核 苷酸序列或其片段的反义序列。
13、 一种杈利要求 11 所述化合物的应用, 其特征在于所述化合物用于调节人 锌指蛋白 1 3在体内、 体外活性的方法。
14、 一种检测与杈利要求 1-3 中的任一权利要求所述多肽相关的疾病或疾病易 感性的方法, 其特征在于其包括检测所述多肽的表达量, 或者检测所述多肽的 活性, 或者检测多核苷酸中引起所述多肽表达量或活性异常的核苷酸变异。
15、 如权利要求 1-3 中的任一杈利要求所述多肽的应用, 其特征在于它应用于 筛选人锌指蛋白 1 3 的模拟物、 激动剂, 拮抗剂或抑制剂; 或者用于肽指紋图 谱鉴定。
16、 如权利要求 4-6 中的任一杈利要求所述的核酸分子的应用, 其特征在于它 作为引物用于核酸扩增反应, 或者作为探针用于杂交反应, 或者用于制造基因 芯片或微阵列。
17、 如权利要求 1-6 及 11 中的任一权利要求所述的多肽、 多核苷酸或化合物 的应用, 其特征在于用所述多肽、 多核苷酸或其模拟物、 激动剂、 拮抗剂或抑 制剂以安全有效剂量与药学上可接受的载体组成作为诊断或治疗与人锌指蛋白 1 3异常相关的疾病的药物组合物。
18、 权利要求 1-6及 11 中的任一权利要求所述的多肽、 多核苷酸或化合物 的应用, 其特征在于用所述多肽、 多核苷酸或化合物制备用于治疗如恶性肿瘤, 血液病, HIV感染和免疫性疾病和各类炎症的药物。
PCT/CN2001/000023 2000-01-21 2001-01-15 Nouveau polypeptide, proteine humaine 13 a doigt de zinc, et polynucleotide codant pour ce polypeptide WO2001053341A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU29961/01A AU2996101A (en) 2000-01-21 2001-01-15 A new polypeptide-human zinc finger protein 13 and the polynucleotide encoding it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN00111477.8 2000-01-21
CN00111477A CN1307013A (zh) 2000-01-21 2000-01-21 一种新的多肽——人锌指蛋白13和编码这种多肽的多核苷酸

Publications (1)

Publication Number Publication Date
WO2001053341A1 true WO2001053341A1 (fr) 2001-07-26

Family

ID=4581387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2001/000023 WO2001053341A1 (fr) 2000-01-21 2001-01-15 Nouveau polypeptide, proteine humaine 13 a doigt de zinc, et polynucleotide codant pour ce polypeptide

Country Status (3)

Country Link
CN (1) CN1307013A (zh)
AU (1) AU2996101A (zh)
WO (1) WO2001053341A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999021991A1 (en) * 1997-10-29 1999-05-06 Shanghai Second Medical University Bmzf12: a zinc finger gene cloned from bone marrow
WO1999062951A1 (en) * 1998-06-04 1999-12-09 Shanghai Second Medical University A human zinc finger protein gene (bmzf3)
WO1999062952A1 (en) * 1998-06-04 1999-12-09 Shanghai Second Medical University A human zinc finger protein gene (bmzf2)

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999021991A1 (en) * 1997-10-29 1999-05-06 Shanghai Second Medical University Bmzf12: a zinc finger gene cloned from bone marrow
WO1999062951A1 (en) * 1998-06-04 1999-12-09 Shanghai Second Medical University A human zinc finger protein gene (bmzf3)
WO1999062952A1 (en) * 1998-06-04 1999-12-09 Shanghai Second Medical University A human zinc finger protein gene (bmzf2)

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DATABASE GENBANK [online] 10 December 1999 (1999-12-10), "Human DNA sequence from clone XX-Y738F9 on chromosome 10", Database accession no. AL022345 *
DATABASE GENBANK [online] 7 December 1999 (1999-12-07), "Homo sapiens ZNF01 and HUMORFKG1B genes", Database accession no. AF205588 *
ROSATI M. ET AL.: "Coding region intron/exon organization, alternative splicing and X-chromosome inactivation of the KRAB/FPB-domain-containing human zinc finger gene ZNF41", SYTOGENET. CELL GENET., vol. 85, no. 3-4, 1999, pages 291 - 296 *
ROSATI M. ET AL.: "Members of the zinc finger protein gene family sharing a conserved N-terminal module", NUCLEIC ACIDS RES., vol. 19, no. 20, 1991, pages 5661 - 5667 *
TUNNACLIFFE A. ET AL.: "Duplicated KOX zinc finger gene clusters flank the centromere of human chromosome 10: evidence for a pericentric inversion during primate evolution", NEUCLEIC ACIDS RES., vol. 21, no. 6, 1993, pages 1409 - 1417 *

Also Published As

Publication number Publication date
AU2996101A (en) 2001-07-31
CN1307013A (zh) 2001-08-08

Similar Documents

Publication Publication Date Title
WO2001083538A1 (fr) Nouveau polypeptide, proteine humaine 36 du gene k-ras, et polynucleotide codant pour ce polypeptide
WO2001055376A1 (fr) Nouveau polypeptide, proteine humaine 28 a doigt de zinc contenant un motif structural hit, et polynucleotide codant pour ce polypeptide
WO2001053341A1 (fr) Nouveau polypeptide, proteine humaine 13 a doigt de zinc, et polynucleotide codant pour ce polypeptide
WO2001079432A2 (en) A novel polypeptide, a human cell differentiation transcription factor 58 and the polynucleotide encoding the polypeptide
WO2001081594A1 (fr) Nouveau polypeptide, proteine pax humaine 17, et polynucleotide codant pour ce polypeptide
WO2001070965A1 (fr) Nouveau polypeptide, facteur humain de regulation de la transcription 15, et polynucleotide codant pour ce polypeptide
WO2001075048A2 (fr) Nouveau polypeptide, proteine ribosomale humaine s11 23, et polynucleotide codant pour ce polypeptide
WO2001072796A1 (fr) Nouveau polypeptide, facteur humain de transcription de la differentiation cellulaire 11, et polynucleotide codant pour ce polypeptide
WO2001049724A1 (fr) Nouveau polypeptide, proteine lissencephale humaine 43, et polynucleotide codant pour ce polypeptide
WO2001094401A1 (fr) Nouveau polypeptide, proteine npat humaine 15, et polynucleotide codant pour ce polypeptide
WO2001055381A1 (fr) Nouveau polypeptide, facteur regulateur 80 de la transcription humaine, et polynucleotide codant pour ce polypeptide
WO2001081399A1 (fr) Nouveau polypeptide, proteine pax humaine 14, et polynucleotide codant pour ce polypeptide
WO2001053483A1 (fr) Nouveau polypeptide, proteine humaine 30 a doigt de zinc, et polynucleotide codant pour ce polypeptide
WO2001055188A1 (fr) Nouveau polypeptide, proteine humaine a doigt de zinc 46, et polynucleotide codant pour ce polypeptide
WO2001075124A1 (fr) Nouveau polypeptide, proteine humaine de regulation de la transcription 9, et polynucleotide codant pour ce polypeptide
WO2001055184A1 (fr) Nouveau polypeptide, proteine humaine a doigt de zinc 19, et polynucleotide codant pour ce polypeptide
WO2001081535A2 (fr) Nouveau polypeptide, proteine pax humaine 9.9, et polynucleotide codant pour ce polypeptide
WO2001083544A1 (fr) Nouveau polypeptide, proteine pax humaine 18, et polynucleotide codant pour ce polypeptide
WO2001074893A1 (fr) Nouveau polypeptide, proteine humaine de regulation de la transcription 11.8, et polynucleotide codant pour ce polypeptide
WO2001064732A1 (fr) Nouveau polypeptide, facteur humain associe a la retrotransposition 14, et polynucleotide codant pour ce polypeptide
WO2001072809A1 (fr) Nouveau polypeptide, facteur humain de transcription de la differentiation cellulaire 9, et polynucleotide codant pour ce polypeptide
WO2001074891A1 (fr) Nouveau polypeptide, proteine humaine de regulation de la transcription 17, et polynucleotide codant pour ce polypeptide
WO2001081398A1 (fr) Nouveau polypeptide, proteine pax humaine 16, et polynucleotide codant pour ce polypeptide
WO2001087959A1 (fr) Nouveau polypeptide, proteine pax humaine 11.9, et polynucleotide codant pour ce polypeptide
WO2001087968A1 (fr) Proteine s4-36 ribosomale, polypeptide humain, et polynucleotide la codant

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP