WO2001048852A1 - Dispositif à canal d'écoulement pour cellules électrochimiques - Google Patents

Dispositif à canal d'écoulement pour cellules électrochimiques Download PDF

Info

Publication number
WO2001048852A1
WO2001048852A1 PCT/US2000/032542 US0032542W WO0148852A1 WO 2001048852 A1 WO2001048852 A1 WO 2001048852A1 US 0032542 W US0032542 W US 0032542W WO 0148852 A1 WO0148852 A1 WO 0148852A1
Authority
WO
WIPO (PCT)
Prior art keywords
perforations
corrugated sheet
flow channels
electrochemical cell
sheet
Prior art date
Application number
PCT/US2000/032542
Other languages
English (en)
Inventor
Xiaoming Ren
Shimshon Gottesfeld
Original Assignee
The Regents Of The University Of California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Regents Of The University Of California filed Critical The Regents Of The University Of California
Priority to AU20521/01A priority Critical patent/AU2052101A/en
Publication of WO2001048852A1 publication Critical patent/WO2001048852A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/65Means for supplying current; Electrode connections; Electric inter-cell connections
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates generally to flow channel plates for electrochemical cells, and, more particularly, to flow channel plates useful to form bipolar plates, coolant plates, and the like, for electrochemical cells.
  • Flow channel plates e.g., bipolar plates, coolant plates, and the like, for electrochemical cells, such as fuel cells, electrolysis cells, and the like, are typically formed from graphite or metal with machined flow channels or from various carbon composite materials with machined or molded flow channels.
  • the flow field plates serve in bipolar plates with an anode flow field on one side of a plate and a cathode flow field on the opposite side of the plate. It has been difficult to achieve compact fuel cell stacks with such flow fields, particularly where low air flows are involved and whereas low pressure drop across the stacks must be obtained.
  • the flow channel plates provide for the delivery of liquid or gaseous reactants and removal of the electrolysis products.
  • U.S. Patent 5,482,792, issued January 9, 1996 teaches the use of porous deformable structures ("collectors") for flow fields to distribute gaseous reactants over membrane backings while permitting transverse flows to enhance uniform distribution of the reactants.
  • Separate structures are provided as bipolar plates.
  • the porous structures are taught as metal-wire matrices or screens mounted in a support frame structures are taught as metal-wire matrices or screens mounted in a support frame and do not provide any structural support. The fluid flow must traverse the matrix or screen structure since flow channels are not provided.
  • Exemplary flow channel configurations for use in electrolysis cells are shown in U. S. Patent 4,191 ,618, issued March 4, 1980. As shown therein, simple flow channels are formed from parallel ribs with an overlying perforated plate serving as the anode.
  • a compact, inexpensive flow distribution assembly for use in electrochemical cells, such as fuel cells, is formed from a sandwich of metal sheets.
  • a smooth electrically conductive sheet having first and second sides provides a separating member between adjacent electrochemical cells.
  • a first sheet of conductive material has corrugations that define flow channels and has perforations in the material to permit fluid transfer between the alternating flow channels.
  • a second corrugated is provided on the second side of the conductive sheet, whereby the first corrugated sheet is arranged on the first side of the smooth conductive sheet and the second corrugated sheet is arranged on the second side of the smooth conductive sheet. Lands defined by the corrugations establish electrical contacts with anode and cathode portions of adjacent electrochemical cells.
  • FIGURES 1 A and 1 B illustrate formation of a corrugated flow field device in accordance with one embodiment of the present invention.
  • FIGURE 2 is an exploded view of a flow field assembly according to one embodiment of the present invention.
  • FIGURE 3 is a cross-sectional view of an electrochemical cell using the flow channel assemblies shown in FIGURE 2.
  • FIGURE 4 is an isometric cross-section view of an electrochemical cell stack using electrochemical cells shown in FIGURE 3.
  • Electrochemical cells based on polymer electrolytes are frequently operated with a liquid flow across the anode of each unit cell and a liquid/gas flow at the cathode of each unit cell.
  • the gas supplied to the cathode is often oxygen or air.
  • Flow channel devices serve to direct the flows over backing/catalytic plates that contact opposed faces of an electrolyte membrane that conducts ions to complete an electrical circuit.
  • Effective flow channel devices serve to uniformly distribute the appropriate flow over a face of the associated backing plate with a small pressure drop across the flow channel device.
  • the present invention provides a flow field device formed from a perforated, corrugated metal sheet.
  • the corrugations provide flow channels and the perforations permit the reactant flow to redistribute between channels, particularly channels having a liquid and/or gas flow restriction, to maintain a uniform flow over the backing plates.
  • a flow field device 14 shown in Figures 1A and 1B, is formed from a plate 10 having perforations 12.
  • Perforations 2 are preferably in a staggered arrangement to maintain structural integrity of plate 10, but many variations of perforations can be provided.
  • perforated plate 10 is corrugated, as shown in Figure 1 B, i.e., plate 10 is formed into a configuration having folds of alternating ridges and valleys, where the contour of the corrugations may be smoothly varying, e.g., sinusoidal, or be substantially square, e.g., with flat ridges and valleys, or triangular.
  • the contact resistance between the ridges and adjacent conductive surfaces will determine what configurations are acceptable in any given design.
  • flow distribution device 14 is formed with substantially square corrugations having a spacing effective to place perforations in a manner that permits transverse flow distribution along corrugated plate 14 and longitudinal flow through the lands that form the ridges and valleys.
  • the perforations accounted for up to 50% of the area of sheet 10.
  • the sheets were 4 mil thick stainless steel that was electrochemically plated with a 200 nm thick gold layer. Acceptable contact resistance is also obtained from perforated sheets of stainless steel alloys of the 300 and 400 series where a high compression axial loading is applied to the cell. Other conductive metals may be found to be useful by routine testing with such materials and are within the scope of this invention.
  • bipolar plates were formed with flow channels defined by corrugated sheets 14 on both sides of electrically conductive flat sheet 16, as shown in Figure 2.
  • Conductive sheets can be formed from any of a number of materials used in electrochemical cells, such as carbon, stainless steels, and the like. It will be understood that some applications may require a corrugated flow field adjacent only one electrode such that the bipolar plate will have only a single corrugated sheet 14 that contacts one side of conductive sheet 16.
  • conductive sheet 16 may terminate the stack; for other cells, a more conventional flow field may be provided on the second side of conductive sheet 14.
  • FIGs 3 and 4 generically depict an electrochemical cell assembly and a cell stack, and illustrate the context for utilizing the benefits of the present invention.
  • Figure 3 is an exploded view, in cross-section, of an electrochemical cell assembly.
  • Membrane electrode assembly 30 is formed from a proton conducting membrane 24, which is preferably a polymer electrolyte, that is placed between anode 22 and cathode 26 conductors, which are typically a conventional carbon cloth material.
  • the membrane electrode assembly is formed with a catalyst that is selected for the particular application. Suitable membrane materials and conductors may be selected in accordance with conventional teachings for gas reaction fuel cells or with teachings of U.S.
  • Membrane electrode assembly 30 is placed between conductive corrugated sheets 14, which supply various fluids across the face of electrodes 22 and 26 through flow field passages defined by the corrugations. While Figures 3 and 4 illustrate bipolar plates 18 adjacent both electrodes 22, 26, it will be understood that the perforated flow field may be provided on only one electrode depending on the nature of the reactant flow streams.
  • Perforations e.g., perforations 12 in corrugated sheet 14 ( Figures 1A and 1 B), permit fluid interchange and mixing between flow channels in order to evenly distribute fluid flow over the surface of the electrodes, e.g., electrodes 22, 26.
  • An even distribution of fluid flow enhances an even humidification of membrane 24 and the removal of reaction water from along the cathode surface to enhance uniform reactant gas access to the electrode and membrane surface.
  • Perforations 12 also permit fluids within the flow channels to contact the surfaces of electrodes 22, 24 over a larger surface area for increased reactant utilization and removal of reaction products.
  • cooling plates are periodically interspersed between the electrochemical cell assemblies. Instead of a reactant, coolant is distributed in some manner across the plate. Since the cooling plates basically need to satisfy the same requirements as the bipolar plates (e.g., conductivity, strength, flow distribution, etc.) and may be configured such that one side distributes coolant and the other side a reactant, etc., such components will also be considered under the general term "bipolar plates".
  • bipolar plates e.g., conductivity, strength, flow distribution, etc.
  • a plurality of membrane electrode assemblies 30 are placed alternately in series with bipolar plates 18, which serve to electrically connect in series anodes 22 and cathodes 26 of adjacent cells (see Figure 3 for electrochemical cell assembly references) to form electrochemical cell stack 40.
  • End plates 32 and 34 contact end ones of corrugated flow devices 14 and are loaded to compress the stack of bipolar plates 18 and membrane electrode assemblies 30 between end plates 32 and 34
  • Test fuel cells were formed from membrane/electrode assemblies prepared using a 50 cm 2 Nafion® 117 membrane catalyzed with PtRu at 8 mg/cm 2 on the anode side and with Pt at 6 mg/cm 2 on the cathode side.
  • the anode feed was 1 M MeOH at
  • the difference in performance between vertical and horizontal channel orientation was relatively small, e.g., about 0.02 volts, or about 5%, at 150 mA/cm 2 .
  • the liquid flow channels may be oriented in a horizontal direction and the liquid/gas flow channels in a vertical direction.
  • a chlor-alkali electrochemical cell was constructed using the bipolar plate configuration of the present invention in an "oxygen depolarized cathode" configuration.
  • the oxygen electrode was an E-TEK commercial "ELAT" type electrode with, e.g., 80% Pt/C catalyst at a loading of 5 mgPt/cm 2 .
  • the cathode catalyst layer was part of this carbon cloth electrode structure, and the electrode was pressed mechanically into the (carboxylate) surface of a bilayer, sulfonate/carboxylate membrane.
  • the electrolysis cell was thus operated as a two-compartment cell, i.e., with no gap between the oxygen electrode and the membrane. This implies that the oxygen supply to the cathode catalyst and caustic removal from the catalyst have to take place through the same backing layer of the cathode.
  • three-compartment configurations of the oxygen depolarized cell structures the gas feed and the collection of caustic reaction products are separated.
  • the two-compartment configuration has advantages of simplicity and elimination of a liquid filled compartment from the cathode structure, but places special demands on the efficiency of the cathode flow field, which must effectively remove liquid caustic products from the cathode backing.
  • the chlor-alkali cell had perforated/corrugated bipolar plates as described above, with the 316SS material gold plated for corrosion protection for the experimental.
  • a silver plating or other corrosion resistant, electrically conductive coating can be used in a production environment.
  • the corrugations were positioned vertically in the cell.
  • Manifolding of the oxygen feed to the corrugated/perforated flow field was implemented with two simple inlet and outlet horizontal grooves that were machined in a graphite block serving as a current collector behind the metal flow field.
  • a silver coated nickel plate or other suitable coated material can replace the graphite block in a more commercial configuration.
  • the performance stability obtained with the perforated corrugated flow field was significantly superior.
  • the voltage drift was only around 0.1 mV/day instead of 0.1 mV/hour.
  • the cell operated continuously at 0.6 A/cm 2 , practically maintaining its initial performance. It is believed this stability arises from the improved ability of the flow field of the present invention to remove liquid products from the cathode.
  • the flow field of the present invention provides good, highly stable cell performance, and has a significant cost advantage over other chlor-alkali cell hardware.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

L'invention concerne un ensemble plaque bipolaire bon marché et compact (18) destiné à être utilisé dans des cellules électrochimiques, telles que des piles à combustible et des cellules électrolytiques, formé à partir d'un sandwich de feuilles métalliques. Cet ensemble comprend une feuille électroconductrice lisse (16) ayant un premier côté et un second côté et formant un élément de séparation hermétique et réactif. Dans un mode de réalisation, une première et une seconde feuilles ondulées (14) en matériau conducteur, ayant chacune des ondulations, définissent des canaux d'écoulement sur les deux côtés de la feuille ondulée et présentent des perforations pratiquées sur le matériau afin de permettre le transfert de fluide entre les canaux d'écoulement. La première feuille ondulée est disposée sur le premier côté de la feuille conductrice lisse tandis que la seconde feuille ondulée est disposée sur le second côté de la feuille conductrice lisse. Des surfaces définies par les ondulations établissent des contacts électriques avec des parties anode (22) et cathode (26) de cellules électrochimiques adjacentes (30). Ces cellules peuvent également être branchées en série afin former une pile qui délivre une puissance de sortie choisie.
PCT/US2000/032542 1999-12-23 2000-11-30 Dispositif à canal d'écoulement pour cellules électrochimiques WO2001048852A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU20521/01A AU2052101A (en) 1999-12-23 2000-11-30 Flow channel device for electrochemical cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US47238899A 1999-12-23 1999-12-23
US09/472,388 1999-12-23

Publications (1)

Publication Number Publication Date
WO2001048852A1 true WO2001048852A1 (fr) 2001-07-05

Family

ID=23875323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/032542 WO2001048852A1 (fr) 1999-12-23 2000-11-30 Dispositif à canal d'écoulement pour cellules électrochimiques

Country Status (2)

Country Link
AU (1) AU2052101A (fr)
WO (1) WO2001048852A1 (fr)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10143659A1 (de) * 2001-09-06 2003-03-27 Psfu Profilschleif Fertigungs Bipolarplatte für einen Brennstoffzellenstapel mit Luft- oder Sauerstoffversorgung
FR2836283A1 (fr) * 2002-02-18 2003-08-22 Renault Pile a combustible a puissance renforcee et son procede de fabrication et utilisation pour la traction electrique d'un vehicule
EP1494563A2 (fr) * 2002-04-12 2005-01-12 Design Assistance Construction Systems, Inc. Tole de plancher perforee
GB2420440A (en) * 2004-11-19 2006-05-24 Ceres Power Ltd Gas distribution in fuel cells
EP1830426A1 (fr) * 2006-03-01 2007-09-05 Behr GmbH & Co. KG Plaque bipolaire, en particulier pour un empilement de cellules de combustible d'un véhicule automobile
WO2008098791A3 (fr) * 2007-02-12 2008-12-11 Fraunhofer Ges Forschung Pile de cellules électrochimiques de construction légère
US20100119914A1 (en) * 2007-04-17 2010-05-13 Arthur Koschany Electrochemical Device Comprising One or More Fuel Cells
US7776491B2 (en) 2005-03-11 2010-08-17 Kabushikaisha Equos Research Separator unit and fuel cell stack
US7794863B2 (en) 2004-01-22 2010-09-14 Kabushikikaisha Equos Research Fuel cell
WO2011110678A1 (fr) * 2010-03-12 2011-09-15 Commissariat à l'énergie atomique et aux énergies alternatives Dispositif formant interconnecteur electrique et fluidique pour reacteur d'electrolyse de l'eau a haute temperature
US8039163B2 (en) * 2004-03-30 2011-10-18 Kabushikikaisha Equos Research Separator and fuel cell using that separator
WO2012095126A1 (fr) * 2011-01-10 2012-07-19 Thyssenkrupp Uhde Gmbh Revêtement pour des matériaux métalliques d'élément de cellule d'une cellule électrolytique
US8367269B2 (en) * 2005-03-11 2013-02-05 Kabushikikaisha Equos Research Separator unit
EP2675006A1 (fr) * 2012-06-11 2013-12-18 HTceramix S.A. Unité de chauffage, ventilation et/ou conditionnement de véhicule
WO2014122304A1 (fr) * 2013-02-08 2014-08-14 Ird Fuel Cells A/S Plaque d'écoulement composite pour une cellule électrolytique
US9556529B2 (en) 2011-07-20 2017-01-31 New Nel Hydrogen As Electrolyser frame concept, method and use
RU2628104C2 (ru) * 2012-06-11 2017-08-15 ЭйчТиСЕРАМИКС С.А. Твердооксидный топливный элемент
JP2019137891A (ja) * 2018-02-09 2019-08-22 田中貴金属工業株式会社 給電体
CN110212214A (zh) * 2019-06-27 2019-09-06 安徽元隽氢能源研究所有限公司 一种燃料电池中的双极板流场结构及双极板
CN113675424A (zh) * 2021-07-27 2021-11-19 华南理工大学 一种基于正弦波纹的衍生型波纹流场板

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3432357A (en) * 1964-09-28 1969-03-11 Gen Electric Fluent material distribution system and fuel cell therewith
FR2067158A1 (en) * 1969-11-17 1971-08-20 Rhone Poulenc Sa Moulding frames onto sheets with corrugated borders - esp for fuel cell electrodes
JPS6386361A (ja) * 1986-09-30 1988-04-16 Hitachi Ltd 積層形燃料電池用セパレータ
US4788110A (en) * 1987-10-20 1988-11-29 Energy Research Corporation Fuel cell with partially shielded internal reformer
JPH0529009A (ja) * 1991-07-18 1993-02-05 Matsushita Electric Ind Co Ltd 燃料電池用ガス流路板
US5563003A (en) * 1993-03-18 1996-10-08 Hitachi, Ltd. Fuel cell and supplementary electrolyte container and method for supplementing fuel cell with electrolyte
US5776624A (en) * 1996-12-23 1998-07-07 General Motors Corporation Brazed bipolar plates for PEM fuel cells
US6117580A (en) * 1997-08-19 2000-09-12 Daimlerchrysler Ag Current collector for a fuel cell and method of making the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3432357A (en) * 1964-09-28 1969-03-11 Gen Electric Fluent material distribution system and fuel cell therewith
FR2067158A1 (en) * 1969-11-17 1971-08-20 Rhone Poulenc Sa Moulding frames onto sheets with corrugated borders - esp for fuel cell electrodes
JPS6386361A (ja) * 1986-09-30 1988-04-16 Hitachi Ltd 積層形燃料電池用セパレータ
US4788110A (en) * 1987-10-20 1988-11-29 Energy Research Corporation Fuel cell with partially shielded internal reformer
JPH0529009A (ja) * 1991-07-18 1993-02-05 Matsushita Electric Ind Co Ltd 燃料電池用ガス流路板
US5563003A (en) * 1993-03-18 1996-10-08 Hitachi, Ltd. Fuel cell and supplementary electrolyte container and method for supplementing fuel cell with electrolyte
US5776624A (en) * 1996-12-23 1998-07-07 General Motors Corporation Brazed bipolar plates for PEM fuel cells
US6117580A (en) * 1997-08-19 2000-09-12 Daimlerchrysler Ag Current collector for a fuel cell and method of making the same

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10143659B4 (de) * 2001-09-06 2007-10-18 Psfu Profilschleif-, Fertigungs- Und Umwelttechnik Gmbh Bipolarplatte für einen Brennstoffzellenstapel mit Luft- oder Sauerstoffversorgung
DE10143659A1 (de) * 2001-09-06 2003-03-27 Psfu Profilschleif Fertigungs Bipolarplatte für einen Brennstoffzellenstapel mit Luft- oder Sauerstoffversorgung
FR2836283A1 (fr) * 2002-02-18 2003-08-22 Renault Pile a combustible a puissance renforcee et son procede de fabrication et utilisation pour la traction electrique d'un vehicule
EP1494563A2 (fr) * 2002-04-12 2005-01-12 Design Assistance Construction Systems, Inc. Tole de plancher perforee
EP1494563A4 (fr) * 2002-04-12 2005-06-08 Design Assistance Construction Tole de plancher perforee
US7794863B2 (en) 2004-01-22 2010-09-14 Kabushikikaisha Equos Research Fuel cell
US8039163B2 (en) * 2004-03-30 2011-10-18 Kabushikikaisha Equos Research Separator and fuel cell using that separator
GB2420440B (en) * 2004-11-19 2007-06-13 Ceres Power Ltd Gas distribution in fuel cells
GB2420440A (en) * 2004-11-19 2006-05-24 Ceres Power Ltd Gas distribution in fuel cells
US8367269B2 (en) * 2005-03-11 2013-02-05 Kabushikikaisha Equos Research Separator unit
US7776491B2 (en) 2005-03-11 2010-08-17 Kabushikaisha Equos Research Separator unit and fuel cell stack
EP1830426A1 (fr) * 2006-03-01 2007-09-05 Behr GmbH & Co. KG Plaque bipolaire, en particulier pour un empilement de cellules de combustible d'un véhicule automobile
US8293423B2 (en) 2007-02-12 2012-10-23 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Fuel cell stack with a lightweight construction
WO2008098791A3 (fr) * 2007-02-12 2008-12-11 Fraunhofer Ges Forschung Pile de cellules électrochimiques de construction légère
US20100119914A1 (en) * 2007-04-17 2010-05-13 Arthur Koschany Electrochemical Device Comprising One or More Fuel Cells
WO2011110678A1 (fr) * 2010-03-12 2011-09-15 Commissariat à l'énergie atomique et aux énergies alternatives Dispositif formant interconnecteur electrique et fluidique pour reacteur d'electrolyse de l'eau a haute temperature
FR2957364A1 (fr) * 2010-03-12 2011-09-16 Commissariat Energie Atomique Dispositif formant interconnecteur electrique et fluidique pour reacteur d'electrolyse de l'eau a haute temperature
WO2012095126A1 (fr) * 2011-01-10 2012-07-19 Thyssenkrupp Uhde Gmbh Revêtement pour des matériaux métalliques d'élément de cellule d'une cellule électrolytique
RU2573558C2 (ru) * 2011-01-10 2016-01-20 Уденора С.П.А. Покрытие для металлических материалов элементов ячейки электролитической ячейки
US9556529B2 (en) 2011-07-20 2017-01-31 New Nel Hydrogen As Electrolyser frame concept, method and use
EP2675006A1 (fr) * 2012-06-11 2013-12-18 HTceramix S.A. Unité de chauffage, ventilation et/ou conditionnement de véhicule
US9831514B2 (en) 2012-06-11 2017-11-28 Htceramix S.A. Solid oxide fuel cell or solid oxide electrolyzing cell and method for operating such a cell
US9991530B2 (en) 2012-06-11 2018-06-05 Htceramix S.A. Solid oxide fuel cell
RU2628104C2 (ru) * 2012-06-11 2017-08-15 ЭйчТиСЕРАМИКС С.А. Твердооксидный топливный элемент
WO2014122304A1 (fr) * 2013-02-08 2014-08-14 Ird Fuel Cells A/S Plaque d'écoulement composite pour une cellule électrolytique
US9828685B2 (en) 2013-02-08 2017-11-28 Ewii Fuel Cells A/S Composite flow plate for electrolytic cell
CN105247106A (zh) * 2013-02-08 2016-01-13 Ird燃料电池公司 用于电解池的复合流板
JP2019137891A (ja) * 2018-02-09 2019-08-22 田中貴金属工業株式会社 給電体
CN110212214A (zh) * 2019-06-27 2019-09-06 安徽元隽氢能源研究所有限公司 一种燃料电池中的双极板流场结构及双极板
CN110212214B (zh) * 2019-06-27 2023-11-24 安徽中能元隽氢能科技股份有限公司 一种燃料电池中的双极板流场结构及双极板
CN113675424A (zh) * 2021-07-27 2021-11-19 华南理工大学 一种基于正弦波纹的衍生型波纹流场板

Also Published As

Publication number Publication date
AU2052101A (en) 2001-07-09

Similar Documents

Publication Publication Date Title
US6296964B1 (en) Enhanced methanol utilization in direct methanol fuel cell
WO2001048852A1 (fr) Dispositif à canal d'écoulement pour cellules électrochimiques
EP1025605B1 (fr) Dispositif de pile a combustible pour exploitation a faible pression
EP0800709B1 (fr) Agencements de cellules electrolytiques et de piles a combustible
KR100199866B1 (ko) 유체흐름 필드 플레이트와 이 플레이트를 포함하는 고체의 중합체 전해질연료전지
US4389466A (en) Rapidly refuelable fuel cell
EP0664928B1 (fr) Ensemble electrode a membrane pour cellule electrochimique de faible poids, avec passages pour flux de reactif integres
US5108849A (en) Fuel cell fluid flow field plate
US8889314B2 (en) Bipolar plate for a fuel cell stack
US6864004B2 (en) Direct methanol fuel cell stack
KR20030083511A (ko) 공기 호흡형 직접 메탄올 연료전지 셀팩
US10998571B2 (en) High-voltage fuel-cell stack
US9590254B2 (en) Fuel cell stack
US8465880B2 (en) Fuel cell stack
CN112838232B (zh) 一种全通孔金属纤维烧结体燃料电池双极板及燃料电池堆
US7232582B2 (en) Fuel cell
US20100310957A1 (en) Fuel cell
US6312845B1 (en) Macroporous flow field assembly
US20050250003A1 (en) Electrochemical cell support structure
CN1170330C (zh) 高分子电解质燃料电池及其使用方法
EP0080159B1 (fr) Générateur d'énergie électrochimique
KR20030091485A (ko) 직접액체 연료 전지의 연료공급방법 및 이를 적용한직접액체연료 전지장치
CN1527426A (zh) 可实现输出电流数倍增加输出电压数倍降低的燃料电池
CA2146332C (fr) Electrode a membrane legere a passages de reactif pour cellule a combustible
WO2019069095A1 (fr) Ensemble pile à combustible ou électrolyseur

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP