WO2001042742A1 - Emetteur et recepteur acoustiques integres, et procede de fabrication correspondant - Google Patents

Emetteur et recepteur acoustiques integres, et procede de fabrication correspondant Download PDF

Info

Publication number
WO2001042742A1
WO2001042742A1 PCT/FR2000/003408 FR0003408W WO0142742A1 WO 2001042742 A1 WO2001042742 A1 WO 2001042742A1 FR 0003408 W FR0003408 W FR 0003408W WO 0142742 A1 WO0142742 A1 WO 0142742A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
transducer
substrate
layer
acoustic
Prior art date
Application number
PCT/FR2000/003408
Other languages
English (en)
Inventor
Hervé Jaouen
Thomas Skotnicki
Malgorzata Jurczak
Original Assignee
Stmicroelectronics S.A.
France Telecom
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR9915410A external-priority patent/FR2801970B1/fr
Application filed by Stmicroelectronics S.A., France Telecom filed Critical Stmicroelectronics S.A.
Priority to US10/149,088 priority Critical patent/US6670686B2/en
Priority to JP2001543984A priority patent/JP2003520466A/ja
Priority to EP00988876A priority patent/EP1236022A1/fr
Publication of WO2001042742A1 publication Critical patent/WO2001042742A1/fr

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K9/00Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers
    • G10K9/12Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated
    • G10K9/13Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated using electromagnetic driving means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/242Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by carrying output of an electrodynamic device, e.g. a tachodynamo
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0042Constructional details associated with semiconductive diaphragm sensors, e.g. etching, or constructional details of non-semiconductive diaphragms

Definitions

  • Integrated acoustic transmitter and receiver and corresponding manufacturing method.
  • the invention relates to integrated circuits, and more particularly to integrated semiconductor acoustic transducers, in particular operating in the ultrasonic field, and to their manufacture.
  • acoustic transmitters / receivers operating in the ultrasonic field cannot be "integrated" on a semiconductor chip.
  • these transmitters / receivers generally rely on the piezoelectric effect which generates the deformation of a thin layer of a suitable material under the effect of an electric field.
  • this suitable material generally a quartz blade, cannot in practice be integrated in silicon technology.
  • the invention aims to remedy this drawback and proposes a semiconductor acoustic transducer, which can be integrated in silicon technology.
  • This integrated semiconductor acoustic transducer according to the invention generally comprises a deformable semiconductor membrane capable of being traversed by an electric current, and separated from an area of a semiconductor substrate by a cavity allowing deformations of the membrane.
  • the substrate is made of silicon.
  • the membrane is preferably formed from doped silicon so as to allow better flow of current therein.
  • the height of the cavity is of the order of ten nanometers, while the length of the membrane is of the order of a hundred micrometers. These dimensions are particularly suitable for an ultrasonic application of the transducer, thus allowing a resonance frequency of the order of 30 MHz for the membrane and 1 MHz for the cavity, which therefore leads to an operating range of the transducer of between 1 MHz and 30 MHz.
  • the transducer according to the invention can be used as part of an acoustic receiver or as part of an acoustic transmitter.
  • the transducer When used as an acoustic sensor (element of an acoustic receiver), the transducer according to the invention advantageously comprises a capacitor comprising a first armature formed by the semiconductor membrane intended to be traversed by an electric and deformable current under the effect of an acoustic pressure (the pressure variations resulting from the sound propagating in the open air and coming to strike the membrane).
  • the capacitor also comprises a second armature formed by a doped region of the semiconductor substrate arranged opposite the membrane.
  • the cavity separating the two plates then contains, for example, a layer of gaseous dielectric, air for example.
  • the invention also provides an acoustic receiver comprising a semiconductor substrate containing at least one transducer as defined above, as well as current generation means capable of generating current in the membrane of the transducer, and detection means connected to the capacitor and capable of detecting variations in the capacitive value of the capacitor caused by deformations of the membrane.
  • the semiconductor membrane intended to be traversed by a modulated electric current is advantageously deformable under the effect of the Lorenz force generated by a magnetic field s 'extending in the plane of the membrane and perpendicular to the current lines.
  • the invention also provides an acoustic transmitter comprising a semiconductor substrate containing at least one transducer as defined above, as well as means for generating current capable of generating a modulated current in the membrane, and means for generating a magnetic field capable of generating said magnetic field extending in the plane of the membrane and perpendicular to the lines of current.
  • acoustic transmitter comprising a semiconductor substrate containing at least one transducer as defined above, as well as means for generating current capable of generating a modulated current in the membrane, and means for generating a magnetic field capable of generating said magnetic field extending in the plane of the membrane and perpendicular to the lines of current.
  • These means for generating the magnetic field can for example be a U-shaped magnet.
  • the invention also provides a method of manufacturing an integrated semiconductor acoustic transducer comprising a deformable semiconductor membrane separated from an area of a semiconductor substrate by a cavity allowing deformations of the membrane, the method comprising the following steps:
  • a first layer of a first material for example germanium or a silicon-germanium alloy
  • a second layer of a second semiconductor material for example silicon
  • FIG. 2 schematically illustrates a housing containing a chip such as that illustrated in Figure 1;
  • FIG. 3 illustrates an arrangement according to the invention, comprising a U-shaped magnet cooperating with a chip equipped with a matrix of transducers according to the invention
  • Figure 4 schematically illustrates the arrangement of Figure 3 incorporated in a housing
  • FIG. 5 and 6 illustrate very schematically an embodiment of an acoustic transducer according to the invention, more particularly intended to be incorporated in an acoustic transmitter, according to the invention
  • - Figures 7 and 8 illustrate very schematically an acoustic transducer according to the invention, more particularly intended to be incorporated in an acoustic receiver, according to the invention
  • FIG. 9a to 9d schematically illustrate the main steps of a manufacturing process according to the invention, allowing the obtaining of an acoustic transducer
  • FIG. 10 very schematically illustrates an electrical assembly of an acoustic transmitter, according to the invention.
  • FIG. 1 very schematically illustrates an electrical arrangement of an acoustic receiver, according to the invention.
  • the reference P designates a semiconductor chip or wafer comprising a substrate, for example made of silicon.
  • This chip comprises several regions called “active regions” ZA, mutually isolated by STI insulating regions, for example insulating trenches produced in a conventional manner and known per se by a process called “isolation by narrow trenches" ("Shallow Trench
  • the chip P also comprises, associated with this matrix of MC transducers, an LC control logic comprising data processing circuits adapted to the application.
  • This control logic may include, as will be seen in more detail below, an oscillator, a modulator, a signal processing processor.
  • the P chip comprises, in a conventional manner, PES input / output pads on its edges. These input / output pads are connected by metal tracks and interconnection holes (known to those skilled in the art under the name of "vias”) to the various constituent elements of the chip.
  • This chip P is intended to be incorporated in a box BO, such as that illustrated in FIG. 2, conventionally comprising a resin coating intended to encapsulate the integrated circuit produced on the chip P, as well as BR pins connected to in a conventional manner and known per se to the PES input / output pads of the chip.
  • the BO box also has an opening
  • the box BO contains an acoustic emitter, the sounds produced by the matrix of transducers MC will be able to propagate in the open air through the opening OUV.
  • the opening OUV will allow the free air propagating the sound to strike the membranes of the transducers of the matrix MC.
  • a transducer intended to be incorporated into an acoustic transmitter uses the Lorenz force principle. More specifically, a transducer according to the invention comprises a deformable membrane. A current I is intended to circulate in the membrane. Furthermore, it is subjected to the effect of a magnetic induction extending in the plane of the membrane perpendicular to the current lines. Therefore, a force normal to the surface of the membrane (Lorenz force) is generated and will deform the membrane.
  • the reference AI designates a U-shaped magnet which is a particularly simple means of generating a magnetic field.
  • the magnetic field will extend from one of the U-shaped branches, for example the branch B l, from the magnet to the other U-shaped branch, for example the branch B2, in the plane of the chip P.
  • the current will flow in the membranes of the transducers perpendicular to the lines of the magnetic field.
  • the U-shaped magnet AI is also incorporated in the housing, the horizontal branch of the U-shaped magnet being located under the chip P. This is also arranged so that the MC matrix of transducers is located opposite the UV opening. The whole is held together by the resin coating.
  • FIGS 5 and 6 there is illustrated very schematically a top view and a sectional view along the line VI-VI, of a transducer incorporated in an acoustic transmitter.
  • the active region ZA extends, within the silicon substrate SB, between a peripheral insulating region STI.
  • MB for example also made of silicon, thin enough to be deformed, extends above the active region ZA and rests at two of its ends EX1 and EX2 on the peripheral insulating region STI.
  • the lower surface of the membrane MB that is to say the surface which is situated opposite the upper surface of the active region ZA, is separated from this active region by a cavity CV.
  • This cavity CV is closed laterally by insulating regions or ESP spacers which, as will be seen in more detail below, are formed in lateral trenches produced in the active region ZA.
  • the MB membrane is doped by implantation, the ZSB substrate area located opposite the membrane is also doped, although doping of this ZSB area is not essential for operation of the acoustic transducer.
  • the transducer also includes several electrical contact pads or vias VI coming into contact with one of the two ends of the membrane resting on the insulating peripheral region, for example the end EX1.
  • several other electrical contact pads V2 are provided, coming into contact with the other end of the membrane EX2. based on the STI insulating peripheral region.
  • Each of the vias VI, V2 also comes into contact with a metal track PI, P2 of the first metallization level of the integrated circuit. These vias and metal tracks will allow the electrical connection of the transducer.
  • a first level of insulating material PHD is provided, insulating the upper surface of the substrate SB from the first level of metallization.
  • This insulating material is for example conventionally a doped silicon oxide obtained from ethyl tetraorthosilicate (TEOS).
  • TEOS ethyl tetraorthosilicate
  • the metal tracks of each metallization level are moreover conventionally coated with another IMD insulating material, for example TEOS oxide, but not doped.
  • a modulated current I flows in the membrane.
  • the magnetic field B generated by the magnet, perpendicular to the current lines I, will cause the appearance of a Lorenz force perpendicular to the membrane which will deform it more or less significantly depending on the amplitude of current, thus causing the emission of a sound (or ultrasound).
  • FIG. 8 is a section along line VIII-VIII of FIG. 7.
  • the membrane MB of the transducer in FIGS. 7 and 8 forms a first frame of a capacitor.
  • the cavity CV separating the two plates contains a layer of gaseous dielectric, for example air or nitrogen.
  • the substrate SB for example a substrate of type P, comprises a well CS, doped N, within a first part of which is made the zone of substrate doped ZSB l.
  • this CS box has a another part ZSB2, also doped, isolated from the membrane, and in contact with which the via V2 is made.
  • the current flowing in the capacitor thus penetrates for example via via V 1, circulates in the membrane and exits through via V2 via the well CS and zones ZSB l and ZSB2.
  • the active area ZA within which the transducer will be produced is defined in advance in the substrate SB, delimiting it, in a conventional manner, by insulating trenches STI. Then, by selective epitaxy, a layer of a first material is deposited, for example a layer of germanium or else of a silicon-germanium alloy.
  • a layer of a first material is deposited, for example a layer of germanium or else of a silicon-germanium alloy.
  • an alloy Si j, ⁇ Ge ⁇ with 0 ⁇ x ⁇ l, or an alloy S ⁇ Ge ⁇ C with 0 ⁇ x ⁇ 0.95 and 0 ⁇ y ⁇ 0.05 can be used as an alloy.
  • an SiGe alloy with a high germanium content and in particular comprising 10 to 30% by weight of germanium, may be used.
  • the epitaxy is carried out in a conventional manner and it is selective in the sense that the material 1 only grows on the silicon of the active region ZA.
  • a layer of a second material 2 for example silicon.
  • photoresist resin mask 3 intended in particular to define the geometry and dimensions of the mambran, then we proceed to successive anisotropic etchings to successively remove, as illustrated in FIG. 9b, part of the silicon layer 2, then part of the layer of material 1, and finally part of the ZA substrate.
  • a central stack is obtained comprising at the top, the residual part 20 of the silicon layer which will form the future membrane. It should be noted here that this residual portion 20 of the silicon layer rests on its two longitudinal ends (not shown in FIG. 9b) on the insulating peripheral region STI.
  • the central stack comprises under the residual portion 20 a residual portion 10 of the material 1.
  • the trenches TR formed on either side of the stack as far as the substrate SB, thus reveal on the two opposite lateral sides of the stack, the sides of the residual part 10 of the layer of material 1.
  • the residual portion 10 is selectively removed laterally, so as to form the CV cavity (FIG. 9c).
  • This selective lateral etching can be carried out according to one of the techniques well known to those skilled in the art, such as isotropic plasma etching, or else etching by means of an oxidizing chemical solution, for example a 40% solution. ml of 50% HN0 3 , 20 ml of H 2 0 2 and 5 ml of 0.5% HF. It is also possible, although this is not absolutely necessary, to form on the internal walls of the cavity CV thin layers of dielectric material 4, for example Si0 2 , so as to serve as a protective barrier.
  • the transducer is intended to be used in a receiver
  • an implantation is also made in the box so as to form in particular the zone ZSB2.
  • the subsequent stages of manufacture of the transducer such as in particular the production of the vias as well as the production of the dielectric materials PHD and IMD, are carried out in a conventional manner.
  • the membrane has, for example, a thickness which varies from 5 to 100 nm, preferably from 10 to 20 nm.
  • the surface of the membrane is for example of the order of 100 100 ⁇ m.
  • the resonance frequency for these dimensions is of the order of 30 MHz for the membrane and 1 MHz for the cavity (speed of the sound wave of the order of 1 cm / s for a vacuum of 0.01 Torr and for a cavity height of 10 nm).
  • Such an acoustic transducer can thus operate in a frequency range between 1 MHz and 30 MHz.
  • transducer ZA While only one transducer has been represented per active region ZA, it would have been possible to produce several transducers in each active region ZA by mutually isolating one transducer from another by trenches produced in the substrate and at the bottom of which a doping opposite to the doping of the substrate zone of the transducer situated under the membrane would have been carried out.
  • FIG. 10 illustrates an electrical assembly of an acoustic transmitter according to the invention.
  • the control logic comprises for example an MDM modulator, of conventional structure, intended to modulate in amplitude a current I.
  • the modulation is controlled by a control processor PC.
  • the modulator output is connected to one of the terminals of the MB membrane, while the other terminal of the MB membrane is connected to ground.
  • the membrane MB deforms perpendicular to its plane under the action of the Lorenz force, consequently generating ultrasound which will propagate in the air as it leaves by the opening OUV of the case.
  • the electrical assembly illustrated in FIG. 11 is an example intended to be implemented in an acoustic receiver.
  • One of the terminals of the transducer capacitor for example the terminal connected to the membrane, is connected to a voltage source STV.
  • the other electrode of the capacitor in this case the substrate, is connected to the gate of a J FET transistor.
  • the capacitive value of the capacitor will be modulated by the mechanical deformation of the membrane generated by a pressure variation resulting from the sound propagating in the open air and coming to strike the membrane.
  • the charge transfers between the capacitor C and the gate of the transistor J FET then induce a variation of drain current transformed into voltage by a resistor. This voltage can then be analyzed, after analog-digital conversion, by a signal processing processor.
  • Integrated semiconductor acoustic transducer comprising a deformable semiconductor membrane (MB), intended to be traversed by an electric current, and separated from an area of a semiconductor substrate by a cavity (CV) allowing deformations of the membrane under the effect of acoustic pressure or Lorenz force.
  • MB deformable semiconductor membrane
  • CV cavity
  • Transducer according to claim 1 characterized in that the membrane (MB) is formed from doped silicon, by the fact that the substrate is made of silicon, and by the fact that the height of the cavity (CV) is l order of ten nanometers, while the length of the membrane is of the order of a hundred micrometers.
  • Transducer according to claim 1 or 2 characterized in that it comprises a capacitor comprising a first armature formed by the semiconductor membrane (MB) intended to be traversed by an electric current and deformable under the effect of a pressure acoustically, a second armature formed by a doped zone of the semiconductor substrate (ZSB l) arranged opposite the membrane, and by the fact that the cavity (CV) separating the two armatures contains a layer of gaseous dielectric.
  • Transducer according to claim 3 characterized in that the membrane (MB) rests at two of its ends (EX 1, EX2) on an insulating region (STI), by the fact that the substrate comprises a box (CS) within a first part of which said doped substrate region (ZSB 1) is formed, and by the fact that it comprises several electrical contact pads (VI) coming into contact with one of said two ends of the membrane, and several other electrical contact pads (V2) coming into contact with a second part (ZSB2) of the box.
  • STI insulating region
  • Transducer according to claim 1 or 2 characterized in that the semiconductor membrane (MB) intended to be traversed by a modulated electric current is deformable under the effect of the Lorenz force generated by a magnetic field (B ) extending in the plane of the membrane and perpendicular to the current lines (I).
  • Transducer according to claim 5 characterized in that the membrane (MB) rests at two of its ends (EX1, EX2) on a insulating region (STI), and by the fact that it comprises several electrical contact pads (VI, V2) respectively disposed at each of said two ends.
  • Acoustic receiver characterized in that it comprises a semiconductor substrate (SB) containing at least one transducer according to claim 3 or 4, current generation means (STV) capable of generating current in the membrane of the transducer , and detection means (TR) connected to the capacitor (C) and capable of detecting variations in the capacitive value of the capacitor caused by the deformations of the membrane.
  • SB semiconductor substrate
  • STV current generation means
  • TR detection means
  • Receiver characterized in that the substrate contains several transducers, and in that it comprises a housing (BO) containing the substrate and having an opening (OUV) formed in front of the transducers.
  • Acoustic transmitter characterized in that it comprises a semiconductor substrate (SB) containing at least one transducer according to claim 5 or 6, current generation means (MDM) capable of generating a modulated current in the membrane, and means (AI) for generating a magnetic field capable of generating said magnetic field extending in the plane of the membrane perpendicular to the current lines.
  • SB semiconductor substrate
  • MDM current generation means
  • AI means
  • Transmitter characterized in that the means for generating the magnetic field comprise a U-shaped magnet (AI).
  • the substrate contains several transducers, and in that it comprises a housing (BO) containing the substrate and having an opening (OUV) formed opposite the transducers, the substrate being located between the two branches of the U of the magnet.
  • a method of manufacturing an integrated semiconductor acoustic transducer comprising a deformable semiconductor membrane separated from an area of a semiconductor substrate by a cavity allowing deformations of the membrane, comprising the following steps: - providing in the substrate (SB) an insulating region (STI) delimiting a so-called active semiconductor region,
  • a second layer (2) of a semiconductor material on the first layer (1) and on the insulating region (STI), a second layer (2) of a semiconductor material, the first material being selectively removable from the second material,
  • ESP lateral spacers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Multimedia (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Pressure Sensors (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

L'émetteur ou le récepteur comporte plusieurs transducteurs ménagés en regard d'une ouverture d'un boîtier. Chaque transducteur comporte une membrane semiconductrice déformable (MB) destinée à être parcourue par un courant électrique et séparée d'une zone de substrat (ZSB, ZSB1) par une cavité (CV) autorisant des déformations de la membrane sous l'effet d'une pression acoustique ou d'une force de Lorenz.

Description

Emetteur et récepteur acoustiques intégrés, et procédé de fabrication correspondant.
L'invention concerne les circuits intégrés, et plus particulièrement les transducteurs acoustiques semiconducteurs intégrés, en particulier fonctionnant dans le domaine ultrasonore, et leur fabrication. Actuellement, les émetteurs/récepteurs acoustiques fonctionnant dans le domaine ultrasonore ne sont pas "intégrables" sur une puce de semiconducteur. En effet, ces émetteurs/récepteurs reposent généralement sur l'effet piézoélectrique qui engendre la déformation d'une couche mince d'un matériau adapté sous l'effet d'un champ électrique. Et, ce matériau adapté, généralement une lame de quartz, n'est en pratique pas intégrable en technologie silicium.
L'invention vise à remédier à cet inconvénient et propose un transducteur acoustique semiconducteur, intégrable en technologie silicium. Ce transducteur acoustique semiconducteur intégré, selon l'invention, comprend, d'une façon générale, une membrane semiconductrice deformable, susceptible d'être parcourue par un courant électrique, et séparée d'une zone d'un substrat semiconducteur par une cavité autorisant des déformations de la membrane. Dans une technologie silicium, le substrat est en silicium. Par ailleurs, la membrane est de préférence formée de silicium dopé de façon à y permettre une meilleure circulation du courant.
Par ailleurs, selon un mode de réalisation, la hauteur de la cavité est de l'ordre d'une dizaine de nanomètres, tandis que la longueur de la membrane est de l'ordre de la centaine de micromètres. Ces dimensions sont particulièrement adaptées à une application ultrasonore du transducteur, autorisant ainsi une fréquence de résonance de l'ordre de 30 MHz pour la membrane et de 1 MHz pour la cavité, ce qui conduit donc à une plage de fonctionnement du transducteur comprise entre 1 MHz et 30 MHz.
Le transducteur, selon l'invention, peut être utilisé en tant qu'élément d'un récepteur acoustique ou en tant qu'élément d'un émetteur acoustique.
Lorsqu'il est utilisé en tant que capteur acoustique (élément d'un récepteur acoustique), le transducteur, selon l'invention, comporte avantageusement un condensateur comportant une première armature formée par la membrane semiconductrice destinée à être parcourue par un courant électrique et deformable sous l'effet d'une pression acoustique (les variations de pression résultant du son se propageant à l'air libre et venant frapper la membrane). Le condensateur comporte par ailleurs une deuxième armature formée par une zone dopée du substrat semiconducteur disposée en vis-à-vis de la membrane. Par ailleurs, la cavité séparant les deux armatures contient alors par exemple une couche de diélectrique gazeux, de l'air par exemple. L'invention propose également un récepteur acoustique comprenant un substrat semiconducteur contenant au moins un transducteur tel que défini ci-avant, ainsi que des moyens de génération de courant aptes à générer le courant dans la membrane du transducteur, et des moyens de détection connectés au condensateur et aptes à détecter les variations de la valeur capacitive du condensateur provoquées par les déformations de la membrane.
Lorsque le transducteur selon l'invention est utilisé en tant qu'élément d'un émetteur acoustique, la membrane semiconductrice destinée à être parcourue par un courant électrique modulé est avantageusement deformable sous l'effet de la force de Lorenz engendrée par un champ magnétique s'étendant dans le plan de la membrane et perpendiculairement aux lignes de courant.
L'invention propose également un émetteur acoustique comprenant un substrat semiconducteur contenant au moins un transducteur tel que défini ci-avant, ainsi que des moyens de génération de courant aptes à générer un courant modulé dans la membrane, et des moyens de génération d'un champ magnétique aptes à générer ledit champ magnétique s'étendant dans le plan de la membrane et perpendiculairement aux lignes de courant. Ces moyens de génération du champ magnétique peuvent être par exemple un aimant en U.
L'invention propose également un procédé de fabrication d'un transducteur acoustique semiconducteur intégré comprenant une membrane semiconductrice deformable séparée d'une zone d'un substrat semiconducteur par une cavité autorisant des déformations de la membrane, le procédé comportant les étapes suivantes :
- ménager dans le substrat une région isolante délimitant une région semiconductrice dite région active,
- déposer par épitaxie sélective sur la surface de ladite région active, une première couche d'un premier matériau, par exemple du germanium ou un alliage de silicium-germanium,
- déposer par épitaxie non sélective sur la première couche et sur la région isolante, une deuxième couche d'un deuxième matériau semiconducteur (par exemple du silicium), le premier matériau étant sélectivement éliminable par rapport au deuxième matériau,
- graver localement la deuxième couche, la première couche et une partie de la région active, de façon à former deux tranchées latérales laissant subsister un empilement central comportant une partie de la deuxième couche, une partie de la première couche et une partie de la région active, et laissant apparaître ladite partie de la première couche sur deux côtés latéraux opposés de l'empilement,
- éliminer sélectivement latéralement la partie de ladite première couche de façon à former ladite cavité qui est délimitée par la partie sous-jacente du substrat (formant ladite zone du substrat) et la partie restante de ladite deuxième couche (qui forme ladite membrane), et
- former des espaceurs latéraux pour fermer la cavité sous la membrane.
D'autres avantages et caractérisques de l'invention apparaîtront à l'examen de la description détaillée de modes de réalisation et de mise en oeuvre, nullement limitatifs, et des dessins annexés, sur lesquels : - la figure 1 illustre très schématiquement une puce semiconductrice comportant une matrice de transducteurs acoustiques, selon l'invention;
- la figure 2 illustre schématiquement un boîtier contenant une puce telle que celle illustrée sur la figure 1 ;
- la figure 3 illustre un agencement selon l'invention, comportant un aimant en U coopérant avec une puce équipée d'une matrice de transducteurs selon l'invention;
- la figure 4 illustre schématiquement l'agencement de la figure 3 incorporé dans un boîtier;
- les figures 5 et 6 illustrent très schématiquement un mode de réalisation d'un transducteur acoustique selon l'invention, plus particulièrement destiné à être incorporé dans un émetteur acoustique, selon l'invention; - les figures 7 et 8 illustrent très schématiquement un transducteur acoustique selon l'invention, plus particulièrement destiné à être incorporé dans un récepteur acoustique, selon l'invention;
- les figures 9a à 9d illustrent schématiquement les principales étapes d'un procédé de fabrication, selon l'invention, permettant l'obtention d'un transducteur acoustique;
- la figure 10 illustre très schématiquement un montage électrique d'un émetteur acoustique, selon l'invention; et
- la figure 1 1 illustre très schématiquement un montage électrique d'un récepteur acoustique, selon l'invention. Sur la figure 1, la référence P désigne une puce ou plaquette semiconductrice comportant un substrat, par exemple en silicium. Cette puce comporte plusieurs régions dites "régions actives" ZA, mutuellement isolées par des régions isolantes STI, par exemple des tranchées isolantes réalisées de façon classique et connue en soi par un procédé dit "d'isolation par tranchées étroites" ("Shallow Trench
Isolation" en langue anglaise). Comme on le verra plus en détail ci-après, c'est au sein de chacune des régions actives ZA que sera réalisé un transducteur acoustique qui, selon l'application, sera destiné soit à capter des ultrasons, soit à émettre des ultrasons. La puce P comporte par ailleurs, associée à cette matrice de transducteurs MC, une logique de commande LC comportant des circuits de traitement de données adaptés à l'application. Cette logique de commande peut comporter, comme on le verra plus en détail ci-après, un oscillateur, un modulateur, un processeur de traitement du signal. Par ailleurs, la puce P comporte, de façon classique, des plots d'entrée/sortie PES sur ses bords. Ces plots d'entrée/sortie sont reliés par des pistes métalliques et des trous d'interconnexion (connus par l'homme du métier sous la dénomination de "vias") aux différents éléments constitutifs de la puce. Cette puce P est destinée à être incorporée dans un boîtier BO, tel que celui illustré sur la figure 2, comportant de façon classique, un enrobage de résine destiné à encapsuler le circuit intégré réalisé sur la puce P, ainsi que des broches BR reliées de façon classique et connue en soi aux plots d'entrée/sortie PES de la puce. Par ailleurs, le boîtier BO comporte également une ouverture
OUV qui est ménagée en regard de la matrice MC de transducteurs. Ainsi, lorsque le boîtier BO contient un émetteur acoustique, les sons produits par la matrice de transducteurs MC vont pouvoir se propager à l'air libre à travers l'ouverture OUV. De même, lorsque le boîtier BO contient un récepteur acoustique, l'ouverture OUV va permettre à l'air libre propageant le son de venir frapper les membranes des transducteurs de la matrice MC.
Comme on le verra plus en détail ci-après, un transducteur destiné à être incorporé dans un émetteur acoustique, utilise le principe de la force de Lorenz. Plus précisément, un transducteur selon l'invention comporte une membrane deformable. Un courant I est destiné à circuler dans la membrane. Par ailleurs, celle-ci est soumise à l'effet d'une induction magnétique s'étendant dans le plan de la membrane perpendiculairement aux lignes de courant. De ce fait, une force normale à la surface de la membrane (force de Lorenz) est générée et va déformer la membrane.
Cette déformation engendrera un son si le courant I circulant dans la membrane est modulé.
Sur la figure 3, la référence AI désigne un aimant en U qui est un moyen particulièrement simple de générer un champ magnétique. Le champ magnétique va s'étendre de l'une des branches en U, par exemple la branche B l, de l'aimant jusqu'à l'autre branche du U, par exemple la branche B2, dans le plan de la puce P. Par ailleurs, comme on le verra plus en détail ci-après, le courant va circuler dans les membranes des transducteurs perpendiculairement aux lignes du champ magnétique.
Comme on le voit sur la figure 4, l'aimant en U AI est également incorporé dans le boîtier, la branche horizontale de l'aimant en U étant située sous la puce P. Celle-ci est par ailleurs disposée de façon à ce que la matrice MC de transducteurs se situe en face de l'ouverture UV. L'ensemble est solidairement maintenu par l'enrobage de résine.
Sur les figures 5 et 6, on a illustré très schématiquement une vue de dessus et une vue en coupe selon la ligne VI- VI, d'un transducteur incorporé dans un émetteur acoustique.
La région active ZA s'étend, au sein du substrat SB en silicium, entre une région isolante périphérique STI. Par ailleurs, une membrane
MB, par exemple également en silicium, suffisamment mince pour être déformée, s'étend au-dessus de la région active ZA et repose à deux de ses extrémités EX1 et EX2 sur la région isolante périphérique STI.
La surface inférieure de la membrane MB, c'est-à-dire la surface qui est située en vis-à-vis de la surface supérieure de la région active ZA, est séparée de cette région active par une cavité CV. Cette cavité CV est fermée latéralement par des régions isolantes ou espaceurs ESP qui, comme on le verra plus en détail ci-après, sont ménagés dans des tranchées latérales réalisées dans la région active ZA. Afin de faciliter la circulation d'un courant I dans la membrane
MB, celle-ci est avantageusement dopée. De ce fait, notamment si le dopage de la membrane MB s'effectue par implantation, la zone de substrat ZSB située en vis-à-vis de la membrane est également dopée, bien que le dopage de cette zone ZSB ne soit pas indispensable au fonctionnement du transducteur acoustique.
Le transducteur comporte également plusieurs plots de contact électrique ou vias VI venant au contact de l'une des deux extrémités de la membrane reposant sur la région périphérique isolante, par exemple l'extrémité EX1. De même, il est prévu plusieurs autres plots de contact électrique V2 venant en contact de l'autre extrémité de la membrane EX2 reposant sur la région périphérique isolante STI. Bien qu'il suffirait d'équiper chacune des deux extrémités EX1 et EX2 de la membrane d'un seul via, il est préférable de prévoir plusieurs vias sur chacune des deux extrémités. Ceci permet notamment de diminuer la résistance électrique de l'ensemble des vias et d'obtenir une meilleure homogénéité des lignes de courant dans la membrane.
Chacun des vias VI, V2 vient également en contact avec une piste métallique PI, P2 du premier niveau de métallisation du circuit intégré. Ces vias et pistes métalliques permettront la connexion électrique du transducteur. Enfin, de façon classique, il est prévu un premier niveau de matériau isolant PHD, isolant la surface supérieure du substrat SB du premier niveau de métallisation. Ce matériau isolant est par exemple classiquement un oxyde de silicium dopé obtenu à partir de tétraorthosilicate d'éthyle (TEOS). Les pistes métalliques de chaque niveau de métallisation sont par ailleurs classiquement enrobées d'un autre matériau isolant IMD, par exemple de l'oxyde TEOS, mais non dopé.
En fonctionnement, un courant I modulé circule dans la membrane. Le champ magnétique B généré par l'aimant, perpendiculairement aux lignes de courant I, va provoquer l'apparition d'une force de Lorenz perpendiculaire à la membrane qui va déformer celle-ci de façon plus ou moins importante en fonction de l'amplitude du courant, provoquant ainsi l'émission d'un son (ou ultrason).
Les figures 7 et 8 illustrent très schématiquement un transducteur acoustique incorporé dans un récepteur acoustique. La figure 8 est une coupe selon la ligne VIII- VIII de la figure 7.
Par rapport au transducteur illustré sur les figures 5 et 6, la membrane MB du transducteur des figures 7 et 8 forme une première armature d'un condensateur. La zone dopée ZSB l du substrat semiconducteur, disposée en vis-à-vis de la membrane, forme alors une deuxième armature du condensateur. La cavité CV séparant les deux armatures contient une couche de diélectrique gazeux, par exemple de l'air ou de l'azote.
Le substrat SB, par exemple un substrat de type P, comporte un caisson CS, dopé N, au sein d'une première partie duquel est réalisée la zone de substrat dopée ZSB l . Par ailleurs, ce caisson CS comporte une autre partie ZSB2, également dopée, isolée de la membrane, et au contact de laquelle est réalisé le via V2.
Le courant circulant dans le condensateur pénètre ainsi par exemple par le via V 1 , circule dans la membrane et ressort par le via V2 par l'intermédiaire du caisson CS et des zones ZSB l et ZSB2.
Le reste de la structure est identique à celle qui a été décrite en référence aux figures 5 et 6, la référence LM désignant sur la figure 7, tout comme sur la figure 5, la limite interne des couches de matériaux isolants PHD et IMD. On va maintenant décrire en se référant plus particulièrement aux figures 9a à 9d, les principales étapes d'un procédé de fabrication permettant l'obtention d'un transducteur selon l'invention.
Comme le montre la figure 9a, on définit au préalable dans le substrat SB la zone active ZA au sein de laquelle va être réalisé le transducteur, en la délimitant, de façon classique, par des tranchées isolantes STI. On dépose ensuite, par épitaxie sélective, une couche d'un premier matériau, par exemple une couche de germanium ou bien d'un alliage de silicium-germanium. A titre indicatif, on pourra utiliser comme alliage un alliage Sij,χGeχ avec 0<x<l , ou bien un alliage S^ GeχC avec 0<x<0,95 et 0<y<0,05.
On pourra utiliser de préférence un alliage SiGe à teneur élevée en germanium, et en particulier comportant 10 à 30% en poids de germanium.
L'épitaxie est réalisée de façon classique et elle est sélective en ce sens que le matériau 1 ne croît que sur le silicium de la région active ZA.
On dépose ensuite, par épitaxie non sélective, et de façon classique et connue en soi, une couche d'un deuxième matériau 2, par exemple du silicium.
Les conditions de réalisation des épitaxies sélectives et non sélectives sont bien connues de l'homme du métier.
On définit également un masque de résine photorésistif 3 destiné notamment à définir la géométrie et les dimensions de la mambrane, puis l'on procède à des gravures anisotropes successives pour éliminer successivement, comme illustré sur la figure 9b, une partie de la couche de silicium 2, puis une partie de la couche du matériau 1, et enfin une partie du substrat ZA.
Après retrait du masque de résine, on obtient, comme illustré sur la figure 9b, un empilement central comportant au sommet, la partie résiduelle 20 de la couche de silicium qui formera la future membrane. Il convient de noter ici que cette portion résiduelle 20 de la couche de silicium repose sur ses deux extrémités longitudinales (non représentées sur la figure 9b) sur la région périphérique isolante STI.
L'empilement central comporte sous la portion résiduelle 20 une portion résiduelle 10 du matériau 1. Les tranchées TR, ménagées de part et d'autre de l'empilement jusque dans le substrat SB, laissent ainsi apparaître sur les deux côtés latéraux opposés de l'empilement, les flancs de la partie résiduelle 10 de la couche du matériau 1.
On élimine sélectivement latéralement la portion résiduelle 10, de façon à former la cavité CV (figure 9c). On peut effectuer cette gravure sélective latérale selon l'une des techniques bien connues de l'homme du métier, telle que la gravure par plasma isotrope, ou bien l'attaque au moyen d'une solution chimique oxydante, par exemple une solution de 40 ml de HN03 50%, de 20 ml de H202 et de 5 ml de HF 0,5%. On peut également, bien que cela ne soit pas absolument nécessaire, former sur les parois intérieures de la cavité CV de minces couches de matériau diélectrique 4, par exemple Si02, de façon à servir de barrière de protection.
On procède ensuite à une implantation de dopants dans la membrane 20 (figure 9d), ce qui conduit à la pénétration de dopants dans la zone de substrat située en vis-à-vis de la membrane de façon à former la zone de substrat dopée ZSB l.
En variante, il aurait été possible de réaliser un dopage in situ de la membrane lors de l'épitaxie de la couche 2. On ferme ensuite la cavité CV en réalisant dans le fond des tranchées TR des régions isolantes (par exemple en Si02) ou espaceurs
ESP.
Bien entendu, dans le cas où le transducteur est destiné à être utilisé dans un récepteur, on procède également à une implantation dans le caisson de façon à former notamment la zone ZSB2. Les étapes ultérieures de fabrication du transducteur, comme notamment la réalisation des vias ainsi que la réalisation des matériaux diélectriques PHD et IMD, sont réalisées de façon classique.
La membrane a par exemple une épaisseur qui varie de 5 à 100 nm, de préférence de 10 à 20 nm. La surface de la membrane est par exemple de l'ordre de 100 100 μm. La fréquence de résonance pour ces dimensions est de l'ordre de 30 MHz pour la membrane et de 1 MHz pour la cavité (vitesse de l'onde sonore de l'ordre de 1 cm/s pour un vide de 0,01 Torr et pour une hauteur de cavité de 10 nm). Un tel transducteur acoustique peut ainsi fonctionner dans une plage de fréquences comprise entre 1 MHz et 30 MHz.
Il est par ailleurs particulièrement avantageux de prévoir une matrice MC comportant un nombre relativement important de transducteurs ultrasonores, puisque la puissance acoustique est proportionnelle à la surface totale des capteurs.
Par ailleurs, alors que l'on n'a représenté qu'un seul transducteur par région active ZA, il aurait été possible de réaliser plusieurs transducteurs dans chaque région active ZA en isolant mutuellement un transducteur d'un autre par des tranchées réalisées dans le substrat et au fond desquelles on aurait réalisé un dopage opposé au dopage de la zone de substrat du transducteur située sous la membrane.
La figure 10 illustre un montage électrique d'un émetteur acoustique selon l'invention. La logique de commande comporte par exemple un modulateur MDM, de structure classique, destiné à moduler en amplitude un courant I. La modulation est commandée par un processeur de contrôle PC. La sortie du modulateur est reliée à l'une des bornes de la membrane MB, tandis que l'autre borne de la membrane MB est reliée à la masse. Sous l'action conjuguée des lignes de courant modulées et du champ magnétique B, la membrane MB se déforme perpendiculairement à son plan sous l'action de la force de Lorenz, générant par conséquent des ultrasons qui vont se propager dans l'air en sortant par l'ouverture OUV du boîtier.
Le montage électrique illustré sur la figure 1 1 est un exemple destiné à être implémenté dans un récepteur acoustique. L'une des bornes du condensateur du transducteur, par exemple la borne reliée à la membrane, est connectée à une source de tension STV. L'autre électrode du condensateur, en l'espèce le substrat, est reliée à la grille d'un transistor J FET. La valeur capacitive du condensateur sera modulée par la déformation mécanique de la membrane engendrée par une variation de pression résultant du son se propageant à l'air libre et venant frapper la membrane. Les transferts de charge entre le condensateur C et la grille du transistor J FET induisent alors une variation de courant drain transformée en tension par une résistance. Cette tension peut être ensuite analysée, après conversion analogique-numérique, par un processeur de traitement du signal.
D'autres moyens de détection des variations de la valeur capacitive du condensateur sont possibles. On peut notamment utiliser un oscillateur ou circuit oscillant inductif-capacitif, dont le condensateur serait formé par le condensateur du transducteur. Les variations de fréquence de l'oscillateur seront représentatives des variations de la valeur capacitive du condensateur du transducteur, et par conséquent des informations ultrasonores reçues.
REVENDICATIONS
1. Transducteur acoustique semiconducteur intégré, comprenant une membrane semiconductrice deformable (MB), destinée à être parcourue par un courant électrique, et séparée d'une zone d'un substrat semiconducteur par une cavité (CV) autorisant des déformations de la membrane sous l'effet d'une pression acoustique ou d'une force de Lorenz.
2. Transducteur selon la revendication 1 , caractérisé par le fait que la membrane (MB) est formée de silicium dopé, par le fait que le substrat est en silicium, et par le fait que la hauteur de la cavité (CV) est de l'ordre d'une dizaine de nanomètres, tandis que la longueur de la membrane est de l'ordre de la centaine de micromètres.
3. Transducteur selon la revendication 1 ou 2, caractérisé par le fait qu'il comprend un condensateur comportant une première armature formée par la membrane semiconductrice (MB) destinée à être parcourue par un courant électrique et deformable sous l'effet d'une pression acoustique, une deuxième armature formée par une zone dopée du substrat semiconducteur (ZSB l) disposée en vis-à-vis de la membrane, et par le fait que la cavité (CV) séparant les deux armatures contient une couche de diélectrique gazeux.
4. Transducteur selon la revendication 3, caractérisé par le fait que la membrane (MB) repose à deux de ses extrémités (EX 1 , EX2) sur une région isolante (STI), par le fait que le substrat comporte un caisson (CS) au sein d'une première partie duquel est formée ladite zone dopée de substrat (ZSB l), et par le fait qu'il comporte plusieurs plots de contact électrique (VI) venant au contact de l'une desdites deux extrémités de la membrane, et plusieurs autres plots de contact électrique (V2) venant au contact d'une deuxième partie (ZSB2) du caisson.
5. Transducteur selon la revendication 1 ou 2, caractérisé par le fait que la membrane semi-conductrice (MB) destinée à être parcourue par un courant électrique modulé est deformable sous l'effet de la force de Lorenz engendrée par un champ magnétique (B) s'étendant dans le plan de la membrane et perpendiculairement aux lignes de courant (I).
6. Transducteur selon la revendication 5, caractérisé par le fait que la membrane (MB) repose à deux de ses extrémités (EX1 , EX2) sur une région isolante (STI), et par le fait qu'il comporte plusieurs plots de contact électrique (VI, V2) respectivement disposés au niveau de chacune desdites deux extrémités.
7. Récepteur acoustique, caractérisé par le fait qu'il comprend un substrat semiconducteur (SB) contenant au moins un transducteur selon la revendication 3 ou 4, des moyens de génération de courant (STV) aptes à générer le courant dans la membrane du transducteur, et des moyens de détection (TR) connectés au condensateur (C) et aptes à détecter les variations de la valeur capacitive du condensateur provoquées par les déformations de la membrane.
8. Récepteur selon la revendication 7, caractérisé par le fait que le substrat contient plusieurs transducteurs, et par le fait qu'il comporte un boîtier (BO) contenant le substrat et possédant une ouverture (OUV) ménagée en face des transducteurs. 9. Emetteur acoustique, caractérisé par le fait qu'il comprend un substrat semiconducteur (SB) contenant au moins un transducteur selon la revendication 5 ou 6, des moyens de génération de courant (MDM) aptes à générer un courant modulé dans la membrane, et des moyens (AI) de génération d'un champ magnétique aptes à générer ledit champ magnétique s'étendant dans le plan de la membrane perpendiculairement aux lignes de courant.
10. Emetteur selon la revendication 9, caractérisé par le fait que les moyens de génération du champ magnétique comportent un aimant en U (AI). 11. Emetteur selon la revendication 10, caractérisé par le fait que le substrat contient plusieurs transducteurs, et par le fait qu'il comporte un boîtier (BO) contenant le substrat et possédant une ouverture (OUV) ménagée en face des transducteurs, le substrat étant situé entre les deux branches du U de l'aimant. 12. Procédé de fabrication d'un transducteur acoustique semiconducteur intégré, comprenant une membrane semi-conductrice deformable séparée d'une zone d'un substrat semiconducteur par une cavité autorisant des déformations de la membrane, comportant les étapes suivantes : - ménager dans le substrat (SB) une région isolante (STI) délimitant une région semiconductrice dite active,
- déposer par épitaxie sélective sur la surface de ladite région active, une première couche (1) d'un premier matériau,
- déposer par épitaxie non sélective, sur la première couche (1) et sur la région isolante (STI), une deuxième couche (2) d'un matériau semiconducteur, le premier matériau étant sélectivement éUminable par rapport au deuxième matériau,
- graver localement la deuxième couche (2), la première couche (1) et une partie de la région active (ZA), de façon à former deux tranchées latérales (TR) laissant subsister un empilement central comportant une partie de la deuxième couche (20), une partie de la première couche (10) et une partie de la région active, et laissant apparaître ladite partie (10) de la première couche sur deux côtés latéraux opposés de l'empilement,
- éliminer sélectivement latéralement la partie (10) de ladite première couche de façon à former ladite cavité (CV) délimitée par la partie sous-jacente du substrat formant ladite zone du substrat et la partie restante (20) de ladite deuxième couche formant ladite membrane,
- former des espaceurs latéraux (ESP) pour fermer la cavité sous la membrane. 13. Procédé selon la revendication 12, caractérisé par le fait que ladite première couche (1) est formée de germanium ou d'un alliage de silicium-germanium et par le fait que la deuxième couche (2) est formée de silicium.
14. Procédé selon la revendication 12 ou 13, caractérisé par le fait qu'on dope ladite membrane (MB).
15. Procédé selon l'une des revendications 12 à 14, caractérisé par le fait qu'on dope ladite zone du substrat (ZSB 1) située en vis-à-vis de la membrane.
16. Procédé selon l'une des revendications 12 à 15, caractérisé par le fait qu'on effectue une oxydation des parois internes de la cavité
(CV).
PCT/FR2000/003408 1999-12-07 2000-12-06 Emetteur et recepteur acoustiques integres, et procede de fabrication correspondant WO2001042742A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/149,088 US6670686B2 (en) 1999-12-07 2000-12-06 Integrated sound transmitter and receiver, and corresponding method for making same
JP2001543984A JP2003520466A (ja) 1999-12-07 2000-12-06 集積化された音響トランスミッタと音響レシーバ、およびこれらの製作方法
EP00988876A EP1236022A1 (fr) 1999-12-07 2000-12-06 Emetteur et recepteur acoustiques integres, et procede de fabrication correspondant

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR9915410A FR2801970B1 (fr) 1999-12-07 1999-12-07 Capteur magnetique de tres haute sensibilite
FR99/15410 1999-12-07
FR0003547A FR2801971B1 (fr) 1999-12-07 2000-03-20 Emetteur et recepteur acoustiques integres, et procede de fabrication correspondant
FR00/03547 2000-03-20

Publications (1)

Publication Number Publication Date
WO2001042742A1 true WO2001042742A1 (fr) 2001-06-14

Family

ID=26212270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/003408 WO2001042742A1 (fr) 1999-12-07 2000-12-06 Emetteur et recepteur acoustiques integres, et procede de fabrication correspondant

Country Status (5)

Country Link
US (1) US6670686B2 (fr)
EP (1) EP1236022A1 (fr)
JP (1) JP2003520466A (fr)
FR (1) FR2801971B1 (fr)
WO (1) WO2001042742A1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2801970B1 (fr) * 1999-12-07 2002-02-15 St Microelectronics Sa Capteur magnetique de tres haute sensibilite
US7012306B2 (en) * 2001-03-07 2006-03-14 Acreo Ab Electrochemical device
US20040190377A1 (en) * 2003-03-06 2004-09-30 Lewandowski Robert Stephen Method and means for isolating elements of a sensor array
DE10324960B4 (de) * 2003-06-03 2011-08-11 Robert Bosch GmbH, 70469 Kapazitiver Drucksensor
FR2874278B1 (fr) * 2004-07-20 2009-03-06 Denso Corp Dispositif de detection d'obstacle
JP4036225B2 (ja) * 2004-07-20 2008-01-23 株式会社デンソー 障害物検知装置
JP4729941B2 (ja) * 2005-02-23 2011-07-20 パナソニック電工株式会社 音波センサ
US7229292B1 (en) * 2005-12-22 2007-06-12 General Electric Company Interconnect structure for transducer assembly
ITMI20070099A1 (it) 2007-01-24 2008-07-25 St Microelectronics Srl Dispositivo elettronico comprendente dispositivi sensori differenziali mems e substrati bucati
KR101066247B1 (ko) * 2009-08-04 2011-09-20 서울대학교산학협력단 멀티 루프 코일을 구비하는 판재용 비접촉식 트랜스듀서
FR2972571A1 (fr) * 2011-03-09 2012-09-14 St Microelectronics Crolles 2 Générateur thermoélectrique
WO2015150385A2 (fr) * 2014-03-31 2015-10-08 Koninklijke Philips N.V. Dé d'ic, sonde ultrasonore, système de diagnostic par ultrasons et procédé
US20220345828A1 (en) * 2021-04-26 2022-10-27 RF360 Europe GmbH Etch stop and protection layer for capacitor processing in electroacoustic devices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4912990A (en) * 1989-02-27 1990-04-03 Sundstrand Data Control, Inc. Magnetically driven vibrating beam force transducer
US5322258A (en) * 1989-04-28 1994-06-21 Messerschmitt-Bolkow-Blohm Gmbh Micromechanical actuator
EP0816861A2 (fr) * 1996-06-25 1998-01-07 Siemens Aktiengesellschaft Dispositif de mesure de champs magnétiques

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4202128A (en) * 1977-03-04 1980-05-13 Hill Robin E T Adjustable float sinker
US5260596A (en) * 1991-04-08 1993-11-09 Motorola, Inc. Monolithic circuit with integrated bulk structure resonator
US5659195A (en) * 1995-06-08 1997-08-19 The Regents Of The University Of California CMOS integrated microsensor with a precision measurement circuit
DE19648424C1 (de) * 1996-11-22 1998-06-25 Siemens Ag Mikromechanischer Sensor
US5982709A (en) * 1998-03-31 1999-11-09 The Board Of Trustees Of The Leland Stanford Junior University Acoustic transducers and method of microfabrication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4912990A (en) * 1989-02-27 1990-04-03 Sundstrand Data Control, Inc. Magnetically driven vibrating beam force transducer
US5322258A (en) * 1989-04-28 1994-06-21 Messerschmitt-Bolkow-Blohm Gmbh Micromechanical actuator
EP0816861A2 (fr) * 1996-06-25 1998-01-07 Siemens Aktiengesellschaft Dispositif de mesure de champs magnétiques

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1236022A1 *

Also Published As

Publication number Publication date
EP1236022A1 (fr) 2002-09-04
FR2801971A1 (fr) 2001-06-08
JP2003520466A (ja) 2003-07-02
US20030052355A1 (en) 2003-03-20
US6670686B2 (en) 2003-12-30
FR2801971B1 (fr) 2002-02-15

Similar Documents

Publication Publication Date Title
WO2001042742A1 (fr) Emetteur et recepteur acoustiques integres, et procede de fabrication correspondant
EP1987338B1 (fr) Capteur de pression a jauges resistives
FR2882996A1 (fr) Composant micromecanique et son procede de fabrication
FR2514502A1 (fr) Transducteur de pression capacitif au silicium lie par voie electrostatique
EP1027583A1 (fr) Structure munie de contacts electriques formes a travers le substrat de cette structure et procede d&#39;obtention d&#39;une telle structure
EP1346405B1 (fr) Procede de fabrication d&#39;un ilot de matiere confine entre des electrodes, et applications aux transistors
EP1776312B1 (fr) Procede de fabrication d&#39;un dispositif comprenant un microsysteme encapsule
FR2946478A1 (fr) Resonateur a ondes de volume.
FR2918796A1 (fr) Transistor mos a grille suspendue et a fonctionnement non-volatile.
FR2982414A1 (fr) Procede ameliore de realisation d&#39;un dispositif a cavite formee entre un element suspendu reposant sur des plots isolants semi-enterres dans un substrat et ce substrat
FR3042064B1 (fr) Dispositif pour connecter au moins un nano-objet associe a une puce permettant une connexion a au moins un systeme electrique externe et son procede de realisation
WO2005067054A1 (fr) Procede de fabrication de puces electroniques en silicium aminci
FR2860779A1 (fr) Procede de fabrication d&#39;un capteur micromecanique et capteur obtenu
FR2857952A1 (fr) Resonateur electromecanique et procede de fabrication d&#39;un tel resonateur
EP0864093B1 (fr) Capteur, notamment accelerometre, et actionneur, et procede de fabrication d&#39;une structure de capteur ou d&#39;actionneur a isolation electrique localisee dans une plaque de substrat
EP0392945B1 (fr) Micromagnétomètre à détection capacitive
WO2001042805A1 (fr) Capteur magnetique de tres haute sensibilite
FR3089016A1 (fr) Procede de test electrique d’au moins un dispositif electronique destine a etre colle par collage direct
FR2827041A1 (fr) Dispositif piezoresistif et procedes de fabrication de ce dispositif
EP3944322B1 (fr) Procédé de fabrication d&#39;un dispositif microélectronique
EP3537489B1 (fr) Procédé de fabrication d&#39;un dispositif traversant
FR2901058A1 (fr) Dispositif a fonction dissymetrique et procede de realisation correspondant.
FR3094789A1 (fr) Procédé de fabrication d&#39;un détecteur pyroélectrique
WO2022175618A1 (fr) Dispositif pyroelectrique comprenant un substrat a couche superficielle pyroelectrique et procede de realisation
EP4075526A1 (fr) Dispositif à transduction piézorésistive

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000988876

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 543984

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 2000988876

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10149088

Country of ref document: US