WO2001040829A1 - Dispositivo para concentracion o colimacion de energia radiante - Google Patents

Dispositivo para concentracion o colimacion de energia radiante Download PDF

Info

Publication number
WO2001040829A1
WO2001040829A1 PCT/ES2000/000459 ES0000459W WO0140829A1 WO 2001040829 A1 WO2001040829 A1 WO 2001040829A1 ES 0000459 W ES0000459 W ES 0000459W WO 0140829 A1 WO0140829 A1 WO 0140829A1
Authority
WO
WIPO (PCT)
Prior art keywords
rays
radiant energy
lens
collimation
aspherical
Prior art date
Application number
PCT/ES2000/000459
Other languages
English (en)
French (fr)
Inventor
Juan Carlos MIÑANO DOMINGUEZ
Pablo Benitez Gimenez
Original Assignee
Universidad Politecnica De Madrid
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Politecnica De Madrid filed Critical Universidad Politecnica De Madrid
Priority to JP2001542238A priority Critical patent/JP2003515779A/ja
Priority to AU17088/01A priority patent/AU1708801A/en
Priority to DE60042756T priority patent/DE60042756D1/de
Priority to EP00979686A priority patent/EP1251366B1/en
Priority to AT00979686T priority patent/ATE439610T1/de
Priority to US10/148,736 priority patent/US7160522B2/en
Publication of WO2001040829A1 publication Critical patent/WO2001040829A1/es
Priority to US11/643,839 priority patent/US20080092879A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • F24S23/31Arrangements for concentrating solar-rays for solar heat collectors with lenses having discontinuous faces, e.g. Fresnel lenses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0411Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using focussing or collimating elements, i.e. lenses or mirrors; Aberration correction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/006Systems in which light light is reflected on a plurality of parallel surfaces, e.g. louvre mirrors, total internal reflection [TIR] lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0038Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light
    • G02B19/0042Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light for use with direct solar radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0076Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a detector
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Definitions

  • This invention consists of an anidolic concentration or collimation device consisting of two aspherical lenses, one of them containing a discontinuous slope structure (that is, toothed), which concentrates the incident radiation on a receiver or collides the radiation emitted by an emitter. , according to the case.
  • the design method of this concentrator is based on the anidolic design method of the Multiple Simultaneous Surfaces or SMS (Mi ⁇ ano, González, 1992).
  • the coupling in two-dimensional geometry (2D) of two beams of large rays is carried out.
  • Real three-dimensional (3D) devices are obtained by symmetry of revolution (axisimetric) or translation (cylindrical) and their operation is analyzed ap ' osteriori.
  • beam beams of habitual use are: (tipol) the compound composed of the rays that affect a segment (1) forming an angle lower than a given angle (2) (called beam acceptance angle) with perpendicular to said segment, and (type 2) the one composed of rays that intercept two given segments (3).
  • Both types of beams can be defined more generally (type 3) if segments are replaced by sections of arbitrary curves.
  • Figure 1 shows, in addition to two type 1 and 2 beams, a type 3 beam composed of rays that intercept a rectangle (4) and a semicircle (5) (this beam is useful for modeling an LED or an IRED) .
  • Another beam of rays (type 4) of a more general nature than those of type 1 and 2 (which includes them as a particular case) can be described as the one composed of the rays that affect a segment with an angle of incidence between two specified angles for each point of the segment.
  • the design of the present invention is based on the so-called Anidolic Optical Extreme Theorem Theorem (Welford, Winston, 1989), which states that to make the coupling between two beams associated with the emitter and the receiver, it is necessary and sufficient to couple the subsets of extreme rays of both beams.
  • the use of this theorem is key to obtaining devices that work very close to the thermodynamic limit with bundles of non-limited angular extensions.
  • the extreme rays of the beams of Figure 1 are, for the type 1 beam, those that affect the segment with an angle of incidence equal to the angle of acceptance of the beam and those that pass through the ends of the segment ( 6) and (7); for the type 2 beam, those that pass through one of the ends (8), (9), (10) and (11) of the two given segments; and to
  • FIG. 2 A possible configuration of the invented device is that shown in Figure 2, where its basic operating pnncipio as a radiation concentrator on a receiver (14) is also shown.
  • the lens (15) L consists of two active faces: the upper refractive surface (16), which we will call S nuisancewhich is in general aspherical, and the mfenor, S 2 , which consists of another aspherical refractive surface (17) in its central region (between points (18) and (19), which we will call P and P ', respectively) and of a discontinuous slope structure (20) in its outer region.
  • the lens (50) L 2 surrounds the receiver and consists of the asfé ⁇ ca refractive surface (21), which we will name S 3 .
  • Total internal reflection occurs when the angle of incidence of the ray with the normal to the surface is greater than the so-called critical angle of the interface, which is given by arcsen (l / n), where n is the index of refraction of the lens L ,.
  • the surfaces S 2 and S 3 are calculated from the specification of the surface profile S, and the input and output beams.
  • the definition of the input beam can be done before its refraction in S , with which its definition would be independent of that of said surface.
  • it could be a type 1 beam with ⁇ acceptance and with the ends of the segment coincident with the two end points of the surface S ,.
  • Another possibility, which may be interesting in practice, is to define the input beam after its refraction in S
  • the beam of the input (specified after refraction in S,) is defined by the acceptance (24) of value ⁇ ', and by the edges (25) and (26) of the surface S 2 , which we will call I and I' , which determine the segment that we will call entry opening.
  • the output beam is defined by the receiver, which is the segment of ends (27) and (51), which we will name respectively R and R ⁇ and by the illumination angle limited to the acceptance angle (28) of value ⁇ ( usual consideration when the sensitivity of the receiver is low for very low angles, as is common in photodiodes or solar cells).
  • the edges O and O 'of the surface S 3 are the symmetrical points (29) and (30). This figure also shows the Cartesian coordinate system (31) that will be used for descnption, whose ongen is centered on the receiver.
  • Input parameters of this design are the angles ⁇ and ⁇ , the distance RR ⁇ the refractive index of the dielectric materials to be used (n for the lens L, and n 'for the L 2 ), the ordinate of point I, the abscissa of point O, and the abscissa of point P.
  • the ordinate of point O is calculated immediately from its abscissa, the distance RR 'and the angle ⁇ .
  • the calculation of the abscissa of point I and the ordinate of point P will be obtained later, as a result of the design.
  • the design procedure consists of three phases.
  • the design conditions for the teeth of the surface S 2 (which will be different for concentration or collimation) are chosen, assuming they have an infinitesimal size. With these conditions the expressions that constitute the individual design of teeth for the different angles of incidence with respect to the normal average of the tooth are calculated.
  • the surfaces S 2 and S 3 that couple the output beam and the input beam are designed simultaneously with the SMS method, taking into account the expressions calculated in the first phase.
  • the teeth of the surface S 2 with a finite size are generated (as will be practiced in practice) from the infinitesimal teeth calculated in the previous phase.
  • the V-face thus placed has the property of reflecting (by total internal reflection) the beam without its geometry being modified.
  • the e (-) ray that affects point (34) after the total internal reflection on the T face and the refraction on the V face becomes the passing i (-) ray by point (40).
  • all the points in the segment (38) pass transformed i (-) rays of the e (+) and (-) rays, but only a portion of the segment (38) emerges i (+) rays (hence the irradiance is not uniform in (38), although as much as possible, as required by condition (2)).
  • Figure 4.b shows a tooth for the basic tuning design as a collimator.
  • the second condition imposed in this case it is the e (+) ray that affects (34) that it must become the ray i (+) that passes through the point (40).
  • ⁇ , ⁇ ', ⁇ and ⁇ are respectively the angles (54), (55), (56) and (57) shown in Figure 4, n is the index of refraction of the lens and ⁇ ⁇ ⁇ in the design of the concentrator and ⁇ ⁇ ⁇ 'in that of the collimator.
  • SHEET D found, once these calculated, by (inverse) application of Snell's law as in step a). The last point of this portion is marked by the ray that, once refracted, passes through R '. e) Find the next section of S 3 with the condition that the rays coming from I refract in that portion towards the point R '. Again, the solution is given by the constancy of the optical path between the two points and constitutes a particular case of Cartesian oval, and the tangent to S 3 at these points is found by (inverse) application of Snell's law. The last point of this section, which will be called H ⁇ , and its tangent t H0 , is the one for which the beam i (-) that comes out of I.
  • the profile of the central region of S 2 (between P and P ') is to be calculated (together with the remaining portion of S 3 ), again according to the extreme ray theorem, to direct the e (+ +) rays ) towards R 'and e (-) towards R (Note that this assignment is the opposite of what was done in steps g) and h) for the outer portion of S 2 ). Since the surfaces are continuous, this implies that the optical path from the wavefront associated with the e (+) rays to R 'will be constant, as well as the path associated with the e (-) rays to R. So that the surfaces S 2 and S 3 do not have discontinuities in their respective vertices, the symmetry of the design forces both
  • the standard mode differs from the basic mode in the third phase, where the T faces of the finite teeth have a circumference arc profile.
  • the design of this standard mode can be done in a similar way to that of the basic one.
  • the calculation of the curvature of the T-faces of the infinitesimal teeth is added in the standard mode (for use in the third phase), which constitutes a precision superpendent order to the used in the basic mode.
  • Equation (Ec. 2) where subscripts i, r and refer to the incident wave fronts, refracted / reflected and to the surface, respectively, n denotes refractive index, ⁇ ray angle with respect to normal and p radius of curvature.
  • step f in which the points G k are calculated based on the F k , it is where the desired p sT values must be calculated.
  • the points and those normal to the surfaces are calculated, the angles of incidence and refractive reflection, such as refractive indices, are known parameters in the three incidents.
  • step g) new points F j are calculated, initially named H k , which will be used again in step f) when repeated as indicated by h), it is also necessary to calculate the radius of curvature of S 3 at said points . This is done in a similar way to the calculation of p sT indicated above, using the path of the ray with which H k is calculated, which is the ray e (+) incident in G k , and making use of which p sT is already known .
  • the difference with the basic modality is that the T faces, instead of being rectilinear, are generated as circumference arcs.
  • the procedure for generating the teeth is analogous to that seen for the basic modality, with the only difference that the face T of the finite tooth to which the central point G ⁇ of a finite tooth belongs is the arc of circumference that passes through said point , with the inclination and radius of curvature associated with the infinitesimal tooth, and which extends symmetrically with respect to the point. This concludes the design of the standard mode.
  • the advanced design modality is characterized in that the T faces of the teeth have an aspherical profile.
  • the calculation of these profiles can be carried out based on the finalized basic design (with finite teeth), following the following steps: a) Draw in reverse the uniparametric beams of rays that start from R and R ⁇ are refracted in S 3 and in the V faces of the finite teeth. b) For each tooth, whose central point is Gauercalculate the aspherical profile of the face T that passes through G ⁇ and whose points Q are such that the beam that falls vertically is reflected according to the bisector of the rays of the uniparametric beams that go through Q calculated in a).
  • This problem which can be expressed as a first-order differential equation, has a unique solution when a beam passes through each point Q and only one of each beam.
  • Figure 11 shows an example of an advanced design.
  • the aspherical profiles (54) of the faces allow them to be designed larger than in the basic and standard modalities, and still maintain excellent performance, even close to the thermodynamic limit.
  • the description of the design procedures of the three modalities (basic, standard and advanced) is concluded.
  • the design is essentially the same in case the profiles of the faces V are not vertical lines, but have a rectilinear profile inclined, circular or aspherical, which has been preset.
  • one aspect that has not been considered in the descriptions of the designs is the fact that the manufacture of teeth with fully vertical V faces may not be practical (in the case of manufacturing the lens by injection of a plastic, the unmolding of the piece is difficult). It is possible to improve this aspect, for example, considering in the design that the faces V are inclined a certain angle (in the range of 0.5 ° to I or it may be sufficient), which means conveniently modifying the expressions (Eq. 1).
  • the inclination of the face V means that it is not parallel to a flow line of the incident beam, whereby the reflection on said face will modify (slightly) the geometry of the beam. This means that the angular transmission characteristic will degrade (that is, it will be somewhat less abrupt) with respect to that corresponding to vertical V faces.
  • the realization of the profiles of the faces V as circumference arcs or predetermined aspherical curves can be used to further facilitate their manufacture (at the cost of making the mold manufacturing difficult), reducing, for example, the curvature necessary for the T face profiles.
  • the device described for concentrating radiation on a receiver can be axisymmetric or cylindrical, and is characterized by transforming the extreme rays of an extensive beam of input rays into extreme rays of another beam of extensive rays of output that illuminates a receiver, both beams being specified in the plane of a cross section (which contains the axis of symmetry in the axisymmetric case or is perpendicular to the direction of symmetry in the cylindrical case), by: (a) a lens L, composed of one side of a refractive surface aspherical, S ,, on which the input beam and on the other side, S 2 , of another aspherical refractive surface in its central region and a discontinuous slope structure in its external region, whose cross section is formed by teeth of two aspherical faces such that one of them, V, is parallel to the flow lines of the beam transmitted by S sparklethe other side, T, reflects the beam by total internal reflection has cia the face V where it is refracted so that no ray intercepts the adjacent tooth and that the
  • the device used to collimate the radiation generated by an emitter can be axisymmetric or cylindrical, and is characterized by transforming the extreme rays of an extensive input beam that generates an emitter into extreme rays of another extended beam of output, both beams being specified in the plane of a cross section, by: (a) a lens L 2 that surrounds the emitter composed of an aspherical refractive surface on which the input beam falls; and (b) a second lens L, composed of one side of an aspherical refractive surface, S ,, from which the output beam starts and on the other side, S 2 , of another aspherical refractive surface in its central region and of a discontinuous slope structure in its outer region, whose cross section is formed by teeth of two aspherical faces such that on one of them, V, the beam transmitted by S 3 is refracted so that all rays are reflected by total internal reflection on the other side, T, and that the nearest extreme beam not to be reflected is tangent to the tooth profile
  • a variant of the configuration described so far consists in replacing the refractive surface S, with a discontinuous slope structure (44) of Fresnel, as shown for example in Figure 6 for the case of S, flat and horizontal.
  • the dielectric material used is reduced, which reduces its weight and absorption.
  • Both surfaces, discontinuous and continuous, work analogously.
  • the profiles of the remaining optical surfaces are identical in the two designs. The only difference with respect to the trajectories of the rays is that they can now affect the vertical face of the steps, which coincides with the flow lines of the incident beam. This implies, again, that if these faces were mirrors, the reflection of the rays in them would not modify the geometry of the transmitted beam.
  • the realization of the surface S, as a pattern of discontinuous slope can also be used for another purpose, as shown in Figure 7.
  • the flat surface of Figure 2 has been replaced by a discontinuous slope structure with a sawtooth profile. (45) that deflects the input beam to modify the direction of the flow lines (46).
  • the lens is adhered to a dielectric sheet by an adhesive with a refractive index slightly different from that of the lens. This structure refracts the rays of the incident beam so that they progress towards S, with a slight divergent inclination.
  • Another possible configuration consists in carrying out the lens by exchanging the surfaces S, and S 2 , so that the teeth are inverted (48), as shown in Figure 9.
  • revolution symmetry for manufacturing by molding, it is it is necessary that the mold, or the lens, be flexible, in order to be able to extract the lens from the mold.
  • translation symmetry it would not be necessary to be manufactured by extrusion.
  • the procedure for designing optical surfaces is common for all indicated configurations.
  • optoelectronic such as a photodiode, a phototransistor or a solar cell.
  • optoelectronic such as an LED, an ERED or a laser.
  • the manufacturing of the concentrator object of this invention can be carried out by turning with a diamond tip tool with numerical control (CNC) on a plastic material, such as polymethyl methacrylate (PMMA).
  • CNC diamond tip tool with numerical control
  • PMMA polymethyl methacrylate
  • Another possibility that should be mentioned is the injection of PMMA into a suitable mold, which allows an embodiment that is also the subject of this patent and that shows figure 10: the device can be manufactured with an optically non-active portion (49) that joins two lenses and so that they constitute a single piece that includes an interior space (53).
  • the connection can be made by contact before solidification of the last injected piece or by subsequent bonding.
  • Being a single piece the intermediate space between the lenses is protected from dust and moisture. This space can be filled, if desired, with an inert gas or made empty.
  • the adhesion of the receiver or the emitter to the secondary can be done by casting a transparent epoxy resin.
  • the design beam beams include as a particular case the one that produces uniform irradiance in the
  • Figure 1 Beams of extensive rays of habitual use. On the left, the type 1 beam, composed of the rays that affect a segment (1) of ends (6) and (7) forming an angle less than the angle of acceptance of the beam (2) with the perpendicular to said segment .
  • the type 2 beam composed of rays that intercept two given segments (3).
  • the extreme rays of this beam are those that pass through one of the end points of said segments (8, 9, 10 and 11).
  • a beam of type 3 composed of rays that intercept a rectangle (4) and a semicircle (5) of ends (12) and (13).
  • Figure 2 Basic principle of operation of the invention as a radiation concentrator on a receiver (14). It consists of a lens (50) that surrounds the receiver composed of an aspherical refractive surface (21); and of another lens (15) whose upper side is an aspherical refractive surface (16) and whose lower side consists of another aspherical refractive surface (17) in its central region (between points 18 and 19) and a discontinuous slope design (20) in its outer region, whose faces (22) fundamentally refract rays and faces (23) reflect them by total internal reflection.
  • the lens (50) that surrounds the receiver composed of an aspherical refractive surface (21); and of another lens (15) whose upper side is an aspherical refractive surface (16) and whose lower side consists of another aspherical refractive surface (17) in its central region (between points 18 and 19) and a discontinuous slope design (20) in its outer region, whose faces (22) fundamentally refract rays and faces (23) reflect them
  • Figure 3 Cartesian coordinate system (31) and initial geometric parameters for the realization of the design chosen to concentrate radiation on a receiver.
  • the beam of the input is defined by the acceptance (24) and by the input opening defined by the edges
  • the output beam is defined by the segment of ends (27) and (51), which is the receiver, which is illuminated from the surface S 3 , whose ends are (29) and (30), with a limited illumination angle to the acceptance angle (28).
  • Figure 4 S 2 surface teeth designed in the first phase for the device acting (a) as a concentrator or (b) as a collimator. Since they have an infinitesimal size (enlarged in the figure), the adjacent teeth are identical and the beams of extreme rays are parallel. It is desired that the incident light through the segment (33), ends (34) and (35), with inclination between the rays (36) and (37), be transmitted optimally through the segment (38 ), of ends (39) and (40), with inclination between that of rays (41) and (42), which form horizontal angles (54) and (55), respectively.
  • the geometry of the tooth with respect to its macroscopic tangent vector (32) is defined by angles (56) and (57).
  • Figure 5 The lens 1 ⁇ can be made with two different dielectric materials separated by a spherical or aspherical surface (43).
  • the surface S can be replaced by a discontinuous slope structure (44) of Fresnel, thereby reducing weight and absorption.
  • Figure 7 The realization of S, as a discontinuous slope pattern (45) with a sawtooth profile, minimizes transmission losses when the faces V do not coincide with flow lines (46) of the beam transmitted by the surface S, continuous .
  • Figure 8 The central portion of S 2 can be replaced by a discontinuous slope structure (47) of Fresnel.
  • Figure 9 Configuration consisting of realizing the lens by exchanging the surfaces S, and S 2 , so that the teeth are inverted (48).
  • the device can be manufactured with an optically non-active portion (49) that joins the two lenses and so that they constitute a single piece that includes an interior space (53).
  • Figure 11 The device can be designed with aspherical faces (54) in the advanced mode, which allows them to be designed larger and still maintain excellent performance.
  • SHEET OF The invention presented has direct application in various fields, such as radiation sensors, LED lighting systems, optical wireless communications or photovoltaic solar energy.
  • the proposed invention allows to reach high sensitivities, close to the thermodynamic limit, without compromising the simplicity and compactness of the device.
  • this invention provides an optimally collimated beam with a geometry easily compatible with current manufacturing techniques.
  • the control of the angular response of the sending and receiving devices and the use of almost all possible emission / reception addresses in the design allows the realization of links whose signal-to-measure ratio is close to the maximum possible .
  • the proposed invention would use an optoelectronic sensor as a receiver (eg a photodiode or a phototransistor).
  • the invention would employ an optoelectronic emitter (LED, ERED or laser).
  • this invention constitutes a suitable device for high concentration solar cells.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Lenses (AREA)
  • Photovoltaic Devices (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Semiconductor Lasers (AREA)

Abstract

Esta invención consiste en un dispositivo anidólico para concentración o colimación de radiación sobre un receptor o un emisor (14), según sea el caso. El dispositivo consta de la lente (50), que rodea al receptor y que consta de la superficie asférica (21), y de la lente (15), cuya superficie refractiva superior (16) puede ser asférica, mientras que la superficie inferior es asférica (17) en su región central (entre 18 y 19) y tiene una estructura de pendiente discontinua (20) en su región externa, en la que las caras (22) fundamentalmente refractan los rayos mientras las caras (23) los reflejan por reflexión total interna. El método de diseño proporciona que el dispositivo tenga propiedades de concentración/colimación notablemente superiores a las invenciones existentes. Son posibles aplicaciones de dicha lente: los sensores de radiación, sistemas de iluminación con diodos LED, comunicaciones ópticas sin hilos o energía solar fotovoltaica.

Description

Título
Dispositivo para concentración o colimación de energía radiante.
Sector técnico Se enmarca dentro de los sistemas ópticos; concretamente de la Óptica Amdóhca (u óptica no formadora de imagen).
Estado de la Técnica anterior
Existen inventos anteπores relacionados con la presente invención, todos ellos relacionados entre sí, que han dado lugar a vanas patentes (US Pat. No. 4,337,759; US Pat. No.
5,404,869; US Pat. No. 5,577,493). Si bien a grandes rasgos alguna de las posibles geometrías de la presente invención se asemeja cualitativamente a dichas invenciones anteπores, existen vanas diferencias fundamentales que marcan la novedad de esta invención y la ausencia de conflicto con las invenciones mencionadas. Dichas diferencias llevan a que las superficies ópticas de la invención son sustancialmente distintas, debido a que las condiciones que se imponen para realizar su diseño son diferentes y por tanto también su comportamiento óptico resultante. En particular, la invención presentada puede trabajar muy cerca (>95%) del límite termodinámico de concentración/colimación, mientras que las invenciones antenores, que no se basan en las herramientas de la Óptica Anidó ca, distan mucho de aproximarse a este límite (<80%) cuando la extensión angular de los haces de rayos a su paso por alguna de las superficies ópticas es grande (> 10°).
Las patentes relacionadas son: la patente de Popovich et al US. Pat. No. 4,337,759,7/1982; la de W.A. Parkyn, Jr. et ai, US Pat. No. 5,404,869, 4/1995, y por último, W.A. Parkyn, Jr. et al, US Pat. No. 5,577,493, 11/1996. Los diseños de todas las invenciones mencionadas no se fundamentan (a diferencia de esta invención) en el teorema de rayos extremos de la Óptica Anidólica, lo que limita su funcionamiento con los haces extensos que producen muchos emisores y receptores que se usan en la práctica. Las patentes US. Pat. No. 4,337,759,7/1982 y US Pat. No. 5,404,869, 4/1995 consideran únicamente el rayo central de los haces en el diseño. Por su parte, la US Pat. No. 5,577,493, 11/1996 considera la denominada óptica de pnmer orden en tomo al rayo central (Luneburg, 1964), que proporciona un orden de aproximación supenor al anteπor, pero que aún así supone que el comportamiento que sus inventores le atnbuyen para producir irradiancia constante es sólo preciso para haces de extensión angular muy reducida. Además, la invención protegida por la US Pat. No. 5,577,493, 11/1996 es axisimétrica y considera como haz de salida el que produce una irradiancia uniforme en 3D en la apertura,, de salida. Este haz es sólo un caso particular de los considerados en la presente patente.
Explicación de la invención
Esta invención consiste en un dispositivo anidólico de concentración o colimación que consta de dos lentes asféricas, una de ellas conteniendo una estructura de pendiente discontinua (esto es, dentada), que concentran la radiación incidente sobre un receptor o coliman la radiación emitida por un emisor, según sea el caso. El método de diseño de este concentrador se basa en el método de diseño anidólico de las Superficies Múltiples Simultáneas o SMS (Miñano, González, 1992).
Para el diseño de esta invención se realiza el acoplamiento en geometría bidimensional (2D) de dos haces de rayos extensos (por ejemplo, no puntuales). Los dispositivos tridimensionales (3D) reales se obtienen por simetría de revolución (axisimétricos) o traslación (cilindricos) y su funcionamiento se analiza a p ' osteriori. Como ejemplos de haces de rayos de uso habitual (figura 1) están: (tipol) el compuesto por los rayos que inciden sobre un segmento (1) formando un ángulo inferior a un ángulo dado (2) (llamado ángulo de aceptancia del haz) con la perpendicular a dicho segmento, y (tipo 2) el compuesto por los rayos que interceptan dos segmentos dados (3). Ambos tipos de haces pueden definirse de forma más general (tipo 3) si se substituyen los segmentos por tramos de curvas arbitrarias. La figura 1 muestra, además de dos haces de tipo 1 y 2, un haz del tipo 3 compuesto por los rayos que interceptan un rectángulo (4) y una semicircunferencia (5) (este haz es útil para modelar un LED o un IRED). Puede describirse otro haz de rayos (tipo 4) de carácter más general que los de tipo 1 y 2 (que los incluye como caso particular) como el compuesto por los rayos que inciden sobre un segmento con un ángulo de incidencia comprendido entre dos ángulos especificados para cada punto del segmento.
El diseño de la presente invención está basado en el denominado teorema de los rayos extremos de la Óptica Anidólica (Welford, Winston, 1989), que afirma que para realizar el acoplamiento entre dos haces asociados al emisor y el receptor, es necesario y suficiente acoplar los subconjuntos de rayos extremos de ambos haces. El uso de este teorema es clave para obtener dispositivos que trabajan muy cerca del límite termodinámico con haces de extensiones angulares no limitadas. Por ejemplo, los rayos extremos de los haces de la figura 1 son, para el haz de tipo 1, los que inciden sobre el segmento con un ángulo de incidencia igual al ángulo de aceptancia del haz y los que pasan por los extremos del segmento (6) y (7); para el haz de tipo 2, los que pasan por alguno de los extremos (8), (9), (10) y (11) de los dos segmentos dados; y para
HO el haz de tipo 3, los que son tangentes al rectángulo y los que pasan por los extremos (12) y (13) de la semicircunferencia.
Una posible configuración del dispositivo inventado es la mostrada en la figura 2, en donde se muestra también su pnncipio básico de funcionamiento como concentrador de radiación sobre un receptor (14). La lente (15) L, consta de dos caras activas: la superficie refractiva supenor (16), que denominaremos S„ que es en general asfénca, y la mfenor, S2, que consta de otra superficie refractiva asfénca (17) en su región central (entre los puntos (18) y (19), que llamaremos P y P', respectivamente) y de una estructura de pendiente discontinua (20) en su región extema. La lente (50) L2 rodea al receptor y consta de la superficie refractiva asféπca (21), que nombraremos S3. Los rayos colectados que inciden en la región central (17) sufren tres refracciones consecutivas antes de llegar al receptor. Por otro lado, los rayos colectados que inciden en la región (20) más extema sufren las siguientes incidencias antes de alcanzar el receptor: una pnmera refracción sobre la superficie S,, una (posible) reflexión total interna en la cara (22) (que denominaremos cara V) de los dientes de S2, una reflexión total interna en la cara (23) de dichos dientes (que denommaremos cara T), una segunda refracción en la cara V y por último una tercera refracción en S3. La reflexión total interna se produce cuando el ángulo de incidencia del rayo con la normal a la superficie es mayor que el llamado ángulo crítico de la interfaz, que viene dado por arcsen(l/n), siendo n el índice de refracción de la lente L,.
Como casos particulares están aquellos en que el perfil de S, es circular o plano. Este último es de especial interés en algunas aplicaciones, como la concentración fotovoltaica, ya que permite el agrupamiento de un conjunto de dispositivos adhendos a una placa dieléctπca, como por ejemplo un vidno plano, que actúa como referencia proporcionando el paralelismo entre los dispositivos, como protección en la mtempene y como filtro para la radiación ultravioleta.
En el diseño se calculan las superficies S2 y S3 a partir de la especificación del perfil de la superficie S, y de los haces de entrada y salida. La definición del haz de entrada puede hacerse antes de su refracción en S,, con lo cual su definición sería independiente de la de dicha superficie. Por ejemplo, podría ser un haz de tipo 1 con aceptancia α y con los extremos del segmento comcidentes con los dos puntos extremos de la superficie S,. Otra posibilidad, que puede ser interesante en la práctica, es la de definir el haz de entrada después de su refracción en S|, lo que permite, por ejemplo, que el segmento que atraviesan los rayos del haz sea el definido por los dos puntos extremos de la superficie S2. Esto supone que la especificación del haz y de la superficie son mterdependientes: si se desea definir el haz como el compuesto por los rayos que inciden dentro de la aceptancia α antes de la refracción en S, y con los extremos del segmento comcidentes con los dos puntos extremos de la superficie S2, será necesano, en general, realizar un trazado de rayos sobre la superficie S,. En el caso de que la superficie S, sea plana, dicho trazado de rayos no es necesario por ser la refracción en esta superficie trivial, y así la especificación del haz después de la refracción es inmediata por aplicación de la ley de Snpll: será un haz de tipo 1 con ángulo de aceptancia igual a α' = arcsen(l/n-sen α), siendo n el índice de refracción de la lente L,. Para simplificar la explicación y a modo de ejemplo se va a suponer que S, es un plano, que los haces de entrada y salida son ambos de tipo 1 y que ambos haces son simétncos respecto a un eje, como indica la figura 3. Para los otros tipos de haces el procedimiento es análogo. El haz de la entrada (especificado tras la refracción en S,) está definido por la aceptancia (24) de valor α ', y por los bordes (25) y (26) de la superficie S2, que llamaremos I e I', que determinan el segmento que denominaremos apertura de entrada. El haz de la salida está definido por el receptor, que es el segmento de extremos (27) y (51), que nombraremos respectivamente R y R\ y por el ángulo de iluminación limitado al ángulo de aceptancia (28) de valor β (consideración habitual cuando la sensibilidad del receptor es baja para ángulos muy rasantes, como es común en fotodiodos o en células solares). Los bordes O y O' de la superficie S3 son los puntos simétπcos (29) y (30). Dicha figura muestra también el sistema de coordenadas cartesiano (31) que se utilizará para la descnpción, cuyo ongen está centrado en el receptor.
Son parámetros de entrada de este diseño (además del perfil de la superficie S,) los ángulos α y β, la distancia RR\ el índice de refracción de los matenales dieléctricos a emplear (n para la lente L, y n' para la L2), la ordenada del punto I, la abscisa del punto O, y la abscisa del punto P. La ordenada del punto O se calcula de forma inmediata a partir de su abscisa, la distancia RR' y el ángulo β. Sin embargo, el cálculo de la abscisa del punto I y de la ordenada del punto P se obtendrá más adelante, como resultado del diseño.
El procedimiento de diseño consta de tres fases. En la pnmera fase se escogen las condiciones de diseño para los dientes de la superficie S2 (que serán diferentes para concentración o colimación), suponiendo que tienen un tamaño infinitesimal. Con estas condiciones se calculan las expresiones que constituyen el diseño individual de dientes para los diferentes ángulos de incidencia respecto a la normal media del diente. En la segunda fase se diseñan de forma simultánea con el método SMS las superficies S2 y S3 que acoplan el haz de salida y el haz de entrada, teniendo en cuenta para ello las expresiones calculadas en la pnmera fase. Por último en la tercera fase, se generan los dientes de la superficie S2 con un tamaño finito (como se fabncarán en la práctica) a partir de los dientes infinitesimales calculados en la fase anterior.
Por otra parte, existen diferentes modalidades posibles para el diseño, según el nivel de complejidad de los dientes de tamaño finito de la superficie S2 tanto en su diseño en la tercera fase como en su fabricación. Así, puede definirse como modalidad básica aquella en el que los perfiles de las caras T son rectilíneos, la modalidad estándar en que dichos perfiles son arcos» de circunferencias y la modalidad avanzada en que son asféricos. Las tres modalidades convergen entre sí cuando el tamaño de los dientes es muy pequeño (proporcionando una calidad de funcionamiento coincidente con la prevista para dientes infinitesimales), pero su comportamiento se degrada de forma diferente cuando el tamaño de los dientes es mayor. En orden de calidad creciente están las modalidades básica, estándar y avanzada. Como el diseño de las modalidades estándar y avanzada se realiza a partir del resultado de la modalidad básica, empezaremos describiendo esta última antes de proceder con la explicación de las demás. Considérese para la primera fase la descripción de un diente diseñado en el primer cuadrante funcionando como concentrador según muestra la figura 4.a. Puesto que el tamaño del diente es infinitesimal (ampliado en la figura), esto supone que, en la escala de la figura, los dientes contiguos son idénticos y que los frentes de ondas asociados a los rayos extremos son planos. El vector (32), que llamaremos t, es el vector tangente macroscópico de la superficie S2. Se desea que la luz incidente a través del segmento (33), de extremos (34) y (35), con inclinación entre la de los rayos (36) y (37), que llamaremos respectivamente e(+) y e(-), se transmita de forma óptima a través del segmento (38), de extremos (39) y (40), con inclinación entre la de los rayos (41) y (42), que llamaremos respectivamente i(-) e i(+). Para ello se impondrán como características de diseño que: (1) no existan incidencias indeseadas y (2) la irradiancia a la salida del diente sea lo más uniforme posible. Ambas características se obtienen al exigir las dos condiciones siguientes. Por un lado, que la cara V sea paralela a la bisectriz del haz incidente, que coincide con la llamada línea de flujo del haz (Welford, Winston, 1989). La cara V así situada tiene la propiedad de reflejar (por reflexión total interna) el haz sin que su geometría se vea modificada. Por otro lado, se debe exigir que el rayo e(-) que incide en el punto (34) tras la reflexión total interna en la cara T y la refracción en la cara V, se transforme en el rayo i(-) que pasa por el punto (40). Nótese que por todos los puntos del segmento (38) pasan rayos i(-) transformados de los rayos e(+) y e(-), pero que sólo de una porción del segmento (38) emergen rayos i(+) (por ello la irradiancia no es uniforme en (38), aunque sí lo más posible, como requería la condición (2)). No obstante, en la segunda fase se emplearán los rayos i(+) e i(-) como si emergieran de todo el segmento (38), lo que conllevará que no sea posible alcanzar el límite termodinámico de concentración/colimación (aunque la invención se sitúe muy cerca).
Estas dos condiciones para l diseño de los dientes infinitesimales, con las que se garantiza que funcionan de forma óptima, constituyen otra novedad respecto a las patentes relacionadas anteriormente citadas, ya que no están presentes en ninguna de ellas. En la figura 4.b se representa un diente para el diseño básico tuncionanüo como colimador. Como se puede apreciar la diferencia respecto al caso de la figura 4.a, en que se^ha diseñado como concentrador, estriba en la segunda condición impuesta: en este caso es el rayo e(+) que incide en (34) el que debe transformarse en el rayo i(+) que pasa por el punto (40). Al imponer las dos condiciones mencionadas se deduce que la cara V es vertical y se obtienen por cálculos trigonométricos las siguientes expresiones que relacionan los ángulos involucrados:
+ tagγ (Ec. 1.a)
Figure imgf000008_0001
ncos(2δ - α')+ senφ = 0 (Ec. l.b) (Ec. l.c) n cos(2δ+ α')+sen φ'= 0
donde φ, φ', δ y γ son respectivamente los ángulos (54), (55), (56) y (57) mostrados en la figura 4, n es el índice de refracción de la lente y ψ ≡ φ en el diseño del concentrador y ψ ≡ φ' en el del colimador.
En la segunda fase, en que se diseñan los perfiles de las superficies S, y S2, se siguen los siguientes pasos: a) Escoja un valor para la abscisa del punto I (este valor se recalculará más adelante). b) Mediante la aplicación (inversa) de la ley de Snell, calcule el vector tangente a S3 en el punto O con la condición que el rayo que incide desde I debe refractarse en O hacia R. c) Calcule el ángulo δ del diente infinitesimal situado en el punto I con la condición de que el rayo i(+) asociado al diente se dirija hacia O. Esto puede hacerse utilizando la ecuación (Ec. 1.c), donde el ángulo φ ' se calcula a partir de los puntos I y O. Calcule también el ángulo φ utilizando (Ec. l.b), el ángulo γ utilizando (Ec. 1.a), y a partir de este último, calcule t, = (-eos γ, sen γ), que es el vector tangente macroscópico a S2 en I. d) Halle el primer tramo de S3 por encima de O con la condición de que los rayos que provienen de I se refracten en dicha porción hacia el receptor con un ángulo de incidencia β. La solución de este problema viene dada por la constancia del camino óptico desde el punto I hasta un frente de ondas plano inclinado dicho ángulo β, y resulta ser una elipse. Ésta constituye un caso particular de los denominados óvalos cartesianos. La tangente a S3 en dichos puntos puede
HOJA D hallarse, una vez éstos calculados, por aplicación (inversa) de la ley de Snell como en el paso a). El último punto de esta porción lo marca el rayo que, una vez refractado, pase por R'. e) Halle el siguiente tramo de S3 con la condición de que los rayos que provienen de I se refracten en dicha porción hacia el punto R'. De nuevo, la solución viene dada por la constancia del camino óptico entre ambos puntos y constituye un caso particular de óvalo cartesiano, y la tangente a S3 en dichos puntos se hallar por aplicación (inversa) de la ley de Snell. El último punto de este tramo, que llamará H<, y a su tangente tH0, es aquel para el que se ha empleado en su cálculo el rayo i(-) que sale de I. f) Renombre I, t„ O y tQ como F0, tF0, G0 y tG0, respectivamente. De los tramos de S3 calculados en d) y f) escoja un numero M de puntos uniformemente distribuidos (por ejemplo, M
= 500) y nómbrelos de F, a Fw, con tangentes tF, a tr„. Nótese que H0 ≡ Fw (y tH0 ≡ tTM). g) Halle el siguiente punto macroscópico G, de la superficie S2 como el punto de intersección entre la recta que pasa por G0 con vector director to y la trayectoria del rayo refractado en F, proveniente de R (trazado en sentido inverso). Este rayo es el rayo i(+) asociado al diente infinitesimal en G,, por lo que proporciona además el ángulo φ ' en dicho punto. Con las ecuaciones (Ec. l.c), (Ec. l.b) y (Ec. 1.a) pueden calcularse, respectivamente, los ángulos δ, φ y γ, y a partir de este último, tG1 = (-eos γ, sen γ), que es el vector tangente macroscópico a S2 en G,. h) Calcule el siguiente punto H, de la superficie S3 como el punto de intersección entre la recta que pasa por H,, con vector director tH0 y el rayo i(-) asociado al diente infinitesimal de G,. La tangente tH1 a S3 en H, puede hallarse de nuevo por aplicación (inversa) de la ley de Snell. Identifique H, ≡ FM+I (y t„, ≡ trM+t). i) Repita los pasos g) y h) incrementando los subíndices en una unidad, hasta que la abscisa de un punto G„ sea menor que la abscisa del punto P (escogida como parámetro de entrada). Puesto que la precisión sobre la abscisa del punto P escogida no es importante (y que al venir determinada dicha precisión por el valor del parámetro M escogido en el paso f) puede mejorarse a elección), se considerará para lo que sigue P≡G„.
El perfil de la región central de S2 (entre P y P') se va a calcular (junto con la porción restante de S3), de acuerdo de nuevo con el teorema de rayos extremos, para que dirija los rayos e(+) hacia R' y los e(-) hacia R (Nótese que esta asignación es la contraria de la que se realizaba en los pasos g) y h) para la porción exterior de la S2). Puesto que las superficies son continuas, esto implica que el camino óptico desde el frente de ondas asociado a los rayos e(+) hasta R' será constante, así como el asociado a los rayos e(-) hasta R. Para que las superficies S2 y S3 no tengan discontinuidades en sus respectivos vértices, la simetría del diseño obliga a que ambos
H caminos ópticos (medidos respecto a frentes de onda simétncos) sean ademas iguales entre si. Esta condición va a permitir decidir sobre la bondad de la elección inicial de la abscisa del punto I. j) Halle la tangente a S2 en P para que el rayo e(-) incidente se transforme tras la 5 refracción en el rayo ι(+) calculado en el punto P en el paso i). Calcule el rayo e(+) tras la refracción en P. Si el ángulo que forma con la honzontal es supenor al ángulo φ calculado en el punto P en el paso i), vuelva al inicio escogiendo un valor menor para la abscisa del punto P. k) Calcule un nuevo tramo de S3 a continuación del punto H„ hallado en el paso i) con la condición de que los rayos que provienen de P se refracten en dicha porción hacia el punto R0 10 De nuevo, la solución viene dada por la constancia del camino óptico entre ambos puntos y la tangente a S3 en dichos puntos se halla por aplicación (inversa) de la ley de Snell. El último punto de este tramo es aquel para el que se ha empleado en su cálculo el rayo e(+) una vez refractado en P. Escoja un numero M' de puntos uniformemente distπbmdos (por ejemplo, M' = 50) y nómbrelos de forma correlativa a los antenores, esto es, de H„+, a HB+M (y de FA ++1 a
Figure imgf000010_0001
1) Calcule los caminos ópticos C(+) y C(-) asociados a los rayos e(+) hasta R' y a los rayos e(-) hasta R, respectivamente. m) Repita los pasos desde a) hasta 1) iterando sobre el valor de la abscisa del punto I hasta lograr que |1 - C(+)/C(-)| < ε, siendo ε un margen de error prefijado (ej. 0.0001).
20 n) Calcule el siguiente punto G„+1 de S2 con la condición de que la trayectoπa del rayo refractado en Fn+, proveniente de R (trazado en sentido inverso) se transforme tras la refracción en el punto buscado, en un rayo e(-). De nuevo, la solución se calcula porque el camino óptico C(-) es conocido y la tangente a S2 en G„+, se halla por aplicación (inversa) de la ley de Snell. o) Calcule el siguiente punto H„+M +1 de S3 con la condición de que la trayectona del rayo 25 e(+) refractado en G„+, se dmja tras la refracción en el punto buscado a R'. De nuevo, la solución se calcula porque el camino óptico C(+) es conocido y la tangente a S3 en H„+M +, se halla por aplicación (inversa) de la ley de Snell. p) Repita los pasos n) y o) hasta alcanzar el eje de simetría, esto es, hasta que las abscisas de los puntos G y H calculados sean negativas.
30 Finalmente, para concluir el diseño básico sólo resta la tercera fase, en la que se generan los dientes de S2 con un tamaño finito (como se fabncarán en la práctica) y caras de perfil rectilíneo a partir de la superficie macroscópica y los dientes infinitesimales calculados en la fase antenor. Se procede desde el borde hacia el centro de la lente siguiendo los siguientes pasos: a) Escoja, por ejemplo, el tamaño D de la proyección honzontal de los dientes finitos. Este tamaño debe ser tal que el trazado de rayos postenor muestre que no existe una degradación importante en el funcionamiento del dispositivo respecto al que se obtiene con un tamaño D/2. b) Tome como puntos centrales de los dientes finitos aquellos puntos G, de la superficie macroscópica entre P e í cuya abscisa diste con mejor aproximación del punto I un número impar de veces D/2. c) Defina la inclinación de la cara T del diente finito al que pertenece G, como la inclinación de la cara T definida en G, por el diente infinitesimal. La cara T del diente finito se extiende simétncamente respecto al punto. d) Las caras V se sitúan por tanto en abscisas que distan del punto I un número entero de veces D.
El diseño del concentrador según la modalidad básica está finalizado. En esta última fase puede tomarse otro cnteno para la generación de dientes finitos, como que la distancia entre la envolvente supenor e mfenor de los dientes tome el valor D. El procedimiento de generación es similar al descnto, y el ajuste de los puntos centrales G, de cada diente puede hacerse de forma iterativa.
La modalidad estándar se diferencia de la modalidad básica en la tercera fase, donde las caras T de los dientes finitos tienen por perfil un arco de circunferencia. El diseño de esta modalidad estándar puede hacer se de forma similar al de la básica. En la segunda fase, aunque el diseño resultante es idéntico, se añade en la modalidad estándar el cálculo de la curvatura de las caras T de los dientes infinitesimales (para su uso postenor en la tercera fase), que constituye un orden supenor de precisión al empleado en la modalidad básica. Para realizar dicho cálculo se utiliza la siguiente ecuación que relaciona los radios de curvatura de una superficie y los de los frentes de onda incidente y refractado/reflejado: n, i cos θ, i i n_ r cos2 θr r n, i cosθ, i - n.r cosθ. r (Ec. 2)
Figure imgf000011_0001
donde los subíndices i, r y s se refieren a los frentes de onda incidente, refractado/reflejado y a la superficie, respectivamente, n denota índice de refracción, θ ángulo del rayo respecto a la normal y p radio de curvatura. La ecuación (Ec. 2) se aplica a la reflexión haciendo θr = θ, y nr = -n,.
Para calcular el radio de curvatura psT de la cara T de los dientes infinitesimales es necesano hallar previamente el radio de curvatura de S3 en los puntos F, a FM durante su cálculo en los pasos d) y e) de la segunda fase. Para ello se usa la expresión (Ec. 2) aplicada a la refracción en dichos puntos de los rayos provenientes de I. En este caso, para cada punto Fk y
HOJA denotando por AB la longitud del segmento de extremos A y B, se tiene que p¡ = IFk , pr = ∞ en el paso d) y pr = R' Fk en el paso e).
En el paso f), en el que se calculan los puntos Gk apoyándose en los Fk, es donde se deben calcular los valores psT buscados. Se procede utilizando la expresión (Ec. 2) para las tres incidencias sucesivas que sufre el rayo que parte (en sentido inverso) desde R hacia Fk. Puesto que en el paso f) se calculan los puntos y las normales a las superficies, los ángulos de incidencia y de refracción reflexión, como los índices de refracción, son parámetros conocidos en las tres incidencias. En la primera, en Fk, como el radio de curvatura ps ya es conocido y p¡ = RFk , de
(Ec. 2) se obtiene el radio de curvatura del frente de ondas refractado pr,. Para la segunda incidencia, que se da en la cara V del diente calculado en Gk, el radio de curvatura del frente de ondas incidente es p¡ = GkFk — prl y el radio de curvatura de la superficie es dato (psV = ∞), por lo que de (Ec. 2) se obtiene el radio de curvatura del frente de ondas refractado pr2. Finalmente, para la tercera incidencia, que ocurre en la cara T del diente, se conocen p¡ = -pr2 y pr3 = ∞, por lo que se puede resolver (Ec. 2) con el radio de curvatura psT cómo incógnita, que era el valor buscado.
Puesto que en el paso g) se calculan nuevos puntos Fj, inicialmente nombrados Hk, que se utilizarán de nuevo en el paso f) al repetirlo como indica h), es necesario también calcular el radio de curvatura de S3 en dichos puntos. Para ello se procede de forma análoga al cálculo de psT antes indicado, empleando la trayectoria del rayo con que se calcula Hk, que es el rayo e(+) incidente en Gk, y haciendo uso de que psT ya es conocido.
Respecto a la tercera fase de la modalidad estándar, que trata la generación de dientes de tamaño finito, la diferencia con la modalidad básica es que las caras T, en lugar de ser rectilíneas, se generan como arcos de circunferencia. El procedimiento de generación de los dientes es análogo al visto para la modalidad básica, con la única diferencia de que la cara T del diente finito al que pertenece el punto G¡ central de un diente finito es el arco de circunferencia que pasa por dicho punto, con la inclinación y radio de curvatura asociados al diente infinitesimal, y que se extiende simétricamente respecto al punto. Con esto concluye el diseño de la modalidad estándar.
Por último, la modalidad avanzada del diseño se caracteriza porque las caras T de los dientes tienen un perfil asférico. El cálculo de estos perfiles se puede realizar a partir del diseño básico finalizado (con dientes finitos), siguiendo los siguientes pasos: a) Trace en sentido inverso los haces uniparamétricos de rayos que parten de R y R\ se refractan en S3 y en las caras V de los dientes finitos. b) Para cada diente, cuyo punto central es G„ calcule el perfil asférico de la cara T que pasa por G¡ y cuyos puntos Q son tales que el rayo que incide verticalmente se refleja segúq la bisectriz de los rayos de los haces uniparamétricos que pasan por Q calculados en a). Este problema, que puede expresarse en forma de ecuación diferencial de primer orden, tiene solución única cuando por cada punto Q pasa un rayo y sólo uno de cada haz.
El diseño de la modalidad avanzada está concluido. La figura 11 muestra un ejemplo de un diseño avanzado. Como se mencionó anteriormente, los perfiles asféricos (54) de las caras permiten diseñarlos de mayor tamaño que en las modalidades básica y estándar, y aún así mantener un funcionamiento excelente, incluso cercano al límite termodinámico. La descripción de los procedimientos de diseño de las tres modalidades (básica, estándar y avanzada) está concluido.
De igual modo, el diseño es esencialmente el mismo en caso de que los perfiles de las caras V no sean líneas verticales, sino que tengan un perfil rectilíneo inclinado, circular o asférico, que se haya prefijado. De hecho, un aspecto que no se ha considerado en las descripciones de los diseños es el hecho de que la fabricación de dientes con las caras V totalmente verticales puede no ser práctica (en el caso de fabricar la lente por inyección de un plástico, el desmoldeado de la pieza es difícil). Es posible mejorar este aspecto, por ejemplo, considerando en el diseño que las caras V están inclinadas un cierto ángulo (en el rango de 0.5° a Io puede ser suficiente), lo que supone modificar convenientemente las expresiones (Ec. 1). Dicha inclinación es además útil para evitar los efectos indeseados que produce la redondez que aparece en la práctica en los vértices de los dientes. Como consecuencia negativa, la inclinación de la cara V hace que no sea paralela a una línea de flujo del haz incidente, por lo que la reflexión en dicha cara modificará (ligeramente) la geometría del haz. Esto significa que la característica de transmisión angular se degradará (esto es, será algo menos abrupta) respecto a la correspondiente a las caras V verticales. Por otro lado, la realización de los perfiles de las caras V como arcos de circunferencia o curvas asféricas prefijadas puede emplearse para facilitar aún más su fabricación (a costa de dificultar la fabricación del molde), disminuyendo, por ejemplo, la curvatura necesaria para los perfiles de las caras T.
Otro aspecto no considerado hasta ahora es el hecho de que la condición impuesta en el diseño de los dientes infinitesimales en concentración que obliga a que el rayo extremo e(-) que incide en el punto (34) se transforme en el rayo i(-) que pasa por el punto (40), puede relajarse
(esto es, permitir que pase ligeramente por encima o por debajo de dicho punto) sin producir una degradación importante del funcionamiento. Por todas estas consideraciones, puede afirmarse que es útil la posibilidad de que los perfiles de las caras V o T de los dientes tengan en cada punto una pendiente modificada en* un ángulo inferior a 2 grados.
El dispositivo descrito para concentrar radiación sobre un receptor puede ser axisimétrico o cilindrico, y se caracteriza por transformar los rayos extremos de un haz de rayos extenso de entrada en rayos extremos de otro haz de rayos extenso de salida que ilumina un receptor, estando ambos haces especificados en el plano de una sección transversal (que contiene al eje de simetría en el caso axisimétrico o es perpendicular a la dirección de simetría en el caso cilindrico), mediante: (a) una lente L, compuesta por un lado de una superficie refractiva asférica, S,, sobre la que incide el haz de entrada y por el otro lado, S2, de otra superficie refractiva asférica en su región central y de una estructura de pendiente discontinua en su región extema, cuya sección transversal está formada por dientes de dos caras asféricas tales que una de ellas, V, es paralela a las líneas de flujo del haz transmitido por S„ la otra cara, T, refleja el haz por reflexión total interna hacia la cara V donde se refracta de forma que ningún rayo intercepte el diente contiguo y que el rayo extremo más próximo a hacerlo sea tangente a dicho diente; y (b) una segunda lente L2 que rodea al receptor compuesta por una superficie refractiva asférica sobre la que incide el haz transmitido por la lente L,.
Por otro lado, el dispositivo empleado para colimar la radiación generada por un emisor puede ser axisimétrico o cilindrico, y se caracteriza por transformar los rayos extremos de un haz de rayos extenso de entrada que genera un emisor en rayos extremos de otro haz de rayos extenso de salida, estando ambos haces especificados en el plano de una sección transversal, mediante: (a) una lente L2 que rodea al emisor compuesta por una superficie refractiva asférica sobre la que incide el haz de entrada; y (b) una segunda lente L, compuesta por un lado de una superficie refractiva asférica, S,, de la que parte el haz de salida y por el otro lado, S2, de otra superficie refractiva asférica en su región central y de una estructura de pendiente discontinua en su región extema, cuya sección transversal está formada por dientes de dos caras asféricas tales que sobre una de ellas, V, se refracta el haz transmitido por S3 de forma que todos los rayos se reflejen por reflexión total interna en la otra cara, T, y que el rayo extremo más próximo a no ser reflejado sea tangente al perfil del diente, y que la cara V es paralela a las líneas de flujo del haz transmitido hacia S,.
La US Pat. No. 5,577,493, 11/1996 describe un dispositivo axisimétrico cualitativamente similar y lo emplea para colimar la radiación generada por un emisor en que los haces de rayos son tales que el dispositivo proporciona irradiancia uniforme en tres dimensiones en la apertura de salida. Sin embargo, debido a las restricciones del método de diseño que emplea, sólo es adecuado cuando la extensión angular de los haces de rayos a su paso por todas las superficies ópticas es pequeño (< 10°). Además, las condiciones para el diseño de los dientes infinitesimales empleadas (Ecuaciones 1.a, l.b y l.c), con las que se garantiza que funcionan de forma óptima, no se utilizan en dicha patente, lo que da lugar a que las superficies ópticas que se obtienen allí son sustancialmente distintas, y su comportamiento óptico notablemente inferior.
Los procedimientos descritos para las tres modalidades de diseño son igualmente aplicables a la situación que se muestra en la figura 5 en que la lente L2 consta de dos materiales dieléctricos diferentes separados por una superficie refractiva esférica o asférica (43), de perfil prefijado, sin más que considerar la refracción de los rayos extremos en dicha superficie durante el proceso.
Una variante de la configuración hasta ahora descrita consiste en substituir la superficie refractiva S, por una estructura de pendiente discontinua (44) de Fresnel, como muestra por ejemplo la figura 6 para el caso de S, plano y horizontal. Así se consigue que el material dieléctrico empleado sea menor, lo que reduce su peso y absorción. Ambas superficies, discontinua y continua, funcionan de forma análoga. De hecho, los perfiles de las restantes superficies ópticas son idénticos en los dos diseños. La única diferencia respecto a las trayectorias de los rayos es que estos pueden ahora incidir sobre la cara vertical de los escalones, cara que coincide con las líneas de flujo del haz incidente. Esto implica, de nuevo, que si dichas caras fueran espejos la reflexión de los rayos en ellas no modificaría la geometría del haz transmitido. Aunque cuando la incidencia se produce desde la cara interior del material dieléctrico dicha interfaz se comporta efectivamente como un espejo debido al fenómeno de reflexión total intema, esto no es así en el caso de incidencia desde el aire, lo que supone unas ciertas pérdidas. No obstante, para ángulos de aceptancia α pequeños (<5°) estas pérdidas son despreciables por la combinación de dos efectos: la reflectividad de dicha interfaz, si bien no es del 100%, es muy alta para ángulos de incidencia grandes (y en el caso que nos ocupa serán superiores a 90°-α), y la fracción de rayos que inciden sobre las caras verticales desde el aire es además pequeña si la aceptancia es moderada.
La realización de la superficie S, como estmctura de pendiente discontinua puede además aprovecharse con otro fin, como muestra la figura 7. En este caso la superficie plana de la figura 2 se ha substituido por una estructura de pendiente discontinua con perfil en diente de sierra (45) que desvía el haz de entrada para modificar la dirección de las líneas de flujo (46). La lente se adhiere a una lámina dieléctrica mediante un adhesivo con un índice de refracción ligeramente diferente del de la lente. Esta estructura refracta los rayos del haz incidente de forma que progresen hacia S, con una ligera inclinación divergente. Esto conlleva que la cara V de los dientes de la región exterior de S2, si se ha diseñado con una inclinación no nula para facilitar su fabricación, producirá una degradación del comportamiento óptico menor al estar más próxima (o incluso coincidir) con la línea de flujo del haz divergente. Como la cara vertical de S,
HOJA DE S introduce a su vez una degradación (por bloqueo de la trayectoria de los rayos), para cada inclinación de las caras V existe un ángulo óptimo de divergencia del haz, para el que la degradación es mínima.
Otra posibilidad (que puede también combinarse con cualquiera de las anteriores) consiste en realizar la región central de S2 como estructura de pendiente discontinua (47) de Fresnel, según muestra la figura 8.
Otra posible configuración consiste en realizar la lente intercambiando las superficies S, y S2, de forma que los dientes estén invertidos (48), como aparece en la figura 9. En el caso de simetría de revolución, para su fabricación por moldeo, es necesario que bien el molde, bien la lente sean flexibles, con el fin de poder extraer la lente del molde. En el caso de simetría de traslación, no sería necesario al poder fabricarse por extrusión. El procedimiento de diseño de las superficies ópticas es común para todas las configuraciones indicadas.
En la invención propuesta, empleada para concentrar la radiación sobre un receptor, éste podría ser optoelectrónico, como un fotodiodo, un fototransistor o una célula solar. Por otro lado, si se emplea para colimar la radiación producida por un emisor, también éste podría ser optoelectrónico, como un LED, un ERED o un láser.
La fabricación del concentrador objeto de esta invención se puede realizar mediante torneado con herramienta de punta de diamante con control numérico (CNC) sobre un material plástico, como por ejemplo polimetil metacrilato (PMMA). Otra posibilidad que conviene mencionar es la de inyección del PMMA en un molde adecuado, que permite una realización que también es objeto de esta patente y que muestra la figura 10: el dispositivo puede fabricarse con una porción ópticamente no activa (49) que une las dos lentes y de forma que constituyen una sola pieza que incluye un espacio interior (53). La unión puede realizarse por contacto antes de la solidificación de la última pieza inyectada o mediante pegado posterior. Al ser una sola pieza, el espacio intermedio entre las lentes está protegido del polvo y la humedad. Este espacio puede rellenarse, si se desea, de un gas inerte o hacerse en él vacío. La adhesión del receptor o el emisor al secundario puede realizarse mediante colada de una resina epoxi transparente.
Las mejoras y diferencias que introduce esta invención respecto al estado del arte mencionado se pueden resumir en: (a) Las superficies y las caras de los dientes diseñadas son tales que el dispositivo acopla en dos dimensiones los rayos extremos de dos haces de rayos extensos, mientras que los de las invenciones mencionadas acoplan sólo el rayo central de los haces o su entorno hasta primer orden.
(b) En el caso del dispositivo axisimétrico y para colimación de un emisor, los haces de rayos de diseño incluyen como caso particular aquel que produce irradiancia uniforme en la
HOJA DE S apertura de salida, caso que contempla la US Pat. No. 5,577,493, 11/1996, pero en dicha patente el diseño que se describe sólo es adecuado cuando la extensión angular de los haces de rayos a. su paso por todas las superficies ópticas es pequeño (< 10°).
(c) Las condiciones para el diseño de los dientes infinitesimales empleadas (dadas por las ecuaciones 1.a, 1.b y 1.c, que proporcionan que las caras de los dientes son tales que una guía el haz como línea de flujo, producen la máxima uniformidad de irradiancia a la salida del diente, y evitan la incidencia indeseada en el diente contiguo) no se utilizan en el estado del arte anterior, lo que da lugar a que las superficies ópticas que se obtienen son sustancialmente distintas, y también su comportamiento óptico resultante. (d) Su uso como concentrador sobre un receptor.
(e) La simetría cilindrica, en su caso.
(f) Su posible fabricación en una sola pieza con un espacio interior.
(g) La agrupación de un conjunto de dispositivos adheridos a una placa dieléctrica.
Las diferencias (a) y (c) confieren a esta invención un comportamiento óptico notablemente superior al de las invenciones anteriores, especialmente cuando la extensión angular de los haces de rayos a su paso por alguna de las superficies ópticas es grande (>10°).
Breve descripción de los dibujos
Figura 1: Haces de rayos extensos de uso habitual. A la izquierda, el haz de tipo 1, compuesto por los rayos que inciden sobre un segmento (1) de extremos (6) y (7) formando un ángulo inferior al ángulo de aceptancia del haz (2) con la perpendicular a dicho segmento.
En el centro, el haz de tipo 2, compuesto por los rayos que interceptan dos segmentos dados (3). Los rayos extremos de este haz son los que pasan por alguno de los puntos extremos de dichos segmentos (8, 9, 10 y 11).
A la derecha, una haz de tipo 3 compuesto por los rayos que interceptan un rectángulo (4) y una semicircunferencia (5) de extremos (12) y (13).
Figura 2: Principio básico de funcionamiento de la invención como concentrador de radiación sobre un receptor (14). Consta de una lente (50) que rodea al receptor compuesta por una superficie refractiva asférica (21); y de otra lente (15) cuyo lado superior es una superficie refractiva asférica (16) y cuyo lado inferior consta de otra superficie refractiva asférica (17) en su región central (entre los puntos 18 y 19) y de una estmctura de pendiente discontinua (20) en su región extema, cuyas caras (22) fundamentalmente refractan los rayos y las caras (23) los reflejan por reflexión total interna. lo
Figura 3: Sistema de coordenadas cartesiano (31) y parámetros geométricos iniciales para la realización del diseño escogido para concentrar radiación sobre un receptor. El haz dς la entrada está definido por la aceptancia (24) y por la apertura de entrada definida por los bordes
(25) y (26) de la superficie S2. El haz de la salida está definido por el segmento de extremos (27) y (51), que es el receptor, que seiluminada de la superficie S3, cuyos extremos son (29) y (30), con un ángulo de iluminación limitado al ángulo de aceptancia (28).
Figura 4: Dientes de la superficie S2 diseñado en la primera fase para el dispositivo actuando (a) como concentrador o (b) como colimador. Como tienen un tamaño infinitesimal (ampliado en la figura), los dientes contiguos son idénticos y los haces de rayos extremos son paralelos. Se desea que la luz incidente a través del segmento (33), de extremos (34) y (35), con inclinación entre la de los rayos (36) y (37), se transmita de forma óptima a través del segmento (38), de extremos (39) y (40), con inclinación entre la de los rayos (41) y (42), los cuales forman con la horizontal ángulos (54) y (55), respectivamente. La geométrica del diente respecto a su vector tangente macroscópico (32) queda definida por los ángulos (56) y (57). Figura 5: La lente 1^ puede realizarse con dos materiales dieléctricos diferentes separados por una superficie esférica o asférica (43).
Figura 6: La superficie S, puede substituirse por una estructura de pendiente discontinua (44) de Fresnel, con lo que se disminuye peso y absorción.
Figura 7: La realización de S, como estmctura de pendiente discontinua (45) con perfil en diente de sierra permite minimizar las pérdidas de transmisión cuando las caras V no coinciden con líneas de flujo (46) del haz transmitido por la superficie S, continua.
Figura 8: La porción central de S2 puede substituirse por una estructura de pendiente discontinua (47) de Fresnel.
Figura 9: Configuración que consiste en realizar la lente intercambiando las superficies S, y S2, de forma que los dientes estén invertidos (48).
Figura 10: El dispositivo puede fabricarse con una porción ópticamente no activa (49) que une las dos lentes y de forma que constituyen una sola pieza que incluye un espacio interior (53).
Figura 11: El dispositivo puede diseñarse con caras asféricas (54) en la modalidad avanzada, lo que permite diseñarlos de mayor tamaño y aún así mantener un funcionamiento excelente.
Aplicación industrial
HOJA DE La invención presentada tiene aplicación directa en diversos campos, como el de los sensores de radiación, sistemas de iluminación con diodos LED, comunicaciones ópticas «sin hilos o energía solar fotovoltaica.
En el campo de los sensores, la invención propuesta permite alcanzar altas sensibilidades, próximas al límite termodinámico, sin menoscabo de la simplicidad y compacidad del dispositivo. Por otro lado, en el campo de iluminación con LED esta invención proporciona un haz óptimamente colimado con una geometría fácilmente compatible con las técnicas de fabricación actuales.
En comunicaciones ópticas sin hilos, el control de la respuesta angular de los dispositivos emisores y receptores y el uso de casi todas las direcciones posibles de emisión/recepción en el diseño, permite la realización de enlaces cuya relación señal-mido sea cercana al máximo posible. Empleada en recepción, la invención propuesta utilizaría un sensor optoelectrónico como receptor (ej. un fotodiodo o un fototransistor). Por otro lado, en transmisión la invención emplearía un emisor optoelectrónico (LED, ERED o láser). Por ultimo, en aplicaciones fotovoltaicas esta invención constituye un dispositivo adecuado para células solares de alta concentración. Su comportamiento próximo al límite teórico supone que para un factor de concentración dado, la aceptancia angular del dispositivo sea próxima al máximo posible, lo que es útil para permitir tolerancias altas en la fabricación del propio dispositivo y en el alineamiento de varios para formar un módulo (que puede realizarse de forma simple adhiriéndolos a un vidrio plano), una estructura soporte de módulos ligera y una precisión de seguimiento del sol baja.
HOJA DE S

Claims

Reivindicaciones:
1. Dispositivo para concentración de energía radiante caracterizado por ser axisimétriccj o cilindrico y transformar los rayos extremos de un haz de rayos extenso de entrada en rayos extremos de otro haz de rayos extenso de salida que ilumina un receptor, estando ambos haces especificados en el plano de una sección transversal, mediante: a) Una lente L, compuesta por un lado de una superficie refractiva asférica, S„ sobre la que incide el haz de entrada y por el otro lado, S2, de otra superficie refractiva asférica en su región central y de una estructura de pendiente discontinua en su región externa, cuya sección transversal está formada por dientes de dos caras asféricas tales que una de ellas, V, es paralela a las líneas de flujo del haz transmitido por S,, la otra cara, T, refleja el haz por reflexión total interna hacia la cara V donde se refracta de forma que ningún rayo intercepte el diente contiguo y que el rayo extremo más próximo a hacerlo sea tangente a dicho diente. b) Una segunda lente Lj que rodea al receptor compuesta por una superficie refractiva asférico sobre la que incide el haz transmitido por la lente L,.
2. Dispositivo para concentración de energía radiante según reivindicación 1 caracterizado porque utiliza un receptor optoelectrónico.
3. Dispositivo para concentración de energía radiante según reivindicaciones 1 y 2 caracterizado porque el receptor optoelectrónico es un fotodiodo, un fototransistor o una célula fotovoltaica.
4. Dispositivo para colimación de energía radiante caracterizado por ser axisimétrico o cilindrico y transformar los rayos extremos de un haz de rayos extenso de entrada que genera un emisor en rayos extremos de otro haz de rayos extenso de salida, estando ambos haces especificados en el plano de una sección transversal, mediante: a) Una lente L2 que rodea al emisor compuesta por una superficie refractiva asférica sobre la que incide el haz de entrada. b) Una segunda lente L, compuesta por un lado de una superficie refractiva asférica, S,, de la que parte el haz de salida y por el otro lado, S2, de otra superficie refractiva asférica en su región central y de una estmctura de pendiente discontinua en su región extema, cuya sección transversal está formada por dientes de dos caras asféricas tales que sobre una de ellas, V, se refracta el haz transmitido por S3 de forma que todos los rayos se reflejen por reflexión total interna en la otra cara, T, y que el rayo extremo más próximo a no ser reflejado sea tangente al perfil del diente, y que la cara V es paralela a las líneas de flujo del haz transmitido hacia S,. 5. Dispositivo para colimación de energía radiante caracterizado por ser axisimétrico o cilindrico y transformar los rayos extremos de un haz de rayos extenso de entrada que genera
H un emisor en rayos extremos de otro haz de rayos extenso de salida, estando ambos haces especificados en el plano de una sección transversal, excluyendo el caso axisimétrico en que los haces de rayos son tales que el dispositivo proporciona irradiancia uniforme en tres dimensiones en la apertura de salida cuando la extensión angular de los haces de rayos a su paso por todas las superficies ópticas es menor que 10°, mediante: a) Una lente L2 que rodea al emisor compuesta por una superficie refractiva asférica sobre la que incide el haz de entrada. b) Una segunda lente L, compuesta por un lado de una superficie refractiva asférica, S„ de la que parte el haz de salida y por el otro lado, S2, de otra superficie refractiva asférica en su región central y de una estructura de pendiente discontinua en su región externa, cuya sección transversal está formada por dientes de dos caras asféricas tales que sobre una de ellas, V, se refracta el haz transmitido por S3 de forma que todos los rayos se reflejen por reflexión total interna en la otra cara, T, y que el rayo extremo más próximo a no ser reflejado sea tangente al perfil del diente, y que la cara V es paralela a las líneas de flujo del haz transmitido hacia S, .
6. Dispositivo para colimación de energía .radiante caracterizado por ser axisimétrico o cilindrico y transformar los rayos extremos de un haz de rayos extenso de entrada que genera un emisor en rayos extremos de otro haz de rayos extenso de salida, estando ambos haces especificados en el plano de una sección transversal, excluyendo el caso axisimétrico en que los haces de rayos son tales que el dispositivo proporciona irradiancia uniforme en tres dimensiones en la apertura de salida, mediante: a) Una lente L2 que rodea al emisor compuesta por una superficie refractiva asférica sobre la que incide el haz de entrada. b) Una segunda lente L, compuesta por un lado de una superficie refractiva asférica, S,, de la que parte el haz de salida y por el otro lado, S2, de otra superficie refractiva asférica en su región central y de una estmctura de pendiente discontinua en su región extema, cuya sección transversal está formada por dientes de dos caras asféricas tales que sobre una de ellas, V, se refracta el haz transmitido por S3 de forma que todos los rayos se reflejen por reflexión total interna en la otra cara, T, y que el rayo extremo más próximo a no ser reflejado sea tangente al perfil del diente, y que la cara V es paralela a las líneas de flujo del haz transmitido hacia S,.
7. Dispositivo para colimación de energía radiante según reivindicaciones 4 a 6 caracterizado porque utiliza un emisor optoelectrónico.
8. Dispositivo para colimación de energía radiante según reivindicaciones 4 a 7 caracterizado porque el emisor optoelectrónico es un LED, un IRED o un láser.
HOJA D
. Dispositivo para concentración o colimación de energía radiante según reivindicaciones 1 a 8 caracterizado porque los perfiles de las caras de los dientes tienen en cada punto una pendiente modificada en un ángulo inferior a 2 grados.
10. Dispositivo para concentración o colimación de energía radiante según reivindicaciones 1 a 9 caracterizado porque el perfil de S, es circular o plano.
11. Dispositivo para concentración o colimación de energía radiante según reivindicaciones 1 a 10 caracterizado porque las superficies S, y S2 de la lente están intercambiadas, de forma que los dientes aparecen invertidos.
12. Dispositivo para concentración o colimación de energía radiante según reivindicaciones 1 a 11 caracterizado porque S, tiene el perfil en diente de sierra que desvía el haz de entrada para modificar la dirección de las líneas de flujo.
13. Dispositivo para concentración o colimación de energía radiante según reivindicaciones 1 a
12 caracterizado porque S, o la superficie refractiva de la porción central de S2, o ambas, son estructuras de pendiente discontinua de Fresnel. 14. Dispositivo para concentración o colimación de energía radiante según reivindicaciones 1 a
13 caracterizado porque la lente L- consta dé dos materiales dieléctricos diferentes separados por una superficie esférica o asférica.
15. Dispositivo para concentración o colimación de energía radiante según reivindicaciones 1 a
14 caracterizado porque la sección transversal de los dientes de S2 tienen caras de perfil circular o rectilíneo.
16. Dispositivo para concentración o colimación de energía radiante según reivindicaciones 1 a
15 caracterizado por fabricarse con una porción ópticamente no activa que une las dos lentes de forma que constituyen una sola pieza que incluye un espacio interior.
17. Dispositivo para concentración o colimación de energía radiante caracterizado por estar compuesto por un conjunto de dispositivos según reivindicación 1 a 16 adheridos a una placa dieléctrica.
HOJ
PCT/ES2000/000459 1999-12-02 2000-12-01 Dispositivo para concentracion o colimacion de energia radiante WO2001040829A1 (es)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2001542238A JP2003515779A (ja) 1999-12-02 2000-12-01 放射状のエネルギーを集中するまたは平行にするための装置
AU17088/01A AU1708801A (en) 1999-12-02 2000-12-01 Device for concentrating or collimating radiant energy
DE60042756T DE60042756D1 (de) 1999-12-02 2000-12-01 Designverfahren für eine vorrichtung zur konzentration oder kollimation von strahlungsenergie
EP00979686A EP1251366B1 (en) 1999-12-02 2000-12-01 Design procedure for a device for concentrating or collimating radiant energy
AT00979686T ATE439610T1 (de) 1999-12-02 2000-12-01 Designverfahren für eine vorrichtung zur konzentration oder kollimation von strahlungsenergie
US10/148,736 US7160522B2 (en) 1999-12-02 2000-12-01 Device for concentrating or collimating radiant energy
US11/643,839 US20080092879A1 (en) 1999-12-02 2006-12-22 Device for concentrating or collimating radiant energy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES009902661A ES2157846B1 (es) 1999-12-02 1999-12-02 Dispositivo con lente discontinua de reflexion total interna y dioptrico asferico para concentracion o colimacion de energia radiante.
ESP9902661 1999-12-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/643,839 Continuation US20080092879A1 (en) 1999-12-02 2006-12-22 Device for concentrating or collimating radiant energy

Publications (1)

Publication Number Publication Date
WO2001040829A1 true WO2001040829A1 (es) 2001-06-07

Family

ID=8310804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2000/000459 WO2001040829A1 (es) 1999-12-02 2000-12-01 Dispositivo para concentracion o colimacion de energia radiante

Country Status (8)

Country Link
US (2) US7160522B2 (es)
EP (1) EP1251366B1 (es)
JP (1) JP2003515779A (es)
AT (1) ATE439610T1 (es)
AU (1) AU1708801A (es)
DE (1) DE60042756D1 (es)
ES (1) ES2157846B1 (es)
WO (1) WO2001040829A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005041632A2 (en) 2003-10-31 2005-05-12 Phoseon Technology, Inc. Collection optics for led array with offset hemispherical or faceted surfaces
CN102563402A (zh) * 2010-09-30 2012-07-11 东芝照明技术株式会社 照明装置
WO2022214445A1 (en) * 2021-04-08 2022-10-13 Signify Holding B.V. An optical detector

Families Citing this family (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2157846B1 (es) * 1999-12-02 2002-03-01 Univ Madrid Politecnica Dispositivo con lente discontinua de reflexion total interna y dioptrico asferico para concentracion o colimacion de energia radiante.
WO2001069300A2 (en) * 2000-03-16 2001-09-20 Led Products, Inc. High efficiency non-imaging optics
US7369735B2 (en) * 2002-02-15 2008-05-06 Biosynergetics, Inc. Apparatus for the collection and transmission of electromagnetic radiation
WO2004012273A1 (en) 2002-02-15 2004-02-05 Biosynergetics, Inc. An electromagnetic radiation collector and transport system
JP2005285948A (ja) * 2004-03-29 2005-10-13 Sharp Corp 太陽電池モジュールおよびその製造方法
US20050286145A1 (en) * 2004-06-25 2005-12-29 Swarco Futurit Verkehrssignalsysteme Ges.M.B.H. Invention concerning a condensor lens
KR100639873B1 (ko) 2004-11-19 2006-10-30 서울반도체 주식회사 측면 방출 발광 다이오드 및 그것에 적합한 렌즈
ES2268945B1 (es) * 2004-12-09 2008-07-16 Raul Rodriguez Ladrero Lente dentada maciza.
ES2281231B1 (es) * 2005-01-25 2008-07-16 Roberto Santander Cerbell Lente liquida solar.
US7275849B2 (en) * 2005-02-25 2007-10-02 Visteon Global Technologies, Inc. LED replacement bulb
US7271963B2 (en) 2005-03-07 2007-09-18 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Bi-curvature lens for light emitting diodes and photo detectors
US7906722B2 (en) * 2005-04-19 2011-03-15 Palo Alto Research Center Incorporated Concentrating solar collector with solid optical element
JP4977333B2 (ja) * 2005-06-03 2012-07-18 シャープ株式会社 集光型太陽電池モジュールおよび集光型太陽電池装置
US8631787B2 (en) * 2005-07-28 2014-01-21 Light Prescriptions Innovators, Llc Multi-junction solar cells with a homogenizer system and coupled non-imaging light concentrator
US20080047605A1 (en) * 2005-07-28 2008-02-28 Regents Of The University Of California Multi-junction solar cells with a homogenizer system and coupled non-imaging light concentrator
JP5053531B2 (ja) * 2005-09-14 2012-10-17 スリーエム イノベイティブ プロパティズ カンパニー フレネルレンズ
US7401948B2 (en) * 2005-10-17 2008-07-22 Visteon Global Technologies, Inc. Near field lens having reduced size
US7489453B2 (en) * 2005-11-15 2009-02-10 Visteon Global Technologies, Inc. Side emitting near field lens
US7799371B2 (en) * 2005-11-17 2010-09-21 Palo Alto Research Center Incorporated Extruding/dispensing multiple materials to form high-aspect ratio extruded structures
US20070169806A1 (en) * 2006-01-20 2007-07-26 Palo Alto Research Center Incorporated Solar cell production using non-contact patterning and direct-write metallization
US20070107773A1 (en) * 2005-11-17 2007-05-17 Palo Alto Research Center Incorporated Bifacial cell with extruded gridline metallization
US7765949B2 (en) * 2005-11-17 2010-08-03 Palo Alto Research Center Incorporated Extrusion/dispensing systems and methods
US7564070B2 (en) * 2005-11-23 2009-07-21 Visteon Global Technologies, Inc. Light emitting diode device having a shield and/or filter
US7438454B2 (en) * 2005-11-29 2008-10-21 Visteon Global Technologies, Inc. Light assembly for automotive lighting applications
US7855335B2 (en) * 2006-04-26 2010-12-21 Palo Alto Research Center Incorporated Beam integration for concentrating solar collector
US7638708B2 (en) * 2006-05-05 2009-12-29 Palo Alto Research Center Incorporated Laminated solar concentrating photovoltaic device
US7851693B2 (en) * 2006-05-05 2010-12-14 Palo Alto Research Center Incorporated Passively cooled solar concentrating photovoltaic device
JP4647029B2 (ja) * 2006-08-10 2011-03-09 アップストリーム エンジニアリング オーワイ 照射方法および照射デバイス
CN101150159B (zh) * 2006-09-22 2011-05-11 鸿富锦精密工业(深圳)有限公司 发光二极管及其透镜体
KR101286705B1 (ko) * 2006-10-31 2013-07-16 삼성디스플레이 주식회사 백라이트 광원 및 광원용 렌즈 그리고 이를 포함하는백라이트 어셈블리
US8322025B2 (en) * 2006-11-01 2012-12-04 Solarworld Innovations Gmbh Apparatus for forming a plurality of high-aspect ratio gridline structures
US8226391B2 (en) * 2006-11-01 2012-07-24 Solarworld Innovations Gmbh Micro-extrusion printhead nozzle with tapered cross-section
US7922471B2 (en) * 2006-11-01 2011-04-12 Palo Alto Research Center Incorporated Extruded structure with equilibrium shape
US7780812B2 (en) * 2006-11-01 2010-08-24 Palo Alto Research Center Incorporated Extrusion head with planarized edge surface
US7733580B2 (en) * 2006-11-06 2010-06-08 Panasonic Corporation Light emitting module and light receiving module
US20080116182A1 (en) * 2006-11-21 2008-05-22 Palo Alto Research Center Incorporated Multiple Station Scan Displacement Invariant Laser Ablation Apparatus
US20080116183A1 (en) * 2006-11-21 2008-05-22 Palo Alto Research Center Incorporated Light Scanning Mechanism For Scan Displacement Invariant Laser Ablation Apparatus
US7638438B2 (en) * 2006-12-12 2009-12-29 Palo Alto Research Center Incorporated Solar cell fabrication using extrusion mask
US7928015B2 (en) 2006-12-12 2011-04-19 Palo Alto Research Center Incorporated Solar cell fabrication using extruded dopant-bearing materials
US20080185039A1 (en) 2007-02-02 2008-08-07 Hing Wah Chan Conductor fabrication for optical element
CN101641860A (zh) * 2007-02-23 2010-02-03 加利福尼亚大学董事会 利用菲涅耳透镜和非成像次级光学的聚光光伏系统
US7554742B2 (en) * 2007-04-17 2009-06-30 Visteon Global Technologies, Inc. Lens assembly
US9040808B2 (en) * 2007-05-01 2015-05-26 Morgan Solar Inc. Light-guide solar panel and method of fabrication thereof
US9337373B2 (en) 2007-05-01 2016-05-10 Morgan Solar Inc. Light-guide solar module, method of fabrication thereof, and panel made therefrom
CN101680631B (zh) * 2007-05-01 2014-04-09 摩根阳光公司 照明装置
US20090231739A1 (en) * 2007-05-07 2009-09-17 The Regents Of The University Of California A California Corporation Matrix formulation of kohler integrating system and coupled non-imaging light concentrator
US7954449B2 (en) * 2007-05-08 2011-06-07 Palo Alto Research Center Incorporated Wiring-free, plumbing-free, cooled, vacuum chuck
US7837349B2 (en) * 2007-06-15 2010-11-23 Visteon Global Technologies, Inc. Near field lens
EP2015127A1 (en) * 2007-07-10 2009-01-14 C.R.F. Società Consortile per Azioni Light emitting diode with a beam shaping device for backlighting a display or a dashboard
US8016451B2 (en) * 2007-10-26 2011-09-13 Fraen Corporation Variable spot size lenses and lighting systems
JP5077942B2 (ja) * 2007-11-07 2012-11-21 株式会社エンプラス 発光装置、面光源装置、及び表示装置
US20090159126A1 (en) * 2007-12-22 2009-06-25 Solfocus, Inc. Integrated optics for concentrator solar receivers
JPWO2009125722A1 (ja) * 2008-04-08 2011-08-04 シャープ株式会社 集光用光学部材および集光型太陽光発電モジュール
US20090308432A1 (en) * 2008-06-13 2009-12-17 General Electric Company Reflective light concentrator
EP2364508A4 (en) * 2008-08-16 2014-04-23 Zonda Solar Technologies Llc SOLAR PANEL
US7999175B2 (en) * 2008-09-09 2011-08-16 Palo Alto Research Center Incorporated Interdigitated back contact silicon solar cells with laser ablated grooves
US9086227B2 (en) * 2008-09-26 2015-07-21 Industrial Technology Research Institute Method and system for light collection and light energy converting apparatus
US7843654B2 (en) * 2008-09-29 2010-11-30 Texas Instruments Incorporated Collecting lens
US8633377B2 (en) 2008-10-27 2014-01-21 The Regents Of The University Of California Light concentration apparatus, systems and methods
US20100221435A1 (en) * 2008-11-07 2010-09-02 Palo Alto Research Center Incorporated Micro-Extrusion System With Airjet Assisted Bead Deflection
US8117983B2 (en) 2008-11-07 2012-02-21 Solarworld Innovations Gmbh Directional extruded bead control
US20100118081A1 (en) * 2008-11-07 2010-05-13 Palo Alto Research Center Incorporated Dead Volume Removal From An Extrusion Printhead
US20100117254A1 (en) * 2008-11-07 2010-05-13 Palo Alto Research Center Incorporated Micro-Extrusion System With Airjet Assisted Bead Deflection
ES2364665B1 (es) * 2008-11-12 2012-05-23 Abengoa Solar New Technologies, S.A. Sistema de captación y concentración de luz.
WO2010059657A2 (en) * 2008-11-18 2010-05-27 Light Prescriptions Innovators, Llc Köhler concentrator
US8080729B2 (en) * 2008-11-24 2011-12-20 Palo Alto Research Center Incorporated Melt planarization of solar cell bus bars
US20100130014A1 (en) * 2008-11-26 2010-05-27 Palo Alto Research Center Incorporated Texturing multicrystalline silicon
CN101750643B (zh) * 2008-12-05 2012-12-19 鸿富锦精密工业(深圳)有限公司 透镜及采用该透镜的光源模组
US20100139754A1 (en) * 2008-12-09 2010-06-10 Palo Alto Research Center Incorporated Solar Cell With Co-Planar Backside Metallization
US8960120B2 (en) 2008-12-09 2015-02-24 Palo Alto Research Center Incorporated Micro-extrusion printhead with nozzle valves
US20100139756A1 (en) * 2008-12-10 2010-06-10 Palo Alto Research Center Incorporated Simultaneously Writing Bus Bars And Gridlines For Solar Cell
US8317352B2 (en) 2008-12-11 2012-11-27 Robert Saccomanno Non-invasive injection of light into a transparent substrate, such as a window pane through its face
US20100165635A1 (en) * 2008-12-29 2010-07-01 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Led unit
US20100206356A1 (en) * 2009-02-18 2010-08-19 Palo Alto Research Center Incorporated Rotational Trough Reflector Array For Solar-Electricity Generation
US20100206379A1 (en) * 2009-02-18 2010-08-19 Palo Alto Research Center Incorporated Rotational Trough Reflector Array With Solid Optical Element For Solar-Electricity Generation
US20100206357A1 (en) * 2009-02-18 2010-08-19 Palo Alto Research Center Incorporated Two-Part Solar Energy Collection System With Replaceable Solar Collector Component
US20100206302A1 (en) * 2009-02-18 2010-08-19 Palo Alto Research Center Incorporated Rotational Trough Reflector Array For Solar-Electricity Generation
KR100989436B1 (ko) * 2009-03-31 2010-10-26 광주과학기술원 Led 용 집광 렌즈 및 그 설계 방법
US20150101667A1 (en) * 2009-06-08 2015-04-16 Light Prescriptions Innovations, Llc. Concentrator for polychromatic light
CN101923209B (zh) * 2009-06-16 2013-06-05 鸿富锦精密工业(深圳)有限公司 集光装置
US8684545B2 (en) 2009-07-30 2014-04-01 The Regents Of The University Of California Light concentration apparatus, systems and methods
US8355214B2 (en) * 2009-07-30 2013-01-15 The Regents Of The University Of California Light collection apparatus, system and method
US9039213B2 (en) 2009-07-30 2015-05-26 The Regents Of The University Of California Light concentration apparatus, systems and methods
JP4601709B1 (ja) * 2009-09-03 2010-12-22 シャープ株式会社 光源モジュールおよび該モジュールを備えた電子機器
US20110083728A1 (en) * 2009-10-14 2011-04-14 Palo Alto Research Center Incorporated Disordered Nanowire Solar Cell
US20110100419A1 (en) * 2009-11-03 2011-05-05 Palo Alto Research Center Incorporated Linear Concentrating Solar Collector With Decentered Trough-Type Relectors
US20110100418A1 (en) * 2009-11-03 2011-05-05 Palo Alto Research Center Incorporated Solid Linear Solar Concentrator Optical System With Micro-Faceted Mirror Array
US8726005B2 (en) 2009-12-10 2014-05-13 George Mason Intellectual Properties, Inc. Website matching based on network traffic
EP2343578A1 (en) * 2009-12-23 2011-07-13 José Vicente Garcia Ortiz A fresnel-type lens
ES2553420T3 (es) 2009-12-28 2015-12-09 Pirelli & C. S.P.A. Concentrador fotovoltaico con lente óptica escalonada y procedimiento para diseñar el mismo
US8450603B2 (en) * 2010-08-16 2013-05-28 Btpatent Llc Solar cell concentrator
TW201213871A (en) * 2010-09-17 2012-04-01 Foxsemicon Integrated Tech Inc Lens and light source module
WO2012058304A2 (en) * 2010-10-28 2012-05-03 Banyan Energy, Inc. Redirecting optics for concentration and illumination systems
US8040609B1 (en) 2010-11-29 2011-10-18 Palo Alto Research Center Incorporated Self-adjusting solar light transmission apparatus
US8884156B2 (en) 2010-11-29 2014-11-11 Palo Alto Research Center Incorporated Solar energy harvesting device using stimuli-responsive material
KR101109581B1 (ko) * 2010-12-01 2012-01-31 노명재 엘이디 광확산용 확장형 아이시클타입 광 조정렌즈
TWI452360B (zh) 2010-12-10 2014-09-11 Ind Tech Res Inst 準直光學元件、準直光學組件、準直光學陣列及準直光學模組
US8351125B2 (en) 2010-12-10 2013-01-08 Industrial Technology Research Institute Directional light distributed optical element and directional light distributed optical assembly
US8885995B2 (en) 2011-02-07 2014-11-11 Morgan Solar Inc. Light-guide solar energy concentrator
EP2702335A4 (en) 2011-04-25 2014-12-17 Morningside Technology Ventures Ltd POLYMER SOLAR CONCENTRATOR AND SUNWATER DEVICE THEREWITH
WO2013024836A1 (ja) * 2011-08-12 2013-02-21 シチズン電子株式会社 レンズ部材及びこのレンズ部材を使用した発光装置
US9464784B2 (en) * 2012-02-03 2016-10-11 GE Lighting Solutions, LLC Optical system and lighting device comprised thereof
US8328403B1 (en) 2012-03-21 2012-12-11 Morgan Solar Inc. Light guide illumination devices
US9905444B2 (en) * 2012-04-25 2018-02-27 Applied Materials, Inc. Optics for controlling light transmitted through a conical quartz dome
US8752380B2 (en) 2012-05-22 2014-06-17 Palo Alto Research Center Incorporated Collapsible solar-thermal concentrator for renewable, sustainable expeditionary power generator system
KR101437900B1 (ko) * 2012-05-30 2014-09-16 (주)애니캐스팅 집광형 태양전지모듈
WO2013183165A1 (ja) * 2012-06-08 2013-12-12 トヨタ自動車株式会社 太陽電池および太陽電池用の集光光学系の製造方法
WO2014020475A1 (en) * 2012-07-30 2014-02-06 Koninklijke Philips N.V. Fresnel type lens for lighting applications
WO2014037757A1 (en) * 2012-09-07 2014-03-13 Doci Innovations GmbH Concentrator system for converting light into electrical energy
EP3004728A1 (en) * 2013-06-07 2016-04-13 Koninklijke Philips N.V. Lens and lighting device
CN110307523A (zh) * 2013-06-07 2019-10-08 昕诺飞控股有限公司 透镜和照明设备
WO2015116926A1 (en) 2014-01-31 2015-08-06 Eveready Battery Company, Inc. Collimating lens with convex hyperbolic surface
DE102015204665A1 (de) * 2015-03-16 2016-09-22 Zumtobel Lighting Gmbh Optisches Element zur Beeinflussung der Lichtabgabe von Leuchtmitteln
DE102016109647B4 (de) * 2016-05-25 2022-08-25 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Linse und Leuchte mit einer solchen Linse
US10432137B2 (en) 2017-09-25 2019-10-01 Cameron Ernest Jabara Solar energy collector and method of operation
DE102018209368B4 (de) 2018-06-12 2020-01-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Optik für Sende- und/oder Empfangs-Element, Kommunikationsmodul, Arrays aus Kommunikationsmodulen, System aus mehreren Kommunikationsmodulen und Verfahren zur Herstellung einer Optik
CN116569089A (zh) * 2020-10-30 2023-08-08 奥莱德通信公司 在空间中定向具有大光谱带的光波的传输图和/或接收图的光学装置
WO2024076472A1 (en) * 2022-10-03 2024-04-11 Lumileds Llc Illuminator comprising biconvex lens with tir teeth
CN118168070A (zh) * 2024-03-26 2024-06-11 大湾区大学(筹) 太阳能智能调温节能装置及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4337759A (en) * 1979-10-10 1982-07-06 John M. Popovich Radiant energy concentration by optical total internal reflection
WO1993021484A1 (en) * 1992-04-16 1993-10-28 Tir Technologies, Inc. Faceted totally internally reflecting lens with curved faces
US5676453A (en) * 1992-04-16 1997-10-14 Tir Technologies, Inc. Collimating TIR lens devices employing fluorescent light sources

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5613769A (en) * 1992-04-16 1997-03-25 Tir Technologies, Inc. Tir lens apparatus having non-circular configuration about an optical axis
ES2157846B1 (es) * 1999-12-02 2002-03-01 Univ Madrid Politecnica Dispositivo con lente discontinua de reflexion total interna y dioptrico asferico para concentracion o colimacion de energia radiante.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4337759A (en) * 1979-10-10 1982-07-06 John M. Popovich Radiant energy concentration by optical total internal reflection
WO1993021484A1 (en) * 1992-04-16 1993-10-28 Tir Technologies, Inc. Faceted totally internally reflecting lens with curved faces
US5577493A (en) * 1992-04-16 1996-11-26 Tir Technologies, Inc. Auxiliary lens to modify the output flux distribution of a TIR lens
US5577492A (en) * 1992-04-16 1996-11-26 Tir Technologies, Inc. Collimating TIR lens with focusing filter lens
US5676453A (en) * 1992-04-16 1997-10-14 Tir Technologies, Inc. Collimating TIR lens devices employing fluorescent light sources

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005041632A2 (en) 2003-10-31 2005-05-12 Phoseon Technology, Inc. Collection optics for led array with offset hemispherical or faceted surfaces
EP1678442A2 (en) * 2003-10-31 2006-07-12 Phoseon Technology, Inc. Collection optics for led array with offset hemispherical or faceted surfaces
EP1678442A4 (en) * 2003-10-31 2010-01-20 Phoseon Technology Inc OPTICAL CAPTURING DEVICES FOR LED BAR WITH HEMISPHERIC OR EXCENTRED FACET SURFACES
CN102563402A (zh) * 2010-09-30 2012-07-11 东芝照明技术株式会社 照明装置
WO2022214445A1 (en) * 2021-04-08 2022-10-13 Signify Holding B.V. An optical detector

Also Published As

Publication number Publication date
ES2157846B1 (es) 2002-03-01
EP1251366A1 (en) 2002-10-23
US7160522B2 (en) 2007-01-09
JP2003515779A (ja) 2003-05-07
AU1708801A (en) 2001-06-12
ATE439610T1 (de) 2009-08-15
US20080092879A1 (en) 2008-04-24
DE60042756D1 (de) 2009-09-24
ES2157846A1 (es) 2001-08-16
EP1251366B1 (en) 2009-08-12
US20030075167A1 (en) 2003-04-24

Similar Documents

Publication Publication Date Title
WO2001040829A1 (es) Dispositivo para concentracion o colimacion de energia radiante
US8101855B2 (en) Optical concentrator, especially for solar photovoltaics
ES2296271T3 (es) Modulo de iluminacion que proporciona un haz luminoso con corte para vehiculos.
ES2829615T3 (es) Dispositivos de imagen de apertura múltiple, procedimiento para la fabricación de los mismos y sistema de imágenes
ES2553420T3 (es) Concentrador fotovoltaico con lente óptica escalonada y procedimiento para diseñar el mismo
KR100624052B1 (ko) 적어도 하나의 비구면 굴절면을 갖는 렌즈를 포함하는 광부품
US9435934B2 (en) Optics for solar concentrators
TW201347205A (zh) 二次透鏡及集光型太陽光發電模組
US20170235150A1 (en) Device for Shaping Laser Radiation
ES2880461T3 (es) Sistema optomecánico para capturar y transmitir luz incidente con una dirección de incidencia variable hacia al menos un elemento colector y correspondiente procedimiento
TWI418916B (zh) 投影裝置
ES2913129T3 (es) Dispositivo de conformación de los rayos luminosos de un haz láser
ES2705161T3 (es) Conformador de rayos reflexivo
Miñano et al. Free-form integrator array optics
US9658438B2 (en) Non-imaging solar concentrator and cosine factor correction device using compound polyhedral surfaces and method of use thereof
US20130057669A1 (en) Optical fingerprint acquisition apparatus
CN101424531B (zh) 用于成像出线形标记的装置
CN101903819B (zh) 光电子装置和图像记录设备
WO2006137712A1 (en) Optical components including lens having at least one aspherical refractive surface
CN113237844A (zh) 一种对称式结构的长光程红外气体检测光学腔
CN214668565U (zh) 一种对称式结构的长光程红外气体检测光学腔
CN108647546A (zh) 条码识读引擎瞄准结构及十字图像衍射聚光镜片
ES2371879B2 (es) Concentrador de radiación hiperbólico parabólico.
KR101347785B1 (ko) 타원체 거울 집속 광 가이드
JP2009053262A (ja) 再帰反射素子及び再帰反射装置並びにそれを用いた再帰反射体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 542238

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2000979686

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10148736

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000979686

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642