WO2001039455A1 - Error detection/correction coding for hierarchical qam transmission systems - Google Patents
Error detection/correction coding for hierarchical qam transmission systems Download PDFInfo
- Publication number
- WO2001039455A1 WO2001039455A1 PCT/US2000/032010 US0032010W WO0139455A1 WO 2001039455 A1 WO2001039455 A1 WO 2001039455A1 US 0032010 W US0032010 W US 0032010W WO 0139455 A1 WO0139455 A1 WO 0139455A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- error detection
- data stream
- correction
- hierarchical qam
- rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/32—Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
- H04L27/34—Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/0064—Concatenated codes
- H04L1/0065—Serial concatenated codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0045—Arrangements at the receiver end
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/007—Unequal error protection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/32—Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
- H04L27/34—Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
- H04L27/3488—Multiresolution systems
Definitions
- the present invention relates to hierarchical quadrature amplitude modulation transmission systems.
- Fig. 1 is a block diagram illustrating a hierarchical QAM transmission system as disclosed in this patent.
- Fig. 1 discloses a data transmitter 100 coupled to a data receiver 300 via a transmission channel 200.
- a first input terminal DATA 1 is coupled to source (not shown) of a first data signal
- a second input terminal DATA 2 is coupled to a source (not shown) of a second data signal.
- the first and second data signals may represent separate and independent data, or may represent related data signals, such as signals carrying respective portions of the same data signal (for increasing the throughput of the transmission system) or a elementary data portion and a supplemental data portion of the same data signal (for transmitting enhanced signals while maintaining backward compatibility with existing older receivers, as described in more detail below) .
- the first input terminal DATA 1 is coupled to an input terminal of a first error detection/correction encoder 1 02.
- An output terminal of the first encoder 1 02 is coupled to an input terminal of a level 1 QPSK modulator 1 04.
- An output terminal of the level 1 QPSK modulator 1 04 is coupled to a first input terminal of a signal combiner 1 06.
- the second input terminal DATA 2 is coupled to an input terminal of a second error detection/correction encoder 108.
- An output terminal of the second encoder 108 is coupled to an input terminal of a level 2 QPSK modulator 1 1 0.
- the level 2 QPSK modulator 1 1 0 is coupled to an input terminal of a variable gain amplifier 1 1 1 , having a gain of G.
- An output terminal of the variable gain amplifier 1 1 1 is coupled to a second input terminal of the signal combiner 1 06.
- An output terminal of the signal combiner 1 06 produces a combined modulated signal and is coupled to the transmission channel 200.
- this channel is a direct satellite television signal transmission system, and the transmission channel includes a ground transmitting station at the transmitter 1 00 (represented by a transmitting antenna in phantom), a communications satellite (not shown), for receiving the data from the ground station and rebroadcasting that data to a plurality of ground receiving stations, one of which (300) is illustrated in Fig. 1 , which receives and processes the rebroadcast data signal, as illustrated by a receiving antenna in phantom.
- a ground transmitting station at the transmitter 1 00 represented by a transmitting antenna in phantom
- a communications satellite not shown
- the output of the transmission channel 200 is coupled to an input terminal of a level 1 QPSK demodulator 302.
- An output terminal of the level 1 demodulator 302 is coupled to respective input terminals of a first error detection/correction decoder 304 and a delay circuit 306.
- An output terminal of the first decoder 304 is coupled to an output terminal DATA 1 ', and to an input terminal of a reencoder 308.
- An output terminal of the reencoder 308 is coupled to an subtrahend input terminal of an subtractor 31 0.
- An output terminal of the delay circuit 306 is coupled to a minuend input terminal of the subtractor 31 0.
- a difference output terminal of the subtractor 31 0 is coupled to an input terminal of a second error detection/correction decoder 31 2.
- An output terminal of the second decoder 31 2 is coupled to a second data output terminal DATA 2' .
- the first encoder 1 02 encodes the first data signal DATA 1 to provide error detection/correction capabilities in a known manner. Any of the known error detection/correction codes may be implemented by the encoder/decoder pairs 1 02/304, 1 08/31 2, and those codes may be concatenated, as described in the above mentioned patent.
- the first encoder 1 02 produces a stream of encoded bits representing the encoded first data signal DATA 1 .
- the level 1 modulator 1 04 processes successive sets of two encoded data bits, each set termed a symbol, to generate a QPSK signal which lies in one of four quadrants in a known manner.
- the second encoder 1 08 encodes the second data signal DATA 2 to provide error detection/correction capabilities in a known manner.
- the level 2 modulator 1 1 0 processes sets of two encoded data bits to also generate a QPSK signal which lies in one of four quadrants.
- additional data signals DATA 3, etc.
- additional QPSK modulators level 3, etc.
- the QPSK signal from the level 1 modulator 1 04 is given a weight of 1 ;
- the QPSK signal from the level 2 modulator 1 1 0 is given a weight or gain of .5 by the variable gain amplifier 1 1 1 ; the third a weight of .25 and so forth. All the weighted QPSK signals are then combined into a single modulated signal by the signal combiner 1 06 and transmitted through a transmission channel 200.
- the level 1 QPSK modulator 1 04 causes the combined signal to lie within one of four quadrants in response to the set of two encoded data bits from the first encoder 1 02. Each quadrant, in turn, may be thought of as divided into four sub-quadrants.
- the level 2 QPSK modulator 1 1 0 causes the combined signal to lie within one of the sub-quadrants within the quadrant selected by the level 1 QPSK modulator 1 04, in response to the set of two input data bits from the second encoder 1 08.
- That sub-quadrant may further be though of as divided into four sub-sub-quadrants, and the combined signal caused to lie within one of those sub-sub-quadrants in response to the set of two input data bits from a third encoder (not shown), and so forth.
- An older receiver (illustrated in Fig. 1 by a dashed line 300') includes only a level 1 QPSK demodulator 302, which can detect where in the l-Q plane the received signal lies. From that information, the error detection/correction decoder 304 can determine the corresponding two encoded bits in the received first data stream. The error detection/correction decoder 304 can further correct for any errors introduced by the transmission channel to generate a received data signal DATA 1 ' representing the original first data signal DATA 1 . Thus, such a receiver can properly receive, decode, and process a first data signal DATA 1 in the presence of additionally modulated data signals DATA 2, (DATA 3), etc.. The signals included by the level 2 (and level 3, etc.) QPSK modulators look simply like noise to such a receiver.
- a more advanced receiver 300 can detect which quadrant the received modulated signal lies within, and, thus, can receive, decode, and process successive sets of two data bits representing the first data signal DATA 1 .
- the reencoder 308 in the advanced receiver then regenerates an ideal signal lying in the middle of the indicated quadrant, which is subtracted from the received modulated signal. This operation translates the center of the transmitted signal quadrant to the origin. What remains is a QPSK modulated signal, weighted by .5, representing the second data signal DATA 2.
- This signal is then decoded by the second decoder 31 2 to determine which sub-quadrant the signal lies within, indicating the set of two bits corresponding to that signal.
- Such a transmission system operates by modulating a carrier in quadrature with what is seen as a constellation of permissible symbols, and is a form of quadrature amplitude modulation (QAM) .
- QAM quadrature amplitude modulation
- Such a system is termed a hierarchical QAM transmission system because it may be used to transmit other levels of data signals, or other levels of detail in a single signal, while maintaining backwards compatibility with older receivers.
- Fig. 2a is a diagram illustrating a constellation in the l-Q plane of permissible symbols for a hierarchical 1 6QAM transmission system, as illustrated in the above mentioned patent.
- a first set of two bits determine which quadrant the generated symbol lies within.
- each quadrant may, itself, be considered to be divided into four sub-quadrants, as illustrated in the upper right hand quadrant in Fig. 2a.
- the second set of two bits determine which sub-quadrant the symbol lies within. The same mapping is used for determining the sub-quadrant as was described above for determining the quadrant.
- the variable gain amplifier 1 1 1 (of Fig. 1 ) weights the signal from the level 2 modulator 1 1 0 by a weight of .5, so the points in the sub-quadrants lie at ⁇ .5 around the center point of the quadrant.
- Each of these locations is shown as a solid circle in Fig. 2a, with a four bit binary number illustrating the combination of the first and second sets of two bits, with the first two bits being the right hand pair of bits and the second two bits being the left hand pair.
- bit error rate performance of the respective data streams through the different levels of a hierarchical QAM system such as described above are different.
- the bit error rate of the level 1 data stream is better than the bit error rate of the level 2 (and higher) data streams.
- the overall performance of the hierarchical QAM transmission system is optimized when the bit error rate of the respective data streams through the different levels are the same. It is desirable, therefore, to optimize not only the overall bit error rate of the transmission system, but also to more closely match the respective bit error rates of the different levels in the transmission system.
- the inventors have realized that the different levels of QPSK modulation suffer from differing levels of degradation. This is exacerbated in a direct satellite television transmission system because of the non-linear high powered amplifiers employed in satellite broadcasting.. Such amplifiers tend to compress the distance between the constellation points in the higher levels of modulation. The inventors realized that this leads to higher bit error rates in the higher level data streams, compared to the lower level streams.
- a hierarchical QAM transmission system includes a hierarchical QAM transmitter, responsive to a first and a second data stream.
- the hierarchical QAM transmitter transmits a hierarchical QAM signal consisting of a level 1 signal, representing the first data stream, and having an uncoded first bit error rate performance; and a level 2 signal, representing the second data stream, and having an uncoded second bit error rate performance lower than the first bit error rate performance.
- a hierarchical QAM receiver is coupled to the hierarchical QAM transmitter.
- the hierarchical QAM receiver receives the hierarchical QAM signal and produces first and second received data streams.
- First error detection/correction circuitry processes the first data stream by encoding the first data stream using a code having a first detection/correction power.
- Second error detection/correction circuitry processes the second data stream by encoding the second data stream using a code having a second error detection/correction power.
- the power of the respective codes used by the first and second error detection/correction circuitry are such that the coded bit error rate of the first data stream is more closely matched to the coded bit error rate of the second data stream.
- Fig. 1 is a block diagram of a transmission system in accordance with principles of the present invention
- Fig. 2 is a diagram illustrating a constellation of permissible symbols for a hierarchical 1 6QAM transmission system
- Fig. 3a and c are more detailed block diagrams of respective portions of the transmission system illustrated in Fig. 1 and further including a gray code mapper
- Fig. 3b is a table containing data controlling the operation of the gray code mapper
- Fig. 4 is a more detailed block diagram of a portion of the transmission system illustrated in Fig. 1 illustrating the operation of differing error detection/correction codes for differing levels;
- Fig. 5 is a diagram of a received constellation and Fig. 6 is a diagram of one quadrant of a received constellation distorted by the transmission channel;
- Fig. 7 is a block diagram of circuitry for determining the center of gravity of a quadrant of a received constellation of data points.
- Fig. 3a and c are more detailed block diagrams of respective portions of the transmission system illustrated in Fig. 1 and further including a gray code mapper
- Fig. 3b is a table illustrating the operation of the gray code mapper illustrated in Fig. 3a and c.
- Fig. 2b a constellation in which adjacent points at all locations represent data values which differ in only one bit position is illustrated.
- the mapping of the set of two bits in the encoded level 2 data signal to locations in a sub-quadrant depends on which quadrant that sub-quadrant lies within.
- the upper right hand quadrant (00) in Fig. 2b is identical to that in Fig. 2a. In the upper left hand quadrant, however, the left and right columns are switched.
- the top and bottom rows are switched, and in the lower left hand quadrant, the left and right hand columns and the top and bottom rows are switched. This may be performed by a simple mapping operation in the transmitter 1 00 prior to modulating the encoded second data signal DATA 2, and then a simple demapping operation in the receiver 300 after the received encoded second data signal is demodulated.
- Fig. 3a a portion of the transmitter 1 00 is illustrated.
- a level 2 symbol (two bits from the second encoder 1 08) is coupled to an input terminal of the level 2 modulator 1 0.
- An I output terminal of the level 2 modulator 1 10 is coupled to an I input terminal of the gray code mapper 1 1 2, and a Q output terminal of the level 2 modulator 1 1 0 is coupled to a Q input terminal of the gray code mapper 1 1 2.
- An I output terminal of the gray mapper 1 1 2 is coupled to a second input terminal of the first adder 1 06(1) and a Q output terminal of the gray mapper 1 1 2 is coupled to a second input terminal of the second adder 1 06(Q) .
- the variable gain amplifier 1 1 1 conditioned to have an attenuation factor of .5 and coupled between the gray code mapper 1 1 2 and the signal combiner 106, is not shown to simplify the figure.
- the level 1 symbol represented by the set of two encoded data bits, is received from the level 1 encoder 1 02 (of Fig. 1 ) .
- level 2 symbol is QPSK modulated by the level 2 modulator 1 1 0 to generate a set of I and Q component signals representing the sub-quadrant of the modulated signal in a known manner.
- the level 2 modulator generates the modulated signal in exactly the same manner as the level 1 modulator 1 04, i.e.
- the resulting constellation from the combination of these two modulated signals would be as illustrated in Fig. 2a.
- the gray code mapper 1 1 2 operates on the I and Q signals from the level 2 modulator 1 1 0 to produce the constellation illustrated in Fig. 2b.
- Fig. 3b illustrates the mapping applied by the gray code mapper 1 1 2. If the level 1 symbol is 0, indicating the upper right hand quadrant, then the sub quadrants are unchanged, that is the I and Q output signals from the level 2 modulator are left unchanged.
- the level 1 symbol is 1 , indicating the upper left hand quadrant, then, referring to Fig. 2, the columns are switched. That is, positive I values become negative and vice versa.
- the rows are switched. That is, positive Q values become negative and vice versa.
- the level 1 signal is 3, indicating the lower left hand quadrant, then, both the columns and the rows are switched. That is, positive I values become negative , and positive Q values become negative, and vice versa.
- the gray code mapper 1 1 2 provides this function.
- the resulting I and Q values from the gray code mapper 1 1 2 are weighted with a weight of .5 as described above (not shown for simplicity) and combined by the signal combiner 1 06 with the I and Q values representing the level 1 symbol.
- the resulting constellation is that illustrated in Fig. 2b.
- Fig. 3c illustrates a portion of a receiver 300 including such a gray code mapper 31 4.
- the output terminal of the reencoder 308 is coupled to an input terminal of the gray code mapper 314.
- An I signal from the subtractor 31 0 (of Fig. 1 ) is coupled to an I input terminal of the gray code mapper 31 4 and a Q signal from the subtractor 31 0 is coupled to a Q input terminal of the gray mapper 31 4.
- An I output terminal of the gray code mapper 31 4 is coupled to an I input terminal of the second decoder 31 2 and a Q output terminal of the gray code mapper 31 4 is coupled to a Q input terminal of the second decoder 31 2.
- the reencoder 308 In operation, the reencoder 308 generates a signal which is an ideal representation of the received level 1 symbol. That is, if the received level 1 signal is determined to lie anywhere in the upper right hand quadrant, then the reencoder 308 produces a signal having the value 0; if anywhere in the upper left hand quadrant a value 1 , if anywhere in the lower right hand quadrant a value 2 and if anywhere in the lower left hand quadrant a value 3. This symbol is supplied to a gray code mapper 31 4. Respective I and Q signals from the subtractor 31 0 are processed by the gray code mapper 314 in the manner described above, and illustrated in Fig. 3b. One skilled in the art will appreciate that the gray code mapper 31 4 in the receiver 300 operates identically to the gray code mapper 1 1 2 in Fig. 3a, and will perform the inverse function performed in the transmitter 100.
- gray code mappers (1 1 2 and 31 2) in the transmitter 1 00 and receiver 300 allow use of a constellation as illustrated in Fig. 2b, in the manner described above with respect to Fig. 3a.
- a transmission system using the gray code mapping function described above, to produce a constellation in which adjoining constellation points differ by no more than a single bit will increase the bit error rate of the system.
- Simulations have shown that using gray coding as described above will cut the number of level 2 bit errors in half. This provides an extra margin in the signal to noise ratio (SNR) of around % dB. This improvement, while modest, will, along with other enhancements, provide improved performance of the transmission system as a whole.
- SNR signal to noise ratio
- Fig. 4 is a more detailed block diagram of a portion of the transmission system illustrated in Fig. 1 illustrating the operation of differing error detection/correction codes for differing levels.
- different levels of QPSK modulation suffer from differing levels of degradation due to the compression of the distance between the constellation points in the higher levels of modulation by the non-linear high powered amplifiers employed in satellite broadcasting. More specifically, bit errors inherently occur more often at higher levels of the hierarchical modulation than lower levels.
- error detection/correction codes having differing performance characteristics are used in the respective data streams. More specifically, more powerful error detection/correction coding will be used in higher level data streams while less powerful error detection/correction coding will be used on lower level data streams.. This will optimize the overall performance and information transmission capacity of the transmission system.
- the first error detection/correction encoder 1 02 in the transmitter 1 00 is partitioned into a serial connection of an outer encoder 1 02(0) and an inner encoder 1 02(1).
- the second error detection/correction encoder 1 08 is partitioned into a serial connection of an outer encoder 1 08(0) and an inner encoder 1 08(1) .
- the first error detection/correction decoder 304 in the receiver 300 is partitioned into a serial connection of an inner decoder 304(1) and an outer decoder 304(0) .
- the second error detection/correction decoder 31 2 is partitioned into a serial connection of an inner decoder 31 2(1) and an inner encoder 31 2(0)
- the outer encoder/decoder pairs implement a block coding technique, such as Hamming codes, Hadamard codes, Cyclic codes and Reed-Solomon (RS) codes, while the inner encoder/decoder pairs implement a convolutional code.
- RS Reed-Solomon
- the coding used for the level 2 data stream is more powerful than the coding used for the level 1 data stream. More specifically, the convolutional code used in the inner encoder/decoder pair in the level 2 data stream is more powerful than the convolutional code used in the inner encoder/decoder pair in the level 1 data stream.
- the first inner encoder/decoder pair, processing the level 1 data stream implements a rate 14 , constraint length 7 convolutional code punctured to a rate of D.
- the second inner encoder/decoder pair, processing the level 2 data stream implements a rate 1 /z convolutional code without puncturing.
- the coding of the level 2 data stream is more powerful than that of the level 1 data stream. This more closely matches the bit error rate performance of the level 1 and level 2 data streams, and optimizes the performance of the transmission system as a whole.
- the level 1 demodulator 302 and decoder 304 cooperate to detect the DATA 1 signal from the received constellation. Then a reconstructed ideal signal, from reencoder 308, representing this detected DATA 1 signal is then subtracted from the received constellation, and ideally results in translation of the received constellation to form another constellation of the sub-quadrants within the detected quadrant.
- this translation operation is very sensitive to any mismatch between the actual "center point" of the quadrant as received, and the ideal center point (displaced by ⁇ 1 from the origin of the level 1 constellation) assumed by the reencoder 308.
- any mismatch in size between the received constellation and the ideal constellation results in the actual center point of the received quadrant being displaced from the assumed center point, and when the received constellation is translated by the reencoder 308 and subtractor 310, results in the actual center point of the displaced sub-quadrant being displaced from the origin assumed by the second decoder 31 2.
- the gain of the received channel must be accurately adapted to, in order to place the center point of the sub-quadrant in the proper location (origin) to be accurately decoded by the second decoder 31 2.
- the gain of the system is determined by comparing the received constellation of data points to a known ideal constellation of data points.
- the locations of the constellation points may be deliberately distorted from their ideal locations.
- the resulting constellation does not have the equi-spaced points illustrated in Fig. 2.
- the transmission channel is not constant, and may be noisy with varying amounts of non-linearity. To determine the location of the center point of the quadrants, and thus the gain of the system, in such systems, the center-of-gravity of all the data points in the quadrants is determined.
- Fig. 7 is a block diagram of circuitry for determining the center of gravity of a quadrant of a received constellation of data points.
- a rotator 321 receives I and Q values representing I and Q components of successive received data points from the level 1 demodulator 302 (of Fig. 1 ) .
- An I output terminal of the rotator 321 is coupled to an input terminal of an I low pass filter (LPF) 320.
- a Q output terminal of the rotator 321 is coupled to an input terminal of a Q LPF 322.
- Respective output terminals of the I and Q LPFs, 320 and 322, are coupled to corresponding input terminals of a magnitude calculating circuit 324.
- An output terminal of the magnitude calculating circuit 324 is coupled to the reencoder 308.
- Fig. 5 is a diagram of a received constellation and shows the locations of a plurality of successive received modulated data points. The received data points form scatters in the respective neighborhoods of the assumed locations of the received constellation points in all four quadrants.
- Fig. 6 is a diagram of the upper right hand quadrant of a received constellation all of whose data points have been rotated to this quadrant by the rotator 321 .
- the quadrant illustrated in Fig. 6 represents a constellation which has been distorted by either deliberate pre-distortion of the transmitted constellation points and/or by the operation of the transmission channel 200.
- the I component of the rotated data points from the rotator 321 is low pass filtered in the LPF 320 with a sliding moving average of n points. In the illustrated embodiment, the sliding moving average is calculated using the preceding 500 data points.
- the Q component of the rotated data points from the rotator 321 is similarly low pass filtered with a sliding moving average.
- the low pass filters 320, 322 may also be constructed using respective MR digital filters.
- the low pass filtering operation produces the respective I and Q components of the center of gravity of the received data points in the quadrant.
- the estimate of the magnitude of the center of gravity is calculated in the magnitude calculating circuit 324.
- the magnitude of the ideal reconstructed signal from the reencoder 308 is adjusted in response to the magnitude of the calculated center of gravity M .
- the centers of the respective received quadrants will be properly translated to the origin by the subtractor 31 0, and allow for accurate decoding of the level 2 and higher data signals.
- the circuit illustrated in Fig. 7 will operate independently of the method of transmission, whether linear or non-linear. It also operates properly in the presence of a pre-distorted transmission constellation, or with non-standard grouping factors (described in more detail below) . It has been found that the circuit works well in practice with no measurable degradation when used on hierarchical 1 6QAM transmission system over a linear channel when compared with exact knowledge of the locations of the centers of the quadrants. The circuit also operates well in the presence of noise and in particular in the presence of channel distortion caused by non-linear channels, such as found in direct satellite television signal transmission systems. Such a circuit improves the performance of the higher level data streams, and thus, improves the overall performance of the transmission system.
- the constellation generated by the level 2 modulator 1 1 0 is combined in the signal combiner 1 06 with the constellation generated by the level 1 modulator 1 04 after being weighted in the variable gain amplifier 1 1 1 by a factor of .5.
- the weighting factor of .5 is termed the grouping factor and may be varied to change the relative performance of the level 1 and level 2 data streams, as described in more detail below.
- the resulting constellation consists of equispaced constellation points. As described above, such an arrangement results in a transmission system in which the performance of the level 1 data stream, in terms of bit error rate, is better than that of the level 2 data stream.
- the grouping factor the relative performance of the level 1 and level 2 data streams may be more closely matches.
- the gain of the variable gain amplifier ( 1 1 1 of Fig. 1 ) is conditioned to be .3.
- the resulting constellation points are spaced only .3 from the center point of the quadrant.
- the constellation points in a quadrant are further away from constellation points in other quadrants than in the constellation illustrated in Fig. 2a.
- the constellation points within a quadrant are closer together than those illustrated in Fig. 2a.
- Such a system allows more accurate determination of which quadrant the level 1 data signal is in at the expense of less accurate determination of the constellation point of the level 2 data signal within the quadrant, thus, increasing the performance of the level 1 data stream and decreasing the performance of the level 2 data stream, when compared to the system of Fig. 2a.
- the gain of the variable gain amplifier ( 1 1 1 of Fig . 1 ) is conditioned to be .7.
- the resulting constellation points are spaced .7 from the center point of the quadrant.
- the constellation points in a quadrant are closer to constellation points in other quadrants than in the constellation illustrated in Fig. 2a.
- the constellation points within a quadrant are further apart than those illustrated in Fig. 2a.
- Such a system allows more accurate determination of the constellation point of the level 2 data signal within the quadrant at the expense of less accurate determination of which quadrant the level 1 data signal is in, thus, increasing the performance of the level 2 data stream and decreasing the performance of the level 1 data stream, when compared to the system of Fig. 2a.
- the gain of the variable gain amplifier 1 1 1 (of Fig . 1 )
- the grouping of the constellation points with each cluster may be placed optimally to more closely match the performance of the level 1 and level 2 data streams. It has been determined that for a 1 6QAM transmission system transmitted through a non-linear direct satellite television channel, a grouping factor of around .6 to around .7 will more closely match the bit error rate performance of the level 1 and level 2 data streams. This will increase the overall performance of the transmission system as a whole.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
- Detection And Prevention Of Errors In Transmission (AREA)
- Error Detection And Correction (AREA)
Priority Applications (7)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/148,155 US7073116B1 (en) | 1999-11-23 | 2000-11-22 | Error detection/correction coding for hierarchical QAM transmission systems |
| EP00982190A EP1232622B1 (en) | 1999-11-23 | 2000-11-22 | Error detection/correction coding for hierarchical qam transmission systems |
| DE60023173T DE60023173T2 (de) | 1999-11-23 | 2000-11-22 | Fehlerdetektion und -korrekturkodierung für hierarchische qam-übertragungssysteme |
| AU19252/01A AU782684B2 (en) | 1999-11-23 | 2000-11-22 | Error detection/correction coding for hierarchical QAM transmission systems |
| BR0015739-2A BR0015739A (pt) | 1999-11-23 | 2000-11-22 | Codificação de detecção/correção de erro para sistemas de transmissão qam hierárquicos |
| JP2001540484A JP4649087B2 (ja) | 1999-11-23 | 2000-11-22 | 階層qam伝送方式のための誤り検出/訂正符号化 |
| MXPA02005197A MXPA02005197A (es) | 1999-11-23 | 2000-11-22 | Codificacion de correcion/deteccion de error para sistemas jerarquicos de transmision de modulacion de cuadratura de amplitud (qam). |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US16702199P | 1999-11-23 | 1999-11-23 | |
| US60/167,021 | 1999-11-23 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2001039455A1 true WO2001039455A1 (en) | 2001-05-31 |
Family
ID=22605621
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2000/032010 Ceased WO2001039455A1 (en) | 1999-11-23 | 2000-11-22 | Error detection/correction coding for hierarchical qam transmission systems |
Country Status (9)
| Country | Link |
|---|---|
| EP (1) | EP1232622B1 (enExample) |
| JP (1) | JP4649087B2 (enExample) |
| KR (1) | KR100684213B1 (enExample) |
| CN (1) | CN1274123C (enExample) |
| AU (1) | AU782684B2 (enExample) |
| BR (1) | BR0015739A (enExample) |
| DE (1) | DE60023173T2 (enExample) |
| MX (1) | MXPA02005197A (enExample) |
| WO (1) | WO2001039455A1 (enExample) |
Cited By (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007502086A (ja) * | 2003-05-16 | 2007-02-01 | トムソン ライセンシング | 衛星ベースの通信システムにおける反復符号化 |
| JP2007503181A (ja) * | 2003-05-16 | 2007-02-15 | トムソン ライセンシング | 積層化及び階層的変調システムの統合受信機 |
| EP1529347A4 (en) * | 2002-07-03 | 2007-10-31 | Directv Group Inc | METHOD AND DEVICE FOR MODULATION IN LAYERS |
| US7418060B2 (en) | 2002-07-01 | 2008-08-26 | The Directv Group, Inc. | Improving hierarchical 8PSK performance |
| US7423987B2 (en) | 2001-04-27 | 2008-09-09 | The Directv Group, Inc. | Feeder link configurations to support layered modulation for digital signals |
| US7426246B2 (en) | 2001-04-27 | 2008-09-16 | The Directv Group, Inc. | Dual layer signal processing in a layered modulation digital signal system |
| US7426243B2 (en) | 2001-04-27 | 2008-09-16 | The Directv Group, Inc. | Preprocessing signal layers in a layered modulation digital signal system to use legacy receivers |
| US7463676B2 (en) | 2002-10-25 | 2008-12-09 | The Directv Group, Inc. | On-line phase noise measurement for layered modulation |
| US7469019B2 (en) | 2001-04-27 | 2008-12-23 | The Directv Group, Inc. | Optimization technique for layered modulation |
| US7471735B2 (en) | 2001-04-27 | 2008-12-30 | The Directv Group, Inc. | Maximizing power and spectral efficiencies for layered and conventional modulations |
| US7474710B2 (en) | 2002-10-25 | 2009-01-06 | The Directv Group, Inc. | Amplitude and phase matching for layered modulation reception |
| US7483495B2 (en) | 2001-04-27 | 2009-01-27 | The Directv Group, Inc. | Layered modulation for digital signals |
| US7483505B2 (en) | 2001-04-27 | 2009-01-27 | The Directv Group, Inc. | Unblind equalizer architecture for digital communication systems |
| US7502430B2 (en) | 2001-04-27 | 2009-03-10 | The Directv Group, Inc. | Coherent averaging for measuring traveling wave tube amplifier nonlinearity |
| US7502429B2 (en) | 2003-10-10 | 2009-03-10 | The Directv Group, Inc. | Equalization for traveling wave tube amplifier nonlinearity measurements |
| US7512189B2 (en) | 2001-04-27 | 2009-03-31 | The Directv Group, Inc. | Lower complexity layered modulation signal processor |
| US7583728B2 (en) | 2002-10-25 | 2009-09-01 | The Directv Group, Inc. | Equalizers for layered modulated and other signals |
| US7639759B2 (en) | 2001-04-27 | 2009-12-29 | The Directv Group, Inc. | Carrier to noise ratio estimations from a received signal |
| US7715504B2 (en) | 2003-11-26 | 2010-05-11 | Panasonic Corporation | Receiving apparatus and transmitting apparatus |
| RU2641448C1 (ru) * | 2013-12-23 | 2018-01-17 | Общество С Ограниченной Ответственностью "Космонет" | Способ передачи и приема сигналов кам (квадратурной амплитудной модуляции) |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1886958B (zh) * | 2003-11-26 | 2010-08-18 | 松下电器产业株式会社 | 接收装置及发送装置 |
| KR100874016B1 (ko) * | 2007-06-29 | 2008-12-17 | 한국전자통신연구원 | 계층 변조 장치 및 그 방법과, 계층 복조 장치 및 그 방법 |
| JP5163298B2 (ja) * | 2008-06-04 | 2013-03-13 | 富士通株式会社 | 情報処理装置、データ伝送装置及びデータ伝送方法 |
| US8284652B2 (en) * | 2008-10-28 | 2012-10-09 | Qualcomm Incorporated | Enhanced forward link transmission |
| US11271703B2 (en) | 2014-05-02 | 2022-03-08 | Qualcomm Incorporated | Techniques for improving control channel capacity |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0594505A1 (fr) * | 1992-10-22 | 1994-04-27 | France Telecom | Procédé de codage-décodage hiérarchique d'un signal numérique, et système correspondant utilisé en télévision numérique |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3691211B2 (ja) * | 1997-05-30 | 2005-09-07 | 日本放送協会 | デジタル信号送信装置、およびデジタル信号受信装置 |
| US5966412A (en) * | 1997-06-30 | 1999-10-12 | Thomson Consumer Electronics, Inc. | Apparatus and method for processing a Quadrature Amplitude Modulated (QAM) signal |
| JP2987352B2 (ja) * | 1997-09-25 | 1999-12-06 | 株式会社次世代デジタルテレビジョン放送システム研究所 | 階層伝送による多重方式とその送信装置、中継装置 |
-
2000
- 2000-11-22 MX MXPA02005197A patent/MXPA02005197A/es active IP Right Grant
- 2000-11-22 AU AU19252/01A patent/AU782684B2/en not_active Expired
- 2000-11-22 BR BR0015739-2A patent/BR0015739A/pt not_active Application Discontinuation
- 2000-11-22 KR KR1020027006550A patent/KR100684213B1/ko not_active Expired - Lifetime
- 2000-11-22 WO PCT/US2000/032010 patent/WO2001039455A1/en not_active Ceased
- 2000-11-22 JP JP2001540484A patent/JP4649087B2/ja not_active Expired - Lifetime
- 2000-11-22 CN CNB008182159A patent/CN1274123C/zh not_active Expired - Lifetime
- 2000-11-22 EP EP00982190A patent/EP1232622B1/en not_active Expired - Lifetime
- 2000-11-22 DE DE60023173T patent/DE60023173T2/de not_active Expired - Lifetime
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0594505A1 (fr) * | 1992-10-22 | 1994-04-27 | France Telecom | Procédé de codage-décodage hiérarchique d'un signal numérique, et système correspondant utilisé en télévision numérique |
Non-Patent Citations (1)
| Title |
|---|
| PAPKE L ET AL: "COMBINED MULTILEVEL TURBO-CODE WITH MR-MODULATION", SEATTLE, JUNE 18 - 22, 1995,NEW YORK, IEEE,US, 18 June 1995 (1995-06-18), pages 668 - 672, XP000533098, ISBN: 0-7803-2487-0 * |
Cited By (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7483505B2 (en) | 2001-04-27 | 2009-01-27 | The Directv Group, Inc. | Unblind equalizer architecture for digital communication systems |
| US7471735B2 (en) | 2001-04-27 | 2008-12-30 | The Directv Group, Inc. | Maximizing power and spectral efficiencies for layered and conventional modulations |
| US7639759B2 (en) | 2001-04-27 | 2009-12-29 | The Directv Group, Inc. | Carrier to noise ratio estimations from a received signal |
| US7512189B2 (en) | 2001-04-27 | 2009-03-31 | The Directv Group, Inc. | Lower complexity layered modulation signal processor |
| US7423987B2 (en) | 2001-04-27 | 2008-09-09 | The Directv Group, Inc. | Feeder link configurations to support layered modulation for digital signals |
| US7426246B2 (en) | 2001-04-27 | 2008-09-16 | The Directv Group, Inc. | Dual layer signal processing in a layered modulation digital signal system |
| US7426243B2 (en) | 2001-04-27 | 2008-09-16 | The Directv Group, Inc. | Preprocessing signal layers in a layered modulation digital signal system to use legacy receivers |
| US7483495B2 (en) | 2001-04-27 | 2009-01-27 | The Directv Group, Inc. | Layered modulation for digital signals |
| US7469019B2 (en) | 2001-04-27 | 2008-12-23 | The Directv Group, Inc. | Optimization technique for layered modulation |
| US7502430B2 (en) | 2001-04-27 | 2009-03-10 | The Directv Group, Inc. | Coherent averaging for measuring traveling wave tube amplifier nonlinearity |
| US7418060B2 (en) | 2002-07-01 | 2008-08-26 | The Directv Group, Inc. | Improving hierarchical 8PSK performance |
| US7577213B2 (en) | 2002-07-01 | 2009-08-18 | The Directv Group, Inc. | Hierarchical 8PSK performance |
| EP1529347A4 (en) * | 2002-07-03 | 2007-10-31 | Directv Group Inc | METHOD AND DEVICE FOR MODULATION IN LAYERS |
| US7474710B2 (en) | 2002-10-25 | 2009-01-06 | The Directv Group, Inc. | Amplitude and phase matching for layered modulation reception |
| US7463676B2 (en) | 2002-10-25 | 2008-12-09 | The Directv Group, Inc. | On-line phase noise measurement for layered modulation |
| US7583728B2 (en) | 2002-10-25 | 2009-09-01 | The Directv Group, Inc. | Equalizers for layered modulated and other signals |
| JP2007503181A (ja) * | 2003-05-16 | 2007-02-15 | トムソン ライセンシング | 積層化及び階層的変調システムの統合受信機 |
| JP2007502086A (ja) * | 2003-05-16 | 2007-02-01 | トムソン ライセンシング | 衛星ベースの通信システムにおける反復符号化 |
| US7502429B2 (en) | 2003-10-10 | 2009-03-10 | The Directv Group, Inc. | Equalization for traveling wave tube amplifier nonlinearity measurements |
| US8275069B2 (en) | 2003-11-26 | 2012-09-25 | Panasonic Corporation | Transmitting apparatus, transmission method and signal generating apparatus |
| US7920647B2 (en) | 2003-11-26 | 2011-04-05 | Panasonic Corporation | Receiving apparatus and transmitting apparatus |
| US7715504B2 (en) | 2003-11-26 | 2010-05-11 | Panasonic Corporation | Receiving apparatus and transmitting apparatus |
| US8625702B2 (en) | 2003-11-26 | 2014-01-07 | Panasonic Corporation | Transmitting apparatus, transmission method, receiving apparatus, and receiving method |
| US9160491B2 (en) | 2003-11-26 | 2015-10-13 | Panasonic Intellectual Property Corporation Of America | Receiving apparatus and receiving method |
| RU2641448C1 (ru) * | 2013-12-23 | 2018-01-17 | Общество С Ограниченной Ответственностью "Космонет" | Способ передачи и приема сигналов кам (квадратурной амплитудной модуляции) |
Also Published As
| Publication number | Publication date |
|---|---|
| JP4649087B2 (ja) | 2011-03-09 |
| EP1232622A1 (en) | 2002-08-21 |
| KR100684213B1 (ko) | 2007-02-20 |
| EP1232622B1 (en) | 2005-10-12 |
| DE60023173D1 (de) | 2005-11-17 |
| AU1925201A (en) | 2001-06-04 |
| CN1274123C (zh) | 2006-09-06 |
| CN1421086A (zh) | 2003-05-28 |
| MXPA02005197A (es) | 2002-11-07 |
| KR20020068353A (ko) | 2002-08-27 |
| AU782684B2 (en) | 2005-08-18 |
| JP2003525537A (ja) | 2003-08-26 |
| BR0015739A (pt) | 2002-07-16 |
| DE60023173T2 (de) | 2006-04-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7073116B1 (en) | Error detection/correction coding for hierarchical QAM transmission systems | |
| US7079585B1 (en) | Gray encoding for hierarchical QAM transmission systems | |
| EP1232622B1 (en) | Error detection/correction coding for hierarchical qam transmission systems | |
| EP1232623B1 (en) | A hierarchical qam transmission system with varying grouping factor | |
| WO2001039456A1 (en) | Gray encoding for hierarchical qam transmission systems | |
| EP0485105B1 (en) | Coding for digital transmission | |
| EP2213063B1 (en) | Low density parity check (ldpc) encoded higher order modulation | |
| US7856067B2 (en) | Unequal hierarchical communications modulation method | |
| LU100477B1 (en) | Method and device for adaptive coding and modulation | |
| EP1232621B1 (en) | Center of gravity control for hierarchical qam transmission systems | |
| US7149259B1 (en) | Center of gravity control for hierarchical QAM transmission systems |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 19252/01 Country of ref document: AU |
|
| WWE | Wipo information: entry into national phase |
Ref document number: IN/PCT/2002/657/KOL Country of ref document: IN |
|
| ENP | Entry into the national phase |
Ref document number: 2001 540484 Country of ref document: JP Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1020027006550 Country of ref document: KR |
|
| WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2002/005197 Country of ref document: MX |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2000982190 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 008182159 Country of ref document: CN |
|
| WWP | Wipo information: published in national office |
Ref document number: 2000982190 Country of ref document: EP |
|
| WWP | Wipo information: published in national office |
Ref document number: 1020027006550 Country of ref document: KR |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 10148155 Country of ref document: US |
|
| REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
| WWG | Wipo information: grant in national office |
Ref document number: 2000982190 Country of ref document: EP |
|
| WWG | Wipo information: grant in national office |
Ref document number: 19252/01 Country of ref document: AU |