WO2001039339A1 - Fibre optique pour amplification optique - Google Patents

Fibre optique pour amplification optique Download PDF

Info

Publication number
WO2001039339A1
WO2001039339A1 PCT/JP2000/008201 JP0008201W WO0139339A1 WO 2001039339 A1 WO2001039339 A1 WO 2001039339A1 JP 0008201 W JP0008201 W JP 0008201W WO 0139339 A1 WO0139339 A1 WO 0139339A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
optical
optical fiber
refractive index
erbium
Prior art date
Application number
PCT/JP2000/008201
Other languages
English (en)
French (fr)
Inventor
Keiichi Aiso
Original Assignee
The Furukawa Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Furukawa Electric Co., Ltd. filed Critical The Furukawa Electric Co., Ltd.
Priority to CA002348645A priority Critical patent/CA2348645A1/en
Priority to EP00976391A priority patent/EP1152502A1/en
Publication of WO2001039339A1 publication Critical patent/WO2001039339A1/ja
Priority to US09/897,140 priority patent/US20020003937A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/10Compositions for glass with special properties for infrared transmitting glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0071Compositions for glass with special properties for laserable glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/31Doped silica-based glasses containing metals containing germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/32Doped silica-based glasses containing metals containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/34Doped silica-based glasses containing metals containing rare earth metals
    • C03C2201/3476Erbium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/34Doped silica-based glasses containing metals containing rare earth metals
    • C03C2201/36Doped silica-based glasses containing metals containing rare earth metals containing rare earth metals and aluminium, e.g. Er-Al co-doped
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06716Fibre compositions or doping with active elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06729Peculiar transverse fibre profile

Definitions

  • the present invention relates to an optical fiber for optical amplification used for, for example, wavelength division multiplexing optical transmission.
  • Wavelength division multiplexing optical transmission is an optical transmission method suitable for high-capacity, high-speed communication because light of multiple wavelengths can be transmitted over a single optical fiber.
  • optical amplifiers for optical amplification are used as optical amplifiers.
  • Wavelength division multiplexing optical transmission is performed around 1.53 zm or more, which is the gain band of this optical amplifier: around 1.56 / zm (hereinafter C-BAND).
  • the optical fiber for optical amplification used for wavelength division multiplexed optical transmission in C-BAND has a smaller refractive index than the core on the outer peripheral side of the core doped with erbium (Er).
  • the excitation light density is increased by making the relative refractive index difference ⁇ of the core with respect to the cladding, for example, about 1.2 to 2%, and the excitation light intensity is reduced by reducing the diameter of the core.
  • the wavelength band used for wavelength division multiplexing optical transmission is extended to a wavelength of 1.57 ⁇ ⁇ : around I.62 ⁇ m (hereinafter referred to as L-BAND). Discussions are currently underway.
  • this optical amplification fiber has a gain coefficient of L-BAND light in C-BAND. Since the gain coefficient is smaller than the gain coefficient, it is inevitable that the optical fiber for optical amplification becomes longer. As a result, there are many problems such as an increase in noise figure and polarization mode dispersion (PMD), non-linear optical effects, accumulation of chromatic dispersion, and the cost of optical amplifiers using optical amplification optical fibers. There was also a problem of inviting the customer to upgrade. Therefore, there is a need for the development of an optical fiber for optical amplification with improved L-BAND gain efficiency that can extend the wavelength range used for wavelength division multiplexing optical transmission.
  • PMD noise figure and polarization mode dispersion
  • erbium erbium
  • Er erbium
  • One way to increase the amount of erbium absorbed per unit length of optical fiber is to increase the concentration of erbium added to the optical fiber.
  • concentration of erbium increases, efficiency decreases due to concentration quenching, so there is an upper limit to the erbium concentration that can be added.
  • the erbium concentration limit in alumina silicate glass to which aluminum (A1) is added together with erbium is said to be 100 O wtppm.
  • the power cutoff wavelength of the optical amplifying optical fiber is shifted to the longer wavelength side, thereby increasing the erbium distribution. It is conceivable to increase the overlap integral between the profile and the mode distribution of light propagating in the optical fin to increase the amount of excitation light absorbed per unit length. However, if the cutoff wavelength is set to a wavelength larger than the erbium pumping light wavelength (eg, 1.48 m), single-mode propagation of the pumping light is not guaranteed. Therefore, there is an upper limit to the cutoff wavelength of the optical fiber for optical amplification.
  • optical fibers for optical amplification that have improved the gain efficiency of L-BANDs, in which the wavelength band used for wavelength division multiplexing optical transmission is on the longer wavelength side than C-BANDs, have been proposed. Did not.
  • the present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to mainly improve the gain efficiency of an L-BAND and to realize an optical amplifier that enables wavelength division multiplexed optical transmission with a short length.
  • An optical fiber is provided. Disclosure of the invention
  • the present invention provides an optical fiber for optical amplification having the following configuration.
  • the first optical amplification optical fiber of the present invention is an optical amplification optical fiber in which erbium is added to at least a core, and has a lower refractive index than the core on the outer peripheral side of the core. And a relative refractive index difference of the core with respect to the cladding is set to 0.3% or more and 1% or less.
  • the core diameter is such that the mode field diameter is on the characteristic line indicating the relationship between the mode field diameter and the core diameter at the excitation light wavelength of optical amplification. It is preferable that the core diameter be equal to or larger than the core diameter at the minimum position.
  • the present inventor has determined that, in an optical fiber in which a cladding having a smaller refractive index than that of an erbium-doped core is formed on the outer peripheral side of the core, the relative refractive index difference of the core with respect to the cladding is determined by a parameter The relationship between the value of the relative refractive index difference and the gain in L-BAND was examined.
  • the composition of the core is E r — A 1 2 ⁇ 3 — G e O 2 — S i 2
  • the composition of the cladding is S i 0 2
  • erbium is added to the whole area of the core.
  • the cut-off wavelength was set to 140 nm.
  • the relative refractive index difference of the core with respect to the clad is determined based on the results of the above examination.Therefore, at least an optical amplification optical fiber having a high gain suitable for L-BAND It became possible to do.
  • the relative refractive index difference of the core with respect to the cladding forming the optical amplification optical fiber is defined so that an appropriate optical amplification of at least L-BAND is obtained. Since the optimum refractive index profile of the optical fiber for optical amplification is determined, the optical fiber for optical amplification having at least a high gain in L-BAND can be obtained. Therefore, if the optical fiber for optical amplification of the present invention is applied to, for example, wavelength division multiplexing optical transmission, it becomes possible to appropriately amplify at least L-BAND signal light with a short length, and to improve noise figure and polarization. It will be possible to construct an excellent transmission system that can suppress problems such as an increase in mode dispersion (PMD), nonlinear optical effects, and accumulation of chromatic dispersion at low cost.
  • PMD mode dispersion
  • the core diameter of the optical fiber for optical amplification should be larger than the core diameter at the position where the mode field diameter becomes the minimum on the characteristic line showing the relationship between the mode field diameter and the core diameter at the pumping light wavelength of optical amplification.
  • the mode distribution of light propagating through the optical fiber for optical amplification and the erbium ion can be increased. Therefore, the amount of energy absorbed by erbium ions per unit length of the optical fiber can be increased, and the gain per unit length of the optical fiber can be increased.
  • FIG. 1 is a main part configuration diagram showing a refractive index profile of an embodiment of an optical fiber for optical amplification according to the present invention.
  • FIG. 2 is an optical fiber for optical amplification having the above-mentioned refractive index profile.
  • Fig. 3 is a graph showing the relationship between the relative refractive index difference ⁇ of the core with respect to the cladding in Fig. 3 and the gain when the L-BAND signal light is incident on the optical fiber for optical amplification.
  • the relationship between the core diameter and the mode field diameter in the optical fiber for optical amplification with the refractive index profile shown in the figure, and the overlap integral of the mode distribution of propagating light and the distribution profile of erbium ions, and the core diameter It is a graph showing both the relationships.
  • FIG. 1 shows the refractive index profile of the first embodiment of the optical fiber for optical amplification according to the present invention by a solid line.
  • the optical amplification optical fiber of the present embodiment is formed by forming a cladding 5 having a smaller refractive index than the core 1 on the outer peripheral side of the core 1 doped with erbium. I have.
  • the feature of this embodiment is that the relative refractive index difference ⁇ of the core 1 with respect to the clad 5 is set to 0.3% or more and 1% or less.
  • the relative refractive index difference ⁇ is such that when the vacuum refractive index is 1, the refractive index of the core 1 is ⁇ , and the refractive index of the clad 5 is n. Then, according to the following equation (1), Defined.
  • the present inventor has shown in Table 1 in order to specify the configuration of the optical amplification optical fiber of the present invention.
  • An optical fiber for optical amplification was manufactured on a trial basis, with OOO wtppm, a cutoff wavelength of 1400 nm, and a relative refractive index difference ⁇ of the core 1 with respect to the cladding 5 as shown in Table 1.
  • the gain of the prototype optical amplification optical fiber at a wavelength of 1.58 ⁇ m was measured as follows.
  • each prototype optical fiber is 100 m, it is wound around a radius of 3 Omm, and excitation light with a wavelength of 1.48 m is incident on each prototype optical fiber from both directions. Then, the gain of a signal light having a wavelength of 1.58 ⁇ and an intensity of 12 dBm was measured. The output of the light source used for the bidirectional excitation was set to 150 mW in total.
  • the present inventor has proposed that, of the optical amplification optical fibers shown in Table 1, the optical amplification optical fibers having relative refractive index differences of 0.3, 0.6, and 1.0% are used. Then, the bending loss at a wavelength of 158 nm at a bending radius of 12.5 mm was measured. This result is indicated by 2 in FIG. From this result, it can be seen that when the relative refractive index difference becomes smaller than 0.6%, an increase in loss due to bending occurs.
  • the relative refractive index difference ⁇ is 0.3% or more and 1% or less.
  • the clad 5 is formed of SiO 2 , but the clad 5 is formed of F—SiO 2 to which fluorine is added, and the refractive index aperture is formed.
  • the file may have the refractive index profile indicated by the chain line in FIG.
  • fluorine is added to clad 5 in this way, germanium added to core 1
  • the relative refractive index difference of the core 1 with respect to the cladding 5 can be set to the same value even when the amount of the added rubber is reduced.
  • the relative refractive index difference ⁇ of the core 1 with respect to the clad 5 is set to be 0.3% or more and 1% or less based on the above-described examination results, so that at least L_BAND An optical fiber for optical amplification having a high gain can be obtained. Therefore, when the optical fiber for optical amplification of this embodiment is applied to wavelength division multiplexing optical transmission, it is possible to amplify the signal light of at least L-BAND with a shorter length than before, so that the noise figure and the polarization mode can be increased. In addition, problems such as increased dispersion (PMD), nonlinear optical effects, and accumulation of chromatic dispersion can be suppressed, and costs can be reduced.
  • PMD dispersion
  • PMD nonlinear optical effects
  • accumulation of chromatic dispersion can be suppressed, and costs can be reduced.
  • the second embodiment has the refractive index profile shown by the solid line in FIG. 1, and the relative refractive index difference ⁇ is 0.3% or more and 1% or less.
  • the core diameter is set to the minimum value on the characteristic line showing the relationship between the mode field diameter and the core diameter at the pumping light wavelength of the optical amplification.
  • the core diameter value is larger than the core diameter at the position.
  • the length of each prototype optical amplification optical fiber is set to the length at which the gain is maximized, and other than that, the length is set to the same value as in the first embodiment.
  • the gain of the prototype optical fiber for optical amplification at a wavelength of 1.58 m was measured.
  • the gain per unit length at a wavelength of 1.58 ⁇ m increases as the core diameter increases. This is because, as the core diameter increases, the overlap integral between the distribution of light modes propagating through the optical fiber for optical amplification and the distribution profile of erbium ions increases, so that energy absorption by erbium ions per unit length of the optical fiber is caused. It is thought that the gain per unit length of optical fiber increased as a result.
  • the present inventor has proposed an erbium distribution profile and pump light mode in the optical amplifying fiber shown in Table 3.
  • the relationship between the overlap integral with the distribution and the core diameter was determined. The result is shown by the characteristic line a in Fig. 3.
  • Equation (2) a is the radius of the core 1 and MFD is the calculated value of the mode field diameter corresponding to the diameter (diameter) of the core 1.
  • the overlap integral is determined by the relationship between the core diameter and the mode field diameter.
  • the relationship between the mode field diameter at Aim and the core diameter was also determined and is shown by the characteristic line b in Fig. 3.
  • the calculated value of the mode field diameter shown by the characteristic line b in Fig. 3 is based on the assumption that the core in the optical fiber for optical amplification has a step-type profile as shown in Fig. 1, The distribution was calculated numerically and determined according to Petermannll's definition.
  • FIG. 3 shows the actual measured values of the mode field diameter.
  • the overlap integral between the erbium distribution profile and the mode distribution of the excitation light increases as the core diameter increases.
  • the mode field diameter shows a downwardly convex curve with respect to the core diameter, and there is a core diameter that minimizes MFD.
  • the region where the MFD is minimum is preferable because the excitation density is high, but the overlap integral is small and the absorption value is small. Therefore, considering that the gain per length is increased, the gain coefficient is improved by setting the core diameter larger than the minimum MFD and increasing the overlap integral as a result. Will be. Therefore,
  • the core diameter is set to a value equal to or larger than the core diameter value at the position where the mode field diameter is minimum on the characteristic line b.
  • the second embodiment has a refractive index profile shown in FIG. 1 similarly to the first embodiment, and the relative refractive index difference of core 1 with respect to clad 5 is 0.
  • the clad 5 may be formed of F—Si 2 to which fluorine is added.
  • the core diameter is set to a value equal to or larger than the value of the core diameter at the point where the mode field diameter becomes minimum on the characteristic line b.
  • the present invention is not limited to the above embodiments, and various embodiments can be adopted.
  • the core composition and the cladding composition were not particularly limited.In the state where erbium was added to the core 1, the relative refractive index difference of the core 1 with respect to the cladding 5 was 0.1%. It may be 3% or more and 1% or less.
  • the erbium concentration is set to 100 wtppm, but the erbium concentration is not particularly limited and may be appropriately set. In the future, the erbium concentration of the optical fiber may be set to 100 wtppm. If it becomes possible to increase the Ob ppm, it is possible to further increase the gain per unit length by increasing the erbium concentration.
  • the shape of the refractive index distribution is not particularly limited, and may be appropriately set.
  • a refractive index region having a refractive index different from that of an adjacent region may be provided between the core 1 and the clad 5.
  • the optical amplification optical fiber according to the present invention is suitable for use as an optical fiber of an optical amplifier for amplifying an L-BAND optical wavelength signal in optical communication and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Lasers (AREA)

Description

明 細 書 光増幅用光ファィバ 技術分野
本発明は、 例えば波長分割多重光伝送等に用いられる光増幅用光ファ ィバに関するものである。
背景技術
情報社会の発展によ り、 通信情報量が飛躍的に増大する傾向にあり、 このよ う な情報の増大化に伴い、 波長分割多重光伝送 (WDM伝送) が 通信分野に広く受け入れられ、 今や波長多重伝送の時代を迎えている。 波長分割多重光伝送は、 複数の波長の光を 1本の光ファイバで伝送でき るため、 大容量高速通信に適した光伝送方式であり 、 現在、 光増幅用光 フアイバを光増幅器と して適用し、 この光増幅器の利得帯域である波長 1 . 5 3 z m〜 : I . 5 6 /z m付近 (以下、 C— B ANDとする) での波 長分割多重光伝送が行われている。
このよ うに、 C一 B ANDにおける波長分割多重光伝送用と して用い られる光増幅用光ファイバは、 エルビウム ( E r ) を添加したコアの外 周側に該コアよ り も屈折率が小さいクラ ッ ドを形成されており、 クラ ッ ドに対するコアの比屈折率差 Δを例えば 1 . 2〜 2 %程度にして励起光 密度を高め、 さ らに、 コアを細径化して励起光強度の強い部分にェルビ ゥムを局在させるこ とで、 エルビウム添加領域全体に渡って良好な反転 分布を形成する構成と成している。
ところで、 最近では、 通信情報量をよ り一層増大させるために、 波長 分割多重光伝送の使用波長域を広帯域にするこ とが要求されており 、 上 記光増幅用光ファイバを用いて、 波長分割多重光伝送の使用波長域を波 長 1 . 5 7 μ ηι〜 : I . 6 2 μ m付近 (以下、 L— B ANDと称する) ま で広げる検討が現在活発に行なわれている。
しかしながら、 上記のよ うな従来の C一 B ANDの光を増幅する光増 幅用光ファイバを用いた場合、 この光増幅用光ファイバは L— B AN D の光の利得係数が C一 B A N Dにおける利得係数に比べて小さいために 、 光増幅用光ファイバの長尺化が避けられない。 その結果、 雑音指数や 偏波モ一 ド分散 ( PMD) の増加、 非線形光学効果、 波長分散の累積な どの多く の問題が生じ、 さ らに、 光増幅用光ファイバを用いた光増幅器 のコス トアップを招く といった問題もあった。 そこで、 波長分割多重光 伝送の使用波長域を広げられるよ うな、 L一 B AN Dの利得効率を高め た光増幅用光ファイバの開発が求められている。
また、 C一 B A N Dにおいても信号チャンネル数の増大に伴って、 よ り高い信号光出力が要求されている。 信号光出力の増大は光増幅用光フ アイバ中での非線形現象の発現をもたらす。 従って、 C— B AN D領域 においても利得効率を高めた光増幅用光ファイバの必要性が高まってい る。
なお、 エルビウム (E r ) が添加された光ファイバの利得効率を高め るには、 光ファイバ単位長さ当たりのエルビウム (E r ) の吸収量を増 加させるこ とが有効であると考えられる。 光ファイバ単位長さ当たり の エルビウムの吸収量を増加させる 1つの手段は、 光ファイバに添加する エルビウムの濃度を高くすることである。 しかし、 エルビウムの濃度が 高く なると、 濃度消光による効率低下が起こるため、 添加できるエルビ ゥム濃度には上限がある。 ちなみに、 エルビウムと共にアルミ ニウム ( A 1 ) を添加したアルミナシリ ケィ トガラスにおけるエルビウム濃度限 界値は 1 0 0 O w t p p mと言われている。 また、 光フアイバ単位長さ当たり のエルビウムの吸収量を増加させる 別の手段と して、 光増幅用光ファイバの力ッ トオフ波長を長波長側にシ フ ト し、 それによ り 、 エルビウムの分布プロファイルと光ファイ ノく中を 伝搬する光のモー ド分布の重なり積分を大き く して、 単位長さ当たり の 励起光の吸収量を大き く するこ とが考えられる。 しかし、 カ ッ トオフ波 長をエルビウムの励起光波長 (例えば 1 . 4 8 m ) よ り も大きい波長 にすると、 励起光のシングルモー ド伝搬が保証されない。 したがって、 光増幅用光ファイバのカッ トオフ波長にも上限がある。
以上のことから、 従来は、 波長分割多重光伝送の使用波長域が C一 B A N Dよ り も長波長側である L一 B A N Dの利得効率を向上させた光増 幅用光フアイバが未だ提案されていなかった。
本発明は、 上記従来の課題を解決するためになされたものであり、 そ の目的は、 主に L一 B A N Dの利得効率を高め、 短い長さで波長分割多 重光伝送を可能とする光増幅用光フアイバを提供することにある。 発明の開示
上記目的を達成するために、 本発明は次のよ うな構成をもつ光増幅用 光ファイバを提供する。 本発明の第一の光増幅用光ファイバは、 少なく と もコアにエルビウムが添加されている光増幅用光ファイバであって、 前記コアの外周側に該コアよ り も屈折率が小さいクラ ッ ドを形成し、 該 ク ラッ ドに対する前記コアの比屈折率差を 0 . 3 %以上 1 %以下と した 構成を備える。
また、 本発明の光増幅用光ファイバにおいては、 コア径は、 光増幅の 励起光波長におけるモー ドフィ ール ド径と コア径との関係を示す特性ラ イ ン上で、 モー ドフィール ド径が最小となる位置のコア径以上のコア径 値とすることが好ま しい。 本発明者は、 上記のよ うに、 エルビウムを添加したコアの外周側に該 コアよ り も屈折率が小さいクラッ ドを形成した光ファイバにおいて、 ク ラッ ドに対する前記コアの比屈折率差をパラメータ と し、 この比屈折率 差の値と L— B A N Dにおける利得との関係を検討した。 なお、 コアの 組成は、 E r — A 1 23— G e O 2— S i 〇 2、 ク ラ ッ ドの組成は S i 02と し、 エルビウムをコア全域に添加し、 その濃度を l O O O w t p p mと した。 また、 カ ッ トオフ波長を 1 4 0 0 n mと した。 その結果、 前記比屈折率差を 0. 3 %以上 1 %以下と したときに、 利得が最大値か ら 3 d B低下した領域以内となることが分かった。
上記構成の本発明は、 上記検討結果に基づいてクラ ッ ドに対するコア の比屈折率差を決定したものであるから、 少なく と も L一 B ANDに適 した利得が高い光増幅用光ファイバとすることが可能となった。
すなわち、 本発明によれば、 少なく とも L一 B AN Dでの適切な光増 幅が得られるよ うに光増幅用光ファイバを形成するクラ ッ ドに対するコ ァの比屈折率差を規定して、 光増幅用光ファイバの最適屈折率プロファ ィルを決定したものであるから、 少なく と も L一 B A N Dにおける利得 が高い光増幅用光ファイバとすることができる。 そのため、 本発明の光 増幅用光フアイバを例えば波長分割多重光伝送に適用すれば、 短い長さ で少なく とも L一 B ANDの信号光を適切に増幅することが可能となり 、 雑音指数や偏波モー ド分散 ( PMD) の増加、 非線形光学効果、 波長 分散の累積などの問題を抑制できる優れた伝送システムの構築を低コス トで実現できるよ うになる。
また、 光増幅用光ファイバのコア径を、 光増幅の励起光波長における モー ドフィールド径とコア径との関係を示す特性ライン上で、 モー ドフ ィールド径が最小となる位置のコア径以上のコア径値とすることによ り
、 光増幅用光フアイバを伝搬する光のモー ド分布とエルビウムイオンの 分布プロファイルとの重なり積分を大き く できる。 したがって、 光ファ ィバ単位長さ当たり のエルビウムイオンによるエネルギー吸収量を大き くすることができ、 光フアイバ単位長さ当たりの利得を大きくするこ と ができる。 図面の簡単な説明
第 1 図は、 本発明に係る光増幅用光ファイバの実施形態例の屈折率プ 口ファイルを示す要部構成図であり 、 第 2図は、 上記屈折率プロフアイ ルを有する光増幅用光ファイバにおけるクラ ッ ドに対するコアの比屈折 率差 Δ と、 光増幅用光ファイバに L一 B A N Dの信号光を入射させたと きの利得との関係とを示すグラフであり、 第 3図は、 第 1 図に示した屈 折率プロフアイルを有する光増幅用光フアイバにおけるコア径とモー ド フィール ド径との関係、 および伝搬光のモー ド分布とエルビウムイオン の分布プロファイルとの重なり積分とコア径との関係を共に示すグラフ である。 発明を実施するための最良の形態
本発明をよ り詳細に説述するために、 添付の図面にしたがつてこれを 説明する。 第 1 図には、 本発明に係る光増幅用光ファイバの第 1実施形 態例の屈折率プロフアイルが実線によ り示されている。 同図に示すよ う に、 本実施形態例の光増幅用光ファイバは、 エルビウムを添加したコア 1 の外周側に、 コア 1 よ り も屈折率が小さいクラッ ド 5 を形成して構成 されている。 本実施形態例の特徴的なことは、 クラッ ド 5に対するコア 1 の比屈折率差 Δを 0 . 3 %以上 1 %以下と したこ とである。
なお、 前記比屈折率差 Δは、 真空の屈折率を 1 と したときのコア 1 の 屈折率を η ι、 ク ラ ッ ド 5 の屈折率を n。 と したと き、 次式 ( 1 ) によ り定義される。
Δ = { ( η ! 2 - η ο 2 ) / 2 η J 2 } X 1 0 0 ( 1 ) 本発明者は、 本発明の光増幅用光ファイバの構成を特定するために、 表 1 に示すよ うに、 コア組成を E r - A 1 2 O 3 - G e O 2 - S i 02 、 クラ ッ ドの組成を S i O 2と し、 エルビウムをコア全域に添加し、 その 濃度を l O O O w t p p mと し、 カッ トオフ波長を 1 4 0 0 n mと し、 コア 1 のクラッ ド 5に対する比屈折率差 Δを表 1 に示す各値と した光増 幅用光ファイバを試作し、 この各試作光増幅用光ファイバの波長 1 . 5 8 μ mにおける利得を以下のよ うにして測定した。
すなわち、 各試作光ファイバの長さを 1 0 0 mと して、 半径 3 O mm の径に巻き、 この各試作光ファイバに波長 1 . 4 8 mの励起光を双方 向から入射させて励起させ、 波長 1 . 5 8 μ πιで強度が一 1 2 d B mの 信号光の利得を測定した。 また、 前記双方向の励起に用いられる光源の 出力は合計で 1 5 0 m Wと した。
(表 1 )
Figure imgf000008_0001
その結果が表 2および第 2図に示されており、 表 2および第 2図から 明らかなよ うに、 前記比屈折率差 Δを小さ く していく と、 比屈折率差 Δ が 0. 6付近までは利得が増加しているのが分かる。 これは、 比屈折率 差 Δを小さ く していった場合、 カ ツ トオフ波長を一定の値とするために は、 コア径を大き くすることになるため、 光増幅用光ファイバの単位長 さ当たり のエルビウムイオンの数が多く なり、 少なく と も L— B A N D における利得効率が上昇する とによると考えられる
(表 2 )
Figure imgf000009_0001
また、 比屈折率差 Δが 0 . 6付近よ り小さく なると、 利得は減少して いく。 これは、 比屈折率差 Δを小さ く しすぎると、 光増幅用光ファイバ の曲げによる損失増加が顕著になるためであると考えられる。 この考察 を裏付けるために、 本発明者は、 表 1 に示した光増幅用光ファイバの内 で、 比屈折率差が 0 . 3 、 0 . 6 、 1 . 0 %の光増幅用光ファイバにお いて、 曲げ半径 1 2 . 5 m mの時の波長 1 5 8 0 n mにおける曲げ損失 を測定した。 この結果を図 2に〇によ り示している。 この結果から、 比 屈折率差が 0 . 6 %よ り小さ く なる と曲げによる損失増加が発生してい ること力 Sわ力 る。
そして、 波長 1 . 5 8 μ mにおける利得の最大値からの利得の低下量 が 3 d B以下となる領域は、 前記比屈折率差 Δが 0 . 3 %以上 1 %以下 であり、 この光増幅用光フアイバを波長分割多重光伝送に適用すること によって、 少なく とも L一 B A N Dにおいて適切な利得を得るための光 増幅用光ファイバの長さを短くするこ とができると考えられるので、 本 実施形態例では、 前記比屈折率差 Δを 0 . 3 %以上 1 %以下と した。
なお、 本実施形態例では、 クラ ッ ド 5は、 S i O 2によ り形成したが 、 フッ素を添加した F— S i 0 2によ り クラ ッ ド 5 を形成し、 屈折率プ 口ファイルを第 1 図の鎖線に示す屈折率プロファイルと してもよい。 こ のよ う にクラ ッ ド 5にフッ素を添加すると、 コア 1 に添加するゲルマ二 ゥムの添加量を小さ く しても、 コア 1 のクラ ッ ド 5 に対する比屈折率差 厶を同じ値とするこ とができる。
本実施形態例によれば、 上記検討結果に基づいてコァ 1 のクラ ッ ド 5 に対する比屈折率差 Δを 0 . 3 %以上 1 %以下と したものであるから、 少なく と も L _ B A N Dにおける利得が高い光増幅用光ファイバとする ことができる。 したがって、 本実施形態例の光増幅用光ファイバを波長 分割多重光伝送に適用すると、 従来よ り短い長さで少なく と も L 一 B A N Dの信号光を増幅できるために、 雑音指数や偏波モー ド分散 ( P M D ) の増加、 非線形光学効果、 波長分散の累積などの問題を抑制でき、 コ ス トの低減も図ることができる。
なお、 本実施形態例では、 L一 B A N Dにおける増幅特性を示したが 、 従来の光増幅用光ファイバよ り比屈折率差 Δが低いことによ り 、 C— B A N Dにおいても同様の効果を発揮する。
次に、 本発明の第 2実施形態例について説明する。 第 2実施形態例は 、 第 1 図の実線に示す屈折率プロファイルを有し、 比屈折率差 Δは 0 . 3 %以上 1 %以下と成している。 また、 本第 2実施形態例の光増幅用光 ファイバは、 コア径を、 光増幅の励起光波長におけるモー ドフィールド 径とコア径との関係を示す特性ライン上で、 モー ドフィールド径が最小 となる位置のコア径以上のコア径値と したこ とを特徴と している。
本発明者は、 本第 2実施形態例における光増幅用光ファィバの構成を 特定するために、 表 3 に示すよ う に、 コア組成を E r — A 1 2 0 3— G e O 2— S i O 2、 ク ラ ッ ド組成を S i O 2と し、 エルビウムをコァ全域 に添加し、 その濃度を 1 0 0 0 111と し、 クラ ッ ド 5に対するコ ァ 1 の比屈折率差 Δを 1 . 0 %と し、 コア径をパラメータ と して表 3に 示す各値と した光増幅用光ファイバを試作し、 この各試作光増幅用光フ ァィバの波長 1 . 5 8 μ mにおける光ファィバ単位長さ当たり の利得を 測定した。 なお、 第 2実施形態例では、 各試作光増幅用光ファイバの長 さは、 利得が最大となる長さ と し、 それ以外は上記第 1 実施形態例と同 様の方法によ り、 各試作光増幅用光ファイバの波長 1 . 5 8 mにおけ る利得を測定した。
(表 3 )
Figure imgf000011_0001
の結果が表 4に示されている。
(表 4 )
Figure imgf000011_0002
この表 4から明らかなよ う に、 コア径が大き く なるにしたがって波長 1 . 5 8 μ mにおける単位長さ当たりの利得は増加している。 これは、 コア径が大き く なるにつれて、 光増幅用光ファ バを伝搬する光モー ド 分布とエルビゥムイオンの分布プロファイルとの重なり積分が増加する ため、 光ファイバ単位長さ当たりのエルビウムイオンによるエネルギー 吸収量が増加し、 その結果、 光ファイバ単位長さ当たりの利得が上昇し たものと考えられる。
そこで、 この考察を裏付けるために、 本発明者は、 表 3 に示した光増 幅用光ファイバにおいて、 エルビウム分布プロファイルと励起光のモー ド分布との重なり積分と コア径との関係を求めた。 その結果が第 3図の 特性線 a に示されている。
また、 第 3図の特性線 a に示す、 エルビウム分布プロファイルと励起 光のモ一 ド分布との重なり積分 Γは、 エルビウムが第 1 図のプロフアイ ルのコア 1 の領域に一様に分布しているものと仮定し、 また、 光増幅用 光ファイバ中を伝搬する光モー ド分布をガウシアン分布である と近似し て、 次式 ( 2 ) によ り計算して求めた。 なお、 式 ( 2 ) において、 a は コア 1 の半径、 MF Dは、 コア 1 の径 (直径) に対応するモー ドフィー ル ド径の計算値を示す。
Γ = 1 - e X p { - ( 2 a /MF D) 2 } ( 2 )
また、 上記の式 ( 2 ) よ り 、 コア径とモー ドフィ ール ド径との関係に よ り重なり積分が決定されるため、 上記関係と共に、 光増幅器の励起光 波長である 1 . 4 8 Ai mでのモー ドフィールド径と コア径との関係も求 め、 第 3図の特性線 bに示した。 第 3図の特性線 bに示すモー ドフィー ル ド径の計算値は、 光増幅用光ファイバにおけるコアが第 1図に示すよ うなステップ型プロファイルであると仮定して、 励起光波長での電界分 布を数値計算し、 Petermannllの定義によ り求めた。 なお、 第 3図には 、 モー ドフィールド径の実測値をきによ り示している。
第 3図から明らかなよ うに、 エルビウム分布プロファイルと励起光の モー ド分布との重なり積分は、 コア径が大き く なるにつれて大き く なる 。 また、 モー ドフィール ド径はコア径に対して、 下に凸の曲線を示し、 M F Dを最小にするコア径が存在する。 励起効率の観点からは M F Dが 最小の領域の方が、 励起密度が高いため好ましいが、 重なり積分は小さ く 、 吸収値は小さい。 したがって、 長さ当 り の利得を上昇させるこ とを 鑑みた場合、 MF Dを最小とするコア径よ り も大きく設定し、 重なり積 分を大き く した方が結果的に利得係数が向上することになる。 そこで、 本実施形態例では、 前記の如く 、 コア径を特性線 b上で、 モー ドフィー ルド径が最小となる位置のコァ径値以上の値と した。
第 2実施形態例は、 上記第 1実施形態例と同様に、 第 1 図に示す屈折 率プロファイルを有し、 クラ ッ ド 5に対するコァ 1 の比屈折率差を 0 .
3 %以上 1 %以下と したものであるから、 上記第 1実施形態例と同様の 効果を奏することができる。 なお、 本第 2実施形態例において、 クラ ッ ド 5はフッ素を添加した F— S i 〇 2によ り形成してもよレ、。
また、 本第 2実施形態例は、 上記検討に基づき、 コア径を、 上記特性 線 b上で、 モー ドフィール ド径が最小となる点のコァ径の値以上の値と したものであるから、 エルビウム分布プロファイルと励起光のモー ド分 布との重なり積分を大き く して、 光フアイバ単位長さ当たりのエルピウ ムの吸収量を大き く し、 よ り一層確実に、 単位長さ当 り の利得を大きく することができる。
なお、 本発明は上記各実施形態例に限定されるこ とはなく 、 様々な実 施の態様を採り得る。 例えば、 上記各実施形態例では、 コア組成を E r - A 1 2 O a - G e O 2 - S i 0 2と し、 ク ラ ッ ドの組成を S i 0 2また は F— S i O 2と したが、 コア組成ゃクラ ッ ド組成は特に限定されるも のではなく 、 コア 1 にエルビウムを添加した状態で、 クラ ッ ド 5に対す るコア 1 の比屈折率差を 0 . 3 %以上 1 %以下とすればよい。
また、 上記各実施形態例では、 エルビウム濃度を 1 0 0 0 w t p p m と したが、 エルビウム濃度は特に限定されるものでなく適宜設定される ものであり、 将来、 光ファイバのエルビウム濃度を 1 0 0 O w t p p m よ り も大きく できるよ うになった場合には、 エルビウム濃度をよ り大き くするこ とによ り、 単位長さあたりの利得をさ らに大き くすることがで さる。
さらに、 上記各実施形態例では、 第 1 図に示すよ うなステップ型の屈 折率分布と したが、 屈折率分布形状は特に限定されるものではなく 、 適 宜設定されるものであり 、 例えば、 周知の W型やセグメ ン トコア型の屈 折率分布のよ う に、 コア 1 とクラッ ド 5 との間に、 隣り合う領域とは屈 折率が異なる屈折率領域を有していてもよい。
産業上の利用分野
以上のよ う に、 本発明に係る光増幅用光ファイバは、 光通信等におい て、 L一 B A N Dの光波長信号を増幅する光増幅器の光ファイバと して 用いるのに適している。

Claims

請 求 の 範 囲
1 . 少なく と もコアにエルビウムが添加されている光増幅用光フアイ バであって、 前記コアの外周側に該コアよ り も屈折率が小さいクラ ッ ド を形成し、 該クラッ ドに対する前記コアの比屈折率差を 0 . 3 %以上 1 %以下と したことを特徴とする光増幅用光ファイバ。
2 . 光増幅用光ファイバのコア径は、 光増幅の励起光波長におけるモ 一ドフィール ド径と コア径との関係を示す特性ライン上でモー ドフィ一 ルド径が最小となる位置のコア径以上のコア径値と した請求の範囲第 1 項記載の光増幅用光ファィバ。
PCT/JP2000/008201 1999-11-26 2000-11-21 Fibre optique pour amplification optique WO2001039339A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA002348645A CA2348645A1 (en) 1999-11-26 2000-11-21 Light amplifying optical fiber
EP00976391A EP1152502A1 (en) 1999-11-26 2000-11-21 Optical fiber for optical amplifying
US09/897,140 US20020003937A1 (en) 1999-11-26 2001-07-03 Light amplifying optical fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/335527 1999-11-26
JP33552799 1999-11-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/897,140 Continuation US20020003937A1 (en) 1999-11-26 2001-07-03 Light amplifying optical fiber

Publications (1)

Publication Number Publication Date
WO2001039339A1 true WO2001039339A1 (fr) 2001-05-31

Family

ID=18289581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/008201 WO2001039339A1 (fr) 1999-11-26 2000-11-21 Fibre optique pour amplification optique

Country Status (4)

Country Link
US (1) US20020003937A1 (ja)
EP (1) EP1152502A1 (ja)
CA (1) CA2348645A1 (ja)
WO (1) WO2001039339A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1421418A2 (en) * 2001-08-02 2004-05-26 Corning Incorporated High absorption erbium doped amplifying optical fiber
JP2019121712A (ja) * 2018-01-09 2019-07-22 日本電信電話株式会社 光増幅器の励起光パワー及び利得過渡応答の計算方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006035722A1 (ja) * 2004-09-29 2008-05-15 旭硝子株式会社 非線形ファイバ、波長変換方法および波長変換器
US8611002B2 (en) * 2009-09-24 2013-12-17 Gavin P. Frith Optical fiber lasers and amplifiers and methods for providing optical gain
FR2952634B1 (fr) * 2009-11-13 2011-12-16 Draka Comteq France Fibre en silice dopee en terre rare a faible ouverture numerique
DK2765661T3 (en) 2011-10-04 2019-03-18 Furukawa Electric Co Ltd MULTI-CORN OPTICAL AMPLIFIER FIBER AND MULTI-CORN OPTICAL FIBER AMPLIFIER.
EP3709177B1 (en) * 2019-03-13 2021-03-03 Axis AB Serial peripheral interface master

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348225A (ja) * 1989-07-17 1991-03-01 Furukawa Electric Co Ltd:The 光増幅用ファイバ
US5027079A (en) * 1990-01-19 1991-06-25 At&T Bell Laboratories Erbium-doped fiber amplifier
JPH04238836A (ja) * 1991-01-09 1992-08-26 Nippon Telegr & Teleph Corp <Ntt> 光増幅器用ファイバ
EP0883219A2 (en) * 1997-06-05 1998-12-09 The Furukawa Electric Co., Ltd. Optical fiber for optical amplification and optical amplifier using the optical fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348225A (ja) * 1989-07-17 1991-03-01 Furukawa Electric Co Ltd:The 光増幅用ファイバ
US5027079A (en) * 1990-01-19 1991-06-25 At&T Bell Laboratories Erbium-doped fiber amplifier
JPH04238836A (ja) * 1991-01-09 1992-08-26 Nippon Telegr & Teleph Corp <Ntt> 光増幅器用ファイバ
EP0883219A2 (en) * 1997-06-05 1998-12-09 The Furukawa Electric Co., Ltd. Optical fiber for optical amplification and optical amplifier using the optical fiber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1421418A2 (en) * 2001-08-02 2004-05-26 Corning Incorporated High absorption erbium doped amplifying optical fiber
US6819846B2 (en) 2001-08-02 2004-11-16 Corning Incorporated High absorption erbium doped amplifying optical fiber
EP1421418A4 (en) * 2001-08-02 2006-06-21 Corning Inc FLAVORED OPTICAL REINFORCEMENT FIBER WITH HIGH ABSORPTION
JP2019121712A (ja) * 2018-01-09 2019-07-22 日本電信電話株式会社 光増幅器の励起光パワー及び利得過渡応答の計算方法

Also Published As

Publication number Publication date
EP1152502A1 (en) 2001-11-07
CA2348645A1 (en) 2001-05-31
US20020003937A1 (en) 2002-01-10

Similar Documents

Publication Publication Date Title
JP6348535B2 (ja) ハイパワー・ダブルクラッド(dc)・ポンプ・エルビウム・ドープ・ファイバ増幅器(edfa)
JP3803310B2 (ja) 光ファイバ増幅器
US6538806B2 (en) Optical fiber for optical amplifier and fiber optic amplifier
US7154663B2 (en) Dispersion compensating fiber for S-band discrete Raman amplifier
JP3369158B2 (ja) 光増幅用光ファイバ及び光ファイバ増幅器
WO2001039339A1 (fr) Fibre optique pour amplification optique
EP0883219A2 (en) Optical fiber for optical amplification and optical amplifier using the optical fiber
US7206486B2 (en) Optical amplification fiber, optical fiber amplifier, and optical communication system
US6778748B2 (en) Optical fiber, dispersion compensator using the same, and optical transmission system
KR20060032696A (ko) 광섬유 및 이를 이용한 광섬유 증폭기
JP4142422B2 (ja) 光ファイバ
JP4532079B2 (ja) 光ファイバ
KR100826053B1 (ko) 파장분할다중 광전송 시스템용 광섬유, 이를 이용한광전송선 및 광통신 시스템
US6937810B2 (en) Amplifying optical fiber, optical fiber amplifier and optical transmission system
WO2023157178A1 (ja) 増幅用光ファイバ、光増幅器及び光増幅器を制御する方法
WO2015190533A1 (ja) 光ファイバおよび光伝送システム
Sugimoto Er-doped fiber and highly nonlinear fiber based on bismuth-oxide-based glasses

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 540899

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2000976391

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2348645

Country of ref document: CA

Ref country code: CA

Ref document number: 2348645

Kind code of ref document: A

Format of ref document f/p: F

AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 09897140

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2000976391

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000976391

Country of ref document: EP