WO2001038022A1 - Procede de coulee continue verticale des metaux utilisant des champs electromagnetiques et installation de coulee pour sa mise en oeuvre - Google Patents

Procede de coulee continue verticale des metaux utilisant des champs electromagnetiques et installation de coulee pour sa mise en oeuvre Download PDF

Info

Publication number
WO2001038022A1
WO2001038022A1 PCT/FR2000/003191 FR0003191W WO0138022A1 WO 2001038022 A1 WO2001038022 A1 WO 2001038022A1 FR 0003191 W FR0003191 W FR 0003191W WO 0138022 A1 WO0138022 A1 WO 0138022A1
Authority
WO
WIPO (PCT)
Prior art keywords
meniscus
mold
casting
magnetic field
electromagnetic
Prior art date
Application number
PCT/FR2000/003191
Other languages
English (en)
Inventor
Jacqueline Etay
Marcel Garnier
Yves Delannoy
Jean-Marie Galpin
Jean-Yves Lamant
Pascal Gardin
Original Assignee
Usinor
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Usinor filed Critical Usinor
Priority to US10/129,727 priority Critical patent/US6619377B1/en
Priority to AU18676/01A priority patent/AU778670C/en
Priority to BR0015748-1A priority patent/BR0015748A/pt
Priority to CA002391235A priority patent/CA2391235C/fr
Priority to EP00981421A priority patent/EP1239981B1/fr
Priority to JP2001539620A priority patent/JP3904226B2/ja
Priority to DE60003945T priority patent/DE60003945T2/de
Priority to AT00981421T priority patent/ATE245068T1/de
Publication of WO2001038022A1 publication Critical patent/WO2001038022A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields

Definitions

  • the invention relates to the continuous casting of metals. More specifically, it relates to the electromagnetic devices implanted in the continuous casting ingot molds acting on the liquid metal present in said ingot molds.
  • the object of the invention is to propose a process and an installation for continuous casting of metals making it possible to satisfy the productivity and quality objectives expected by users of continuous casting machines for metals, in particular steel.
  • the subject of the invention is a process for the vertical continuous casting of metal products in a mold with cooled assembled plates, according to which the meniscus zone of liquid metal present in the mold is subjected to the action of an axial alternating magnetic field, collinear with the direction of casting, tending to impose on said meniscus a general dome shape, characterized in that said zone of the meniscus is also subjected to a continuous magnetic field and directed transversely to the direction of casting to stabilize the shape of said meniscus.
  • the invention also relates to a vertical continuous casting installation for metals comprising an ingot mold with cooled assembled flat plates, two large ones facing each other to define a casting space, installation of the type comprising an electromagnetic coil supplied with alternating current and surrounding the ingot mold at the level of the meniscus of the liquid metal present therein in order to produce there an alternating magnetic field directed along the pouring axis, characterized in that it also comprises an electromagnetic inductor producing a continuous magnetic field passing through the large plates of the mold at the meniscus perpendicular to the casting axis
  • the invention consists in creating in the liquid metal present inside the continuous casting mold at least two electromagnetic fields acting simultaneously on said metal in the region of the meniscus.
  • One of these fields is an axial alternating field
  • the other is a transverse continuous field, both exerted at the meniscus. They are produced using inductors implanted or producing their effect in the vicinity of the meniscus.
  • the alternating field collinear with the casting axis is used to "dominate" the meniscus, that is to say to show the domed domed shape which it takes slightly naturally in contact with the wall of the mold, while the transverse continuous field acts as an electromagnetic brake to attenuate the local geometric irregularities on the surface of this meniscus resulting from the underlying convection movements generated by this alternating field.
  • the application of a single alternating magnetic field could be enough on its own to obtain a rounded and smooth meniscus.
  • the electromagnetic force generated on the liquid metal has, at the same time, - a surface component of confinement which tends to push back the periphery of the meniscus far from the wall of the mold, thus to "dig” it in edge by smoothing it surface. This force is especially active at high frequency.
  • the problem is to manage to transfer to the cast metal sufficient electromagnetic energy through the copper ingot mold.
  • the frequency levels selected above 500 Hz
  • Such a measurement is complex to implement both on the electromagnetic plane because of the inevitable electrodynamic instabilities linked to the liquid nature of the final armature (the liquid metal within the ingot mold) on which one acts by the intermediate susceptor. what is the mold itself. It is also complex by the fact that the ingot mold is above all a bottomless vertical crystallizer whose lateral tightness must always be perfectly guaranteed, whose format must be geometrically stable (avoid the phenomena of swelling of the large faces) and whose cooling system is rigorously optimized. Such a segmentation of the ingot mold, of the large lateral faces in particular, would make it necessary to have to reconsider deeply an already proven conception of the ingot mold on the technological level and on the functional level.
  • a slab ingot mold acts naturally like a "cold crucible", but for medium frequencies.
  • most of the electromagnetic power delivered by an inductor is easily transferable to the molten metal through walls whose thickness rarely exceeds 40 or 45 mm.
  • the deformation of the meniscus resulting, as explained above, from the combination of the confining force and the convection of the metal leads to strong fluctuations in time of the "average" deformation of the meniscus.
  • a continuous magnetic field is applied directed perpendicular to the pouring axis which, also used at the meniscus, will act as an electromagnetic brake on the movements. convection of the underlying liquid metal generated by the centripetal force at 200 Hz of bulging of the meniscus and thereby leading to a smoothing effect of the meniscus on the surface.
  • FIG. 1 which schematically shows, viewed in longitudinal section, a mold for continuous casting of steel slabs according to the prior art
  • Figure 2 which shows schematically in perspective a mold for continuous casting of steel slabs according to the invention
  • Figure 3 which schematically shows the same mold according to the invention seen in longitudinal section
  • Figure 4 which shows schematically in perspective a first variant of the previous ingot mold
  • Figure 5 which shows a configuration of the mold making it very permeable to electromagnetic fields.
  • a conventional ingot mold 1 for continuous slab casting according to the prior art shown diagrammatically in FIG. 1 has four flat walls, of copper or copper alloy, energetically cooled by internal water circulation, namely two large facing walls 2, 3 -of which only one 2 is visible in FIG. 1- and two small walls 4, 5 for closing at the end.
  • the internal cooling means of the walls 2, 3, 4, 5 of the mold 1 (generally a lining defining vertical channels inside which water is circulated) have not been shown .
  • the mold 1 is oriented vertically thus defining a casting axis 11. During casting, it oscillates vertically at low amplitude as indicated by the arrow 6.
  • the mold is supplied with liquid steel 7 by a nozzle 8 made of refractory material mounted in the bottom of a distributor not shown constituting a reserve of liquid steel.
  • the liquid steel 7 introduced into the ingot mold 1 solidifies against the faces of the large cooled metal walls 2, 3, (and incidentally against the small end faces 4, 5) to form a solidified skin 9.
  • the thickness of the skin 9 increases as " as the slab 10 during solidification is extracted by the open bottom of the mold 1, in the direction of arrow 31, by known extraction means not shown.
  • the free surface 12 of the liquid steel 7 (usually called “meniscus") is covered by a covering slag essentially based on metal oxides, the functions of which, all useful for the casting operation, are multiple.
  • a covering slag essentially based on metal oxides, the functions of which, all useful for the casting operation, are multiple.
  • the cover slag is deposited on the surface 12 of the liquid steel 7 in powder form. It forms an upper layer 13 which remains in the solid state, while its lower layer 14, brought into contact of molten steel 7 is in the liquid state, which allows it to infiltrate between the solidified skin 9 and the walls of the mold.
  • a slag bead 15 that is to say a strip of cover slag which solidified in contact with the cooled metal walls 2, 3, 4, 5.
  • This bead of dairy 15 covers the entire perimeter of the mold and can have a significant maximum thickness, of the order of 10 to 20 mm.
  • the solidified skin 9 strikes the slag bead 15 during the ascent phases of the ingot mold 1.
  • a solidification horn 16 namely a curvature of the upper end of the skin solidified 9 towards the inside of the mold 1, as well as more or less deep oscillating wrinkles on the surface of the solidified cast product.
  • This solidification horn 16, and the associated oscillation wrinkle are privileged sites for the formation of segregations and surface cracks which degrade the quality of the final product, as well as for the trapping of non-metallic inclusions and of bubbles of gases which rise along the solidification front of the lower regions of the liquid steel 7.
  • a known remedy for these problems could consist of the imposition of an alternating electromagnetic field at a frequency between 100 and 100,000 Hz, preferably between 200 and 20,000 Hz, by means of a multispire coil surrounding the ingot mold 1 over its entire perimeter at the meniscus and therefore generating an alternating magnetic field along the pouring axis.
  • the device according to the invention shown diagrammatically in FIGS. 2 and 3, comprises such a coil 17 connected to an alternating current generator (not shown) operating at a frequency belonging to the previously mentioned range.
  • the electromagnetic field of the coil 17 generates currents induced in the liquid steel 7, in particular at the level of the meniscus 12.
  • the interactions between field and currents then generate an electromagnetic force whose effect at the level of the wall of the ingot mold is a centripetal effect 18 which digs the periphery of the meniscus and whose effect within the liquid metal 7 is a stirring effect which causes swelling in the center of the meniscus 12.
  • the characteristics of the coil 17 are chosen so as to generate an electromagnetic field with an intensity of 500 at 3000 Gauss near the walls of the mold in the meniscus area.
  • an alternating electromagnetic field as just described, also has shortcomings and drawbacks.
  • This alternating field by virtue of its repulsion and metal mixing effects in the meniscus area, generates disturbances of the meniscus surface whose frequency spectrum can be extended (from 0.05 Hz to several Hz).
  • the local agitation of the liquid steel by the rotational component of the alternating electromagnetic field can also contribute to it.
  • cover slag entrainments take place within the liquid steel 7 which deteriorate the inclusiveness of the slab 10.
  • the conditions of flowability of the slab 10 are also deteriorated, since the lubrication takes place irregularly.
  • This continuous magnetic field has the effect of stabilizing the surface of the liquid steel 7 present in the mold 1, in this case memsque 12, by damping its vibrations. It also stabilizes the position of the first solidification line on the perimeter inside the ingot mold and, in this way, reducing the risks of slag tearing due to electromagnetic stirring while generating sufficient stirring intensity to ensure washing of the solidification front.
  • this transverse direct magnetic field can be created by an electromagnet supplied with direct current by a generator (not shown). It consists of two coils 19, 20, with a common horizontal axis, facing one another on either side of the large faces 2, 3 of the mold, and each surrounding a pole piece 21, 22 made of soft ferromagnetic material or sheets of iron-silicon alloy.
  • the active face of the pole pieces 21, 22 turned opposite a large wall of the mold is left free and positioned as close as possible to the latter.
  • These active faces are formed by bolted stacking of sheets of iron-silicon alloy, according to the usual embodiment of the magnetic poles of induction machines, then rigidly attached to the body of the pole pieces.
  • the rear part of these is integral with a magnetic circuit, forming a cylinder head 23, which surrounds the ingot mold and which may even be constituted by the chassis of the casting machine, if necessary.
  • the coils are wound in the same direction so that the pole pieces 21, 22 have active magnetic faces having polarities of opposite signs.
  • FIG. 2 the part of the yoke 23 surrounding the small wall 4 of the ingot mold 1, closest to the observer, has been sectioned, so as to make the coil 17 visible.
  • This design makes it possible to reduce the magnetic field losses by channeling the lines of force and concentrating them at the level of the pole pieces 21, 22, where the continuous electromagnetic field, of mainly horizontal direction, crosses the ingot mold 1 and the liquid metal 7.
  • the intensity of the magnetic field in the center of the mold will preferably be between 0.2 and 1 Tesla over a height of the order of 100 to 200 mm in the meniscus area.
  • This magnetic yoke 23 may be made of solid material so as to ensure the rigidity and the mechanical solidity of the assembly, sufficient to allow the support of the pole pieces 21, 22. It will moreover be advantageous to provide modular and interchangeable elements, also of laminated structure, intended to extend the active faces of the pole pieces 21 and 22. Such an arrangement will make it possible, on the basis of an electromagnet of standard size, to be able to systematically minimize the air gap separating it from the walls 2 and 3 of the ingot mold whatever the format to be cast.
  • the continuous magnetic field thus created interacts with the velocity field in liquid steel 7.
  • Induced currents appear in the liquid metal 7, determined by the vector product of velocity and magnetic induction.
  • these induced currents interact with the magnetic field that gave them birth to create a electromagnetic force, of Laplace, which here is a force of braking of the flows of the liquid steel 7.
  • Laplace is a force of braking of the flows of the liquid steel 7.
  • the nozzles 8 usually used in continuous casting of steel slabs have side vents 24, 24 'through which the molten steel enters the mold 1, which are oriented towards the small walls 4, 5 of the mold.
  • the liquid steel 7 Upon its penetration into the ingot mold, the liquid steel 7 therefore has the main component of its speed perpendicular to the transverse continuous magnetic field. This also produces a braking effect on this component, with the advantageous consequence that the steel supply jets leaving the nozzle 8 descend less deeply into the liquid well.
  • a better homogeneity of the solidification structure of the slab 10 is therefore obtained, and also a better inclusion cleanliness, since the non-metallic inclusions are entrained at a shallower depth than in the absence of a continuous electromagnetic field and therefore have more easy to decant on the surface and be trapped by the cover slag 13.
  • the washing effect of the solidification front by rising recirculating currents of liquid metal 7 is also reinforced.
  • the absence of solidification horns is also favorable for good subcutaneous inclusion cleanliness.
  • the movements associated with deformations of the liquid steel 7- dairy cover interface 12, 13 such as standing or traveling waves which affect the stability of the meniscus, they are also considerably reduced.
  • the pole terminations of the parts 21, 22 are preferably formed by an assembly of metal sheets oriented vertically and separated by sheets of insulating material, in a manner comparable to what is done to constitute the cores of electric transformers . If these poles are massive, the alternating axial magnetic field generated by the coil 17 can develop induced currents there which heat them by Joule effect, which could make it necessary to cool them.
  • a laminated structure on the contrary, naturally ensures their thermal maintenance at low temperature without the need to provide a forced cooling circuit. In addition, these induced currents can disturb the operation of the direct current generator supplying the coils 19, 20. It may however be sufficient to limit this laminated construction to the poles 21, 22 and to keep a cylinder head 23 made of solid material which, as already said, provides the whole solidity and rigidity required.
  • Figure 4 represents a variant of the invention, in which gradients of intensity of the continuous magnetic field are created at the level of the meniscus. Such a configuration can sometimes be advantageous for eliminating certain progressive waves at the free surface 12 of the liquid steel 7. To obtain such gradients, it is possible, as shown, to give a crenellated shape to the pole pieces 21, 22 surrounded by the coils 19, 20. So the pole piece
  • the pole piece 22 has two salient south poles 27, 28 arranged opposite the two north poles 25, 26. As the arrows 29, 30 symbolize, it is between these salient poles 25, 27 and 26, 28 that the continuous magnetic field has the highest intensity.
  • the location and the geometry of these salient poles 25, 26, 27, 28 are determined by the nature of the hydrodynamic disturbances to be eliminated, which themselves depend on the geometry of the cast product 10 and the conditions of supply of liquid metal 7 of the mold 1.
  • the distance between the large walls 2, 3 of the ingot mold is most often of the order of 200 -300 mm, or even less in thin slab casting installations. It is therefore possible to create without special difficulties a magnetic field whose effects are felt from one large wall 2, 3 to another, and which also acts in the vicinity of small walls 4, 5 if, as shown, the parts polar 21,
  • the walls of the ingot mold 1 can be divided vertically, over at least the part of its height subjected to said field, into a plurality of sectors 43 separated by a material of insulating jointing 44, this in order to counteract the self-induction effect of the mold itself with respect to the alternating axial magnetic field generated by the encircling coil 1 7 and thus improve the electrical efficiency of the installation.
  • the frequency of the alternating current supplying the coil 17 to create the axial alternating magnetic field is normally between 100 and 100,000 Hz.
  • the low frequency range 100 to 2,000 Hz
  • the phases in which the maximum intensity of the currents has a minimum value allow damping very low frequency disturbances affecting the stability of the surface 12 of the liquid steel 7 and the line of first solidification of the metal poured into the mold.
  • the pulsed current cycles follow one another at a frequency (called "pulse frequency") of 1 to 15 Hz, preferably 5 to 10 Hz.
  • the damping effect of disturbances in meniscus level by the magnetic field continuous axial is attributed to the combination of two actions: a braking action on the stirring flows generated by the rotational part of the electromagnetic forces due to the alternating field;

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

Selon ce procédé, on soumet conjointement le ménisque du métal liquide présent dans la lingotière à l'action d'un champ électromagnétique alternatif axial tendant à lui conférer une forme générale en dôme et à l'action d'un champ magnétique continu transversal destiné à calmer l'agitation superficielle du ménisque. L'installation de mise en oeuvre comprend une lingotière (1) à plaques assemblées refroidies (2,3 et 4,5) pour la coulée de brames métalliques, une bobine à courant alternatif (17) entourant la lingotière au niveau de ménisque (12) de métal liquide pour produire un champ magnétique axial, colinéaire à l'axe de coulée (11), et un inducteur à champ magnétique continu traversant les grandes plaques de la lingotière au niveau du ménisque (12) perpendiculairement à l'axe de coulée.

Description

PROCEDE DE COULEE CONTINUE VERTICALE DES METAUX UTILISANT DES CHAMPS ELETROMAGNETIQUES ET INSTALLATION DE COULEE
POUR SA MISE EN ŒUVRE
L'invention concerne la coulée continue des métaux. Plus précisément, elle concerne les dispositifs électromagnétiques implantés dans les lingotières de coulée continue agissant sur le métal liquide présent dans lesdites lingotières.
L'utilisation de champs électromagnétiques pour influer sur les mouvements de l'acier liquide dans les lingotières de coulée continue de tout format est aujourd'hui classique. L'imposition de champs électromagnétiques tournants (cas de la coulée de blooms et de billettes de section carrée ou légèrement rectangulaire) ou glissants (cas de la coulée de brames de section rectangulaire dont la largeur est très supérieure à l'épaisseur) a pour principaux objectifs d'homogénéiser les structures de solidification sur l'ensemble de la section du produit, et d'améliorer l'état de surface du produit, ainsi que sa propreté inclusionnaire notamment au voisinage de sa surface. En coulée continue de brames, il est également connu d'imposer des champs électromagnétiques statiques dans la lingotière pour obtenir une stabilisation du ménisque (surface libre du métal en fusion dans le haut de la lingotière). Cette stabilisation permet d'augmenter la vitesse de coulée des produits, donc la productivité de la machine de coulée continue. Les dispositifs électromagnétiques permettant d'obtenir cet effet sont connus sous le nom de "freins électromagnétiques".
Les utilisations connues des champs électromagnétiques dans les lingotières de coulée continue n'ont, pour l'instant, pas suffi à résoudre d'une manière complètement satisfaisante tous les problèmes de qualité des produits coulés. Parmi ces problèmes persistants on peut citer : - l'amélioration de la qualité de surface des produits bruts de coulée, qui passe par la réduction du nombre de criques superficielles et de la profondeur des rides d'oscillation ; l'amélioration de la propreté inclusionnaire sous-cutanée du produit coulé, qui passe par une réduction de la taille des "cornes de solidification" qui se forment au cours des oscillations de la lingotière, ces cornes étant des sites potentiels de piégeage des inclusions et des bulles de gaz présentes dans le métal liquide dans la lingotière, et aussi par une suppression du captage des inclusions par le front de solidification, en profitant de l'effet de "lavage" de ce front par le métal liquide entraîné par le brassage électromagnétique (les mécanismes relatifs à ces problèmes seront décrits en détail plus loin) ;
- l'obtention d'une stabilité suffisante du memsque pour garantir une lubrification optimale de l'interface lingoti ère-métal solide par le laitier de couverture qui s'y infiltre à l'état liquide, pour que cette lubrification améliorée donne accès à des vitesses de coulée significativement supérieures aux vitesses usuelles.
La résolution satisfaisante de ces problèmes conduirait à une augmentation de la productivité de la machine de coulée et de l'ensemble de l'aciérie. En plus de l'augmentation de la vitesse de coulée déjà citée, elle diminuerait la fréquence des opérations d'écriquage (meulage de la surface du produit pour en supprimer les défauts) et augmenterait ainsi la proportion de produits ayant une qualité suffisante pour être expédiés directement au laminage à chaud. Or, aucune technique actuellement connue ne permet d'atteindre simultanément de façon optimale tous les objectifs qualitatifs précités. De plus, les techniques connues pour permettre de satisfaire l'un ou l'autre de ces objectifs sont soit onéreuses, soit nécessitent une mise au point délicate car elles sont très sensibles aux autres conditions de coulée. Parmi eux, outre les procédés précédemment cités mettant en œuvre des champs magnétiques, on peut citer les systèmes imprimant à la lingotière des oscillations non-sinusoïdales, les lingotières gaufrées à rugosité de face chaude contrôlée, les laitiers de couverture à composition optimisée, etc.
Le but de l'invention est de proposer un procédé et une installation de coulée continue des métaux permettant de satisfaire les objectifs de productivité et de qualité attendus par les utilisateurs de machines de coulée continue des métaux, notamment d'acier.
Avec ces objectifs en vue, l'invention a pour objet un procédé de coulée continue verticale de produits métalliques dans une lingotière à plaques assemblées refroidies, selon lequel on soumet la zone du ménisque de métal liquide présent dans la lingotière à l'action d'un champ magnétique alternatif axial, colinéaire à la direction de coulée, tendant à imposer audit ménisque une forme générale en dôme, caractérisé en ce que l'on soumet également ladite zone du ménisque à un champ magnétique continu et dirigé transversalement à la direction de coulée pour permettre de stabiliser la forme dudit ménisque.
L'invention a également pour objet une installation de coulée continue verticale des métaux comprenant une lingotière à plaques planes assemblées refroidies, dont deux grandes se faisant face pour définir un espace de coulée, installation du type comportant une bobine électromagnétique alimentée en courant alternatif et entourant la lingotière au niveau du ménisque du métal liquide qui y est présent afin d'y produire uri champ magnétique alternatif dirigé selon l'axe de coulée, caractérisée en ce qu'elle comporte également un inducteur électromagnétique produisant un champ magnétique continu traversant les grandes plaques de la lingotière au niveau du ménisque perpendiculairement à l'axe de coulée
Comme on l'aura compris, l'invention consiste à créer dans le métal liquide présent à l'intérieur de la lingotière de coulée continue au moins deux champs électromagnétiques agissant simultanément sur ledit métal dans la zone du ménisque. L'un de ces champs est un champ alternatif axial, l'autre est un champ continu transversal, tous deux s'exerçant au niveau du ménisque. Ils sont produits à l'aide d'inducteurs implantés ou produisant leur effet au voisinage du ménisque. Schématiquement parlant, le champ alternatif colinéaire à l'axe de coulée sert à "domifier" le ménisque, c'est à dire à accuser la forme bombée en dôme qu'il prend légèrement naturellement au contact de la paroi de la lingotière, alors que le champ continu transverse agit comme un frein électromagnétique pour atténuer les irrégularités géométriques locales à la surface de ce ménisque résultant des mouvements de convection sous-jacents générés par ce champ alternatif.
Théoriquement, l'application d'un champ magnétique alternatif unique pourrait suffire à lui seul à l'obtention d'un ménisque bombé et lisse. En effet, la force électromagnétique générée sur le métal liquide a, à la fois, - une composante surfacique de confinement qui tend à repousser la périphérie du ménisque loin de la paroi de la lingotière, donc à le "creuser" en bordure en le lissant en surface. Cette force est surtout active à haute fréquence.
- et une composante volumique de brassage qui, en raison de la configuration des mouvements de convection du métal liquide qu'elle procure (brassage en anneau avec remontée du métal au centre de la lingotière) "enfle" la partie centrale du ménisque. Cette force est en revanche surtout active à basse ou moyenne fréquence. C'est d'ailleurs pour cette raison qu'elle est à l'origine d'instabilités de surface. L'effet maximum de cette force de brassage est obtenu à moyenne fréquence, à savoir autour de 200 Hz pour fixer les idées, mais en tous cas inférieure à 500 Hz, quelque soit la nature ou l'épaisseur de la lingotière ou le format du produit métallurgique coulé.
Ce sont ces deux actions conjuguées - répulsion périphérique et brassage remontant au centre (lesquelles pourraient être obtenues à partir d'un même champ magnétique pulsatoire) qui confèrent au ménisque une forme bombée accusée recherchée.
Dans le même ordre d'idée, mais dans le but de solidifier le métal en confinement électromagnétique, c'est-à-dire hors de tout contact matériel avec la paroi refroidie d'un moule, il a déjà été proposé de créer un environnement magnétique au niveau de la lingotière constitué par la superposition de deux champs axiaux, c'est-à-dire tous deux dirigés selon l'axe de coulée, l'un étant périodique (le champ de confinement), l'autre étant constant pour produire des forces de vibration radiales dans le métal liquide confiné. Ces champs sont générés par des bobines individuelles encerclant la partie haute de la lingotière, l'une étant alimentée en courant alternatif sous une fréquence comprise entre 500 et 5000 Hz, l'autre étant alimentée en courant continu. Pour limiter l'effet de brassage du champ alternatif, il a même été proposé de rajouter une troisième bobine encerclante pour créer là où agissent déjà les deux précédentes un champ magnétique axial périodique supplémentaire à fréquence industrielle (EP-A 0100 289, ou l'article de Ch. Virves "Effects offorced electromagnetic vibrations during the solidification of aluminium alloys: Part II. Solidification in the présence ofcolinear variable and stationary magnetic fields paru dans la revue Metallurgical and materials transactions B, Vol. 27B, n° 3, 1er juin 1996, pages 457 à 464"). On retrouve par exemple ce type d'enseignement, quoique de manière très succincte en l'espèce, dans le document DE 35 17 733 (1986), lequel propose d'ailleurs de mettre en oeuvre, à côté d'un champ magnétique axial variable de confinement à haute fréquence, un champ continu qui peut être indifféremment axial ou transversal, mais devant agir sur toute la hauteur de la lingotière, ce qui conduit inévitablement à des montages électromagnétiques de complexité extrême au plan technologique.
Cela dit, quelque soit l'application visée, solidification sous confinement ou, à l'instar de la présente invention, maîtrise géométrique du ménisque, le problème qui se pose est de parvenir à transférer au métal coulé une énergie électromagnétique suffisante au travers de la lingotière en cuivre. Aux niveaux de fréquence retenus (sup. à 500 Hz), il faudrait en effet, en raison de l'effet d'écran magnétique qu'oppose la paroi métallique de la lingotière, la segmenter verticalement pour lui permettre de se comporter comme un "creuset froid électromagnétique" .
Une telle mesure est complexe à mettre en oeuvre à la fois sur le plan électromagnétique en raison des inévitables instabilités électrodynamiques liées à la nature liquide de l'induit final (le métal liquide au sein de la lingotière) sur lequel on agit par le suscepteur intermédiaire qu'est la lingotière elle-même. C'est complexe également par le fait que la lingotière est avant tout un cristallisoir vertical sans fond dont l'étanchéité latérale doit être toujours parfaitement assurée, dont le format doit être géométriquement stable (éviter les phénomènes de gonflement des grandes faces) et dont le circuit de refroidissement est rigoureusement optimisé. Une telle segmentation de la lingotière, des grandes faces latérales en particulier, obligerait à devoir reconsidérer profondément une conception déjà éprouvée de la lingotière sur le plan technologique et sur le plan fonctionnel.
En fait, en raison de sa construction en quatre plaques en cuivre ou alliage de cuivre assemblées dans les angles (deux grandes faces planes en regard et deux petites faces d'extrémités), une lingotière à brames agit naturellement à l'instar d'un "creuset froid", mais pour les fréquences moyennes. A 200 Hz, l'essentiel de la puissance électromagnétique délivrée par un inducteur est transférable sans difficulté au métal en fusion au travers des parois dont l'épaisseur dépasse rarement les 40 ou 45 mm. Mais, à cette fréquence, la déformation du ménisque résultant, comme expliqué ci-avant, de la combinaison de la force de confinement et de la convection du métal, conduit à des fluctuations fortes dans le temps de la déformée "moyenne" du ménisque. C'est pourquoi, conformément à une caractéristique essentielle de l'invention, on applique un champ magnétique continu dirigé perpendiculairement à l'axe de coulée qui, mis en oeuvre lui aussi au niveau du ménisque, va agir comme un frein électromagnétique sur les mouvements de convection du métal liquide sous-jacents générés par la force centripète à 200 Hz de bombement du ménisque et conduire de ce fait à un effet de lissage du ménisque en surface. L'invention sera bien comprise, et d'autres aspects et avantages apparaîtront mieux à la lecture de la description qui suit, donnée à titre d'exemple de réalisation de l'invention et en référence aux planches de dessins annexées sur lesquelles : la figure 1 qui montre schématiquement, vue en coupe longitudinale, une lingotière de coulée continue de brames d'acier selon l'art antérieur ; la figure 2 qui montre schématiquement en perspective une lingotière de coulée continue de brames d'acier selon l'invention ; la figure 3 qui montre schématiquement cette même lingotière selon l'invention vue en coupe longitudinale ; - la figure 4 qui montre schématiquement en perspective une première variante de la lingotière précédente ; la figure 5 qui montre une configuration de la lingotière la rendant très perméable aux champs électromagnétiques.
Sur les figures, les mêmes éléments sont désignés par des références identiques. Une lingotière classique 1 de coulée continue de brames selon l'art antérieur schématisée sur la figure 1 comporte quatre parois planes, en cuivre ou alliage de cuivre, énergiquement refroidies par circulation d'eau interne, à savoir deux grandes parois en regard 2, 3 -dont une seule 2 est visible sur la figure 1- et deux petites parois 4, 5 de fermeture en extrémité. Par souci de simplification, les moyens de refroidissement interne des parois 2, 3, 4, 5 de la lingotière 1 (généralement un chemisage définissant des canaux verticaux à l'intérieur desquels on fait circuler de l'eau) n'ont pas été représentés.
La lingotière 1 est orientée verticalement définissant ainsi un axe de coulée 11. En cours de coulée, elle oscille verticalement à faible amplitude comme indiqué par la flèche 6. La lingotière est alimentée en acier liquide 7 par une busette 8 en matériau réfractaire monté dans le fond d'un répartiteur non représenté constituant une réserve d'acier liquide. L'acier liquide 7 introduit dans la lingotière 1 se solidifie contre les faces des grandes parois métalliques refroidies 2, 3, (et accessoirement contre les petites faces d'extrémités 4, 5) pour former une peau solidifiée 9. L'épaisseur de la peau 9 va croissante au "fur et à mesure que la brame 10 en cours de solidification est extraite par le fond ouvert de la lingotière 1, dans la direction de la flèche 31, par des moyens d'extraction connus non représentés.
La surface libre 12 de l'acier liquide 7 (habituellement appelée "ménisque") est recouverte par un laitier de couverture à base essentiellement d'oxydes métalliques, dont les fonctions, toutes utiles à l'opération de coulée, sont multiples. En premier lieu, il arrête le rayonnement thermique émis par la surface 12 de l'acier liquide 7, et atténue ainsi son refroidissement. Surtout, il assure la lubrification de l'interface entre la peau solidifiée 9 et les parois 2, 3, 4, 5 de la lingotière 1, par le mécanisme suivant. Le laitier de couverture est déposé sur la surface 12 de l'acier liquide 7 sous forme pulvérulente. Il y forme une couche supérieure 13 qui demeure à l'état solide, alors que sa couche inférieure 14, mise au contact de l'acier en fusion 7, est à l'état liquide, ce qui lui permet de s'infiltrer entre la peau solidifiée 9 et les parois de la lingotière. C'est là qu'elle joue son rôle de lubrifiant. On note, cependant, la présence d'un cordon de laitier 15, c'est à dire d'une bande de laitier de couverture qui s'est solidifiée au contact des parois métalliques refroidies 2, 3, 4, 5. Ce cordon de laitier 15 parcourt tout le périmètre de la lingotière et peut présenter une épaisseur maximale significative, de l'ordre de 10 à 20 mm.
La présence du cordon de laitier 15, alliée aux mouvements d'oscillation verticale 6 de la lingotière, provoque l'apparition de défauts superficiels sur la brame 10 lors de sa solidification. La peau solidifiée 9 vient percuter le cordon de laitier 15 lors des phases de remontée de la lingotière 1. Il se forme ainsi ce qu'on appelle une "corne de solidification" 16, à savoir une incurvation de l'extrémité supérieure de la peau solidifiée 9 en direction de l'intérieur de la lingotière 1, ainsi que des rides d'oscillations plus ou moins profondes à la surface du produit coulé solidifié. Cette corne de solidification 16, et la ride d'oscillation associée, sont des sites privilégiés pour la formation de ségrégations et de criques superficielles qui dégradent la qualité du produit final, ainsi que pour le piégeage d'inclusions non-métalliques et de bulles de gaz qui remontent le long du front de solidification des régions inférieures de l'acier liquide 7.
Un remède connu à ces problèmes (cf. l'article intitulé "Improvement of surface quality of steel by electromagnetic mold" de H. Nakata, M. Kokita, M. Morisita et K. Ayata, dans Proceedings of the International Symposium on Electromagnetic Processing of Materials, 1994, Nagoya) pourrait consister en l'imposition d'un champ électromagnétique alternatif sous une fréquence comprise entre 100 et 100 000 Hz, de préférence entre 200 et 20 000 Hz, au moyen d'une bobine multispires entourant la lingotière 1 sur tout son périmètre au niveau du ménisque et générant donc un champ magnétique alternatif selon l'axe de coulée.
Le dispositif selon l'invention, représenté schématiquement sur les figures 2 et 3, comporte une telle bobine 17 connectée à un générateur de courant alternatif (non représenté) fonctionnant à une fréquence appartenant à la gamme précédemment citée. Le champ électromagnétique de la bobine 17 génère des courants induits dans l'acier liquide 7, notamment au niveau du ménisque 12. Comme déjà indiqué, les interactions entre champ et courants génèrent alors une force électromagnétique dont l'effet au niveau de la paroi de la lingotière est un effet centripète 18 qui creuse la périphérie du ménisque et dont l'effet au sein du métal liquide 7 est un effet de brassage qui provoque une tuméfaction au centre du ménisque 12. Plus la fréquence du champ électromagnétique est élevée, toutes choses étant égales par ailleurs, plus la pénétration du champ à l'intérieur de l'acier liquide 7 est faible, donc plus les forces électromagnétiques (dont l'intensité ne dépend pas de la fréquence du courant) se concentrent dans un volume périphérique restreint. Ainsi, dans la gamme de fréquences précitée, on obtient des forces de confinement 18 d'une intensité suffisante pour obtenir une répulsion de l'acier liquide 7 qui se creuse à cet endroit et par conséquent cesse d'être en contact avec le cordon de laitier 15.
On obtient ainsi une surface 12 en forme de dôme prononcé pour l'acier liquide 7 dans la lingotière 1. On parvient dès lors, comme montré sur la figure 3, à réduire, voire à supprimer les cornes de solidification 16, et aussi à réduire l'épaisseur du cordon de laitier 15 puisque la température de son environnement immédiat est plus élevée. Une autre conséquence est que le laitier de couverture à l'état liquide 14 a de bien meilleures possibilités de s'infiltrer entre la peau solidifiée 9 et les parois 2, 3, 4, 5 de la lingotière, ce qui améliore la lubrification et autorise donc des vitesses de coulée plus élevées que dans la pratique conventionnelle. Le niveau où débute la solidification de l'acier liquide 7 dans la lingotière est aussi mieux contrôlé et stable, ce qui contribue à améliorer l'état de surface de la brame 10. Enfin, on atténue l'effet des variations de pression induites dans le laitier de couverture liquide 14 par les oscillations de la lingotière 1 sur la partie supérieure de la peau solidifiée 7. On réduit ainsi fortement la formation des cornes de solidification, ce qui se traduit par une atténuation marquée, voire une disparition des rides d'oscillations à la surface de la brame 10.
Les caractéristiques de la bobine 17 (sa géométrie, son nombre de spires, sa hauteur totale, sa position par rapport au ménisque) et l'intensité du courant qui y circule sont choisies de manière à générer un champ électromagnétique d'une intensité de 500 à 3000 Gauss au voisinage des parois de la lingotière dans la zone du ménisque.
Cependant, l'imposition d'un champ électromagnétique alternatif, telle qu'on vient de la décrire, comporte aussi des insuffisances et des inconvénients. Ce champ alternatif, de par ses effets de répulsion et de brassage du métal dans la zone du ménisque, génère des perturbations de la surface du ménisque dont le spectre de fréquences peut être étendu (de 0,05 Hz à plusieurs Hz). L'agitation locale de l'acier liquide par la composante rotationnelle du champ électromagnétique alternatif peut aussi y contribuer. Dans ce cas, il se produit des entraînements de laitier de couverture au sein de l'acier liquide 7 qui détériorent la propreté inclusionnaire de la brame 10. Les conditions de coulabilïté de la brame 10 sont également détériorées, puisque la lubrification s'effectue de manière irrégulière. Il peut aussi y avoir des fluctuations de la ligne de localisation de la première solidification en lingotière entraînant alors des irrégularités de l'épaisseur solidifiée selon le périmètre intérieur de la lingotière.
Pour remédier à ces problèmes, selon l'invention, on superpose au champ électromagnétique alternatif colinéaire à l'axe de coulée un champ magnétique continu orienté transversalement à la direction de coulée de la brame 10, allant d'une grande paroi 2 de la lingotière à l'autre 3, et appliqué lui aussi au niveau du ménisque. Ce champ magnétique continu a pour effet de stabiliser la surface de l'acier liquide 7 présent dans la lingotière 1, en l'occurrence le memsque 12, par amortissement de ses vibrations. Il permet de stabiliser également la position de la ligne de première solidification sur le périmètre intérieur de la lingotière et, de la sorte, à réduire les risques d'arrachement de laitier dû au brassage électromagnétique tout en générant une intensité de brassage suffisante pour assurer le lavage du front de solidification. D'autre part, il ralentit la circulation du métal liquide dans la zone sous-jacente du ménisque, que cette circulation soit due aux forces électromagnétiques générées par le champ alternatif ou provenant des jets de métal liquide sortant de la busette 8.
Comme représenté sur les figures 2 et 3, ce champ magnétique continu transversal peut être créé par un électroaimant alimenté en courant continu par un générateur (non représenté). Il est constitué par deux bobines 19, 20, d'axe horizontal commun, en regard l'une de l'autre de part et d'autre des grandes faces 2, 3 de la lingotière, et entourant chacune une pièce polaire 21, 22 constituée d'un matériau ferromagnétique doux ou de feuilles d'alliage fer-silicium. La face active des pièces polaires 21, 22 tournée en regard d'une grande paroi de la lingotière est laissée libre et positionnée le plus près possible de celle-ci. Ces faces actives sont constituées par empilage boulonné de feuilles d'alliage fer- silicium, selon le mode habituel de réalisation des pôles magnétiques des machines à induction, puis rapporté rigidement sur le corps des pièces polaires. La partie arrière de celles-ci est solidaire d'un circuit magnétique, formant culasse 23, qui entoure la lingotière et qui peut même être constitué par le châssis de la machine de coulée, le cas échéant. Les bobines sont enroulées dans le même sens de manière que les pièces polaires 21, 22 présentent des faces magnétiques actives ayant des polarités de signes opposés. On notera que, sur la figure 2, la partie de la culasse 23 entourant la petite paroi 4 de la lingotière 1, la plus proche de l'observateur, a été sectionnée, de manière à rendre visible la bobine 17. Cette conception permet de diminuer les pertes de champ magnétique en canalisant les lignes de force et en les concentrant au niveau des pièces polaires 21, 22, où le champ électromagnétique continu, de direction principalement horizontale, traverse la lingotière 1 et le métal liquide 7. L'intensité du champ magnétique au centre de la lingotière sera comprise de préférence entre 0,2 et 1 Tesla sur une hauteur de l'ordre de 100 à 200 mm dans la zone du ménisque.
Cette culasse magnétique 23 peut être en matériau plein de manière à assurer la rigidité et la solidité mécanique de l'ensemble, suffisante pour permettre le support des pièces polaires 21, 22. Il sera d'ailleurs avantageux de prévoir des éléments modulables et interchangeables, de structure feuilletée également, destinés à prolonger les faces actives des pièces polaires 21 et 22. Une telle disposition permettra, sur la base d'un électroaimant de dimension standard, de pouvoir minimiser systématiquement l'entrefer le séparant des parois 2 et 3 de la lingotière quelque soit le format à couler.
Le champ magnétique continu ainsi créé interagit avec le champ de vitesse dans l'acier liquide 7. Des courants induits apparaissent dans le métal liquide 7, déterminés par le produit vectoriel de la vitesse et de l'induction magnétique. A leur tour, ces courants induits interagissent avec le champ magnétique qui leur a donné naissance pour créer une force électromagnétique, de Laplace, qui ici est une force de freinage des écoulements de l'acier liquide 7. De cette façon, on atténue fortement les mouvements de l'acier liquide 7 au voisinage du ménisque générés par le champ électromagnétique alternatif utilisé pour donner sa forme en dôme à la surface 12 de l'acier liquide 7 ce qui contribue à stabiliser les fluctuations de niveau du ménisque. En effet, les recirculations de métal liquide dues au brassage électromagnétique, et localisées près des parois de la lingotière dans la partie convexe du ménisque 12, présentent des composantes de vitesse perpendiculaires au champ magnétique continu, qui permet de les freiner efficacement. De plus, comme représenté sur la figure 3, les busettes 8 habituellement utilisées en coulée continue de brames d'acier ont des ouïes latérales 24, 24' par lesquelles l'acier en fusion pénètre dans la lingotière 1, qui sont orientées vers les petites parois 4, 5 de la lingotière. A sa pénétration dans la lingotière, l'acier liquide 7 a donc la principale composante de sa vitesse perpendiculaire au champ magnétique continu transversal. On réalise ainsi également un effet de freinage de cette composante, avec comme conséquence avantageuse le fait que les jets d'alimentation d'acier sortant de la busette 8 descendent moins profondément dans le puits liquide. On obtient donc une meilleure homogénéité de la structure de solidification de la brame 10, et aussi une meilleure propreté inclusionnaire, puisque les inclusions non- métalliques sont entraînées à une profondeur plus faible qu'en l'absence de champ électromagnétique continu et ont donc plus de facilité pour décanter en surface et y être piégées par le laitier de couverture 13. L'effet de lavage du front de solidification par des courants de recirculation remontante de métal liquide 7 est également renforcé. L'absence de cornes de solidification est aussi favorable à une bonne propreté inclusionnaire sous- cutanée. Quant aux mouvements associés aux déformations de l'interface acier liquide 7- laitier de couverture 12, 13 tels que les ondes stationnaires ou progressives qui affectent la stabilité du ménisque, ils sont eux aussi considérablement réduits.
Comme déjà dit, les terminaisons polaires des pièces 21, 22 sont, de préférence, formés par un assemblage de feuilles métalliques orientées verticalement et séparées par des feuilles de matériau isolant, de manière comparable à ce qui se fait pour constituer les noyaux de transformateurs électriques. Si ces pôles sont massifs, le champ magnétique alternatif axial généré par la bobine 17 peut y développer des courants induits qui les chauffent par effet Joule, ce qui pourrait rendre nécessaire leur refroidissement. Une structure feuilletée, au contraire, assure naturellement leur maintien thermique à basse température sans qu'il soit nécessaire de prévoir un circuit de refroidissement forcé. De plus, ces courants induits peuvent perturber le fonctionnement du générateur de courant continu alimentant les bobines 19, 20. Il peut cependant être suffisant de limiter cette construction feuilletée aux pôles 21, 22 et de conserver une culasse 23 en matériau massif qui, comme déjà dit, assure à l'ensemble la solidité et la rigidité requise.
La distribution spatiale du champ magnétique dépend de la géométrie des pièces polaires 21, 22 et du mode de connexion électrique des bobines 19, 20. La figure 4 représente une variante de l'invention, dans laquelle on crée des gradients d'intensité du champ magnétique continu au niveau du ménisque. Une telle configuration peut parfois être avantageuse pour éliminer certaines ondes progressives à la surface libre 12 de l'acier liquide 7. Pour obtenir de tels gradients, on peut, comme représenté, conférer une forme crénelée aux pièces polaires 21, 22 entourées par les bobines 19, 20. Ainsi, la pièce polaire
21 présente deux pôles nord saillants 25, 26 et la pièce polaire 22 présente deux pôles sud saillants 27, 28 disposés face aux deux pôles nord 25, 26. Comme les flèches 29, 30 le symbolisent, c'est entre ces pôles saillants 25, 27 et 26, 28 que le champ magnétique continu a l'intensité la plus élevée. L'emplacement et la géométrie des ces pôles saillants 25, 26, 27, 28 sont déterminées par la nature des perturbations hydrodynamiques à éliminer, qui dépendent elles-mêmes de la géométrie du produit coulé 10 et des conditions d'alimentation en métal liquide 7 de la lingotière 1.
En coulée continue de brames, la distance entre les grandes parois 2, 3 de la lingotière est le plus souvent de l'ordre de 200 -300 mm, voire moins sur les installations de coulée de brames minces. Il est donc possible de créer sans difficultés particulières un champ magnétique dont les effets se font sentir d'une grande paroi 2, 3 à l'autre, et qui agit également au voisinage des petites parois 4, 5 si, comme représenté, les pièces polaires 21,
22 s'étendent sur toute la largeur de la lingotière 1. En revanche, créer un champ magnétique qui traverserait la lingotière 1 d'une petite paroi 4, 5 à l'autre serait plus difficile et généralement inefficace, car ces petites parois 4, 5 sont distantes de 1 à 2 m ou davantage, donc très éloignées l'une de l'autre. Mais dans le cas de la coulée de produits de section carrée ou faiblement rectangulaire (blooms ou billettes), surtout s'ils sont de grandes dimension (300 à 400 mm de côté par exemple), il peut être souhaitable de créer deux champs magnétiques continus horizontaux, perpendiculaires chacun à deux côtés opposés de la lingotière, au moyen d'électro-aimants semblables, par exemple, à ceux qui viennent d'être décrits. Ces deux champs n'interagissent pas l'un sur l'autre, car chacun agit sur une composante de la vitesse de l'acier liquide 7 d'orientation différente.
Comme montré sur la figure 5, de manière connue déjà évoquée au début," on peut diviser verticalement les parois de la lingotière 1, sur au moins la partie de sa hauteur soumise audit champ, en une pluralité de secteurs 43 séparés par un matériau de jointoiement isolant 44, ce afin de contrecarrer l'effet de self-induction de la lingotière elle- même à l'égard du champ magnétique alternatif axial généré par la bobine encerclante 1 7 et améliorer ainsi le rendement électrique de l'installation.
Comme on l'a dit, la fréquence du courant alternatif alimentant la bobine 17 pour créer le champ magnétique alternatif axial est normalement comprise entre 100 et 100 000 Hz. Dans la gamme des basses fréquences (100 à 2000 Hz, il est possible d'utiliser des courants alternatifs "puisés", c'est à dire dont l'intensité maximale varie périodiquement entre une phase à une valeur maximale et une autre à valeur minimale qui peut atteindre zéro. Les phases dans lesquelles l'intensité maximale des courants a une valeur minimale permettent d'amortir les perturbations à très basse fréquence affectant la stabilité de la surface 12 de l'acier liquide 7 et la ligne de première solidification du métal coulé dans la lingotière. De manière générale, les cycles de courant puisé se succèdent à une fréquence (dite "fréquence de puise") de 1 à 15 Hz, préférentiellement 5 à 10 Hz. L'effet d'amortissement des perturbations de niveau du ménisque par le champ magnétique continu axial est attribué à la combinaison de deux actions : une action de freinage sur les écoulements de brassage générés par la partie rotationnelle des forces électromagnétiques dues au champ alternatif ;
- une action directe de freinage sur la vitesse de pulsation des ondes de surface sur le ménisque.
Les données numériques qui ont été indiquées sont valables pour l'application de l'invention à la coulée continue de l'acier. Toutefois, l'invention est bien entendu applicable à la coulée continue d'autres métaux que l'acier, lorsque cette coulée est effectuée sur des installations similaires à celles qui ont été décrites.

Claims

REVENDICATIONS
1) Procédé de coulée continue verticale de produits métalliques dans une lingotière à plaques assemblées refroidies, selon lequel on soumet la zone du ménisque de métal liquide présent dans la lingotière à l'action d'un champ magnétique alternatif axial, colinéaire à la direction de coulée, tendant à imposer audit ménisque une forme générale en dôme, caractérisé en ce que l'on soumet également ladite zone du ménisque (12) à un champ magnétique continu et dirigé transversalement à la direction de coulée (11) pour permettre de stabiliser la forme dudit ménisque (12).
2) Procédé selon la revendication 1 caractérisé en ce que ledit champ électromagnétique alternatif axial est généré par un courant alternatif puisé, avec une fréquence de puise comprise entre 1 et 15 Hz, préférentiellement entre 5 et 10 Hz.
3) Installation pour la coulée continue verticale des métaux comprenant une lingotière (1) à plaques assemblées refroidies (2,3, et 4,5), dont deux grandes (2,3) en regard pour définir un espace de coulée, installation du type comportant une bobine électromagnétique (17) alimentée en courant alternatif et entourant la lingotière au niveau du ménisque (12) du métal liquide qui y est présent afin d'y produire un champ magnétique alternatif dirigé selon l'axe de coulée (11), caractérisée en ce qu'elle comporte également un inducteur électromagnétique (19 à 23) produisant un champ magnétique continu traversant les grandes plaques (2,3) de la lingotière au niveau du ménisque (12) perpendiculairement à l'axe de coulée
4) Installation selon la revendication 3, caractérisée en ce que ledit inducteur électromagnétique est formé par au moins un électroaimant alimenté en courant continu, constitué par deux bobines (19, 20), d'axe horizontal commun, disposées de part et d'autre de la lingotière (1) et entourant chacune une pièce polaire (21, 22) disposée au niveau du ménisque (12) et solidaire d'un circuit magnétique formant culasse (23).
5) Installation selon la revendication 4, caractérisée en ce que lesdites pièces polaires (21, 22) ont une forme crénelée créant des gradients d'intensité du champ magnétique.
6) Installation selon la revendication 4 ou 5, caractérisée en ce que ladite culasse magnétique (23) entoure la lingotière (1). 7) Installation selon l'une des revendications 3 à 6, caractérisée en ce qu'elle est divisée, au moins dans sa partie supérieure, en plusieurs secteurs verticaux (43) séparés par un matériau isolant (44).
8) Installation selon la revendication 4, caractérisée en ce que les pièces polaires
(21, 22) sont en tôle feuilletée.
9) Installation selon la revendication 4 ou 8, caractérisée en ce que les pièces polaires (21, 22) comportent des éléments modulaires rapportés interchangeables.
PCT/FR2000/003191 1999-11-25 2000-11-17 Procede de coulee continue verticale des metaux utilisant des champs electromagnetiques et installation de coulee pour sa mise en oeuvre WO2001038022A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US10/129,727 US6619377B1 (en) 1999-11-25 2000-11-17 Method for vertical continuous casting of metals using electromagnetic fields and casting installation therefor
AU18676/01A AU778670C (en) 1999-11-25 2000-11-17 Method for vertical continuous casting of metals using electromagnetic fields and casting installation therefor
BR0015748-1A BR0015748A (pt) 1999-11-25 2000-11-17 Processo de lingotamento contìnuo vertical de metais que utiliza campos eletromagnéticos e instalação de lingotamento para sua execução
CA002391235A CA2391235C (fr) 1999-11-25 2000-11-17 Procede de coulee continue verticale des metaux utilisant des champs electromagnetiques et installation de coulee pour sa mise en oeuvre
EP00981421A EP1239981B1 (fr) 1999-11-25 2000-11-17 Procede de coulee continue verticale des metaux utilisant des champs electromagnetiques et installation de coulee pour sa mise en oeuvre
JP2001539620A JP3904226B2 (ja) 1999-11-25 2000-11-17 電磁場を用いる金属垂直連続鋳造方法とその実施のための鋳造設備
DE60003945T DE60003945T2 (de) 1999-11-25 2000-11-17 Verfahren zum vertikalen stranggiessen von metallen unter verwendung elektromagnetischer felder und anlage zu dessen durchführung
AT00981421T ATE245068T1 (de) 1999-11-25 2000-11-17 Vertikales stranggiessverfahren für metalle unter verwendung elektromagnetischer felder und anlage zur dessen durchführung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR99/14816 1999-11-25
FR9914816A FR2801523B1 (fr) 1999-11-25 1999-11-25 Procede de coulee continue des metaux du type utilisant des champs electromagnetiques, et lingotiere et installation de coulee pour sa mise en oeuvre

Publications (1)

Publication Number Publication Date
WO2001038022A1 true WO2001038022A1 (fr) 2001-05-31

Family

ID=9552514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/003191 WO2001038022A1 (fr) 1999-11-25 2000-11-17 Procede de coulee continue verticale des metaux utilisant des champs electromagnetiques et installation de coulee pour sa mise en oeuvre

Country Status (13)

Country Link
US (1) US6619377B1 (fr)
EP (1) EP1239981B1 (fr)
JP (2) JP3904226B2 (fr)
KR (1) KR100536174B1 (fr)
CN (1) CN1198695C (fr)
AT (1) ATE245068T1 (fr)
AU (1) AU778670C (fr)
BR (1) BR0015748A (fr)
CA (1) CA2391235C (fr)
DE (1) DE60003945T2 (fr)
FR (1) FR2801523B1 (fr)
RU (1) RU2247003C2 (fr)
WO (1) WO2001038022A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220040755A1 (en) * 2019-01-30 2022-02-10 Abb Schweiz Ag Flow Speed Control In Continuous Casting

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2825039B1 (fr) * 2001-05-23 2003-08-29 Usinor Lingotiere de coulee continue des metaux comportant au niveau de sa tete, des moyens de generation de champs electromagnetiques
DE10237188A1 (de) * 2002-08-14 2004-02-26 Sms Demag Ag Elektromagnetische Bremsvorrichtung für in eine Stranggießkokille einströmende Stahlschmelze
WO2006068424A1 (fr) * 2004-12-23 2006-06-29 Research Institute Of Industrial Science & Technology Appareil de coulage continu de billettes ou de plaques de magnesium au moyen d’un champ electromagnetique et son procede de fabrication
WO2007087378A2 (fr) * 2006-01-25 2007-08-02 Energetics Technologies, L.L.C. Procédé d'élimination de la porosité axiale et d'affinement de la structure cristalline de lingots et moulages continus
US20090255642A1 (en) * 2006-04-25 2009-10-15 Abb Ab Stirrer
FR2928641B1 (fr) * 2008-03-14 2010-03-26 Centre Nat Rech Scient Procede de purification de silicium pour applications photovoltaiques
JP5035115B2 (ja) * 2008-05-28 2012-09-26 住友金属工業株式会社 鋼の連続鋳造方法
WO2012157214A1 (fr) * 2011-05-17 2012-11-22 パナソニック株式会社 Moule, dispositif de coulée, et procédé de fabrication d'une tige coulée
CN102310174B (zh) * 2011-09-07 2013-06-05 中国科学院金属研究所 一种改善金属凝固缺陷、细化凝固组织的方法和装置
KR101643174B1 (ko) * 2014-10-13 2016-07-27 한국생산기술연구원 고순도 경량 금속 소재 박슬라브 연속주조용 냉도가니
US10280062B2 (en) 2016-10-20 2019-05-07 Fres-Co System Usa, Inc. Pierce at first use dispensing tap for flexible bag with filling gland and bag including the same
IT201800006751A1 (it) * 2018-06-28 2019-12-28 Apparato e metodo di controllo della colata continua
CN111730036B (zh) * 2020-07-30 2020-11-06 东北大学 一种同水平电磁铸造装置及方法
CN115194107B (zh) * 2022-07-13 2023-05-16 沈阳工程学院 控制金属液流动的多段位独立可调复合磁场装置及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0100289A2 (fr) * 1982-07-23 1984-02-08 Cegedur Societe De Transformation De L'aluminium Pechiney Procédé de coulée électromagnétique de métaux dans lequel on fait agir au moins un champ magnétique différent du champ de confinement
DE3517733A1 (de) * 1985-05-17 1986-11-20 Theodor Prof. Dr.-Ing. 8022 Grünwald Rummel Verfahren bzw. einrichtung zum stranggiessen insbesondere von schwermetallen mittels den strangquerschnitt formenden magnetfeldern
EP0577831A1 (fr) * 1990-02-23 1994-01-12 Nippon Steel Corporation Appareil de coulee continue

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US32529A (en) * 1861-06-11 perry
FR2530511B1 (fr) * 1982-07-23 1985-07-05 Cegedur Procede de coulee de metaux dans lequel on fait agir des champs magnetiques
JPH0584551A (ja) * 1991-09-11 1993-04-06 Kawasaki Steel Corp 静磁場を用いる鋼の連続鋳造方法
JPH07148555A (ja) * 1993-11-30 1995-06-13 Nippon Steel Corp 溶融金属の連続鋳造装置
JP3491099B2 (ja) * 1994-05-23 2004-01-26 Jfeスチール株式会社 静磁場を用いた鋼の連続鋳造方法
JPH0819842A (ja) * 1994-07-04 1996-01-23 Sumitomo Metal Ind Ltd 連続鋳造方法および装置
JP3310884B2 (ja) * 1996-09-30 2002-08-05 株式会社神戸製鋼所 鋼の電磁界鋳造方法
ZA987528B (en) * 1997-11-18 1999-02-23 Inland Steel Co Electromagnetic meniscus control in continuous casting
JP3525717B2 (ja) * 1998-01-29 2004-05-10 Jfeスチール株式会社 電磁力を応用した溶融金属の連続鋳造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0100289A2 (fr) * 1982-07-23 1984-02-08 Cegedur Societe De Transformation De L'aluminium Pechiney Procédé de coulée électromagnétique de métaux dans lequel on fait agir au moins un champ magnétique différent du champ de confinement
DE3517733A1 (de) * 1985-05-17 1986-11-20 Theodor Prof. Dr.-Ing. 8022 Grünwald Rummel Verfahren bzw. einrichtung zum stranggiessen insbesondere von schwermetallen mittels den strangquerschnitt formenden magnetfeldern
EP0577831A1 (fr) * 1990-02-23 1994-01-12 Nippon Steel Corporation Appareil de coulee continue

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIVES C: "EFFECTS OF FORCED ELECTROMAGNETIC VIBRATIONS DURING THE SOLIDIFICATION OF ALUMINUM ALLOYS: PART II. SOLIDIFICATION IN THE PRESENCE OF COLINEAR VARIABLE AND STATIONARY MAGNETIC FIELDS", METALLURGICAL AND MATERIALS TRANSACTIONS B: PROCESS METALLURGY & MATERIALS PROCESSING SCIENCE,US,THE MATERIALS INFORMATION SOCIETY, vol. 27B, no. 3, 1 June 1996 (1996-06-01), pages 457 - 464, XP000598657, ISSN: 1073-5623 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220040755A1 (en) * 2019-01-30 2022-02-10 Abb Schweiz Ag Flow Speed Control In Continuous Casting

Also Published As

Publication number Publication date
FR2801523A1 (fr) 2001-06-01
JP3904226B2 (ja) 2007-04-11
ATE245068T1 (de) 2003-08-15
JP2007000936A (ja) 2007-01-11
RU2002116779A (ru) 2004-02-20
AU778670B2 (en) 2004-12-16
KR100536174B1 (ko) 2005-12-12
DE60003945T2 (de) 2004-06-03
CN1399584A (zh) 2003-02-26
CA2391235C (fr) 2008-10-14
BR0015748A (pt) 2002-07-16
EP1239981A1 (fr) 2002-09-18
JP4824502B2 (ja) 2011-11-30
CN1198695C (zh) 2005-04-27
JP2003514669A (ja) 2003-04-22
KR20020063897A (ko) 2002-08-05
EP1239981B1 (fr) 2003-07-16
AU778670C (en) 2005-11-17
CA2391235A1 (fr) 2001-05-31
US6619377B1 (en) 2003-09-16
RU2247003C2 (ru) 2005-02-27
AU1867601A (en) 2001-06-04
DE60003945D1 (de) 2003-08-21
FR2801523B1 (fr) 2001-12-28

Similar Documents

Publication Publication Date Title
EP1239981B1 (fr) Procede de coulee continue verticale des metaux utilisant des champs electromagnetiques et installation de coulee pour sa mise en oeuvre
EP1039979B1 (fr) Equipement de freinage electromagnetique d'un metal en fusion dans une installation de coulee continue
US5246060A (en) Process for ingot casting employing a magnetic field for reducing macrosegregation and associated apparatus and ingot
CA1203069A (fr) Procede et dispositif de coulee electromagnetique de metaux
EP1551580A1 (fr) Procede et dispositif pour la maitrise des ecoulements dans une lingotiere de coulee continue de brames
EP0005676A2 (fr) Procédé de brassage électromagnétique de billettes ou blooms coulés en continu
CA2398724C (fr) Equipement pour alimenter en metal en fusion une lingotiere de coulee continue et son procede d'utilisation
EP0097561B2 (fr) Procédé et installation de brassage électromagnétique de brames métalliques, notamment d'acier, coulées en continu
EP0022711B1 (fr) Procédé et dispositif de brassage destinés à améliorer la qualité d'un métal coulé en continu
US20060131795A1 (en) Methods and facilities for suppressing vortices arising in tundishes or ladles during their respective discharge
WO2002094475A1 (fr) Lingotiere de coulee continue des metaux comportant au niveau de sa tete des moyens de generation de champs electromagnetiques, et installation de coulee comportant une telle lingotiere
JPS61129261A (ja) 表面欠陥の少い連続鋳造鋳片の製造方法
JPH01150450A (ja) 流し込みストランドの非凝固部分の取扱い方法及び装置
KR100679313B1 (ko) 고주파 전자기장을 이용한 마그네슘 빌렛 또는 슬래브 연속주조장치
WO2007065983A1 (fr) Dispositif de brassage electromagnetique de metal liquide pour ligne de coulee continue
CN101111333A (zh) 利用电磁场连续浇铸镁坯段或镁板的设备及其方法
US20120199308A1 (en) Stirrer
FR2825040A1 (fr) Equipement electromagnetique pour tete de lingotiere de coulee continue des metaux en formats quadrangulaires allonges
JPH03275247A (ja) 双ロール式薄板連続鋳造方法
KR20090066508A (ko) 전자기 연속 주조 장치
BE528885A (fr)
JPS62176652A (ja) 中空連続鋳造金属片の製造法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR BY CA CN CZ IN JP KR MX PL RO RU SI SK TR UA US ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000981421

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2391235

Country of ref document: CA

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 539620

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1020027006454

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 008162174

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18676/01

Country of ref document: AU

ENP Entry into the national phase

Ref country code: RU

Ref document number: 2002 2002116779

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1020027006454

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10129727

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000981421

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000981421

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 18676/01

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1020027006454

Country of ref document: KR