WO2001037460A1 - Optical communication method and optical component used in the method, and optical communication device comprising the component - Google Patents

Optical communication method and optical component used in the method, and optical communication device comprising the component Download PDF

Info

Publication number
WO2001037460A1
WO2001037460A1 PCT/JP2000/008023 JP0008023W WO0137460A1 WO 2001037460 A1 WO2001037460 A1 WO 2001037460A1 JP 0008023 W JP0008023 W JP 0008023W WO 0137460 A1 WO0137460 A1 WO 0137460A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersion
optical
layer
optical communication
light
Prior art date
Application number
PCT/JP2000/008023
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuro Kikuchi
Yuichi Takushima
Mark Kenneth Jablonski
Yuichi Tanaka
Haruki Kataoka
Noboru Higashi
Kenji Furuki
Shiro Yamashita
Original Assignee
Oyokoden Lab Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oyokoden Lab Co., Ltd. filed Critical Oyokoden Lab Co., Ltd.
Publication of WO2001037460A1 publication Critical patent/WO2001037460A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • G02B5/288Interference filters comprising deposited thin solid films comprising at least one thin film resonant cavity, e.g. in bandpass filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/29362Serial cascade of filters or filtering operations, e.g. for a large number of channels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29392Controlling dispersion
    • G02B6/29394Compensating wavelength dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • H04B10/25133Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion including a lumped electrical or optical dispersion compensator

Definitions

  • the present invention reduces second-order or higher chromatic dispersion (hereinafter, also simply referred to as dispersion) that occurs in optical communication using an optical fiber (hereinafter, simply referred to as fiber) in a transmission path.
  • the present invention relates to an optical communication method, an optical component and an optical communication device that can be used in the method.
  • the optical component is a component that can be used for optical communication, and is at least an element capable of compensating for a second-order or higher dispersion, in particular, a third-order dispersion (hereinafter referred to as a second-order or An element capable of compensating for the second- or higher-order dispersion is also called an element capable of changing the second-order dispersion, or a second-order optical dispersion compensating element. Similarly, an element capable of compensating for third-order or higher-order dispersion can also be used as an element capable of changing third-order dispersion or a third-order dispersion compensating element. ) Or a component having an element capable of performing dispersion (hereinafter, also referred to as a dispersion compensation element), and includes the case of a single dispersion compensation element or a single dispersion generation element.
  • a dispersion compensation element includes the case of a single dispersion compensation element or a single dispersion generation element.
  • the optical communication device is a device that can be used for optical communication, wherein dispersion compensation and dispersion generation are performed using the optical component.
  • the optical communication method is a method of performing accurate communication by performing dispersion using the optical component or the optical communication device or compensating for dispersion generated in signal light or the like.
  • chirp used in the present invention is mainly used to mean “group velocity delay” or “wavelength dispersion”.
  • the dispersion compensating element of the present invention may be only the second or third-order dispersion compensating element described above, or may include a unit for changing an incident position of incident light in an incident plane, and the like. In some cases, not only third-order or higher-order dispersion compensation but also second-order dispersion compensation is possible, and it may be implemented in a case. There is a case where the device is not mounted on a chip, that is, a so-called chip shape or wafer shape. The same applies to the dispersion generating element.
  • the dispersion compensating element and the dispersion generating element of the present invention include all of these forms, and can take various forms according to the usage status, the purpose of sale, and the like.
  • the second-order dispersion compensation means "compensating the slope of the wavelength-time characteristic curve described later with reference to FIG. 9 (A)"
  • the third-order dispersion compensation is " A) to compensate for the bending of the wavelength-time characteristic curve described later.
  • Fig. 11 is a diagram for explaining changes in signal light when long-distance transmission is performed by a conventional communication method.
  • the communication bit rate is (A) is 2.5 Gbps, and (B) is 10A and 10B are diagrams illustrating optical communication at 10 Gbps and FIG. 10C illustrates optical communication at 40 Gbps.
  • reference numerals 7a, 7b, and 7c denote spectrums of signal light having communication bit rates of 2.5 Gbps, 10 Gbps, and 40 Gbps, respectively.
  • the intensity and the horizontal axis are wavelength.
  • Symbols 71 a, 72 a, and 73 a are communication bit rate powers.Sending waveform when transmitting at 2.5 Gbps, 71 b, 72 b, and 73 b are communication bit rates. Is the transmission waveform when transmitting at 10 Gbps, 71 c, 72 c, and 73 c are the transmission waveforms when transmitting at a communication bit rate of 40 Gbps.
  • al, 73 al, 71 b1, 72 bl, 73 bl, 71 cl, 72 cl, 73 cl are the transmission waveforms 71 a, 72 a, 73 a, 71 b, respectively , 72b, 73b, 71c, 72c, 73c f
  • an optical fiber or an optical fiber transmission system Also referred to as fiber
  • the vertical axis is the light intensity
  • the horizontal axis is the time.
  • the waveform on the left side of the figure is the first. Sent or received.
  • the signal light emitted from the optical fiber enters the optical fiber as shown in Figs. 11 (A) and (B).
  • the left and right sides are almost symmetric with respect to the almost symmetrical waveform of the previous signal light, and the pulse width is slightly widened.
  • the signal light emitted from the optical fiber has a substantially symmetrical waveform before entering the optical fiber.
  • the right side of the figure is greatly deformed, and it is difficult to distinguish one signal light from the next.
  • the signal light input to the optical fiber (hereinafter also referred to as incident) has a gradual change in pulse intensity and a wide panoramic width.
  • the effect of nonlinear phenomena is small and can be treated as almost linear phenomena.
  • the intensity and wavelength of signal light incident on the optical fiber during long-distance transmission vary as shown in Figs. 11 (A) and (B), but two or more Even when transmitting light, the signal light does not change so much as to affect the discrimination of each signal light, and the signal light transmitted by the optical fiber can be accurately received.
  • the signal light entering the optical fiber has a narrow pulse width and a sudden change in pulse intensity, so it enters the optical fiber during long-distance transmission.
  • the signal light intensity and wavelength greatly change as shown in Fig. 11 (C), and therefore the signal light incident on the optical fiber is almost completely changed. There was a big problem that it was not possible to receive accurately.
  • the present invention has been made to solve such a conventional problem. However, in order to clarify the present invention, the following description will be made with reference to FIG. 9 and FIG. Will be described.
  • FIG. 10 is a diagram illustrating the dispersion-wavelength characteristics of a single mode optical fiber (hereinafter, also referred to as SMF), a dispersion compensation fiber, and a dispersion shift fiber (hereinafter, also referred to as DSF).
  • SMF single mode optical fiber
  • DSF dispersion shift fiber
  • reference numeral 8001 denotes a graph showing the dispersion-wavelength characteristics of the SMF
  • reference numeral 802 denotes a graph showing the dispersion-wavelength characteristics of the dispersion compensating fiber
  • reference numeral 803 denotes a graph showing the dispersion-wavelength characteristics of the DSF.
  • the vertical axis is dispersion and the horizontal axis is wavelength.
  • the dispersion increases as the wavelength of the light input to the fiber increases from 1.3 / im to 1.8 ⁇ .
  • the dispersion decreases as the wavelength increases from 1.3 ⁇ to 1.8 ⁇ .
  • the dispersion decreases as the wavelength of the input light increases from 1.2 / im to around 1.55 / zm, and the wavelength of the input light increases from around 1.55 / zm to 1.8.
  • the variance increases with increasing length to ⁇ .
  • dispersion does not cause a problem in optical communication.
  • Fig. 9 is a diagram for explaining the dispersion compensation method.
  • A shows the wavelength-time characteristic and the optical intensity-time characteristic of the signal light
  • B shows the results using SMF and dispersion compensation fiber.
  • C is a diagram for explaining an example of transmission on a transmission line configured only with SMF.
  • reference numerals 70 1 and 71 1 denote graphs showing characteristics of signal light before being input to the transmission line
  • reference numeral 730 denotes a transmission line configured by SMF 731
  • reference numeral 70 2 And 7 1 2 are graphs showing the signal light characteristics when the signal light having the characteristics shown in the graphs 7 0 1 and 7 1 1 is transmitted through the transmission line 7 30 and output from the transmission line 7 30
  • 720 is the transmission path composed of the dispersion compensating fiber 72 1 and SMF 72 2
  • 70 3 and 71 3 are the signal light with the characteristics indicated by the graphs 70 1 and 71 1 Is a rough graph showing the characteristics of signal light in a state where the signal light is transmitted through the transmission path 720 and output from the transmission path 720.
  • Reference numerals 704 and 714 indicate that the signal light having the characteristics shown in the graphs 701 and 711 is transmitted through the transmission path 720 and output from the transmission path 720, and then the receiver Is a graph showing characteristics of signal light when desirable third-order dispersion compensation described later is performed by the optical dispersion compensating element used in the present invention arranged in FIG. 7, which almost agrees with the graphs 70 1 and 71 1 .
  • the graphs 7 0 1 7 0 2 7 0 3 7 4 are graphs with the vertical axis representing wavelength and the horizontal axis representing time (or time), respectively.
  • the graph 7 1 1 7 1 2 7 1 3 7 1 4 is a graph in which the vertical axis represents light intensity and the horizontal axis represents time (or time).
  • Reference numerals 72 4 and 7 34 denote transmitters
  • reference numerals 7 25 and 7 35 denote receivers.
  • the conventional SMF increases the dispersion as the wavelength of the signal light increases from 1.3 ⁇ to 18 ⁇ , so that in high-speed communication and long-distance transmission, the group due to dispersion increases. This causes a speed delay.
  • the signal light is significantly delayed on the long wavelength side compared to the short wavelength side during transmission, as shown in graphs 702 and 712. For example, in high-speed communication and long-distance transmission, the signal light that has changed in this way has a large degree of change, and may not be received as an accurate signal because it overlaps with the preceding and following signal lights.
  • dispersion is compensated (hereinafter, also referred to as correction) by using a dispersion compensating fiber as shown in FIG.
  • the conventional dispersion compensating fiber to solve the problems of the SMF of dispersion as minute wavelength 1. the longer of 3 M m to 1. 8 mu m increases, the aforementioned good urchin, wavelength 1.3
  • the dispersion is designed to decrease as the length increases from / m to 1.8 ⁇ .
  • the dispersion compensating fiber can be used, for example, by connecting a dispersion compensating fiber 721 to S ⁇ F 722 as shown by a transmission line 720 in FIG.
  • the transmission line At 720 the signal light is plotted between the SMF 722 and the dispersion compensating fiber 721, because the tendency of the delay on the short wavelength side and the long wavelength side is reversed. As shown in Fig. 3, the amount of change is smaller than the changes shown in graphs 702 and 712.
  • the chromatic dispersion of the signal light transmitted through the transmission line is represented by the state of the signal light before being input to the transmission line, that is, as shown in FIG.
  • the dispersion cannot be compensated for up to the shape of 0 1, and the limit is to compensate for the shape of graph 70 3.
  • graph 703 in the conventional so-called second-order chromatic dispersion compensation method using a dispersion compensation fiber, the light of the central wavelength of the signal light is converted into light of the short wavelength side and light of the long wavelength side. In comparison, only the light of the shorter wavelength side and the longer wavelength side of the light of the central wavelength component of the signal light is delayed.
  • a ripple may be generated in a part of the graph. If an attempt is made to reduce the occurrence of dispersion by using the above-described method, the cost of parts will increase, the single mode cannot be maintained due to the expansion of the core area, or light will be emitted from the bent fiber. In addition to problems such as increased light loss in the communication transmission line due to leakage, etc., depending on the communication conditions, the problem also arises when communication becomes impossible.
  • the present invention has been made in view of such a point, and an object of the present invention is to consider the optical communication wavelength band called L band, C band, S band, etc.
  • a communication method that can solve the above-mentioned problems in high-speed and long-distance communication in the optical communication wavelength band including the wavelength band of 146 to 160 nm and other wavelengths. And providing optical components and optical communication devices Disclosure of the invention
  • a communication method comprises an optical fiber and an optical dispersion compensator at least as a communication transmission line (hereinafter referred to simply as an optical dispersion compensator).
  • an optical dispersion compensator at least as a communication transmission line (hereinafter referred to simply as an optical dispersion compensator).
  • compensation for dispersion caused by transmission through a fiber or the like is performed, and as described later, dispersion of signal light transmitted in advance by applying dispersion to signal light is restored.
  • a device having one or both functions of restoring dispersion is collectively referred to as a dispersion compensator, and especially when it is necessary to distinguish or limit the dispersion compensator in a narrow sense.
  • examples of the optical communication method of the present invention include at least an optical fiber and an optical dispersion generator used for a communication transmission line (hereinafter, the optical dispersion generator is also simply referred to as a dispersion generator). )) And the dispersion compensator is used to transmit the signal light subjected to dispersion by the dispersion generator, transmit the optical fiber, and restore to the correct signal light by the dispersion compensator capable of applying inverse dispersion. It is characterized by the ability to
  • the example of the optical communication method of the present invention is characterized in that signal light is dispersed and then transmitted in a fiber, and such a method is used for security measures such as preventing eavesdropping. Not only can reduce the nonlinear phenomena caused by transmission through the fiber.
  • the optical component and the optical communication device of the present invention at least one of a secondary dispersion compensating element and a tertiary dispersion compensating element is used as a dispersion compensating element. It is characterized by:
  • the example of the present invention is characterized in that at least one of a secondary dispersion generating element and a tertiary or higher dispersion generating element is used as the dispersion generating element.
  • the dispersion compensating element used in the present invention is composed of, for example, a multilayer film such as a dielectric multilayer film. It is characterized in that the reflective layer is formed so as to form at least two cavities that cause a resonance phenomenon.
  • the dispersion compensating element used in the present invention is characterized by having at least two cavities having different resonance (resonance) wavelengths.
  • the example of the dispersion compensating element used in the present invention is characterized in that each of the reflective layers of the multilayer film has a different reflectance.
  • Each layer of the multilayer film has a quarter wavelength and a relatively high reflectance (hereinafter, also referred to as a layer H), and a layer having a quarter wavelength and a relatively low reflectance. (Hereinafter, also referred to as a layer L).
  • the third-order dispersion compensating element used in the present invention includes, in order from the side where the incident light is incident, at least a first having a reflectivity of 84 to 88%. Reflective layer, first light-transmitting layer, second reflective layer with reflectivity of 99.5 to 99.8%, third light-transmissive layer, third with reflectivity of 99.9% or more It is characterized by having a reflective layer.
  • the relatively high reflectivity and the relatively low reflectivity mean that the reflectivity is relatively high or relatively low between the unit layers forming the reflective layers constituting the multilayer film.
  • An example of the third-order dispersion compensating element used in the present invention includes, in order from the side where the incident light is incident, three sets of the combined layers of the layers H and L, and 10 sets of the combined layers of the layers H and H.
  • the dispersion compensation element used in the present invention as the main, T i O 2 (titanium dioxide), T a 2 0 5 (tantalum pentoxide), N b 2 0 that has a layer and S i ⁇ 2 multilayer film is composed of a laminated film of a combination of one or both of layer mainly containing (silicon dioxide) containing either (niobium pentoxide) It is a feature.
  • the layer H is mainly composed of any one of TiO 2 , TaO, and ⁇ b ⁇ . It is characterized in that the layer L is mainly formed of a layer composed of SiO 2 .
  • an example of the dispersion generating element used in the present invention is an element in which the dispersion generating element has a multilayer film, and the multilayer film has at least two reflections. It is characterized by having layers.
  • examples of the dispersion generating element used in the present invention include at least three reflective layers, and each of the reflective layers has a refractive index at a quarter wavelength.
  • a layer having a relatively high refractive index hereinafter, also referred to as layer H
  • a layer having a quarter wavelength and a relatively low refractive index hereinafter, also referred to as layer L. It is characterized by
  • the dispersion compensator and the dispersion generator as described above can be arranged at any necessary place in a communication system using an optical fiber.
  • the optical component or optical communication device of the present invention is appropriately arranged as necessary in a receiver, a transmitter, a wavelength multiplexer, a wavelength demultiplexer, an amplifier or other various repeaters, or an optical fiber transmission line. can do.
  • Such an optical component or optical communication device has a small number of dispersion compensators (also referred to as dispersion restoration units and chip restoration units, depending on the contents) and dispersion generators (also referred to as chirp generators). Both are arranged.
  • the dispersion compensator included in the optical communication device of the present invention has the dispersion compensation element as described above, and the dispersion generator has the dispersion generation element as described above. ing.
  • An example of the dispersion generating element used in the present invention is such that each of the reflective layers has a thickness of one quarter wavelength and a relatively high refractive index (hereinafter also referred to as a layer H) and a thickness of four quarters. It is characterized by being composed of a plurality of combinations of layers each having a relatively low refractive index at one wavelength (hereinafter, also referred to as layer L).
  • An example of the optical communication apparatus according to the present invention is characterized in that it has at least one of a plurality of dispersion compensating elements and a plurality of dispersion generating elements.
  • An example of the optical communication apparatus includes means for displaying information on dispersion such as dispersion to be applied to the signal light and types of dispersion or values of dispersion applied or generated to the signal light, and performing dispersion or compensation. Or at least one of means for inputting the shared information for performing the operation.
  • An example of the optical communication apparatus according to the present invention is such that when the communication bit rate of the input light to the optical fiber is 40 Gbps or more, the dispersion applied to the input light is the optical fiber or the optical fiber.
  • the dispersion received during the transmission of the transmission system has the same peak value of the input light without dispersion and the communication bit rate is 2.5 Gbps, the dispersion is applied to the input light.
  • the characteristic is that the distortion is not greater than the dispersion-based deformation experienced when the same optical fiber or optical fiber transmission system is transmitted the same distance without using the same distance.
  • the signal light dispersed by the dispersion generator can be used for high-speed communication with a communication bit rate of 40 Gbps or more and communication over a long-distance transmission path having a large peak.
  • the occurrence of dispersion can be suppressed to the extent that accurate communication is possible, and the signal light output from the transmission line can be converted to the original signal light by the dispersion restoration device.
  • the received signal light is restored by the dispersion restoration unit, for example, information from the dispersion measurement unit is used, or transmission is performed in advance in consideration of the dispersion occurrence state of the transmission system.
  • the signal light can be restored by compensating for the dispersion including the dispersion generated during the signal transmission.
  • the signal light transmitted after being appropriately dispersed by the dispersion generator is observed as a flow of CW noise (continuous wave noise) even if it is extracted by any means in any optical fiber of the transmission line. Therefore, it is not possible to count the pulses, and it is not possible to implement with high reliability the prevention of eavesdropping that could not be realized in optical communication until now, which was regarded as a problem. Any security problem can be solved.
  • FIG. 1 is a diagram illustrating, using a model, a dielectric multilayer filter used in a third-order dispersion compensator according to the present invention.
  • FIG. 2 is a diagram illustrating reflected light from the filter in FIG.
  • FIG. 3 is a diagram illustrating a dielectric multilayer filter used in an example of the present invention.
  • FIG. 4 is a graph illustrating measured values of light reflected by the dielectric multilayer film filter of the present invention.
  • FIG. 5 is a diagram illustrating an embodiment of a cap control of the present invention.
  • FIG. 6 is a diagram illustrating signal light during long-distance transmission in an optical fiber to which the present invention is applied.
  • FIG. 7 is a diagram illustrating an example in which the present invention is applied to an optical communication system.
  • FIG. 8 is a diagram illustrating wavelength-multiplexed signal light.
  • FIG. 9 is a diagram for explaining the chromatic dispersion compensation method.
  • A shows the wavelength-time characteristic and the light intensity-time characteristic
  • B shows the second-order chromatic dispersion compensation by the dispersion compensation fiber
  • C Is a diagram illustrating a single-mode optical fiber transmission line.
  • FIG. 10 is a diagram showing dispersion-wavelength characteristics of various fibers.
  • Fig. 11 is a diagram for explaining changes in signal light intensity and wavelength when long-distance transmission is performed by a conventional communication method.
  • the communication bit rate (A) is 2.5 Gbps.
  • (B) is a graph at 10 Gbps, and
  • (C) is a graph at 40 Gbps.
  • FIG. 1 shows a dielectric multilayer filter used in the third-order dispersion compensating element of the optical component of the present invention.
  • FIG. 3 is a diagram illustrating a model using a model.
  • reference numeral 100 represents a dielectric multilayer filter
  • 101 represents incident light
  • 102 represents reflected light
  • 103, 104, and 105 represent reflectances of less than 100%.
  • Reflective layer hereinafter also referred to as reflective film
  • 106 is a reflective layer with a reflectance of about 100%
  • 108, 109, 110 is a light-transmitting layer
  • 111, 11 2, 1 1 and 3 are cavities.
  • Reference numeral 107 denotes a substrate, for example, using BK-7 glass (trade name of Shott, Germany).
  • each reflectance of each reflective layer 103, 104, 105, 106 in FIG. 1 is represented by R (103), R (104), R (105), R (104). 6), each reflectance has a relation of R (103) ⁇ R (104) ⁇ R (105) ⁇ R (106). That is, the multilayer film is formed such that the reflectance of each reflection layer increases in the thickness direction of the multilayer film from the reflection layer on the side where the incident light is incident.
  • the formation positions of the respective reflective layers are selected so that the intervals when considered as the optical path lengths between the respective reflective layers are different from each other.
  • a multilayer film can be formed, and a highly reliable and inexpensive tertiary dispersion compensating element can be provided at low cost.
  • FIG. 2 illustrates the reflected light 102 output from the multilayer film filter 100 shown in FIG. 1 after the incident light 101 incident on the dielectric multilayer filter 100 is appropriately reflected or transmitted by each reflection layer and subjected to dispersion compensation.
  • the vertical axis is the group velocity delay time (unit: ps, picoseconds), and the horizontal axis is the difference between each wavelength and the central wavelength of the incident light.
  • the reference numeral 200 denotes a cavity 111
  • the incident light 101 enters a dielectric multilayer filter in which the cavities 111, 112, and 113 are formed as the reference numeral 100 in FIG.
  • FIG. 4 is a graph showing the group velocity delay of the reflected light 102, in which a cavity having the same effect as the cavity 111 is formed singly on the substrate, and the incident light 101 enters the substrate.
  • the light reflected by the substrate is formed by forming a cavity having the same effect as that of the cavity on the substrate, and the incident light is reflected by the incident light.
  • 203 are graphs showing the group velocity delays of the light formed by forming a cavity having the same effect as the cavity 113 on the substrate alone, making incident light 101 incident and reflected. .
  • the reflected light resonated only by the cavities 111 has a short group velocity delay maximum and a gradual change in group velocity delay for each wavelength, as shown by the graph 201 in FIG.
  • the reflected light resonated only by the cavities 1 and 2 has a maximum group velocity delay time longer than that of the graph 201 as shown by the graph 202 of FIG. The change is big.
  • the reflected light resonated only by the cavities 113 has a longer group velocity delay time as shown by the graph 203 in FIG. 2, and the change in the group velocity delay time for each wavelength is even greater.
  • the bandwidth becomes narrower in the order of graphs 201, 202, and 203.
  • the incident light 101 incident on the dielectric multilayer filter 100 having the cavities 1 1 1, 1 1 2 and 1 1 3 having the above-described characteristics in the configuration as shown in FIG. 1 is converted into the cavities 1 1 1
  • the cavities 1 1 and 2 resonate at the cavities 1 1 and 3 respectively, and are reflected.
  • the reflected light 102 becomes as shown by the graph 200 in FIG.
  • the delay time at the center wavelength of the graph is the largest, and the maximum delay time is 0 1 is longer and shorter than in graphs 202 and 203, but the bandwidth is narrower than in graph 201 and is lower than in graphs 202 and 203.
  • the group velocity delay time-wavelength characteristic can be obtained.
  • a dielectric multilayer filter that obtains a group velocity delay time-wavelength characteristic curve capable of compensating secondary dispersion is manufactured. You can also.
  • FIG. 3 is a diagram illustrating a dielectric multilayer filter used in an example of the present invention.
  • reference numeral 300 denotes a dielectric multilayer film filter
  • 301 denotes BK-7 glass as a substrate
  • 302 denotes a reflective layer (a reflective layer together with an intermediate layer 303 described later).
  • 13 sets of a combined layer of layer H and layer L (hereafter, also referred to as HL film) with the reflective layer 302 and the intermediate layer 303 forming a third reflective layer.
  • Multilayer film (hereinafter also referred to as HL multilayer film), 303 and 303 are films of layer L as an intermediate layer, 304 H is a second light transmitting layer, a multilayer film having 7 sets of a combined layer of layer H and layer H (hereinafter also referred to as HH film) (hereinafter also referred to as HH multilayer film), Is a reflective layer (which acts as a reflective layer together with the intermediate layer 306, and the reflective layer 305 and the intermediate layer 306 form a second reflective layer), and is composed of 9 sets of HL films.
  • HL multilayer film 307 is the first light transmission layer, has 10 sets of HH films, HH multilayer film, 308 is the first reflection layer, has 3 sets of HL films HL multilayer film, 311 is a first cavity (resonator) between the first reflective layer 310 and the second reflective layer, 312 is a second reflective layer and the second reflective layer The second cavity between the three reflective layers.
  • the reflective layer is formed by stacking a plurality of layers having different refractive indices, in which light is scattered, interferes (multiplexes), and is reflected. Details of what it is are omitted here.
  • the film thickness is created by Ion'ashisu preparative deposition of T i ⁇ 2 quarter wavelengths (hereinafter also referred to as Ion'ashisu preparative layer) and the layer H formed in a thickness of one quarter
  • Ion'ashisu preparative layer Ion'ashisu preparative layer
  • One set of HL film is composed of one combined layer.
  • the HH film is a set of two combined layers of a layer H composed of an ion-assist film having a thickness of T i 0 2 having a quarter wavelength.
  • the films 303 and 306 of the layer L are each composed of one layer of an ion assist film of SiO 2 having a thickness of a quarter wavelength.
  • the reflectivity of the first, second, and third reflective layers is increased in the order of the first reflective layer, the second reflective layer, and the third reflective layer.
  • the reflectance is about 100%
  • the reflectance of the second reflective layer is about 99.8%
  • the reflectance of the HL multilayer film 308 as the first reflective layer is about 86%.
  • each of the reflectances is within 3% of the above value, more preferably within 0.5% depending on required specifications.
  • the reflectivity of the first reflective layer is set to 84 to 8.8%
  • the reflectivity of the second reflective layer is set to 99.5 to 99.8%
  • the reflectivity of the third reflective layer is set to 99.9. % Is preferable.
  • an ion assist film is used for a multilayer film.
  • the film is formed of an ion assist film, a durable and uniform film can be formed.
  • film formation is not limited to ion-assist deposition, and multi-layer films formed by deposition, sputtering, ion plating, or other methods commonly used widely are usually used. Even if it is used, the present invention provides a great effect.
  • the layer H is mainly formed of T i ⁇ 2 (titanium dioxide) has been described.
  • the present invention is not limited to this, and Ta 2 ⁇ 5 (tantalum pentoxide) and Nb 2 ⁇ 5 ( It may be formed of niobium pentoxide). Even in this case, the present invention has a great effect.
  • the incident light incident on the dielectric multilayer filter 300 has a different group velocity delay depending on what resonance phenomenon occurs in the cavities 311 and 312. By properly selecting the conditions, the required group velocity delay can be obtained.
  • the delay time-wavelength characteristic of the group velocity delay of each wavelength of the reflected light obtained by the resonance can be changed also by adjusting the film thickness of each layer. It can be adjusted by changing the angle of incidence of the incident light on the dielectric multilayer filter.
  • the dielectric multilayer filter 300 can be designed and manufactured, and can be manufactured in accordance with a desired delay time of each target wavelength.
  • the dielectric multilayer filter as described above is an example of the optical dispersion compensating element used in the present invention.
  • the group velocity delay time-wavelength characteristic curve of the dielectric multilayer film filter as the optical dispersion compensating element used in the present invention has a form capable of compensating for third-order dispersion as described later with reference to FIG.
  • the form capable of compensating the second-order dispersion by changing the configuration of the multilayer film and the like, it is possible to make the form capable of compensating the second-order dispersion.
  • FIG. 4 is a graph showing the measured values of the light reflected by the dielectric multilayer filter 300.
  • Reference numeral 51 denotes a measured group velocity delay time-wavelength characteristic curve, and the vertical axis represents the group velocity delay time.
  • the horizontal axis is the wavelength.
  • this dielectric multilayer film 300 can obtain a maximum delay time of about 10 ps (picosecond) at a center wavelength of 1550 nm, and compensates for the third-order fraction.
  • the bandwidth is about 0.4 nm.
  • the multilayer filter used in the present invention transmits all the wavelengths in the wavelength band to be used (reflects when expressed as a multilayer film element), so that it has almost no power loss and is not shown.
  • the insertion loss of the multilayer filter 300 shows a peak at the center wavelength, and its peak value is very low, less than 0.1 dB. Further, the multilayer filter used in the present invention does not generate dispersion ripple in a wavelength band for performing dispersion compensation. These are things that could not be expected with conventional dispersion compensation attempts.
  • the third-order or higher dispersion can be sufficiently compensated for by the third-order dispersion compensating element using the dielectric multilayer film of the present invention.
  • FIG. 5 is an explanatory diagram of a case where a chirp control is performed using a chirp generator 20 and a chirp reconstructor (that is, a dispersion compensator) 25.
  • reference numeral 10 denotes an optical fiber or an optical fiber transmission system (hereinafter, also referred to as an optical fiber)
  • 1 denotes a graph representing the amplitude characteristic of the signal light before being input to the chirp generator 20
  • 2 denotes a graph.
  • 3 shows the amplitude characteristics of the signal light after being input to the chirp restorer 25 and subjected to chirp restoration (that is, dispersion compensation) and output.
  • 11 is a graph showing the wavelength characteristic of the signal light before being input to the chirp generator 20
  • 12 is a graph showing the wavelength characteristic of the signal light being transmitted through the optical fiber
  • 13 is a graph showing 15 is a graph showing the wavelength characteristics of signal light after being input to the chirp restoring unit 25, subjected to the chirp restoration and output.
  • the vertical axis represents light intensity and the horizontal axis represents time.
  • Graphs 11, 12, and 13 correspond to graphs 1, 2, and 3, respectively.
  • the vertical axis shows the light intensity and the horizontal axis shows the wavelength.
  • a communication system including an optical fiber 10 is connected between the chirp generator 20 and the chirp restoration unit 25 (not shown), and the signal light input to the chirp generator 20 is an optical signal.
  • the chip is restored by the chip restoring unit 25 through the fiber 10 and output.
  • FIG. 1 The signal light before input to the chirp generator 20 is As shown in 5 Daraf 1 and Daraf 11, the light intensity is high and the rate of change of the intensity is large. When such signal light is transmitted over a long distance, the intensity and wavelength of the light change and reception becomes impossible.
  • the signal light input to the chirp generator 20 is chirped by the chirp generator 20, and the spectrum does not change as shown in graphs 2 and 12, but the light intensity is weak and the The rate of change of the intensity is also converted to a small signal light.
  • Signal light having low light intensity and a small rate of change in intensity is not easily deformed, and has a small variation in light intensity and wavelength as in conventional low-speed communication.
  • the signal light whose deformation is weak is converted by the chirp restoring unit 25 and output as almost the same signal light as the signal light input to the chirp generator 20.
  • the communication bit rate can be improved at the time of high-speed communication of 40 Gbps or more. Can communicate without any problem.
  • FIG. 6 is a diagram for explaining signal light during long-distance transmission in an optical fiber.
  • the vertical axis represents the intensity of the signal light
  • the horizontal axis represents time.
  • Reference numerals 31, 32, and 33 denote signal light before being applied by the chirp generator, 41, 42, and 43 represent signal light that is applied by the chirp generator, and 40 denotes signal light 4. It is the graph which combined the intensity
  • the signal lights 31, 32, and 33 are sequentially and sequentially input to the chirp generator as shown. Then, the signal lights 31, 32, and 33 are capped by a cap generator, and change as shown by the signal lights 41, 42, and 43, respectively.
  • the signal light 4 1, 4 2, and 4 3 in the optical fiber during long-distance transmission have a smaller temporal change rate of the light intensity than the signal light 3 1, 3 2, and 3 3.
  • 1, 42, and 43 overlap the signal light before and after, and as shown in graph 40, the signal light appears to be almost constant in intensity. Therefore, even if the signal light is being transmitted through the optical fiber by some means, it looks like CW (continuous wave) noise as shown in Graph 40, and for example, a person trying to intercept the communication Even if you try to decode the signal, it is difficult to do so, and it has the highest security effects, such as preventing eavesdropping.
  • the configuration of FIG. 5 has been basically described.
  • the present invention is not limited to this, and can also be applied to optical communication using wavelength multiplexing.
  • a signal light obtained by synthesizing a plurality of signal lights by a wavelength multiplexer is input to a chirp generator, and the signal light is input to a chirp generator.
  • the signal light output from the transmission path is restored by a chirp restorer, input to the wavelength demultiplexer, and separated into a plurality of original signal lights.
  • a system for transmitting light at high speed can be realized.
  • a plurality of signal lights are respectively applied to a plurality of chirp generators to be chirped, and the plurality of chirped signal lights are multiplexed by a wavelength multiplexer and transmitted. After demultiplexing the signal light output from the transmission line by the wavelength demultiplexer, the signal light is restored to the original multiple signal lights by the multiple chirp decompressors corresponding to the multiple signal lights. It is possible to realize a system that performs high-speed communication while individually addressing security issues for each.
  • the sender transmits to the receiver information on the type of the chirp for restoring the chirp, that is, the chirp information, and the receiver can restore the chirp of the received signal based on the chirp information.
  • the usability, reliability, and security effects of the optical communication method according to the present invention and the optical communication device used therein become particularly remarkable.
  • FIG. 7 illustrates an optical communication system using a wavelength multiplexer and a wavelength demultiplexer.
  • reference numeral 400 denotes an optical communication system
  • reference numerals 401, 402, 403, 425, and 426 denote a light source and a switch as transmitting devices
  • reference numeral 404 denotes a transmitting device.
  • Wavelength multiplexer 405 is a wavelength demultiplexer
  • 406, 407, 408, 427, 428 are receivers as receivers (hereinafter also referred to as receivers)
  • 4 11, 4 12, 4 13, 4 14, 4 15, 4 16, 4 17, 4 18, 4 19 are transmissions using optical fibers or optical fiber systems 421,
  • 422 are EDFAs (erpium 'dop fiber' amplifiers or optical amplifiers), and 423, 424 are ADMs.
  • Transmission lines 4 11, 4 12, 4 13, 4 14, 4 15, 4 16, 4 17, 4 18, 4 19 are equipped with a chip generator and a chip restoration.
  • a chip control using the present invention can be applied to the optical communication system 400 by disposing a device.
  • signal light can be transmitted and received to each point on the way by using ADM424 or ADM424.
  • FIG. 8 is a diagram for explaining the signal lights multiplexed by the wavelength multiplexer 404 of FIG. 7.
  • the vertical axis of the graph is time, and the horizontal axis is wavelength.
  • the time on the vertical axis means going from a predetermined time to the future from above to below.
  • Symbols 510, 520, 530 are signals generated by “light source + switch” 401, 402, 403, and multiplexed by the wavelength multiplexer 404.
  • Light, 511 0, 5120, 5130 are the signals before being multiplexed by the wavelength combiner 4104 with the signals 5100, 520, 530, respectively.
  • the signal light 5 0 1 0, 5 0 2 0, 5 0 3 0 is chirped by a signal generator with a signal light. is there.
  • the symbols 510 1, 5 0 1 2, 5 0 1 3, ⁇ ' are the respective parts of the signal light 5 10 0 at time t 1 (that is, each channel, the same applies hereinafter), 5 0 2 1, 5 0 Are the parts of the signal light 520 at time t 2, 503 1, 503 2, 503 3,... Are the time t 3 Of the signal light 530 in FIG. That is, the signal light is transmitted in the order of 510, 520, 530 (the same applies hereinafter).
  • the symbols 5 1 1 1, 5 1 1 2, 5 1 1 3 ... are parts of the signal light 5 11 0, 5 2 1 1, 5 1 2 2, 5 1 2 3.
  • Reference numerals 1 230, 5 131, 5 13 2, 5 13 3 ⁇ are the parts of the signal light 5 130.
  • the signal light 511 0, 51200, 5130 is placed before the wavelength multiplexer 404, that is, “light source + switch” 4101. , 402, 403 or the transmission lines 411, 412, 413 and a signal light which has been subjected to a capture by being provided with a capture generator.
  • the chirp decompressor can be arranged after the wavelength demultiplexer 405, that is, on the transmission lines 416, 417, 418, or at the wavelength demultiplexer 405 or before it. They can also be placed.
  • the signal light 5210, 5220, and 5230 are provided with a wavelength multiplexer 404 or a subsequent stage, that is, a chirp generator in the transmission path 414.
  • This is a signal light that has been distributed and capped.
  • the signal light 510 is divided into signal wavelengths for each wavelength band, as indicated by 501, 510, 512, 513,. And multiple signal lights are mixed at the same time.
  • the signal lights 520 and 530 also have signal lights separated for each wavelength band, and a plurality of signal lights are mixed at the same time. I have.
  • the signal light 511 0 is applied to each of the signal lights 5 0 1 1, 5 0 1 2, 5 0 13,..., By a chirp generator, and the signal light is wavelength-converted.
  • the signal lights multiplexed by the multiplexer 404 are capped at the same time as indicated by 5111, 5112, 5113, A plurality of signal lights are mixed. Further, the signal lights 5120 and 5130 also have a plurality of signal lights mixed at the same time, similarly to the signal light 5110.
  • the signal light 5210 is a signal light obtained by inputting a signal light obtained by combining a plurality of signal lights by the wavelength multiplexer 404 into a chirp generator and applying a chirp. 5 2 1 1, 5 2 1 ⁇ 2, 5 2 1 3, ⁇ ⁇ ' Also, the signal lights 5220 and 5230 are configured as shown in the figure, similarly to the signal light 5210.
  • the present invention has a great effect on the chirp recovery of the transmitted signal without using the chirp generator or without sufficient generation of the chirp. It demonstrates.
  • the cap generator is a dispersion generator
  • the cap reconstructor is a dispersion reconstructor and is a kind of dispersion compensator. It is clear from the above description.
  • the present invention has been described by taking the dielectric multilayer filter as an example.
  • the present invention is not limited to this, and all ranges based on the technical idea of the present invention are included. Needless to say, it is.
  • the dielectric multilayer filter of the present invention is used as a third-order dispersion compensating element of the present invention in a communication device, and is used in a communication system using a DSF at a communication bit rate of 40 Gbps.
  • the third-order dispersion can be sufficiently compensated so that the reception error due to the third-order dispersion, which has been a problem in the past, does not become a problem at all, and extremely good communication results were obtained.
  • the loss due to dispersion compensation is extremely small because the multilayer film element is used as the dispersion compensation element. This has a great effect that it is possible to construct a system in which dispersion compensation for each channel at the receiver stage is performed at 0.1 ldB or less.
  • the signal light incident on the third-order dispersion compensating element of the present invention is resonated by, for example, the cavities formed in the dielectric multilayer film, so that the delay different depending on the wavelength component of the output light with respect to the incident light.
  • the present invention exerts a greater effect.
  • the method of the third-order dispersion compensation and the method of the second-order dispersion compensation have been mainly described in the present invention, taking the dielectric multilayer filter as an example, but one of the most remarkable features of the present invention. Is to compensate for the dispersion that occurs in signal light when transmitting over optical fibers, etc. with extremely low loss by using an optical dispersion compensating element, especially a tertiary or secondary optical dispersion compensating element using a multilayer film. , High speed and long distance communication.
  • one of the salient features of the present invention is that a dispersion generator (a chirp generator) and a dispersion reconstructor (a chirp reconstructor) are arranged in a communication system so that a signal light transmitted to an optical fiber can be captured. This means that the receiving side recovers the chirp and receives the data. For example, it is possible to reduce the variance that occurs during transmission or to increase the security during transmission.
  • the optical component of the present invention is an optical component having the above-described optical dispersion compensating element or optical dispersion generating element, or at least one of them.
  • the optical communication device is an optical communication device having a dispersion compensation function and a dispersion generation function by incorporating the optical components as described above, and includes, for example, a transmitter, an amplifier, a receiver, and various repeaters. Is one of them.
  • the optical communication method and the optical communication apparatus of the present invention can include a function of adding and decoding security information and a function of adding and decoding cap information. Include means to display and control information They can greatly improve optical communications over a wide range. Industrial applicability
  • the communication method, the optical component, and the optical communication device according to the present invention can be widely used for optical communication, especially for high-speed, long-distance optical communication.
  • the conventional dispersion compensation cannot compensate.
  • the following chromatic dispersion can also be effectively compensated, and long-distance, high-speed optical communication can be realized without replacing all existing communication equipment such as optical fibers with new ones.
  • the economic effect of the present invention is extremely large as compared with the method of replacing many communication facilities currently being considered with new ones.
  • the present invention significantly improves the security problem of optical communication, which has not been possible in the past, and encourages a new application field of optical communication.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

In the field of optical communication using an optical fiber for communication transmission line, it has been conventionally difficult to use an optical fiber practically put in use for high-speed long-distance communication at, e.g. 40 Gbps mainly because of dispersion in an optical signal transmitted through the optical fiber, and the security has been not effective. An optical communication method for transmitting an optical signal through an optical fiber after imparting dispersion to the signal using an optical dispersion imparting element comprising a multilayer film or a compensating element and compensating for the imparted dispersion or the dispersion produced in transmission so as to allow the signal to be received accurately even in high-speed long-distance optical communication, an optical component, and an optical communication device comprising the component are disclosed. Especially, the third-order dispersion is significantly effectively suppressed and compensated for. Before an optical signal is inputted to a transmission line, the signal is subjected to dispersion appropriately to enhance its security.

Description

明 細 書 光通信方法およびその方法に用いる光学部品ならびにその部品を用いた光通信装置 技術分野  Description: Optical communication method, optical component used in the method, and optical communication device using the component
本発明は、 伝送路に光ファイバ (以下、 光ファイバのことを、 単に、 ファイバ と もいう) を用いる光通信において生ずる 2次以上の波長分散 (以下、 単に、 分 散と もいう) を少なくする光通信方法およびこの方法に使用するこ とができる光 学部品および光通信装置に関する。  The present invention reduces second-order or higher chromatic dispersion (hereinafter, also simply referred to as dispersion) that occurs in optical communication using an optical fiber (hereinafter, simply referred to as fiber) in a transmission path. The present invention relates to an optical communication method, an optical component and an optical communication device that can be used in the method.
ここで、 前記光学部品とは、 光通信に用いることができる部品であって、 少な く と も、 2次以上の分散、 特に、 3次の分散を補償可能な素子 (以下、 2次また は 2次以上の分散を捕償可能な素子のことを 2次の分散を変えることができる素 子、 あるいは、 2次光分散補償素子ともいう。 そして、 光分散補償素子のことを、 単に、 分散補償素子ともいう ことにする。 また、 3次または 3次以上の分散を補 償可能な素子についても、 これと同様に、 3次の分散を変えることができる素子、 あるいは、 3次分散補償素子と もいう。) を有する部品、 あるいは、 分散を施す ことができる素子 (以下、 分散補償素子ともいう) を有する部品であり、 分散補 償素子単体や分散発生素子単体の場合をも含む。  Here, the optical component is a component that can be used for optical communication, and is at least an element capable of compensating for a second-order or higher dispersion, in particular, a third-order dispersion (hereinafter referred to as a second-order or An element capable of compensating for the second- or higher-order dispersion is also called an element capable of changing the second-order dispersion, or a second-order optical dispersion compensating element. Similarly, an element capable of compensating for third-order or higher-order dispersion can also be used as an element capable of changing third-order dispersion or a third-order dispersion compensating element. ) Or a component having an element capable of performing dispersion (hereinafter, also referred to as a dispersion compensation element), and includes the case of a single dispersion compensation element or a single dispersion generation element.
また、 前記光通信装置とは、 前記光学部品を用いて分散補償や分散発生を行う ことを特徴とする、 光通信に使用することのできる装置のことである。  Further, the optical communication device is a device that can be used for optical communication, wherein dispersion compensation and dispersion generation are performed using the optical component.
そして、 前記光通信方法とは、 前記光学部品や光通信装置を用いて、 分散を施 して送信したり、 信号光などに生じた分散を補償して、 正確な通信を行う方法で ある。  The optical communication method is a method of performing accurate communication by performing dispersion using the optical component or the optical communication device or compensating for dispersion generated in signal light or the like.
以下、 本発明で用いる用語 「チヤープ」 とは、 主と して、 「群速度遅延」 ある いは、 「波長分散」 の意味で用いることにする。  Hereinafter, the term “chirp” used in the present invention is mainly used to mean “group velocity delay” or “wavelength dispersion”.
そして、 本発明の分散補償素子は、 前記の 2次または 3次分散補償素子だけの 場合もあり、 また、 入射面内における入射光の入射位置等を変化させる手段を含 む場合もあり、 また、 3次以上の分散補償のみならず、 2次の分散補償が可能な よ うに構成されている場合もあり、 ケースに実装されている場合もあり、 ケース に実装されていないいわゆるチップ状やウェハー状の場合もある。 分散発生素子 についても同様である。 The dispersion compensating element of the present invention may be only the second or third-order dispersion compensating element described above, or may include a unit for changing an incident position of incident light in an incident plane, and the like. In some cases, not only third-order or higher-order dispersion compensation but also second-order dispersion compensation is possible, and it may be implemented in a case. There is a case where the device is not mounted on a chip, that is, a so-called chip shape or wafer shape. The same applies to the dispersion generating element.
本発明の分散補償素子や分散発生素子は、これらのすべての形態を含んでおり 、 使用状況や販売などの目的に応じて、種々の形態をとることができるものである。 本発明では、 2次の分散補償とは 「図 9 ( A) を用いて後述する波長一時間特 性曲線の傾きを補償すること」 を意味し、 3次の分散補償とは 「図 9 (A) を用 いて後述する波長一時間特性曲線の曲がり を補償すること」 を意味する。 背景技術  The dispersion compensating element and the dispersion generating element of the present invention include all of these forms, and can take various forms according to the usage status, the purpose of sale, and the like. In the present invention, the second-order dispersion compensation means "compensating the slope of the wavelength-time characteristic curve described later with reference to FIG. 9 (A)", and the third-order dispersion compensation is " A) to compensate for the bending of the wavelength-time characteristic curve described later. " Background art
光ファイバを用いる光通信において、 海底ケーブルに代表される通信伝送路の よ う に長距離伝送が行われており 、 利用技術の進展および利用範囲の拡大と と も に、 信号光パルスの通信ビッ ト レー トが、 2 · 5 G b p s (毎秒 2, 5ギガビッ ト) では不十分となり、 4 0 G b p s 、 8 0 G b p s 、 1 6 0 G b p s のよ う に 高いビッ ト レ一 卜の信号光の使用が試みられている。  In optical communication using optical fiber, long-distance transmission is performed like a communication transmission line typified by a submarine cable. A rate of 2.5 Gbps (2.5 gigabits per second) is not sufficient, and signals with bit rates as high as 40 Gbps, 80 Gbps, and 160 Gbps The use of light has been attempted.
このよ うな環境下では、 信号光のスぺク トル成分や強度の変化速度によって屈 折率や速度が異なることから、 パルスに広がり、 歪み、 割れ、 サブパルスを伴う などの変化を生じることが知られている。  In such an environment, since the refractive index and speed vary depending on the spectrum component and the rate of change of the intensity of the signal light, it is known that the pulse spreads and changes such as distortion, cracking and sub-pulses occur. Have been.
伝送路に入力する信号光のパルス幅が小さ く なり、 パルス強度の変化速度が大 き く なるにつれて非線形現象が顕著になり、 信号光パルスの変化が大き くなる。 高速 · 長距離通信においては、 線形現象や非線形現象による光パルスの変化が 通信の妨げとなり、 解決すべき大きな課題となっている。 すなわち、 信号光のパ ルス幅を小さ く し、 パルス強度の変化速度を大き く した高速通信の場合、 信号光 の波形の変化が大きく なり、 正常な通信が出来なくなる。  As the pulse width of the signal light input to the transmission path decreases and the rate of change of the pulse intensity increases, nonlinear phenomena become more pronounced, and the change of the signal light pulse increases. In high-speed and long-distance communication, changes in optical pulses due to linear phenomena and nonlinear phenomena hinder communication, and are major issues to be solved. That is, in the case of high-speed communication in which the pulse width of the signal light is reduced and the rate of change of the pulse intensity is increased, the change in the waveform of the signal light becomes large and normal communication cannot be performed.
図 1 1は従来の通信方法で長距離伝送を行なった際の信号光の変化を説明する 図であり 、 通信のビッ ト レー トが、 ( A ) は 2. 5 G b p s の、 ( B ) は 1 0 G b p sの、 (C) は 4 0 G b p sの光通信をそれぞれ説明する図である。  Fig. 11 is a diagram for explaining changes in signal light when long-distance transmission is performed by a conventional communication method. The communication bit rate is (A) is 2.5 Gbps, and (B) is 10A and 10B are diagrams illustrating optical communication at 10 Gbps and FIG. 10C illustrates optical communication at 40 Gbps.
図 1 1 において、 符号 7 a、 7 b、 7 cはそれぞれ通信ビッ ト レー トが 2. 5 G b p s、 1 0 G b p s 、 4 0 G b p sの信号光のスペク トルで、 縦軸が光の強 度、 横軸が波長である。 符号 7 1 a 、 7 2 a 、 7 3 a は通信ビッ ト レー ト力 S 2. 5 G b p s で送信する ときの送信波形、 7 1 b 、 7 2 b 、 7 3 bは通信ビッ ト レー トが 1 0 G b p s で 送信するときの送信波形、 7 1 c 、 7 2 c 、 7 3 c は通信ビッ ト レー トが 4 0 G b p s で送信するときの送信波形、 符号 7 1 a l 、 7 2 a l 、 7 3 a l 、 7 1 b 1 、 7 2 b l 、 7 3 b l 、 7 1 c l 、 7 2 c l 、 7 3 c l は、 それぞれ送信波形 7 1 a 、 7 2 a 、 7 3 a 、 7 1 b 、 7 2 b 、 7 3 b 、 7 1 c 、 7 2 c 、 7 3 c カ 前記の各通信ビッ ト レー 卜で光ファイバあるいは光ファイバ伝送システム(以下、 特に区別する必要がないときは単に光ファイバと もいう) を長距離伝送された後 に受信された波形で、 いずれも縦軸が光の強度、 横軸が時刻で、 各波形は、 いず れも図の左側の波形部分が先に送信され、 または着信する。 In FIG. 11, reference numerals 7a, 7b, and 7c denote spectrums of signal light having communication bit rates of 2.5 Gbps, 10 Gbps, and 40 Gbps, respectively. The intensity and the horizontal axis are wavelength. Symbols 71 a, 72 a, and 73 a are communication bit rate powers.Sending waveform when transmitting at 2.5 Gbps, 71 b, 72 b, and 73 b are communication bit rates. Is the transmission waveform when transmitting at 10 Gbps, 71 c, 72 c, and 73 c are the transmission waveforms when transmitting at a communication bit rate of 40 Gbps. al, 73 al, 71 b1, 72 bl, 73 bl, 71 cl, 72 cl, 73 cl are the transmission waveforms 71 a, 72 a, 73 a, 71 b, respectively , 72b, 73b, 71c, 72c, 73c f In each of the above communication bit rates, an optical fiber or an optical fiber transmission system (Also referred to as fiber) after being transmitted over long distances, the vertical axis is the light intensity, and the horizontal axis is the time. In each case, the waveform on the left side of the figure is the first. Sent or received.
2 、 5 G b p sや l O G b p s の通信ビッ ト レー トの場合は、 図 1 1 (A) , ( B ) に示すよ うに、 光ファイバから出射された信号光が、 光ファイバに入射す る前の信号光のほぼ左右対称な波形に対して、 左右がほぼ対称な状態でパルス幅 が少し広がった状態になっている。  In the case of communication bit rates of 2, 5 Gbps and 1 OG bps, the signal light emitted from the optical fiber enters the optical fiber as shown in Figs. 11 (A) and (B). The left and right sides are almost symmetric with respect to the almost symmetrical waveform of the previous signal light, and the pulse width is slightly widened.
4 0 G b p s の通信ビッ ト レー トの場合は、 図 1 1 ( C) に示すよ うに、 光フ アイバから出射された信号光が、 光ファイバに入射する前のほぼ左右対称な波形 に対して、 図の右側が大き く変形した状態に変形し、 1つの信号光と次の信号光 が区別しにく い状態になっている。  In the case of a communication bit rate of 40 Gbps, as shown in Fig. 11 (C), the signal light emitted from the optical fiber has a substantially symmetrical waveform before entering the optical fiber. As a result, the right side of the figure is greatly deformed, and it is difficult to distinguish one signal light from the next.
従来の 2. 5 G b p s 、 1 0 G b p s の光通信においては、 光ファイバに入力 する (以下、 入射すると もいう) 信号光は、 パルス強度は緩やかに変化し、 パノレ ス幅も広いため、 非線形現象の影響は小さく、 ほぼ線形現象と して扱う ことがで きる。長距離伝送を行った際の光ファィバに入射した信号光の強度および波長は、 図 1 1 ( A)、 ( B ) に表わされるよ うに、 変化するが、 連続して 2つ以上の信 号光を送る際にも、 各信号光の識別判定に影響を及ぼすほどの変化にはならず、 光ファイバにより伝送された信号光を、 正確に受信することができる。  In conventional 2.5 Gbps and 10 Gbps optical communications, the signal light input to the optical fiber (hereinafter also referred to as incident) has a gradual change in pulse intensity and a wide panoramic width. The effect of nonlinear phenomena is small and can be treated as almost linear phenomena. The intensity and wavelength of signal light incident on the optical fiber during long-distance transmission vary as shown in Figs. 11 (A) and (B), but two or more Even when transmitting light, the signal light does not change so much as to affect the discrimination of each signal light, and the signal light transmitted by the optical fiber can be accurately received.
し力 し、 4 0 G b p sの高速通信においては、光ファイバに入射する信号光は、 パルス幅が狭く、 パルス強度が急激に変化するため、 長距離伝送を行った際の光 フ ァイバに入射した信号光の強度および波長は、 図 1 1 (C) で表わされるよ う に大きく変化してしまい、 したがって光ファイバに入射された信号光をほとんど 正確に受信することが出来なくなるという大きな問題があった。 However, in high-speed communication at 40 Gbps, the signal light entering the optical fiber has a narrow pulse width and a sudden change in pulse intensity, so it enters the optical fiber during long-distance transmission. The signal light intensity and wavelength greatly change as shown in Fig. 11 (C), and therefore the signal light incident on the optical fiber is almost completely changed. There was a big problem that it was not possible to receive accurately.
光通信ビッ ト レー トを現在使用されている速度よ り高めたいという要望は強 く、 4 0 G b p s 、 8 0 G b p s 、 1 6 0 G b p s という高速通信を実現するた めの研究が種々行われてきた。  There is a strong demand for higher optical communication bit rates than currently used, and various studies have been conducted to realize high-speed communication at 40 Gbps, 80 Gbps, and 160 Gbps. Has been done.
従来の光ファイバ通信システムを用いては、 4 0 G b p s で、 たとえば、 1 万 kmを送信したり、 8 0 G b p s で 1 0 0 Okmのオーダーなどの長い距離を伝送す る場合、 3次の分散の影響が大き く なり、 正確な通信ができないと され、 この解 決策と して、 光ファイバ自体を変える提案がなされている。  Using conventional fiber optic communication systems, for example, to transmit 10,000 km at 40 Gbps, or to transmit a long distance such as 100 Okm at 80 Gbps, the tertiary It is said that the effect of dispersion of the optical fiber is so great that accurate communication cannot be performed, and as a solution to this, a proposal has been made to change the optical fiber itself.
本発明は、 このよ うな従来の問題を解決するためになされたものであるが、 本 発明をよ り明確にするため、 以下に、 図 9および図 1 0を使用して、 従来の 2次 の分散補償方法を説明する。  The present invention has been made to solve such a conventional problem. However, in order to clarify the present invention, the following description will be made with reference to FIG. 9 and FIG. Will be described.
図 1 0は、 シングルモー ド光ファイバ (以下、 SMFとも称す) と分散補償フ アイバ、 および分散シフ トファイバ (以下、 D S F と もいう) の分散一波長特性 を説明する図である。 図 1 0において、 符号 8 0 1 は S M Fの分散一波長特性を 示すグラフ、 8 0 2は分散補償ファイバの分散—波長特性を示すグラフ、 8 0 3 は D S Fの分散一波長特性を示すグラフで、 縦軸を分散、 横軸を波長にとってい る。  FIG. 10 is a diagram illustrating the dispersion-wavelength characteristics of a single mode optical fiber (hereinafter, also referred to as SMF), a dispersion compensation fiber, and a dispersion shift fiber (hereinafter, also referred to as DSF). In FIG. 10, reference numeral 8001 denotes a graph showing the dispersion-wavelength characteristics of the SMF, reference numeral 802 denotes a graph showing the dispersion-wavelength characteristics of the dispersion compensating fiber, and reference numeral 803 denotes a graph showing the dispersion-wavelength characteristics of the DSF. The vertical axis is dispersion and the horizontal axis is wavelength.
図 1 0で明らかなよ うに, S M Fでは、 .ファイバに入力する光の波長が 1. 3 /i mから 1 . 8 μ πιへと長くなるにつれて分散が増大し, 分散補償ファイバでは, 入力光の波長が 1 . 3 μ πιから 1 . 8 μ ηιへと長く なるにつれて分散が減少する。 また、 D S Fでは、 入力光の波長が 1. 2 /i mから 1 . 5 5 /z m付近へと長く な るにつれて分散は小さく なり、 入力光の波長が 1 . 5 5 /z m付近から 1 . 8 μ πι へと長くなるにつれて分散が増大する。 そして、 入力光の波長が 1. 5 5 μ πι付 近における D S Fを用いた 2. 5 G b p s (毎秒 2. 5ギガビッ ト) での光通信 においては、 分散は光通信上支障を生じない。  As can be seen from Fig. 10, in the SMF, the dispersion increases as the wavelength of the light input to the fiber increases from 1.3 / im to 1.8 μπι. The dispersion decreases as the wavelength increases from 1.3 μπι to 1.8 μηι. In the DSF, the dispersion decreases as the wavelength of the input light increases from 1.2 / im to around 1.55 / zm, and the wavelength of the input light increases from around 1.55 / zm to 1.8. The variance increases with increasing length to μπι. In optical communication at 2.5 Gbps (2.5 gigabits per second) using DSF when the wavelength of the input light is around 1.55 μπι, dispersion does not cause a problem in optical communication.
図 9は、 分散の補償方法を説明するための図であり、 (A) は信号光の波長一 時間特性と光強度一時間特性を、 (B) は S MF と分散補償ファイバを用いて 2 次の分散補償を行う伝送路を、 (C) は S M Fだけで構成した伝送路での伝送例 を説明する図である。 図 9において、 符号 7 0 1 と 7 1 1 は伝送路に入力する前の信号光の特性を示 すグラフを、 7 3 0は S MF 7 3 1 で構成された伝送路を、 7 0 2 と 7 1 2は、 グラフ 7 0 1 と 7 1 1 で示した特性の信号光が伝送路 7 3 0を伝送されて伝送路 7 3 0から出力された状態での信号光の特性を示すグラフを、 7 2 0は分散補償 ファイバ 7 2 1 と SMF 7 2 2から構成された伝送路を、 7 0 3 と 7 1 3は、 グ ラフ 7 0 1 と 7 1 1 で示した特性の信号光が伝送路 7 2 0を伝送されて伝送路 7 2 0から出力された状態での信号光の特性を示すダラフである。 符号 7 0 4およ び 7 1 4は、 グラフ 7 0 1 と 7 1 1 で示した特性の信号光が伝送路 7 2 0を伝送 されて伝送路 7 2 0から出力されて後、 受信器に配置した本発明に用いる光分散 補償素子によ り後述の望ましい 3次分散補償を施したときの信号光の特性を示す グラフであり、 グラフ 7 0 1および 7 1 1 とほとんど一致している。 また、 グラ フ 7 0 1 7 0 2 7 0 3 7 0 4はそれぞれ縦軸を波長、 横軸を時間 (または 時刻) にとつたグラフであり、 グラフ 7 1 1 7 1 2 7 1 3 7 1 4はそれぞ れ縦軸を光強度、 横軸を時間 (または時刻) にとつたグラフである。 なお、 符号 7 2 4 と 7 3 4は送信器、 7 2 5 と 7 3 5は受信器である。 Fig. 9 is a diagram for explaining the dispersion compensation method. (A) shows the wavelength-time characteristic and the optical intensity-time characteristic of the signal light, and (B) shows the results using SMF and dispersion compensation fiber. (C) is a diagram for explaining an example of transmission on a transmission line configured only with SMF. In FIG. 9, reference numerals 70 1 and 71 1 denote graphs showing characteristics of signal light before being input to the transmission line, reference numeral 730 denotes a transmission line configured by SMF 731, and reference numeral 70 2 And 7 1 2 are graphs showing the signal light characteristics when the signal light having the characteristics shown in the graphs 7 0 1 and 7 1 1 is transmitted through the transmission line 7 30 and output from the transmission line 7 30 Where 720 is the transmission path composed of the dispersion compensating fiber 72 1 and SMF 72 2, and 70 3 and 71 3 are the signal light with the characteristics indicated by the graphs 70 1 and 71 1 Is a rough graph showing the characteristics of signal light in a state where the signal light is transmitted through the transmission path 720 and output from the transmission path 720. Reference numerals 704 and 714 indicate that the signal light having the characteristics shown in the graphs 701 and 711 is transmitted through the transmission path 720 and output from the transmission path 720, and then the receiver Is a graph showing characteristics of signal light when desirable third-order dispersion compensation described later is performed by the optical dispersion compensating element used in the present invention arranged in FIG. 7, which almost agrees with the graphs 70 1 and 71 1 . The graphs 7 0 1 7 0 2 7 0 3 7 4 are graphs with the vertical axis representing wavelength and the horizontal axis representing time (or time), respectively. The graph 7 1 1 7 1 2 7 1 3 7 1 4 is a graph in which the vertical axis represents light intensity and the horizontal axis represents time (or time). Reference numerals 72 4 and 7 34 denote transmitters, and reference numerals 7 25 and 7 35 denote receivers.
従来の SMFは、 前述のよ う に、 信号光の波長が 1. 3 μ πιから 1 8 μ ιη と長く なるにつれて分散が増加するため、 高速通信や長距離伝送の際には、 分散 による群速度遅延を生じる。 S M Fで構成された伝送路 7 3 0では、 信号光は伝 送中に長波長側が短波長側に比べ大き く遅延して、 グラフ 7 0 2 と 7 1 2に示す よ うになる。 このよ う に変化した信号光は、 たとえば高速通信 · 長距離伝送にお いては、 その変化の程度が大きく 、 前後の信号光と重なって正確な信号と して受 信できない場合がある。  As described above, the conventional SMF increases the dispersion as the wavelength of the signal light increases from 1.3 μπι to 18 μιη, so that in high-speed communication and long-distance transmission, the group due to dispersion increases. This causes a speed delay. In the transmission path 730 constituted by the SMF, the signal light is significantly delayed on the long wavelength side compared to the short wavelength side during transmission, as shown in graphs 702 and 712. For example, in high-speed communication and long-distance transmission, the signal light that has changed in this way has a large degree of change, and may not be received as an accurate signal because it overlaps with the preceding and following signal lights.
このよ うな問題を解決するため、 従来は、 たとえば、 図 9 (Β) に示すように 分散補償ファイバを用いて分散を補償 (以下、 補正ともいう) している。 従来の 分散補償ファイバは、 波長が 1. 3 M mから 1 . 8 μ mへと長くなるにつれて分 散が増加するという SMFの問題点を解決するため、 前述のよ うに、 波長が 1. 3 / mから 1. 8 μ πιへと長くなるにつれて分散が減少するよ うに作られている。 また、 分散補償ファイバは、 たとえば、 図 9の伝送路 7 2 0で示すよ うに、 S Μ F 7 2 2に分散補償フアイバ 7 2 1 を接続して用いることができる。 前記伝送路 7 2 0では、 信号光は、 S M F 7 2 2 と分散補償フアイバ 7 2 1 とでは、 短波長 側と長波長側における遅延の傾向が逆になることによ り、 グラフ 7 0 3 と 7 1 3 に示すよ うになり、 グラフ 7 0 2 と 7 1 2に示す変化よ り も変化量が小さ く抑え られている。 Conventionally, in order to solve such a problem, dispersion is compensated (hereinafter, also referred to as correction) by using a dispersion compensating fiber as shown in FIG. The conventional dispersion compensating fiber, to solve the problems of the SMF of dispersion as minute wavelength 1. the longer of 3 M m to 1. 8 mu m increases, the aforementioned good urchin, wavelength 1.3 The dispersion is designed to decrease as the length increases from / m to 1.8 μπι. The dispersion compensating fiber can be used, for example, by connecting a dispersion compensating fiber 721 to SΜF 722 as shown by a transmission line 720 in FIG. The transmission line At 720, the signal light is plotted between the SMF 722 and the dispersion compensating fiber 721, because the tendency of the delay on the short wavelength side and the long wavelength side is reversed. As shown in Fig. 3, the amount of change is smaller than the changes shown in graphs 702 and 712.
しかし、 分散補償ファイバを使用した前記従来の 2次の波長分散の補償方法で は、伝送路を伝送した信号光の波長分散を、伝送路に入力する前の信号光の状態、 すなわち、 グラフ 7 0 1 の形までには分散を補償することはできず、 グラフ 7 0 3の形にまで補償するのが限界である。 グラフ 7 0 3に示すよ う に、 分散補償フ アイバを使用した従来のいわゆる 2次の波長分散の補償方法では、 信号光の中心 波長の光が短波長側の光および長波長側の光に比べて遅延せず、 信号光の中心波 長成分の光よ り短波長側および長波長側の成分の光のみが遅延する。 そして、 グ ラフ 7 1 3左端部分に示すよ うにグラフの一部にリ ップルが生じることがある。 前記の方法を用いて分散の発生を低減させよ う と した場合、 部品の価格の上昇 を招いたり、 コア領域の拡大によってシングルモー ドを保てなくなったり 、 ファ ィバを曲げた部分から光が漏れてしまうなどによ り通信伝送路内での光の損失が 大きく なるなどの問題のほかに、 通信条件によっては、 通信ができなく なるとレ、 う問題が生じていた。  However, in the conventional method of compensating for the second-order chromatic dispersion using the dispersion compensating fiber, the chromatic dispersion of the signal light transmitted through the transmission line is represented by the state of the signal light before being input to the transmission line, that is, as shown in FIG. The dispersion cannot be compensated for up to the shape of 0 1, and the limit is to compensate for the shape of graph 70 3. As shown in graph 703, in the conventional so-called second-order chromatic dispersion compensation method using a dispersion compensation fiber, the light of the central wavelength of the signal light is converted into light of the short wavelength side and light of the long wavelength side. In comparison, only the light of the shorter wavelength side and the longer wavelength side of the light of the central wavelength component of the signal light is delayed. Then, as shown in the left end of the graph 7 13, a ripple may be generated in a part of the graph. If an attempt is made to reduce the occurrence of dispersion by using the above-described method, the cost of parts will increase, the single mode cannot be maintained due to the expansion of the core area, or light will be emitted from the bent fiber. In addition to problems such as increased light loss in the communication transmission line due to leakage, etc., depending on the communication conditions, the problem also arises when communication becomes impossible.
しかしながら、 現在この実用的な解決策は見出されておらず、 対策と しては、 2次や 3次の分散補償が試みられているが、 光通信に適用できる低損失で効果的 な方法が見出されておらず、 前記のよ うに、 ファイバ自体を変えて対応せざるを 得ないと予測されてもいる。 このことによって、 これまで蓄積された光通信のフ アイバおよび関連部品は大きな変革を要求され、 従来の方法、 設備が使用できな くなるおそれもあり、 社会的、 経済的な大きな損失をもたらすことが予想されて いる。  However, at present, no practical solution has been found, and as a countermeasure, second- or third-order dispersion compensation has been attempted, but a low-loss and effective method applicable to optical communication. It has also been predicted that, as described above, the fiber itself must be changed to accommodate this. As a result, the fiber and related components of optical communication accumulated up to now will require major changes, which may render conventional methods and equipment unusable, resulting in large social and economic losses. Is expected.
本発明はこのような点に鑑みてなされたもので、 本発明の目的は、 たとえば、 Lバン ド、 Cバンド、 Sバンドなどと称されている光通信波長帯域を考慮して、 信号光の波長が 1 4 6 0〜 1 6 4 0 n mである波長帯域をはじめ、 それ以外の波 長も含めた光通信波長帯域において、 高速 · 長距離通信における前記の課題を解 決することができる通信方法および光学部品並びに光通信装置を提供することに ある 発明の開示 The present invention has been made in view of such a point, and an object of the present invention is to consider the optical communication wavelength band called L band, C band, S band, etc. A communication method that can solve the above-mentioned problems in high-speed and long-distance communication in the optical communication wavelength band including the wavelength band of 146 to 160 nm and other wavelengths. And providing optical components and optical communication devices Disclosure of the invention
本発明の目的の達成を図るため、 本発明の通信方法は、 少なく と も通信伝送路 と しての光ファイバと光分散補償器 (以下、 光分散補償器のことを、 単に、 分散 補償器と もいう。 以下、 ファイバなどを伝送されることによ り生じた分散を補償 すること と、 後述のよ うな、 信号光にあらかじめ分散を施して送信された信号光 の分散を元に戻す、 すなわち、 分散を復元することのいずれか一方または双方の 機能を有するものを本発明では分散補償器と総称することにする。 そして特に区 別や限定する必要があるときは、 狭い意味で分散補償器、 分散復元器などと もい う こ とにする。) とを使用し、 信号光を伝送中に信号光に生じた分散を、 信号光 と して正しく受信することができる状態にまで補償することができることを特徴 と している。  In order to achieve the object of the present invention, a communication method according to the present invention comprises an optical fiber and an optical dispersion compensator at least as a communication transmission line (hereinafter referred to simply as an optical dispersion compensator). In the following, compensation for dispersion caused by transmission through a fiber or the like is performed, and as described later, dispersion of signal light transmitted in advance by applying dispersion to signal light is restored. That is, in the present invention, a device having one or both functions of restoring dispersion is collectively referred to as a dispersion compensator, and especially when it is necessary to distinguish or limit the dispersion compensator in a narrow sense. To compensate for the dispersion generated in the signal light during transmission of the signal light until it can be correctly received as the signal light. That you can Features.
さ らに、 本発明の光通信方法の例は、 少なく と も、 通信伝送路に用いる光ファ ィバと光分散発生器 (以下、 光分散発生器のことを、 単に、分散発生器ともいう。) と前記分散補償器とを使用し、 分散発生器で分散を施した信号光を送信し、 光フ アイバを伝送し、 逆分散をかけることのできる分散補償器によって正しい信号光 へと復元することができることを特徴と している。  Furthermore, examples of the optical communication method of the present invention include at least an optical fiber and an optical dispersion generator used for a communication transmission line (hereinafter, the optical dispersion generator is also simply referred to as a dispersion generator). )) And the dispersion compensator is used to transmit the signal light subjected to dispersion by the dispersion generator, transmit the optical fiber, and restore to the correct signal light by the dispersion compensator capable of applying inverse dispersion. It is characterized by the ability to
本発明の光通信方法の例では、 信号光に分散を施してからファイバ内を伝送さ せることを特徴と しており、 このよ うな方法によって、 盗聴を防ぐなどセキユ リ ティ対策に利用することができるだけでなく、 ファイバ内を伝送させることによ り生じる非線形現象を低減することができる。  The example of the optical communication method of the present invention is characterized in that signal light is dispersed and then transmitted in a fiber, and such a method is used for security measures such as preventing eavesdropping. Not only can reduce the nonlinear phenomena caused by transmission through the fiber.
本発明の目的の達成を図るため、 本発明の通信方法、 光学部品および光通信装 置では、 分散補償素子と して、 2次分散補償素子と 3次分散補償素子の少なく と も一方を用いることを特徴と している。  In order to achieve the object of the present invention, in the communication method, the optical component and the optical communication device of the present invention, at least one of a secondary dispersion compensating element and a tertiary dispersion compensating element is used as a dispersion compensating element. It is characterized by:
さ らに、 本発明の例では、 分散発生素子と して、 2次の分散発生素子と 3次以 上の分散発生素子の少なく とも一方を用いることを特徴と している。  Further, the example of the present invention is characterized in that at least one of a secondary dispersion generating element and a tertiary or higher dispersion generating element is used as the dispersion generating element.
そして、 本発明の効果をよ り大なら しめるために、 本発明で用いる分散補償素 子は、 たとえば誘電体多層膜などの多層膜で構成され、 前記多層膜には、 入射光 に対して共鳴現象を生じる少なく とも 2つのキヤビティを構成するよ うに反射層 を形成してあることを特徴と している。 In order to further enhance the effect of the present invention, the dispersion compensating element used in the present invention is composed of, for example, a multilayer film such as a dielectric multilayer film. It is characterized in that the reflective layer is formed so as to form at least two cavities that cause a resonance phenomenon.
さらに、 本発明の効果を大なら しめるため、 本発明で用いる分散補償素子は、 共振 (共鳴) 波長の異なる少なく と も 2つのキヤビティを有することを特徴と し ている。  Further, in order to enhance the effect of the present invention, the dispersion compensating element used in the present invention is characterized by having at least two cavities having different resonance (resonance) wavelengths.
そして、 本発明で用いる分散補償素子の例は、 前記多層膜の有する各反射層の 反射率がそれぞれ異なることを特徴と している。  The example of the dispersion compensating element used in the present invention is characterized in that each of the reflective layers of the multilayer film has a different reflectance.
そして、 本発明の効果を大なら しめるために、 前記多層膜は、 入射光の光路長 と して考えたとき、 入射光中心波長の 4分の 1 の長さに相当する厚み (以下、 厚 みが 4分の 1波長と もいう) である層を単位層と して多数層重ねて構成されてお り、 前記各反射層の反射率を、 入射光が入射される側から順に R 1, R 2 , R 3、 • · ' とすると、 各反射層の反射率は R 1 ≤ R 2 ≤ R 3 · · ' (ただし、 前記 R i の i = 1 , 2, 3 , · · ' は、 反射層の数が上限である) の関係にあることを 特徴と している。  In order to enhance the effect of the present invention, the multilayer film, when considered as the optical path length of incident light, has a thickness (hereinafter, referred to as “thickness”) corresponding to a quarter of the central wavelength of the incident light. (Also referred to as a quarter wavelength) as a unit layer, and the reflectivity of each of the reflective layers is calculated as R 1 in order from the side where incident light is incident. , R 2, R 3, ·· ', the reflectance of each reflective layer is R 1 ≤ R 2 ≤ R 3 · ·' (where i = 1, 2, 3,, · · , The number of reflective layers is the upper limit).
そして、前記多層膜の各層は、厚みが 4分の 1波長で比較的反射率の高い層 (以 下、 層 Hともいう) と、 厚みが 4分の 1波長で比較的反射率の低い層 (以下、 層 Lともいう)の組み合わせによる多層膜で構成されていることを特徴と している。 そして、 本発明の効果を大なら しめるため、 本発明で用いる 3次分散補償素子 は、 入射光が入射される側から順に、 少なく と も、 反射率が 8 4〜 8 8 %の第 1 の反射層、 第一の光透過層、 反射率が 9 9 . 5〜 9 9 . 8 %の第 2の反射層、 第 2の光透過層、 反射率が 9 9 . 9 %以上の第 3の反射層を有することを特徴と し ている。  Each layer of the multilayer film has a quarter wavelength and a relatively high reflectance (hereinafter, also referred to as a layer H), and a layer having a quarter wavelength and a relatively low reflectance. (Hereinafter, also referred to as a layer L). In order to enhance the effect of the present invention, the third-order dispersion compensating element used in the present invention includes, in order from the side where the incident light is incident, at least a first having a reflectivity of 84 to 88%. Reflective layer, first light-transmitting layer, second reflective layer with reflectivity of 99.5 to 99.8%, third light-transmissive layer, third with reflectivity of 99.9% or more It is characterized by having a reflective layer.
前記比較的反射率が高いおよび比較的反射率が低いとは、 前記多層膜を構成し ている各反射層を形成する各単位層の間で反射率が比較的高いあるいは比較的低 いという ことを意味している。  The relatively high reflectivity and the relatively low reflectivity mean that the reflectivity is relatively high or relatively low between the unit layers forming the reflective layers constituting the multilayer film. Means
そして、 本発明に用いられる 3次分散補償素子の例は、 入射光が入射される側 から順に、 層 Hと層 Lの組み合わせ層を 3セッ ト、 層 Hと層 Hの組み合わせ層を 1 0セッ ト、 層 Lを 1層、 層 Hと層 Lの組み合わせ層を 9セッ ト、 層 Hと層 Hの 組み合わせ層を 7セッ ト、 層 Lを 1層、 層 Hと層 Lの組み合わせ層を 1 3セッ ト 形成した多層膜を有することを特徴と している。 An example of the third-order dispersion compensating element used in the present invention includes, in order from the side where the incident light is incident, three sets of the combined layers of the layers H and L, and 10 sets of the combined layers of the layers H and H. Set, one set of layer L, 9 sets of combined layers of layer H and layer L, 7 sets of combined layers of layer H and layer H, one set of layer L, and one set of layer H and layer L 1 3 sets It is characterized by having a formed multilayer film.
そ して、 本発明の効果を大なら しめるため、 本発明で用いる分散補償素子は、 主と して、 T i O 2 (二酸化チタン)、 T a 2 0 5 (五酸化タンタル), N b 2 0 (五 酸化ニオブ) のいずれかを含む層と S i 〇 2 (二酸化珪素) を主成分とする層の いずれか一方または双方の組み合わせた積層膜で構成されている多層膜を有する ことを特徴と している。 Their to, for occupying become large the effect of the present invention, the dispersion compensation element used in the present invention, as the main, T i O 2 (titanium dioxide), T a 2 0 5 (tantalum pentoxide), N b 2 0 that has a layer and S i 〇 2 multilayer film is composed of a laminated film of a combination of one or both of layer mainly containing (silicon dioxide) containing either (niobium pentoxide) It is a feature.
そして、 本発明の効果を大ならしめるため、 本発明で用いる分散補償素子の好 適な例は、 前記層 Hが主と して T i O 2、 T a O , Ν b Ο のいずれかからな る層で形成され、 層 Lが主と して S i 0 2からなる層で形成されているこ とを特 徴と している。 In order to enhance the effect of the present invention, a preferable example of the dispersion compensating element used in the present invention is that the layer H is mainly composed of any one of TiO 2 , TaO, and ΝbΟ. It is characterized in that the layer L is mainly formed of a layer composed of SiO 2 .
本発明の効果を大なら しめるため、 本発明に用いる前記分散発生素子の例は、 前記分散発生素子が多層膜を有する素子であり、 さ らに、 前記多層膜は少なく と も.2つの反射層を有していることを特徴と している。  In order to enhance the effect of the present invention, an example of the dispersion generating element used in the present invention is an element in which the dispersion generating element has a multilayer film, and the multilayer film has at least two reflections. It is characterized by having layers.
そして、 本発明の効果を大ならしめるために、 本発明で用いる分散発生素子の 例は、 少なく とも 3つの反射層を有し、 前記各反射層が、 厚みが 4分の 1波長で 屈折率が比較的高い層 (以下、 層 Hと もいう) と厚みが 4分の 1波長で屈折率が 比較的低い層 (以下、 層 Lともいう) の組み合わせ層の複数組で構成されている ことを特徴と している。  In order to enhance the effects of the present invention, examples of the dispersion generating element used in the present invention include at least three reflective layers, and each of the reflective layers has a refractive index at a quarter wavelength. A layer having a relatively high refractive index (hereinafter, also referred to as layer H) and a layer having a quarter wavelength and a relatively low refractive index (hereinafter, also referred to as layer L). It is characterized by
本発明の通信方法においては、 前記の如き分散補償器や分散発生器を、 光ファ ィバを用いた通信システムにおける必要な場所のいずれに配置すること も可能で ある。 たとえば、 受信器、 発信器、 波長合波器、 波長分波器、 増幅器その他各種 中継器、 あるいは光ファイバ伝送路などに、 必要に応じて本発明の光学部品ある いは光通信装置を適宜配置することができる。 そして、 このような光学部品ある いは光通信装置には、 分散補償器 (その内容によっては、 分散復元器、 チヤ一プ 復元器ともいう) と分散発生器 (チヤープ発生器ともいう) の少なく と も一方が 配置されている。  In the communication method of the present invention, the dispersion compensator and the dispersion generator as described above can be arranged at any necessary place in a communication system using an optical fiber. For example, the optical component or optical communication device of the present invention is appropriately arranged as necessary in a receiver, a transmitter, a wavelength multiplexer, a wavelength demultiplexer, an amplifier or other various repeaters, or an optical fiber transmission line. can do. Such an optical component or optical communication device has a small number of dispersion compensators (also referred to as dispersion restoration units and chip restoration units, depending on the contents) and dispersion generators (also referred to as chirp generators). Both are arranged.
そして、 本発明の前記光通信装置に含まれる前記分散補償器は前記の如き分散 補償素子を有しており、 前記分散発生器は前記の如き分散発生素子を有している ことを特徴と している。 そして、 本発明に使用する分散発生素子の例は、 前記各反射層が、 厚みが 4分 の 1波長で屈折率が比較的高い層 (以下、 層 Hと もいう) と厚みが 4分の 1波長 で屈折率が比較的低い層 (以下、 層 L と もいう) の組み合わせ層の複数組で構成 されていることを特徴と している。 The dispersion compensator included in the optical communication device of the present invention has the dispersion compensation element as described above, and the dispersion generator has the dispersion generation element as described above. ing. An example of the dispersion generating element used in the present invention is such that each of the reflective layers has a thickness of one quarter wavelength and a relatively high refractive index (hereinafter also referred to as a layer H) and a thickness of four quarters. It is characterized by being composed of a plurality of combinations of layers each having a relatively low refractive index at one wavelength (hereinafter, also referred to as layer L).
本発明の光通信装置の例は、 複数の分散補償素子と複数の分散発生素子の少な く とも一方を有していることを特徴と している。  An example of the optical communication apparatus according to the present invention is characterized in that it has at least one of a plurality of dispersion compensating elements and a plurality of dispersion generating elements.
本発明の光通信装置の例は、 前記信号光に施すべき分散や信号光に施されたり 生じたり した分散の種類や分散の値などの分散に関する情報を表示する手段と分 散を施したり補償したりするための分散情報を入力する手段の少なく と も一方を 有することを特徴と している。  An example of the optical communication apparatus according to the present invention includes means for displaying information on dispersion such as dispersion to be applied to the signal light and types of dispersion or values of dispersion applied or generated to the signal light, and performing dispersion or compensation. Or at least one of means for inputting the shared information for performing the operation.
本発明の光通信装置の例は、 光ファイバへの入力光の通信ビッ ト レー トが 4 0 G b p s以上の場合に、 前記入力光に施す分散が、 その入力光が光ファイバまた は光ファイバ伝送システムを伝送する過程で受ける分散が、 分散を施されない状 態での入力光のピーク値が同じであって通信ビッ ト レー 卜が 2 . 5 G b p s の場 合の入力光に分散を施さずに同一光ファイバまたは光ファイバ伝送システムを同 一距離伝送させた場合に受ける分散に基づく変形より も大きく ない程度にまで施 されていることを特徴  An example of the optical communication apparatus according to the present invention is such that when the communication bit rate of the input light to the optical fiber is 40 Gbps or more, the dispersion applied to the input light is the optical fiber or the optical fiber. When the dispersion received during the transmission of the transmission system has the same peak value of the input light without dispersion and the communication bit rate is 2.5 Gbps, the dispersion is applied to the input light. The characteristic is that the distortion is not greater than the dispersion-based deformation experienced when the same optical fiber or optical fiber transmission system is transmitted the same distance without using the same distance.
本発明によれば、 分散発生器によって分散を施された信号光は、 通信ビッ ト レ 一卜が 4 0 G b p s以上の高速通信や、 大きなピークを有する長距離の伝送路で の通信においても、 正確な通信が可能な程度までに分散の発生を抑えることがで き、 伝送路から出力された信号光は、 分散復元器によって元の信号光へと変換す ることが出来る。 そして、 受信した信号光を、 分散復元器によつて復元する場合、 たとえば、 分散測定器からの情報を活用したり、 あらかじめ伝送系の分散発生状 況を加味して送信するなどによ り、 信号伝送中に生じた分散も含めて分散を補償 して信号光を復元すること も出来る。 また、 分散発生器によって分散を適宜施し て送信した信号光は、 伝送路のいずれかの光ファィバにおいて何らかの手段によ つて取り出されても、 C Wノイズ (連続波ノイズ) の流れのよ うに観測されるこ とから、 パルスをカウン トすることが出来ず、 光通信においてはこれまで問題視 されながら実現できなかった盗聴の防止を高い信頼性をもたせて実現することな どのセキュ リティー上の問題も解決することができる。 図面の簡単な説明 According to the present invention, the signal light dispersed by the dispersion generator can be used for high-speed communication with a communication bit rate of 40 Gbps or more and communication over a long-distance transmission path having a large peak. However, the occurrence of dispersion can be suppressed to the extent that accurate communication is possible, and the signal light output from the transmission line can be converted to the original signal light by the dispersion restoration device. When the received signal light is restored by the dispersion restoration unit, for example, information from the dispersion measurement unit is used, or transmission is performed in advance in consideration of the dispersion occurrence state of the transmission system. The signal light can be restored by compensating for the dispersion including the dispersion generated during the signal transmission. Also, the signal light transmitted after being appropriately dispersed by the dispersion generator is observed as a flow of CW noise (continuous wave noise) even if it is extracted by any means in any optical fiber of the transmission line. Therefore, it is not possible to count the pulses, and it is not possible to implement with high reliability the prevention of eavesdropping that could not be realized in optical communication until now, which was regarded as a problem. Any security problem can be solved. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 本発明の 3次分散補償素子に用いる誘電体多層膜フィルタを、 モデル を用いて説明する図である。  FIG. 1 is a diagram illustrating, using a model, a dielectric multilayer filter used in a third-order dispersion compensator according to the present invention.
図 2は、 図 1 のフ ィルタの反射光を説明する図である。  FIG. 2 is a diagram illustrating reflected light from the filter in FIG.
図 3は、 本発明の実施例に用いた誘電体多層膜フィルタを説明する図である。 図 4は、 本発明の誘電体多層膜フ ィ ルタによって反射した反射光の測定値を説 明するグラフである。  FIG. 3 is a diagram illustrating a dielectric multilayer filter used in an example of the present invention. FIG. 4 is a graph illustrating measured values of light reflected by the dielectric multilayer film filter of the present invention.
図 5は、 本発明のチヤ一プコン 卜ロールの形態を説明する図である。  FIG. 5 is a diagram illustrating an embodiment of a cap control of the present invention.
図 6は、 本発明を適用して光ファイバ内を長距離伝送中の信号光を説明する図 である。  FIG. 6 is a diagram illustrating signal light during long-distance transmission in an optical fiber to which the present invention is applied.
図 7は、 光通信システムに本発明を適用する例を説明する図である。  FIG. 7 is a diagram illustrating an example in which the present invention is applied to an optical communication system.
図 8は、 波長合波された信号光を説明する図である。  FIG. 8 is a diagram illustrating wavelength-multiplexed signal light.
図 9は、 波長分散補償方法を説明する図であり 、 (A ) は波長一時間特性と光 強度一時間特性を、 (B ) は分散補償フ ァイバによる 2次の波長分散補償を、 (C ) はシングルモー ド光ファイバ伝送路を説明する図である。  FIG. 9 is a diagram for explaining the chromatic dispersion compensation method. (A) shows the wavelength-time characteristic and the light intensity-time characteristic, (B) shows the second-order chromatic dispersion compensation by the dispersion compensation fiber, and (C) () Is a diagram illustrating a single-mode optical fiber transmission line.
図 1 0は、 各種ファイバの分散一波長特性を示す図である。  FIG. 10 is a diagram showing dispersion-wavelength characteristics of various fibers.
図 1 1 は、 従来の通信方法で長距離伝送を行った際の信号光の強度および波長 の変化を説明する図であり、 通信のビッ ト レー トが ( A ) は 2 . 5 G b p sの場 合のグラフ、 (B ) は 1 0 G b p s の場合のグラフ、 (C ) は 4 0 G b p s の場 合のグラフである。 発明を実施するための最良の形態  Fig. 11 is a diagram for explaining changes in signal light intensity and wavelength when long-distance transmission is performed by a conventional communication method. The communication bit rate (A) is 2.5 Gbps. (B) is a graph at 10 Gbps, and (C) is a graph at 40 Gbps. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照して本発明の実施の形態について説明する。 なお、 説明に用 いる各図はこれらの各発明を理解できる程度に各構成成分の寸法、 形状、 配置関 係などを概略的に示してある。 また、 各図において、 同様な構成成分については 同一の番号を付けて示すこともあり、 重複する説明を省略することもある。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. The drawings used in the description schematically show the dimensions, shapes, arrangement relations, and the like of the components so that these inventions can be understood. Also, in each of the drawings, similar constituent components may be denoted by the same reference numerals, and redundant description may be omitted.
図 1は、 本発明の光学部品の 3次分散補償素子に用いる誘電体多層膜フ ィルタ をモデルを用いて説明する図である。 図 1 において、 符号 1 0 0は誘電体多層膜 フィルタ、 1 0 1 は入射光、 1 0 2は反射光、 1 0 3、 1 0 4、 1 0 5は反射率 が 1 0 0 %未満の反射層 (以下、 反射膜と も称する)、 1 0 6は反射率が約 1 0 0 %の反射層、 1 0 8、 1 0 9、 1 1 0は光透過層、 1 1 1 、 1 1 2、 1 1 3は キヤ ビティである。 また、 符号 1 0 7は基板で、 たとえば、 B K— 7ガラス ( ド イツ国、 ショ ッ ト社の商品名) を使用している。 FIG. 1 shows a dielectric multilayer filter used in the third-order dispersion compensating element of the optical component of the present invention. FIG. 3 is a diagram illustrating a model using a model. In FIG. 1, reference numeral 100 represents a dielectric multilayer filter, 101 represents incident light, 102 represents reflected light, 103, 104, and 105 represent reflectances of less than 100%. Reflective layer (hereinafter also referred to as reflective film), 106 is a reflective layer with a reflectance of about 100%, 108, 109, 110 is a light-transmitting layer, 111, 11 2, 1 1 and 3 are cavities. Reference numeral 107 denotes a substrate, for example, using BK-7 glass (trade name of Shott, Germany).
図 1 の各反射層 1 0 3、 1 0 4、 1 0 5、 1 0 6の反射率を R ( 1 0 3 )、 R ( 1 0 4 )、 R ( 1 0 5 ) 、 R ( 1 0 6 ) とすると、 各反射率は、 R ( 1 0 3 ) ≤ R ( 1 0 4 ) ≤ R ( 1 0 5 ) ≤ R ( 1 0 6 ) の関係にある。 すなわち、 入射光 が入射する側の反射層から多層膜の厚み方向に向かって、 各反射層の反射率が次 第に大き く なるよ うに多層膜を形成する。 そして、 各反射層間の光路長と して考 えたときの間隔がそれぞれ異なるよ う に各反射層の形成位置が選ばれている。 こ のよ うにすることによ り 、 各反射層の反射率の設計精度をゆるめることができ、 厚みが 4分の 1波長の単位膜の組み合わせで本発明の 3次分散補償素子に用いら れる多層膜を形成することができ、 信頼性が高く、 製造コス 卜が安い 3次分散補 償素子を安価に提供することができる。  The reflectance of each reflective layer 103, 104, 105, 106 in FIG. 1 is represented by R (103), R (104), R (105), R (104). 6), each reflectance has a relation of R (103) ≤ R (104) ≤ R (105) ≤ R (106). That is, the multilayer film is formed such that the reflectance of each reflection layer increases in the thickness direction of the multilayer film from the reflection layer on the side where the incident light is incident. The formation positions of the respective reflective layers are selected so that the intervals when considered as the optical path lengths between the respective reflective layers are different from each other. By doing so, the design accuracy of the reflectance of each reflective layer can be relaxed, and a combination of unit films having a thickness of a quarter wavelength is used for the third-order dispersion compensating element of the present invention. A multilayer film can be formed, and a highly reliable and inexpensive tertiary dispersion compensating element can be provided at low cost.
図 2は、 図 1 の誘電体多層膜フィルタ 1 0 0に入射した入射光 1 0 1が各反射 層で適宜反射あるいは透過して分散補償を受けて出力した反射光 1 0 2を説明す るグラフであり、 縦軸が群速度遅延時間 (単位 : p s 、 ピコ秒)、 横軸が各波長 の入射光中心波長との差である。  FIG. 2 illustrates the reflected light 102 output from the multilayer film filter 100 shown in FIG. 1 after the incident light 101 incident on the dielectric multilayer filter 100 is appropriately reflected or transmitted by each reflection layer and subjected to dispersion compensation. The vertical axis is the group velocity delay time (unit: ps, picoseconds), and the horizontal axis is the difference between each wavelength and the central wavelength of the incident light.
図 2において、 符号 2 0 0はキヤビティ 1 1 1 、 1 1 2、 1 1 3を図 1の符号 1 0 0のよ うに形成した誘電体多層膜フィルタに入射光 1 0 1 を入射させて反射 させた反射光 1 0 2の群速度遅延を示すグラフであり、 2 0 1 は基板の上にキヤ ビティ 1 1 1 と同じ効果をもたらすキヤビティを単独で形成して入射光 1 0 1 を 入射させて反射させた光の、 同様に、 2 0 2は基板の上にキヤビティ 1 1 2 と同 じ効果をもたらすキヤビティ を単独で形成して入射光 1 0 1 を入射させて反射さ せた光の、 2 0 3は基板の上にキヤビティ 1 1 3 と同じ効果をもたらすキヤビテ ィを単独で形成して入射光 1 0 1 を入射させて反射させた光の各群速度遅延を示 すグラフである。 キヤビティ 1 1 1のみで共振した反射光は、図 2のグラフ 2 0 1で示すよ うに、 群速度遅延の最大遅延時間は短く 、 波長毎の群速度遅延時間の変化も緩やかであ る。 キヤビティ 1 1 2のみで共振した反射光は、 図 2のグラフ 2 0 2で示すよ う に、 群速度遅延の最大遅延時間はグラフ 2 0 1 よ り も長く 、 波長毎の群速度遅延 時間の変化は大きレ、。 キヤビティ 1 1 3のみで共振した反射光は、 図 2のグラフ 2 0 3で示すよ うに、 群速度遅延の最大遅延時間はさ らに長く 、 波長毎の群速度 遅延時間の変化はさらに大きい。 群速度遅延の変化をある程度以上もたらす波長 幅 (波長帯) を帯域幅と呼ぶことにすると、 帯域幅はグラフ 2 0 1、 2 0 2、 2 0 3の順に狭く なる。 前記特性をもつキヤビティ 1 1 1 、 1 1 2、 1 1 3 を図 1 のよ う な構成で有する誘電体多層膜フィルタ 1 0 0 に入射された入射光 1 0 1 は、 キヤ ビティ 1 1 1 、 キヤ ビティ 1 1 2、 キヤ ビティ 1 1 3でそれぞれ共振し て反射し、 その結果と しての反射光 1 0 2は図 2のグラフ 2 0 0で示されるよ う になる。 グラフ 2 0 0が示すよ う に、 誘電体多層膜フィルタ 1 0 0に入射されて 出力される反射光の場合は、 グラフの中心の波長の遅延時間が最大となり、 その 最大遅延時間はグラフ 2 0 1 の場合よ り も長く 、 グラフ 2 0 2や 2 0 3の場合よ り も短く なるが、 帯域幅はグラフ 2 0 1 の場合よ り も狭く グラフ 2 0 2や 2 0 3 の場合よ り も広く なるという群速度遅延時間一波長特性を得ることが出来る。 こ の最大遅延時間と帯域幅を、 光通信において補償したい分散の状況に応じて適宜 選ぶことによ り、 3次以上の分散の補償 (以下、 3次分散補償ともいう) を効果 的に行なう ことが出来る。 In FIG. 2, the reference numeral 200 denotes a cavity 111, and the incident light 101 enters a dielectric multilayer filter in which the cavities 111, 112, and 113 are formed as the reference numeral 100 in FIG. FIG. 4 is a graph showing the group velocity delay of the reflected light 102, in which a cavity having the same effect as the cavity 111 is formed singly on the substrate, and the incident light 101 enters the substrate. In the same way, the light reflected by the substrate is formed by forming a cavity having the same effect as that of the cavity on the substrate, and the incident light is reflected by the incident light. , 203 are graphs showing the group velocity delays of the light formed by forming a cavity having the same effect as the cavity 113 on the substrate alone, making incident light 101 incident and reflected. . The reflected light resonated only by the cavities 111 has a short group velocity delay maximum and a gradual change in group velocity delay for each wavelength, as shown by the graph 201 in FIG. The reflected light resonated only by the cavities 1 and 2 has a maximum group velocity delay time longer than that of the graph 201 as shown by the graph 202 of FIG. The change is big. The reflected light resonated only by the cavities 113 has a longer group velocity delay time as shown by the graph 203 in FIG. 2, and the change in the group velocity delay time for each wavelength is even greater. If the wavelength width (wavelength band) that causes a change in the group velocity delay to a certain extent or more is called the bandwidth, the bandwidth becomes narrower in the order of graphs 201, 202, and 203. The incident light 101 incident on the dielectric multilayer filter 100 having the cavities 1 1 1, 1 1 2 and 1 1 3 having the above-described characteristics in the configuration as shown in FIG. 1 is converted into the cavities 1 1 1 Then, the cavities 1 1 and 2 resonate at the cavities 1 1 and 3 respectively, and are reflected. As a result, the reflected light 102 becomes as shown by the graph 200 in FIG. As shown in graph 200, in the case of the reflected light that is incident on and output from the dielectric multilayer filter 100, the delay time at the center wavelength of the graph is the largest, and the maximum delay time is 0 1 is longer and shorter than in graphs 202 and 203, but the bandwidth is narrower than in graph 201 and is lower than in graphs 202 and 203. In addition, the group velocity delay time-wavelength characteristic can be obtained. By appropriately selecting the maximum delay time and the bandwidth in accordance with the state of dispersion desired to be compensated in optical communication, compensation of third-order or higher dispersion (hereinafter also referred to as third-order dispersion compensation) is performed effectively. I can do it.
そして、誘電体多層膜の構成を、膜厚を変化させるなど適宜変えることによ り、 2次の分散を補償することが出来る群速度遅延時間一波長特性曲線を得る誘電体 多層膜フィルタをつく ることもできる。  Then, by appropriately changing the configuration of the dielectric multilayer film, for example, by changing the film thickness, a dielectric multilayer filter that obtains a group velocity delay time-wavelength characteristic curve capable of compensating secondary dispersion is manufactured. You can also.
図 3は、 本発明の実施例に用いた誘電体多層膜フィルタを説明する図である。 図 3において、 符号 3 0 0は誘電体多層膜フィルタ、 3 0 1 は基板と しての B K— 7ガラス、 3 0 2は反射層 (後述の中間層 3 0 3 と ともに反射層と して作用 する、 反射層 3 0 2 と中間層 3 0 3 とで第 3の反射層を形成している) で層 Hと 層 Lの組み合わせ層 (以下、 H Lの膜ともいう) を 1 3セッ ト有する多層膜 (以 下、 H L多層膜と もいう)、 3 0 3 と 3 0 6は中間層と しての層 Lの膜、 3 0 4 H は第 2の光透過層で、 層 Hと層 Hの組みあわせ層 (以下, HHの膜と もいう) を 7セッ ト有する多層膜 (以下, HH多層膜と もいう)、 3 0 5は反射層 (中間層 3 0 6 と ともに反射層と して作用する、 反射層 3 0 5 と中間層 3 0 6 とで第二の 反射層を形成している) で H Lの膜を 9セッ ト有する H L多層膜、 3 0 7は第 1 の光透過層で、 HHの膜を 1 0セッ ト有する HH多層膜、 3 0 8は第 1 の反射層 で、 H Lの膜を 3セッ ト有する H L多層膜、 3 1 1 は第 1 の反射層 3 0 8 と前記 第 2の反射層との間の第 1 のキヤ ビティ (共振器)、 3 1 2は前記第 2の反射層 と前記第 3の反射層の間の第 2のキヤ ビティである。 なお、 前記反射層は、 屈折 率の違う層を複数層重ねて形成されており、その層内で光が散乱され干渉(多重) し、 反射されるものであるが、 多層膜反射層とはどのよ うなものであるかの詳細 はここでは省略する。 FIG. 3 is a diagram illustrating a dielectric multilayer filter used in an example of the present invention. In FIG. 3, reference numeral 300 denotes a dielectric multilayer film filter, 301 denotes BK-7 glass as a substrate, and 302 denotes a reflective layer (a reflective layer together with an intermediate layer 303 described later). 13 sets of a combined layer of layer H and layer L (hereafter, also referred to as HL film) with the reflective layer 302 and the intermediate layer 303 forming a third reflective layer. Multilayer film (hereinafter also referred to as HL multilayer film), 303 and 303 are films of layer L as an intermediate layer, 304 H is a second light transmitting layer, a multilayer film having 7 sets of a combined layer of layer H and layer H (hereinafter also referred to as HH film) (hereinafter also referred to as HH multilayer film), Is a reflective layer (which acts as a reflective layer together with the intermediate layer 306, and the reflective layer 305 and the intermediate layer 306 form a second reflective layer), and is composed of 9 sets of HL films. HL multilayer film, 307 is the first light transmission layer, has 10 sets of HH films, HH multilayer film, 308 is the first reflection layer, has 3 sets of HL films HL multilayer film, 311 is a first cavity (resonator) between the first reflective layer 310 and the second reflective layer, 312 is a second reflective layer and the second reflective layer The second cavity between the three reflective layers. The reflective layer is formed by stacking a plurality of layers having different refractive indices, in which light is scattered, interferes (multiplexes), and is reflected. Details of what it is are omitted here.
前記 H Lの膜は、 厚みが 4分の 1波長の T i 〇 2のイオンアシス ト蒸着で作成 した膜 (以下、 イオンアシス ト膜と もいう) で形成された層 Hと、 厚みが 4分の 1波長の S i 〇 2のイオンアシス ト膜で形成された層 Lとから構成されており 、 前記 T i 〇 2のイオンアシス ト膜 (層 H) 1層および S i O 2のイオンアシス ト膜 (層し) 1層の組みあわせ層で H Lの膜 1セッ トとする。 前記 HHの膜は、 厚み が 4分の 1波長の T i 02のイオンアシス ト膜で構成されている層 Hの 2層の組 みあわせ層で 1セッ トとする。 層 Lの膜 3 0 3、 3 0 6は、 各々厚みが 4分の 1 波長の S i 02のイオンアシス ト膜 1層で構成されている。 Film of the HL, the film thickness is created by Ion'ashisu preparative deposition of T i 〇 2 quarter wavelengths (hereinafter also referred to as Ion'ashisu preparative layer) and the layer H formed in a thickness of one quarter A layer L formed of an ion-assist film having a wavelength of S i 〇 2 , and one layer of the ion-assist film (layer H) having the T i 〇 2 and an ion-assist film of S i O 2 (layer). ) One set of HL film is composed of one combined layer. The HH film is a set of two combined layers of a layer H composed of an ion-assist film having a thickness of T i 0 2 having a quarter wavelength. The films 303 and 306 of the layer L are each composed of one layer of an ion assist film of SiO 2 having a thickness of a quarter wavelength.
前記第 1 、 第 2、 第 3の反射層の反射率は、 第 1の反射層、 第 2の反射層、 第 3の反射層の順に大きく 、 一例と して、 第 3の反射層は反射率が約 1 0 0 %、 第 2の反射層は反射率は約 9 9. 8 %、 第 1の反射層である H L多層膜 3 0 8は反 射率が約 8 6 %である。 なお、 前記の各反射率は、 前記の値から 3 %以内にする ことが好ましく、 要求される仕様によっては 0. 5 %以内にすることがさらに好 ましく、 さらに、 製造上からは、 第 1 の反射層の反射率を 8 4〜 8 8 %にし、 第 2の反射層の反射率を 9 9. 5〜 9 9. 8 %にし、 第 3の反射層の反射率を 9 9. 9 %以上にすることが好ましい。  The reflectivity of the first, second, and third reflective layers is increased in the order of the first reflective layer, the second reflective layer, and the third reflective layer. The reflectance is about 100%, the reflectance of the second reflective layer is about 99.8%, and the reflectance of the HL multilayer film 308 as the first reflective layer is about 86%. In addition, it is preferable that each of the reflectances is within 3% of the above value, more preferably within 0.5% depending on required specifications. The reflectivity of the first reflective layer is set to 84 to 8.8%, the reflectivity of the second reflective layer is set to 99.5 to 99.8%, and the reflectivity of the third reflective layer is set to 99.9. % Is preferable.
なお、 ここで、 多層膜にイオンアシス ト膜を使用する例について説明している が、膜をイオンアシス ト膜で形成すると、丈夫で均質な膜を形成することができ、 膜の品質も良いという利点があるが、 膜の作成はイオンアシス ト蒸着に限らず、 通常広く行われている蒸着、 スパッタ リ ング、 イオンプレーティ ングその他の方 法によ り形成した多層膜を用いても本発明は大きな効果をもたらすものである。 層 Hが主と して T i 〇 2 (二酸化チタン) で形成される場合について説明した が、 これに限られるものではなく 、 T a 25 (五酸化タンタル) や N b 25 (五 酸化ニオブ) で形成される場合もある。 この場合も本発明は大きな効果をもたら す。 Here, an example in which an ion assist film is used for a multilayer film is described. However, if the film is formed of an ion assist film, a durable and uniform film can be formed. Although it has the advantage of good film quality, film formation is not limited to ion-assist deposition, and multi-layer films formed by deposition, sputtering, ion plating, or other methods commonly used widely are usually used. Even if it is used, the present invention provides a great effect. The case where the layer H is mainly formed of T i 〇 2 (titanium dioxide) has been described. However, the present invention is not limited to this, and Ta 25 (tantalum pentoxide) and Nb 25 ( It may be formed of niobium pentoxide). Even in this case, the present invention has a great effect.
図 3において、 誘電体多層膜フィルタ 3 0 0に入射した入射光は、 キヤビティ 3 1 1 とキヤ ビティ 3 1 2でどのよ うな共振現象を生じるかによ り群速度遅延の 様子が異なり 、 各条件を適切に選ぶこ とによ り、 必要な群速度遅延を得ることが 出来る。  In FIG. 3, the incident light incident on the dielectric multilayer filter 300 has a different group velocity delay depending on what resonance phenomenon occurs in the cavities 311 and 312. By properly selecting the conditions, the required group velocity delay can be obtained.
また、 前記共振で得られる反射光の各波長の群速度遅延の遅延時間一波長特性 は、 各層の膜厚を調整することによつても変えることが可能であり、 膜厚を変化 させることによつても可能であり 、 また入射光の誘電体多層膜フィルタに対する 入射角を変えることによっても調整が可能である。  Further, the delay time-wavelength characteristic of the group velocity delay of each wavelength of the reflected light obtained by the resonance can be changed also by adjusting the film thickness of each layer. It can be adjusted by changing the angle of incidence of the incident light on the dielectric multilayer filter.
また、 誘電体多層膜フィルタ 3 0 0のキヤビティは 2つ以上の場合も設計 ' 製 造が可能であり、 目的の各波長の所望の遅延時間に合わせて製造できる。  In addition, even if the dielectric multilayer filter 300 has two or more cavities, it can be designed and manufactured, and can be manufactured in accordance with a desired delay time of each target wavelength.
前記のよ うな誘電体多層膜フィルタが本発明に用いる光分散補償素子の一例で ある。  The dielectric multilayer filter as described above is an example of the optical dispersion compensating element used in the present invention.
また、 本発明に用いる光分散補償素子と しての誘電体多層膜フィルタの群速度 遅延時間一波長特性曲線は、 図 4で後述するよ うな、 3次の分散を捕償すること ができる形にすることができるが、 前記のよ うに、 多層膜の構成の仕方などを変 えることによ り、 2次の分散を補償できる形にすることもできる。  In addition, the group velocity delay time-wavelength characteristic curve of the dielectric multilayer film filter as the optical dispersion compensating element used in the present invention has a form capable of compensating for third-order dispersion as described later with reference to FIG. However, as described above, by changing the configuration of the multilayer film and the like, it is possible to make the form capable of compensating the second-order dispersion.
図 4は、 誘電体多層膜フィルタ 3 0 0によって反射した反射光の測定値を示す グラフであり、 符号 5 1 は測定された群速度遅延時間一波長特性曲線、 縦軸が群 速度遅延時間、 横軸が波長である。 図 4からわかるよ うに、 この誘電体多層膜 3 0 0は、 中心波長 1 5 5 0 n mで約 1 0 p s (ピコ秒) の最大遅延時間を得るこ とができ、 3次の分数を補償することができ、 帯域幅は約 0 . 4 n mにとつてい る。 本発明に使用する多層膜フィルタは、使用する波長帯域の全波長を透過する(多 層膜素子と して表現すれば、 反射する) ため、 パワー損失がほとんどなく 、 図示 しないが、 前記誘電体多層膜フィルタ 3 0 0の挿入損失は中心波長においてピー クを示し、 そのピーク値は 0 . 1 d B以下ときわめて低い値を示す。 さ らに、 本 発明に使用する多層膜フィルタは、 分散補償を行う波長帯域における分散リ ップ ルを生じない。 これらは、 従来の分散補償の試みでは期待できなかったことであ る。 FIG. 4 is a graph showing the measured values of the light reflected by the dielectric multilayer filter 300. Reference numeral 51 denotes a measured group velocity delay time-wavelength characteristic curve, and the vertical axis represents the group velocity delay time. The horizontal axis is the wavelength. As can be seen from Fig. 4, this dielectric multilayer film 300 can obtain a maximum delay time of about 10 ps (picosecond) at a center wavelength of 1550 nm, and compensates for the third-order fraction. The bandwidth is about 0.4 nm. The multilayer filter used in the present invention transmits all the wavelengths in the wavelength band to be used (reflects when expressed as a multilayer film element), so that it has almost no power loss and is not shown. The insertion loss of the multilayer filter 300 shows a peak at the center wavelength, and its peak value is very low, less than 0.1 dB. Further, the multilayer filter used in the present invention does not generate dispersion ripple in a wavelength band for performing dispersion compensation. These are things that could not be expected with conventional dispersion compensation attempts.
前記の例からもわかるよ うに、 本発明の誘電体多層膜を用いた 3次分散補償素 子によって、 3次以上の分散を十分に補償するこ とができ、 従来の 2次の分散補 償と併せて、 図 9に符号 7 0 4 と 7 1 4のグラフで示した特性まで伝送された信 号光の特性を改善することができる。  As can be seen from the above example, the third-order or higher dispersion can be sufficiently compensated for by the third-order dispersion compensating element using the dielectric multilayer film of the present invention. In addition, it is possible to improve the characteristics of the signal light transmitted to the characteristics shown by the graphs 704 and 714 in FIG.
図 5は、 チヤープ発生器 2 0およびチヤ一プ復元器 (すなわち、 分散補償装置) 2 5を用いてチヤープコン トロールをする場合の説明図である。 図 5において、 符号 1 0は光ファイバあるいは光ファイバ伝送システム (以下、 光ファイバと も いう)、 1 はチヤープ発生器 2 0に入力する前の信号光の振幅特性を表わしたグ ラフ、 2は光ファイバ 1 0を伝送中の信号光の振幅特性を表わしたグラフ、 3は チヤープ復元器 2 5に入力しチヤープ復元 (すなわち、 分散補償) を受けて出力 した後の信号光の振幅特性を表わしたグラフ、 1 1 はチヤープ発生器 2 0に入力 する前の信号光の波長特性を表わしたグラフ、 1 2は光ファイバ 1 0を伝送中の 信号光の波長特性を表わしたグラフ、 1 3はチヤープ復元器 2 5に入力しチヤ一 プ復元を受けて出力した後の信号光の波長特性を表わしたグラフである。 グラフ 1, グラフ 2およびグラフ 3では、 光の強度を縦軸、 時刻を横軸にとってあり、 グラフ 1 1 、 グラフ 1 2、 グラフ 1 3はそれぞれグラフ 1 、 グラフ 2、 グラフ 3 に対応しており、 それぞれ縦軸に光の強度、 横軸に波長をとっている。 また、 チ ヤープ発生器 2 0 とチヤープ復元器 2 5の間は、 光ファイバ 1 0を含む通信系で 接続されており (図示せず)、 チヤープ発生器 2 0に入力した信号光は、 光ファ ィバ 1 0を通ってチヤ一プ復元器 2 5でチヤ一プを復元されて出力される。  FIG. 5 is an explanatory diagram of a case where a chirp control is performed using a chirp generator 20 and a chirp reconstructor (that is, a dispersion compensator) 25. In FIG. 5, reference numeral 10 denotes an optical fiber or an optical fiber transmission system (hereinafter, also referred to as an optical fiber), 1 denotes a graph representing the amplitude characteristic of the signal light before being input to the chirp generator 20, and 2 denotes a graph. A graph showing the amplitude characteristics of the signal light being transmitted through the optical fiber 10, and 3 shows the amplitude characteristics of the signal light after being input to the chirp restorer 25 and subjected to chirp restoration (that is, dispersion compensation) and output. 11 is a graph showing the wavelength characteristic of the signal light before being input to the chirp generator 20, 12 is a graph showing the wavelength characteristic of the signal light being transmitted through the optical fiber 10, and 13 is a graph showing 15 is a graph showing the wavelength characteristics of signal light after being input to the chirp restoring unit 25, subjected to the chirp restoration and output. In graphs 1, 2, and 3, the vertical axis represents light intensity and the horizontal axis represents time. Graphs 11, 12, and 13 correspond to graphs 1, 2, and 3, respectively. The vertical axis shows the light intensity and the horizontal axis shows the wavelength. A communication system including an optical fiber 10 is connected between the chirp generator 20 and the chirp restoration unit 25 (not shown), and the signal light input to the chirp generator 20 is an optical signal. The chip is restored by the chip restoring unit 25 through the fiber 10 and output.
以下、 図 5、 およぴ図 6の説明図を用いて、 本発明の実施の形態についてさ ら に説明する。 チヤープ発生器 2 0に入力前の信号光は、 高速通信においては、 図 5のダラフ 1 およびダラフ 1 1 に示すよ うに、 光の強度が強く 、 強度の変化率も 大きい。 このよ うな信号光を長距離伝送した際には、 光の強度や波長が変化して 受信不可能となる。 しかし、 チヤープ発生器 2 0に入力した信号光は、 チヤープ 発生器 2 0によってチヤープが施され、グラフ 2およびグラフ 1 2に示すよ うな、 スペク トルは変わらないが、 光の強度が弱く 、 光の強度の変化率も小さい信号光 へと変換される。 光の強度が弱く 、 強度の変化率が小さい信号光は変形を受けに く く、 従来の低速通信と同様に光の強度や波長のばらつきが微小である。 この変 形が微弱な信号光は、 チヤープ復元器 2 5によって変換され、 チヤープ発生器 2 0に入力した信号光とほぼ同一の信号光と して出力される。 Hereinafter, embodiments of the present invention will be further described with reference to FIGS. 5 and 6. FIG. The signal light before input to the chirp generator 20 is As shown in 5 Daraf 1 and Daraf 11, the light intensity is high and the rate of change of the intensity is large. When such signal light is transmitted over a long distance, the intensity and wavelength of the light change and reception becomes impossible. However, the signal light input to the chirp generator 20 is chirped by the chirp generator 20, and the spectrum does not change as shown in graphs 2 and 12, but the light intensity is weak and the The rate of change of the intensity is also converted to a small signal light. Signal light having low light intensity and a small rate of change in intensity is not easily deformed, and has a small variation in light intensity and wavelength as in conventional low-speed communication. The signal light whose deformation is weak is converted by the chirp restoring unit 25 and output as almost the same signal light as the signal light input to the chirp generator 20.
以上のことから、 本発明のチヤープ発生器 2 0およびチヤープ復元器 2 5を長 距離伝送の光通信に使用することで、 通信ビッ ト レー トが 4 0 G b p s 以上の高 速通信の際にも、 支障なく通信することが出来る。  From the above, by using the chirp generator 20 and the chirp decompressor 25 of the present invention for optical communication of long-distance transmission, the communication bit rate can be improved at the time of high-speed communication of 40 Gbps or more. Can communicate without any problem.
図 6は、 光ファイバ内を長距離伝送中の信号光を説明する図であり 、 縦軸が信 号光の強度、 横軸が時刻である。 符号 3 1 、 3 2 、 3 3はチヤープ発生器でチヤ ープをかける前の信号光、 4 1 、 4 2 、 4 3はチヤープ発生器でチヤープをかけ た信号光、 4 0は信号光 4 1 、 4 2 、 4 3の光の強度を合波したグラフである。 図 6において、 信号光 3 1 、 3 2 、 3 3は図示の如く順次連続してチヤープ発 生器に入力される。 そして、 信号光 3 1 、 3 2 、 3 3はチヤ一プ発生器によって チヤープをかけられ、 それぞれ信号光 4 1 、 4 2 、 4 3で示すよ うに変化する。 長距離伝送中の光ファィバ内の信号光 4 1 、 4 2 、 4 3は、 信号光 3 1 、 3 2 、 3 3に比べて光の強度の時間的変化率が小さ く なり、 信号光 4 1 、 4 2 、 4 3が 前後の信号光と重なり、 グラフ 4 0に示すよ うに強度がほぼ一定の信号光とみら れるよ うになる。 そのため、 何らかの手段で光ファイバを通信中の信号光を取り 出しても、 グラフ 4 0で示すよ うに C W (連続波) ノイズのよ うに見えて、 例え ば、 通信を傍受しょ う とする者が信号を解読しよ う と しても解読するのは困難で あり、 盗聴防止など、 セキュ リティ一上の効果がある。  FIG. 6 is a diagram for explaining signal light during long-distance transmission in an optical fiber. The vertical axis represents the intensity of the signal light, and the horizontal axis represents time. Reference numerals 31, 32, and 33 denote signal light before being applied by the chirp generator, 41, 42, and 43 represent signal light that is applied by the chirp generator, and 40 denotes signal light 4. It is the graph which combined the intensity | strength of light of 1,42,43. In FIG. 6, the signal lights 31, 32, and 33 are sequentially and sequentially input to the chirp generator as shown. Then, the signal lights 31, 32, and 33 are capped by a cap generator, and change as shown by the signal lights 41, 42, and 43, respectively. The signal light 4 1, 4 2, and 4 3 in the optical fiber during long-distance transmission have a smaller temporal change rate of the light intensity than the signal light 3 1, 3 2, and 3 3. 1, 42, and 43 overlap the signal light before and after, and as shown in graph 40, the signal light appears to be almost constant in intensity. Therefore, even if the signal light is being transmitted through the optical fiber by some means, it looks like CW (continuous wave) noise as shown in Graph 40, and for example, a person trying to intercept the communication Even if you try to decode the signal, it is difficult to do so, and it has the highest security effects, such as preventing eavesdropping.
以上、 図 5の構成を基本に説明してきたが、 本発明はこれに限られるものでは なく、 波長合波を用いた光通信などにも対応することが出来る。 例えば、 波長合 波器によって複数の信号光を合成した信号光を、 チヤープ発生器に入力してチヤ ープをかけて伝送し、 伝送路から出力された信号光をチヤープ復元器によって復 元して、 波長分波器に入力し、 元の複数の信号光へと分離することで、 複数の信 号光を高速通信で送信するシステムを実現することが出来る。 As described above, the configuration of FIG. 5 has been basically described. However, the present invention is not limited to this, and can also be applied to optical communication using wavelength multiplexing. For example, a signal light obtained by synthesizing a plurality of signal lights by a wavelength multiplexer is input to a chirp generator, and the signal light is input to a chirp generator. The signal light output from the transmission path is restored by a chirp restorer, input to the wavelength demultiplexer, and separated into a plurality of original signal lights. A system for transmitting light at high speed can be realized.
また、 別の方法と して、 例えば、 複数の信号光をそれぞれ複数のチヤープ発生 器にかけてチヤープをかけ、 チヤープがかかった複数の信号光を波長合波器によ つて合波して伝送し、 伝送路から出力された信号光を波長分波器によって分離し た後、 それぞれ複数の信号光に対応する複数のチヤープ復元器によって元の複数 の信号光へと復元することで、 複数の信号光それぞれに対して個別にセキュ リテ ィー問題に対応しつつ、 高速通信を行なうシステムを実現するこ とができ る。 こ の場合、 送信者が受信者に対してチヤープを復元するためのチヤープの種類など に関する情報すなわちチヤープ情報を送信し、 受信者がそのチヤープ情報を基に 受信信号のチヤープを復元できるよ うにすることにより、 本発明に基づく光通信 方法およびそこに用いられる光通信装置の使い勝手と信頼性およびセキュ リ ティ 効果が特に顕著になる。  As another method, for example, a plurality of signal lights are respectively applied to a plurality of chirp generators to be chirped, and the plurality of chirped signal lights are multiplexed by a wavelength multiplexer and transmitted. After demultiplexing the signal light output from the transmission line by the wavelength demultiplexer, the signal light is restored to the original multiple signal lights by the multiple chirp decompressors corresponding to the multiple signal lights. It is possible to realize a system that performs high-speed communication while individually addressing security issues for each. In this case, the sender transmits to the receiver information on the type of the chirp for restoring the chirp, that is, the chirp information, and the receiver can restore the chirp of the received signal based on the chirp information. As a result, the usability, reliability, and security effects of the optical communication method according to the present invention and the optical communication device used therein become particularly remarkable.
以下、 図 7および図 8を使用して、 前記の波長合波器を使用した光通信システ ムに本発明のチヤープコン トロールを適用した場合を説明する。  Hereinafter, a case where the chirp control of the present invention is applied to an optical communication system using the above-described wavelength multiplexer will be described with reference to FIGS. 7 and 8.
図 7は波長合波器および波長分波器を使った光通信システムを説明する図であ る。 図 7で、 符号 4 0 0は光通信システム、 4 0 1 、 4 0 2、 4 0 3、 4 2 5、 4 2 6は送信装置と しての 「光源 +スィ ツチ」、 4 0 4は波長合波器、 4 0 5は 波長分波器、 4 0 6、 4 0 7、 4 0 8、 4 2 7、 4 2 8は受信装置と しての受光 器 (以下、 受信器ともいう)、 4 1 1 、 4 1 2、 4 1 3、 4 1 4、 4 1 5、 4 1 6、 4 1 7、 4 1 8、 4 1 9は光ファイバもしく は光ファイバシステムを使用し た伝送路、 4 2 1、 4 2 2は E D F A (エルピウム ' ド一プト · ファイバ ' アン プすなわち光増幅器)、 4 2 3 , 4 2 4は ADMである。  FIG. 7 illustrates an optical communication system using a wavelength multiplexer and a wavelength demultiplexer. In FIG. 7, reference numeral 400 denotes an optical communication system, reference numerals 401, 402, 403, 425, and 426 denote a light source and a switch as transmitting devices, and reference numeral 404 denotes a transmitting device. Wavelength multiplexer, 405 is a wavelength demultiplexer, 406, 407, 408, 427, 428 are receivers as receivers (hereinafter also referred to as receivers) , 4 11, 4 12, 4 13, 4 14, 4 15, 4 16, 4 17, 4 18, 4 19 are transmissions using optical fibers or optical fiber systems 421, 422 are EDFAs (erpium 'dop fiber' amplifiers or optical amplifiers), and 423, 424 are ADMs.
伝送路 4 1 1 、 4 1 2、 4 1 3、 4 1 4、 4 1 5、 4 1 6、 4 1 7、 4 1 8、 4 1 9には、 チヤ一プ発生器やチヤ一プ復元器を配置して、 光通信システム 4 0 0に本発明を用いたチヤ一プコン トロールを適用することができる。 また、 AD M 4 2 3または ADM4 2 4を使用して、 途中の各地点へ信号光を送受信するこ とが出来る。 図 8は、 図 7の波長合波器 4 0 4によって合波された信号光を説明する図であ り、 グラフの縦軸は時刻、 横軸は波長である。 前記縦軸の時刻は上方から下方に 向けて所定の時刻から未来へ向かう ことを意味する。 符号 5 0 1 0、 5 0 2 0、 5 0 3 0は 「光源 +スィ ツチ」 4 0 1, 4 0 2, 4 0 3で発生され、 波長合波器 4 0 4によって合波された信号光、 5 1 1 0、 5 1 2 0、 5 1 3 0は前記各信号 光 5 0 1 0, 5 0 2 0 , 5 0 3 0を波長合波器 4 0 4によって合波する前にそれ ぞれチヤープ発生器によってチヤープをかけた後に波長合波器 4 0 4で合波した 信号光、 5 2 1 0、 5 2 2 0、 5 2 3 0は前記各信号光 5 0 1 0 , 5 0 2 0, 5 0 3 0を前記波長合波器 4 0 4で合波した後に信号光 5 0 1 0 , 5 0 2 0, 5 0 3 0にチヤープ発生器によってチヤープをかけた信号光である。 符号 5 0 1 1 、 5 0 1 2、 5 0 1 3, · · ' は、 時刻 t 1 における信号光 5 0 1 0の各部 (即ち、 各チャネル、 以下同様)、 5 0 2 1 、 5 0 2 2 , 5 0 2 3, . · · は、 時刻 t 2 における信号光 5 0 2 0の各部、 5 0 3 1 、 5 0 3 2, 5 0 3 3, · · · は、 時 刻 t 3における信号光 5 0 3 0の各部である。 すなわち、 信号光 5 0 1 0, 5 0 2 0 , 5 0 3 0の順に送信される (以下同様)。 符号 5 1 1 1 、 5 1 1 2、 5 1 1 3 · · · は信号光 5 1 1 0の各部、 5 1 2 1 、 5 1 2 2、 5 1 2 3 · . · は信 号光 5 1 2 0の各部、 5 1 3 1、 5 1 3 2、 5 1 3 3 · · · は信号光 5 1 3 0の 各部である。 符号 5 2 1 1 、 5 2 1 2、 5 2 1 3 · · ' は信号光 5 2 1 0の各部、 5 2 2 1 、 5 2 2 2、 5 2 2 3 · · ' は信号光 5 2 2 0の各部、 5 2 3 1 、 5 2 3 2、 5 2 3 3 · . ' は信号光 5 2 3 0の各部である。 Transmission lines 4 11, 4 12, 4 13, 4 14, 4 15, 4 16, 4 17, 4 18, 4 19 are equipped with a chip generator and a chip restoration. A chip control using the present invention can be applied to the optical communication system 400 by disposing a device. In addition, signal light can be transmitted and received to each point on the way by using ADM424 or ADM424. FIG. 8 is a diagram for explaining the signal lights multiplexed by the wavelength multiplexer 404 of FIG. 7. The vertical axis of the graph is time, and the horizontal axis is wavelength. The time on the vertical axis means going from a predetermined time to the future from above to below. Symbols 510, 520, 530 are signals generated by “light source + switch” 401, 402, 403, and multiplexed by the wavelength multiplexer 404. Light, 511 0, 5120, 5130 are the signals before being multiplexed by the wavelength combiner 4104 with the signals 5100, 520, 530, respectively. Each of the signal lights, 5 2 0, 5 2 0, and 5 2 3 0, which were combined by the wavelength combiner 4 04 after being chirped by the chirp generator, respectively, were the above-mentioned signal lights 5 0 1 0, 5 After the signals 0 0, 0 3 0 3 0 are multiplexed by the wavelength multiplexer 4 0 4, the signal light 5 0 1 0, 5 0 2 0, 5 0 3 0 is chirped by a signal generator with a signal light. is there. The symbols 510 1, 5 0 1 2, 5 0 1 3, ··· 'are the respective parts of the signal light 5 10 0 at time t 1 (that is, each channel, the same applies hereinafter), 5 0 2 1, 5 0 Are the parts of the signal light 520 at time t 2, 503 1, 503 2, 503 3,... Are the time t 3 Of the signal light 530 in FIG. That is, the signal light is transmitted in the order of 510, 520, 530 (the same applies hereinafter). The symbols 5 1 1 1, 5 1 1 2, 5 1 1 3 ... are parts of the signal light 5 11 0, 5 2 1 1, 5 1 2 2, 5 1 2 3. Reference numerals 1 230, 5 131, 5 13 2, 5 13 3 ··· are the parts of the signal light 5 130. Symbols 5 2 1 1, 5 2 1 2, 5 2 1 3 · 'are signal light 5 2 10 parts, 5 2 2 1, 5 2 2 2, 5 2 2 3 · ·' are signal light 5 2 20, 5 231, 5 232, 5 2 3 3... ′ Are the components of the signal light 5 230.
信号光 5 1 1 0、 5 1 2 0, 5 1 3 0は、 光通信システム 4 0 0において、 波 長合波器 4 0 4の前段に、 すなわち、 「光源 +スィ ッチ」 4 0 1 , 4 0 2, 4 0 3または伝送路 4 1 1 、 4 1 2、 4 1 3にチヤープ発生器を配してチヤ一プを施 された信号光である。 チヤープ復元器は、 波長分波器 4 0 5の後段、 すなわち、 伝送路 4 1 6, 4 1 7, 4 1 8に配置することができ、 または、 波長分波器 4 0 5またはその前段に配置することも出来る。  In the optical communication system 400, the signal light 511 0, 51200, 5130 is placed before the wavelength multiplexer 404, that is, “light source + switch” 4101. , 402, 403 or the transmission lines 411, 412, 413 and a signal light which has been subjected to a capture by being provided with a capture generator. The chirp decompressor can be arranged after the wavelength demultiplexer 405, that is, on the transmission lines 416, 417, 418, or at the wavelength demultiplexer 405 or before it. They can also be placed.
信号光 5 2 1 0、 5 2 2 0、 5 2 3 0は、 光通信システム 4 0 0において、 波 長合波器 4 0 4 もしく はその後段すなわち伝送路 4 1 4にチヤープ発生器を配し てチヤープを施された信号光である。 図 8におレ、て、 信号光 5 0 1 0は、 5 0 1 1 、 5 0 1 2、 5 0 1 3、 · · ' に 示すよ うに、 各波長帯ごとに信号光が分かれて存在しており、 同一時刻に複数の 信号光が混在している。 また、 信号光 5 0 2 0、 5 0 3 0 も信号光 5 0 1 0 と同 様に各波長帯ごとに信号光が分かれて存在しており、 同一時刻に複数の信号光が 混在している。 信号光 5 1 1 0は、 各信号光 5 0 1 1 , 5 0 1 2, 5 0 1 3、 · - · をそれぞれチヤープ発生器にかけてチヤープをかけ、 チヤープがかかった複 数の信号光を波長合波器 4 0 4によって合波した信号光であり、 チヤープをかけ られた信号光は、 5 1 1 1 、 5 1 1 2、 5 1 1 3、 · · ' に示すよ う に同一時刻 に複数の信号光が混在している。 また、 信号光 5 1 2 0、 5 1 3 0 も信号光 5 1 1 0 と同様に各同一時刻に複数の信号光が混在している。 信号光 5 2 1 0は、 波 長合波器 4 0 4によって複数の信号光を合成した信号光を、 チヤープ発生器に入 力してチヤープをかけた信号光であり、 その信号光の各部は、 5 2 1 1、 5 2 1 ■ 2、 5 2 1 3、 · · ' に示すよ う になってレ、る。 また、 信号光 5 2 2 0、 5 2 3 0も信号光 5 2 1 0 と同様に図示のようになつている。 In the optical communication system 400, the signal light 5210, 5220, and 5230 are provided with a wavelength multiplexer 404 or a subsequent stage, that is, a chirp generator in the transmission path 414. This is a signal light that has been distributed and capped. As shown in FIG. 8, the signal light 510 is divided into signal wavelengths for each wavelength band, as indicated by 501, 510, 512, 513,. And multiple signal lights are mixed at the same time. Also, as with the signal light 510, the signal lights 520 and 530 also have signal lights separated for each wavelength band, and a plurality of signal lights are mixed at the same time. I have. The signal light 511 0 is applied to each of the signal lights 5 0 1 1, 5 0 1 2, 5 0 13,..., By a chirp generator, and the signal light is wavelength-converted. The signal lights multiplexed by the multiplexer 404 are capped at the same time as indicated by 5111, 5112, 5113, A plurality of signal lights are mixed. Further, the signal lights 5120 and 5130 also have a plurality of signal lights mixed at the same time, similarly to the signal light 5110. The signal light 5210 is a signal light obtained by inputting a signal light obtained by combining a plurality of signal lights by the wavelength multiplexer 404 into a chirp generator and applying a chirp. 5 2 1 1, 5 2 1 ■ 2, 5 2 1 3, · · ' Also, the signal lights 5220 and 5230 are configured as shown in the figure, similarly to the signal light 5210.
また、 本発明は前記のチヤープ発生器を用いて送信する場合の他に、 チヤ一プ 発生器を用いないで、 あるいは、 十分なチヤープ発生なしで、 送信された信号の チヤープ復元に関しても大きな効果を発揮するものである。  In addition to the above-described transmission using the chirp generator, the present invention has a great effect on the chirp recovery of the transmitted signal without using the chirp generator or without sufficient generation of the chirp. It demonstrates.
なお、 前記チヤ一プ発生器は、 本発明の技術分野の項で述べたよ う に、 分散発 生器であり、 チヤープ復元器は分散復元器であって、 分散補償器の一種であるこ とは、 以上の説明から明らかなことである。  Note that, as described in the technical field of the present invention, the cap generator is a dispersion generator, and the cap reconstructor is a dispersion reconstructor and is a kind of dispersion compensator. It is clear from the above description.
以上、誘電体多層膜フィルタを例と して本発明を説明してきたが、前記の如く、 本発明はこれに限定されるものではなく、 前記の本発明の技術思想に基づく範囲 はすべて包含されるものであることはいうまでもない。  As described above, the present invention has been described by taking the dielectric multilayer filter as an example. However, as described above, the present invention is not limited to this, and all ranges based on the technical idea of the present invention are included. Needless to say, it is.
本発明の誘電体多層膜フィルタを本発明の 3次分散補償のための素子と して通 信器に組みこんで用い、 通信ビッ トレー ト 4 0 G b p s で D S Fを用いた通信シ ステムの通信実験を行なったと ころ、 従来問題になっていた 3次分散による受信 異常が全く問題にならないほどに 3次分散を十分に補償することが出来、 きわめ て良好な通信結果を得ることが出来た。 特に、 本発明によれば、 分散捕償素子と して多層膜素子を用いたことによ り、 分散補償による損失はきわめて小さく、 特 に受信器段階での各チャンネルごとの分散捕償を、 0 . l d B以下で行う システ ムも構築することができるという大きな効果をもたらすものである。 The dielectric multilayer filter of the present invention is used as a third-order dispersion compensating element of the present invention in a communication device, and is used in a communication system using a DSF at a communication bit rate of 40 Gbps. Experiments have shown that the third-order dispersion can be sufficiently compensated so that the reception error due to the third-order dispersion, which has been a problem in the past, does not become a problem at all, and extremely good communication results were obtained. In particular, according to the present invention, the loss due to dispersion compensation is extremely small because the multilayer film element is used as the dispersion compensation element. This has a great effect that it is possible to construct a system in which dispersion compensation for each channel at the receiver stage is performed at 0.1 ldB or less.
以上の説明から、本発明の 3次分散補償素子に入射される信号光を、 たとえば、 誘電体多層膜に形成されたキヤ ビティで共振させることで、 入射光に対する出力 光の波長成分によって異なる遅延を実現することができ、 そして、 多層膜の条件 を適切に選ぶことによ り、 必要な群速度遅延とその帯域幅を実現することができ ること力 わ力、る。  According to the above description, the signal light incident on the third-order dispersion compensating element of the present invention is resonated by, for example, the cavities formed in the dielectric multilayer film, so that the delay different depending on the wavelength component of the output light with respect to the incident light. By properly selecting the conditions of the multilayer film, it is possible to realize the required group velocity delay and its bandwidth.
また、 主と して伝送路中で生じる 2次の分散を分散補償ファイバを用いるなど によ り補償する従来の方法と本発明の 3次の分散補償あるいは本発明の 2次の分 散と 3次の分散補償を併用することによ り、 本発明は一層大きな効果を発揮する ものである。  In addition, the conventional method of compensating for the secondary dispersion mainly generated in the transmission line by using a dispersion compensating fiber and the like, and the third-order dispersion compensation of the present invention or the second-order dispersion of the present invention By using the following dispersion compensation together, the present invention exerts a greater effect.
以上、 誘電体多層膜フィルタを例にとって、 本発明における主と して 3次の分 散補償の仕方および 2次の分散補償の仕方について説明したが、 本発明のもっと も顕著な特徴の一つは、 光分散補償素子、 なかでも多層膜を用いた 3次や 2次の 光分散補償素子を用いて、 光ファイバなどを伝送される際に信号光に生じる分散 をきわめて低い損失で補償して、 高速 · 長距離通信を可能にするところにある。 さらに、 本発明の顕著な特徴の一つは、 通信系に分散発生器 (チヤープ発生器) と分散復元器 (チヤープ復元器) とを配置して、 光ファイバに送信する信号光に チヤ一プを施して送信し、 たとえば、 受信側でチヤープを復元して受信すること であり、 送信中に生じる分散を減少させたり、 送信中のセキュ リティを高めたり することを可能にするところにある。  In the above, the method of the third-order dispersion compensation and the method of the second-order dispersion compensation have been mainly described in the present invention, taking the dielectric multilayer filter as an example, but one of the most remarkable features of the present invention. Is to compensate for the dispersion that occurs in signal light when transmitting over optical fibers, etc. with extremely low loss by using an optical dispersion compensating element, especially a tertiary or secondary optical dispersion compensating element using a multilayer film. , High speed and long distance communication. Further, one of the salient features of the present invention is that a dispersion generator (a chirp generator) and a dispersion reconstructor (a chirp reconstructor) are arranged in a communication system so that a signal light transmitted to an optical fiber can be captured. This means that the receiving side recovers the chirp and receives the data. For example, it is possible to reduce the variance that occurs during transmission or to increase the security during transmission.
そして、 本発明の光学部品は、 前記のごとき光分散補償素子または光分散発生 素子あるいはそれらの少なく とも一方を有する光学部品である。  The optical component of the present invention is an optical component having the above-described optical dispersion compensating element or optical dispersion generating element, or at least one of them.
そして、 本発明の光通信装置は、 前記の如き光学部品を組み込んで、 分散補償 機能や分散発生機能を有するよ うにした光通信装置であり、 たとえば、 発信器、 増幅器、 受信機、 各種中継器などもその一種である。  The optical communication device according to the present invention is an optical communication device having a dispersion compensation function and a dispersion generation function by incorporating the optical components as described above, and includes, for example, a transmitter, an amplifier, a receiver, and various repeaters. Is one of them.
そして、 本発明の光通信方法および光通信装置には、 セキュリティ情報の付加 や解読、チヤ一プ情報の付加や解読ができる機能を含めることができると ともに、 分散の種類や分散値などの分散情報を表示したり、 制御したりする手段を含める ことができ、 それらによって、 光通信を広い範囲にわたって大きく 向上させるこ とができる。 産業上の利用可能性 The optical communication method and the optical communication apparatus of the present invention can include a function of adding and decoding security information and a function of adding and decoding cap information. Include means to display and control information They can greatly improve optical communications over a wide range. Industrial applicability
本発明による通信方法と光学部品並びに光通信装置は、 特に、 高速で長距離の 光通信をはじめ、 光通信に広く用いることができる。  INDUSTRIAL APPLICABILITY The communication method, the optical component, and the optical communication device according to the present invention can be widely used for optical communication, especially for high-speed, long-distance optical communication.
本発明のこのよ うな群速度遅延を生じさせる素子を 2次や 3次の分散補償素子 や分散発生素子と して光通信システムに用いることによ り、 従来の分散補償では 補償できなかった 3次の波長分散も効果的に補償することができ、 従来用いられ ている光ファイバなどの通信設備をすベて新しいものに置き換えてしまわなく て も、 長距離、 高速の光通信が実現可能になり、 現在考えられている多く の通信設 備を新たなものに置き換える方法に比べて、 本発明のもたらす経済的な効果はき わめて多大なものである。  By using the element of the present invention that causes such a group velocity delay as a secondary or tertiary dispersion compensating element or a dispersion generating element in an optical communication system, the conventional dispersion compensation cannot compensate. The following chromatic dispersion can also be effectively compensated, and long-distance, high-speed optical communication can be realized without replacing all existing communication equipment such as optical fibers with new ones. In other words, the economic effect of the present invention is extremely large as compared with the method of replacing many communication facilities currently being considered with new ones.
さ らに、 本発明は、 従来できなかった光通信のセキュ リ ティの問題を大幅に改 善するものであり、 光通信の新しい利用分野の開拓をうながすものである。  Furthermore, the present invention significantly improves the security problem of optical communication, which has not been possible in the past, and encourages a new application field of optical communication.

Claims

請 求 の 範 囲 The scope of the claims
1 . 通信伝送路に光ファイバを用いる光通信システムを利用する光通信方法にお いて、 前記光通信システムが、 少なく とも 1台の光分散補償器 (以下、 光分散補 償器のことを、 単に、 分散補償器ともいう。 ファイバなどを伝送されることによ り生じた分散を補償すること と、 後述のよ うな、 信号光にあらかじめ分散を施し て送信された信号光の分散を元に戻す、 すなわち、 分散を復元するこ とのいずれ か一方または双方の機能を有するものを本発明では分散補償器と総称することに する。 そして特に区別や限定する必要があるときは、 狭い意味で分散補償器、 分 散復元器などと もいう ことにする。) を有し、 前記分散補償器を用いて光フアイ バからの出力光の分散を補償することを特徴とする光通信方法。 1. In an optical communication method using an optical communication system using an optical fiber for a communication transmission line, the optical communication system includes at least one optical dispersion compensator (hereinafter, referred to as an optical dispersion compensator, It is simply called a dispersion compensator, which compensates for the dispersion caused by transmission through a fiber or the like, and based on the dispersion of the signal light transmitted after applying the dispersion to the signal light in advance as described later. In the present invention, a device having one or both of the functions of restoring, that is, restoring dispersion, is generically referred to as a dispersion compensator. An optical communication method, comprising: a dispersion compensator, a dispersion restoring device, etc.), wherein the dispersion of the output light from the optical fiber is compensated using the dispersion compensator.
2 . 請求項 1 に記載の光通信方法において、 前記光通信システムが、 少なく とも 1台の光分散発生器(以下、 光分散発生器のことを、 単に、分散発生器ともいう。) を有し、 入力光に対して前記分散発生器を用いて分散を施して送信し、 前記分散 補償器を用いて光ファイバからの出力光の分散を補償することを特徴とする光通 信方法。  2. The optical communication method according to claim 1, wherein the optical communication system has at least one optical dispersion generator (hereinafter, the optical dispersion generator is also simply referred to as a dispersion generator). An optical communication method, wherein the input light is subjected to dispersion using the dispersion generator and transmitted, and the dispersion of output light from the optical fiber is compensated using the dispersion compensator.
3 . 請求項 1 に記載の光通信方法において、 前記光通信システムが、 その構成要 素と して、 少なく とも、 信号光発生器と、 前記信号光発生器から出力される信号 光や送信された信号光などを合波する波長合波器と、 光伝送路と しての光フアイ バと、 伝送中の信号光を増幅する光増幅器と、 前記光ファイバを伝送された信号 光を各チャネルに分波する波長分波器と、 前記波長分波器から出力される信号光 を受信する受信器 (以下、 受光器ともいう) と、 分散発生器と、 前記分散補償器 とを有し、 光ファイバまたは光ファイバ伝送システムに入力される前の入力信号 3. The optical communication method according to claim 1, wherein the optical communication system includes at least a signal light generator, a signal light output from the signal light generator, and a signal light transmitted from the signal light generator. A wavelength multiplexer for multiplexing the transmitted signal light, an optical fiber as an optical transmission line, an optical amplifier for amplifying the signal light being transmitted, and a signal light for transmitting the signal light transmitted through the optical fiber to each channel. A wavelength demultiplexer, which receives the signal light output from the wavelength demultiplexer, a dispersion generator, and the dispersion compensator. Input signal before input to optical fiber or optical fiber transmission system
(信号光) に対して前記分散発生器によって分散が施されていることを特徴とす る光通信方法。 An optical communication method, wherein (signal light) is dispersed by the dispersion generator.
4 . 請求項 1 に記載の光通信方法において、 前記光通信システムの分散値を測定 することが出来る分散測定器を前記光通信システムに配したことを特徴とする光 通信方法。  4. The optical communication method according to claim 1, wherein a dispersion measuring device capable of measuring a dispersion value of the optical communication system is provided in the optical communication system.
5 . 請求項 1 に記載の光通信方法において、 前記分散補償器が 2次または 2次以 上の光分散補償素子 (以下、 光分散補償素子のことを、 単に、 分散捕償素子とも レ、う。) と 3次または 3次以上の分散補償素子の少なく と も一つを有することを 特徴とする光通信方法。 5. The optical communication method according to claim 1, wherein the dispersion compensator is second-order or second-order or lower. It is necessary to have at least one of the above optical dispersion compensating element (hereinafter, the optical dispersion compensating element is also simply referred to as a dispersion compensating element) and at least one of the third- or higher-order dispersion compensating elements. Characteristic optical communication method.
6 . 請求項 2に記載の光通信方法において、 前記光通信システムで送信する信号 に分散情報が含まれていることを特徴とする光通信方法。  6. The optical communication method according to claim 2, wherein the signal transmitted in the optical communication system includes dispersion information.
7 . 請求項 2に記載の光通信方法において、 前記分散発生器および分散補償器が 同様の原理から製作され、 前記分散発生器から出力され、 光ファイバを伝送され た信号光が、 前記分散補償器によって前記分散発生器に入力した分散を施す前の 信号光に復元されることを特徴とする光通信方法。  7. The optical communication method according to claim 2, wherein the dispersion generator and the dispersion compensator are manufactured based on the same principle, and the signal light output from the dispersion generator and transmitted through the optical fiber is the dispersion compensation. An optical communication method, wherein the optical signal is restored to the signal light before the dispersion input to the dispersion generator by the device.
8 . 請求項 2に記載の光通信方法において、 前記分散発生器が、 2次または 2次 以上の光分散発生素子 (以下、 光分散発生素子のことを、 単に、 分散発生素子と もいう。) と 3次または 3次以上の分散発生素子の少なく と も一つを有すること を特徴とする光通信方法。  8. The optical communication method according to claim 2, wherein the dispersion generator is a secondary or secondary or higher order light dispersion generating element (hereinafter, the light dispersion generating element is also simply referred to as a dispersion generating element. ) And at least one tertiary or third- or higher-order dispersion generating element.
9 . 請求項 3に記載の光通信方法において、 光ファイバへの入力光の通信ビッ ト レー 卜が 4 0 G b p s以上の場合に、 前記入力光に施す分散が、 その入力光が光 ファイバまたは光ファイバ伝送システムを伝送する過程で受ける分散が、 分散を 施されない状態での入力光のピーク値が同じであって通信ビッ ト レー トが 2 . 5 G b p sの場合の入力光に分散を施さずに同一光ファイバまたは光ファイバ伝送 システムを同一距離伝送させた場合に受ける分散に基づく変形よ り も大きくない 程度にまで施されていることを特徴とする光通信方法。  9. In the optical communication method according to claim 3, when the communication bit rate of the input light to the optical fiber is 40 Gbps or more, the dispersion applied to the input light is such that the input light is an optical fiber or When the dispersion received in the process of transmitting the optical fiber transmission system is the same as the peak value of the input light without dispersion and the communication bit rate is 2.5 Gbps, the dispersion is applied to the input light. An optical communication method characterized in that the transmission is performed to a degree that is not greater than the deformation based on the dispersion received when the same optical fiber or optical fiber transmission system is transmitted over the same distance without using the same optical fiber or optical fiber transmission system.
1 0 . 請求項 3に記載の光通信方法において、 前記分散発生器が信号光発生器も しくは信号発生器と波長合波器の間に入っていることを特徴とする光通信方法。 10. The optical communication method according to claim 3, wherein the dispersion generator is provided between the signal light generator or the signal generator and the wavelength multiplexer.
1 1 . 請求項 3に記載の光通信方法において、 前記分散補償器が受光器もしく は 波長分波器と受光器の間に入っていることを特徴とする光通信方法。 11. The optical communication method according to claim 3, wherein the dispersion compensator is provided between the light receiver or the wavelength demultiplexer and the light receiver.
1 2 . 請求項 3に記載の光通信方法において、 前記分散発生器が波長合波器もし くは波長合波器の出力側伝送系に入っていることを特徴とする光通信方法。  12. The optical communication method according to claim 3, wherein the dispersion generator is included in a wavelength multiplexer or an output-side transmission system of the wavelength multiplexer.
1 3 . 請求項 3に記載の光通信方法において、 前記分散補償器が波長分波器もし くは波長分波器の入力側伝送系に入っていることを特徴とする光通信方法。  13. The optical communication method according to claim 3, wherein the dispersion compensator is included in a wavelength demultiplexer or an input side transmission system of the wavelength demultiplexer.
1 4 . 請求項 3に記載の光通信方法において、 前記分散発生器によ り分散を施さ れた信号光にセキュ リティに関する情報が含まれていることを特徴とする光通信 方法。 14. The optical communication method according to claim 3, wherein the dispersion is performed by the dispersion generator. An optical communication method, characterized in that the signal light contains information on security.
1 5 . 請求項 4に記載の光通信方法において、 前記分散発生器と分散補償器が異 なる原理から製作されたものであり、 分散情報に応じて分散補償器において分散 補償が行われることを特徴とする光通信方法。  15. The optical communication method according to claim 4, wherein the dispersion generator and the dispersion compensator are manufactured based on different principles, and the dispersion compensation is performed in the dispersion compensator according to dispersion information. Characteristic optical communication method.
1 6 . 請求項 5に記載の光通信方法において、 前記分散補償素子が主と して多層 膜を用いて分散補償を行う素子であることを特徴とする光通信方法。  16. The optical communication method according to claim 5, wherein the dispersion compensating element is an element that performs dispersion compensation mainly using a multilayer film.
1 7 . 請求項 8に記載の光通信方法において、 前記分散発生器が多層膜で構成さ れた光分散発生素子を有することを特徴とする光通信方法。  17. The optical communication method according to claim 8, wherein the dispersion generator includes an optical dispersion generation element formed of a multilayer film.
1 8 . 通信伝送路に光ファイバを用いる光通信に用いることができる部品であつ て、 2次または 2次以上の波長分散 (以下、 分散と もいう) を変えることが出来 る素子 (以下、 2次光分散補償素子と もいう。 以下、 光分散補償素子のことを、 単に、 分散補償素子と もいう。 また、 ファイバなどを伝送されることによ り生じ た分散を捕償すること と、 後述のよ うな、 信号光にあらかじめ分散を施して送信 された信号光の分散を元に戻す、 すなわち、 分散を復元することのいずれか一方 または双方の機能を有するものを本発明では分散補償素子と総称するこ とにす る。 そして特に区別や限定する必要があるときは、 狭い意味で分散補償素子、 分 散復元素子などと もいう ことにする。) と 3次または 3次以上の分散を変えるこ とが出来る素子 (以下、 3次分散補償素子ともいう) の少なく と も一方を有する ことを特徴とする光学部品。  18. A component that can be used for optical communication using an optical fiber for the communication transmission line and that can change the chromatic dispersion of the secondary or higher order (hereinafter also referred to as dispersion) (hereinafter referred to as dispersion). In the following, the optical dispersion compensating element is also simply referred to as a dispersion compensating element, and the compensation of dispersion caused by transmission through a fiber or the like. According to the present invention, dispersion compensation is performed by dispersing the signal light in advance and returning the dispersion of the transmitted signal light, that is, restoring the dispersion, as described later. The elements are collectively referred to as elements, and when it is particularly necessary to distinguish or limit them, they are also referred to as dispersion compensation elements and dispersion restoration elements in a narrow sense.) Changing variance Optics least an optical component, characterized in that also have a one (hereinafter, also referred to as third-order dispersion compensation device).
1 9 . 請求項 1 8に記載の光学部品において、 前記 2次分散補償素子と 3次分散 補償素子の少なく と も一方が主と して多層膜で構成されている素子であることを 特徴とする光学部品。  19. The optical component according to claim 18, wherein at least one of the secondary dispersion compensating element and the tertiary dispersion compensating element is an element mainly composed of a multilayer film. Optical components.
2 0 . 請求項 1 9に記載の光学部品において、 前記多層膜が誘電体多層膜である ことを特徴とする光学部品。  20. The optical component according to claim 19, wherein the multilayer film is a dielectric multilayer film.
2 1 . 請求項 1 9に記載の光学部品において、 前記多層膜を構成する各層の厚さ が、 入射光の光路長と して考えて入射光中心波長の 4分の 1 の長さに相当する厚 み (以下、 「厚みが 4分の 1波長」 と もいう) の整数倍であることを特徴とする 光学部品。 21. The optical component according to claim 19, wherein the thickness of each layer constituting the multilayer film is equivalent to a quarter of the central wavelength of the incident light when considered as the optical path length of the incident light. The optical component is characterized by being an integral multiple of the thickness (hereinafter, also referred to as “quarter wavelength”).
2 2. 請求項 1 9に記載の光学部品において、 前記多層膜が少なく と も 3つの反 射率の異なる反射層を有し、 前記各反射層が、 厚みが 4分の 1波長で屈折率が比 較的高い層 (以下、 層 Hと もいう) と厚みが 4分の 1波長で屈折率が比較的低い 層 (以下、 層 Lと もいう) の組み合わせ層の複数組で構成されていることを特徴 とする光学部品。 22. The optical component according to claim 19, wherein the multilayer film has at least three reflective layers having different reflectances, and each of the reflective layers has a refractive index at a quarter wavelength. Is composed of a plurality of sets of a combination of a relatively high layer (hereinafter also referred to as a layer H) and a layer having a quarter wavelength and a relatively low refractive index (hereinafter also referred to as a layer L). An optical component characterized in that:
2 3. 請求項 1 9に記載の光学部品において、 前記多層膜が 3つ以上の反射層を 有し、 光を入射 (入力) する側から順に、 少なく と も、 第 1 の反射層と第 2の反 射層の間に第 1 のキヤビティを形成し、 第 2の反射層と第 3の反射層の間に第 2 のキヤビティを形成するよ う に構成されていることを特徴とする光学部品。  23. The optical component according to claim 19, wherein the multilayer film has three or more reflective layers, and at least the first reflective layer and the second reflective layer are arranged in this order from the side where light is incident (input). An optical system, wherein a first cavity is formed between the second reflective layers, and a second cavity is formed between the second reflective layer and the third reflective layer. parts.
2 4. 請求項 1 9に記載の光学部品において、 前記多層膜が少なく と も 3つの反 射層を有し、 各反射層間の光路長と しての間隔がそれぞれ異なるよ うに形成され ていることを特徴とする光学部品。 2 4. The optical component according to claim 19, wherein the multilayer film has at least three reflection layers, and is formed such that a distance as an optical path length between the reflection layers is different from each other. An optical component, characterized in that:
2 5. 請求項 1 9に記載の光学部品において、 前記多層膜が、 光を入射 (入力) する側から順に、 少なく とも、 反射率が 8 4〜 8 8 %の第 1 の反射層、 第 1の光 透過層、 反射率が 9 9. 5〜 9 9. 8 %の第 2の反射層、 第 2の光透過層、 反射 率が 9 9. 9 %以上の第 3の反射層を有することを特徴とする光学部品。  2 5. The optical component according to claim 19, wherein the multilayer film includes, in order from a light incident (input) side, at least a first reflective layer having a reflectance of 84 to 88%, 1 light transmission layer, having a second reflection layer with a reflectance of 99.5 to 99.8%, a second light transmission layer, and a third reflection layer with a reflectance of 99.9% or more An optical component, characterized in that:
2 6. 請求項 1 9に記載の光学部品において、 前記多層膜が、 光を入射 (入力) する側から順に、 少なく とも、 層 Hと層 Lの組み合わせ層を 3セッ ト、 層 Hと層 Hの組み合わせ層を 1 0セッ ト、 層 Lを 1層、 層 Hと層 Lの組み合わせ層を 9セ ッ ト、 層 Hと層 Hの組み合わせ層を 7セッ ト、 層 Lを 1層、 層 Hと層 Lの組み合 わせ層を 1 3セッ トの構成で形成されていることを特徴とする光学部品。 2 6. The optical component according to claim 19, wherein the multilayer film includes at least three sets of a combination of layers H and L, and layers H and layers in order from the side where light is incident (input). 10 sets of combination layers of H, 1 layer of layer L, 9 sets of combination layers of layer H and layer L, 7 sets of combination layers of layer H and layer H, 1 layer of layer L, layer An optical component characterized in that a combination layer of H and layer L is formed in a set of 13 sets.
2 7. 請求項 2 0に記載の光学部品において、 前記多層膜が、 主と して T i 0· (二酸化チタン)、 T a 2〇 (五酸化タンタル), N b O (五酸化ニオブ) の 少なく と も 1種類を含む層と、 主と して S i 〇2 (二酸化珪素) を含む層を有す ることを特徴とする光学部品。 The optical component according to 2 7. Claim 2 0, the multilayer film is, T i 0 · (titanium dioxide) as the main, T a 2 〇 (tantalum pentoxide), N b O (niobium pentoxide) An optical component comprising: a layer containing at least one of the following; and a layer mainly containing Si 2 (silicon dioxide).
2 8. 請求項 2 2に記載の光学部品において、 前記各反射層の反射率を、 光を入 射 (入力) する側から順に、 R 1 , R , R 3 , · · ' (ただし、 前記 R i の i は、 前記反射層の数が上限の整数である。) とすると、 R 1 ≤ R 2 ≤ R 3である 分散補償素子を有することを特徴とする光学部品。 2 8. The optical component according to claim 22, wherein the reflectance of each of the reflective layers is determined in the order of R 1, R, R 3, An optical component having a dispersion compensating element that satisfies R 1 ≤R 2 ≤R 3 where i of R i is an integer whose upper limit is the number of the reflective layers.)
2 9 . 請求項 2 2に記載の光学部品において、 前記多層膜が、 それぞれ共振波長 の異なる少なく と も 3つのキヤ ビティ を形成する反射層を有するよ うに形成され ていることを特徴とする光学部品。 29. The optical component according to claim 22, wherein the multilayer film is formed so as to have at least three reflective layers forming different cavities having different resonance wavelengths. parts.
3 0 . 通信伝送路に光ファイバを用いる光通信に用いる部品であって、 2次また は 2次以上の波長分散 (以下、 分散と もいう) を施すことが出来る素子 (以下、 2次光分散発生素子ともいう。 以下、 光分散発生素子のことを、 単に、 分散発生 素子と もいう。) と 3次または 3次以上の分散を施すことが出来る素子 (以下、 3次分散発生素子ともいう) の少なく とも一方を有し、 信号光に分散を施すこ と ができる分散発生器の機能を有することを特徴とする光学部品。  30. A component used for optical communication that uses an optical fiber for the communication transmission line, and is an element (hereinafter referred to as secondary light) capable of providing secondary or secondary or higher chromatic dispersion (hereinafter also referred to as dispersion). Hereinafter, the light dispersion generating element is also simply referred to as a dispersion generating element) and an element capable of performing third- or higher-order dispersion (hereinafter, also referred to as a third-order dispersion generating element). An optical component characterized in that it has at least one of the functions described above, and has a function of a dispersion generator capable of dispersing signal light.
3 1 . 請求項 3 0に記載の光学部品において、 多層膜を有する分散発生素子を用 いて前記分散発生器の機能を発揮させていることを特徴とする光学部品。  31. The optical component according to claim 30, wherein the function of the dispersion generator is exhibited by using a dispersion generating element having a multilayer film.
3 2 . 請求項 3 1 に記載の光学部品において、 前記多層膜が少なく と も 2つの反 射層を有することを特徴とする光学部品。 32. The optical component according to claim 31, wherein the multilayer film has at least two reflection layers.
3 3 . 請求項 3 1 に記載の光学部品において、 前記多層膜を構成する各層の厚さ が、 入射光の光路長と して考えて入射光中心波長の 4分の 1 の長さに相当する厚 み (以下、 「厚みが 4分の 1波長」 ともいう) の整数倍であること を特徴とする 光学部品。  33. The optical component according to claim 31, wherein the thickness of each layer constituting the multilayer film is equivalent to a quarter of the central wavelength of the incident light when considered as the optical path length of the incident light. An optical component characterized in that the thickness is an integral multiple of the thickness (hereinafter, also referred to as “quarter wavelength”).
3 4 . 請求項 3 1 に記載の光学部品において、 前記多層膜が少なく と も 3つの反 射率の異なる反射層を有し、 前記各反射層が、 厚みが 4分の 1波長で屈折率が比 較的高い層 (以下、 層 Hと もいう) と厚みが 4分の 1波長で屈折率が比較的低い 層 (以下、 層 Lともいう) の組み合わせ層の複数組で構成されていることを特徴 とする光学部品。  34. The optical component according to claim 31, wherein the multilayer film has at least three reflective layers having different reflectances, and each of the reflective layers has a refractive index at a quarter wavelength. Is composed of a combination of a relatively high layer (hereinafter, also referred to as “layer H”) and a layer having a thickness of a quarter wavelength and a relatively low refractive index (hereinafter, also referred to as “layer L”). An optical component characterized in that:
3 5 . 通信伝送路に光ファイバを用いた光通信に用いる装置であって、 2次また は 2次以上の波長分散 (以下、 分散という) を変えることができる素子 (以下、 2次光分散補償素子ともいう。 以下、 光分散補償素子のことを、 単に、 分散補償 素子ともいう。 また、 ファイバなどを伝送されることによ り生じた分散を補償す ること と、 後述のよ うな、 信号光にあらかじめ分散を施して送信された信号光の 分散を元に戻す、 すなわち、 分散を復元することのいずれか一方または双方の機 能を有するものを本発明では分散補償素子と総称することにする。 そして特に区 別や限定する必要があるときは、 狭い意味で分散補償素子、 分散復元素子などと もいう ことにする。) と 3次または 3次以上の分散を変えることができる素子 (以 下、 3次分散補償素子ともいう) の少なく と も一方を有することを特徴とする光 通 ia装置。 3 5. An apparatus used for optical communication using an optical fiber as a communication transmission line, and an element (hereinafter referred to as secondary optical dispersion) capable of changing secondary or secondary or higher chromatic dispersion (hereinafter referred to as dispersion). In the following, the optical dispersion compensating element is simply referred to as a dispersion compensating element, and compensating for dispersion caused by being transmitted through a fiber or the like. In the present invention, a dispersion compensating element having one or both functions of restoring the dispersion of the transmitted signal light by applying dispersion to the signal light in advance, that is, restoring the dispersion, is collectively referred to in the present invention. And especially the ward When there is a need for another or limitation, they are also referred to as a dispersion compensating element and a dispersion restoring element in a narrow sense. An optical communication ia device comprising at least one of an element capable of changing the third-order or third- or higher-order dispersion (hereinafter, also referred to as a third-order dispersion compensating element).
3 6. 請求項 3 5に記載の光通信装置において前記光通信装置が、 複数の分散補 償素子を有することを特徴とする光通信装置。  36. The optical communication device according to claim 35, wherein the optical communication device has a plurality of dispersion compensation elements.
3 7. 請求項 3 5に記載の光通信装置において前記光通信装置が、 2次の分散補 償と 3次以上の分散補償の少なく とも一方の機能を有することを特徴とする光通 信装置。  37. The optical communication device according to claim 35, wherein the optical communication device has at least one function of secondary dispersion compensation and tertiary or higher dispersion compensation. .
3 8. 請求項 3 5に記載の光通信装置において、 分散情報を付加する機能と分散 情報を読みとる機能の少なく とも一方を有することを特徴とする光通信装置。 3 8. The optical communication device according to claim 35, further comprising at least one of a function of adding shared information and a function of reading shared information.
3 9. 請求項 3 5に記載の光通信装置において、 前記分散補償素子の少なく と も 1 つが主と して多層膜で構成されている素子であるこ と を特徴とする光通信装 置。 3 9. The optical communication device according to claim 35, wherein at least one of the dispersion compensating elements is an element mainly composed of a multilayer film.
4 0. 請求項 3 9に記載の光通信装置において、 前記多層膜が反射率の異なる反 射層を有し、 前記各反射層の反射率を、 光を入射 (入力) する側から順に、 R 1 , R 2 , R 3 , · · ' とすると、 R 1 ≤ R 2 ≤ R 3である分散補償素子を有するこ とを特徴とする光通信装置。  40. The optical communication device according to claim 39, wherein the multilayer film has reflective layers having different reflectivities, and the reflectivities of the respective reflective layers are determined in order from a light incident (input) side. An optical communication device characterized by having a dispersion compensating element satisfying R 1 ≤R 2 ≤R 3 where R 1, R 2, R 3,.
4 1 . 請求項 4 0に記載の光通信装置において、 前記各反射層が、 光路長と して の厚みが入力中心波長の 4分の 1波長の厚み (以下、 単に、 厚みが 4分の 1 の波 長と もいう) で屈折率が高い方の層 (以下、 層 Hともいう) と厚みが 4分の 1波 長で屈折率が低い方の層 (以下、 層 Lともいう) の組み合わせ層の複数組で構成 されていることを特徴とする光通信装置。  41. The optical communication device according to claim 40, wherein each of the reflection layers has a thickness as an optical path length of a quarter wavelength of an input center wavelength (hereinafter, simply referred to as a quarter thickness). The layer having a higher refractive index (hereinafter also referred to as layer H) and the layer having a quarter wavelength and a lower refractive index (hereinafter also referred to as layer L). An optical communication device comprising a plurality of sets of combination layers.
4 2. 請求項 4 0に記載の光通信装置において、 前記多層膜が光を入射 (入力) する側から順に、 少なく と も、 反射率が 8 4〜 8 8 %の第 1 の反射層、 第 1の光 透過層、 反射率が 9 9. 5〜 9 9. 8 %の第 2の反射層、 第 2の光透過層、 反射 率が 9 9. 9 %以上の第 3の反射層を有することを特徴とする光通信装置。  4 2. The optical communication device according to claim 40, wherein the multilayer film has at least a first reflection layer having a reflectance of 84 to 88% in order from a side where light is incident (input), A first light transmitting layer, a second reflecting layer having a reflectivity of 99.5 to 99.8%, a second light transmitting layer, and a third reflecting layer having a reflectivity of 99.9% or more. An optical communication device comprising:
4 3. 請求項 4 0に記載の光通信装置において、 前記多層膜が、 光を入射 (入力) する側から順に、 少なく とも、 層 Hと層 Lの組み合わせ層を 3セッ ト、 層 Hと層 Hの組み合わせ層を 1 0セッ ト、 層 Lを 1層、 層 Hと層 Lの組み合わせ層を 9セ ッ 卜、 層 Hと層 Hの組み合わせ層を 7セ ッ 卜、 層 L を 1 層、 層 Hと層 Lの組み合 わせ層を 1 3セッ 卜の構成で形成されていることを特徴とする光通信装置。 43. The optical communication device according to claim 40, wherein the multilayer film includes at least three sets of a combined layer of the layer H and the layer L and an order of at least three layers from the side where light is incident (input). layer 10 sets of combined layers of H, 1 layer of layer L, 9 sets of combined layers of layer H and layer L, 7 sets of combined layers of layer H and layer H, 1 layer of layer L, An optical communication device comprising a combination of layers H and L formed in a 13-set configuration.
4 4 . 通信伝送路に光ファイバを用いた光通信に用いる装置であって、 2次また は 2次以上の波長分散 (以下、 分散と もいう) を施すことが出来る素子 (以下、 2次光分散発生素子ともいう。 以下、 光分散発生素子のことを、 単に、 分散発生 素子ともいう。) と 3次または 3次以上の分散を施すことが出来る素子 (以下、 3次分散発生素子と もいう) の少なく と も一方を有し、 前記分散発生素子を用い て信号光に分散を施すことができる分散発生器の機能を有することを特徴とする 光通信装置。 4 4. A device used for optical communication using an optical fiber as a communication transmission line, and capable of providing secondary or secondary or higher chromatic dispersion (hereinafter also referred to as dispersion) (hereinafter referred to as secondary). Hereinafter, the light dispersion generating element is also simply referred to as a dispersion generating element) and an element capable of performing third- or higher-order dispersion (hereinafter, referred to as a third-order dispersion generating element). An optical communication device, comprising: a dispersion generator capable of dispersing signal light by using the dispersion generating element.
4 5 . 請求項 4 4に記載の光学部品において、 多層膜を有する分散発生素子を用 いて前記分散発生器の機能を発揮させていることを特徵とする光通信装置。  45. The optical communication device according to claim 44, wherein the function of the dispersion generator is exhibited by using a dispersion generator having a multilayer film.
4 6 . 請求項 4 4に記載の光通信装置において、 前記光通信装置が複数の分散発 生素子を有することを特徴とする光通信装置。 46. The optical communication device according to claim 44, wherein the optical communication device has a plurality of dispersion generating elements.
4 7 . 請求項 4 4に記載の光通信装置において、 前記光通信装置が 2次または 2 次以上と 3次または 3次以上の少なく とも一方の分散を信号光に施すことができ ることを特徵とする光通信装置。  47. The optical communication device according to claim 44, wherein the optical communication device can apply at least one of secondary or secondary and tertiary or tertiary or higher dispersion to the signal light. Special optical communication device.
4 8 . 光ファイバを伝送する信号光に波長分散 (以下、 単に、 分散と もいう) を 施すことができる機能と信号光に施された分散や信号光を伝送する過程で生じた 分散などを補償することができる機能の少なく と も一方の機能を有する光通信装 置において、 前記信号光に施すべき分散や信号光に施されたり生じたり した分散 の種類や分散の値などの分散に関する情報を表示する手段と分散を施したり補償 したりするための分散情報を入力する手段の少なく と も一方を有することを特徴 とする光通信装置。  4 8. The ability to apply chromatic dispersion (hereinafter simply referred to as “dispersion”) to the signal light transmitted through the optical fiber and the dispersion applied to the signal light and the dispersion generated in the process of transmitting the signal light. In an optical communication device having at least one of the functions that can be compensated for, information on dispersion such as dispersion to be applied to the signal light and the type of dispersion or the value of the dispersion applied or generated to the signal light. An optical communication device comprising: at least one of a means for displaying the information and a means for inputting the dispersion information for performing or compensating for the dispersion.
PCT/JP2000/008023 1999-11-16 2000-11-14 Optical communication method and optical component used in the method, and optical communication device comprising the component WO2001037460A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP32530499 1999-11-16
JP11-325304 1999-11-16
JP34464499 1999-12-03
JP11-344644 1999-12-03
JP2000-061011 2000-03-06
JP2000061011 2000-03-06

Publications (1)

Publication Number Publication Date
WO2001037460A1 true WO2001037460A1 (en) 2001-05-25

Family

ID=27340103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/008023 WO2001037460A1 (en) 1999-11-16 2000-11-14 Optical communication method and optical component used in the method, and optical communication device comprising the component

Country Status (1)

Country Link
WO (1) WO2001037460A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06188878A (en) * 1992-12-22 1994-07-08 Nec Corp Optical subscriber system
JPH0923187A (en) * 1995-07-10 1997-01-21 Fujitsu Ltd Optical transmission system
JP2754214B2 (en) * 1988-07-12 1998-05-20 工業技術院長 Dielectric multilayer film capable of compensating frequency chirp of light pulse
JPH10154962A (en) * 1996-11-21 1998-06-09 Hitachi Ltd Optical transmission system
JPH11218628A (en) * 1998-02-04 1999-08-10 Hitachi Ltd Light dispersion compensating element, and semiconductor laser device and optical communication system using the element
JPH11231156A (en) * 1998-02-19 1999-08-27 Nippon Telegr & Teleph Corp <Ntt> Dispersion compensating device
JPH11251973A (en) * 1998-03-05 1999-09-17 Nippon Telegr & Teleph Corp <Ntt> Automatic preset type equalizer
JPH11313045A (en) * 1993-08-10 1999-11-09 Fujitsu Ltd Optical network, optical transmitter, optical receiver, optical amplifier, distributed compensator, optical fiber, and signal light wavelength selecting method for optical network

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2754214B2 (en) * 1988-07-12 1998-05-20 工業技術院長 Dielectric multilayer film capable of compensating frequency chirp of light pulse
JPH06188878A (en) * 1992-12-22 1994-07-08 Nec Corp Optical subscriber system
JPH11313045A (en) * 1993-08-10 1999-11-09 Fujitsu Ltd Optical network, optical transmitter, optical receiver, optical amplifier, distributed compensator, optical fiber, and signal light wavelength selecting method for optical network
JPH0923187A (en) * 1995-07-10 1997-01-21 Fujitsu Ltd Optical transmission system
JPH10154962A (en) * 1996-11-21 1998-06-09 Hitachi Ltd Optical transmission system
JPH11218628A (en) * 1998-02-04 1999-08-10 Hitachi Ltd Light dispersion compensating element, and semiconductor laser device and optical communication system using the element
JPH11231156A (en) * 1998-02-19 1999-08-27 Nippon Telegr & Teleph Corp <Ntt> Dispersion compensating device
JPH11251973A (en) * 1998-03-05 1999-09-17 Nippon Telegr & Teleph Corp <Ntt> Automatic preset type equalizer

Similar Documents

Publication Publication Date Title
CA2277409C (en) Optical transmission system
JP2001320328A (en) Optical communication method
WO2002023234A1 (en) Optical dispersion compensating device, composite optical dispersion compensating device comprising the device, and optical dispersion compensating method using the device
WO2001086328A1 (en) Optical component and dispersion compensating method
JP2002267998A (en) Wavelength dispersion compensation module, optical receiving circuit, and optical communication system
CN1162721C (en) Adjustable chromatic dispersion compensator
JP4613814B2 (en) Variable dispersion compensator
CN101180815B (en) System for reducing crosstalk in optical wavelength converters
WO2001037460A1 (en) Optical communication method and optical component used in the method, and optical communication device comprising the component
EP2163010B1 (en) System for passive scrambling and unscrambling of an optical signal
US6559992B2 (en) Adjustable chromatic dispersion compensation
JP4095866B2 (en) Wavelength dispersion generator
US6859320B2 (en) Dispersion compensation using resonant cavities
WO2007092092A2 (en) Optical discriminators and systems and methods
Shan et al. Simulation and analysis of optical WDM system using FBG as dispersion compensator
US7200297B2 (en) Device using a virtually-imaged phased array (VIPA) with an improved transmission wave characteristic of output light
WO2017064749A1 (en) Quantum cryptography device and signal light polarization compensating method
WO2002031542A1 (en) Light dispersion compensating element and composite type light dispersion compensating element using that element and light dispersion compensating method using that element
JP2010206768A (en) Optical transmission apparatus and method
US10361530B2 (en) Laser apparatus with dispersion control
JP2008300804A (en) Light modulation light source and light modulation method
WO2001057562A1 (en) Optical component and optical apparatus comprising it
JP2001251004A (en) Light amplifier
US20020064334A1 (en) Completely thin-film based optical dispersion compensating element
JP2002208894A (en) Optical communicating method and optical communications equipment using the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 537901

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase