WO2001057562A1 - Optical component and optical apparatus comprising it - Google Patents

Optical component and optical apparatus comprising it Download PDF

Info

Publication number
WO2001057562A1
WO2001057562A1 PCT/JP2001/000624 JP0100624W WO0157562A1 WO 2001057562 A1 WO2001057562 A1 WO 2001057562A1 JP 0100624 W JP0100624 W JP 0100624W WO 0157562 A1 WO0157562 A1 WO 0157562A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
layers
optical
multilayer film
hereinafter
Prior art date
Application number
PCT/JP2001/000624
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuro Kikuchi
Yuichi Takushima
Mark Kenneth Jablonski
Yuichi Tanaka
Haruki Kataoka
Noboru Higashi
Kenji Furuki
Original Assignee
Oyokoden Lab Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oyokoden Lab Co., Ltd. filed Critical Oyokoden Lab Co., Ltd.
Priority to AU2001230530A priority Critical patent/AU2001230530A1/en
Publication of WO2001057562A1 publication Critical patent/WO2001057562A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • G02B5/288Interference filters comprising deposited thin solid films comprising at least one thin film resonant cavity, e.g. in bandpass filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/29362Serial cascade of filters or filtering operations, e.g. for a large number of channels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29392Controlling dispersion
    • G02B6/29394Compensating wavelength dispersion
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/117Adjustment of the optical path length

Definitions

  • the present invention relates to an element capable of compensating for tertiary chromatic dispersion (hereinafter, also simply referred to as dispersion) generated in optical communication using an optical fiber for a transmission line (hereinafter, an element capable of changing tertiary dispersion, or
  • the present invention relates to an optical component having a chromatic dispersion compensating element, which is also simply referred to as a dispersion compensating element, and an optical device using the same.
  • the third-order dispersion compensator itself is also included in the optical component having the third-order dispersion compensator.
  • Fig. 8 is a diagram illustrating the dispersion versus wavelength characteristics of a single-mode optical fiber (hereinafter, also referred to as SMF), a dispersion compensating fiber, and a dispersion shift fiber (hereinafter, also referred to as DSF).
  • SMF single-mode optical fiber
  • DSF dispersion shift fiber
  • reference numeral 8001 is a graph showing the dispersion-wavelength characteristic of the SMF
  • 8002 is a graph showing the dispersion-wavelength characteristic of the dispersion compensating fiber
  • 803 is a graph showing the dispersion-wavelength characteristic of 0 SF.
  • the vertical axis is dispersion and the horizontal axis is wavelength.
  • the dispersion increases as the wavelength of the light input to the fiber increases from 1.3 ⁇ m to 1.8 ⁇ m. Dispersion decreases with increasing length from 1.3 111 to 1.8 ⁇ m. In the DSF, the dispersion decreases as the wavelength of the input light increases from 1.2 / ⁇ 1 to around 1.55 ⁇ , and the wavelength shifts from around 1.55 ⁇ to 1.8 ⁇ . As the length increases, the variance increases.
  • the DSF has the characteristic that the dispersion is almost constant with changes in wavelength when the wavelength of the input light is around 1.55 ⁇ m.
  • Fig. 7 is a diagram explaining the method of compensating for the second-order chromatic dispersion.
  • (A) shows the wavelength-time characteristic
  • (B) shows the second-order chromatic dispersion compensation using SMF and dispersion compensating fiber.
  • (C) is a diagram for explaining an example of a transmission line using only SMF.
  • reference numerals 70 1 and 71 1 denote graphs showing the characteristics of signal light before being input to the transmission line
  • 730 denotes a transmission line constituted by SMF 731
  • 70 2 and 71 2 is a graph showing the characteristics of the signal light output from the transmission path 7 330
  • 7 2 0 is a transmission path composed of the dispersion compensating fiber 7 2 1 and SMF 7 2 2
  • 7 0 3 and 7 13 are transmission 26 is a graph showing the characteristics of the signal light output from the path 720.
  • Reference numerals 704 and 714 are graphs showing characteristics of the signal light when the signal light is subjected to a desirable third-order dispersion compensation described later according to the present invention described later. Almost matches 1 1.
  • Graphs 71, 702, 703, and 704 are graphs with the vertical axis representing wavelength and the horizontal axis representing time (or time), respectively.
  • Graphs 711, 712, 71 3, 7 and 14 are graphs with the vertical axis representing light intensity and the horizontal axis representing time (or time).
  • Reference numerals 724 and 732 are transmitters, and reference numerals 725 and 735 are receivers.
  • the conventional SMF increases the dispersion as the wavelength of the signal light increases from 1.3 m to 1.8 m. This causes a speed delay.
  • the signal light with a wavelength of around 1.55 ⁇ m has a longer delay on the long wavelength side than on the short wavelength side during transmission.
  • 7 1 2 For example, in high-speed long-distance transmission, the signal light that has changed in this way may not be able to be received as an accurate signal because it overlaps the preceding and following signal lights.
  • dispersion is compensated using a dispersion compensating fiber as shown in Fig. 7 (B).
  • the conventional dispersion compensating fiber solves the problem of SMF in which the dispersion increases as the wavelength increases from 1.3 ⁇ to 1.8 / im.
  • the dispersion is designed to decrease as ⁇ increases to 1.8 ⁇ m.
  • the dispersion compensating fiber can be used by connecting the dispersion compensating fiber 721 to the SMF 722, for example, as shown by a transmission line 720 in FIG.
  • the signal light having a wavelength of about 1.55 / zm is greatly delayed on the long wavelength side as compared with the short wavelength side in the SMF 722, and is transmitted in the dispersion compensation fiber 721, for example. Since the short wavelength side is delayed more than the long wavelength side, the degree of the change can be suppressed more than the changes shown in the graphs 702 and 712 as shown in the graphs 703 and 713.
  • the chromatic dispersion of the signal light transmitted through the transmission line is represented by the state of the signal light before being input to the transmission line.
  • Dispersion compensation cannot be performed up to the shape of 1 and the limit is to compensate up to the shape of graph 703.
  • the center of the wavelength of the signal light is not delayed as compared with the short wavelength side and the long wavelength side, and only the short wavelength side and the long wavelength side of the signal light are delayed. Then, a ripple may occur as shown in the graph 713.
  • a dielectric multilayer film proposed by the present inventors has the following three-dimensional structure. We succeeded in compensating for chromatic dispersion, and were able to make significant progress in conventional optical communication technology (Japanese Patent Application No. 11-34-64-44). However, for further development of optical communication technology, it is desirable to further improve the characteristics of the third-order dispersion compensating element such as the dielectric multilayer film. Further improvements are expected.
  • the present invention has been made in view of such a point, and an object of the present invention is to use a dielectric or other multilayer film element having a good group velocity delay-one wavelength characteristic which has not been obtained conventionally.
  • an optical component configured to perform third-order or higher chromatic dispersion compensation and an optical device using the same. Disclosure of the invention
  • the optical component and the optical device of the present invention are characterized by using a third-order chromatic dispersion compensating element.
  • the optical component and the optical device of the present invention use the center wavelength of the incident light as the optical path length for the light having the center wavelength of the incident light (hereinafter, also simply referred to as the optical path length).
  • An element having a multilayer film formed so that the multilayer film has at least four light reflection layers (hereinafter, also simply referred to as a reflection layer) with respect to incident light is referred to as a third-order wavelength dispersion compensation element. It is characterized by using
  • a multilayer film composed of at least seven layers, and a multilayer film composed of the at least seven layers is sometimes collectively referred to as a multilayer film, unless otherwise required.
  • seven or nine layers are configured so that reflective layers and light transmissive layers (hereinafter, also simply referred to as transmissive layers) are alternately formed.
  • transmissive layers In the case of the seven layers, four reflective layers and three transmissive layers are formed, and in the case of the nine layers, five reflective layers and four transmissive layers are formed.
  • each interval is configured such that at least adjacent intervals are not equal, and particularly preferably, all intervals are equal. It is characterized by not being configured.
  • the third-order dispersion compensating element of the present invention is characterized by having three or four cavities having different resonance (resonance) wavelengths.
  • the seven-layered multilayer film is formed by sequentially ordering the seven layers from a first layer, a second layer, a third layer, a fourth layer, a fifth layer, and a sixth layer from one side in the thickness direction of the multilayer film.
  • the reflection layers are referred to as a first layer, a third layer, a fifth layer, and a seventh layer, and their reflectivities are R1, R3, R5, and R7, respectively, R1 ⁇ R 3 ⁇ R 5 ⁇ R 7, and the nine-layered multilayer film is a first layer, a second layer, and a third layer in order from one side in the thickness direction of the multilayer film.
  • R 1, R 3, R 5, R 7, and R 9 denote the reflectivity, respectively, so that R 1 ⁇ R 3 ⁇ R 5 ⁇ R 7 ⁇ R 9 It is a feature.
  • the substrate When the seven-layer or nine-layer multilayer film is formed on the substrate, the substrate may be on the first layer side, and the substrate may be on the seventh or ninth layer side. good.
  • a substrate may be provided on one side of the seven-layer or nine-layer multilayer film, and a layer different from the multilayer film, for example, an antireflection film or a protective layer may be formed on the other side.
  • the multilayer film has a film thickness of 1/4 times L and a higher refractive index (layer H) and a film thickness of 1 / ⁇ .
  • the multilayer film is composed of a plurality of layers each including a layer (layer L) having a lower refractive index of 4 times, and the multilayer film is formed in order from one side in the thickness direction of the multilayer film.
  • a layer composed of three sets of layers (hereinafter also referred to as LH layers or LH films) that are combined in order, Layer L and Layer L Layer composed of 32 sets of combined layers (hereinafter also referred to as LL layer or LL film), composed of 1 layer H and 5 sets of LH layers Layers composed of 43 sets of LL layers, 1 layer H and 8 sets of LH layers, and 18 layers of LL layers And a multi-layered film formed by each layer of a layer constituted by laminating one layer H and 15 sets of LH layers.
  • the multilayer film is formed by laminating two sets of LH layers in order from one side in the thickness direction of the multilayer film.
  • Layer composed of 54 sets of LL layers, layer composed of 1 layer H and 3 sets of LH layers, and 70 sets of LL layers laminated A layer composed of one layer H and five sets of LH layers, a layer composed of 57 sets of LL layers, and one layer H Layers composed of 7 sets of layers and LH layers, layers composed of 47 sets of LL layers, 1 layer H and 15 sets of LH layers
  • the multilayer film has a film thickness, which is considered to be the center wavelength of incident light and the optical path length for incident light, is 1 / It is characterized in that it is composed of a number of layers that are four times as many as unit layers.
  • Each reflective layer has a thickness of 1/4 wavelength and relatively high reflectivity (layer H), and a thickness of 1/4 wavelength and relatively low reflectivity (layer H). It is characterized by being composed of a multilayer film by a combination of the above.
  • the third-order dispersion compensation device of the present invention is primarily, S i (silicon), G e (Germa - ⁇ beam), T i 0 2 (titanium dioxide ), T a 2 0 5 (tantalum pentoxide), one or both of the layer formed by the N b 2 O s (niobium pentoxide) of any layer and S io formed by 2 (silicon dioxide) It is characterized by having a multilayer film composed of a combination of the following.
  • the layer H is mainly is, the layer L is characterized by being formed by a layer consisting of S i ⁇ 2 as the main.
  • FIG. 1 is a diagram illustrating a three-cavity one-dimensional chromatic dispersion compensator according to the present invention.
  • FIG. 2 is a diagram illustrating a 4-cavity tertiary chromatic dispersion compensator according to the present invention.
  • FIG. 3 is a view for explaining a three-cavity-dielectric multilayer tertiary chromatic dispersion compensating element as one embodiment of the present invention.
  • FIG. 4 is a diagram showing a group velocity delay time-wavelength characteristic of the third-order chromatic dispersion compensator of FIG.
  • FIG. 5 is a view for explaining a four-cavity-dielectric multilayer tertiary chromatic dispersion compensating element as one embodiment of the present invention.
  • FIG. 6 is a diagram showing a group velocity delay time-wavelength characteristic of the third-order chromatic dispersion compensator of FIG.
  • FIG. 7 is a diagram explaining the chromatic dispersion compensation method.
  • A shows the wavelength-time characteristic
  • B shows the second-order chromatic dispersion compensation using a dispersion compensation fiber
  • C shows the single mode optical fiber.
  • FIG. 3 is a diagram illustrating a transmission path.
  • FIG. 8 is a diagram illustrating dispersion-wavelength characteristic curves of various fibers. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a diagram illustrating an example of a multilayer film used for a third-order dispersion compensating element of the present invention using a model.
  • reference numeral 100 denotes a multilayer film
  • 101, 102, and 103 denote a reflective layer having a reflectance of less than 100% (hereinafter also referred to as a reflective film)
  • 104 denotes a reflectance.
  • about 100% is a reflective layer
  • 105, 106, and 107 are transmissive layers
  • 111, 112, and 113 are cavities.
  • the reflectance R (101), R of each of the reflective layers 101, 102, 103, 104 in Fig. 1 (1 0 2), R (1 0 3), R (1 0 4) are R (1 0 1) ⁇ R (1 0 2) ⁇ R
  • the reflectance of each reflective layer is formed so as to gradually increase in the thickness direction of the multilayer film 100. Then, the conditions for forming each reflective layer are selected so that the intervals when considered as the optical path length between each reflective layer are different from each other. By doing so, the design accuracy of the reflectance of each reflective layer can be relaxed, and a multilayer film used in the tertiary dispersion compensating element of the present invention is formed by combining a unit film having a thickness of a quarter wavelength. Thus, a third-order dispersion compensator with high reliability and low manufacturing cost can be provided at low cost.
  • FIG. 2 is a diagram illustrating an example of a multilayer film used for the third-order dispersion compensating element of the present invention using a model.
  • reference numeral 200 denotes a multilayer film
  • 201, 202, 203, 204 a reflection layer having a reflectance of less than 100%
  • 205 a reflectance of about 10%.
  • 206, 207, 208, and 209 are transmissive layers
  • 211, 212, 213, and 214 are cavities.
  • the reflectance R (201), R (202), R (203), R of each reflective layer 201, 202, 203, 204, 205 in FIG. (2 0 4), R (2 0 5) is the relation of R (2 0 1) ⁇ R (2 0 2) ⁇ R (2 0 3) ⁇ R (2 0 4) ⁇ R (2 0 5) It is in. That is, the reflective layers are formed so that the reflectivity of each reflective layer sequentially increases in the thickness direction of the multilayer film 200. The conditions for forming each reflective layer are selected so that the intervals when considered as the optical path length between each reflective layer are different from each other.
  • a third-order dispersion compensating element that can be formed has high reliability, and is inexpensive to manufacture can be provided at low cost.
  • the loss (insertion loss) on the signal light when the dispersion generated in the signal light is compensated by the dispersion compensating element using the multilayer film of the present invention is extremely small, which is a very great advantage in practical use. is there.
  • FIG. 3 is a diagram for explaining a dielectric multilayer film used in an example of the present invention.
  • a dielectric multilayer film as a three-cavity-first-order chromatic dispersion compensating element as one embodiment of the present invention will be described with reference to FIG.
  • reference numeral 300 denotes a dielectric multilayer film
  • reference numeral 301 denotes BK-7 (glass) as a substrate for forming the dielectric multilayer film
  • reference numeral 300 denotes a first reflective layer which is an LH layer.
  • 304 is a second reflective layer having one layer H and below it (that is, means the substrate 301 side of the one layer H).
  • LH layers are formed by laminating 5 sets
  • 303 is a third reflective layer consisting of 1 layer H and 8 sets of LH layers beneath it.
  • Reference numeral 302 denotes a fourth reflection layer, which is formed by laminating one layer H and 15 sets of LH layers below the layer H.
  • Reference numeral 308 denotes a first transmission layer formed by stacking 32 sets of LL layers
  • reference numeral 307 denotes a second transmission layer formed by stacking 43 sets of LL layers
  • Reference numeral 306 denotes a third transmission layer, which is formed by laminating 18 sets of LL layers.
  • Reference numeral 320 denotes an arrow indicating the direction of light incident on the dielectric multilayer film 300
  • reference numeral 330 denotes an arrow indicating the direction of light emitted from the dielectric multilayer film 300.
  • Reference numeral 311 denotes a first cavity (resonator) between the first reflection layer 304 and the second reflection layer 304
  • 312 denotes a second reflection layer 304.
  • the above-mentioned LH layer is composed of a layer L formed of a film formed by ion-assist deposition of SiO 2 having a quarter wavelength thickness (hereinafter also referred to as an ion-assist film), and a quarter-wave thickness layer.
  • T i ⁇ are composed of a layer H formed by two Ion'ashisu DOO film, the S i O 2 of Ion'ashisu bets film (the layers) 1 layer and T i 0 2 Ion'ashisu preparative layer (layer H)
  • One combined layer is referred to as one set of LH layers.
  • “stacking three sets of LH layers” means “layer L, layer H, layer L, layer H, layer L, layer Each layer is formed by layering one by one in the order of H. "
  • layers of the LL is called the thickness was formed overlapping two layers L which is composed of Ion'ashisu preparative layer of S i ⁇ 2 quarter wavelengths layer substantially one set of LL. Therefore, for example, “stacking 32 sets of LL layers” means “formed by stacking 64 layers L”.
  • the thickness of each of the first, second, third, and fourth reflective layers is 64 times, 11 times, 4 times, 17 times, 4 times, and 3 times, respectively.
  • the thicknesses of the second, third and third transmission layers are 644 times, 864 times, and 364 times, respectively.
  • the reflectivity of the first, second, third, and fourth reflection layers increases in the order of the first, second, third, and fourth reflection layers, and is 52.4% and 95.3%, respectively. , 99.5% and 100%. It is preferable that each of the above reflectivities be within 3% of the above values. Furthermore, in order to quantitatively provide an excellent dispersion compensating element having characteristics as shown in FIG. 4 described below, the reflectance of the first reflective layer must be 50.0% or more and 68.0 or more. % Or less, the reflectance of the second reflective layer is 92.0% or more and 99.0% or less, the reflectance of the third reflective layer is 99.0% or more and 99.8% or less, It is preferable that the reflectivity of the fourth reflective layer be 99.8% or more.
  • FIG. 4 shows the incident light of the tertiary dispersion compensating element using the dielectric multilayer film of FIG. 3 when the incident light incident from the direction of arrow 320 exits in the direction of arrow 330.
  • the center wavelength on the horizontal axis is 1550 nm, and the maximum group velocity delay time is 7.2 ps (picoseconds).
  • the bandwidth as a third-order dispersion compensating element is about 2 nm.
  • the group velocity delay time of each wavelength of the reflected light obtained by the resonance can be changed by adjusting the thickness of each layer, and the incident angle of the incident light with respect to the dielectric multilayer film 300 Adjustment is also possible by changing.
  • reference numeral 500 denotes a dielectric multilayer film
  • 501 denotes BK-7 (glass) as a substrate on which the dielectric multilayer film is formed
  • 506 denotes a first reflection layer and an LH layer
  • 505 is a second reflective layer and one layer H and a layer below it (that is, the one layer H means the substrate 501 side).
  • 504 is a third reflective layer composed of one layer H and five sets of LH layers below it.
  • 503 is the fourth reflective layer
  • layer H is 1
  • the layer is formed by laminating 7 sets of LH layers below the layer
  • 502 is a fifth reflective layer consisting of 1 layer H and 15 sets of LH layers below it.
  • Reference numeral 510 denotes a first transmission layer formed by laminating 54 sets of LL layers
  • 509 denotes a second transmission layer formed by laminating 70 sets of LL layers
  • 508 is a third transmission layer formed by stacking 57 sets of LL layers
  • 507 is a fourth transmission layer formed by stacking 47 sets of LL layers.
  • Reference numeral 5200 denotes an arrow indicating the direction of light incident on the dielectric multilayer film 500
  • reference numeral 5300 indicates an arrow indicating the direction of light emitted from the dielectric multilayer film 500.
  • Reference numeral 511 denotes a first cavity (resonator) between the first reflective layer 506 and the second reflective layer 505, and 512 denotes a second cavity between the first reflective layer 506 and the second reflective layer 505.
  • a second cavity between the third reflective layer 504, 513 is a third cavity between the third reflective layer 504 and the fourth reflective layer 53, 514 is A fourth cavity between the fourth reflective layer 503 and the fifth reflective layer 502.
  • a layer L which thickness is formed with a film created by S i ⁇ second ion Assis Bok deposition of a quarter wavelength, the thickness is 1 wavelength quarter T i are composed of a layer H formed in ⁇ 2 Lee On'ashisu DOO film, the S i ⁇ second i On'ashisu preparative layer (layer L) 1 layer and T i 0 2 Ion'ashisu preparative layer (layer H )
  • One combined layer is called one set of LH layers.
  • “three sets of LH layers are stacked” means “layer L 'layer ⁇ layer L' layer ⁇ layer L 'layer Each layer is formed one by one in the order of H.
  • layers of the LL is called the thickness was formed overlapping two layers L which is composed of Ion'ashisu preparative layer of S i ⁇ 2 quarter wavelengths layer substantially one set of LL. Therefore, for example, “laminated with 54 sets of LL layers” means “formed by laminating 108 layers L”.
  • the thicknesses of the first, second, third, fourth, and fifth reflective layers are 4 times, 4 times, 7 times, 4 times, 1 1 Z 4 times, 15 4 times, 3 1 4 times, respectively.
  • the thickness of each of the first, second, third, and fourth transmission layers is 1084 times, 1400 times, 114 times 4 times, 9 times 4 times, respectively. It is.
  • the reflectance of each of the first, second, third, fourth, and fifth reflective layers is first, second, third, fourth, Larger in the order of the fifth reflective layer, 24.8%, 81.0%, 95.3 ° /, respectively. , 98.9%, 100%.
  • each of the above reflectivities be within 3% of the above values.
  • the reflectance of the first reflective layer should be 23.0 to 35.0%, The reflectivity of the layer is 75.0 to 91.0%, the reflectivity of the third reflective layer is 92.0 to 98.5%, and the reflectivity of the fourth reflective layer is 98.5 to It is preferable that the reflectivity of the fifth reflective layer be 99.3% or more.
  • FIG. 6 shows the incident light of the incident light that enters the third-order dispersion compensating element using the dielectric multilayer film of FIG. 5 from the direction of arrow 520 and exits in the direction of arrow 530.
  • the center wavelength on the horizontal axis is 1550 nm, and the maximum group velocity delay time is 9.6 ps (pyrosecond).
  • the bandwidth as a third-order dispersion compensator is about 2 nm.
  • an ion assist film is used for a multilayer film.
  • a film is formed by ion assist deposition, a durable and uniform film can be formed, and the quality of the film can be improved.
  • the present invention is not limited to ion-assist deposition, and the present invention is not limited to the use of multi-layer films formed by vapor deposition, sputtering, ion plating, and other methods that are widely used. It has an effect.
  • the layer H is mainly formed of T i ⁇ 2 (titanium dioxide) has been described.
  • the main components of the layer H are not limited to this, and Si (silicon), G e (germanium), T a 2 ⁇ 5 (tantalum pentoxide), it may be formed by N b 2 0 5 (niobium pentoxide). These materials are tertiary dispersed in consideration of their physical properties. It is selected and used so as to meet the specifications of the compensating element.
  • This embodiment is characterized in that the lamination of a thick film as in the present embodiment is easy, and the amorphous state containing a lot of fine crystals tends to be formed, and the production yield of a multilayer film is improved.
  • this instead of the LL layer S i, G e, T i OT a 2 ⁇ 5, N bz O s may also be used HH layer formed of any applied becomes layers.
  • the HH layer has advantages such as high film thickness detection accuracy with a film thickness monitor and strong stress.
  • the third-order dispersion compensating element using the multilayer film of the present invention can sufficiently compensate for the third-order or higher dispersion.
  • the characteristics of the signal light transmitted to the characteristics shown by the graphs 704 and 714 can be improved.
  • the multilayer film constituting the optical component and the optical device according to the present invention can realize a group velocity delay time-wavelength characteristic that is extremely preferable as a third-order dispersion compensating element.
  • this technology By applying this technology to high-speed long-distance communication systems using fibers, it is possible to compensate for third-order dispersion more accurately and with extremely low loss.
  • Optical communication can be realized at a practical cost.
  • many devices, facilities, and technologies constructed using conventional optical communication systems of less than OG bps can be used. It can also be used in high-speed communication at 0 Gbps or higher, and the economic effect of the present invention is enormous.
  • An optical component according to the present invention and an optical device using the same are indispensable for practical use of high-speed and long-distance optical communication such as transmitting 100,000 km at 40 Gbps.
  • the present invention greatly contributes to the development of the optical communication field.
  • optical component of the present invention having an excellent group velocity delay-one wavelength characteristic using a special multilayer film as described above in an optical communication system as a third-order optical dispersion compensating element, conventional dispersion compensation can be performed. Only the third-order chromatic dispersion that could not be compensated Can be compensated with extremely low loss, and high-speed and long-distance optical communication can be realized without replacing existing communication equipment such as optical fibers with new ones. The economic effect is enormous.
  • the optical component having a function as an optical dispersion compensator using a special multilayer film according to the present invention is small, suitable for mass production, and can be provided at a low price. The contribution to development is extremely large.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Optical Communication System (AREA)

Abstract

In an optical communication system using an optical fiber, it is forecasted that correct communication can not be ensured by a conventional wavelength dispersion compensation method due to increase in communication bit rate and communication distance and tertiary or higher-order wavelength dispersion compensation is required. But any effective countermeasure has been not proposed for tertiary wavelength dispersion compensation. A multilayer film (300) comprising at least four reflection layers (305, 304, 303, 302) having reflectance increasing sequentially from the incident side of signal light is employed as a tertiary wavelength dispersion compensation element in order to compensate for tertiary wavelength dispersion by generating a group velocity delay in the signal light. The thickness of the multilayer film as the optical path length is set equal to an integral multiple of a quarter of wavelength.

Description

明 細 書 光学部品およびそれを使用した光学装置 技術分野  Description Optical components and optical devices using the same
本発明は、 伝送路に光ファィバを用いた光通信において生ずる 3次の波長分散 (以下、 単に分散ともいう) を補償可能な素子 (以下、 3次の分散を変えること ができる素子、 あるいは、 3次光分散補償素子ともいう。 そして、 光分散補償素 子のことを、 単に、 分散補償素子ともいう。 ) を有する光学部品およびそれを使 用した光学装置に関する。 なお、 3次分散補償素子自体も 3次分散補償素子を有す る光学部品に含むものとする. 背景技術  The present invention relates to an element capable of compensating for tertiary chromatic dispersion (hereinafter, also simply referred to as dispersion) generated in optical communication using an optical fiber for a transmission line (hereinafter, an element capable of changing tertiary dispersion, or The present invention relates to an optical component having a chromatic dispersion compensating element, which is also simply referred to as a dispersion compensating element, and an optical device using the same. The third-order dispersion compensator itself is also included in the optical component having the third-order dispersion compensator.
通信伝送路に光ファイバを用いた光通信においては、 利用技術の進展および利 用範囲の拡大とともに、 通信伝送路の長距離化や通信ビッ トレー卜の高速化が求 められている。 このような環境下では、 光ファイバを伝送するときに生じる波長 分散が大きな問題となり、 波長分散の補償が種々試みられている。 現在、 2次の 波長分散が大きな問題となり、 その補償が種々提案され、 そのうちのいくつかの 提案が効果をあげている。  In optical communication using optical fibers for communication transmission lines, there is a demand for longer-distance communication transmission lines and higher-speed communication bitrates, along with advances in use technology and expansion of the range of use. In such an environment, chromatic dispersion generated when transmitting an optical fiber becomes a serious problem, and various attempts have been made to compensate for chromatic dispersion. At present, the second-order chromatic dispersion is a major problem, and various compensations have been proposed, some of which have been effective.
しかし、 光通信に対する要求が高度になるにつれて、 送信中の 2次の波長分散 の補償だけでは不充分になり、 3次の波長分散の補償が課題になりつつある。 以下、 図 7および図 8を使用して、 従来の 2次の波長分散の補償方法を説明す る。 However, as the demand for optical communication becomes higher, compensation for the second-order chromatic dispersion during transmission alone becomes insufficient, and compensation for the third- order chromatic dispersion is becoming an issue. Hereinafter, a conventional method of compensating for the second-order chromatic dispersion will be described with reference to FIGS.
図 8は、 シングルモー ド光ファイバ (以下、 S M Fとも称す) と分散補償ファ ィバ、 および分散シフ トファイバ (以下、 D S Fともいう) の分散一波長特性を 説明する図である。 図 8において、 符号 8 0 1は S M Fの分散一波長特性を示す グラフ、 8 0 2は分散補償ファイバの分散一波長特性を示すグラフ、 8 0 3は0 S Fの分散一波長特性を示すグラフで、 縦軸を分散、 横軸を波長にとったグラフ である。 図 8で明らかなように, SMFでは、 ファイバに入力する光の波長が 1. 3 μ mから 1. 8 μ mへと長くなるにつれて分散は増大し, 分散補償ファイバでは, 入力光の波長が 1. 3 111から 1. 8 μ mまで長くなるにつれて分散は減少する。 また、 D S Fでは、 入力光の波長が 1. 2 /^1から 1. 5 5 μ πι付近まで長くな るにつれて分散は小さくなり、 波長が 1. 5 5 μ πι付近から 1. 8 μ ηιへと長く なるにつれて分散が増大する。 そして、 D S Fでは、 入力光の波長が 1. 5 5 μ m付近では, 分散は波長の変化に対してほぼ一定であるという特性を有している。 図 7は、 2次の波長分散の補償方法を説明する図であり、 (A) は波長一時間 特性を、 (B) は SMFと分散補償ファイバを用いて 2次の波長分散補償を行つ た伝送路の例を、 (C) は SMFだけで構成した伝送路を説明する図である。 図 7において、 符号 7 0 1 と 7 1 1は伝送路に入力する前の信号光の特性を示 すグラフ、 7 3 0は SMF 7 3 1で構成された伝送路、 7 0 2 と 7 1 2は伝送路 7 3 0から出力された信号光の特性を示すグラフ、 7 2 0は分散補償ファイバ 7 2 1 と SMF 7 2 2から構成された伝送路、 7 0 3と 7 1 3は伝送路 7 2 0から 出力された信号光の特性を示すグラフである。 符号 7 0 4および 7 1 4は、 信号 光が、 後述の本発明によって、 後述の望ましい 3次分散補償を施されたときの信 号光の特性を示すグラフであり、 グラフ 7 0 1および 7 1 1 とほとんど一致して いる。 また、 グラフ 7 0 1、 7 0 2、 7 0 3、 7 04はそれぞれ縦軸を波長、 横 軸を時間 (または時刻) にとつたグラフであり、 グラフ 7 1 1、 7 1 2、 7 1 3、 7 1 4はそれぞれ縦軸を光強度、 横軸を時間 (または時刻) にとつたグラフであ る。 なお、 符号 7 24と 7 3 4は送信器、 7 2 5と 7 3 5は受信器である。 Fig. 8 is a diagram illustrating the dispersion versus wavelength characteristics of a single-mode optical fiber (hereinafter, also referred to as SMF), a dispersion compensating fiber, and a dispersion shift fiber (hereinafter, also referred to as DSF). In FIG. 8, reference numeral 8001 is a graph showing the dispersion-wavelength characteristic of the SMF, 8002 is a graph showing the dispersion-wavelength characteristic of the dispersion compensating fiber, and 803 is a graph showing the dispersion-wavelength characteristic of 0 SF. And the vertical axis is dispersion and the horizontal axis is wavelength. As is evident from Fig. 8, in the SMF, the dispersion increases as the wavelength of the light input to the fiber increases from 1.3 µm to 1.8 µm. Dispersion decreases with increasing length from 1.3 111 to 1.8 μm. In the DSF, the dispersion decreases as the wavelength of the input light increases from 1.2 / ^ 1 to around 1.55 μπι, and the wavelength shifts from around 1.55 μπι to 1.8 μηι. As the length increases, the variance increases. The DSF has the characteristic that the dispersion is almost constant with changes in wavelength when the wavelength of the input light is around 1.55 μm. Fig. 7 is a diagram explaining the method of compensating for the second-order chromatic dispersion. (A) shows the wavelength-time characteristic, and (B) shows the second-order chromatic dispersion compensation using SMF and dispersion compensating fiber. (C) is a diagram for explaining an example of a transmission line using only SMF. In FIG. 7, reference numerals 70 1 and 71 1 denote graphs showing the characteristics of signal light before being input to the transmission line, 730 denotes a transmission line constituted by SMF 731, 70 2 and 71 2 is a graph showing the characteristics of the signal light output from the transmission path 7 330, 7 2 0 is a transmission path composed of the dispersion compensating fiber 7 2 1 and SMF 7 2 2, 7 0 3 and 7 13 are transmission 26 is a graph showing the characteristics of the signal light output from the path 720. Reference numerals 704 and 714 are graphs showing characteristics of the signal light when the signal light is subjected to a desirable third-order dispersion compensation described later according to the present invention described later. Almost matches 1 1. Graphs 71, 702, 703, and 704 are graphs with the vertical axis representing wavelength and the horizontal axis representing time (or time), respectively. Graphs 711, 712, 71 3, 7 and 14 are graphs with the vertical axis representing light intensity and the horizontal axis representing time (or time). Reference numerals 724 and 732 are transmitters, and reference numerals 725 and 735 are receivers.
従来の SMFは、 前述のように、 信号光の波長が 1. 3 mから 1. 8 mへ と長くなるにつれて分散が増加するため、 高速通信や長距離伝送の際には、 波長 分散による群速度遅延を生じる。 SMFで構成された伝送路 7 3 0では、 たとえ ば波長が 1. 5 5 μ m付近の信号光は、 伝送中に長波長側が短波長側に比べ大き く遅延して、 グラフ 7 0 2 と 7 1 2に示すようになる。 このように変化した信号 光は、 たとえば高速長距離伝送においては、 前後の信号光と重なって正確な信号 と して受信できない場合がある。 このよ うな問題を解決するため、 従来は図 7 (B) に示すよ うに分散補償ファイバを用いて分散を補償 (以下、 補正ともい う) している。 従来の分散補償ファイバは、 波長が 1. 3 μ πιから 1. 8 /i mへ と長くなるにつれて分散が増加するという SMFの問題点を解決するため、 前述 のように、 波長が 1. 3 μ ηιから 1. 8 μ mへと長くなるにつれて分散が減少す るように作られている。 また、 分散補償ファイバは、 たとえば、 図 7の伝送路 7 2 0で示すように、 SMF 7 2 2に分散補償ファイバ 7 2 1を接続して用いるこ とができる。 上記伝送路 7 2 0では、 たとえば波長が 1. 5 5 /z m付近の信号光 は、 SMF 7 2 2では長波長側が短波長側に比べて大きく遅延し、 分散補償ファ ィバ 7 2 1では短波長側が長波長側に比べ大きく遅延することにより、 グラフ 7 0 3 と 7 1 3に示すように、 グラフ 7 0 2と 7 1 2に示す変化より も変化の程度 を抑えることが出来る。 As described above, the conventional SMF increases the dispersion as the wavelength of the signal light increases from 1.3 m to 1.8 m. This causes a speed delay. In the transmission line 730 composed of SMF, for example, the signal light with a wavelength of around 1.55 μm has a longer delay on the long wavelength side than on the short wavelength side during transmission. As shown in 7 1 2 For example, in high-speed long-distance transmission, the signal light that has changed in this way may not be able to be received as an accurate signal because it overlaps the preceding and following signal lights. Conventionally, in order to solve this problem, dispersion is compensated using a dispersion compensating fiber as shown in Fig. 7 (B). U) The conventional dispersion compensating fiber solves the problem of SMF in which the dispersion increases as the wavelength increases from 1.3 μπι to 1.8 / im. The dispersion is designed to decrease as ηι increases to 1.8 μm. The dispersion compensating fiber can be used by connecting the dispersion compensating fiber 721 to the SMF 722, for example, as shown by a transmission line 720 in FIG. In the above transmission line 720, for example, the signal light having a wavelength of about 1.55 / zm is greatly delayed on the long wavelength side as compared with the short wavelength side in the SMF 722, and is transmitted in the dispersion compensation fiber 721, for example. Since the short wavelength side is delayed more than the long wavelength side, the degree of the change can be suppressed more than the changes shown in the graphs 702 and 712 as shown in the graphs 703 and 713.
しかし、 分散補償ファイバを使用した上記従来の 2次の波長分散の補償方法で は、 伝送路を伝送した信号光の波長分散を、 伝送路に入力する前の信号光の状態 すなわち、 グラフ 7 0 1の形まで分散補償することはできず、 グラフ 7 0 3の形 まで補償するのが限界である。 グラフ 7 0 3に示すように、 信号光の波長の中心 が短波長側および長波長側に比べて遅延せず、 また、 信号光の短波長側および長 波長側のみが遅延する。 そして、 グラフ 7 1 3に示すようにリ ップルが生じるこ とがある。  However, in the above-described conventional method of compensating for the second-order chromatic dispersion using the dispersion compensating fiber, the chromatic dispersion of the signal light transmitted through the transmission line is represented by the state of the signal light before being input to the transmission line. Dispersion compensation cannot be performed up to the shape of 1 and the limit is to compensate up to the shape of graph 703. As shown in the graph 703, the center of the wavelength of the signal light is not delayed as compared with the short wavelength side and the long wavelength side, and only the short wavelength side and the long wavelength side of the signal light are delayed. Then, a ripple may occur as shown in the graph 713.
これらの現象は、 光通信の伝送距離の長距離化と通信速度の高速化のニーズが 高まるに従い、 正確な信号受信ができなくなるなどの大きな問題となりつつある。 たとえば、 通信ビッ トレー トが 2 0 G b p s (毎秒 2 0ギガビッ ト) 以上の高速 通信においては、 これらの現象がかなり心配されており、 特に、 通信ビッ トレ一 トカ S4 0 G b p sで 1 0, 0 0 0 k mを送信したり、 8 0 G b p sで 1, 0 0 0 k mオーダーの距離を送信するような通信においては、 極めて重大な課題と して 心配されている。 そして、 高速通信においては、 従来の光ファイバ通信システム を使用することは困難と考えられて、 たとえば、 光ファイバ自体の材質も変える 必要が叫ばれており、 システム構築の経済的重大問題となっている。  These phenomena are becoming serious problems such as the inability to receive accurate signals as the need for longer transmission distances and higher communication speeds increases in optical communications. For example, in high-speed communication with a communication bit rate of 20 Gbps (20 gigabits per second) or more, these phenomena are of considerable concern. This is a very serious issue in communications that transmit over 0.0 km or transmit over a distance of the order of 100 km at 800 Gbps. In high-speed communication, it is considered difficult to use a conventional optical fiber communication system. For example, the necessity of changing the material of the optical fiber itself has been called out, which has become a serious economic problem in system construction. I have.
このような波長分散の補償は、 2次の波長分散の補償だけでは困難であり、 3 次の波長分散の補償が必要になる。  Compensation for such chromatic dispersion is difficult only by compensating for second-order chromatic dispersion, but it is necessary to compensate for third-order chromatic dispersion.
従来、 波長が 1. 5 5 μ m付近の光に対して 2次の波長分散が少なくなるよう な光ファイノく (以下、 単に、 ファイバともいう) と して D S Fがあるが、 このフ アイバでは、 本発明の課題とする 3次の波長分散補償はできない。 Conventionally, second-order chromatic dispersion is reduced for light with a wavelength of around 1.55 μm. Although there is a DSF as an optical fiber (hereinafter, also simply referred to as a fiber), this fiber cannot perform third-order chromatic dispersion compensation, which is the subject of the present invention.
光通信の高速通信化、 長距離通信化を実用化するにあたり、 3次の波長分散は 大きな問題と して次第に認識され、 その補償が重要な課題となりつつある。 3次 の波長分散の補償問題を解決すべく、 多くの試みを行なわれているが、 まだ従来 の課題を完全に解決することができる 3次分散捕償素子や補償方法は実現されて いない。  In practical use of high-speed optical communication and long-distance communication, the third-order chromatic dispersion is gradually recognized as a major problem, and compensation of which is becoming an important issue. Many attempts have been made to solve the third-order chromatic dispersion compensation problem, but a third-order dispersion compensation element or compensation method that can completely solve the conventional problems has not yet been realized.
前記の 3次分散の補償方法に用いる光学部品および光学装置を構成する主要な 素子である 3次分散補償素子の一例と して、 本発明者らが提案した誘電体多層膜 は、 3次の波長分散の補償に成功し、 従来の光通信技術を大きく前進させること が出来た (特願平 1 1 — 3 4 4 6 4 4 ) 。 しかし、 光通信技術の更なる発展の為 には、 前記誘電体多層膜等の 3次分散補償素子の特性を一層向上させることが望 ましく、 具体的には、 群速度遅延—波長特性の更なる改善が期待されている。 本発明はこのような点に鑑みてなされたものであり、 本発明の目的は、 従来得 られていなかったような良好な群速度遅延一波長特性を有する誘電体その他のの 多層膜素子を用いて構成された、 3次以上の波長分散補償を可能にする光学部品 およびそれを用いた光学装置を提供する,ことにある。 発明の開示  As an example of a third-order dispersion compensating element, which is a main element constituting an optical component and an optical device used in the above-described third-order dispersion compensating method, a dielectric multilayer film proposed by the present inventors has the following three-dimensional structure. We succeeded in compensating for chromatic dispersion, and were able to make significant progress in conventional optical communication technology (Japanese Patent Application No. 11-34-64-44). However, for further development of optical communication technology, it is desirable to further improve the characteristics of the third-order dispersion compensating element such as the dielectric multilayer film. Further improvements are expected. The present invention has been made in view of such a point, and an object of the present invention is to use a dielectric or other multilayer film element having a good group velocity delay-one wavelength characteristic which has not been obtained conventionally. To provide an optical component configured to perform third-order or higher chromatic dispersion compensation and an optical device using the same. Disclosure of the invention
本発明の目的の達成を図るため、 本発明の光学部品および光学装置では、 3次 の波長分散補償素子を用いることを特徴と している。  In order to achieve the object of the present invention, the optical component and the optical device of the present invention are characterized by using a third-order chromatic dispersion compensating element.
より具体的には、 本発明の光学部品および光学装置は、 入射光の中心波長をえ と して、 入射光の中心波長の光に対する光路長 (以下、 単に、 光路長ともいう) と して考えたときの膜厚 (以下、単に、膜厚あるいは膜の厚みともいう) がえの 4 分の 1 ( λ / 4 ) の整数倍である積層膜を少なく とも 7層有する多層膜を有し、 入射光に対して、 前記多層膜が少なく とも 4つの光反射層 (以下、 単に、 反射層 ともいう) を有するように形成されている多層膜を有する素子を 3次の波長分散 補償素子と して用いることを特徴と している。  More specifically, the optical component and the optical device of the present invention use the center wavelength of the incident light as the optical path length for the light having the center wavelength of the incident light (hereinafter, also simply referred to as the optical path length). A multilayer film that has at least seven laminated films whose integral film thickness (hereinafter simply referred to as “film thickness” or “film thickness”) is an integral multiple of 1/4 (λ / 4) An element having a multilayer film formed so that the multilayer film has at least four light reflection layers (hereinafter, also simply referred to as a reflection layer) with respect to incident light is referred to as a third-order wavelength dispersion compensation element. It is characterized by using
そして、 本発明の効果を大ならしめるため、 本発明では、 前記多層膜を構成す る少なく とも 7層の積層膜 (以下、 特に区別が必要な時を除いて、 前記少なく と も 7層の積層膜で構成される多層膜と積層膜を、 多層膜と総称することもある) のうち、 これに限定されないが、 たとえば、 7層もしくは 9層を、 反射層と光透 過層 (以下、 単に、 透過層ともいう) を交互に形成するように構成する。 そして、 前記 7層の場合には、 反射層を 4層、 透過層を 3層形成し、 前記 9層の場合には、 反射層を 5層、 透過層を 4層形成する。 そして、 前記 7層もしくは 9層の各層の 間の光路長と して考えたときの各間隔は、 少なく とも隣り合った間隔が等しくな いように構成し、 特に好ましくは、 すべての間隔が等しくないように構成するこ とを特徴と している。 In order to enhance the effects of the present invention, in the present invention, A multilayer film composed of at least seven layers, and a multilayer film composed of the at least seven layers is sometimes collectively referred to as a multilayer film, unless otherwise required. Of these, although not limited to this, for example, seven or nine layers are configured so that reflective layers and light transmissive layers (hereinafter, also simply referred to as transmissive layers) are alternately formed. In the case of the seven layers, four reflective layers and three transmissive layers are formed, and in the case of the nine layers, five reflective layers and four transmissive layers are formed. And, when considered as an optical path length between the seven layers or the nine layers, each interval is configured such that at least adjacent intervals are not equal, and particularly preferably, all intervals are equal. It is characterized by not being configured.
本発明の 3次分散補償素子は、 共振 (共鳴) 波長の異なる 3つまたは 4つのキ ャビティを有することを特徴と している。  The third-order dispersion compensating element of the present invention is characterized by having three or four cavities having different resonance (resonance) wavelengths.
本発明では、 前記 7層の多層膜を、 多層膜の厚み方向の一方の側から順に前記 7層を第 1層、 第 2層、 第 3層、 第 4層、 第 5層、 第 6層、 第 7層と称するとき、 反射層が第 1層、 第 3層、 第 5層、 第 7層であり、 その反射率をそれぞれ R 1、 R 3、 R 5、 R 7 とすると、 R 1 ≤ R 3≤ R 5≤ R 7であるように構成し、 前記 9層の多層膜を、 多層膜の厚み方向の一方の側から順に前記 9層を第 1層、 第 2 層、 第 3層、 第 4層、 第 5層、 第 6層、 第 7層、 第 8層、 第 9層と称するとき、 反射層が第 1層、 第 3層、 第 5層、 第 7層、 第 9層であり、 その反射率をそれぞ れ R l、 R 3、 R 5、 R 7, R 9とすると、 R 1 ≤ R 3≤ R 5≤ R 7≤ R 9であ るように構成することを特徴と している。 そして、 前記 7層や 9層の多層膜を基 板の上に形成する場合、 前記基板が前記第 1層側にあっても良く、 前記基板が第 7層もしくは第 9層側にあっても良い。 また、 前記 7層や 9層の多層膜の一方の 側に基板があり、 他方の側に前記多層膜とは異なる層、 たとえば反射防止膜や保 護層などが形成されていても良い。  In the present invention, the seven-layered multilayer film is formed by sequentially ordering the seven layers from a first layer, a second layer, a third layer, a fourth layer, a fifth layer, and a sixth layer from one side in the thickness direction of the multilayer film. When the reflection layers are referred to as a first layer, a third layer, a fifth layer, and a seventh layer, and their reflectivities are R1, R3, R5, and R7, respectively, R1 ≤ R 3 ≤ R 5 ≤ R 7, and the nine-layered multilayer film is a first layer, a second layer, and a third layer in order from one side in the thickness direction of the multilayer film. , The fourth layer, the fifth layer, the sixth layer, the seventh layer, the eighth layer, and the ninth layer, when the reflecting layer is the first layer, the third layer, the fifth layer, the seventh layer, and the ninth layer. Let R 1, R 3, R 5, R 7, and R 9 denote the reflectivity, respectively, so that R 1 ≤ R 3 ≤ R 5 ≤ R 7 ≤ R 9 It is a feature. When the seven-layer or nine-layer multilayer film is formed on the substrate, the substrate may be on the first layer side, and the substrate may be on the seventh or ninth layer side. good. A substrate may be provided on one side of the seven-layer or nine-layer multilayer film, and a layer different from the multilayer film, for example, an antireflection film or a protective layer may be formed on the other side.
本発明の 3次分散補償素子の 1例と して、 前記多層膜が、 膜厚が; Lの 1 /4倍 で屈折率が高い方の層 (層 H) と膜厚が λの 1 /4倍で屈折率が低い方の層 (層 L) を組み合わせた層の複数組で構成されており、 前記多層膜が、 多層膜の厚み 方向の一方の側から順に、 層し、 層 Ηの順に組み合わせた層 (以下、 LHの層、 あるいは、 LHの膜ともいう) を 3セッ ト積層して構成される層、 層 Lと層 Lを 組み合わせた層 (以下、 L Lの層、 あるいは、 L Lの膜ともいう) を 3 2セッ ト 積層して構成される層、 層 Hを 1層と L Hの層を 5セッ トとを積層して構成され る層、 L Lの層を 4 3セッ ト積層して構成される層、 層 Hを 1層と L Hの層を 8 セッ トとを積層して構成される層、 L Lの層を 1 8セッ ト積層して構成される層、 層 Hを 1層と L Hの層を 1 5セッ 卜とを積層して構成される層の各層で形成され ている多層膜をあげることができる。 As an example of the third-order dispersion compensating element of the present invention, the multilayer film has a film thickness of 1/4 times L and a higher refractive index (layer H) and a film thickness of 1 / λ. The multilayer film is composed of a plurality of layers each including a layer (layer L) having a lower refractive index of 4 times, and the multilayer film is formed in order from one side in the thickness direction of the multilayer film. A layer composed of three sets of layers (hereinafter also referred to as LH layers or LH films) that are combined in order, Layer L and Layer L Layer composed of 32 sets of combined layers (hereinafter also referred to as LL layer or LL film), composed of 1 layer H and 5 sets of LH layers Layers composed of 43 sets of LL layers, 1 layer H and 8 sets of LH layers, and 18 layers of LL layers And a multi-layered film formed by each layer of a layer constituted by laminating one layer H and 15 sets of LH layers.
また、 本発明の 3次分散補償素子の他の 1例と して、 前記多層膜が、 多層膜の 厚み方向の一方の側から順に、 L Hの層を 2セッ ト積層して構成される層、 L L の層を 5 4セッ ト積層して構成される層、 層 Hを 1層と L Hの層を' 3セッ トとを 積層して構成される層、 L Lの層を 7 0セッ ト積層して構成される層、 層 Hを 1 層と L Hの層を 5セッ トとを積層して構成される層、 L Lの層を 5 7セッ ト積層 して構成される層、 層 Hを 1層と L Hの層を 7セッ トとを積層して構成される層、 L Lの層を 4 7セッ ト積層して構成される層、 層 Hを 1層と L Hの層を 1 5セッ 卜とを積層して構成される層で形成されている多層膜をあげることができる。 そして、 本発明の効果を大ならしめるために、 前記多層膜は、 入射光の中心波 長をえ と して、 入射光に対する光路長と して考えたときの膜厚が、 えの 1 / 4倍 である層を単位層と して多数層重ねて構成されていることを特徴と している。 そ して、 各反射層は、 厚みが 4分の 1波長で比較的反射率の高い層 (層 H ) と、 厚 みが 4分の 1波長で比較的反射率の低い層 (層し) の組み合わせによる多層膜で 構成されていることを特徴と している。  Further, as another example of the tertiary dispersion compensating element of the present invention, the multilayer film is formed by laminating two sets of LH layers in order from one side in the thickness direction of the multilayer film. , Layer composed of 54 sets of LL layers, layer composed of 1 layer H and 3 sets of LH layers, and 70 sets of LL layers laminated A layer composed of one layer H and five sets of LH layers, a layer composed of 57 sets of LL layers, and one layer H Layers composed of 7 sets of layers and LH layers, layers composed of 47 sets of LL layers, 1 layer H and 15 sets of LH layers And a multilayer film formed of layers formed by laminating the above. In order to enhance the effect of the present invention, the multilayer film has a film thickness, which is considered to be the center wavelength of incident light and the optical path length for incident light, is 1 / It is characterized in that it is composed of a number of layers that are four times as many as unit layers. Each reflective layer has a thickness of 1/4 wavelength and relatively high reflectivity (layer H), and a thickness of 1/4 wavelength and relatively low reflectivity (layer H). It is characterized by being composed of a multilayer film by a combination of the above.
そして、 本発明の効果を大ならしめるため、 本発明の 3次分散補償素子は、 主 と して、 S i (シリ コン) 、 G e (ゲルマ-ゥム) 、 T i 0 2 (二酸化チタン) 、 T a 20 5 (五酸化タンタル) 、 N b 2O s (五酸化ニオブ) のいずれかで形成される 層と S i o 2 (二酸化珪素) で形成される層のいずれか一方または双方の組み合 わせで構成されている多層膜を有することを特徴と している。 Since occupying become the effects of the present invention large, the third-order dispersion compensation device of the present invention is primarily, S i (silicon), G e (Germa - © beam), T i 0 2 (titanium dioxide ), T a 2 0 5 (tantalum pentoxide), one or both of the layer formed by the N b 2 O s (niobium pentoxide) of any layer and S io formed by 2 (silicon dioxide) It is characterized by having a multilayer film composed of a combination of the following.
そして、 本発明の効果を大ならしめるため、 上記層 Hが主と して S i 、 G e、 T i 〇2、 T a 20 5、 N b 25のいずれかからなる層で形成され、 層 Lが主と して S i 〇 2からなる層で形成されていることを特徴と している。 図面の簡単な説明 Since occupying become the effects of the present invention large, formation of a layer consisting of either S i, G e, T i 〇 2, T a 2 0 5, N b 2 〇 5 the layer H is mainly is, the layer L is characterized by being formed by a layer consisting of S i 〇 2 as the main. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明における 3キヤビティ一の 3次波長分散補償素子を説明する図 である。  FIG. 1 is a diagram illustrating a three-cavity one-dimensional chromatic dispersion compensator according to the present invention.
図 2は、 本発明における 4キヤビティーの 3次波長分散補償素子を説明する図 である。  FIG. 2 is a diagram illustrating a 4-cavity tertiary chromatic dispersion compensator according to the present invention.
図 3は、 本発明の 1実施例と しての 3キヤビティ一誘電体多層膜 3次波長分散 補償素子を説明する図である。  FIG. 3 is a view for explaining a three-cavity-dielectric multilayer tertiary chromatic dispersion compensating element as one embodiment of the present invention.
図 4は、 図 3の 3次波長分散補償素子の群速度遅延時間一波長特性を示す図で ある。  FIG. 4 is a diagram showing a group velocity delay time-wavelength characteristic of the third-order chromatic dispersion compensator of FIG.
図 5は、 本発明の 1実施例と しての 4キヤビティ一誘電体多層膜 3次波長分散 補償素子を説明する図である。  FIG. 5 is a view for explaining a four-cavity-dielectric multilayer tertiary chromatic dispersion compensating element as one embodiment of the present invention.
図 6は、 図 5の 3次波長分散補償素子の群速度遅延時間一波長特性を示す図で ある。  FIG. 6 is a diagram showing a group velocity delay time-wavelength characteristic of the third-order chromatic dispersion compensator of FIG.
図 7は、 波長分散補償方法を説明する図であり、 (A) は波長一時間特性を、 (B) は分散補償ファイバによる 2次の波長分散補償を、 (C) はシングルモー ド光ファイバ伝送路を説明する図である。  Figure 7 is a diagram explaining the chromatic dispersion compensation method. (A) shows the wavelength-time characteristic, (B) shows the second-order chromatic dispersion compensation using a dispersion compensation fiber, and (C) shows the single mode optical fiber. FIG. 3 is a diagram illustrating a transmission path.
図 8は、 各種ファイバの分散—波長特性曲線を示す図である。 発明を実施するための最良の形態  FIG. 8 is a diagram illustrating dispersion-wavelength characteristic curves of various fibers. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照して本発明の実施の形態について説明する。 なお、 説明に用 いる各図はこれらの各発明を理解できる程度に各構成成分の寸法、 形状、 配置関 係などを概略的に示してある。 また、 各図において、 同様な構成成分については 同一の番号を付けて示し、 重複する説明を省略することもある。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. The drawings used in the description schematically show the dimensions, shapes, arrangement relations, and the like of the components so that these inventions can be understood. Also, in each of the drawings, the same components are denoted by the same reference numerals, and redundant description may be omitted.
図 1は本発明の 3次分散補償素子に用いる多層膜の一例をモデルを用いて説明 する図である。 図 1において、 符号 1 0 0は多層膜、 1 0 1、 1 0 2、 1 0 3は 反射率が 1 0 0 %未満の反射層 (以下、 反射膜とも称する) 、 1 0 4は反射率が 約 1 0 0 %の反射層、 1 0 5、 1 0 6、 1 0 7は透過層、 1 1 1、 1 1 2、 1 1 3はキヤビティである。  FIG. 1 is a diagram illustrating an example of a multilayer film used for a third-order dispersion compensating element of the present invention using a model. In FIG. 1, reference numeral 100 denotes a multilayer film, 101, 102, and 103 denote a reflective layer having a reflectance of less than 100% (hereinafter also referred to as a reflective film), and 104 denotes a reflectance. However, about 100% is a reflective layer, 105, 106, and 107 are transmissive layers, and 111, 112, and 113 are cavities.
図 1 の各反射層 1 0 1、 1 0 2、 1 0 3、 1 0 4の反射率 R ( 1 0 1 ) 、 R ( 1 0 2) 、 R ( 1 0 3) 、 R ( 1 0 4) は、 R ( 1 0 1 ) ≤ R ( 1 0 2) ≤ RThe reflectance R (101), R of each of the reflective layers 101, 102, 103, 104 in Fig. 1 (1 0 2), R (1 0 3), R (1 0 4) are R (1 0 1) ≤ R (1 0 2) ≤ R
( 1 0 3) ≤ R ( 1 04) の関係にする。 (1 0 3) ≤ R (104).
ここで、 多層膜 1 0 0の厚み方向に向かって、 各反射層の反射率を次第に大き くなるように形成する。 そして、 各反射層間の光路長と して考えたときの間隔が それぞれ異なるように各反射層の形成条件を選ぶ。 このようにすることにより、 各反射層の反射率の設計精度をゆるめることができ、 厚みが 4分の 1波長の単位 膜の組み合わせで本発明の 3次分散補償素子に用いる多層膜を形成することがで き、 信頼性が高く、 製造コス トが安い 3次分散補償素子を安価に提供することが できる。  Here, the reflectance of each reflective layer is formed so as to gradually increase in the thickness direction of the multilayer film 100. Then, the conditions for forming each reflective layer are selected so that the intervals when considered as the optical path length between each reflective layer are different from each other. By doing so, the design accuracy of the reflectance of each reflective layer can be relaxed, and a multilayer film used in the tertiary dispersion compensating element of the present invention is formed by combining a unit film having a thickness of a quarter wavelength. Thus, a third-order dispersion compensator with high reliability and low manufacturing cost can be provided at low cost.
図 2は本発明の 3次分散補償素子に用いる多層膜の一例をモデルを用いて説明 する図である。 図 2において、 符号 2 0 0は多層膜、 2 0 1、 2 0 2、 2 0 3、 2 0 4は反射率が 1 0 0 %未満の反射層、 2 0 5は反射率が約 1 0 0 %の反射層、 2 0 6、 2 0 7、 2 0 8、 2 0 9は透過層、 2 1 1、 2 1 2、 2 1 3、 2 1 4は キヤビティである。  FIG. 2 is a diagram illustrating an example of a multilayer film used for the third-order dispersion compensating element of the present invention using a model. In FIG. 2, reference numeral 200 denotes a multilayer film, 201, 202, 203, 204 a reflection layer having a reflectance of less than 100%, and 205 a reflectance of about 10%. 0% of the reflective layer, 206, 207, 208, and 209 are transmissive layers, and 211, 212, 213, and 214 are cavities.
図 2の各反射層 2 0 1、 2 0 2、 2 0 3、 2 0 4、 2 0 5の反射率 R ( 2 0 1 ) 、 R ( 2 0 2 ) 、 R ( 2 0 3 ) 、 R ( 2 0 4 ) 、 R ( 2 0 5 ) は、 R ( 2 0 1 ) ≤ R ( 2 0 2 ) ≤ R ( 2 0 3 ) ≤ R ( 2 0 4) ≤ R ( 2 0 5 ) の関係にある。 すなわち、 多層膜 2 0 0の厚み方向に向かって、 各反射層の反射率を順次大きく なるように形成する。 そして、 各反射層間の光路長と して考えたときの間隔がそ れぞれ異なるように各反射層の形成条件が選ばれている。 このようにすることに より、 各反射層の反射率の設計精度をゆるめることができ、 厚みが 4分の 1波長 の単位膜の組み合わせで本発明の 3次分散補償素子に用いられる多層膜を形成す ることができ、 信頼性が高く、 製造コス トが安い 3次分散補償素子を安価に提供 することができる。  The reflectance R (201), R (202), R (203), R of each reflective layer 201, 202, 203, 204, 205 in FIG. (2 0 4), R (2 0 5) is the relation of R (2 0 1) ≤ R (2 0 2) ≤ R (2 0 3) ≤ R (2 0 4) ≤ R (2 0 5) It is in. That is, the reflective layers are formed so that the reflectivity of each reflective layer sequentially increases in the thickness direction of the multilayer film 200. The conditions for forming each reflective layer are selected so that the intervals when considered as the optical path length between each reflective layer are different from each other. By doing so, the design accuracy of the reflectance of each reflective layer can be relaxed, and the combination of unit films having a thickness of a quarter wavelength makes it possible to form a multilayer film used in the tertiary dispersion compensating element of the present invention. A third-order dispersion compensating element that can be formed, has high reliability, and is inexpensive to manufacture can be provided at low cost.
さらに、 本発明の前記多層膜を用いた分散補償素子により信号光に生じた分散 を補償した場合の信号光に及ぼす損失 (挿入損失) はきわめて小さなものであり、 これは実用上きわめて大きな利点である。  Furthermore, the loss (insertion loss) on the signal light when the dispersion generated in the signal light is compensated by the dispersion compensating element using the multilayer film of the present invention is extremely small, which is a very great advantage in practical use. is there.
(実施例 1 )  (Example 1)
図 3は、 本発明の実施例に用いた誘電体多層膜を説明する図で、 以下に、図 3 を用いて本発明の 1実施例と しての 3キヤビティ一 3次波長分散補償素子と して の誘電体多層膜を説明する。 FIG. 3 is a diagram for explaining a dielectric multilayer film used in an example of the present invention. A dielectric multilayer film as a three-cavity-first-order chromatic dispersion compensating element as one embodiment of the present invention will be described with reference to FIG.
図 3において、 符号 3 0 0は誘電体多層膜、 3 0 1は誘電体多層膜を形成する 基板と しての B K— 7 (ガラス) 、 3 0 5は第 1の反射層で L Hの層を 3セッ ト 積層して形成されており、 3 0 4は第 2の反射層で層 Hを 1層とその下方 (すな わち、 前記 1層の層 Hの基板 3 0 1側を意味する、以下同様) に L Hの層を 5セ ッ ト積層して形成されており、 3 0 3は第 3の反射層で層 Hを 1層とその下方に L Hの層を 8セッ ト積層して形成されており、 3 0 2は第 4の反射層で層 Hを 1 層とその下方に L Hの層を 1 5セッ 卜積層して形成されている。 符号 3 0 8は第 1 の透過層で L Lの層を 3 2セッ ト積層して形成されており、 3 0 7は第 2の透 過層で L Lの層を 4 3セッ ト積層して形成されており、 3 0 6は第 3の透過層で L Lの層を 1 8セッ ト積層して形成されている。 符号 3 2 0は誘電体多層膜 3 0 0に入射する光の方向を示す矢印、 3 3 0は前記誘電体多層膜 3 0 0から出射す る光の方向を示す矢印である。  In FIG. 3, reference numeral 300 denotes a dielectric multilayer film, reference numeral 301 denotes BK-7 (glass) as a substrate for forming the dielectric multilayer film, and reference numeral 300 denotes a first reflective layer which is an LH layer. Are formed by laminating three sets, and 304 is a second reflective layer having one layer H and below it (that is, means the substrate 301 side of the one layer H). The same applies to the following.) LH layers are formed by laminating 5 sets, and 303 is a third reflective layer consisting of 1 layer H and 8 sets of LH layers beneath it. Reference numeral 302 denotes a fourth reflection layer, which is formed by laminating one layer H and 15 sets of LH layers below the layer H. Reference numeral 308 denotes a first transmission layer formed by stacking 32 sets of LL layers, and reference numeral 307 denotes a second transmission layer formed by stacking 43 sets of LL layers. Reference numeral 306 denotes a third transmission layer, which is formed by laminating 18 sets of LL layers. Reference numeral 320 denotes an arrow indicating the direction of light incident on the dielectric multilayer film 300, and reference numeral 330 denotes an arrow indicating the direction of light emitted from the dielectric multilayer film 300.
符号 3 1 1は第 1の反射層 3 0 5と前記第 2の反射層 3 0 4の間の第 1のキヤ ビティ (共振器) 、 3 1 2は前記第 2の反射層 3 0 4 と前記第 3の反射層 3 0 3 の間の第 2のキヤビティ、 3 1 3は前記第 3の反射層 3 0 3 と前記第 4の反射層 3 0 2の間の第 3のキヤビティである。  Reference numeral 311 denotes a first cavity (resonator) between the first reflection layer 304 and the second reflection layer 304, and 312 denotes a second reflection layer 304. A second cavity between the third reflective layer 303 and a third cavity 31 between the third reflective layer 303 and the fourth reflective layer 302.
上記 L Hの層は、 厚みが 4分の 1波長の S i O 2のイオンアシス ト蒸着で作成 した膜 (以下、 イオンアシス ト膜ともいう) で形成された層 Lと、 厚みが 4分の 1波長の T i ◦ 2のイオンアシス ト膜で形成された層 Hとから構成されており、 前記 S i O 2のイオンアシス ト膜 (層し) 1層と T i 0 2のイオンアシス ト膜 (層 H ) 1層の組みあわせ層で L Hの層 1セッ トと称し、 たとえば、 「L Hの層 3セ ッ ト積層して」 とは、 「層 L ·層 H ·層 L ·層 H ·層 L ·層 Hの順に各層がそれ ぞれ 1層ずつ重ねて形成して」 ということを意味する。 The above-mentioned LH layer is composed of a layer L formed of a film formed by ion-assist deposition of SiO 2 having a quarter wavelength thickness (hereinafter also referred to as an ion-assist film), and a quarter-wave thickness layer. T i ◦ are composed of a layer H formed by two Ion'ashisu DOO film, the S i O 2 of Ion'ashisu bets film (the layers) 1 layer and T i 0 2 Ion'ashisu preparative layer (layer H) One combined layer is referred to as one set of LH layers. For example, “stacking three sets of LH layers” means “layer L, layer H, layer L, layer H, layer L, layer Each layer is formed by layering one by one in the order of H. "
同様に、上記 L Lの層は、 厚みが 4分の 1波長の S i 〇2のイオンアシス ト膜で 構成されている層 Lを 2層重ねて形成した層を L Lの層 1セッ トと称す。 したが つて、 たとえば、 「 L Lの層を 3 2セッ ト積層して」 とは、 「層 Lを 6 4層重ね て形成して」 を意味する。 前記第 1、第 2、第 3、第 4の各反射層の膜厚は、それぞれえの 6 4倍、 1 1ノ 4倍、 1 7ノ4倍、 3 1 4倍であり、 前記第 1、第 2、第 3の各透過層の膜厚は、 それぞれえの 6 4 4倍、 8 6ノ 4倍、 3 6 4倍である。 Similarly, layers of the LL is called the thickness was formed overlapping two layers L which is composed of Ion'ashisu preparative layer of S i 〇 2 quarter wavelengths layer substantially one set of LL. Therefore, for example, “stacking 32 sets of LL layers” means “formed by stacking 64 layers L”. The thickness of each of the first, second, third, and fourth reflective layers is 64 times, 11 times, 4 times, 17 times, 4 times, and 3 times, respectively. The thicknesses of the second, third and third transmission layers are 644 times, 864 times, and 364 times, respectively.
前記第 1、第 2、第 3、第 4の各反射層の反射率は第 1、第 2、第 3、第 4の反射層 の順に大きく、それぞれ 5 2. 4 %、 9 5. 3 %、 9 9. 5 %、 1 0 0 %である。 なお、 上記の各反射率は、 上記の値から 3 %以内にすることが好ましい。 さら に、 後述の図 4に示すような特性を有する優れた分散補償素子を量 ίΐ的に提供す るためには、 第 1の反射層の反射率を 5 0. 0%以上 6 8. 0 %以下にし、 第 2 の反射層の反射率を 9 2. 0 %以上 9 9. 0 %以下にし、 第 3の反射層の反射率 を 9 9. 0 %以上 9 9. 8 %以下にし、 第 4の反射層の反射率を 9 9. 8 %以上 にすることが好ましい。  The reflectivity of the first, second, third, and fourth reflection layers increases in the order of the first, second, third, and fourth reflection layers, and is 52.4% and 95.3%, respectively. , 99.5% and 100%. It is preferable that each of the above reflectivities be within 3% of the above values. Furthermore, in order to quantitatively provide an excellent dispersion compensating element having characteristics as shown in FIG. 4 described below, the reflectance of the first reflective layer must be 50.0% or more and 68.0 or more. % Or less, the reflectance of the second reflective layer is 92.0% or more and 99.0% or less, the reflectance of the third reflective layer is 99.0% or more and 99.8% or less, It is preferable that the reflectivity of the fourth reflective layer be 99.8% or more.
図 4は、図 3の誘電体多層膜を用いた 3次分散補償素子に、 矢印 3 2 0の方向 から入射した入射光が矢印 3 3 0の方向に出射した時の出射光の、 入射光に対す る群速度遅延時間一波長特性曲線 (図中の符号 4 0 1で示した曲線) を示す図で、 縦軸は群速度遅延時間を横軸は入射光の中心波長からの波長変移である。 横軸の 中心波長は 1 5 5 0 n mで、 最大群速度遅延時間は 7. 2 p s (ピコ秒) である。 3次分散補償素子としての帯域幅は約 2 n mである。  FIG. 4 shows the incident light of the tertiary dispersion compensating element using the dielectric multilayer film of FIG. 3 when the incident light incident from the direction of arrow 320 exits in the direction of arrow 330. Is a graph showing the group velocity delay time-wavelength characteristic curve (curve indicated by reference numeral 401 in the figure) with respect to, where the vertical axis is the group velocity delay time and the horizontal axis is the wavelength shift from the center wavelength of the incident light. is there. The center wavelength on the horizontal axis is 1550 nm, and the maximum group velocity delay time is 7.2 ps (picoseconds). The bandwidth as a third-order dispersion compensating element is about 2 nm.
また、 上記共振で得られる反射光の各波長の群速度遅延時間は、 各層の膜厚を 調整することによっても変えることが可能であり、 また入射光の誘電体多層膜 3 0 0に対する入射角を変えることによっても調整が可能である。  Also, the group velocity delay time of each wavelength of the reflected light obtained by the resonance can be changed by adjusting the thickness of each layer, and the incident angle of the incident light with respect to the dielectric multilayer film 300 Adjustment is also possible by changing.
(実施例 2 )  (Example 2)
次に、図 5を用いて、本発明の実施例と して、 4キヤビティの 3次分散補償素子 と しての誘電体多層膜を説明する。  Next, a dielectric multilayer film as a four-cavity tertiary dispersion compensating element will be described as an embodiment of the present invention with reference to FIG.
図 5において、 符号 5 0 0は誘電体多層膜、 5 0 1は誘電体多層膜を形成する 基板と しての B K— 7 (ガラス) 、 5 0 6は第 1の反射層で L Hの層を 2セッ ト 積層して形成されており、 5 0 5は第 2の反射層で層 Hを 1層とその下方 (すな わち、 前記 1層の層 Hの基板 5 0 1側を意味する、以下同様) に LHの層を 3セ ッ ト積層して形成されており、 5 0 4は第 3の反射層で層 Hを 1層とその下方に LHの層を 5セッ ト積層して形成されており、 5 0 3は第 4の反射層で層 Hを 1 層とその下方に LHの層を 7セッ ト積層して形成されており、 5 0 2は第 5の反 射層で層 Hを 1層とその下方に L Hの層を 1 5セッ ト積層して形成されている。 符号 5 1 0は第 1の透過層で L Lの層を 5 4セッ ト積層して形成されており、 5 0 9は第 2の透過層で L Lの層を 7 0セッ ト積層して形成されており、 5 0 8は 第 3の透過層で L Lの層を 5 7セッ ト積層して形成されており、 5 0 7は第 4の 透過層で L Lの層を 4 7セッ ト積層して形成されている。 符号 5 2 0は誘電体多 層膜 5 0 0に入射する光の方向を示す矢印、 5 3 0は前記誘電体多層膜 5 0 0か ら出射する光の方向を示す矢印である。 In FIG. 5, reference numeral 500 denotes a dielectric multilayer film, 501 denotes BK-7 (glass) as a substrate on which the dielectric multilayer film is formed, and 506 denotes a first reflection layer and an LH layer. 505 is a second reflective layer and one layer H and a layer below it (that is, the one layer H means the substrate 501 side). The same applies to the following.) Three layers of LH are laminated, and 504 is a third reflective layer composed of one layer H and five sets of LH layers below it. 503 is the fourth reflective layer, and layer H is 1 The layer is formed by laminating 7 sets of LH layers below the layer, and 502 is a fifth reflective layer consisting of 1 layer H and 15 sets of LH layers below it. It is formed. Reference numeral 510 denotes a first transmission layer formed by laminating 54 sets of LL layers, and 509 denotes a second transmission layer formed by laminating 70 sets of LL layers. 508 is a third transmission layer formed by stacking 57 sets of LL layers, and 507 is a fourth transmission layer formed by stacking 47 sets of LL layers. Is formed. Reference numeral 5200 denotes an arrow indicating the direction of light incident on the dielectric multilayer film 500, and reference numeral 5300 indicates an arrow indicating the direction of light emitted from the dielectric multilayer film 500.
符号 5 1 1は第 1の反射層 5 0 6 と前記第 2の反射層 5 0 5の間の第 1のキヤ ビティ (共振器) 、 5 1 2は前記第 2の反射層 5 0 5 と前記第 3の反射層 5 04 の間の第 2のキヤビティ、 5 1 3は前記第 3の反射層 5 04 と前記第 4の反射層 5 0 3の間の第 3のキヤビティ、 5 1 4は前記第 4の反射層 5 0 3 と前記第 5の 反射層 5 0 2の間の第 4のキヤビティである。  Reference numeral 511 denotes a first cavity (resonator) between the first reflective layer 506 and the second reflective layer 505, and 512 denotes a second cavity between the first reflective layer 506 and the second reflective layer 505. A second cavity between the third reflective layer 504, 513 is a third cavity between the third reflective layer 504 and the fourth reflective layer 53, 514 is A fourth cavity between the fourth reflective layer 503 and the fifth reflective layer 502.
上記 L Hの層は、 実施例 1 と同様に、 厚みが 4分の 1波長の S i 〇2のイオン アシス 卜蒸着で作成した膜で形成された層 Lと、 厚みが 4分の 1波長の T i 〇2 のイ オンアシス ト膜で形成された層 Hとから構成されており、 前記 S i 〇2のィ オンアシス ト膜 (層 L) 1層と T i 02のイオンアシス ト膜 (層 H) 1層の組み あわせ層で L Hの層 1セッ トと称し、 たとえば、 「 L Hの層 3セッ ト積層して」 とは、 「層 L '層 Η ·層 L '層 Η ·層 L '層 Hの順に各層がそれぞれ 1層ずつ重 ねて形成して」 という ことを意味する。 Said layer of LH, as in Example 1, a layer L which thickness is formed with a film created by S i 〇 second ion Assis Bok deposition of a quarter wavelength, the thickness is 1 wavelength quarter T i are composed of a layer H formed in 〇 2 Lee On'ashisu DOO film, the S i 〇 second i On'ashisu preparative layer (layer L) 1 layer and T i 0 2 Ion'ashisu preparative layer (layer H ) One combined layer is called one set of LH layers.For example, “three sets of LH layers are stacked” means “layer L 'layer Η layer L' layer Η layer L 'layer Each layer is formed one by one in the order of H. "
同様に、上記 L Lの層は、 厚みが 4分の 1波長の S i 〇2のイオンアシス ト膜で 構成されている層 Lを 2層重ねて形成した層を L Lの層 1セッ トと称す。 したが つて、 たとえば、 「 L Lの層を 5 4セッ ト積層して」 とは、 「層 Lを 1 0 8層重 ねて形成して」 を意味する。 Similarly, layers of the LL is called the thickness was formed overlapping two layers L which is composed of Ion'ashisu preparative layer of S i 〇 2 quarter wavelengths layer substantially one set of LL. Therefore, for example, “laminated with 54 sets of LL layers” means “formed by laminating 108 layers L”.
前記第 1、第 2、第 3、第 4、 第 5の各反射層の膜厚は、それぞれえ の 4ノ4倍、 7ノ 4倍、 1 1 Z4倍、 1 5 4倍、 3 1 4倍であり、 前記第 1、第 2、第 3、 第 4の各透過層の膜厚は、 それぞれえの 1 0 8 4倍、 1 4 0Z4倍、 1 1 4ノ 4倍、 9 4 4倍である。  The thicknesses of the first, second, third, fourth, and fifth reflective layers are 4 times, 4 times, 7 times, 4 times, 1 1 Z 4 times, 15 4 times, 3 1 4 times, respectively. The thickness of each of the first, second, third, and fourth transmission layers is 1084 times, 1400 times, 114 times 4 times, 9 times 4 times, respectively. It is.
前記第 1、第 2、第 3、第 4、 第 5の各反射層の反射率は第 1、第 2、第 3、第 4、 第 5の反射層の順に大きく、それぞれ 2 4. 8 %、 8 1. 0 %、 9 5. 3 °/。、 9 8. 9 %、 1 0 0 %である。 The reflectance of each of the first, second, third, fourth, and fifth reflective layers is first, second, third, fourth, Larger in the order of the fifth reflective layer, 24.8%, 81.0%, 95.3 ° /, respectively. , 98.9%, 100%.
なお、 上記の各反射率は、 上記の値から 3 %以内にすることが好ましい。 さら に、 後述の図 6に示すような優れた分散補償素子を量産的に提供するためには、 第 1の反射層の反射率を 2 3 · 0〜 3 5. 0 %、 第 2の反射層の反射率を 7 5. 0〜 9 1. 0 %、 第 3の反射層の反射率を 9 2. 0〜 9 8. 5 %、 第 4の反射層 の反射率を 9 8. 5〜 9 9. 3 %、 第 5の反射層の反射率を 9 9. 3 %以上にす ることが好ましい。  It is preferable that each of the above reflectivities be within 3% of the above values. Further, in order to mass-produce an excellent dispersion compensating element as shown in FIG. 6 described below, the reflectance of the first reflective layer should be 23.0 to 35.0%, The reflectivity of the layer is 75.0 to 91.0%, the reflectivity of the third reflective layer is 92.0 to 98.5%, and the reflectivity of the fourth reflective layer is 98.5 to It is preferable that the reflectivity of the fifth reflective layer be 99.3% or more.
図 6は、図 5の誘電体多層膜を用いた 3次分散補償素子に、 矢印 5 2 0の方向 から入射した入射光が矢印 5 3 0の方向に出射した時の出射光の、 入射光に対す る群速度遅延時間一波長特性曲線 (図中の符号 6 0 1で示した曲線) を示す図で、 縦軸は群速度遅延時間を横軸は入射光の中心波長からの波長変移である。 横軸の 中心波長は 1 5 5 0 n mで、 最大群速度遅延時間は 9. 6 p s (ピロ秒) である。 3次分散補償素子としての帯域幅は約 2 nmである。  FIG. 6 shows the incident light of the incident light that enters the third-order dispersion compensating element using the dielectric multilayer film of FIG. 5 from the direction of arrow 520 and exits in the direction of arrow 530. Is a graph showing the group velocity delay time vs. wavelength characteristic curve (curve indicated by reference numeral 601 in the figure) with respect to, where the vertical axis is the group velocity delay time and the horizontal axis is the wavelength shift from the center wavelength of the incident light. is there. The center wavelength on the horizontal axis is 1550 nm, and the maximum group velocity delay time is 9.6 ps (pyrosecond). The bandwidth as a third-order dispersion compensator is about 2 nm.
以上、 3キヤビティを有する 3次分散補償素子と 4キヤビティを有する 3次分 散補償素子について、 各一つの実施例をあげて本発明の実施の形態を説明したが、 本発明は、 これらの実施例に限定されるものではなく、 本発明の技術思想に則つ て種々のバリエ一ションが可能であり、 その場合にも本発明は多大の効果を奏す るものである。  The embodiments of the present invention have been described above with reference to one example for each of the third-order dispersion compensating element having the 3 cavities and the third-order dispersion compensating element having the 4 cavities. The present invention is not limited to the examples, and various variations are possible in accordance with the technical concept of the present invention. Even in such a case, the present invention has a great effect.
たとえば、 上記各実施例において、 多層膜にイオンアシス ト膜を使用する例に ついて説明しているが、 膜をイオンアシス ト蒸着で形成すると、 丈夫で均質な膜 を形成することができ、 膜の品質も良いという利点があるが、 膜の作成はイオン アシス ト蒸着に限らず、 通常広く行われている蒸着、 スパッタ リ ング、 イオンプ レーティングその他の方法により形成した多層膜を用いても本発明は大きな効果 をもたらす。  For example, in each of the above embodiments, an example in which an ion assist film is used for a multilayer film is described. However, if a film is formed by ion assist deposition, a durable and uniform film can be formed, and the quality of the film can be improved. However, the present invention is not limited to ion-assist deposition, and the present invention is not limited to the use of multi-layer films formed by vapor deposition, sputtering, ion plating, and other methods that are widely used. It has an effect.
また、 層 Hが主と して T i 〇2 (二酸化チタン) で形成される場合について説 明したが、 層 Hの主成分もこれに限られるものではなく、 S i (シリ コン) 、 G e (ゲルマニウム) 、 T a 25 (五酸化タンタル) 、 N b 205 (五酸化ニオブ) で 形成される場合もある。 これらの材料は、 それぞれの物性を考慮して、 3次分散 補償素子の仕様に適するように選択して用いられる。 In addition, the case where the layer H is mainly formed of T i 〇 2 (titanium dioxide) has been described. However, the main components of the layer H are not limited to this, and Si (silicon), G e (germanium), T a 25 (tantalum pentoxide), it may be formed by N b 2 0 5 (niobium pentoxide). These materials are tertiary dispersed in consideration of their physical properties. It is selected and used so as to meet the specifications of the compensating element.
また、 図 3で説明した誘電体多層膜 3 0 0、 および、 図 5で説明した誘電体多 層膜 5 0 0の光透過層である L L層は、 S i 0 2の層で形成され、 本実施例のよ うな厚い膜の積層がしゃすく、 微細結晶を多く含んだアモルファス状態になりや すいという特徴があり、 多層膜の製造歩留まりが良くなるという利点がある。 ま た、 この L L層の代わりに、 S i 、 G e 、 T i O T a 25、 N b z O sのいずれ かからなる層で形成された H H層を使用することも出来る。 H H層は膜厚モニタ での膜厚検出精度が高く、 ス トレスが強いなどの利点がある。 Further, the dielectric multilayer film 3 0 0 described in FIG. 3, and a dielectric multi-layer film 5 0 0 LL layer is a light transmissive layer described in FIG. 5 is formed by a layer of S i 0 2, This embodiment is characterized in that the lamination of a thick film as in the present embodiment is easy, and the amorphous state containing a lot of fine crystals tends to be formed, and the production yield of a multilayer film is improved. Also, this instead of the LL layer, S i, G e, T i OT a 2 〇 5, N bz O s may also be used HH layer formed of any applied becomes layers. The HH layer has advantages such as high film thickness detection accuracy with a film thickness monitor and strong stress.
上記の実施例からもわかるように、 本発明の多層膜を用いた 3次分散補償素子 によって、 3次以上の分散を十分に補償することができ、 2次の分散補償と併せ て、 図 7に符号 7 0 4と 7 1 4のグラフで示した特性まで伝送された信号光の特 性を改善することができる。  As can be seen from the above embodiment, the third-order dispersion compensating element using the multilayer film of the present invention can sufficiently compensate for the third-order or higher dispersion. The characteristics of the signal light transmitted to the characteristics shown by the graphs 704 and 714 can be improved.
以上の説明から、 本発明の光学部品および光学装置を構成する多層膜は、 3次 分散補償素子と して極めて好ましい群速度遅延時間一波長特性を実現でき、 従つ て、 この素子を、 光ファイバを用いた高速'長距離通信システムに適用すること によって、 3次分散の補償をより正確にしかもきわめて低損失で行なう ことが出 来、 従来の分散補償では対応できなかった長距離、 高速の光通信を、 実用的なコ ス トで実現することができる。 そして、 本発明の光学部品および光学装置を光フ アイバを用いた高速 '遠距離通信に用いることにより、 l O G b p s以下の従来 の光通信システムで構築された多くの機器 ·設備 ·技術を 4 0 G b p s以上の高 速通信でも活かすことができ、 本発明のもたらす経済的効果は絶大なものである。 産業上の利用可能性  From the above description, the multilayer film constituting the optical component and the optical device according to the present invention can realize a group velocity delay time-wavelength characteristic that is extremely preferable as a third-order dispersion compensating element. By applying this technology to high-speed long-distance communication systems using fibers, it is possible to compensate for third-order dispersion more accurately and with extremely low loss. Optical communication can be realized at a practical cost. By using the optical components and optical devices of the present invention for high-speed and long-distance communication using optical fibers, many devices, facilities, and technologies constructed using conventional optical communication systems of less than OG bps can be used. It can also be used in high-speed communication at 0 Gbps or higher, and the economic effect of the present invention is enormous. Industrial applicability
本発明による光学部品並びにそれを使用した光学装置は、 たとえば 4 0 G b p sで 1 0, 0 0 0 k mを送信するような高速で長距離の光通信の実用化には不可 欠のものであり、 本発明は光通信分野の発展に大きく貢献するものである。  An optical component according to the present invention and an optical device using the same are indispensable for practical use of high-speed and long-distance optical communication such as transmitting 100,000 km at 40 Gbps. The present invention greatly contributes to the development of the optical communication field.
すなわち、 上記のような特殊な多層膜を用いた優れた群速度遅延一波長特性を 有する本発明の光学部品を 3次の光分散補償素子として光通信システムに用いる ことにより、 従来の分散補償では補償できなかった 3次の波長分散を正確にしか もきわめて低損失で補償することができ、 従来用いられている光ファイバなどの 通信設備を新しいものに置き換えてしまわなくても高速 ·長距離の光通信が実現 可能になるため、 本発明のもたらす経済的な効果はきわめて多大なものである。 そして、 本発明による特殊な多層膜を用いた光分散補償素子と しての機能を有 する光学部品は、 小型で量産に適しており、 価格も安価に提供することが出来る ので、 光通信の発展に寄与するところは極めて大きい。 That is, by using the optical component of the present invention having an excellent group velocity delay-one wavelength characteristic using a special multilayer film as described above in an optical communication system as a third-order optical dispersion compensating element, conventional dispersion compensation can be performed. Only the third-order chromatic dispersion that could not be compensated Can be compensated with extremely low loss, and high-speed and long-distance optical communication can be realized without replacing existing communication equipment such as optical fibers with new ones. The economic effect is enormous. The optical component having a function as an optical dispersion compensator using a special multilayer film according to the present invention is small, suitable for mass production, and can be provided at a low price. The contribution to development is extremely large.

Claims

請 求 の 範 囲 The scope of the claims
1. 光ファイバを通信伝送路に使用する通信システムに使用して波長分散 (以下、 単に、 分散ともいう) を補償することが出来る光学部品であって、 入射光の中心 波長をえ と して、 入射光の中心波長の光に対する光路長 (以下、 単に、 光路長と もいう) と して考えたときの膜厚 (以下、単に、膜厚あるいは膜の厚みともいう) がえの 4分の 1 (え 4) の整数倍である積層膜を少なく とも 7層有する多層膜 を有し、 入射光に対して、 前記多層膜が少なく とも 4つの光反射層 (以下、 単に、 反射層ともいう) を有するように形成されている多層膜を有することを特徴とす る光学部品。 1. An optical component that can compensate for chromatic dispersion (hereinafter simply referred to as dispersion) by using an optical fiber in a communication system that uses a communication transmission line. The film thickness (hereinafter, also simply referred to as the film thickness or film thickness) when considered as the optical path length (hereinafter, also simply referred to as the optical path length) with respect to the light having the center wavelength of the incident light is four minutes. A multilayer film having at least seven laminated films, which is an integral multiple of 1 (e 4), wherein the multilayer film has at least four light reflecting layers (hereinafter, simply referred to as reflecting layers) for incident light. An optical component having a multilayer film formed so as to have
2. 請求項 1に記載の光学部品において、 前記多層膜が、 前記反射層間の光路長 と しての間隔がそれぞれ異なるように形成されていることを特徴とする光学部品。 2. The optical component according to claim 1, wherein the multilayer film is formed so as to have different distances as optical path lengths between the reflective layers.
3. 請求項 1に記載の光学部品において、 前記多層膜が 7層であり、 膜の厚み方 向の一方の側から順に前記 7層を第 1層、 第 2層、 第 3層、 第 4層、 第 5層、 第 6層、 第 7層と称するとき、 反射層が第 1層、 第 3層、 第 5層、 第 7層であり、 その反射率をそれぞれ R 1、 R 3、 R 5、 R 7 とすると、 R 1 ≤R 3≤ R 5≤ R 7であることを特徴とする光学部品。 3. The optical component according to claim 1, wherein the multilayer film has seven layers, and the seven layers are a first layer, a second layer, a third layer, and a fourth layer in order from one side in the thickness direction of the film. When the layers are referred to as layers, fifth layer, sixth layer, and seventh layer, the reflecting layers are the first layer, third layer, fifth layer, and seventh layer, and their reflectances are R1, R3, and R, respectively. An optical component characterized in that R 1 ≤R 3≤R 5≤R 7 where 5, R 7.
4. 請求項 3に記載の光学部品において、 前記多層膜の厚み方向の 方の側から 順に、 第 1の反射層と第 2の反射層の間に第 1のキヤビティを形成し、 第 2の反 射層と第 3の反射層の間に第 2のキヤビティを形成し、 第 3の反射層と第 4の反 射層の間に第 3のキヤビティを形成するように構成されていることを特徴とする 光学部品。  4. The optical component according to claim 3, wherein a first cavity is formed between the first reflective layer and the second reflective layer in order from a side in a thickness direction of the multilayer film; A second cavity formed between the reflective layer and the third reflective layer, and a third cavity formed between the third reflective layer and the fourth reflective layer. Features optical components.
5. 請求項 3に記載の光学部品において、 前記第 1層の反射率 R 1が 5 0. 0 % 以上 6 8. 0 %以下、 前記第 3層の反射率 R 3が 9 2. 0 °/。以上 9 9. 0 %以下、 前記第 5層の反射率 R 5が 9 9. 0 %以上 9 9. 8 %以下、 前記第 7層の反射率 R 7が 9 9. 8 %以上であることを特徴とする光学部品。  5. The optical component according to claim 3, wherein the reflectance R1 of the first layer is 50.0% or more and 68.0% or less, and the reflectance R3 of the third layer is 92.0 °. /. Not less than 99.0%, the reflectance R5 of the fifth layer is not less than 99.0% and not more than 99.8%, and the reflectance R7 of the seventh layer is not less than 99.8%. An optical component characterized by the following.
6. 請求項 3に記載の光学部品において、 前記 7層が、 膜厚がえの 1 /4倍で屈 折率が高い方の層 (以下、 層 Hともいう) と膜厚が λの 1 /4倍で屈折率が低い 方の層 (以下、 層 Lともいう) を組み合わせた層の複数組で構成されており、 前 記多層膜が、 多層膜の厚み方向の一方の側から順に、 層 L、 層 Hの順に組み合わ せた層 (以下、 LHの層ともいう) を 3セッ ト積層して構成される層、 層 Lと層 Lを組み合わせた層 (以下、 L Lの層ともいう) を 3 2セッ ト積層して構成され る層、 層 Hを 1層と L Hの層を 5セッ トとを積層して構成される層、 L Lの層を 4 3セッ ト積層して構成される層、 層 Hを 1層と LHの層を 8セッ 卜とを積層し て構成される層、 L Lの層を 1 8セッ ト積層して構成される層、 層 Hを 1層と L Hの層を 1 5セッ 卜とを積層して構成される層の各層で形成されていることを特 徴とする光学部品。 6. The optical component according to claim 3, wherein the seven layers are a quarter of the film thickness and have a higher refractive index (hereinafter, also referred to as a layer H) and a layer having a film thickness of λ. It is composed of multiple sets of layers that combine a layer with a lower refractive index of / 4 times (hereinafter also referred to as layer L). The multilayer film is formed by laminating three sets of layers (hereinafter, also referred to as LH layers) in which layers L and H are combined in this order from one side in the thickness direction of the multilayer film. Layer composed of 32 sets of layers that combine L and layer L (hereinafter also referred to as LL layer), composed of one layer H and 5 sets of LH layers. Layer, layer composed of 43 sets of LL layers, layer composed of 1 layer H and 8 sets of LH layers, 18 sets of LL layers An optical component characterized by being formed by laminating layers, one layer H, and 15 layers of LH layers.
7. 請求項 6に記載の光学部品において、 層 Hが S i 、 G e、 T i 〇2、 T a 205、 N b 205のいずれかから成る層で形成されていることを特徴とする光学部品。 7. The optical component according to claim 6, that the layer H is formed by a layer consisting of either S i, G e, T i 〇 2, T a 2 0 5, N b 2 0 5 Characteristic optical components.
8. 請求項 7に記載の光学部品において、 層 Lが S i 〇2から成る層で形成され ていることを特徴とする光学部品。 8. The optical component according to claim 7, wherein the layer L is formed of a layer composed of Si 2 .
9. 光ファイバを通信伝送路に使用する通信システムに使用して波長分散 (以下、 単に、 分散ともいう) を補償することが出来る光学部品であって、 入射光の中心 波長をえ と して、 入射光の中心波長の光に対する光路長 (以下、 単に、 光路長と もいう) と して考えたときの膜厚 (以下、 単に、 膜厚あるいは膜の厚みともい う) がえの 4分の 1 (ぇ 4) の整数倍である積層膜を少なく とも 9層有する多 層膜を有し、 入射光に対して、 前記多層膜が少なく とも 5つの光反射層 (以下、 単に、 反射層ともいう) を有するように形成されている多層膜を有することを特 徴とする光学部品。  9. An optical component that can compensate for chromatic dispersion (hereinafter, also simply referred to as dispersion) by using an optical fiber in a communication system that uses a communication transmission line. The film thickness (hereinafter, also simply referred to as the film thickness or the film thickness) when considered as the optical path length (hereinafter, also simply referred to as the optical path length) for the light having the center wavelength of the incident light is four minutes. A multi-layered film having at least 9 laminated films, which is an integral multiple of 1 (ぇ 4), wherein the multi-layered film has at least five light reflecting layers (hereinafter simply referred to as reflecting layers) for incident light. An optical component characterized by having a multilayer film formed to have
1 0. 請求項 9に記載の光学部品において、 前記多層膜が、 前記反射層間の光路 長と しての間隔がそれぞれ異なるように形成されていることを特徴とする光学部  10. The optical part according to claim 9, wherein the multilayer film is formed so that the intervals as the optical path length between the reflective layers are different from each other.
1 1. 請求項 9に記載の光学部品において、 前記多層膜が 9層であり、 多層膜の 厚み方向の一方の側から順に前記 9層を第 1層、 第 2層、 第 3層、 第 4層、 第 5 層、 第 6層、 第 7層、 第 8層、 第 9層と称するとき、 反射層が第 1層、 第 3層、 第 5層、 第 7層、 第 9層であり、 その反射率をそれぞれ R 1、 R 3、 R 5、 R 7 , R 9とすると、 R 1 ≤ R 3≤ R 5≤ R 7≤ R 9であることを特徴とする光学部品。1 1. The optical component according to claim 9, wherein the multilayer film has nine layers, and the nine layers are a first layer, a second layer, a third layer, and a third layer in order from one side in a thickness direction of the multilayer film. When referred to as the fourth, fifth, sixth, seventh, eighth, and ninth layers, the reflecting layers are the first, third, fifth, seventh, and ninth layers. An optical component characterized in that R 1 ≤ R 3 ≤ R 5 ≤ R 7 ≤ R 9 where the reflectance is R 1, R 3, R 5, R 7 and R 9 respectively.
1 2. 請求項 1 1に記載の光学部品において、 前記多層膜の厚み方向の一方の側 から順に、 第 1の反射層と第 2の反射層の間に第 1のキヤビティを形成し、 第 2 の反射層と第 3の反射層の間に第 2のキヤビティを形成し、 第 3の反射層と第 4 の反射層の間に第 3のキヤビティを形成し、 第 4の反射層と第 5の反射層の間に 第 4のキヤビティを形成するように構成されていることを特徴とする光学部品。 1 2. The optical component according to claim 11, wherein one side of the multilayer film in a thickness direction is provided. Forming a first cavity between the first reflective layer and the second reflective layer, forming a second cavity between the second reflective layer and the third reflective layer, A third cavity is formed between the reflective layer and the fourth reflective layer, and a fourth cavity is formed between the fourth reflective layer and the fifth reflective layer. Optical components.
1 3. 請求項 1 1に記載の光学部品において、 前記第 1層の反射率 R 1が 2 3. 0 %以上3 5. 0 %、 前記第 3層の反射率 R 3が 7 5. 0 %以上 9 1. 0 %以下、 前記第 5層の反射率 R 5が 9 2. 0 %以上 9 8. 5 %以下、 前記第 7層の反射率 尺 7が 9 8. 5 %以上 9 9. 3 %以下、 前記第 9層の反射率 R 9が 9 9. 3 %以 上であることを特徴とする光学部品。 1 3. The optical component according to claim 11, wherein the reflectance R1 of the first layer is 23.0% or more and 35.0%, and the reflectance R3 of the third layer is 75.0. 5% or more and 91.0% or less, the reflectance R5 of the fifth layer is 92.0% or more and 98.5% or less, and the reflectance of the seventh layer is 98.5% or more and 99. The optical component, wherein the reflectance R 9 of the ninth layer is 99.3% or more.
1 4. 請求項 1 1に記載の光学部品において、 前記 7層が、 膜厚が λの 1 /4倍 で屈折率が高い方の層 (以下、 層 Ηともいう) と膜厚がえの 1 /4倍で屈折率が 低い方の層 (以下、 層 Lともいう) を組み合わせた層の複数組で構成されており、 前記多層膜が、 多層膜の厚み方向の一方の側から順に、 層し、 層 Ηの順に組み合 わせた層 (以下、 LHの層ともいう) を 2セッ ト積層して構成される層、 層 Lと 層 Lを組み合わせた層 (以下、 L Lの層ともいう) を 5 4セッ ト積層して構成さ れる層、 層 Ηを 1層と L Ηの層を 3セッ トとを積層して構成される層、 L Lの層 を 7 0セッ ト積層して構成される層、 層 Ηを 1層と LHの層を 5セッ トとを積層 して構成される層、 L Lの層を 5 7セッ ト積層して構成される層、 層 Ηを 1層と L Ηの層を 7セッ トとを積層して構成される層、 L Lの層を 4 7セッ ト積層して 構成される層、 層 Ηを 1層と LHの層を 1 5セッ 卜とを積層して構成される層で 形成されていることを特徴とする光学部品。  14. The optical component according to claim 11, wherein the seven layers are a layer having a thickness of 1/4 times λ and a higher refractive index (hereinafter, also referred to as a layer Η). It is composed of a plurality of layers each including a combination of a layer having a lower refractive index of 1/4 (hereinafter, also referred to as a layer L), and the multilayer film is arranged in order from one side in a thickness direction of the multilayer film. A layer composed of two sets of layers (hereinafter also referred to as LH layers) combined in the order of layer Η, and a layer composed of a combination of layers L and L (hereinafter also referred to as an LL layer) ), A layer composed of 54 sets of layers, a layer composed of 1 layer と and 3 sets of layers of L 、, and a layer composed of 70 sets of LL layers Layer, one layer 1 and five sets of LH layers, a layer composed of 57 sets of LL layers, one layer Η and one layer L層 layer with 7 sets It is composed of a layer composed of 47 layers of LL layers, a layer composed of 47 layers of LL layers, and a layer composed of 1 layer of 15 layers and 15 layers of LH layers. An optical component characterized in that:
1 5. 請求項 1 4に記載の光学部品において、 層 Ηが S i 、 G e、 T i 02、 T a 205, Ν b 205のいずれかから成る層で形成されていることを特徴とする光学部 The optical component according to 1 5. claims 1 to 4, the layers Η is formed by a layer consisting of either S i, G e, T i 0 2, T a 2 0 5, Ν b 2 0 5 Optical part characterized by that
1 6. 請求項 1 5に記載の光学部品において、 層 Lが S i 02から成る層で形成 されていることを特徴とする光学部品。 1 6. The optical component according to claim 1 5, optical component layer L is characterized in that it is formed by a layer consisting of S i 0 2.
1 7. 光ファイバを通信伝送路に使用する通信システムに使用して 3次の波長分 散 (以下、 単に、 分散ともいう) を補償することが出来る光学装置であって、 入 射光の中心波長をえと して、 入射光の中心波長の光に対する光路長 (以下、 単に、 光路長ともいう) と して考えたときの膜厚 (以下、単に、膜厚あるいは膜の厚みと もいう) がえの 4分の 1 (ぇ 4) の整数倍である積層膜を少なく とも 7層有す る多層膜を有し、 入射光に対して、 前記多層膜が少なく とも 4つの光反射層 (以 下、 単に、 反射層ともいう) を有するように形成されている多層膜を有する光学 部品を構成部品の一部と していることを特徴とする光学装置。 1 7. An optical device that can compensate for third-order wavelength dispersion (hereinafter simply referred to as dispersion) by using an optical fiber in a communication system that uses a communication transmission line. In consideration of this, the optical path length for the central wavelength light of the incident light (hereinafter simply referred to as The film thickness (hereinafter also simply referred to as the film thickness or film thickness) when considered as an optical path length is at least an integral multiple of 1/4 (ぇ 4) of the thickness. A multilayer film having a multilayer film having seven layers and formed so that the multilayer film has at least four light reflection layers (hereinafter, also simply referred to as reflection layers) with respect to incident light. An optical device, characterized in that the optical device comprises a part of a component.
1 8. 請求項 1 7に記載の光学装置において、 前記多層膜が、 前記反射層間の光 路長と しての間隔がそれぞれ異なるように形成されている光学部品を構成部品の 一部と していることを特徴とする光学装置。 18. The optical device according to claim 17, wherein an optical component in which the multilayer film is formed such that an interval as an optical path length between the reflective layers is different from each other is a part of a component. An optical device, comprising:
1 9. 請求項 1 7に記載の光学装置において、 前記多層膜が 7層であり、 多層膜 の厚み方向の一方の側から順に前記 7層を第 1層、 第 2層、 第 3層、 第 4層、 第 5層、 第 6層、 第 7層と称するとき、 光反射層が第 1層、 第 3層、 第 5層、 第 7 層であり、 その反射率をそれぞれ R 1、 R 3、 R 5、 R 7 とすると、 R 1 ≤ R 3 ≤ R 5≤ R 7である光学部品を構成部品の一部と していることを特徴とする光学 装置。  1 9. The optical device according to claim 17, wherein the multilayer film has seven layers, and the seven layers are, in order from one side in the thickness direction of the multilayer film, a first layer, a second layer, a third layer, When referred to as the fourth, fifth, sixth, and seventh layers, the light reflecting layers are the first, third, fifth, and seventh layers, and the reflectances thereof are R 1 and R, respectively. An optical device characterized in that optical components satisfying R 1 ≤ R 3 ≤ R 5 ≤ R 7 are part of the components, where R 5, and R 7.
2 0. 請求項 1 9に記載の光学装置において、 前記多層膜の厚み方向の一方の側 から順に、 第 1の反射層と第 2の反射層の間に第 1のキヤビティを形成し、 第 2 の反射層と第 3の反射層の間に第 2のキヤビティを形成し、 第 3の反射層と第 4 の反射層の間に第 3のキヤビティを形成するように構成されている光学部品を構 成部品の一部としていることを特徴とする光学装置。  20. The optical device according to claim 19, wherein a first cavity is formed between the first reflective layer and the second reflective layer in order from one side in the thickness direction of the multilayer film, An optical component configured to form a second cavity between the second reflective layer and the third reflective layer, and to form a third cavity between the third reflective layer and the fourth reflective layer An optical device characterized in that it is a part of a component.
2 1. 請求項 1 9に記載の光学装置において、 前記第 1層の反射率 R 1が 5 0. 0 %以上 6 8. 0 %以下、 前記第 3層の反射率 R 3が 9 2. 0 %以上 9 9. 0 % 以下、 前記第 5層の反射率 R 5が 9 9. 0%以上 9 9. 8 %以下、 前記第 7層の 反射率 R 7が 9 9. 8 %以上である光学部品を構成部品の一部と していることを 特徴とする光学装置。  2 1. The optical device according to claim 19, wherein the reflectance R 1 of the first layer is 50.0% or more and 68.0% or less, and the reflectance R 3 of the third layer is 9 2. 0% or more and 99.0% or less, the reflectance R5 of the fifth layer is 99.0% or more and 99.8% or less, and the reflectance R7 of the seventh layer is 99.8% or more. An optical device characterized in that an optical component is a part of a component.
2 2. 請求項 1 9に記載の光学装置において、 前記 7層が、 膜厚が; Lの 1 /4倍 で屈折率が高い方の層 (以下、 層 Hともいう) と膜厚が λの 1 /4倍で屈折率が 低い方の層 (以下、 層 Lともいう) を組み合わせた層の複数組で構成されており、 前記多層膜が、 多層膜の厚み方向の一方の側から順に、 層し、 層 Ηの順に組み合 わせた層 (以下、 LHの層ともいう) を 3セッ ト積層して構成される層、 層しと 層 Lを組み合わせた層 (以下、 L Lの層ともいう) を 3 2セッ ト積層して構成さ れる層、 層 Hを 1層と LHの層を 5セッ トとを積層して構成される層、 L Lの層 を 4 3セッ ト積層して構成される層、 層 Hを 1層と LHの層を 8セッ トとを積層 して構成される層、 L Lの層を 1 8セッ ト積層して構成される層、 層 Hを 1層と LHの層を 1 5セッ 卜とを積層して構成される層の各層で形成されている光学部 品を構成部品の一部と していることを特徴とする光学装置。 2 2. The optical device according to claim 19, wherein the seven layers have a thickness of 1/4 times L and a higher refractive index (hereinafter also referred to as a layer H) and a thickness of λ. It is composed of a plurality of pairs of layers each of which is 1/4 times the layer having a lower refractive index (hereinafter, also referred to as a layer L), wherein the multilayer film is sequentially arranged from one side in the thickness direction of the multilayer film Layers composed of three sets of layers (hereinafter also referred to as LH layers) that are combined in the order of Layer composed of 32 sets of layers combining layer L (hereinafter also referred to as LL layer), layer composed of 1 layer H and 5 sets of LH layers , Layers composed of 43 sets of LL layers, layers composed of 1 layer H and 8 sets of LH layers, and 18 layers of LL layers laminated The optical component formed by each layer of the layer composed of one layer and the layer composed of one layer H and 15 layers of the LH layer shall be part of the component parts. An optical device characterized by the above-mentioned.
2 3. 請求項 2 2に記載の光学装置において、 前記層 Hが S i 、 G e、 T i 〇2、 T a 2〇 、 N b 25のいずれかから成る層で形成されている光学部品を構成部品の 一部と していることを特徴とする光学装置。 2 3. The optical device according to claim 2 2, wherein the layer H is formed by a layer consisting of either S i, G e, T i 〇 2, T a 2 〇, N b 25 An optical device comprising an optical component as a part of a component.
2 4. 請求項 2 3に記載の光学装置において、 前記層 Lが S i 02から成る層で 形成されている光学部品を構成部品の一部と していることを特徴とする光学装置。  24. The optical device according to claim 23, wherein an optical component in which the layer L is formed of a layer made of Si02 is a part of a component.
2 5. 光ファイバを通信伝送路に使用する通信システムに使用して 3次の波長分 散 (以下、 単に、 分散ともいう) を補償することが出来る光学装置であって、 入 射光の中心波長をえと して、 入射光の中心波長の光に対する光路長 (以下、 単に、 光路長ともいう) と して考えたときの膜厚 (以下、 単に、 膜厚あるいは膜の厚み ともいう) がえの 4分の 1 (λ/4) の整数倍である積層膜を少なく とも 9層有 する多層膜を有し、 入射光に対して、 前記多層膜が少なく とも 5つの光反射層 (以下、 単に、 反射層ともいう) を有するように形成されている多層膜を有する 光学部品を構成部品の一部と していることを特徴とする光学装置。 2 5. An optical device that can compensate for third-order wavelength dispersion (hereinafter simply referred to as dispersion) by using an optical fiber in a communication system that uses a communication transmission line. The center wavelength of the incident light As a result, the film thickness (hereinafter, also simply referred to as the film thickness or film thickness) when considered as the optical path length for the light having the center wavelength of the incident light (hereinafter, also simply referred to as the optical path length) is obtained. It has a multilayer film having at least 9 laminated films that are integral multiples of 1/4 (λ / 4) of the above, and the multilayer film has at least five light reflection layers (hereinafter, referred to as incident light). An optical device comprising, as a part of a component, an optical component having a multilayer film formed so as to have a reflective layer.
2 6. 請求項 2 5に記載の光学装置において、 前記多層膜が、 前記反射層間の光 路長と しての間隔がそれぞれ異なるように形成されている光学部品を構成部品の 一部と していることを特徴とする光学装置。 26. The optical device according to claim 25, wherein an optical component in which the multilayer film is formed such that an interval as an optical path length between the reflective layers is different from each other is a part of a component. An optical device, comprising:
2 7. 請求項 2 5に記載の光学装置において、 前記多層膜が 9層であり、 多層膜 の厚み方向の一方の側から順に前記 9層を第 1層、 第 2層、 第 3層、 第 4層、 第 5層、 第 6層、 第 7層、 第 8層、 第 9層と称するとき、 反射層が第 1層、 第 3層、 第 5層、 第 7層、 第 9層であり、 その反射率をそれぞれ R 1、 R 3 ; R 5、 R 7 , R 9 とすると、 R 1 ≤R 3≤ R 5≤ R 7≤ R 9である光学部品を構成部品の一部 としていることを特徴とする光学装置。  27. The optical device according to claim 25, wherein the multilayer film has nine layers, and the nine layers are, in order from one side in a thickness direction of the multilayer film, a first layer, a second layer, a third layer, When the fourth layer, the fifth layer, the sixth layer, the seventh layer, the eighth layer, and the ninth layer are referred to, the reflection layer is the first layer, the third layer, the fifth layer, the seventh layer, and the ninth layer. Assuming that the reflectance is R1, R3; R5, R7, R9 respectively, the optical components with R1 ≤ R3 ≤ R5 ≤ R7 ≤ R9 are part of the components An optical device, characterized in that:
2 8. 請求項 2 7に記載の光学装置において、 前記多層膜の厚み方向の一方の側 から順に、 第 1の反射層と第 2の反射層の間に第 1のキヤビティを形成し、 第 2 の反射層と第 3の反射層の間に第 2のキヤビティを形成し、 第 3の反射層と第 4 の反射層の間に第 3のキヤビティを形成し、 第 4の反射層と第 5の反射層の間に 第 4のキヤビティを形成するように構成されていることを特徴とする光学部品を 構成部品の一部と していることを特徴とする光学装置。 28. The optical device according to claim 27, wherein one side in the thickness direction of the multilayer film is provided. Forming a first cavity between the first reflective layer and the second reflective layer, forming a second cavity between the second reflective layer and the third reflective layer, A third cavity is formed between the reflective layer and the fourth reflective layer, and a fourth cavity is formed between the fourth reflective layer and the fifth reflective layer. An optical device characterized in that an optical component to be formed is a part of a component.
2 9. 請求項 2 7に記載の光学装置において、 前記第 1層の反射率 R 1が 2 3. 2 9. The optical device according to claim 27, wherein the first layer has a reflectivity R 1 of 23.
0 %以上 3 5. 0 %以下、 前記第 3層の反射率 R 3が 7 5. 0 %以上 9 1. 0 % 以下、 前記第 5層の反射率 R 5が 9 2. 0 %以上 9 8. 5 %以下、 前記第 7層の 反射率 R 7が 9 8. 5 %以上 9 9. 3 %以下、 前記第 9層の反射率 R 9が 9 9.0% or more and 35.0% or less, the reflectance R3 of the third layer is 75.0% or more and 91.0% or less, and the reflectance R5 of the fifth layer is 92.0% or more 9 8.5% or less, the reflectance R7 of the seventh layer is 98.5% or more, 99.3% or less, and the reflectance R9 of the ninth layer is 99.9.
3 %以上である光学部品を構成部品の一部と していることを特徴とする光学装置。 An optical device, wherein an optical component that accounts for 3% or more is part of a component.
3 0. 請求項 2 7に記載の光学装置において、 前記 7層が、 膜厚がえの 1 /4倍 で屈折率が高い方の層 (以下、 層 Hともいう) と膜厚がえの 1 /4倍で屈折率が 低い方の層 (以下、 層 Lともいう) を組み合わせた層の複数組で構成されており、 前記多層膜が、 多層膜の厚み方向の一方の側から順に、 層 L、 層 Hの順に組み合 わせた層 (以下、 LHの層ともいう) を 2セッ ト積層して構成される層、 層 Lと 層 Lを組み合わせた層 (以下、 L Lの層ともいう) を 5 4セッ ト積層して構成さ れる層、 層 Hを 1層と L Hの層を 3セッ トとを積層して構成される層、 L Lの層 を 7 0セッ ト積層して構成される層、 層 Hを 1層と LHの層を 5セッ 卜とを積層 して構成される層、 L Lの層を 5 7セッ ト積層して構成される層、 層 Hを 1層と LHの層を 7セッ 卜とを積層して構成される層、 L Lの層を 4 7セッ ト積層して 構成される層、 層 Hを 1層と LHの層を 1 5セッ トとを積層して構成される層で 形成されている光学部品を構成部品の一部としていることを特徴とする光学装置。 30. The optical device according to claim 27, wherein the seven layers are a quarter of the film thickness and have a higher refractive index (hereinafter, also referred to as a layer H). It is composed of a plurality of layers each including a combination of a layer having a lower refractive index of 1/4 (hereinafter, also referred to as a layer L), and the multilayer film is arranged in order from one side in a thickness direction of the multilayer film. A layer composed of two sets of layers in which layers L and H are combined in this order (hereinafter also referred to as LH layers), a layer composed of layers L and L (hereinafter also referred to as LL layers) ), A layer composed of 54 sets of layers, a layer composed of 1 layer H and 3 sets of LH layers, and a layer composed of 70 sets of LL layers. Layer, one layer H and five sets of LH layers, a layer composed of 57 sets of LL layers, one layer H and one layer of LH Laminate 7 sets with layers The optical layer is composed of a layer composed of 47 layers of LL layers, a layer composed of one layer H and 15 sets of LH layers. An optical device comprising a part as a part of a component.
3 1. 請求項 3 0に記載の光学装置において、 層 Hが S i 、 G e、 T i 〇2、 T a 205, Ν b 20 のいずれかから成る層で形成されている光学部品を構成部品の一 部としていることを特徴とする光学装置。 The optical device according to 3: 1. 3. 0, optics layer H is formed by a layer consisting of either S i, G e, T i 〇 2, T a 2 0 5, Ν b 2 0 An optical device characterized in that parts are part of components.
3 2. 請求項 3 1 に記載の光学装置において、 層 Lが S i 〇2から成る層で形成 されている光学部品を構成部品の一部としていることを特徴とする光学装置。 32. The optical device according to claim 31, wherein an optical component in which the layer L is formed of a layer composed of Si 2 is a part of a component.
PCT/JP2001/000624 2000-02-02 2001-01-31 Optical component and optical apparatus comprising it WO2001057562A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001230530A AU2001230530A1 (en) 2000-02-02 2001-01-31 Optical component and optical apparatus comprising it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-24922 2000-02-02
JP2000024922 2000-02-02

Publications (1)

Publication Number Publication Date
WO2001057562A1 true WO2001057562A1 (en) 2001-08-09

Family

ID=18550849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/000624 WO2001057562A1 (en) 2000-02-02 2001-01-31 Optical component and optical apparatus comprising it

Country Status (2)

Country Link
AU (1) AU2001230530A1 (en)
WO (1) WO2001057562A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6318304A (en) * 1986-07-11 1988-01-26 Matsushita Electric Ind Co Ltd Band-pass filter for two-wavelength separation
JP2754214B2 (en) * 1988-07-12 1998-05-20 工業技術院長 Dielectric multilayer film capable of compensating frequency chirp of light pulse
JPH11218628A (en) * 1998-02-04 1999-08-10 Hitachi Ltd Light dispersion compensating element, and semiconductor laser device and optical communication system using the element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6318304A (en) * 1986-07-11 1988-01-26 Matsushita Electric Ind Co Ltd Band-pass filter for two-wavelength separation
JP2754214B2 (en) * 1988-07-12 1998-05-20 工業技術院長 Dielectric multilayer film capable of compensating frequency chirp of light pulse
JPH11218628A (en) * 1998-02-04 1999-08-10 Hitachi Ltd Light dispersion compensating element, and semiconductor laser device and optical communication system using the element

Also Published As

Publication number Publication date
AU2001230530A1 (en) 2001-08-14

Similar Documents

Publication Publication Date Title
JP2002311235A (en) Composite light diffusion compensating element and light diffusion compensating method using the same
WO2001086328A1 (en) Optical component and dispersion compensating method
JP2002267834A (en) Optical component, optical dispersion compensation device using the component and method for compensating optical dispersion
JP2001320328A (en) Optical communication method
JP2018155863A (en) Optical waveguide device and receiving circuit
JP2002243935A (en) Dispersion compensator
US8456741B2 (en) Optical module having three or more optically transparent layers
JP4613814B2 (en) Variable dispersion compensator
JP4639836B2 (en) Variable dispersion compensator
JP4497042B2 (en) Variable dispersion compensator
US8818193B2 (en) Multichannel tunable optical dispersion compensator
WO2001057562A1 (en) Optical component and optical apparatus comprising it
JP2005236336A (en) Composite type light dispersion compensating element and light dispersion compensating method
JP4095866B2 (en) Wavelength dispersion generator
JP2002311402A (en) Faraday rotator
JP2002122732A (en) Optical dispersion compensating device
JP2002214430A (en) Optical dispersion compensating element
JP2001251246A (en) Optical dispersion compensating element
WO2001084749A1 (en) Optical dispersion compensating device and optical dispersion compensating method using the device
JP2001305339A (en) Optical dispersion compensation element
JP2001251004A (en) Light amplifier
WO2001086339A1 (en) Light dispersion compensation element and light dispersion compensation method using the element
WO2001094991A1 (en) Composite light dispersion for compensating device and method for compensating light dispersion using the device
JP2001352293A (en) Light dispersion compensating element and light dispersion compensating method using it
JP2001305338A (en) Optical dispersion compensation element

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 556356

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase