JP2002243935A - Dispersion compensator - Google Patents
Dispersion compensatorInfo
- Publication number
- JP2002243935A JP2002243935A JP2001037524A JP2001037524A JP2002243935A JP 2002243935 A JP2002243935 A JP 2002243935A JP 2001037524 A JP2001037524 A JP 2001037524A JP 2001037524 A JP2001037524 A JP 2001037524A JP 2002243935 A JP2002243935 A JP 2002243935A
- Authority
- JP
- Japan
- Prior art keywords
- dispersion
- wavelength
- dispersion compensator
- dielectric
- incident light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Optical Filters (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は分散補償器に関し、
特に正から負へと分散量を連続的に変化させることが可
能なコンパクトでかつ安価な分散補償器に関する。The present invention relates to a dispersion compensator,
In particular, the present invention relates to a compact and inexpensive dispersion compensator capable of continuously changing the amount of dispersion from positive to negative.
【0002】[0002]
【従来の技術】近年、長距離・大容量光ファイバー通信
において、伝送波形の歪を補正する分散補償は、極めて
重要な技術課題となっている。分散補償の原理は、光フ
ァイバー伝送中に受けた分散量:Dとは逆の符号の分散
量:−Dを有する媒質中に、光パルス信号を導くことに
より、信号波形の整形を行うものである。2. Description of the Related Art In recent years, in long-distance, large-capacity optical fiber communication, dispersion compensation for correcting distortion of a transmission waveform has become a very important technical problem. The principle of dispersion compensation is to shape a signal waveform by guiding an optical pulse signal into a medium having the amount of dispersion: -D having the opposite sign to the amount of dispersion received during optical fiber transmission: D. .
【0003】現在、この分散補償には、分散補償光ファ
イバーや、光ファイバーグレーティング、AWG(Arra
yed Waveguide Grating)分散補償器等が用いられて
いる。しかしながら、これらは、いずれも、サイズが大
きく、かつ高価であり、また分散補償量を連続的に変化
させて調整することが困難であるか、もしくは不可能で
ある等の問題があった。At present, the dispersion compensation includes a dispersion compensating optical fiber, an optical fiber grating, an AWG (Arra
yed Waveguide Grating) A dispersion compensator or the like is used. However, all of them have problems that the size is large and expensive, and it is difficult or impossible to adjust the dispersion compensation amount by continuously changing it.
【0004】また、小型のものとしては、GT干渉計のよ
うな反射型エタロンを利用して、補償するものもある
が、補正できる分散量が小さく、また反射型であるた
め、その使用方法には、各種制約があった。[0004] In addition, as a small-sized one, a reflection type etalon, such as a GT interferometer, is used to compensate, but the amount of dispersion that can be corrected is small and the reflection type is used. Had various restrictions.
【0005】これに対して、誘電体多層膜を透過型で用
いることにより、分散補償を可能とする構造が、例えば
特開平10-48567号(特許第2902996号)公報に提案され
ている。これは薄膜構造であるため、超小型、低価格、
安定、かつ他の装置との整合性が良い等の各種利点を有
している。On the other hand, a structure that enables dispersion compensation by using a dielectric multilayer film in a transmission type has been proposed in, for example, Japanese Patent Application Laid-Open No. 10-48567 (Japanese Patent No. 2902996). Since this is a thin film structure, it is very small, low cost,
It has various advantages, such as stability and good compatibility with other devices.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、従来の
誘電体多層膜を透過型で用いた分散補償器において、補
償可能な分散量の値はほぼ固定であり、分散量の値を連
続的に変えることは不可能であった。However, in a conventional dispersion compensator using a dielectric multilayer film of a transmission type, the value of the compensable dispersion amount is almost fixed, and the value of the dispersion amount is continuously changed. That was impossible.
【0007】したがって、本発明が解決しようとする課
題は、誘電体多層膜構造による透過型で、小型で安価と
され、補償できる分散量の大きさも十分大きく、簡単な
操作で分散量を連続的に可変できる分散補償器を提供す
ることにある。[0007] Therefore, the problem to be solved by the present invention is that it is of a transmission type with a dielectric multilayer structure, is small and inexpensive, has a sufficiently large compensating amount of dispersion, and is capable of continuously increasing the amount of dispersion by a simple operation. It is another object of the present invention to provide a dispersion compensator that can be varied in the range.
【0008】[0008]
【課題を解決するための手段】上記課題を解決するため
の手段を提供する本発明は、膜厚が入射させる光のその
媒質内での波長の約1/4からなる第1の誘電体薄膜と、該
第1の誘電体とは屈折率が異なり、かつ膜厚が入射させ
る光のその媒質内での波長の約1/4からなる第2の誘電体
薄膜を交互に積層してなる第1の誘電体領域と、膜厚が
入射させる光のその媒質内での波長の約1/4からなる第3
の誘電体薄膜と、該第3の誘電体とは屈折率が異なり、
かつ膜厚が入射させる光のその媒質内での波長の約1/4
からなる第4の誘電体薄膜を交互に積層してなる第2の誘
電体領域と、上記第1と第2の誘電体領域の間に挟まれ、
かつ膜厚が入射させる光のその媒質内での波長の約1/2
からなる第5の誘電体薄膜から成る誘電体多層膜構造に
おいて、スペクトル上で高反射領域のほぼ中央に形成さ
れる高透過率領域において分散の値が正から負に波長に
対してほぼ直線的に連続的に変化することを利用し、分
散の値を連続的に可変できるようにしたものである。本
発明は、さらに以下の構成としてもよい。SUMMARY OF THE INVENTION The present invention, which provides means for solving the above-mentioned problems, comprises a first dielectric thin film having a thickness of about 1/4 of a wavelength of incident light in the medium. And a second dielectric thin film having a refractive index different from that of the first dielectric and having a film thickness of about 1/4 of the wavelength of the incident light in the medium, which is alternately laminated. A third dielectric region comprising a thickness of about 1/4 of the wavelength of the incident light in the medium, and
The dielectric thin film, the refractive index of the third dielectric is different,
And the film thickness is about 1/4 of the wavelength of the incident light in the medium.
A second dielectric region formed by alternately laminating a fourth dielectric thin film made of, sandwiched between the first and second dielectric regions,
And the film thickness is about 1/2 of the wavelength of the incident light in the medium.
In the dielectric multilayer structure consisting of the fifth dielectric thin film consisting of, in the high transmittance region formed almost at the center of the high reflection region on the spectrum, the dispersion value is almost linear with wavelength from positive to negative. The variance value can be continuously varied by utilizing the fact that the variance changes continuously. The present invention may further have the following configurations.
【0009】分散補償器において、分散補償を行う入射
光のスペクトル成分の80%以上が、高反射領域のほぼ中
央に形成される高透過率領域内に入る。In the dispersion compensator, 80% or more of the spectral component of the incident light for which dispersion compensation is performed falls within the high transmittance region formed substantially at the center of the high reflection region.
【0010】分散補償器において、入射光に対して分散
補償器を傾けることにより、入射光の波長に対して分散
補償器の透過中心波長を相対的に変化させることによ
り、入射光が本分散補償器を通過する間に受ける分散量
を連続的に変化させることを可能とする。In the dispersion compensator, by tilting the dispersion compensator with respect to the incident light so as to change the transmission center wavelength of the dispersion compensator relative to the wavelength of the incident light, the incident light is subjected to the main dispersion compensation. It is possible to continuously change the amount of dispersion received while passing through the vessel.
【0011】分散補償器において、分散補償器を構成す
る多層膜の各膜の膜厚を空間的に連続的に変化させるこ
とにより、空間的に異なる透過中心波長を有する構造と
し、その分散補償器上で入射光を通過させる場所を変化
させることにより入射光の波長に対して分散補償器の透
過中心波長を相対的に変化させ、入射光が本分散補償器
を通過する間に受ける分散量を連続的に変化させること
を可能とする。The dispersion compensator has a structure having spatially different transmission center wavelengths by spatially continuously changing the thickness of each of the multilayer films constituting the dispersion compensator. The transmission center wavelength of the dispersion compensator is relatively changed with respect to the wavelength of the incident light by changing the place where the incident light passes above, and the amount of dispersion that the incident light receives while passing through the dispersion compensator is changed. It is possible to change continuously.
【0012】前記分散補償器において、分散補償器の温
度を変化させることにより分散補償器を構成する材料の
屈折率を変化させ、透過中心波長を変化させることによ
り分散量を制御する。In the dispersion compensator, the amount of dispersion is controlled by changing the temperature of the dispersion compensator, thereby changing the refractive index of the material constituting the dispersion compensator, and changing the transmission center wavelength.
【0013】分散補償器において、分散補償器を構成す
る基板あるいは多層膜の各層或いは何れかの層を、励起
により光増幅作用を有する光学活性な半導体材料とし、
光励起あるいは電流注入等によるポンピングにより光増
幅作用を発揮できる。[0013] In the dispersion compensator, each layer or any layer of the substrate or the multilayer film constituting the dispersion compensator is made of an optically active semiconductor material having an optical amplification function by excitation.
An optical amplification effect can be exhibited by pumping by light excitation or current injection.
【0014】[0014]
【発明の実施の形態】本発明の上記および他の目的、特
徴および利点を明確にすべく、添付した図面を参照しな
がら本発明の実施の形態を以下に詳述する。DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to clarify the above and other objects, features and advantages of the present invention, embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
【0015】本発明は、誘電体多層膜構造からなる狭帯
域透過型波長フィルターにおいて、高反射領域のほぼ中
央に形成される狭帯域透過波長領域において、それを透
過する光が受ける分散量が波長に対して正から負へとほ
ぼ直線的かつ連続的に変化する領域が形成されることを
利用し、その波長域の入射光に対して与える分散量を連
続的に変化させることにより、任意の値の分散量の補償
を行うものである。According to the present invention, there is provided a narrow-band transmission type wavelength filter having a dielectric multilayer structure, wherein in a narrow-band transmission wavelength region formed substantially at the center of a high-reflection region, the amount of dispersion received by light transmitted therethrough is a wavelength. By making use of the fact that an area that changes almost linearly and continuously from positive to negative is formed, and by continuously changing the amount of dispersion given to incident light in that wavelength range, This is to compensate for the amount of dispersion of the values.
【0016】本発明に係る分散補償器は、膜厚が入射さ
せる光の媒質内での波長の約1/4からなる第1の誘電体
薄膜(111)と、前記第1の誘電体とは屈折率が異な
り、かつ膜厚が入射させる光のその媒質内での波長の約
1/4からなる第2の誘電体薄膜(112)とを交互に積
層してなる第1の誘電体領域(第1の誘電体多層膜)
(110)と、膜厚が入射させる光のその媒質内での波
長の約1/4からなる第3の誘電体薄膜(131)と、前
記第3の誘電体とは屈折率が異なり、かつ膜厚が入射さ
せる光のその媒質内での波長の約1/4からなる第4の誘
電体薄膜(132)とを交互に積層してなる第2の誘電
体領域(第2の誘電体多層膜)(130)と、前記第1
の誘電体領域(110)と前記第2の誘電体領域(13
0)との間に挟まれ、かつ膜厚が入射させる光のその媒
質内での波長の約1/2からなる、第5の誘電体薄膜(1
20)と、を含む誘電体多層膜構造を有しており、スペ
クトル上で高反射領域のほぼ中央に形成される高透過率
領域において、分散の値が正から負に、波長に対して、
ほぼ直線的且つ連続的に変化することを利用し、該波長
領域の入射光に対して与える分散量を連続的に変化させ
ることにより、任意の値の分散量の補償を行うように構
成されている。The dispersion compensator according to the present invention is characterized in that the first dielectric thin film (111) having a film thickness of about / 4 of the wavelength in the medium of the incident light and the first dielectric are: The refractive index is different and the film thickness is about the wavelength of the incident light in the medium.
A first dielectric region (first dielectric multilayer film) in which second dielectric thin films (112) each composed of 1/4 are alternately laminated.
(110), a third dielectric thin film (131) having a thickness of about / 4 of the wavelength of the incident light in the medium, a refractive index of the third dielectric is different, and A second dielectric region (a second dielectric multilayer) in which fourth dielectric thin films (132) each having a thickness of about 1/4 of the wavelength of the incident light in the medium are alternately laminated. Membrane) (130) and the first
Dielectric region (110) and the second dielectric region (13)
0), and the fifth dielectric thin film (1) having a thickness of about の of the wavelength of the incident light in the medium.
20), and in a high transmittance region formed substantially at the center of the high reflection region on the spectrum, the dispersion value changes from positive to negative, and
Utilizing the fact that it changes substantially linearly and continuously, by continuously changing the amount of dispersion given to the incident light in the wavelength region, it is configured to compensate for the amount of dispersion of an arbitrary value. I have.
【0017】[0017]
【実施例】上記した本発明の実施の形態についてさらに
詳細に説明すべく、本発明の実施例について図面を参照
して以下に説明する。図1は、本発明の一実施例の構成
を示す図である。本発明の一実施例の分散補償器の基本
構成は、図1に示すように、膜厚が入射させる光の媒質
内での波長の1/4からなる誘電体薄膜111と、誘電体
薄膜111とは屈折率が異なり、膜厚が入射させる光の
その媒質内での波長の1/4からなる第2の誘電体薄膜1
12とを交互に積層してなる第1の誘電体領域(第1の
誘電体多層膜)110と、膜厚が入射させる光のその媒
質内での波長の1/4からなる誘電体薄膜131と、誘電
体薄膜131とは屈折率が異なり、膜厚が入射させる光
のその媒質内での波長の1/4からなる誘電体薄膜132
とを交互に積層してなる第2の誘電体領域(第2の誘電
体多層膜)130と、第1の誘電体領域(第1の誘電体
多層膜)110と第2の誘電体領域(第2の誘電体多層
膜)130との間に挟まれ、膜厚が入射させる光のその
媒質内での波長の1/2(あるいは、n+1/2、ただしnは
正整数)からなる誘電体薄膜120とを含む誘電体多層
膜構造を有する。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of the present invention; FIG. 1 is a diagram showing the configuration of one embodiment of the present invention. As shown in FIG. 1, the basic configuration of a dispersion compensator according to one embodiment of the present invention includes a dielectric thin film 111 having a thickness of 1/4 of a wavelength in a medium of incident light, and a dielectric thin film 111. And a second dielectric thin film 1 having a refractive index different from that of the incident light and having a thickness of 1/4 of the wavelength of the incident light in the medium.
A first dielectric region (first dielectric multilayer film) 110 formed by alternately laminating the first and second thin films 12 and a dielectric thin film 131 having a thickness of 1/4 of the wavelength of the incident light in the medium. And the dielectric thin film 131 has a refractive index different from that of the dielectric thin film 131 and has a thickness of 1/4 of the wavelength in the medium of the incident light.
Are alternately laminated, a second dielectric region (second dielectric multilayer film) 130, a first dielectric region (first dielectric multilayer film) 110, and a second dielectric region ( A second dielectric multi-layered film) and a dielectric having a film thickness of 1/2 (or n + 1/2, where n is a positive integer) of the wavelength of the incident light in the medium. It has a dielectric multilayer structure including the thin film 120.
【0018】誘電体薄膜111、131は、高屈折率媒
質(この例では、Siでその屈折率は約3.5)よりなりその
光学膜厚はλc/4(ただし、λcは分散補償を行う入射光
の中心波長)、誘電体薄膜112、132は、低屈折率
媒質(この例では、SiO2で屈折率は約1.5)によりなりそ
の光学膜厚はλc/4、第1の誘電体領域110と第2の
誘電体領域130の間の中間層をなす誘電体薄膜120
は低屈折率媒質(SiO 2)よりなりその光学膜厚はλc/
2である。ここで、光学膜厚とは、その媒質中での光の
波長に対するサイズのことをいう。媒質の屈折率がnrの
場合、1波長分の光学膜厚とは、入射光の波長をλとす
ると、λ/nrとなる。The dielectric thin films 111 and 131 are made of a high refractive index medium.
Quality (in this example, Si has a refractive index of about 3.5)
The optical film thickness is λc / 4 (where λc is the incident light for dispersion compensation)
, The dielectric thin films 112 and 132 have low refractive indices.
Medium (in this example, SiO2And the refractive index is about 1.5).
Has an optical film thickness of λc / 4, the first dielectric region 110 and the second
Dielectric thin film 120 serving as an intermediate layer between dielectric regions 130
Is a low refractive index medium (SiO 2) Whose optical thickness is λc /
2. Here, the optical film thickness is defined as the thickness of light in the medium.
It refers to the size for the wavelength. The refractive index of the medium is nr
In this case, the optical film thickness for one wavelength means that the wavelength of the incident light is λ.
Then, λ / nr is obtained.
【0019】例えば、媒質が屈折率1.5のガラス(SiO2)
の場合、波長λが1.5μm(マイクロメートル)の入射
光に対する1波長分の光学膜厚λは、λ/nr=1.5/1.5
=1μmである。For example, the medium is glass (SiO 2 ) having a refractive index of 1.5.
, The optical film thickness λ for one wavelength with respect to incident light having a wavelength λ of 1.5 μm (micrometer) is λ / nr = 1.5 / 1.5
= 1 μm.
【0020】光学膜厚λ/2は、その半分の厚さ、光学
膜厚λ/4はさらにその半分の厚さである。The optical thickness λ / 2 is half the thickness, and the optical thickness λ / 4 is half the thickness.
【0021】従って、図1に示した多層膜構造は、一般
的な狭帯域透過型波長フィルターと同じ構造であり、本
発明は、これを分散補償器として、利用している。Therefore, the multilayer film structure shown in FIG. 1 is the same structure as a general narrow band transmission type wavelength filter, and the present invention utilizes this as a dispersion compensator.
【0022】この場合、多層膜構造の中央に位置する光
学膜厚λc/2の誘電体薄膜120は、必ずしも、その
光学膜厚は、λc/2の厚さに限定されるものではな
く、例えば、(n+1/2)λc(nはゼロまたは自然数)
の膜厚であってもよい。In this case, the dielectric thin film 120 having an optical thickness of λc / 2 located at the center of the multilayer structure is not necessarily limited to the optical thickness of λc / 2. , (N + 1/2) λc (n is zero or a natural number)
May be used.
【0023】図1に示した本発明の一実施例において
は、多層膜構造は、誘電体薄膜(Si111が3層、誘電
体薄膜(SiO2)112が2層、誘電体薄膜(Si)13
1が3層、誘電体薄膜(SiO2)132が2層、誘電体
薄膜(SiO2)120が1層の計11層からなり、誘電
体膜薄(SiO2)120の両側の誘電体多層膜110、
130は対称な構造とされているが、この中間の誘電体
薄膜120を挟む両側の誘電体多層膜110、130の
構造は、必ずしも対称である必要はない。すなわち、両
側の誘電体多層膜110、130を構成する膜の材料は
異なっていてもよいし、また誘電体多層膜110、13
0の層数は互いに異なっていてもよい。In the embodiment of the present invention shown in FIG. 1, the multilayer film structure has a dielectric thin film (three layers of Si 111, two layers of dielectric thin film (SiO 2 ) 112, and a thin layer of dielectric thin film (Si) 13).
1 is composed of three layers, the dielectric thin film (SiO 2 ) 132 is composed of two layers, and the dielectric thin film (SiO 2 ) 120 is composed of one layer, that is, a total of 11 layers. The dielectric multilayer on both sides of the dielectric film thin (SiO 2 ) 120 Membrane 110,
Although 130 has a symmetric structure, the structures of the dielectric multilayer films 110 and 130 on both sides of the intermediate dielectric thin film 120 are not necessarily required to be symmetric. That is, the materials of the films forming the dielectric multilayer films 110 and 130 on both sides may be different, or the dielectric multilayer films 110 and 13 may be different.
The number of layers of 0 may be different from each other.
【0024】本発明において、両側の誘電体多層膜11
0、130のブラッグ反射の中心波長が一致していれば
よい。つまり、各層の光学膜厚がλc/4となるように
すれば、任意の材料を用いてもよい。ただし、透明であ
ることが好ましい。In the present invention, the dielectric multilayer film 11 on both sides is used.
It is sufficient that the center wavelengths of the Bragg reflections of 0 and 130 match. That is, any material may be used as long as the optical film thickness of each layer is λc / 4. However, it is preferably transparent.
【0025】図2は、図1に示した構成の本発明の一実
施例の分散補償器の動作原理を示す図であり、図2
(A)は、波長(横軸)と透過率(左縦軸)の関係(実
線)、波長(横軸)と位相シフト量(右縦軸)の関係
(破線)を示し、図2(B)は波長(横軸)と分散量
(光パルスの群速度の波長依存性)(縦軸)の関係を示
している。FIG. 2 is a diagram showing the operation principle of the dispersion compensator of the embodiment of the present invention having the structure shown in FIG.
2A shows the relationship (solid line) between the wavelength (horizontal axis) and the transmittance (left vertical axis), and the relationship (dashed line) between the wavelength (horizontal axis) and the phase shift amount (right vertical axis). ) Shows the relationship between the wavelength (horizontal axis) and the amount of dispersion (wavelength dependence of the group velocity of optical pulses) (vertical axis).
【0026】図1に示した多層膜構造は、構造的には、
通常の狭帯域透過型波長フィルターと同じであるため、
図2(A)に示すように、透過中心波長λcにおいて、
透過率は最大(媒質による吸収が無ければ理論的には10
0%)となる。The multilayer structure shown in FIG. 1 is structurally
Because it is the same as a normal narrow band transmission type wavelength filter,
As shown in FIG. 2A, at the transmission center wavelength λc,
Transmittance is maximum (theoretically 10 if there is no absorption by the medium)
0%).
【0027】この波長領域を通過する光に対して、本発
明の一実施例に係る多層膜構造が与える分散量は、図2
(B)に示すように、透過領域の中心波長λcにおいて
はゼロとなるが、その短波長側で負の分散量から長波長
側で正の分散量まで連続的な値をとり、波長に対して、
ほぼ直線的(線形)に変化する波長範囲が存在する。The amount of dispersion given to the light passing through this wavelength range by the multilayer structure according to one embodiment of the present invention is shown in FIG.
As shown in (B), it becomes zero at the center wavelength λc of the transmission region, but takes a continuous value from the negative dispersion amount on the short wavelength side to the positive dispersion amount on the long wavelength side, hand,
There is a wavelength range that changes almost linearly.
【0028】この分散量の最大値、および分散量の値が
線形に変化する波長領域は、媒質の種類や多層膜の層数
により任意に設計可能である。The maximum value of the amount of dispersion and the wavelength region in which the value of the amount of dispersion changes linearly can be arbitrarily designed depending on the type of medium and the number of layers of the multilayer film.
【0029】補償できる分散量としては、例えば図1に
示したように、Si/SiO2全11層からなる分散補償器
1枚で、最大±約0.2ps/nmであり、分散補償可能帯域
としては、5nm程度となることが計算によって求められ
ている。例えば、パルス幅約1.5ps(ピコ秒)、スペク
トル幅約2.5nm(ナノメートル)の線形チャープ光パル
スを、分散補償により、1.0psまで圧縮するためには、
0.2ps/nmの分散量が必要であるが、上記した本発明の
一実施例に係る分散補償器1枚で、これを実現すること
が出来る。The amount of dispersion that can be compensated is, for example, as shown in FIG. 1, a maximum of ± 0.2 ps / nm for a single dispersion compensator composed of all 11 layers of Si / SiO 2. Is calculated to be about 5 nm. For example, to compress a linear chirped light pulse with a pulse width of about 1.5 ps (picoseconds) and a spectral width of about 2.5 nm (nanometers) to 1.0 ps by dispersion compensation,
Although a dispersion amount of 0.2 ps / nm is required, this can be realized by one dispersion compensator according to the embodiment of the present invention described above.
【0030】本発明の一実施例に係る分散補償器の多層
膜構造において、補償可能な最大分散量は、多層膜を構
成する材料の屈折率と多層膜の全層数によって決定され
る。すなわち、誘電体多層膜を構成する2種類の材料の
屈折率差が大きければ大きいほど、また、多層膜の総数
(全層数)が多ければ多いほど、補償できる最大分散量
は大きくなる。In the multilayer structure of the dispersion compensator according to one embodiment of the present invention, the maximum amount of dispersion that can be compensated is determined by the refractive index of the material constituting the multilayer film and the total number of the multilayer films. That is, the larger the difference between the refractive indices of the two types of materials constituting the dielectric multilayer film and the greater the total number of multilayer films (the total number of layers), the larger the maximum amount of dispersion that can be compensated.
【0031】ただし、最大分散量を大きくすると、その
分、補償可能な波長帯域は狭くなる。つまり、最大分散
量と波長帯域とはトレードオフの関係にある。However, when the maximum dispersion amount is increased, the wavelength band that can be compensated becomes narrower. That is, there is a trade-off between the maximum dispersion amount and the wavelength band.
【0032】図3は、図1に示した構成において、多層
膜の全層数(横軸)と、得られる最大分散量(左縦軸;
単位ps/nm)の関係(黒丸印)、分散補償可能な波長帯
域(右縦軸;単位nm)の関係(黒四角)を示す図であ
る。図3を参照すると、得られる最大分散量は、多層膜
の層数が多くなるに従い大きくなるが、波長範囲は狭く
なることが分かる。FIG. 3 shows the total number of layers (horizontal axis) and the maximum amount of dispersion obtained (left vertical axis;
FIG. 6 is a diagram illustrating a relationship (unit: ps / nm) (black circles) and a relationship (dispersion-compensated wavelength band (right vertical axis; unit nm)) (solid squares). Referring to FIG. 3, it can be seen that the maximum dispersion amount obtained increases as the number of layers of the multilayer film increases, but the wavelength range becomes narrower.
【0033】従って、本発明の一実施例に係る分散補償
器において、広帯域を求める場合、得られる最大分散量
は、ある程度犠牲になる。Therefore, in the dispersion compensator according to one embodiment of the present invention, when obtaining a wide band, the obtained maximum dispersion amount is sacrificed to some extent.
【0034】両側の多層膜110、130の光学膜厚を
少しずつ変化させ、ブラッグ反射の中心波長を、チャー
プさせることによっても、広帯域化を図ることはできる
が、この場合も、やはり得られる分散量は小さくなる。The band can be broadened by gradually changing the optical film thickness of the multilayer films 110 and 130 on both sides and chirping the center wavelength of Bragg reflection. The amount will be smaller.
【0035】本発明の一実施例に係る多層膜構造を形成
するには、入射光に対して、透明な基板上に形成され
る。多層膜部分そのものは、10層積層しても10μm足ら
ずの膜厚であり、このままでは、機械的強度を保てない
からである。図1には、本発明の一実施例として、入射
光に対して透明なガラスや半導体などの基板140(厚
さは自由)上に積層した構造が示されている。この場
合、基板140の多層膜と反対側の面(光の入出射面)に
は無反射コーティング150(反射防止膜)を施すこと
が好ましい。基板140の端面からの反射が残る状態で
作製した場合には、光が、基板140の端面と多層膜と
の間で、多重反射を起すことにより、分散特性に悪い影
響を与えることが計算により確認されている。In order to form a multilayer structure according to an embodiment of the present invention, the multilayer structure is formed on a substrate transparent to incident light. This is because the multilayer film itself has a film thickness of less than 10 μm even when 10 layers are laminated, and mechanical strength cannot be maintained as it is. FIG. 1 shows, as one embodiment of the present invention, a structure in which a substrate is laminated on a substrate 140 (having any thickness) such as glass or semiconductor transparent to incident light. In this case, it is preferable to apply an anti-reflection coating 150 (anti-reflection film) on the surface of the substrate 140 on the side opposite to the multilayer film (the light entrance / exit surface). In the case where the light emitting device is manufactured in a state where the reflection from the end surface of the substrate 140 remains, it is calculated by the calculation that the light causes a multiple reflection between the end surface of the substrate 140 and the multilayer film, thereby adversely affecting the dispersion characteristics. Has been confirmed.
【0036】次に、図1に示した構成の分散補償器にお
いて、入射光に対して分散量を連続的に変化させる手法
について説明する。分散量を連続的に変化させる手法の
一例として、最も簡便で現実的な手法を説明する。Next, a method of continuously changing the amount of dispersion with respect to incident light in the dispersion compensator having the structure shown in FIG. 1 will be described. The simplest and most realistic method will be described as an example of a method for continuously changing the variance.
【0037】図4は、本発明の第2の実施例を説明する
ための図であり、分散量を連続的に変化させる原理を示
す模式図である。FIG. 4 is a diagram for explaining the second embodiment of the present invention, and is a schematic diagram showing the principle of continuously changing the amount of dispersion.
【0038】図4を参照すると、本発明の第2の実施例
においては、入射光2に対して、図1に示した構成から
なる分散補償器(分散補償フィルター)1の角度を傾け
ることにより、透過中心波長をずらすことが可能であ
る。図1の誘電体多層膜110の端面(光入射面)に入
射される光信号(入射光)2が、端面法線(入射角0)
方向に対して、所定角となるように、分散補償器1の位
置が設定される。Referring to FIG. 4, in the second embodiment of the present invention, the angle of the dispersion compensator (dispersion compensation filter) 1 having the structure shown in FIG. It is possible to shift the transmission center wavelength. The optical signal (incident light) 2 incident on the end surface (light incident surface) of the dielectric multilayer film 110 in FIG.
The position of the dispersion compensator 1 is set so as to form a predetermined angle with respect to the direction.
【0039】入射光に対して透過中心波長が相対的に変
われば、透過中に入射光が受ける分散量も変化する。従
って、入射角を可変に制御することにより、分散量の微
調整が可能となる。If the transmission center wavelength changes relative to the incident light, the amount of dispersion that the incident light undergoes during transmission also changes. Therefore, by variably controlling the incident angle, fine adjustment of the amount of dispersion becomes possible.
【0040】図1に示した多層膜構造においては、図4
に示すように、入射角を20度回転させることにより、分
散特性を、約20nm短波長側へシフトさせることが可能で
ある。In the multilayer structure shown in FIG.
As shown in (2), by rotating the incident angle by 20 degrees, it is possible to shift the dispersion characteristics to the shorter wavelength side by about 20 nm.
【0041】図5は、本発明の第2の実施例の原理を説
明するための計算結果をグラフとして示したものであ
り、入射角(横軸)と分散量(縦軸)の関係を示す図で
ある。図5において、p(黒丸印)、s(黒四角)は、偏
波の向きを表している。図5を参照すると、入射角に対
して、分散量の値を制御できることが分かる。FIG. 5 is a graph showing calculation results for explaining the principle of the second embodiment of the present invention, and shows the relationship between the incident angle (horizontal axis) and the amount of dispersion (vertical axis). FIG. In FIG. 5, p (black circle) and s (black square) indicate the directions of polarization. Referring to FIG. 5, it can be seen that the value of the amount of dispersion can be controlled with respect to the incident angle.
【0042】分散量を連続的に変化させる別の手法につ
いてさらに説明する。図6は、本発明の第3の実施例を
説明するための図である。分散量を制御する別の方法と
しては、図6に示すように、分散補償器1(図1に示し
た基本構成からなる)を構成する多層膜(図1の11
1、112、120、131、132)の各膜の膜厚
を、空間的に連続的に変化させることにより、空間的に
異なる透過中心波長を有する構造とし、その分散補償器
1上で、入射光を通過させる場所を、変化させることに
より、入射光の波長に対して、分散補償器の透過中心波
長を相対的に変化させ、入射光が、分散補償器を通過す
る間に受ける分散量を、連続的に変化させている。Another method for continuously changing the amount of dispersion will be further described. FIG. 6 is a diagram for explaining a third embodiment of the present invention. As another method for controlling the amount of dispersion, as shown in FIG. 6, a multilayer film (11 in FIG. 1) constituting the dispersion compensator 1 (having the basic configuration shown in FIG. 1) is used.
1, 112, 120, 131, and 132), the thickness of each film is changed spatially continuously, so that a structure having a spatially different transmission center wavelength is obtained. By changing the place where light passes, the transmission center wavelength of the dispersion compensator is relatively changed with respect to the wavelength of the incident light, and the amount of dispersion that the incident light receives while passing through the dispersion compensator is changed. , Continuously changing.
【0043】多層膜の各膜の膜厚を、空間的に連続的に
変化させることは、成膜装置をなす通常のスパッタ装置
や真空蒸着装置において、1%程度の膜厚の空間分布が
得られれば、容易に実現可能である。By continuously and spatially changing the thickness of each film of the multilayer film, it is possible to obtain a spatial distribution of a film thickness of about 1% in an ordinary sputtering apparatus or vacuum evaporation apparatus which forms a film forming apparatus. If possible, it can be easily realized.
【0044】なお、図6では、誘電体多層膜110、1
30、中間層の誘電体薄膜120の各薄膜の膜厚が、薄
膜の一端と該一端と相対する他端とで異なる値に設定さ
れており、基板140上の多層膜構造の断面形状が一端
で低く他端で高い形状とされているが、本発明におい
て、かかる膜厚の分布としては、かかる空間分布に限定
されるものではない。In FIG. 6, the dielectric multilayer films 110, 1
30, the thickness of each thin film of the dielectric thin film 120 of the intermediate layer is set to a different value at one end of the thin film and at the other end opposite to the one end, and the cross-sectional shape of the multilayer structure on the substrate 140 is one end. In the present invention, the distribution of the film thickness is not limited to such a spatial distribution.
【0045】分散量を制御するその他の手法として、分
散補償器を構成する材料の屈折率の温度依存性を利用す
る構成としてもよい。例えば、誘電体薄膜を構成する材
料の屈折率が温度によって変化すれば、光学膜厚も変化
するため、透過中心波長も変化する。すなわち、分散補
償器の温度を制御することにより、分散量を制御でき
る。As another method of controlling the amount of dispersion, a configuration utilizing the temperature dependence of the refractive index of the material constituting the dispersion compensator may be used. For example, if the refractive index of the material forming the dielectric thin film changes with temperature, the optical film thickness also changes, so that the transmission center wavelength also changes. That is, the amount of dispersion can be controlled by controlling the temperature of the dispersion compensator.
【0046】以下に、比較例として、特許第2902996号
公報(特願平8-204487号)に記載される誘電体多層膜構
造による透過型分散補償器と、本発明に係る分散補償器
との相違点について説明する。特許第2902996号公報
(特願平8-204487号)の分散補償器も、本発明に係る分
散補償器も、その用いる誘電体多層膜の基本構造は同じ
である。つまり、どちらも、公知となっている狭帯域透
過型波長フィルターを用いる点は同じである。As a comparative example, a transmission type dispersion compensator having a dielectric multilayer structure described in Japanese Patent No. 2902996 (Japanese Patent Application No. 8-204487) and a dispersion compensator according to the present invention will be described below. The difference will be described. Both the dispersion compensator disclosed in Japanese Patent No. 2902996 (Japanese Patent Application No. 8-204487) and the dispersion compensator according to the present invention have the same basic structure of a dielectric multilayer film. That is, in both cases, a known narrow-band transmission wavelength filter is used.
【0047】しかしながら、特許第2902996号公報(特
願平8-204487号)(比較例)の分散補償器が、図7
(A)に示すように、高反射領域に隣接したスペクトル
幅の広い透過領域を用いているのに対して、本発明に係
る分散補償器は、反射領域のほぼ中央に位置するスペク
トル幅の狭い透過領域を用いている。なお、図7は、特
許第2902996号公報の図面の図9に基づくものであり、
図7(B)は、高反射領域の長波長側に隣接する透過領
域における2次位相分散の計算結果である。However, the dispersion compensator disclosed in Japanese Patent No. 2902996 (Japanese Patent Application No. 8-204487) (comparative example) is not shown in FIG.
As shown in (A), the dispersion compensator according to the present invention has a narrow spectral width located almost at the center of the reflective region, while using a wide spectral transmission region adjacent to the high reflective region. A transmission area is used. FIG. 7 is based on FIG. 9 of the drawings of Japanese Patent No. 2902996,
FIG. 7B is a calculation result of the secondary phase dispersion in the transmission region adjacent to the long wavelength side of the high reflection region.
【0048】比較例の分散補償器では、分散補償を行う
波長帯域をある程度広く取るために、図7(A)に示す
ように、高反射領域の両側に形成される広帯域の透過領
域を用いる。この場合、ダウンチャープを補償する場合
には、高反射領域の長波長側の透過領域を用い、アップ
チャープを補償する場合には、高反射領域の短波長側の
透過領域を用いるといった具合に、補償したい分散の符
号(正、負)によって使用する波長域が異なってくる。In the dispersion compensator of the comparative example, as shown in FIG. 7A, a wide-band transmission region formed on both sides of the high-reflection region is used in order to increase the wavelength band for performing dispersion compensation to some extent. In this case, when compensating for down-chirp, the transmission region on the long wavelength side of the high reflection region is used, and when compensating for up-chirp, the transmission region on the short wavelength side of the high reflection region is used. The wavelength range to be used differs depending on the sign (positive or negative) of the dispersion to be compensated.
【0049】これに対して、本発明に係る分散補償器
は、反射領域のほぼ中央に位置する透過領域を用いるた
めに、正から負の任意のチャーヒング量を、同一波長域
で補償可能である。On the other hand, the dispersion compensator according to the present invention can compensate for any positive to negative charging amount in the same wavelength region because the transmission region located substantially at the center of the reflection region is used. .
【0050】本発明に係る分散補償器で、波長帯域を広
くとりたければ、前述したように、多層膜の層数を少な
くしてやればよい。ただしその分、得られる最大分散量
は小さくなる。If the dispersion compensator according to the present invention requires a wide wavelength band, the number of layers of the multilayer film may be reduced as described above. However, the obtained maximum dispersion amount becomes smaller accordingly.
【0051】従って、本発明に係る分散補償器では、分
散補償を行いたい光信号のスペクトル成分を、この反射
領域のほぼ中央に位置する透過領域に入れる必要があ
る。Therefore, in the dispersion compensator according to the present invention, it is necessary to put the spectral component of the optical signal whose dispersion is to be compensated into the transmission region located substantially at the center of the reflection region.
【0052】計算上、光信号のパワースペクトル成分の
80%以上がこの領域(反射領域のほぼ中央に位置する透
過領域)内にあれば、分散補償は十分可能であることが
分かっている。In calculation, the power spectrum component of the optical signal
It has been found that dispersion compensation is sufficiently possible if 80% or more is in this region (the transmission region located substantially at the center of the reflection region).
【0053】次に、本発明の第4の実施例として、光増
幅特性を有する分散補償器について説明する。図8は、
本発明の第4の実施例を説明するための図であり、光増
幅作用を有する分散補償器の構成を示す図である。図8
を参照すると、本発明の第4の実施例においては、分散
補償器の多層膜構造の基板140、または、誘電体多層
膜110、130、あるいは中間層の誘電体薄膜12
0、あるいは何れかの膜を光学活性な材料とし、光励起
あるいは電流注入によるポンピングにより光増幅作用を
持たせることにより、光増幅作用を有する分散補償器を
実現したものであり、光増幅された出力光3が得られ
る。Next, as a fourth embodiment of the present invention, a dispersion compensator having optical amplification characteristics will be described. FIG.
FIG. 13 is a diagram for explaining a fourth embodiment of the present invention, and is a diagram illustrating a configuration of a dispersion compensator having an optical amplification effect. FIG.
According to the fourth embodiment of the present invention, in the fourth embodiment of the present invention, the substrate 140 having the multilayer structure of the dispersion compensator, the dielectric multilayer films 110 and 130, or the intermediate dielectric thin film 12 is formed.
A dispersion compensator having an optical amplification effect is realized by using an optically active material for 0 or any of the films and providing optical amplification by pumping by optical excitation or current injection. Light 3 is obtained.
【0054】光学活性な材料としては、GaAsやAlGaAs系
材料、InPやInGaAsP系の半導体材料などが一般的である
が、希土類をドープしたガラスやポリマー等の高分子化
合物も利用できる。As the optically active material, GaAs and AlGaAs-based materials, InP and InGaAsP-based semiconductor materials are generally used, but high-molecular compounds such as rare earth-doped glass and polymers can also be used.
【0055】これらの材料に光増幅作用を持たせるに
は、半導体材料であれば、光励起やP-N接合を形成する
ことによる、電流注入が用いられる。また、希土類をド
ープガラスやポリマーの場合には、光励起が好ましい。In order to impart an optical amplification effect to these materials, if semiconductor materials are used, current injection by photoexcitation or formation of a PN junction is used. When the rare earth is doped glass or polymer, photoexcitation is preferred.
【0056】半導体材料で構成される電流注入型の構造
としては、既に広く知られている面発光レーザの構造が
適用できる。ただし、面発光レーザの構造と異なる点
は、中央の層(面発光レーザでは活性層に相当)の厚さ
を、正確に、(n+1/2)λc(nはゼロまたは自然数)に
設定する必要があるということである。通常、面発光レ
ーザでは活性層の厚さは任意である。As a current injection type structure made of a semiconductor material, a structure of a surface emitting laser which has been widely known can be applied. However, the point different from the structure of the surface emitting laser is that the thickness of the central layer (corresponding to the active layer in the case of the surface emitting laser) must be set accurately to (n + 1/2) λc (n is zero or a natural number). It is that there is. Normally, in a surface emitting laser, the thickness of the active layer is arbitrary.
【0057】本発明のさらに別の実施例においては、分
散量の異なる分散補償器を複数段直列に配設することに
より、線形分散に加え、非線型分散(高次分散)の補償も
可能となる。In still another embodiment of the present invention, by disposing a plurality of dispersion compensators having different dispersion amounts in series, it is possible to compensate not only linear dispersion but also nonlinear dispersion (higher-order dispersion). Become.
【0058】さらには、本発明のさらに別の実施例とし
て、分散補償器を、レーザーなどの発光素子の光出射面
へ直接形成することにより、レーザー共振器内部におけ
るチャーピングを補償した形で光出力を得ることも可能
である。Further, as still another embodiment of the present invention, by forming a dispersion compensator directly on the light emitting surface of a light emitting device such as a laser, the light is compensated for in a form in which chirping inside the laser resonator is compensated. It is also possible to get output.
【0059】なお、本発明は、上記各実施例に限定され
るものでなく、特許請求の範囲の各請求項の発明の範囲
内において、当業者であればなし得るであろう、各種変
形、修正を含む、ことは勿論である。It should be noted that the present invention is not limited to the above-described embodiments, and that various modifications and corrections can be made by those skilled in the art within the scope of the invention set forth in the appended claims. Of course.
【0060】[0060]
【発明の効果】以上に説明したように、本発明によれ
ば、誘電体多層膜構造からなる狭帯域透過型波長フィル
ターにおいて、高反射領域のほぼ中央に形成される透過
領域を用いて、分散補償を行うことで、正から負へと分
散量の連続的な変化が可能とされ、コンパクトで安価な
分散補償器を実現することができる、という効果を奏す
る。As described above, according to the present invention, in a narrow-band transmission type wavelength filter having a dielectric multilayer structure, dispersion is achieved by using a transmission region formed substantially at the center of a high reflection region. By performing the compensation, the dispersion amount can be continuously changed from positive to negative, and there is an effect that a compact and inexpensive dispersion compensator can be realized.
【図1】本発明の一の実施例の構成を示す図である。FIG. 1 is a diagram showing a configuration of one embodiment of the present invention.
【図2】本発明の一の実施例の原理を説明するための図
である。FIG. 2 is a diagram for explaining the principle of one embodiment of the present invention.
【図3】本発明の一の実施例の原理を説明するための図
である。FIG. 3 is a diagram for explaining the principle of one embodiment of the present invention.
【図4】本発明の第2の実施例の構成を示す図である。FIG. 4 is a diagram showing a configuration of a second exemplary embodiment of the present invention.
【図5】本発明の第2の実施例の原理を示す図である。FIG. 5 is a diagram showing the principle of a second embodiment of the present invention.
【図6】本発明の第3の実施例の構成を示す図である。FIG. 6 is a diagram showing a configuration of a third exemplary embodiment of the present invention.
【図7】本発明と比較例との相違点を説明するための図
である。FIG. 7 is a diagram for explaining a difference between the present invention and a comparative example.
【図8】本発明の第4の実施例を説明するための図であ
る。FIG. 8 is a diagram for explaining a fourth embodiment of the present invention.
1 分散補償器 2 光信号(入射光) 3 光信号(出力光) 110、130 誘電体領域(誘電体多層膜) 111、112、120、131、132 誘電体薄膜 120 誘電体薄膜(中間層) 140 基板 150 無反射コーティング Reference Signs List 1 dispersion compensator 2 optical signal (incident light) 3 optical signal (output light) 110, 130 dielectric region (dielectric multilayer film) 111, 112, 120, 131, 132 dielectric thin film 120 dielectric thin film (intermediate layer) 140 substrate 150 anti-reflective coating
Claims (16)
の約1/4からなる第1の誘電体薄膜と、前記第1の誘電
体とは屈折率が異なり、かつ膜厚が入射させる光のその
媒質内での波長の約1/4からなる第2の誘電体薄膜とを
交互に積層してなる第1の誘電体領域と、 膜厚が入射させる光のその媒質内での波長の約1/4から
なる第3の誘電体薄膜と、前記第3の誘電体とは屈折率
が異なり、かつ膜厚が入射させる光のその媒質内での波
長の約1/4からなる第4の誘電体薄膜とを交互に積層し
てなる第2の誘電体領域と、 前記第1の誘電体領域と前記第2の誘電体領域との間に
挟まれ、かつ膜厚が入射させる光のその媒質内での波長
の約1/2からなる第5の誘電体薄膜と、を含む誘電体多
層膜構造を有し、 スペクトル上で高反射領域のほぼ中央に形成される高透
過率領域において、分散の値が正から負に波長に対して
ほぼ直線的に連続的に変化することを利用し、分散の値
を連続的に可変としてなる、ことを特徴とする分散補償
器。A first dielectric thin film having a thickness of about 1/4 of a wavelength of light to be incident in the medium, and a refractive index of the first dielectric thin film different from that of the first dielectric thin film, and A first dielectric region formed by alternately laminating a second dielectric thin film having a wavelength of about 1/4 of the wavelength of the incident light in the medium; A third dielectric thin film consisting of about 1/4 of the wavelength of the light, and a refractive index different from that of the third dielectric, and having a thickness of about 1/4 of the wavelength of the incident light in the medium. A second dielectric region formed by alternately laminating a fourth dielectric thin film, and the first dielectric region and the second dielectric region. And a fifth dielectric thin film having a wavelength of about 波長 of the wavelength of the light to be emitted in the medium. Dispersion compensation characterized by using the fact that the dispersion value changes substantially linearly and continuously from positive to negative wavelengths in the high transmittance region, thereby making the dispersion value continuously variable. vessel.
前記高反射領域のほぼ中央に形成される高透過率領域内
に入る、ことを特徴とする分散補償器。2. The dispersion compensator according to claim 1, wherein 80% or more of the spectral components of the incident light for which dispersion compensation is performed are:
A dispersion compensator, wherein the dispersion compensator is located in a high transmittance region formed substantially at the center of the high reflection region.
おいて、 入射光に対して、前記分散補償器を傾けることにより、
前記入射光の波長に対して、前記分散補償器の透過中心
波長を相対的に変化させ、前記入射光が、前記分散補償
器を通過する間に受ける分散量を連続的に変化させる、
ことを可能とする分散補償器。3. The dispersion compensator according to claim 1, wherein the dispersion compensator is inclined with respect to incident light.
With respect to the wavelength of the incident light, the transmission center wavelength of the dispersion compensator is relatively changed, and the amount of dispersion that the incident light receives while passing through the dispersion compensator is continuously changed.
A dispersion compensator that makes it possible.
おいて、 前記分散補償器を構成する誘電体薄膜の多層膜の各膜の
膜厚を、空間的に連続的に変化させることにより、空間
的に異なる透過中心波長を有する構造とし、 前記分散補償器上で、入射光を通過させる場所を変化さ
せ、入射光の波長に対して前記分散補償器の透過中心波
長を相対的に変化させ、入射光が前記分散補償器を通過
する間に受ける分散量を連続的に変化させる、ことを可
能とする分散補償器。4. The dispersion compensator according to claim 1, wherein the thickness of each of the dielectric thin films constituting the dispersion compensator is spatially and continuously changed. A structure having spatially different transmission center wavelengths, on the dispersion compensator, changing the location where the incident light passes, and changing the transmission center wavelength of the dispersion compensator relative to the wavelength of the incident light. A dispersion compensator capable of continuously changing an amount of dispersion received while the incident light passes through the dispersion compensator.
おいて、 前記分散補償器の温度を変化させることにより、前記分
散補償器を構成する材料の屈折率を変化させ、透過中心
波長を変化させることにより分散量を制御する、ことを
特徴とする分散補償器。5. The dispersion compensator according to claim 1, wherein a temperature of the dispersion compensator is changed to change a refractive index of a material constituting the dispersion compensator, thereby changing a transmission center wavelength. A dispersion compensator characterized by controlling a dispersion amount by changing the dispersion amount.
償器において、 前記分散補償器の誘電体多層膜構造がその上に形成され
ている基板、あるいは、前記誘電体多層膜の各層又はい
ずれかの層を、励起により光増幅作用を有する光学活性
な半導体材料で構成し、光励起あるいは電流注入等によ
るポンピングにより光増幅作用を行う、ことを特徴とす
る分散補償器。6. The dispersion compensator according to claim 1, wherein the dielectric multilayer structure of the dispersion compensator is formed on a substrate or each layer of the dielectric multilayer film. Alternatively, a dispersion compensator, wherein one of the layers is made of an optically active semiconductor material having an optical amplification function by excitation, and performs optical amplification by pumping by optical excitation or current injection.
配設してなる誘電体多層膜を、中間層となる誘電体薄膜
の両側に備えてなる多層膜構造を有し、前記両側の誘電
体多層膜のブラッグ反射の中心波長が一致しており、前
記多層膜構造の一端から入射される光信号の波長と透過
率及び分散特性との関係から、スペクトル上で高反射領
域のほぼ中央に形成される高透過率領域において、分散
量の値は、波長に対して、一の符号から該一の符号とは
逆の符号の値に、ほぼ線形、かつ連続的に変化してお
り、この波長領域の光信号に与える分散量の値を連続的
に可変としてなる、ことを特徴とする分散補償器。7. A multilayer film structure comprising a dielectric multilayer film having two types of dielectric thin films having different refractive indices alternately arranged on both sides of a dielectric thin film serving as an intermediate layer, The center wavelengths of the Bragg reflections of the dielectric multilayer films on both sides coincide with each other, and the relationship between the wavelength of an optical signal incident from one end of the multilayer film structure and the transmittance and dispersion characteristics indicates that the high reflection region of the spectrum is high. In the high transmittance region formed substantially at the center, the value of the amount of dispersion changes substantially linearly and continuously with respect to the wavelength from one sign to the opposite sign to the one sign. And a dispersion compensator characterized in that the value of the amount of dispersion given to the optical signal in this wavelength region is continuously variable.
4とされ、屈折率が相対的に高低の関係にある二種の誘
電体薄膜が交互に配設されてなる第1、第2の誘電体多
層膜を少なくとも備え、前記第1及び第2の誘電体多層
膜の間には、膜厚が入射光の1波長の光学膜厚分の約
(n+1/2)(ただしnは0又は所定の正整数)とさ
れ、屈折率が相対的に低い中間層の誘電体薄膜が介挿さ
れてなる多層膜構造を、基板上に備え、 光信号が前記多層膜構造の一端に所定の入射角をもって
入射され、前記多層膜構造を介し前記基板端面から光信
号が出力され、 前記多層膜構造が与える分散量は、スペクトル上で高反
射領域のほぼ中央に形成される透過領域の中心波長にお
いてゼロとなり、前記中心波長に対して短波長側での負
の分散量から長波長側での正の分散量まで波長に対して
ほぼ線形、かつ連続的に変化しており、前記波長領域の
入射光に与える分散量の値を連続的に可変としてなる、
ことを特徴とする分散補償器。8. The optical film according to claim 1, wherein the film thickness is about 1 / the optical film thickness for one wavelength of the incident light.
4, at least first and second dielectric multilayer films in which two types of dielectric thin films having refractive indexes having a relatively high-low relationship are alternately arranged, and the first and second dielectric thin films are provided. Between the dielectric multilayer films, the film thickness is about (n + 1/2) (where n is 0 or a predetermined positive integer) corresponding to the optical film thickness of one wavelength of the incident light, and the refractive index is relatively low. A multi-layer structure in which a dielectric thin film of an intermediate layer is interposed is provided on a substrate, and an optical signal is incident on one end of the multi-layer structure at a predetermined incident angle, and from the end face of the substrate through the multi-layer structure. An optical signal is output, and the amount of dispersion given by the multilayer structure is zero at the center wavelength of the transmission region formed substantially at the center of the high reflection region on the spectrum, and is negative on the short wavelength side with respect to the center wavelength. From the amount of dispersion to the amount of positive dispersion on the long wavelength side is almost linear and continuous with wavelength. Turned into and becomes the value of the dispersion amount to be given to the incident light of the wavelength region as a continuous variable,
A dispersion compensator characterized in that:
る、ことを特徴とする請求項8記載の分散補償器。9. The dispersion compensator according to claim 8, wherein the end face of the substrate is coated with anti-reflection.
角度が可変自在とされ、入射角を可変させることで、入
射光が前記多層膜構造を通過する間に受ける分散量の値
を連続的に変化させる、ことを特徴とする請求項7又は
8記載の分散補償器。10. An angle of one end of the multilayer structure with respect to incident light is variable, and by varying the incident angle, the value of the amount of dispersion received while the incident light passes through the multilayer structure is continuously changed. 9. The dispersion compensator according to claim 7, wherein the value is changed to:
薄膜の膜厚が、面内方向に空間分布を有する、ことを特
徴とする請求項7又は8記載の分散補償器。11. The dispersion compensator according to claim 7, wherein the thickness of at least one dielectric thin film of said multilayer structure has a spatial distribution in an in-plane direction.
前記誘電体薄膜の一端と該一端と相対する他端とで異な
る値に設定されており、前記基板上の前記多層膜構造の
断面形状が一端で低く他端で高い形状とされている、こ
とを特徴とする請求項8記載の分散補償器。12. The film thickness of the dielectric thin film having the multilayer structure is as follows:
Different values are set at one end of the dielectric thin film and the other end opposite to the one end, and the cross-sectional shape of the multilayer film structure on the substrate has a lower shape at one end and a higher shape at the other end. 9. The dispersion compensator according to claim 8, wherein:
て、前記多層膜構造の前記誘電体薄膜の屈折率を変化さ
せるための手段として、前記分散補償器の温度を変化さ
せる手段を備え、透過中心波長を変化させることによ
り、入射光が前記多層膜構造を通過する間に受ける分散
量の値を連続的に変化させる、ことを特徴とする分散補
償器。13. The dispersion compensator according to claim 7, further comprising means for changing a temperature of the dispersion compensator, as means for changing a refractive index of the dielectric thin film of the multilayer structure. A dispersion compensator characterized in that the value of the amount of dispersion received while incident light passes through the multilayer structure is continuously changed by changing the transmission center wavelength.
板、又は、前記多層膜構造の少なくとも一の薄膜を、光
学活性な半導体材料で構成し、前記基板端部から、光励
起あるいは電流注入等によるポンピングにより光増幅さ
れた光信号が出力される、ことを特徴とする請求項7又
は8記載の分散補償器。14. A substrate on which the multilayer structure is formed or at least one thin film of the multilayer structure is made of an optically active semiconductor material, and photo-excitation or current injection is performed from an end of the substrate. 9. The dispersion compensator according to claim 7, wherein an optical signal optically amplified by pumping is output.
分散補償器を複数段直列に配設し、前記分散補償器は分
散量が互いに異なるものとされ、非線型分散の補償を可
能としたことを特徴とする分散補償器。15. A dispersion compensator according to claim 7, wherein a plurality of stages are arranged in series, and said dispersion compensators have different amounts of dispersion, and can compensate for nonlinear dispersion. A dispersion compensator characterized in that:
分散補償器の前記多層膜構造を、発光素子の光出射面に
備えてなる、ことを特徴とする分散補償器。16. A dispersion compensator comprising the multilayer structure of the dispersion compensator according to claim 7 provided on a light emitting surface of a light emitting element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001037524A JP3879411B2 (en) | 2001-02-14 | 2001-02-14 | Dispersion compensator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001037524A JP3879411B2 (en) | 2001-02-14 | 2001-02-14 | Dispersion compensator |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002243935A true JP2002243935A (en) | 2002-08-28 |
JP3879411B2 JP3879411B2 (en) | 2007-02-14 |
Family
ID=18900637
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001037524A Expired - Fee Related JP3879411B2 (en) | 2001-02-14 | 2001-02-14 | Dispersion compensator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3879411B2 (en) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004198601A (en) * | 2002-12-17 | 2004-07-15 | Nec Corp | Optical dispersion filter and optical module |
WO2004063797A1 (en) * | 2003-01-15 | 2004-07-29 | Bussan Nanotech Research Institute, Inc. | Dispersion compensation element, optical crystal, dispersion compensation system, dispersion compensation method |
JP2004354735A (en) * | 2003-05-29 | 2004-12-16 | Daishinku Corp | Light ray cut filter |
JP2005234264A (en) * | 2004-02-20 | 2005-09-02 | Hitachi Ltd | Variable distributed compensating device and optical transmission system using it |
JP2006516075A (en) * | 2002-11-06 | 2006-06-15 | アズナ・エルエルシー | Power supply for scattering-compensated optical fiber systems |
JP2009032916A (en) * | 2007-07-27 | 2009-02-12 | Fujifilm Corp | Dispersion compensator, solid-state laser system, and dispersion compensating method |
US7492976B2 (en) | 2002-10-04 | 2009-02-17 | Finisar Corporation | Flat dispersion frequency discriminator (FDFD) |
US7502532B2 (en) | 2002-11-06 | 2009-03-10 | Finisar Corporation | Multi-ring resonator implementation of optical spectrum reshaper for chirp managed laser technology |
JP2009088136A (en) * | 2007-09-28 | 2009-04-23 | Fujinon Corp | Negative dispersion mirror and mode-locked solid-state laser apparatus including the same |
JP2009088137A (en) * | 2007-09-28 | 2009-04-23 | Fujinon Corp | Negative dispersion mirror and mode-locked solid-state laser apparatus including the same |
US7536113B2 (en) | 2002-11-06 | 2009-05-19 | Finisar Corporation | Chirp managed directly modulated laser with bandwidth limiting optical spectrum reshaper |
US7616902B2 (en) | 2002-07-09 | 2009-11-10 | Finisar Corporation | Power source for a dispersion compensation fiber optic system |
US7657179B2 (en) | 2002-07-09 | 2010-02-02 | Finisar Corporation | Wavelength division multiplexing source using multifunctional filters |
US7941057B2 (en) | 2006-12-28 | 2011-05-10 | Finisar Corporation | Integral phase rule for reducing dispersion errors in an adiabatically chirped amplitude modulated signal |
US7962045B2 (en) | 2006-12-22 | 2011-06-14 | Finisar Corporation | Optical transmitter having a widely tunable directly modulated laser and periodic optical spectrum reshaping element |
US7962044B2 (en) | 2007-02-02 | 2011-06-14 | Finisar Corporation | Temperature stabilizing packaging for optoelectronic components in a transmitter module |
US7991297B2 (en) | 2007-04-06 | 2011-08-02 | Finisar Corporation | Chirped laser with passive filter element for differential phase shift keying generation |
US7991291B2 (en) | 2007-02-08 | 2011-08-02 | Finisar Corporation | WDM PON based on DML |
US8027593B2 (en) | 2007-02-08 | 2011-09-27 | Finisar Corporation | Slow chirp compensation for enhanced signal bandwidth and transmission performances in directly modulated lasers |
US8131157B2 (en) | 2007-01-22 | 2012-03-06 | Finisar Corporation | Method and apparatus for generating signals with increased dispersion tolerance using a directly modulated laser transmitter |
US8160455B2 (en) | 2008-01-22 | 2012-04-17 | Finisar Corporation | Method and apparatus for generating signals with increased dispersion tolerance using a directly modulated laser transmitter |
US8199785B2 (en) | 2009-06-30 | 2012-06-12 | Finisar Corporation | Thermal chirp compensation in a chirp managed laser |
US8204386B2 (en) | 2007-04-06 | 2012-06-19 | Finisar Corporation | Chirped laser with passive filter element for differential phase shift keying generation |
US8260150B2 (en) | 2008-04-25 | 2012-09-04 | Finisar Corporation | Passive wave division multiplexed transmitter having a directly modulated laser array |
US8792531B2 (en) | 2003-02-25 | 2014-07-29 | Finisar Corporation | Optical beam steering for tunable laser applications |
JP2016513240A (en) * | 2013-01-29 | 2016-05-12 | ヴァイアヴィ・ソリューションズ・インコーポレイテッドViavi Solutions Inc. | Variable optical filter and wavelength selective sensor based thereon |
JP2019020650A (en) * | 2017-07-20 | 2019-02-07 | 東海光学株式会社 | Chirped mirror and chirped mirror unit |
-
2001
- 2001-02-14 JP JP2001037524A patent/JP3879411B2/en not_active Expired - Fee Related
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7657179B2 (en) | 2002-07-09 | 2010-02-02 | Finisar Corporation | Wavelength division multiplexing source using multifunctional filters |
US7663762B2 (en) | 2002-07-09 | 2010-02-16 | Finisar Corporation | High-speed transmission system comprising a coupled multi-cavity optical discriminator |
US7616902B2 (en) | 2002-07-09 | 2009-11-10 | Finisar Corporation | Power source for a dispersion compensation fiber optic system |
US7477851B2 (en) | 2002-07-09 | 2009-01-13 | Finisar Corporation | Power source for a dispersion compensation fiber optic system |
US7492976B2 (en) | 2002-10-04 | 2009-02-17 | Finisar Corporation | Flat dispersion frequency discriminator (FDFD) |
US7502532B2 (en) | 2002-11-06 | 2009-03-10 | Finisar Corporation | Multi-ring resonator implementation of optical spectrum reshaper for chirp managed laser technology |
JP4764633B2 (en) * | 2002-11-06 | 2011-09-07 | フィニサー コーポレイション | Light source for dispersion-compensated optical fiber system |
JP2006516075A (en) * | 2002-11-06 | 2006-06-15 | アズナ・エルエルシー | Power supply for scattering-compensated optical fiber systems |
US7536113B2 (en) | 2002-11-06 | 2009-05-19 | Finisar Corporation | Chirp managed directly modulated laser with bandwidth limiting optical spectrum reshaper |
US7944613B2 (en) | 2002-12-17 | 2011-05-17 | Nec Corporation | Optical module having three or more optically transparent layers |
US8456741B2 (en) | 2002-12-17 | 2013-06-04 | Nec Corporation | Optical module having three or more optically transparent layers |
JP2004198601A (en) * | 2002-12-17 | 2004-07-15 | Nec Corp | Optical dispersion filter and optical module |
EP1584969A1 (en) * | 2003-01-15 | 2005-10-12 | Bussan Nanotech Research Institute Inc. | Dispersion compensation element, optical crystal, dispersion compensation system, dispersion compensation method |
US7515785B2 (en) | 2003-01-15 | 2009-04-07 | Fujikura Ltd. | Dispersion compensation element, optical crystal, dispersion compensation system, dispersion compensation method |
JP4668065B2 (en) * | 2003-01-15 | 2011-04-13 | 株式会社フジクラ | Dispersion compensation element, dispersion compensation system, dispersion compensation method |
EP1584969A4 (en) * | 2003-01-15 | 2008-07-23 | Fujikura Ltd | Dispersion compensation element, optical crystal, dispersion compensation system, dispersion compensation method |
CN100363784C (en) * | 2003-01-15 | 2008-01-23 | 株式会社藤仓 | Dispersion compensation element, optical crystal, dispersion compensation system, dispersion compensation method |
JPWO2004063797A1 (en) * | 2003-01-15 | 2006-05-18 | 株式会社物産ナノテク研究所 | Dispersion compensation element, optical crystal, dispersion compensation system, dispersion compensation method |
WO2004063797A1 (en) * | 2003-01-15 | 2004-07-29 | Bussan Nanotech Research Institute, Inc. | Dispersion compensation element, optical crystal, dispersion compensation system, dispersion compensation method |
US8792531B2 (en) | 2003-02-25 | 2014-07-29 | Finisar Corporation | Optical beam steering for tunable laser applications |
JP2004354735A (en) * | 2003-05-29 | 2004-12-16 | Daishinku Corp | Light ray cut filter |
JP2005234264A (en) * | 2004-02-20 | 2005-09-02 | Hitachi Ltd | Variable distributed compensating device and optical transmission system using it |
US7962045B2 (en) | 2006-12-22 | 2011-06-14 | Finisar Corporation | Optical transmitter having a widely tunable directly modulated laser and periodic optical spectrum reshaping element |
US7941057B2 (en) | 2006-12-28 | 2011-05-10 | Finisar Corporation | Integral phase rule for reducing dispersion errors in an adiabatically chirped amplitude modulated signal |
US8131157B2 (en) | 2007-01-22 | 2012-03-06 | Finisar Corporation | Method and apparatus for generating signals with increased dispersion tolerance using a directly modulated laser transmitter |
US7962044B2 (en) | 2007-02-02 | 2011-06-14 | Finisar Corporation | Temperature stabilizing packaging for optoelectronic components in a transmitter module |
US7991291B2 (en) | 2007-02-08 | 2011-08-02 | Finisar Corporation | WDM PON based on DML |
US8027593B2 (en) | 2007-02-08 | 2011-09-27 | Finisar Corporation | Slow chirp compensation for enhanced signal bandwidth and transmission performances in directly modulated lasers |
US8204386B2 (en) | 2007-04-06 | 2012-06-19 | Finisar Corporation | Chirped laser with passive filter element for differential phase shift keying generation |
US7991297B2 (en) | 2007-04-06 | 2011-08-02 | Finisar Corporation | Chirped laser with passive filter element for differential phase shift keying generation |
JP2009032916A (en) * | 2007-07-27 | 2009-02-12 | Fujifilm Corp | Dispersion compensator, solid-state laser system, and dispersion compensating method |
JP2009088137A (en) * | 2007-09-28 | 2009-04-23 | Fujinon Corp | Negative dispersion mirror and mode-locked solid-state laser apparatus including the same |
JP2009088136A (en) * | 2007-09-28 | 2009-04-23 | Fujinon Corp | Negative dispersion mirror and mode-locked solid-state laser apparatus including the same |
US8160455B2 (en) | 2008-01-22 | 2012-04-17 | Finisar Corporation | Method and apparatus for generating signals with increased dispersion tolerance using a directly modulated laser transmitter |
US8260150B2 (en) | 2008-04-25 | 2012-09-04 | Finisar Corporation | Passive wave division multiplexed transmitter having a directly modulated laser array |
US8199785B2 (en) | 2009-06-30 | 2012-06-12 | Finisar Corporation | Thermal chirp compensation in a chirp managed laser |
JP2016513240A (en) * | 2013-01-29 | 2016-05-12 | ヴァイアヴィ・ソリューションズ・インコーポレイテッドViavi Solutions Inc. | Variable optical filter and wavelength selective sensor based thereon |
JP2019020650A (en) * | 2017-07-20 | 2019-02-07 | 東海光学株式会社 | Chirped mirror and chirped mirror unit |
JP2021179634A (en) * | 2017-07-20 | 2021-11-18 | 東海光学株式会社 | Chirped mirror and chirped mirror unit |
JP7195022B2 (en) | 2017-07-20 | 2022-12-23 | 東海光学株式会社 | Chirp mirrors and chirp mirror units |
Also Published As
Publication number | Publication date |
---|---|
JP3879411B2 (en) | 2007-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3879411B2 (en) | Dispersion compensator | |
JP2754214B2 (en) | Dielectric multilayer film capable of compensating frequency chirp of light pulse | |
US8005122B2 (en) | Mode-locked laser | |
US5212584A (en) | Tunable etalon filter | |
US8456741B2 (en) | Optical module having three or more optically transparent layers | |
US3637294A (en) | Interference filter with alternately designed pairs of dielectric layers | |
JP2002267834A (en) | Optical component, optical dispersion compensation device using the component and method for compensating optical dispersion | |
JP2000105313A (en) | Dispersion compensator | |
JP2001320328A (en) | Optical communication method | |
JPWO2001086328A1 (en) | Optical component and its dispersion compensation method | |
JP4613814B2 (en) | Variable dispersion compensator | |
JP4497042B2 (en) | Variable dispersion compensator | |
US6963404B2 (en) | Fabry-Perot device compensating for an error of full width at half maximum and method of making the same | |
JP2006053519A (en) | Variable dispersion compensator | |
JP4052114B2 (en) | Variable optical dispersion compensator | |
JPH1048567A (en) | Optical dispersion compensator and optical pulse generator and optical communication system using the compensator | |
US20030035608A1 (en) | Multi-channel compensation of chromatic dispersion slope using etalons with wavelength dependent variable reflectivity | |
JP5218243B2 (en) | Optical module | |
US11575245B2 (en) | Thin-film filter for tunable laser | |
US20030099019A1 (en) | Compensation of chromatic dispersion using cascaded etalons of variable reflectivity | |
CN112615254A (en) | Tunable external cavity laser | |
US7242698B2 (en) | Wavelength tunable laser with dispersive element | |
WO2021002432A1 (en) | Wavelength selection filter, optical wavelength selection module, and spectrum measurement device | |
JP2004287243A (en) | Device for varying optical frequency linear chirp | |
Wang et al. | Tunable Optical Delay Line Based on SOI Contradirectional Couplers with Sidewall-Rnodulated Bragg Gratings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050201 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050404 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061017 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061030 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091117 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101117 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111117 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111117 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121117 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121117 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131117 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |