WO2001037288A1 - Dispositif d'isolation electrique d'un element haute tension - Google Patents

Dispositif d'isolation electrique d'un element haute tension Download PDF

Info

Publication number
WO2001037288A1
WO2001037288A1 PCT/SE2000/002123 SE0002123W WO0137288A1 WO 2001037288 A1 WO2001037288 A1 WO 2001037288A1 SE 0002123 W SE0002123 W SE 0002123W WO 0137288 A1 WO0137288 A1 WO 0137288A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
powder
container
arrangement according
arrangement
Prior art date
Application number
PCT/SE2000/002123
Other languages
English (en)
Other versions
WO2001037288A9 (fr
Inventor
Hans Bernhoff
Jan Isberg
Peter Isberg
Toril Myrtveit
Svante SÖDERHOLM
Original Assignee
Abb Research Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb Research Ltd. filed Critical Abb Research Ltd.
Publication of WO2001037288A1 publication Critical patent/WO2001037288A1/fr
Publication of WO2001037288A9 publication Critical patent/WO2001037288A9/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/043Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body
    • H01L23/051Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body another lead being formed by a cover plate parallel to the base plate, e.g. sandwich type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • H01L23/18Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device
    • H01L23/24Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device solid or gel at the normal operating temperature of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Definitions

  • the present invention relates to an arrangement for electrically insulating a high voltage component comprising a container enclosing a volume around the component, said volume being filled with a material being an electrical insulator.
  • Component is to be interpreted broadly and comprises all types of electrical components, such as different types of semiconductor devices, such as diodes, thyristors, MOSFETS, IGBT's and the like, semiconductor circuits and so on.
  • “High voltage” means that the component may have a potential difference when blocking between the terminals thereof of more than 500 V, often more than 2 kV.
  • the invention is particularly, but not exclusively, directed to electrical insulation of components of materials being able to withstand high temperatures, such as SiC, and the problem to be solved by the present invention will hereinafter be discussed with respect to such a component made of SiC without in any way restricting the invention thereto.
  • the invention is in fact directed to all types of semiconductors.
  • Arrangements already known of this type use containers filled with a polymer, such as silicon gels, as electrical insulation thereof.
  • a polymer such as silicon gels
  • Such a silicon gel may not withstand higher temperatures than about 200°C, which makes it unsuitable to be used for electrically insulating components of for instance SiC in this way, since that could make it impossible to fully utilize the ability of SiC to function well at high temperatures.
  • Such components of SiC are in principle able to operate at temperatures up to about 800°C, due to the large bandgap and the thermal stability of the material.
  • SiC has a dielectric breakdown field strength being about ten times higher than for Si, which makes it possible to manufacture components of SiC able to hold much higher voltages in the blocking state thereof than corresponding components of Si, which put higher demands on said material for the electrical insulation of the component for keeping the dimensions of said container small.
  • the object of the present invention is to provide an arrangement of the type defined in the introduction which may be used also for electrically insulating high voltage components of new types of materials making them able to operate at comparatively high temperatures.
  • This object is according to the invention obtained by providing such an arrangement in which the volume is filled with a ceramic powder.
  • the ceramic powder may withstand considerably higher temperatures than the polymer insulations used before. Such a ceramic powder will also have a high thermal conductivity and a dielectric strength being high, so that the container may be made comparatively small for a determined electrical field to be confined therein. Another advantage of filling the volume with a ceramic powder is that problems with different thermal expansion coefficients are minimized in the arrangement, since these differences may be absorbed by the powder, so that mechanical stresses between the insulation media and the module/component/contacts will be kept small.
  • said powder surrounding the component is a green-body formed by exerting the powder to external pressure.
  • a green-body is a solid body formed by external pressure and consists of e.g . powder particles.
  • said powder surrounds the component in the form of a powder sintered to a solid body.
  • "Powder” is here accordingly defined to comprise this case as well of a solid body constituted by a sintered powder. The powder will get a higher thermal conductivity when pressed together in this way, so that large amounts of heat generated in the component may be rapidly led to the ambient and thereby higher temperatures of the component may be accepted.
  • said container is filled with a non-compressed powder. This may be of particular interest when the component, contacts and the like are sensitive to mechanical stresses, which may result from different coefficients of thermal expansion thereof.
  • said powder is made of hexagonal boron nitride (h-BN).
  • h-BN hexagonal boron nitride
  • h-BN is namely an inert substance, which can sustain temperatures up to at least 800°C in air.
  • h-BN is an excellent electrical insulator with a dielectric strength > 60 kV/mm, and it has a high thermal conductivity, namely 30 W/mK, which should be compared with 0.1 -0.3 W/mK for the silicon gels discussed above.
  • Another important characteristic of hexagonal boron nitride is that it may be provided to a low cost.
  • said container is adapted to enclose a component made of SiC, and according to another preferred embodiment the container is adapted to enclose a component made of diamond.
  • Components of these materials may function under extreme conditions which puts particularly high demands on said material, and these demands may be met by a ceramic powder.
  • the invention also relates to a method for producing an arrangement for electrical insulation of a high voltage component, and this method is according to the invention characterized in that a container is filled with a ceramic powder and exerted to a pressure until the powder forms a solid body encapsulating the component in the container.
  • the ceramic powder is heated when exerted to said pressure, which facilitates the formation of said solid body.
  • Fig 1 is a simplified cross-section view of an arrangement according to a first preferred embodiment of the invention.
  • Fig 2 is a view corresponding to Fig 1 of an arrangement ac- cording to a second preferred embodiment of the invention.
  • Fig 1 illustrates very schematically an arrangement according to a first preferred embodiment of the invention, which comprises a container 1 having walls 2 of a material being a good electrical insulator, such as porcelain.
  • the container has also walls 3, 4 in the form of a lid and a bottom, respectively, formed by contact plates for electrically connect components inside the container to external equipment or other such modules formed by the container and the components contained therein, for instance by connecting a number of such modules in series in a stack.
  • the walls of the container enclose a volume 5, in which high voltage components 6 are arranged. These components are connected in parallel and three are shown in the figure, but the number thereof inside the volume 5 may be arbitrary. These components are for instance rectifying diodes, which may be adapted to hold a voltage of for instance exceeding 10 kV or even exceeding 30 kV when reverse biased and together share the current in the conducting state. These components are preferably of a material having a band gap exceeding 1 .5 eV and may for instance be of SiC or diamond, which means that high operation temperatures, well up to 800°C, are possible and also considerably higher voltages may be handled then for corresponding components made of for instance Si.
  • the components are for instance rectifying diodes, which may be adapted to hold a voltage of for instance exceeding 10 kV or even exceeding 30 kV when reverse biased and together share the current in the conducting state.
  • These components are preferably of a material having a band gap exceeding 1 .5 eV and may for instance be of SiC or diamond, which
  • the volume 5 is filled by a powder of a ceramic material, here hexagonal boron nitride (h-BN), which is a quite soft graphitelike extremely inert substance which can sustain a temperature of up to 800°C indefinitely in air.
  • hexagonal boron nitride is an excellent electrical insulator with a dielectric strength of >60 kV/mm, it has a high thermal conductivity (30 W/mK to compare with about 0.1 -0.3 W/mK for silicon gels) and a low thermal expansion coefficient. This means that a high potential level at said component 6 with respect to the ambient will be possible, at the same time as high operation temperatures may be accepted.
  • the h-BN powder may either be non-compressed in the volume 5, which means that mechanical stresses on contacts to the components and other parts having somewhat different coefficients of thermal expansion may be absorbed by the powder and nearly eliminated, or in the form of a sintered body, which has the advantage of an improved ability to conduct heat energy. It would also be possible to form the powder by particles of two or more different materials, and it would for instance be possible to add other particles to a soft powder, such as AIN mixed into h- BN to increase the thermal conductivity further while maintaining the mechanical and electrical properties. Furthermore, semiconducting particles, for instance of SiC, may be added for electric field control.
  • the ceramic particles in two or more layers, for instance BN closest to the com- ponent and a layer of AIN in a layer outside thereof.
  • Another possible modification consists in using particles of different size for increasing the filling factor, i.e. use smaller particles for filling cavities between larger particles.
  • An advantageous method for producing the module according to Fig 1 is to fill the container 1 with a fine h-BN powder and exert pressure, possibly at somewhat elevated temperature, until it forms a solid body encapsulating the components in the module.
  • a low porosity ( ⁇ 10%) can be obtained at moderate pressures and temperatures.
  • FIG. 1 An arrangement according to a second preferred embodiment of the invention is schematically illustrated in Fig 2.
  • This arrangement also has a container 1 enclosing an inner volume 5 re- ceiving a high voltage component 6 and for the rest filled with a ceramic powder 8, such as h-BN .
  • An arrangement for electrically insulating a high voltage component comprising a container (1 ) enclosing a volume (5) around the component (6), said volume being filled with a material being an electrical insulator, characterized in that the volume is filled with a ceramic powder.

Landscapes

  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Products (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

L'invention concerne un dispositif destiné à isoler électriquement un élément haute tension (6). Ce dispositif comporte un récipient (1) pourvu d'un espace (5) dans lequel ledit élément est enfermé. Cet espace est rempli d'une poudre céramique.
PCT/SE2000/002123 1999-11-16 2000-10-31 Dispositif d'isolation electrique d'un element haute tension WO2001037288A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE9904124A SE9904124D0 (sv) 1999-11-16 1999-11-16 An arrangement for electrically insulating a high voltage component
SE9904124-6 1999-11-16

Publications (2)

Publication Number Publication Date
WO2001037288A1 true WO2001037288A1 (fr) 2001-05-25
WO2001037288A9 WO2001037288A9 (fr) 2001-09-07

Family

ID=20417721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE2000/002123 WO2001037288A1 (fr) 1999-11-16 2000-10-31 Dispositif d'isolation electrique d'un element haute tension

Country Status (2)

Country Link
SE (1) SE9904124D0 (fr)
WO (1) WO2001037288A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008034075A1 (de) * 2008-07-22 2010-04-22 Semikron Elektronik Gmbh & Co. Kg Leistungshalbleitermodul und Verfahren zu dessen Herstellung
DE102012222012A1 (de) * 2012-11-30 2014-06-18 Semikron Elektronik Gmbh & Co. Kg Leistungshalbleitereinrichtung und ein Verfahren zur Herstellung einer Leistungshalbleitereinrichtung

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2761891A (en) * 1952-01-14 1956-09-04 Richard J Violette Electrical and electronic encapsulated circuitry
US4091353A (en) * 1977-03-30 1978-05-23 General Electric Company Current limiting fuse
US4164619A (en) * 1978-01-19 1979-08-14 Westinghouse Electric Corp. Porous encapsulating composition for electrical apparatus
US4413246A (en) * 1981-08-27 1983-11-01 Kearney-National Inc. Metallic coating for a cadmium fuse
DE3843807A1 (de) * 1988-12-24 1990-07-12 Lahmeyer Ag Fuer Energiewirtsc Selbstgekuehlter hochspannungstransformator
EP0386941A2 (fr) * 1989-03-06 1990-09-12 McDOUGAL, John A. Bougie d'allumage et méthode de fabrication
WO1993004485A1 (fr) * 1991-08-13 1993-03-04 American Technology, Inc. Composants electrique a isolant au nitrure de bore et procede de fabrication
WO1993005520A1 (fr) * 1991-09-09 1993-03-18 American Technology, Inc. Composants electriques isoles par un spinelle et procede de fabrication de ceux-ci
GB2279506A (en) * 1993-06-30 1995-01-04 Arcol Uk Ltd Electrical power resistor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2761891A (en) * 1952-01-14 1956-09-04 Richard J Violette Electrical and electronic encapsulated circuitry
US4091353A (en) * 1977-03-30 1978-05-23 General Electric Company Current limiting fuse
US4164619A (en) * 1978-01-19 1979-08-14 Westinghouse Electric Corp. Porous encapsulating composition for electrical apparatus
US4413246A (en) * 1981-08-27 1983-11-01 Kearney-National Inc. Metallic coating for a cadmium fuse
DE3843807A1 (de) * 1988-12-24 1990-07-12 Lahmeyer Ag Fuer Energiewirtsc Selbstgekuehlter hochspannungstransformator
EP0386941A2 (fr) * 1989-03-06 1990-09-12 McDOUGAL, John A. Bougie d'allumage et méthode de fabrication
WO1993004485A1 (fr) * 1991-08-13 1993-03-04 American Technology, Inc. Composants electrique a isolant au nitrure de bore et procede de fabrication
WO1993005520A1 (fr) * 1991-09-09 1993-03-18 American Technology, Inc. Composants electriques isoles par un spinelle et procede de fabrication de ceux-ci
GB2279506A (en) * 1993-06-30 1995-01-04 Arcol Uk Ltd Electrical power resistor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008034075A1 (de) * 2008-07-22 2010-04-22 Semikron Elektronik Gmbh & Co. Kg Leistungshalbleitermodul und Verfahren zu dessen Herstellung
DE102008034075B4 (de) * 2008-07-22 2012-06-06 Semikron Elektronik Gmbh & Co. Kg Leistungshalbleitermodul und Verfahren zu dessen Herstellung
DE102012222012A1 (de) * 2012-11-30 2014-06-18 Semikron Elektronik Gmbh & Co. Kg Leistungshalbleitereinrichtung und ein Verfahren zur Herstellung einer Leistungshalbleitereinrichtung
DE102012222012B4 (de) * 2012-11-30 2017-04-06 Semikron Elektronik Gmbh & Co. Kg Leistungshalbleitereinrichtung und ein Verfahren zur Herstellung einer Leistungshalbleitereinrichtung

Also Published As

Publication number Publication date
SE9904124D0 (sv) 1999-11-16
WO2001037288A9 (fr) 2001-09-07

Similar Documents

Publication Publication Date Title
US4750031A (en) Hermetically sealable package for hybrid solid-state electronic devices and the like
US4249034A (en) Semiconductor package having strengthening and sealing upper chamber
JPH0691175B2 (ja) 部品冷却組立体
CN107665867B (zh) 双包封的功率半导体模块及其制造方法
Deshpande et al. Stacked DBC cavitied substrate for a 15-kV half-bridge power module
JP2010232576A (ja) パワー半導体装置
CN110120375A (zh) 功率用半导体装置
US11980097B2 (en) Thermoelectric element
CN103430300A (zh) 边缘钝化的功率电子器件
EP0246539B1 (fr) Empaquetages en silicium pour des dispositifs de puissance semi-conducteurs
EP3958305B1 (fr) Agencement de module semi-conducteur de puissance et son procédé de fabrication
WO2001037288A1 (fr) Dispositif d'isolation electrique d'un element haute tension
CN107210273B (zh) 功率模块
CN218414576U (zh) 功率模块的封装结构及大电流模块
KR20160002834A (ko) 전력 반도체 디바이스용 모듈 배열체
Abe et al. Dielectric properties and partial discharge inception voltage of aluminum nitride insulating substrate at high temperatures
US3335339A (en) High voltage rectifier
WO2020130507A1 (fr) Module thermoélectrique
US4670817A (en) Heat sink and interconnection arrangement for series connected power diodes
EP3648156A1 (fr) Substrat de semi-conducteur
CN111524862A (zh) 一种芯片封装电极及其制备方法和芯片封装结构
US3284678A (en) Semiconductor encapsulating and reinforcing materials utilizing boron nitride
US20230122056A1 (en) Thermoelectric element
Lyon et al. Investigation and Evaluation of High-Temperature Encapsulation Materials for Power Module Applications
US20240178126A1 (en) Double-side cooled power modules

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: C2

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: C2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

COP Corrected version of pamphlet

Free format text: PAGE 7, DESCRIPTION, ADDED

122 Ep: pct application non-entry in european phase