WO2001036181A1 - Method of dry-etching resin film and device therefor - Google Patents

Method of dry-etching resin film and device therefor Download PDF

Info

Publication number
WO2001036181A1
WO2001036181A1 PCT/JP2000/007995 JP0007995W WO0136181A1 WO 2001036181 A1 WO2001036181 A1 WO 2001036181A1 JP 0007995 W JP0007995 W JP 0007995W WO 0136181 A1 WO0136181 A1 WO 0136181A1
Authority
WO
WIPO (PCT)
Prior art keywords
etching
resin film
gas
mask
heating table
Prior art date
Application number
PCT/JP2000/007995
Other languages
French (fr)
Japanese (ja)
Inventor
Ryomyo Hamanaka
Yoshimasa Nakano
Tatsuya Takeuchi
Shinsuke Fukumoto
Original Assignee
Toray Engineering Company, Limited
Shinko Seiki Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Engineering Company, Limited, Shinko Seiki Co., Ltd. filed Critical Toray Engineering Company, Limited
Priority to JP2001538157A priority Critical patent/JP4536309B2/en
Publication of WO2001036181A1 publication Critical patent/WO2001036181A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0041Etching of the substrate by chemical or physical means by plasma etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/14Surface shaping of articles, e.g. embossing; Apparatus therefor by plasma treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means
    • H01L21/31138Etching organic layers by chemical means by dry-etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/08Treatments involving gases
    • H05K2203/085Using vacuum or low pressure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1105Heating or thermal processing not related to soldering, firing, curing or laminating, e.g. for shaping the substrate or during finish plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/15Position of the PCB during processing
    • H05K2203/1545Continuous processing, i.e. involving rolls moving a band-like or solid carrier along a continuous production path

Definitions

  • the present invention relates to a method and an apparatus for dry etching of a resin film, and more particularly to a method and an apparatus for gas etching the surface of a resin film used for an FPC (Flexible Printed Circuit) substrate or the like.
  • FPC Flexible Printed Circuit
  • polyimide film in particular has chemical properties (chemical resistance), thermal properties (thermoplasticity, heat resistance), and electrical properties (dielectric constant, insulation resistance). Rate), physical properties (water absorption, dimensional stability, coefficient of thermal expansion) and mechanical properties (tensile strength, bending strength) are widely used.
  • resin films such as liquid crystalline polyester polyphenylene sulfide (PPS) having excellent water absorption and swelling resistance have been used.
  • Such a resin film for an FPC board may be used as a resin film alone or as a laminated material obtained by laminating a metal foil on a resin film.
  • via holes through holes
  • blind holes non-through holes
  • perforation methods for such resin films.
  • it is not possible to drill quickly and accurately.
  • a first object of the present invention is to provide a highly versatile resin film that can be quickly and accurately drilled regardless of whether the hole to be drilled is a through hole or the type of resin film.
  • a second object of the present invention is to provide a method and an apparatus for dry etching of a resin film which can easily and accurately control the stop of perforation.
  • a third object of the present invention is to provide a dry etching apparatus for a resin film, which prevents a reduction in perforation rate due to recombination of reactive active gas species of an etching gas.
  • the present invention provides the following three dry etching methods for a resin film in order to achieve the first object.
  • either a resin film alone or a laminated material obtained by laminating a metal foil on a resin film is used as a material to be treated, and a heating table is closely attached to one surface so as to sandwich the material to be treated, A mask having an opening pattern for etching formed on the opposite surface is closely contacted, and the material to be processed is gas-etched from the mask side in a vacuum atmosphere while maintaining the close contact state.
  • a resin film simple substance is used as a material to be treated, and the material to be treated is A different resin film that generates a different kind of gas from the material to be treated is superposed, a heating table is brought into close contact with the surface of the different resin film, and an opening pattern for etching is formed on the surface of the material to be treated.
  • the formed mask is brought into close contact, and the material to be treated is gas-etched from the mask side in a vacuum atmosphere while maintaining the close contact state.
  • a laminated material in which a metal foil having an opening pattern for etching formed on one side of a resin film is laminated is a material to be treated, and a heating table is provided on the surface of the material to be treated on the resin film side.
  • the metal foil side of the material to be treated is subjected to gas etching in a vacuum atmosphere while maintaining the close contact state.
  • the present invention provides the following three types of resin film drying and etching apparatuses to achieve the first object.
  • the first apparatus includes: a processing chamber that enables the inside to be evacuated; an etching gas supply unit installed in the processing chamber; and an etching opening pattern mounted to cover a gas outlet of the etching gas supply unit. And a heating table movably installed inside the processing chamber, wherein the heating table is in close contact with one surface of a material to be processed mainly composed of a resin film, and the mask is It is characterized by a dry etching device for resin film, which is in close contact with the opposite side of the material to be treated.
  • the second apparatus includes: a processing chamber that enables the inside to be vacuumed; an etching gas supply unit installed inside the processing chamber; and an etching opening pattern mounted to cover a gas outlet of the etching gas supply unit. And a heating table movably installed inside the processing chamber, and a resin film as a material to be processed and a different resin film that generates a different gas from the resin film as a single material.
  • the heating table is in close contact with the dissimilar resin film, and the mask is It is characterized by a resin film dry-etching device that is in close contact.
  • the third apparatus includes a processing chamber that allows the inside to be evacuated, an etching gas supply unit that is installed inside the processing chamber, and a heating table that is movably installed inside the processing chamber.
  • a laminated material obtained by laminating a metal foil having an opening pattern for etching formed on one side of a film is used as a material to be treated, and the heating table is brought into close contact with the resin film side of the material to be treated.
  • a resin film dry etching apparatus characterized in that a side thereof faces a gas outlet of the etching gas supply section.
  • the resin film of the material to be processed is gas-etched in a vacuum atmosphere.
  • the heating table is brought into close contact with one side of the material to be processed, whereby the mask on the opposite side is brought into close contact with the resin film of the material to be processed, and the mask side is etched.
  • the third method and apparatus use a laminated material in which a metal foil having an opening pattern for etching is laminated as a material to be processed, and a heating table is brought into close contact with the resin film side of the laminated material. Gas etching is performed by tensioning the side covered with the metal foil.
  • gas etching is performed through an opening pattern provided in a mask or a metal foil in a state where a resin film of a material to be processed is heated and tensioned, so that high-precision and quick drilling can be performed. it can. Further, regardless of whether the hole is a through hole or the type of resin film, it is possible to perform high-accuracy and quick drilling.
  • Gas etching is stopped, and gas etching is stopped when the detected amount decreases sharply. That is, drilling of material to be treated When the etching is completed, the amount of the reaction product gas is drastically reduced. Therefore, if the timing of this drastic decrease is detected, the etching operation can be stopped at an appropriate time.
  • the composition of the reaction product gas released from the etching opening of the mask is detected, and the gas etching is stopped when the type of the composition changes drastically. Since the composition of the reaction product gas changes drastically between the completion of the perforation of the resin film to be treated and the start of the perforation of the different kind of resin film, the gas etching operation can be appropriately stopped by detecting the time of this drastic change.
  • the components of the device such as the mask are made of a material that is non-catalytic with respect to the reactive active gas species of the etching gas flowing out of the plasma generation chamber. Therefore, it is possible to prevent a reduction in the drilling speed due to the recombination of the reactive active gas species.
  • FIG. 1 (A) and 1 (B) show an apparatus for implementing the first method of the present invention
  • (A) is a longitudinal sectional view before the start of the etching process
  • (B) is a state during the etching process.
  • FIG. 2 is an enlarged vertical section showing a main part of the apparatus of FIG.
  • FIG. 3 is a plan view showing a manner of attaching a mask in the apparatus of FIG.
  • FIG. 4 is a longitudinal sectional view of an apparatus according to another embodiment for performing the first method of the present invention.
  • FIGS. 5A and 5B show a main part of an apparatus according to still another embodiment for carrying out the first method of the present invention.
  • FIG. 5A is a longitudinal sectional view showing a state before an etching process is started.
  • (B) is a longitudinal sectional view of the state during the etching process.
  • FIG. 6 is a longitudinal sectional view of an apparatus according to still another embodiment for performing the first method of the present invention.
  • FIG. 7 shows a portion to be gas-etched by the method of the present invention. Is a vertical sectional view of an initial state after the start of etching, (B) is a middle state, and (C) is a terminal state.
  • FIG. 8 is a longitudinal sectional view showing an apparatus for performing the second method of the present invention.
  • FIG. 9 is a longitudinal sectional view showing another embodiment of the apparatus for performing the second method of the present invention.
  • FIG. 10 shows gas etching locations in an apparatus for performing the second method of the present invention.
  • (A) is the initial state after the start of etching
  • (B) is the final state
  • (C) is the material to be processed. It is a longitudinal cross-sectional view which shows the state in which different kinds of resin films are etched, respectively.
  • FIG. 11 is an explanatory diagram showing a peak formation mode of a reaction product gas in an apparatus for performing the second method of the present invention.
  • FIG. 12 is an explanatory diagram showing a peak formation mode of a reaction product gas in an apparatus for performing the first method of the present invention.
  • FIG. 13 is a longitudinal sectional view showing an apparatus for performing the third method of the present invention.
  • FIG. 14 is a longitudinal sectional view showing another embodiment of the apparatus for performing the third method of the present invention.
  • FIG. 15 is a graph showing the etching speed when the materials of the mask, the heating table, and the gas diffusion plate of the etching apparatus according to the present invention are different.
  • the resin film as the material to be subjected to the gas etching may be a resin film alone or a laminated material obtained by laminating a metal foil on a resin film.
  • the material to be treated according to the third invention of the present invention is the above-mentioned laminated material, but a laminated material having an opening pattern for etching provided on the metal foil is used.
  • the material of the metal foil laminated on the laminated material is not particularly limited, and copper is generally used.
  • Resin fill The system is not particularly limited, and any can be targeted.
  • resin films for FPC boards are often polyimide films.
  • liquid crystal polyester films, polyphenylene sulfide films, etc. can also be used.
  • a heating table is brought into close contact with one side of a material to be processed, a mask having an opening pattern for etching is brought into close contact with a resin film on the opposite side, and the mask side is placed in contact with the mask.
  • Perform gas etching The heating table is brought into close contact with one side of the material to be processed in order to keep the mask on the opposite side in good contact with the resin film and to heat the resin film.
  • the etching gas can be evenly dispersed in the mask opening pattern, and the perforation accuracy can be improved.
  • the etching rate is increased, enabling rapid drilling.
  • a heating table is brought into close contact with the resin film side of the laminate, and gas etching is performed on the metal foil side provided with the etching opening pattern.
  • the reason why the heating table is brought into close contact with the resin film side of the laminated material is to heat the resin film by the heating table. This heating increases the etching rate and enables rapid drilling. Further, since the etching opening pattern is formed in the metal foil, highly accurate etching can be performed without using a mask.
  • the heating temperature of the table depends on the type of the resin film, but is preferably in the range of 150 ° C. to 350 ° C. With such a heating temperature, high-speed etching can be performed without melting or deforming the resin film.o
  • the stop control of gas etching can be accurately performed by detecting the amount of reaction product gas generated during the gas etching operation of the resin film to be processed by utilizing the change in the generated amount. That is, in the first method and the third method of the present invention, a large amount of the reaction product gas is generated while the resin film is being gas-etched. When gas etching is sharply reduced, high drilling accuracy can be achieved by stopping gas etching.
  • gas etching is performed by superimposing a different resin film that generates a gas different from the gas generated at the time of gas etching of the resin film on the resin film to be processed.
  • gas etching is performed by superimposing different kinds of resin films in this way, after the perforation of the resin film to be processed is completed, a different kind of gas is generated when the next perforation of the different kind of resin film is started. By detecting a drastic change, it is possible to accurately know the completion time of the perforation of the resin film to be processed.
  • the stop of the gas etching can be controlled so as to perform high-precision drilling by the detection.
  • Such a heterogeneous resin film is not particularly limited as long as it generates a reaction molding gas having a composition different from that of the resin film to be treated.
  • the resin film to be treated is a polyimide film
  • a chlorine-containing polyvinylidene chloride / sulfur-containing polyethylene sulfate (PES) or the like can be used as the different kind of resin film.
  • the gas etching method is not particularly limited, but is preferably performed by plasma etching.
  • the plasma forming gas in the case of plasma etching, it is preferable to use a gas containing active oxygen or an active hydroxyl group.
  • a mixed gas of oxygen and water vapor is preferable.
  • Other plasma forming gases include, for example, methane trifluoride CHF 3 ⁇ silane Si F 4 Activated fluorine.
  • Gas etching needs to be performed in a vacuum atmosphere.
  • the pressure of the vacuum atmosphere is preferably 13.3 Pa to 1330 Pa. If the vacuum atmosphere pressure is higher than 1330 Pa, the gas sealing at the close part between the mask and the resin film becomes insufficient, and the etching gas easily penetrates into the close part. This may cause a decrease in perforation accuracy.
  • the heating table preferably has a two-dimensional curved surface. Specifically, it is preferable that the cylinder is formed on a curved surface of one of the divided bodies when the cylinder is divided into two by a plane including the central axis. By forming the surface of the heating table into a two-dimensional curved surface, the surface of the material to be processed can be uniformly and closely contacted so as not to generate wrinkles or gaps. In addition, it is preferable that at least the surface of the heating table be made of a magnet and that the mask be made of a ferromagnetic metal material.
  • the surface of the heating table is made of a samarium-containing cobalt-based magnet (permanent magnet or electromagnet) having a high Curie point (temperature at which magnetism is lost), and the mask is made of a ferromagnetic ferrite such as SUS430. It is good to use stainless steel oil. With such a configuration, the mask can be attracted by the magnetic force of the heating table, and the degree of close contact of the workpiece can be further improved.
  • the mask is generally formed by forming an opening pattern consisting of a large number of etching microholes on a thin metal plate, but the material is not necessarily required to be metal.
  • the shape of the fine holes for etching is not particularly limited, and may be, for example, a circle, a square, a groove, or the like.
  • the metal material is not particularly limited as long as the material is not eroded by the etching gas.
  • the metal material is not particularly limited as long as the material is not eroded by the etching gas.
  • aluminum, stainless steel and the like can be mentioned.
  • the metal material of the mask has a catalytic effect on the reactive active gas species (radial force) of the etching gas, the effect of reducing the perforation speed is obtained. I do. Therefore, it is preferable to select a non-catalytic material for the mask.
  • the non-catalytic material can Rukoto cited aluminum A 1, silicon oxide S i 0 2.
  • aluminum and silicon oxide have problems such as low mechanical strength and high thermal expansion coefficient at high temperatures. Therefore, these materials are preferably used as a surface coating material, not as a main material.
  • the main material is stainless steel such as SUS304, SUS430, metal material such as chamber, glass material such as quartz glass or alkali glass, or ceramic material, and the surface of aluminum or Cover with silicon oxide.
  • the coating method a method such as coating, plating, vapor deposition, or sputtering may be used.
  • a component other than the mask such as a heating table, which is in contact with the etching gas be made of aluminum.
  • Aluminum by oxygen radicals, which are reactive active gas species, chemically stable on the surface, and because to form a dense aluminum oxide A 1 2 0 3 coating.
  • This oxide film is stable at a predetermined temperature or less even against hydrogen radicals obtained by decomposing hydrogen gas and fluorine radicals obtained by decomposing silane SiF 4 , so that it can withstand a long period of time. be able to.
  • the silicon oxide S i 0 2 when coated with stainless steel as the main material is not preferred because it is eroded for fluorine radicals.
  • the etching treatment according to the present invention is not limited to the case of perforating a resin film, but can be applied to surface treatment such as roughening.
  • FIG. 1 (A) and 1 (B) illustrate an apparatus for carrying out the first method of the present invention.
  • FIG. 1 (A) shows a state before the start of the etching process
  • FIG. 1 (B) shows a state during the etching process.
  • the processing chamber 17 is configured to be hermetically closed by an opening / closing door (not shown), a vacuum pump 18 is connected via a pipe 19, and an air introducing pipe is connected via a valve 20.
  • the interior of the processing chamber 17 is set to a vacuum atmosphere when the valve 20 is closed, the opening / closing door is closed, and the internal air is exhausted by the vacuum pump 18.
  • An etching gas supply unit 5 is provided at an upper portion inside the processing chamber 17, and a heating table 3 is provided at a lower portion thereof.
  • the etching gas supply unit 5 is provided with a plasma generation chamber 11, which is vertically separated by a microwave transmitting plate 14, and a raw gas introduction pipe 12 is provided in a lower chamber and an upper chamber is provided in the upper chamber.
  • Waveguides 13 are connected to the side chambers, respectively.
  • the other end of the source gas inlet tube 12 is connected to a source gas supply source (not shown), and the other end of the waveguide 13 is connected to a microwave oscillator 16.
  • the inside of the processing chamber 17 is made into a vacuum atmosphere of, for example, about 133 Pa, and the plasma generation gas G is supplied to the plasma generation chamber 11 from the raw material gas introduction pipe 12 and the microwave generator 16 is supplied from the microwave generator 16.
  • the plasma forming gas G is excited and decomposed to generate reactive active gas species (radicals).
  • the reactive active gas species flows downward from a plurality of gas diffusion plates 15 mounted at regular intervals below the plasma generation chamber 11, and is used for etching the resin film F, which is a material to be processed. Provided.
  • a mask 4 is attached to the gas outlet of the etching supply section 5 from which the reactive active gas species flows out. As shown in FIG. 2, the mask 4 has an opening pattern formed of a large number of etching fine holes 4a. As shown in FIG. 3, the mask 4 is attached to the mask frame 10 via an expander 9 composed of a tension coil spring or the like at both left and right ends so as to be in a lightly tensioned or moderately relaxed state.
  • the mask frame 10 is detachably attached to a gas outlet of the etching gas supply unit 5.
  • the heating table 3 is installed so as to face the mask 4 at the gas outlet of the etching gas supply unit 5.
  • the heating table 3 has a heater 8 embedded therein and is heated by the heater 8.
  • the heating table 3 is formed as a two-dimensional curved surface having a surface 3a force pressed against the resin film single material F of the material to be processed. At least the surface portion 3a of the heating table 3 is composed of a magnet.
  • the heating table 3 is supported and fixed by a lower table shaft 23, and is moved up and down by moving the table shaft 23 up and down by an actuator (not shown).
  • a skirt 21 is attached to the side of the heating table 3 so as to move up and down along a slider 22 fixed to the processing chamber 17.
  • a gap 30 is provided at the lower end of the slider 22, and the air and the reaction product gas in the processing chamber 17 are discharged from the gap 30 to the pipe 19 via the opening 31. .
  • an unwinding reel in which a resin film single material F as an unprocessed material is wound at one end (left side) is provided.
  • the transport roller 6 and the tension roller 7 are installed together with the transport roller 6 and the tension roller 7 on the other end (right side), and the take-up reel 2 that winds up the resin film unit material F after etching on the other end (right side). Is installed.
  • the unwinding reel 1 and the take-up reel 2 are each detachably fitted to the drive shaft, and the unprocessed portion of the resin film single material F is set on the heating table 3.
  • the portion where the etching has been completed is sent out to the take-up reel 2 and a new unprocessed portion from the unwind reel 1 is heated. It moves intermittently so that it is pulled out over one bull 3.
  • the resin film single material F to be processed is The etching process is performed as follows.
  • the inside of the processing chamber 17 is evacuated by the operation of the vacuum pump 18.
  • the heating table 3 is raised as shown in FIG.
  • the upper surface of the single film material F is brought into close contact with the lower surface of the mask 4 on the etching gas supply unit 5 side.
  • the mask 4 is supported by the mask frame 10 in a lightly tensioned or relaxed state.However, when the heating table 3 is raised as described above, the surface 3a comes into close contact with the lower surface of the resin film single material F. Then, the upper surface of the resin film single material F is brought into close contact with the lower surface of the mask 4.
  • the heating table 3 presses the surface 3a of the two-dimensional curved surface onto the mask 4 via the resin film F, so that the resin film F and the mask 4 are curved.
  • the mask 4 applies a pressure P to the resin film single material F in a direction perpendicular to the surface 3 a of the heating table 3. Therefore, the resin film single material F is in a tension state so as not to generate wrinkles or breaks, and the mask 4, the resin film single material F and the heating table 3 are closely contacted so as not to form a gap between the three members. State.
  • the plasma forming gas G is supplied from the raw material gas introducing pipe 12, and the microphone mouth wave of the microwave oscillator 16 acts on the plasma forming gas G to generate a reactive active gas species. .
  • the resin film single material F is heated by the heating table 3 and is etched by the reactive active gas species entering through the etching fine holes 4 a of the mask 4.
  • the etching gas does not enter the mutual gap. Therefore, only the portion of the opening pattern of the etching microholes 4 a provided in the mask 4 is etched in the resin film single material F.
  • the heating table 3 is shown in Fig. 1 (A). The robot descends to the middle position and waits for the next etching. When the heating table 3 descends in this manner, the interface between the mask 4 and the resin film material F is merely in close contact, so that the mask 4 can be easily separated from the resin film material F. Wear. Therefore, it is possible to shorten the etching cycle without taking time for the separation.
  • the take-up reel 1 and the take-up reel 2 rotate, and the etched resin film F of a predetermined length is taken up by the take-up reel 2, and the next unprocessed material is taken out from the take-up reel 1.
  • the resin film single material F is pulled out and set on the heating table 3.
  • the etching process is performed by repeating the above-described etching process one after another.
  • the heating table 3 is lowered to the lowermost position below the intermediate position shown in FIG. 1 (A) and waits. .
  • the take-out reel 1 on which the next new unprocessed resin film material F has been wound up is replaced with an empty reel, and the winding reel on which the etched resin film material F has been wound up. Replace 2 with empty reel. Then, the above-described steps are repeated again.
  • FIG. 4 shows an apparatus according to another embodiment for implementing the first method.
  • a mask which is of a single wafer type in the etching apparatus of FIG. 1 is replaced with a continuous band type mask 4.
  • the continuous band-shaped mask 4 is intermittently transferred from the left unwinding reel 26 to the right winding reel 27 while being sandwiched between the heating table 3 and the etching gas supply unit 5. ing.
  • the heating table 3 is fixed at a fixed height so that it does not move up and down like the etching device in Fig. 1. Instead, the left and right dancer rollers 28 and 28 can move up and down, and the continuous belt-shaped mask 4 and the resin film single material F are curved on the two-dimensional curved surface 3 a of the heating table 3.
  • the pressing, the mask 4, the resin film single material, and the heating table surface 3a are made to closely contact each other.
  • the heating table 3 fixed at a fixed height is mounted inside the processing chamber 17 via a skirt 29.
  • a gap 30 is formed at the lower end of the skirt 29, and air and gas inside the processing chamber are exhausted from the gap 30 to the pipe 19 through the opening 31.
  • the heating table 3 may be moved up and down similarly to the apparatus of FIG. 1 in place of the installation of the dancer rollers 28.
  • FIGS. 5A and 5B show still another embodiment of the apparatus for performing the first method, wherein FIG. 5A shows a state before the etching process is started, and FIG. 5B shows a state during the etching process. Are respectively shown.
  • This etching apparatus does not convert the surface 3 a of the heating table 3 into a two-dimensional curved surface, It is flat.
  • the heating table 3 is fixed at a fixed height, and the resin film single material F is brought into close contact with its surface 3a via tension rollers 7,7.
  • the mask frame 10 By moving the mask frame 10 up and down with respect to the surface 3 a of the heating table 3, the mask 4 is brought into close contact, and the mask 4, the resin film single material F and the heating table 3 are brought into close contact with each other. .
  • an etching gas is supplied to the surface side of the mask 4 in the same manner as in the apparatus of FIGS. To be applied.
  • the etching can be performed quickly and with high accuracy without being affected by various conditions such as the type of the resin film and whether or not the perforated hole is a through hole. .
  • the present invention can also be applied to an etching process for a laminated material in which a metal foil is laminated on a resin film.
  • the heating table is brought into close contact with the metal foil side
  • the mask is brought into close contact with the resin film side
  • etching is performed from the mask side.
  • the transfer method of the material to be processed is a reel-to-reel reel take-up type.
  • the present invention is not limited to this. You may use it.
  • FIG. 6 shows still another embodiment of the apparatus for performing the first method.
  • the etching apparatus of FIG. 1 is further provided with etching stopping means 40.
  • the etching stop means 40 is provided with windows 45a and 45b on both outer walls of the processing chamber 17 respectively, and an infrared light source 41 and a prism 42 for spectroscopy outside one of the windows 45a.
  • the receiver 43 is installed outside the other window 45b.
  • the light receiver 43 is connected to a control device 47, and the control device 47 further includes a drive unit for the on-off valve of the raw material gas introduction pipe 12 and a microwave. It is connected to the drive of oscillator 16.
  • the prism 42 rotates left and right about the axis 44, and according to the rotation angle, separates monochromatic light of a specific wavelength from the infrared light emitted from the infrared light source 41, and converts the monochromatic light.
  • Light is emitted from the window 45 a into the processing chamber 17.
  • the projected monochromatic light passes through the light emitting layer 46 formed on the upper surface area of the mask 4, passes through the opposite window 45b, and is received by the light receiver 43.
  • 7A to 7C illustrate the light emitting layer 46 generated by gas etching.
  • the light-emitting layer 46 is a cloud-like layer of the reaction product gas generated when the resin film F as the material to be processed is etched by the reactive gas species R of the etching gas.
  • FIG. 7 (B) shows the intermediate state
  • FIG. 7 (C) shows the final state.
  • the resin film single material F is, for example, a polyimide film
  • its constituent elements are carbon (:, hydrogen H, oxygen II, nitrogen N, etc.)
  • the reaction product gas Gx consists C0 2, H 2 0, mixed-gas composition of NO 2 and the like. Therefore the progress of the etching process, these reaction raw formed
  • the gas Gx forms a light emitting layer 46 with a thickness of several mm that emits light of a specific wavelength for each gas by dissipating energy during radical chemical reaction in the upper surface area of the mask 4.
  • This light emitting layer 4 6 Although the color varies depending on the gas composition, it is light in the visible light range to the ultraviolet light range, and emits light that normally shines from purple to pink violet in visible light.
  • the mixed gas of the light-emitting layer 46 absorbs only light of a specific wavelength; I, and absorbs a larger amount of light as its concentration (amount of generation) increases. Therefore, when the prism 42 is rotated left and right to irradiate the light-emitting layer 46 successively with different wavelengths, the amount of reaction product gas generated is detected based on the amount received by the light receiver 43. be able to.
  • the etching process is in the final state of Fig. 7 (C)
  • the generation of reaction product gas is larger than in the initial state of Fig. 7 (A) and the middle state of Fig. 7 (B). Since the amount has been drastically reduced, the drastic decrease in the amount of generated reaction product gas can be easily detected by the light receiver 43.
  • the signal detected by the photodetector 43 is input to the controller 47, which outputs a signal to the drive unit of the open / close valve of the source gas introduction pipe 12 and the drive unit of the microwave oscillator 16. To stop etching.
  • the etching stopping means 40 detects the drastic decrease in the amount of reaction product gas by infrared spectroscopy and stops the etching, the stop control of the perforation can be easily and accurately performed.
  • the term “etching stop based on the detection of a drastic change in the amount of reaction product gas generated” is not limited to stopping the etching at the same time as the detection of the drastic decrease, but stopping the etching at a certain time after the detection of the drastic decrease. Including doing.
  • the fixed time generally means several tens of seconds.
  • FIG. 8 illustrates an apparatus for implementing the second method of the present invention.
  • the apparatus shown in FIG. 1 is gas-etched by superimposing a resin film F X that generates a gas different from the resin film single material F on a resin film single material F to be processed. For this reason, on the side where the unwinding reel 1 that unwound the untreated resin film F alone was installed, an unwinding reel 47 that unwound a different type of resin film Fx was installed, and the untreated resin film F was wound. On the side where the take-up reel 2 to be taken is installed, a take-up reel 48 for taking up the treated different resin film Fx is provided.
  • Unwind reel 4 7 and take-up reel 4 8 It is intermittently driven in synchronization with the take-up reel 2, and is set on the heating table 3 so that different types of resin films FX are stacked under the resin film F of the material to be processed, and conveyed. Has become.
  • gas etching is performed in a vacuum atmosphere. That is, the resin film unit material F and the dissimilar resin film Fx, which are superimposed on each other, are sandwiched between the mask 4 and the heating table 3 so as to be in close contact with each other, and the side of the mask 4 is etched into the fine holes 4a. Gas etching is performed via the. By such a treatment, etching can be performed quickly and with high precision without being affected by various conditions such as the type of the resin film and whether or not the perforated hole is a through hole.
  • FIG. 9 illustrates another embodiment of an apparatus for carrying out the second method of the present invention.
  • This embodiment provides an etching stop means 40 similar to that of FIG. 6 for the apparatus of FIG. It is a thing.
  • the gas etching process is performed as shown in Figs. 10 (A), (B), and (C). Done in That is, each of FIGS. 10A and 10B shows an initial state where etching is started, FIG. 10B shows an end state thereof, and FIG. 10C shows a state where etching of a different resin film FX is started.
  • the dissimilar resin film F X one that generates a reaction product gas having a composition different from that of the resin film single material F as the material to be treated is used.
  • the resin film F to be treated is a polyimide film
  • a polyvinylidene chloride containing chlorine or a polyethylene sulfate containing sulfur is used.
  • the appearance of the specific wavelength 3 is because the reaction product gas G 3 having a composition different from that of the reaction product gas G,, G 2 generated from the resin film single material F based on the heterogeneous resin film FX,
  • the photodetector 43 of the etching stopping means 40 detects this, the on / off valve of the raw material gas introduction pipe 12 is closed via the control device 47, and the operation of the microwave oscillator 16 is stopped to perform the etching operation. Stop.
  • the stopping of the etching operation based on the detection of the drastic change in the composition of the reaction product gas Gx may be performed simultaneously with the detection of the drastic change, or may be performed after a certain time has elapsed.
  • the fixed time is generally several tens of seconds.
  • etching apparatus of FIG. 8 not provided with the etching stopping means 4 0, but the upheaval of the composition of the reaction product gas Gx can not automatically detected emission layer that a particular wavelength lambda 3 to the appearance of the reaction product gas G 3 4 6 Since the color changes, the etching can be stopped by visually observing the color.
  • the single-wafer mask 4 may be replaced with a continuous band-shaped mask 4 as shown in FIG. Suffered
  • the transfer method of the processing material may be a single-wafer method instead of the reel-to-reel reel winding method.
  • the mask 4 used in the present invention is most susceptible to the effect of the catalytic action because it is brought into close contact with the material to be processed during gas etching. That is, if the mask is composed of a metal foil having a catalytic action such as nickel Ni, iron Fe, chromium Cr, etc., the reactive active gas species of the etching gas (oxygen radicals, hydrogen radicals, fluorine radicals, chlorine radicals) ) Recombine, the concentration of the reactive active gas species is drastically reduced, and there is a problem that the drilling speed is reduced.
  • a non-catalytic Aruminiu ⁇ A 1, silicon oxide S i ⁇ 2 material such as the reaction of active gas species, it is possible to prevent a decrease in drilling speed.
  • aluminum A 1, silicon oxide S i ⁇ 2 uses strength and thermal expansion Advantageously metallic material, a etc. glass material or Ceramic material as the main material, used as a coating material on the surface of the main member Is preferred.
  • the device components other than the mask, such as the heating table be made of aluminum rather than stainless steel SUS containing nickel Ni, iron Fe, chromium Cr, or the like.
  • Aluminum, by oxygen the radical Le is because forming a chemically stable, and dense aluminum oxide A 1 2 0 3 coating on the surface thereof.
  • the aluminum oxide film is stable to hydrogen radicals and fluorine radicals at a predetermined temperature or lower, and can withstand a long period of time.
  • FIG. 13 shows an example of an apparatus for performing the third method of the present invention.
  • a laminated material Fa in which a metal foil is laminated on a resin film and an opening pattern for etching is formed on the metal foil is used. are doing.
  • the laminated material Fa is set such that the metal foil side on which the opening pattern for etching is formed faces the etching gas supply unit 5 and the opposite resin film side is in close contact with the heating table 8. In this state, the metal foil side of the laminated material Fa is subjected to gas etching under a vacuum atmosphere.
  • the feature is that no mask is provided because the metal foil functions as a mask. Although a mask is not provided in this manner, the metal foil has an opening pattern for etching, and the resin film is etched through the opening pattern for etching. The etching can be performed quickly and accurately without being affected by various conditions such as the type of the film and whether or not the perforated hole is a through hole.
  • the metal foil is a material that is easily oxidized by oxygen radicals, such as copper foil, for example, gold plating or gold deposition that does not attack the surface of the metal foil by oxygen radicals and has no catalytic action is used. It is preferable to apply.
  • FIG. 14 shows another embodiment of an apparatus for performing the third method of the present invention.
  • an etching stop means 40 is provided in the apparatus shown in FIG.
  • the stop control of the etching operation can be easily and accurately performed by detecting a drastic change in the amount of the reaction product gas generated.
  • the etching stop means 40 is not provided in the apparatus of FIG. 13, the etching is stopped by visually detecting a sharp decrease in the amount of the reaction product gas G x similarly to the apparatus of FIG. 1 described above. Can be.
  • the apparatus shown in FIGS. 13 and 14 also uses a flat heating table 8 as shown in FIG.
  • the processing material may be transferred in a single-wafer manner.
  • a reel 47 and a take-up reel 48 may be provided so that a different kind of resin film FX is overlapped on the laminated material Fa of the material to be processed and etched.
  • the gas etching may be stopped by detecting the composition of the reaction product gas GX generated from the heterogeneous resin film FX.
  • etching it is possible to perform etching quickly and accurately without being affected by various conditions such as the type of resin film and whether or not a hole to be etched is a through hole.
  • a highly versatile etching can be performed.
  • the stop control of the perforation is easily and accurately performed.
  • a mask or other device component is made of a material that is non-catalytic with respect to the reactive active gas species of the etching gas, the perforation rate due to recombination of the reactive active gas species of the etching gas is reduced. The drop can be prevented.
  • a polyimide film single material (“UPILEX” manufactured by Ube Industries, Ltd.) having a thickness of 50 zm was plasma-etched with oxygen radicals using the etching apparatus shown in Fig. 1 under the following processing conditions.
  • the treated polyimide film alone has an average taper angle at which the average diameter at the upper surface is 60 m and the diameter decreases toward the lower surface side, compared to the diameter of the metal mask etching opening of 50 m.
  • a large number of tapered through-holes with an angle of 17 ° could be obtained.
  • the variation in the diameter on the top surface of the film is not more than 10% of the target diameter of soil, and the hole wall inclination angle is within the target range of 15 to 45 degrees, which is suitable for practical use. Was. No residue was found in any of the drilled through holes.
  • Metal mask 50 m thick stainless steel SUS 304 plate
  • Heating table Surface radius of curvature 800 mm
  • the diameters of the etching openings were 75 m, 100 m / zm, 150 m, 200 m, and 250 m, respectively.
  • the same polyimide film single material was etched under the same conditions as in Example 1 (Examples 2 to 6).
  • the variation in diameter at the upper surface of the polyimide film was ⁇ 10% or less of the target diameter, and the hole wall inclination angle was in the range of 15 to 45 degrees of the target. It was suitable for practical use.
  • each component was made of the following materials, and a 50 / m-thick polyimide film ("UPILEX” manufactured by Ube Industries, Ltd.) was treated with oxygen radicals under the following processing conditions. Plasma etching was performed until the hole penetrated.
  • UPILEX polyimide film
  • the above (a) to (k) show masks made of the following materials in which openings for etching having a diameter of 150 ⁇ m are formed at a pitch of 1 mm.
  • the etching speed is shown as a relative magnification based on the mask in (a).
  • Microwave transmission plate 14 4 quartz glass material
  • Source gas inlet tube 1 2 Aluminum material
  • Etching gas supply unit 5 Aluminum material
  • Plasma forming gas flow rate 1 000 m 1 / min
  • Raw material gas oxygen and water vapor
  • Microwave power 2 kw (maximum 5 kw)
  • the etching rate of the SUS430 material containing 8% Ni is about twice that of the SUS430 material containing no Ni.
  • SUS 304 material and S US 4 30 material together, the dense C r 2 0 3 coating was formed, and to prevent consumption of oxygen radicals sealed inhibitory oxidation to internal mask material by oxygen radicals but because during coating of SUS 304 material containing the N i having a catalytic action, [0] + [0] ⁇ 0 2 results in recombination reactions, in internal mask vicinity and the mask holes, effective This is because the number of oxygen radicals decreases.
  • the etching rate of Invar containing Ni which is about 5 times that of stainless steel SUS 304, is about 1 Z3 or less. This is because oxygen radicals This is because, in addition to having a large Ni content that has a catalytic action to recombine the oxides by etching, there is no formation of a dense passive film of Cr 2 O s that prevents the progress of internal oxidation.
  • an etching rate about 10 times as high as that of the coated SUS 304 material can be obtained.
  • the gas dispersion plate is made of SUS.
  • the etching rate is reduced by half. This is presumably because oxygen radicals generated in the plasma chamber 11 recombine due to the catalytic action of the SUS304 gas dispersion plate, and thus the oxygen radical concentration used for etching is reduced.
  • the etching rate is reduced to a range of about 65% to 95% of the maximum etching rate and the variation is increased. This is because if a hole penetrates through the resin film in the final stage of etching, the heating table was not directly in contact with the oxygen radicals, so the oxygen radicals effectively acted and etching was performed at high speed. This is thought to be because the SUS304 material catalyzes the oxygen radical contact.
  • the material to be treated ⁇ the material penetrated in 5 minutes, and in the case of the material to be treated 2, the material penetrated in 12 minutes.
  • the accuracy of the through-holes in each of Examples 18 and 19 was the same as in Example 1 except that the diameter variation was ⁇ 10% or less of the target diameter, and the hole wall inclination angle was the target. It is in the range of 16 to 45 degrees and is suitable for practical use.
  • Material to be treated Aluminum foil with a diameter of 100m provided with through-holes with a diameter of 100m and a polyimide film with a thickness of 50m (made by Ube Industries, Ltd.) Iupirex ”) and laminated materials
  • Material to be treated SUS304 foil with a thickness of 200 / m and a through-hole with a diameter of 100 / m in a given burner, and poly-imide film with a thickness of 50 / zm (Ube Laminated material with "UPILEX” manufactured by Kosan Co., Ltd.
  • Heating table Surface radius of curvature 800 mm Heating temperature: 200 ° C

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • ing And Chemical Polishing (AREA)
  • Laminated Bodies (AREA)

Abstract

Either one of laminate materials formed by laminating metal foils on a resin film element material and a resin film is used as an untreated material (F), a heating table (3) is brought into close contact with one-side surface and an etching opening pattern-formed mask (4) is brought into close contact with the opposite-side surface so as to sandwich the untreated material (F) therebetween, and the untreated material is gas-etched from the mask (4) side under a vacuum atmosphere with the close contact conditions maintained.

Description

明 細 書 樹脂フィルムの乾式ェッチング方法及びその装置 技術分野  Technical Field Dry etching method and apparatus for resin film
本発明は、 樹脂フイルムの乾式エッチング方法及び装置に関し、 更に詳 しくは、 F P C (Flexible Printed Circui t) 基板などに用いられる樹 脂フィルムの表面をガスエッチングする方法及び装置に関する。  The present invention relates to a method and an apparatus for dry etching of a resin film, and more particularly to a method and an apparatus for gas etching the surface of a resin film used for an FPC (Flexible Printed Circuit) substrate or the like.
背景技術  Background art
周知のように、 情報通信機器の小型軽量化に伴い I Cチップ基板の薄肉 多層化が進み、 その薄肉多層化のため、 特に F P C用基板材料には樹脂フ ィルムが使用されるようになっている。 このように基板材料に使用される 樹脂フイルムのうちでも、 特にポリイミ ドフィルムは、 化学的特性 (耐薬 品性) 、 熱的特性 (熱可塑性、 耐熱性) 、 電気的特性 (誘電率、 絶縁抵抗 率) 、 物理的特性 (吸水率、 寸法安定性、 熱膨張係数) 及び機械的特性 (引張強度、 耐折強度) が優れているため広く使用されいる。 昨今では、 耐吸水性や耐膨潤性に優れた液晶性ポリエステルゃポリフヱニレンサルフ アイ ド (P P S ) 等の樹脂フイルムも使用されるようになっている。 かかる F P C基板用の樹脂フィルムは、 樹脂フィルム単体のままで使用 される場合と、 樹脂フィルムに金属箔をラミネートした積層材にして使用 される場合とがある。 いずれの場合も、 その樹脂フイルムにビィァホール (貫通孔) 又はブラインドホール (非貫通孔) が穿孔加工されている。 従 来、 このような樹脂フイルムに対する穿孔方法には、 機械的、 物理的又は 化学的な多数の穿孔方法が提案されている。 しかし、 いずれの方法も、 ビ ィァホールしか穿孔できなかったり、 ビィァホールとブラインドホールの 両方を穿孔できたとしても、 迅速かつ高精度に穿孔することができなかつ たり、 特定の種類の樹脂フイルムにしか穿孔できなかったりする制約があ つたため、 汎用性に欠ける欠点があった。 As is well known, as information communication devices become smaller and lighter, IC chip substrates are becoming thinner and more multilayered, and resin films are increasingly being used for FPC board materials, especially for thinner multilayers. . Among the resin films used for the substrate material, polyimide film in particular has chemical properties (chemical resistance), thermal properties (thermoplasticity, heat resistance), and electrical properties (dielectric constant, insulation resistance). Rate), physical properties (water absorption, dimensional stability, coefficient of thermal expansion) and mechanical properties (tensile strength, bending strength) are widely used. In recent years, resin films such as liquid crystalline polyester polyphenylene sulfide (PPS) having excellent water absorption and swelling resistance have been used. Such a resin film for an FPC board may be used as a resin film alone or as a laminated material obtained by laminating a metal foil on a resin film. In each case, via holes (through holes) or blind holes (non-through holes) are formed in the resin film. Conventionally, many mechanical, physical or chemical perforation methods have been proposed as perforation methods for such resin films. However, in either method, even if only a via hole can be drilled, or if both a via hole and a blind hole can be drilled, it is not possible to drill quickly and accurately. In addition, there was a limitation that it could only pierce a specific type of resin film, and it lacked versatility.
また、 ガスエッチングによる穿孔方法の場合には、 穿孔作業の停止制御 が難しく、 その不適切な停止制御のために穿孔精度が低下する問題があつ た。 また、 プラズマエッチングの場合は、 穿孔に供給される反応性活性ガ ス種 (ラジカル) が装置自体の触媒作用によって再結合するため、 穿孔速 度が低下するという欠点があつた。 発明の開示  Further, in the case of the drilling method using gas etching, it is difficult to control the stop of the drilling operation, and there is a problem that the drilling accuracy is reduced due to the inappropriate stop control. In addition, in the case of plasma etching, the reactive gas species (radicals) supplied to the perforation recombine due to the catalytic action of the apparatus itself, so that there is a disadvantage that the perforation speed is reduced. Disclosure of the invention
本発明の第 1の目的は、 穿設する孔が貫通孔であるか否かや樹脂フィル ムの種類の如何を問わず、 迅速かつ高精度に穿孔することができる汎用性 の高い樹脂フイルムの乾式エッチング方法及び装置を提供することにある 本発明の第 2の目的は、 穿孔の停止制御を容易、 かつ正確に行える樹脂 フィル厶の乾式ェッチング方法及び装置を提供することにある。  A first object of the present invention is to provide a highly versatile resin film that can be quickly and accurately drilled regardless of whether the hole to be drilled is a through hole or the type of resin film. A second object of the present invention is to provide a method and an apparatus for dry etching of a resin film which can easily and accurately control the stop of perforation.
本発明の第 3の目的は、 エッチングガスの反応性活性ガス種の再結合に よる穿孔速度の低下を防止する樹脂フィル厶の乾式ェッチング装置を提供 す ことにある。  A third object of the present invention is to provide a dry etching apparatus for a resin film, which prevents a reduction in perforation rate due to recombination of reactive active gas species of an etching gas.
本発明は、 上記第 1の目的を達成するため、 次の 3通りの樹脂フィルム の乾式ェッチング方法を提供する。  The present invention provides the following three dry etching methods for a resin film in order to achieve the first object.
第 1の方法は、 樹脂フィルム単体材及び樹脂フイルムに金属箔を積層し た積層材のいずれかを被処理材とし、 該被処理材を挟むように片側の表面 に加熱テーブルを密接すると共に、 反対側の表面にエッチング用開ロパタ ーンを形成したマスクを密接させ、 該密接状態を保ちながら前記被処理材 を真空雰囲気下で前記マスク側からガスェッチングすることを特徴とする ものである。  In the first method, either a resin film alone or a laminated material obtained by laminating a metal foil on a resin film is used as a material to be treated, and a heating table is closely attached to one surface so as to sandwich the material to be treated, A mask having an opening pattern for etching formed on the opposite surface is closely contacted, and the material to be processed is gas-etched from the mask side in a vacuum atmosphere while maintaining the close contact state.
第 2の方法は、 樹脂フィルム単体材を被処理材として、 該被処理材に該 被処理材とは異種のガスを発生する異種樹脂フィルムを重ね合わせた状態 にし、 該異種樹脂フィル厶側の表面に加熱テーブルを密接させると共に、 前記被処理材側の表面にェッチング用開口パターンを形成したマスクを密 接させ、 該密接状態を保ちながら前記被処理剤材を真空雰囲気下で前記マ スク側からガスエッチングすることを特徴とするものである。 In a second method, a resin film simple substance is used as a material to be treated, and the material to be treated is A different resin film that generates a different kind of gas from the material to be treated is superposed, a heating table is brought into close contact with the surface of the different resin film, and an opening pattern for etching is formed on the surface of the material to be treated. The formed mask is brought into close contact, and the material to be treated is gas-etched from the mask side in a vacuum atmosphere while maintaining the close contact state.
第 3の方法は、 樹脂フィル厶の片面にェッチング用開ロパタ一ンを形成 した金属箔を積層した積層材を被処理材とし、 該被処理材の前記樹脂フィ ル厶側の表面に加熱テーブルを密接させ、 該密接状態を保ちながら前記被 処理材の前記金属箔側を真空雰囲気下でガスエツチングすることを特徴と するものである。  In a third method, a laminated material in which a metal foil having an opening pattern for etching formed on one side of a resin film is laminated is a material to be treated, and a heating table is provided on the surface of the material to be treated on the resin film side. The metal foil side of the material to be treated is subjected to gas etching in a vacuum atmosphere while maintaining the close contact state.
また、 本発明は、 第 1の目的達成すのため、 次の 3通りの樹脂フイルム の乾燥ェッチング装置を提供する。  In addition, the present invention provides the following three types of resin film drying and etching apparatuses to achieve the first object.
第 1の装置は、 内部を真空可能にする処理室と、 該処理室の内部に設置 されたェッチングガス供給部と、 該エツチングガス供給部のガス流出口を 覆うように装着されたエッチング用開口パターンを形成したマスクと、 前 記処理室の内部に可動自在に設置された加熱テーブルとからなり、 該加熱 テーブルが樹脂フィルムを主材とする被処理材の片面に密接すると共に、 前記マスクが前記被処理材の反対側に密接するようにした、 樹脂フィル厶 の乾式ェッチング装置を特徴とするものである。  The first apparatus includes: a processing chamber that enables the inside to be evacuated; an etching gas supply unit installed in the processing chamber; and an etching opening pattern mounted to cover a gas outlet of the etching gas supply unit. And a heating table movably installed inside the processing chamber, wherein the heating table is in close contact with one surface of a material to be processed mainly composed of a resin film, and the mask is It is characterized by a dry etching device for resin film, which is in close contact with the opposite side of the material to be treated.
第 2の装置は、 内部を真空可能にする処理室と、 該処理室の内部に設置 されたエツチングガス供給部と、 前記ェッチングガス供給部のガス流出口 を覆うように装着されたエッチング用開口パターンを形成したマスクと、 前記処理室の内部に可動自在に設置された加熱テーブルとからなり、 被処 理材の樹脂フイルム単体材と該樹脂フイルム単体材とは異種のガスを発生 する異種樹脂フイルムとを重ね合わせた両材料に対し、 前記加熱テーブル が前記異種樹脂フイルムに密着すると共に、 前記マスクが前記被処理材に 密接するようにした、 樹脂フィルムの乾式ェッチング装置を特徴とするも のである。 The second apparatus includes: a processing chamber that enables the inside to be vacuumed; an etching gas supply unit installed inside the processing chamber; and an etching opening pattern mounted to cover a gas outlet of the etching gas supply unit. And a heating table movably installed inside the processing chamber, and a resin film as a material to be processed and a different resin film that generates a different gas from the resin film as a single material. The heating table is in close contact with the dissimilar resin film, and the mask is It is characterized by a resin film dry-etching device that is in close contact.
第 3の装置は、 内部を真空可能にする処理室と、 該処理室の内部に設置 されたエッチングガス供給部と、 前記処理室の内部に可動自在に設置され た加熱テーブルとからなり、 樹脂フィルムの片面にエッチング用開ロパタ ーンが形成された金属箔を積層した積層材を被処理材として、 該被処理材 の前記樹脂フィル厶側に前記加熱テーブルが密接するようにし、 前記金属 箔側を前記ェッチングガス供給部のガス流出口に臨ませるようにした、 樹 脂フイルムの乾式エッチング装置を特徴とするものである。  The third apparatus includes a processing chamber that allows the inside to be evacuated, an etching gas supply unit that is installed inside the processing chamber, and a heating table that is movably installed inside the processing chamber. A laminated material obtained by laminating a metal foil having an opening pattern for etching formed on one side of a film is used as a material to be treated, and the heating table is brought into close contact with the resin film side of the material to be treated. A resin film dry etching apparatus characterized in that a side thereof faces a gas outlet of the etching gas supply section.
上記した第 1〜3の方法及び装置は、 いずれも被処理材の樹脂フイルム を真空雰囲気下でガスエッチングする。 第 1及び第 2の方法及び装置では、 被処理材の片側に加熱テーブルを密接させた状態にすることで、 反対側の マスクを被処理材の樹脂フィル厶に密接させ、 そのマスク側をエッチング する。 第 3の方法及び装置は、 被処理材としてエッチング用開口パターン をもつ金属箔を積層した積層材を使用し、 この積層材の樹脂フィルム側に 加熱テーブルを密接させた状態にすることで、 反対の金属箔で覆われた側 を緊張させてガスエッチングする。  In each of the first to third methods and apparatuses described above, the resin film of the material to be processed is gas-etched in a vacuum atmosphere. In the first and second methods and apparatuses, the heating table is brought into close contact with one side of the material to be processed, whereby the mask on the opposite side is brought into close contact with the resin film of the material to be processed, and the mask side is etched. I do. The third method and apparatus use a laminated material in which a metal foil having an opening pattern for etching is laminated as a material to be processed, and a heating table is brought into close contact with the resin film side of the laminated material. Gas etching is performed by tensioning the side covered with the metal foil.
したがって、 いずれの方法も、 被処理材の樹脂フィルムに加熱と緊張を 与えた状態で、 マスク又は金属箔に設けた開口パターンを介してガスエツ チングするため、 高精度にかつ迅速に穿孔することができる。 また、 貫通 孔であるか否かや樹脂フィル厶の種類の如何にかかわらず、 高精度かつ迅 速な穿孔をすることができる。  Therefore, in any of the methods, gas etching is performed through an opening pattern provided in a mask or a metal foil in a state where a resin film of a material to be processed is heated and tensioned, so that high-precision and quick drilling can be performed. it can. Further, regardless of whether the hole is a through hole or the type of resin film, it is possible to perform high-accuracy and quick drilling.
第 2の目的については、 第 1の方法及び装置では、 マスクのエッチング 用開口から、 また第 3の方法及び装置では、 金属箔のエッチング用開口か ら、 それぞれ放出される反応生成ガスの発生量を検知し、 その検出量が激 減したときにガスエッチングを停止している。 すなわち、 被処理材の穿孔 が完了すると反応生成ガスの発生量は激減するので、 この激減の時期を検 知すれば、 エッチング操作を適切な時点で停止することができる。 第 2の 方法及び装置では、 マスクのエッチング用開口から放出される反応生成ガ スの組成を検知し、 その組成の種類が激変したときガスエツチングを停止 する。 被処理用樹脂フィル厶の穿孔完了時と異種樹脂フィルムの穿孔開始 時とで反応生成ガスの組成が激変するので、 この激変の時期を検知すれば ガスェッチング操作を適切に停止することができる。 Regarding the second object, in the first method and apparatus, the amount of reaction product gas released from the etching opening in the mask, and in the third method and apparatus, from the etching opening in the metal foil, respectively. Gas etching is stopped, and gas etching is stopped when the detected amount decreases sharply. That is, drilling of material to be treated When the etching is completed, the amount of the reaction product gas is drastically reduced. Therefore, if the timing of this drastic decrease is detected, the etching operation can be stopped at an appropriate time. In the second method and apparatus, the composition of the reaction product gas released from the etching opening of the mask is detected, and the gas etching is stopped when the type of the composition changes drastically. Since the composition of the reaction product gas changes drastically between the completion of the perforation of the resin film to be treated and the start of the perforation of the different kind of resin film, the gas etching operation can be appropriately stopped by detecting the time of this drastic change.
第 3の目的については、 第 1及び第 2の装置では、 マスク等の装置構成 材をプラズマ発生室から流出されるエツチングガスの反応性活性ガス種に 対して非触媒性の材料で構成しているので、 反応性活性ガス種の再結合に よる穿孔速度の低下を防止することができる。 図面の簡単な説明  Regarding the third object, in the first and second devices, the components of the device such as the mask are made of a material that is non-catalytic with respect to the reactive active gas species of the etching gas flowing out of the plasma generation chamber. Therefore, it is possible to prevent a reduction in the drilling speed due to the recombination of the reactive active gas species. BRIEF DESCRIPTION OF THE FIGURES
図 1 ( A ) , ( B ) は、 本発明の第 1の方法を実施する装置を示し、 ( A ) はエッチング処理開始前の状態の縦断面図、 (B ) はエッチング処 理中の状態の縦断面図である。  1 (A) and 1 (B) show an apparatus for implementing the first method of the present invention, (A) is a longitudinal sectional view before the start of the etching process, and (B) is a state during the etching process. FIG.
図 2は、 図 1の装置における要部を示す拡大縦断面である。  FIG. 2 is an enlarged vertical section showing a main part of the apparatus of FIG.
図 3は、 図 1の装置におけるマスクの取付け態様を示す平面図である。 図 4は、 本発明の第 1の方法を実施する他の実施形態からなる装置の縦 断面図である。  FIG. 3 is a plan view showing a manner of attaching a mask in the apparatus of FIG. FIG. 4 is a longitudinal sectional view of an apparatus according to another embodiment for performing the first method of the present invention.
図 5 ( A ) ( B ) は、 本発明の第 1の方法を実施する更に他の実施形態 からなる装置の要部を示し、 (A ) はエッチング処理開始前の状態の縦断 面図、 (B ) はエッチング処理中の状態の縦断面図である。  FIGS. 5A and 5B show a main part of an apparatus according to still another embodiment for carrying out the first method of the present invention. FIG. 5A is a longitudinal sectional view showing a state before an etching process is started. (B) is a longitudinal sectional view of the state during the etching process.
図 6は、 本発明の第 1の方法を実施する更に他の実施形態からなる装置 の縦断面図である。  FIG. 6 is a longitudinal sectional view of an apparatus according to still another embodiment for performing the first method of the present invention.
図 7は、 本発明の方法によりガスエッチングされる箇所を示し、 (A) はエッチング開始後の初期状態、 (B ) は中期状態、 (C ) は末期状態の 縦断面図である。 FIG. 7 shows a portion to be gas-etched by the method of the present invention; Is a vertical sectional view of an initial state after the start of etching, (B) is a middle state, and (C) is a terminal state.
図 8は、 本発明の第 2の方法を実施する装置を示す縦断面図である。 図 9は、 本発明の第 2の方法を実施する装置の他の実施形態を示す縦断 面図である。  FIG. 8 is a longitudinal sectional view showing an apparatus for performing the second method of the present invention. FIG. 9 is a longitudinal sectional view showing another embodiment of the apparatus for performing the second method of the present invention.
図 1 0は、 本発明の第 2の方法を実施する装置におけるガスエッチング 箇所を示し、 (A ) はエッチング開始後の初期状態、 (B ) は末期状態、 ( C ) は被処理材とは異種の樹脂フィル厶がエッチングされる状態をそれ ぞれ示す縦断面図である。  FIG. 10 shows gas etching locations in an apparatus for performing the second method of the present invention. (A) is the initial state after the start of etching, (B) is the final state, and (C) is the material to be processed. It is a longitudinal cross-sectional view which shows the state in which different kinds of resin films are etched, respectively.
図 1 1は、 本発明の第 2の方法を実施する装置における反応生成ガスの ピーク形成態様を示す説明図である。  FIG. 11 is an explanatory diagram showing a peak formation mode of a reaction product gas in an apparatus for performing the second method of the present invention.
図 1 2は、 本発明の第 1の方法を実施する装置における反応生成ガスの ピーク形成態様を示す説明図である。  FIG. 12 is an explanatory diagram showing a peak formation mode of a reaction product gas in an apparatus for performing the first method of the present invention.
図 1 3は、 本発明の第 3の方法を実施する装置を示す縦断面図である。 図 1 4は、 本発明の第 3の方法を実施する装置の他の実施形態を示す縦 断面図である。  FIG. 13 is a longitudinal sectional view showing an apparatus for performing the third method of the present invention. FIG. 14 is a longitudinal sectional view showing another embodiment of the apparatus for performing the third method of the present invention.
図 1 5は、 本発明に係るエッチング装置のマスク、 加熱テーブル及びガ ス拡散板の材料を異ならせた場合のェッチング速度を示すグラフである。 発明を実施するための最良の形態  FIG. 15 is a graph showing the etching speed when the materials of the mask, the heating table, and the gas diffusion plate of the etching apparatus according to the present invention are different. BEST MODE FOR CARRYING OUT THE INVENTION
本発明において、 ガスエッチングを行う被処理材である樹脂フイルムの 態様としては、 樹脂フィルム単体材であってもよく、 或いは樹脂フィルム に金属箔を積層した積層材であってもよい。 本発明の第 3の発明に供する 被処理材は、 上記のうちの積層材であるが、 その金属箔にエッチング用の 開口パターンを設けた積層材を使用する。 積層材に積層される金属箔の材 料は特に限定されるものではなく、 一般には銅が使用される。 樹脂フィル ムは特に限定されるものではなく、 いずれも対象にすることができる。 例 えば、 F P C基板用の樹脂フイルムには、 ポリイミ ドフイルムの場合が多 い。 そのほか液晶ポリエステルフィルム、 ポリフヱニレンサルファイ ドフ ィルム等も対象にすることができる。 In the present invention, the resin film as the material to be subjected to the gas etching may be a resin film alone or a laminated material obtained by laminating a metal foil on a resin film. The material to be treated according to the third invention of the present invention is the above-mentioned laminated material, but a laminated material having an opening pattern for etching provided on the metal foil is used. The material of the metal foil laminated on the laminated material is not particularly limited, and copper is generally used. Resin fill The system is not particularly limited, and any can be targeted. For example, resin films for FPC boards are often polyimide films. In addition, liquid crystal polyester films, polyphenylene sulfide films, etc. can also be used.
本発明の第 1の方法及び第 2の方法では、 被処理材の片側に加熱テープ ルを密接させ、 反対側の樹脂フイルムに、 エッチング用開口パターンをも つマスクを密接させ、 そのマスク側をガスエッチングする。 被処理材の片 側に加熱テーブルを密接させるのは、 反対側のマスクを樹脂フィル厶に良 好な密接状態に維持するようにすることと、 樹脂フィル厶を加熱するため である。 マスクを樹脂フィルムに良好な密接状態に維持することで、 マス クの開口パターンにエッチングガスを均一に分散させ、 穿孔精度を向上す ることができる。 また、 樹脂フィルムを加熱することでエッチング速度を 高め、 迅速な穿孔を可能にする。  In the first method and the second method of the present invention, a heating table is brought into close contact with one side of a material to be processed, a mask having an opening pattern for etching is brought into close contact with a resin film on the opposite side, and the mask side is placed in contact with the mask. Perform gas etching. The heating table is brought into close contact with one side of the material to be processed in order to keep the mask on the opposite side in good contact with the resin film and to heat the resin film. By maintaining the mask in good contact with the resin film, the etching gas can be evenly dispersed in the mask opening pattern, and the perforation accuracy can be improved. Also, by heating the resin film, the etching rate is increased, enabling rapid drilling.
本発明の第 3の方法では、 積層材の樹脂フィルム側に加熱テーブルを密 接させ、 エッチング用開口パターンを設けた金属箔側をガスエッチングす る。 このように積層材の樹脂フィルム側に加熱テーブルを密接させるのは、 加熱テーブルにより樹脂フィルムを加熱するためである。 この加熱により エッチング速度を高め、 迅速な穿孔を可能にする。 また、 金属箔にエッチ ング用開口パターンが形成されているので、 マスクを使用せずに精度の高 いエッチングをすることができる。 すなわち、 金属箔にエッチング用開口 パターンを形成した積層材を被処理材とすることにより、 その金属箔がマ スクと同等の機能を有しているので、 マスクの使用が省略できるのである c 加熱テーブルの加熱温度としては、 樹脂フイルムの種類にもよるが、 1 5 0 X:〜 3 5 0 °Cの範囲が好ましい。 このような加熱温度により、 樹脂フ ィルムを溶融若しくは変形させることなく高速ェッチングすることができ る o ガスエッチングの停止制御については、 被処理用樹脂フィル厶がガスェ ッチング操作中に発生する反応生成ガスの量を検知すれば、 その発生量の 変化を利用することにより正確に行うことができる。 すなわち、 本発明の 第 1の方法や第 3の方法では、 樹脂フイルムがガスエッチングされている 間は反応生成ガスの発生量が大量であるが、 穿孔を完了すると激減するの で、 この発生量が激減したときガスエツチングを停止することで高い穿孔 精度にすることができる。 In the third method of the present invention, a heating table is brought into close contact with the resin film side of the laminate, and gas etching is performed on the metal foil side provided with the etching opening pattern. The reason why the heating table is brought into close contact with the resin film side of the laminated material is to heat the resin film by the heating table. This heating increases the etching rate and enables rapid drilling. Further, since the etching opening pattern is formed in the metal foil, highly accurate etching can be performed without using a mask. That is, by the laminate forming an etched opening pattern in the metal foil and the material to be treated, since the metal foil has a mask function equivalent, c heating use of the mask is to be omitted The heating temperature of the table depends on the type of the resin film, but is preferably in the range of 150 ° C. to 350 ° C. With such a heating temperature, high-speed etching can be performed without melting or deforming the resin film.o The stop control of gas etching can be accurately performed by detecting the amount of reaction product gas generated during the gas etching operation of the resin film to be processed by utilizing the change in the generated amount. That is, in the first method and the third method of the present invention, a large amount of the reaction product gas is generated while the resin film is being gas-etched. When gas etching is sharply reduced, high drilling accuracy can be achieved by stopping gas etching.
本発明の第 2の方法では、 被処理用の樹脂フイルム単体材に、 その樹脂 フィルムのガスエッチング時に発生するガスとは異種のガスを発生する異 種樹脂フイルムを重ね合わせてガスエッチングする。 このように異種樹脂 フイルムを重ね合わせてガスエッチングすると、 被処理用樹脂フイルムが 穿孔完了した後、 次の異種樹脂フィルムの穿孔が開始するとき異種ガスを 発生するので、 その反応発生ガスの組成の激変を検知することで被処理用 の樹脂フィルムの穿孔完了時点を正確に知ることができる。 また、 その検 知によって、 高精度の穿孔をするようにガスエッチングの停止制御を行う ことができる。  In the second method of the present invention, gas etching is performed by superimposing a different resin film that generates a gas different from the gas generated at the time of gas etching of the resin film on the resin film to be processed. When gas etching is performed by superimposing different kinds of resin films in this way, after the perforation of the resin film to be processed is completed, a different kind of gas is generated when the next perforation of the different kind of resin film is started. By detecting a drastic change, it is possible to accurately know the completion time of the perforation of the resin film to be processed. In addition, the stop of the gas etching can be controlled so as to perform high-precision drilling by the detection.
このような異種樹脂フィル厶としては、 被処理用樹脂フィル厶と組成の 異なる反応成形ガスを発生するものであれば特に限定されない。 例えば、 被処理用樹脂フイルムがポリイミ ドフイルムであれば、 異種樹脂フイルム として、 塩素を含有するポリ塩化ビニリデンゃ硫黄を含有するポリエチレ ンサルフヱート (P E S ) 等を使用することができる。  Such a heterogeneous resin film is not particularly limited as long as it generates a reaction molding gas having a composition different from that of the resin film to be treated. For example, if the resin film to be treated is a polyimide film, a chlorine-containing polyvinylidene chloride / sulfur-containing polyethylene sulfate (PES) or the like can be used as the different kind of resin film.
ガスエッチングの方法は特に限定されるものではないが、 好ましくはプ ラズマエツチングで行うのがよい。 プラズマエツチングの場合のプラズマ 形成用ガスとして、 活性酸素や活性水酸基を含有したものを使用するのが よい。 例えば、 酸素と水蒸気との混合ガスが好ましい。 これ以外のプラズ マ形成用ガスとしては、 例えば三弗化メタン C H F 3 ゃシラン S i F 4 等 の活性フッ素を挙げることができる。 The gas etching method is not particularly limited, but is preferably performed by plasma etching. As the plasma forming gas in the case of plasma etching, it is preferable to use a gas containing active oxygen or an active hydroxyl group. For example, a mixed gas of oxygen and water vapor is preferable. Other plasma forming gases include, for example, methane trifluoride CHF 3ゃ silane Si F 4 Activated fluorine.
ガスェッチングは真空雰囲気下で行う必要がある。 真空雰囲気の圧力と しては、 1 3 . 3 P a〜 1 3 3 0 P aが好ましい。 真空雰囲気圧力が 1 3 3 0 P aよりも高レ、と、 マスクと樹脂フィル厶との密接部分でのガスシ一 ルが不十分になり、 その密接部分にエッチングガスが侵入し易くなるため、 穿孔精度を低下させる原因になる。  Gas etching needs to be performed in a vacuum atmosphere. The pressure of the vacuum atmosphere is preferably 13.3 Pa to 1330 Pa. If the vacuum atmosphere pressure is higher than 1330 Pa, the gas sealing at the close part between the mask and the resin film becomes insufficient, and the etching gas easily penetrates into the close part. This may cause a decrease in perforation accuracy.
加熱テーブルは表面形状を二次元曲面にすることが好ましい。 具体的に は、 円柱を中心軸を含む面で二分割したときの片方の分割体の曲面に形成 したものがよい。 加熱テーブルの表面を二次元曲面に形成することにより、 被処理材の表面に皺や隙間を発生させないように均一に密接させることが できる。 また、 加熱テーブルは、 少なく とも表面を磁石で構成すると共に、 マスクを強磁性の金属材料にするとよい。 さらに好ましは、 加熱テーブル の表面をキュリー点 (磁性を失う温度) の高いサマリウム含有コバルト基 をもつ磁石 (永久磁石又は電磁石) で構成すると共に、 マスクを S U S 4 3 0等の強磁性のフェライ ト系ステンレスフオイルにするとよい。 このよ うな構成により、 加熱テ一ブルの磁力でマスクを吸着させて被処理材の密 接度合を一層完全なものにすることができる。  The heating table preferably has a two-dimensional curved surface. Specifically, it is preferable that the cylinder is formed on a curved surface of one of the divided bodies when the cylinder is divided into two by a plane including the central axis. By forming the surface of the heating table into a two-dimensional curved surface, the surface of the material to be processed can be uniformly and closely contacted so as not to generate wrinkles or gaps. In addition, it is preferable that at least the surface of the heating table be made of a magnet and that the mask be made of a ferromagnetic metal material. More preferably, the surface of the heating table is made of a samarium-containing cobalt-based magnet (permanent magnet or electromagnet) having a high Curie point (temperature at which magnetism is lost), and the mask is made of a ferromagnetic ferrite such as SUS430. It is good to use stainless steel oil. With such a configuration, the mask can be attracted by the magnetic force of the heating table, and the degree of close contact of the workpiece can be further improved.
マスクは一般には薄い金属板に多数のエッチング用微細孔からなる開口 パターンを形成することで構成されるが、 その素材は必ずしも金属である 必要はない。 エッチング用微細孔の形状は特に限定されるものではなく、 例えば、 円形、 角形、 溝形などにすることができる。  The mask is generally formed by forming an opening pattern consisting of a large number of etching microholes on a thin metal plate, but the material is not necessarily required to be metal. The shape of the fine holes for etching is not particularly limited, and may be, for example, a circle, a square, a groove, or the like.
マスクを金属材で構成する場合、 その金属材料としては、 エッチングガ スで浸食されない材料であれば特に限定されない。 例えば、 アルミニウム、 ステンレス鋼などを挙げることできる。 しかし、 プラズマエッチングの場 合には、 マスクの金属材料がエッチングガスの反応性活性ガス種 (ラジ力 ル) に対して触媒作用を有するものであると、 穿孔速度を低下させる作用 を行う。 したがって、 マスク用の材料には、 非触媒性の材料を選択するこ とが好ましい。 When the mask is made of a metal material, the metal material is not particularly limited as long as the material is not eroded by the etching gas. For example, aluminum, stainless steel and the like can be mentioned. However, in the case of plasma etching, if the metal material of the mask has a catalytic effect on the reactive active gas species (radial force) of the etching gas, the effect of reducing the perforation speed is obtained. I do. Therefore, it is preferable to select a non-catalytic material for the mask.
非触媒性の材料としては、 アルミニウム A 1や酸化珪素 S i 02 を挙げ ることができる。 しかし、 これらアルミニウムや酸化珪素は、 機械的強度 が低かったり、 高温時の熱膨張係数が大きかったりする問題があるので、 これらの材料は主材ではなく、 表面被覆材として使用するのがよい。 例え ば、 S U S 3 0 4、 S U S 4 3 0などのステンレス鋼、 ァンバ一等の金属 材、 石英ガラス、 アルカリガラスなどのガラス材又はセラミ ック材などを 主材とし、 その表面にアルミニゥ厶又は酸化珪素を被覆するようにする。 被覆方法としては、 塗布、 メツキ、 蒸着又はスパッタリ ングなどの方法で 行えばよい。 The non-catalytic material can Rukoto cited aluminum A 1, silicon oxide S i 0 2. However, aluminum and silicon oxide have problems such as low mechanical strength and high thermal expansion coefficient at high temperatures. Therefore, these materials are preferably used as a surface coating material, not as a main material. For example, the main material is stainless steel such as SUS304, SUS430, metal material such as chamber, glass material such as quartz glass or alkali glass, or ceramic material, and the surface of aluminum or Cover with silicon oxide. As the coating method, a method such as coating, plating, vapor deposition, or sputtering may be used.
マスク以外の加熱テーブル等のェッチングガスが接触する構成部材は、 アルミニウムから構成することが好ましい。 アルミニウムは、 反応性活性 ガス種である酸素ラジカルにより、 その表面に化学的に安定で、 かつ緻密 な酸化アルミニウム A 1 2 0 3 の被膜を形成するからである。 この酸化被 膜は、 水素ガスを分解して得られる水素ラジカルや、 シラン S i F 4 など を分解して得られるフッ素ラジカルに対しても所定の温度以下で安定であ るため、 長期間耐えることができる。 ただし、 酸化珪素 S i 0 2 の場合は、 ステンレス鋼を主材として被覆した場合には、 フッ素ラジカルに対しては 浸食されるため好ましくない。 It is preferable that a component other than the mask, such as a heating table, which is in contact with the etching gas be made of aluminum. Aluminum, by oxygen radicals, which are reactive active gas species, chemically stable on the surface, and because to form a dense aluminum oxide A 1 2 0 3 coating. This oxide film is stable at a predetermined temperature or less even against hydrogen radicals obtained by decomposing hydrogen gas and fluorine radicals obtained by decomposing silane SiF 4 , so that it can withstand a long period of time. be able to. However, if the silicon oxide S i 0 2, when coated with stainless steel as the main material is not preferred because it is eroded for fluorine radicals.
本発明によるエツチング処理は、 樹脂フイルムに穿孔加工する場合に限 定されず、 粗面加工等の表面加工にも適用することができる。  The etching treatment according to the present invention is not limited to the case of perforating a resin film, but can be applied to surface treatment such as roughening.
以下、 本発明を図に示す実施形態を参照して具体的に説明する。  Hereinafter, the present invention will be specifically described with reference to embodiments shown in the drawings.
図 1 ( A) , (B ) は、 本発明の第 1の方法を実施する装置を例示し、 ( A ) はエッチング処理開始前の状態、 (B ) はエッチング処理中の状態 をそれぞれ示している。 処理室 1 7は、 図示しない開閉扉で密閉可能に構成され、 管路 1 9を介 して真空ポンプ 1 8が連結され、 また弁 2 0を介して空気導入管が連結さ れている。 この処理室 1 7の内部は、 弁 2 0を閉弁し、 開閉扉を閉じ、 真 空ポンプ 1 8により内部空気を排気すると、 真空雰囲気になるようになつ ている。 1 (A) and 1 (B) illustrate an apparatus for carrying out the first method of the present invention. FIG. 1 (A) shows a state before the start of the etching process, and FIG. 1 (B) shows a state during the etching process. I have. The processing chamber 17 is configured to be hermetically closed by an opening / closing door (not shown), a vacuum pump 18 is connected via a pipe 19, and an air introducing pipe is connected via a valve 20. The interior of the processing chamber 17 is set to a vacuum atmosphere when the valve 20 is closed, the opening / closing door is closed, and the internal air is exhausted by the vacuum pump 18.
この処理室 1 7の内側上部には、 エッチングガス供給部 5が設けられ、 その下部に加熱テーブル 3が設けられている。 エッチングガス供給部 5に はプラズマ発生室 1 1が設けられ、 そのプラズマ発生室 1 1はマイクロ波 透過板 1 4により上下に仕切られ、 その下部側の室に原料ガス導入管 1 2 、 また上部側の室に導波管 1 3が夫々接続されている。 この原料ガス導 入管 1 2の他端には原料ガスの供給源 (図示せず) が接続され、 導波管 1 3の他端にはマイクロ波発振器 1 6が接続されている。  An etching gas supply unit 5 is provided at an upper portion inside the processing chamber 17, and a heating table 3 is provided at a lower portion thereof. The etching gas supply unit 5 is provided with a plasma generation chamber 11, which is vertically separated by a microwave transmitting plate 14, and a raw gas introduction pipe 12 is provided in a lower chamber and an upper chamber is provided in the upper chamber. Waveguides 13 are connected to the side chambers, respectively. The other end of the source gas inlet tube 12 is connected to a source gas supply source (not shown), and the other end of the waveguide 13 is connected to a microwave oscillator 16.
処理室 1 7の内部を、 例えば 1 3 3 P a程度の真空雰囲気にし、 プラズ マ発生室 1 1に原料ガス導入管 1 2からプラズマ形成用ガス Gを供給する と共に、 マイクロ波発振器 1 6からマイクロ波を伝送すると、 プラズマ形 成用ガス Gが励起分解されて反応性活性ガス種 (ラジカル) を発生する。 この反応性活性ガス種は、 プラズマ発生室 1 1の下部に一定間隔に装着さ れた複数のガス拡散板 1 5から下方へ流出し、 被処理材である樹脂フィル ム単体材 Fのエッチングに供される。  The inside of the processing chamber 17 is made into a vacuum atmosphere of, for example, about 133 Pa, and the plasma generation gas G is supplied to the plasma generation chamber 11 from the raw material gas introduction pipe 12 and the microwave generator 16 is supplied from the microwave generator 16. When microwaves are transmitted, the plasma forming gas G is excited and decomposed to generate reactive active gas species (radicals). The reactive active gas species flows downward from a plurality of gas diffusion plates 15 mounted at regular intervals below the plasma generation chamber 11, and is used for etching the resin film F, which is a material to be processed. Provided.
反応性活性ガス種が流出するエツチング供給部 5のガス流出口にはマス ク 4が取り付けられている。 そのマスク 4には、 図 2に示すように、 多数 のエッチング用微細孔 4 aからなる開口パターンが形成されている。 この マスク 4は、 図 3に示すように、 左右両端を引張りコイルバネ等からなる エキスパンダ 9を介して、 マスクフレーム 1 0に軽い緊張又は適度の弛緩 状態になるように取り付けられている。 また、 マスクフレーム 1 0はエツ チングガス供給部 5のガス流出口に着脱自在に取り付けられている。 加熱テーブル 3は、 エッチングガス供給部 5のガス流出口のマスク 4に 対向するように設置されている。 この加熱テーブル 3はヒー夕 8を埋設し、 このヒ一夕 8により加熱されるようになっている。 また、 加熱テーブル 3 は被処理材の樹脂フィルム単体材 Fに押し当てられる表面 3 a力 円弧状 の二次元曲面に形成されている。 この加熱テーブル 3の少なく とも表面部 分 3 aは、 磁石で構成されている。 A mask 4 is attached to the gas outlet of the etching supply section 5 from which the reactive active gas species flows out. As shown in FIG. 2, the mask 4 has an opening pattern formed of a large number of etching fine holes 4a. As shown in FIG. 3, the mask 4 is attached to the mask frame 10 via an expander 9 composed of a tension coil spring or the like at both left and right ends so as to be in a lightly tensioned or moderately relaxed state. The mask frame 10 is detachably attached to a gas outlet of the etching gas supply unit 5. The heating table 3 is installed so as to face the mask 4 at the gas outlet of the etching gas supply unit 5. The heating table 3 has a heater 8 embedded therein and is heated by the heater 8. The heating table 3 is formed as a two-dimensional curved surface having a surface 3a force pressed against the resin film single material F of the material to be processed. At least the surface portion 3a of the heating table 3 is composed of a magnet.
加熱テーブル 3は下部テーブル軸 2 3により支持固定され、 このテープ ル軸 2 3をァクチユエ一夕 (図示せず) により上下動させることにより昇 降するようになっている。 また、 加熱テーブル 3の側部にはスカート 2 1 が取り付けられ、 処理室 1 7側に固定されたスライダー 2 2に沿って上下 動するようになっている。 スライダー 2 2の下端には間隙 3 0が設けられ、 この間隙 3 0から処理室 1 7内の空気や反応生成ガスが開口 3 1を介して 管路 1 9へ排出されるようになっている。  The heating table 3 is supported and fixed by a lower table shaft 23, and is moved up and down by moving the table shaft 23 up and down by an actuator (not shown). A skirt 21 is attached to the side of the heating table 3 so as to move up and down along a slider 22 fixed to the processing chamber 17. A gap 30 is provided at the lower end of the slider 22, and the air and the reaction product gas in the processing chamber 17 are discharged from the gap 30 to the pipe 19 via the opening 31. .
エッチングガス供給部 5 と加熱テーブル 3とが上下に対向する中間位置 には、 その一方の端部 (左側) に未処理の被処理材である樹脂フイルム単 体材 Fが巻かれた巻出しリ一ル 1 と共に搬送ローラ 6 とテンションローラ 7が設置され、 他方の端部 (右側) にエッチング処理後の樹脂フイルム単 体材 Fを巻き取る巻取りリ一ル 2と共に搬送ローラ 6とテンショ ンローラ 7が設置されている。  At an intermediate position where the etching gas supply section 5 and the heating table 3 are vertically opposed to each other, an unwinding reel in which a resin film single material F as an unprocessed material is wound at one end (left side) is provided. The transport roller 6 and the tension roller 7 are installed together with the transport roller 6 and the tension roller 7 on the other end (right side), and the take-up reel 2 that winds up the resin film unit material F after etching on the other end (right side). Is installed.
巻出しリール 1 と巻取りリール 2は、 それぞれ駆動軸に着脱自在に嵌着 され、 樹脂フィルム単体材 Fの未処理部分を加熱テーブル 3の上にセッ ト するようにする。 そして加熱テーブル 3上の樹脂フィル厶単体材 Fがェッ チング処理を終了すると、 そのエツチングを終了した部分が巻取りリール 2へ送り出されると共に、 巻出しリール 1から新たな未処理部分が加熱テ 一ブル 3の上に引き出されるように間欠移動を行うようになっている。 上述したエツチング装置によると、 被処理材の樹脂フィルム単体材 Fが 以下のようにしてエッチング処理される。 The unwinding reel 1 and the take-up reel 2 are each detachably fitted to the drive shaft, and the unprocessed portion of the resin film single material F is set on the heating table 3. When the resin film F on the heating table 3 has completed the etching process, the portion where the etching has been completed is sent out to the take-up reel 2 and a new unprocessed portion from the unwind reel 1 is heated. It moves intermittently so that it is pulled out over one bull 3. According to the above-described etching apparatus, the resin film single material F to be processed is The etching process is performed as follows.
まず、 処理室 1 7の内部は真空ポンプ 1 8の作動により真空状態にされ る。 図 1 ( A ) のように巻出しリール 1 と巻取りリール 2との間に樹脂フ イルム単体材 Fのセッ トが完了すると、 図 1 ( B ) のように加熱テーブル 3が上昇し、 樹脂フィルム単体材 Fの上面をエッチングガス供給部 5側の マスク 4の下面に密接させる。 マスク 4はマスクフレーム 1 0に軽く緊張 又は弛緩状態に支持されているが、 上記のように加熱テーブル 3が上昇す ると、 表面 3 aが樹脂フィルム単体材 Fの下面に密接した状態になって、 その樹脂フィルム単体材 Fの上面をマスク 4の下面に密接させる。  First, the inside of the processing chamber 17 is evacuated by the operation of the vacuum pump 18. When the setting of the resin film material F between the unwinding reel 1 and the take-up reel 2 is completed as shown in FIG. 1 (A), the heating table 3 is raised as shown in FIG. The upper surface of the single film material F is brought into close contact with the lower surface of the mask 4 on the etching gas supply unit 5 side. The mask 4 is supported by the mask frame 10 in a lightly tensioned or relaxed state.However, when the heating table 3 is raised as described above, the surface 3a comes into close contact with the lower surface of the resin film single material F. Then, the upper surface of the resin film single material F is brought into close contact with the lower surface of the mask 4.
より詳しくは、 図 2に示すように、 加熱テーブル 3が二次元曲面の表面 3 aを樹脂フィル厶単体材 Fを介してマスク 4に押し付けることにより、 樹脂フイルム単体材 Fとマスク 4を湾曲させてマスク 4に張力 Tを発生さ せる。 そのマスク 4は、 樹脂フィルム単体材 Fに対して加熱テーブル 3の 表面 3 aに垂直方向に圧力 Pを作用させる。 従って、 樹脂フィルム単体材 Fは皺や折れ等を発生しないように緊張状態になり、 マスク 4 と樹脂フィ ル厶単体材 Fと加熱テーブル 3とが三者間相互に空隙を形成しないように 密接状態になる。  More specifically, as shown in Fig. 2, the heating table 3 presses the surface 3a of the two-dimensional curved surface onto the mask 4 via the resin film F, so that the resin film F and the mask 4 are curved. To generate a tension T on the mask 4. The mask 4 applies a pressure P to the resin film single material F in a direction perpendicular to the surface 3 a of the heating table 3. Therefore, the resin film single material F is in a tension state so as not to generate wrinkles or breaks, and the mask 4, the resin film single material F and the heating table 3 are closely contacted so as not to form a gap between the three members. State.
このような密接状態で、 原料ガス導入管 1 2からプラズマ形成用ガス G が供給され、 そのプラズマ形成用ガス Gにマイクロ波発振器 1 6のマイク 口波が作用し反応性活性ガス種を発生させる。 樹脂フィルム単体材 Fは加 熱テーブル 3で加熱されながら、 マスク 4のエッチング用微細孔 4 aから 侵入する反応性活性ガス種によってエッチングされる。 このときマスク 4 と樹脂フィル厶単体材 Fと加熱テーブル 3との三者間は相互に空隙を生じ ないように密接しているため、 相互の隙間にエツチングガスが侵入するこ とがない。 そのため樹脂フイルム単体材 Fは、 マスク 4に設けられたエツ チング用微細孔 4 aの開口パターンの部分だけがエッチングされる。 エッチング処理が終ると、 原料ガス導入管 1 2から供給されるプラズマ 形成用ガス Gが停止すると共に、 マイクロ波発振器 1 6の作動も停止する c また、 加熱テーブル 3が図 1 ( A ) に示す中間位置に降下して、 次のエツ チングのため待機する状態になる。 このように加熱テーブル 3が降下する 際、 マスク 4 と樹脂フィルム単体材 Fとの界面は単に密接しているだけで あるので、 マスク 4は樹脂フィル厶単体材 Fから容易に分離することがで きる。 従って、 分離に手間取ることはなく、 エッチングのサイクルを短縮 することができる。 In such a close state, the plasma forming gas G is supplied from the raw material gas introducing pipe 12, and the microphone mouth wave of the microwave oscillator 16 acts on the plasma forming gas G to generate a reactive active gas species. . The resin film single material F is heated by the heating table 3 and is etched by the reactive active gas species entering through the etching fine holes 4 a of the mask 4. At this time, since the three members of the mask 4, the resin film material F, and the heating table 3 are in close contact with each other so as not to form a gap therebetween, the etching gas does not enter the mutual gap. Therefore, only the portion of the opening pattern of the etching microholes 4 a provided in the mask 4 is etched in the resin film single material F. When the etching process is completed, the plasma forming gas G supplied from the raw material gas inlet tube 12 stops and the operation of the microwave oscillator 16 also stops.c The heating table 3 is shown in Fig. 1 (A). The robot descends to the middle position and waits for the next etching. When the heating table 3 descends in this manner, the interface between the mask 4 and the resin film material F is merely in close contact, so that the mask 4 can be easily separated from the resin film material F. Wear. Therefore, it is possible to shorten the etching cycle without taking time for the separation.
次いで、 巻出しリール 1 と巻取りリール 2とが回転し、 エッチング処理 された所定長さの樹脂フイルム単体材 Fが巻取りリ一ル 2に巻き取られ、 巻出しリール 1から次の未処理の樹脂フイルム単体材 Fが引き出されて加 熱テーブル 3上にセッ トされる。 以下、 上述したエッチング工程が次々と 繰り返されてエツチング処理が行われる。  Next, the take-up reel 1 and the take-up reel 2 rotate, and the etched resin film F of a predetermined length is taken up by the take-up reel 2, and the next unprocessed material is taken out from the take-up reel 1. The resin film single material F is pulled out and set on the heating table 3. Hereinafter, the etching process is performed by repeating the above-described etching process one after another.
巻取りリール 2に巻かれた樹脂フィルム単体材 Fの全量がエッチング処 理されると、 加熱テーブル 3は図 1 ( A ) に示される中間位置よりも下方 の最下位置まで降下して待機する。 この状態で、 次の新しい未処理の樹脂 フィル厶単体材 Fを巻き上げた巻出しリール 1を空リールと交換し、 エツ チング済みの樹脂フィル厶単体材 Fが巻き取られた巻取りリ一ル 2を空リ ールと交換する。 そして再び上述した工程を繰り返す。  When the entire amount of the resin film material F wound on the take-up reel 2 has been etched, the heating table 3 is lowered to the lowermost position below the intermediate position shown in FIG. 1 (A) and waits. . In this state, the take-out reel 1 on which the next new unprocessed resin film material F has been wound up is replaced with an empty reel, and the winding reel on which the etched resin film material F has been wound up. Replace 2 with empty reel. Then, the above-described steps are repeated again.
上述したように、 本発明では、 減圧の真空雰囲気中で、 マスク 4 と加熱 テーブル 3の間に樹脂フィルム単体材 Fを互いに密接するように挟み込み、 マスク 4のエッチング用微細孔 4 aの部分だけがガスエッチングされるよ うにしたため、 樹脂フィル厶の種類や穿設孔が貫通孔か否か等の諸条件に 影響されることなく、 迅速かつ高精度にエッチングすることができる。 従 つて、 加工上の自由度が拡大し、 汎用性を一段と高めることができる。 図 4は、 第 1の方法を実施する他の実施形態からなる装置を示す。 このエッチング装置は、 図 1のエッチング装置では枚葉式であったマス クを、 連続帯状式のマスク 4に代えるようにしたものである。 この連続帯 状式のマスク 4は、 加熱テーブル 3とエッチングガス供給部 5とで挟まれ ながら、 左側の巻出しリール 2 6から右側の巻取りリール 2 7へ間欠的に 移送されるようになっている。 As described above, in the present invention, the resin film single material F is sandwiched between the mask 4 and the heating table 3 in a reduced-pressure vacuum atmosphere so as to be in close contact with each other. Since the gas is etched by gas, the etching can be performed quickly and accurately without being affected by various conditions such as the type of the resin film and whether or not the perforated hole is a through hole. Therefore, the degree of freedom in processing is expanded, and versatility can be further enhanced. FIG. 4 shows an apparatus according to another embodiment for implementing the first method. In this etching apparatus, a mask which is of a single wafer type in the etching apparatus of FIG. 1 is replaced with a continuous band type mask 4. The continuous band-shaped mask 4 is intermittently transferred from the left unwinding reel 26 to the right winding reel 27 while being sandwiched between the heating table 3 and the etching gas supply unit 5. ing.
加熱テーブル 3は一定高さに固定され、 図 1のエツチング装置のように 昇降しないようになっている。 その代わり、 左右のダンサーローラ 2 8, 2 8が上下に移動可能になっていて、 連続帯状のマスク 4と樹脂フィルム 単体材 Fとを加熱テーブル 3の二次元曲面の表面 3 aに湾曲状に押し付け、 マスク 4、 樹脂フィルム単体材 、 加熱テーブル表面 3 aの三者を互いに 密接させるようにしている。  The heating table 3 is fixed at a fixed height so that it does not move up and down like the etching device in Fig. 1. Instead, the left and right dancer rollers 28 and 28 can move up and down, and the continuous belt-shaped mask 4 and the resin film single material F are curved on the two-dimensional curved surface 3 a of the heating table 3. The pressing, the mask 4, the resin film single material, and the heating table surface 3a are made to closely contact each other.
次いで、 図 1の装置と同様に、 マスク 4の表面側に矢印で示すようにェ ツチングガスをフローさせると、 樹脂フィル厶単体材 Fの表面にマスク 4 のエッチング用微細孔 4 aの開口パターンに沿ったエッチングを施すこと ができる。  Next, similarly to the apparatus shown in FIG. 1, when an etching gas is caused to flow on the surface side of the mask 4 as indicated by an arrow, the opening pattern of the etching fine holes 4a of the mask 4 is formed on the surface of the resin film single material F. Etching along can be performed.
一定高さに固定された加熱テーブル 3は、 スカ一ト 2 9を介して処理室 1 7の内部に装着されている。 そのスカ一ト 2 9の下端には間隙 3 0が形 成され、 この間隙 3 0から処理室内部の空気やガスが開口 3 1を経て管路 1 9へ排気されるようになっている。  The heating table 3 fixed at a fixed height is mounted inside the processing chamber 17 via a skirt 29. A gap 30 is formed at the lower end of the skirt 29, and air and gas inside the processing chamber are exhausted from the gap 30 to the pipe 19 through the opening 31.
密接手段としては、 上記ダンサーローラ 2 8の設置に代えて、 図 1の装 置と同様に、 加熱テーブル 3を昇降させるようにしてもよいことは勿論で あ 。  As a close means, it goes without saying that the heating table 3 may be moved up and down similarly to the apparatus of FIG. 1 in place of the installation of the dancer rollers 28.
図 5 ( A ) , ( B ) は、 第 1の方法を実施する装置の更に他の実施形態 であり、 (A ) はエッチング処理開始前の状態を、 (B ) はエッチング処 理中の状態をそれぞれ示す。  FIGS. 5A and 5B show still another embodiment of the apparatus for performing the first method, wherein FIG. 5A shows a state before the etching process is started, and FIG. 5B shows a state during the etching process. Are respectively shown.
このエッチング装置は、 加熱テーブル 3の表面 3 aを二次元曲面にせず、 平面状にしている。 加熱テーブル 3は一定高さに固定され、 その表面 3 a にテンションローラ 7 , 7を介して樹脂フィルム単体材 Fを密接させるよ うにしている。 この加熱テーブル 3の表面 3 aに対し、 マスクフレーム 1 0を上下動させることによりマスク 4を密接させ、 マスク 4 と樹脂フィル 厶単体材 Fと加熱テーブル 3との三者を互いに密接状態にする。 この密接 状態を保ちながら、 図 1や図 4の装置と同様に、 マスク 4の表面側にエツ チングガスを供給し、 エッチング用微細孔 4 aの開口パターンに沿ったェ ッチングを樹脂フィルム単体材 Fに施すようにしている。 This etching apparatus does not convert the surface 3 a of the heating table 3 into a two-dimensional curved surface, It is flat. The heating table 3 is fixed at a fixed height, and the resin film single material F is brought into close contact with its surface 3a via tension rollers 7,7. By moving the mask frame 10 up and down with respect to the surface 3 a of the heating table 3, the mask 4 is brought into close contact, and the mask 4, the resin film single material F and the heating table 3 are brought into close contact with each other. . While maintaining this close contact, an etching gas is supplied to the surface side of the mask 4 in the same manner as in the apparatus of FIGS. To be applied.
上述した図 4や図 5の実施形態の場合も、 樹脂フィルムの種類や穿設孔 が貫通孔か否か等の諸条件に影響されることなく、 迅速かつ高精度にエツ チングすることができる。  Also in the above-described embodiments of FIGS. 4 and 5, the etching can be performed quickly and with high accuracy without being affected by various conditions such as the type of the resin film and whether or not the perforated hole is a through hole. .
上述した各実施形態では、 レ、ずれも被処理材が樹脂フィルム単体材 Fの 場合について例示したが、 樹脂フイルムに金属箔を積層した積層材のエツ チング処理にも適用することができる。 この積層材の場合には、 金属箔側 に加熱テーブルを密接させると共に、 樹脂フイルム側にマスクに密接させ て、 そのマスク側からエッチング処理を行うようにする。 また、 上述した 各実施形態では、 被処理材の移送方式を、 リール . ツー . リ一ルのリール 巻取式にした場合を例示したが、 これに限定されることなく、 枚葉式であ つてもよい。  In each of the above-described embodiments, the case where the material to be processed is a resin film single material F is described as an example. However, the present invention can also be applied to an etching process for a laminated material in which a metal foil is laminated on a resin film. In the case of this laminated material, the heating table is brought into close contact with the metal foil side, the mask is brought into close contact with the resin film side, and etching is performed from the mask side. Further, in each of the above-described embodiments, the case where the transfer method of the material to be processed is a reel-to-reel reel take-up type is exemplified. However, the present invention is not limited to this. You may use it.
図 6は、 第 1の方法を実施する装置の更に他の実施形態を示す。  FIG. 6 shows still another embodiment of the apparatus for performing the first method.
この実施形態は、 図 1のエッチング装置に、 さらにエッチング停止手段 4 0を設けたものである。 エッチング停止手段 4 0は、 処理室 1 7の両外 壁にそれぞれ窓 4 5 a , 4 5 bを設け、 一方の窓 4 5 aの外側に赤外線光 源 4 1 と分光用のプリズム 4 2を設置し、 他方の窓 4 5 bの外側に受光器 4 3を設置するようにしている。 受光器 4 3は制御装置 4 7に接繞され、 さらに制御装置 4 7は原料ガス導入管 1 2の開閉弁の駆動部やマイクロ波 発振器 1 6の駆動部に接続されている。 また、 プリズム 4 2は軸 4 4を支 点に左右に回動し、 その回動角度に応じて赤外線光源 4 1を発光した赤外 線から特定波長の単色光を分光し、 その単色光を窓 4 5 aから処理室 1 7 内へ投光する。 投光された単色光は、 マスク 4の上面域に形成された発光 層 4 6を透過し、 反対の窓 4 5 bを通過して受光器 4 3で受光される。 図 7 (A) 〜 (C) は、 ガスエッチングによって発生する発光層 4 6を 例示する。 発光層 4 6は、 被処理材の樹脂フイルム単体材 Fがエッチング ガスの反応性活性ガス種 Rでエッチングされる際に発生する反応生成ガス の雲状層のことであり、 図 7 (A) はエッチングを開始した初期状態、 図 7 (B) はその中期状態、 図 7 (C) はその末期状態をそれぞれ示す。 樹脂フィルム単体材 Fが、 例えばポリイミ ドフイルムであるときは、 そ の組成元素は炭素 (:、 水素 H、 酸素〇、 窒素 Nなどである。 プラズマ発生 室 1 1から流出するエツチングガスの反応性活性ガス種 Rが酸素ラジカル の場合には、 反応生成ガス Gxは、 C02 、 H2 0、 NO 2 等の組成の混 合ガスからなる。 そのためエッチング処理の進行中には、 これらの反応生 成ガス Gxが、 マスク 4の上面域においてラジカル化学反応時のエネルギ 一放散により、 各ガス毎に特有の波長の光を放つ数 mmの厚さの発光層 4 6を形成する。 この発光層 4 6の色は、 ガス組成により異なるが、 可視光 域から紫外光域の光であり、 可視光では通常紫色から桃紫色に輝く光を放 つ。 In this embodiment, the etching apparatus of FIG. 1 is further provided with etching stopping means 40. The etching stop means 40 is provided with windows 45a and 45b on both outer walls of the processing chamber 17 respectively, and an infrared light source 41 and a prism 42 for spectroscopy outside one of the windows 45a. The receiver 43 is installed outside the other window 45b. The light receiver 43 is connected to a control device 47, and the control device 47 further includes a drive unit for the on-off valve of the raw material gas introduction pipe 12 and a microwave. It is connected to the drive of oscillator 16. The prism 42 rotates left and right about the axis 44, and according to the rotation angle, separates monochromatic light of a specific wavelength from the infrared light emitted from the infrared light source 41, and converts the monochromatic light. Light is emitted from the window 45 a into the processing chamber 17. The projected monochromatic light passes through the light emitting layer 46 formed on the upper surface area of the mask 4, passes through the opposite window 45b, and is received by the light receiver 43. 7A to 7C illustrate the light emitting layer 46 generated by gas etching. The light-emitting layer 46 is a cloud-like layer of the reaction product gas generated when the resin film F as the material to be processed is etched by the reactive gas species R of the etching gas. Indicates the initial state of the etching, FIG. 7 (B) shows the intermediate state, and FIG. 7 (C) shows the final state. When the resin film single material F is, for example, a polyimide film, its constituent elements are carbon (:, hydrogen H, oxygen II, nitrogen N, etc.) The reactive activity of the etching gas flowing out of the plasma generation chamber 11 when gas species R is oxygen radicals, the reaction product gas Gx consists C0 2, H 2 0, mixed-gas composition of NO 2 and the like. Therefore the progress of the etching process, these reaction raw formed The gas Gx forms a light emitting layer 46 with a thickness of several mm that emits light of a specific wavelength for each gas by dissipating energy during radical chemical reaction in the upper surface area of the mask 4. This light emitting layer 4 6 Although the color varies depending on the gas composition, it is light in the visible light range to the ultraviolet light range, and emits light that normally shines from purple to pink violet in visible light.
発光層 4 6の混合ガスは、 それぞれに特定の波長; Iの光だけを吸収し、 その濃度 (発生量) が高いほど多くの光量を吸収する。 従って、 プリズム 4 2を左右に回動させて、 波長が異なる分光を次々と発光層 4 6に照射す ると、 受光器 4 3に受光される量によって反応生成ガスの発生量を検出す ることができる。 エッチング処理が図 7 (C) の末期状態になると、 図 7 (A) の初期状態及び図 7 (B) の中期状態に比べて反応生成ガスの発生 量が激減しているので、 その反応生成ガス発生量の激減を受光器 4 3で容 易に検出することができる。 受光器 4 3で検出された信号は制御装置 4 7 に入力され、 その制御装置 4 7から原料ガス導入管 1 2の開閉弁の駆動部 やマイクロ波発振器 1 6の駆動部に信号が出力されてエツチングを停止す る。 The mixed gas of the light-emitting layer 46 absorbs only light of a specific wavelength; I, and absorbs a larger amount of light as its concentration (amount of generation) increases. Therefore, when the prism 42 is rotated left and right to irradiate the light-emitting layer 46 successively with different wavelengths, the amount of reaction product gas generated is detected based on the amount received by the light receiver 43. be able to. When the etching process is in the final state of Fig. 7 (C), the generation of reaction product gas is larger than in the initial state of Fig. 7 (A) and the middle state of Fig. 7 (B). Since the amount has been drastically reduced, the drastic decrease in the amount of generated reaction product gas can be easily detected by the light receiver 43. The signal detected by the photodetector 43 is input to the controller 47, which outputs a signal to the drive unit of the open / close valve of the source gas introduction pipe 12 and the drive unit of the microwave oscillator 16. To stop etching.
このようにエッチング停止手段 4 0は、 赤外線分光分析法により反応生 成ガスの発生量の激減を検出してェッチングを停止するので、 穿孔の停止 制御を容易に、 かつ正確に行うことができる。 なお、 本発明において、 反 応生成ガスの発生量の激変検出に基づいてェッチング停止とは、 激減検出 と同時にエッチングを停止することに限定されず、 激減検出後に一定時間 経過した時点でエッチングを停止することも含む。 一定時間とは、 一般に は数十秒間を意味する。  As described above, since the etching stopping means 40 detects the drastic decrease in the amount of reaction product gas by infrared spectroscopy and stops the etching, the stop control of the perforation can be easily and accurately performed. In the present invention, the term “etching stop based on the detection of a drastic change in the amount of reaction product gas generated” is not limited to stopping the etching at the same time as the detection of the drastic decrease, but stopping the etching at a certain time after the detection of the drastic decrease. Including doing. The fixed time generally means several tens of seconds.
前述した図 1 , 図 4 , 図 5の各装置の場合は、 エッチング停止手段 4 0 を設けていないので、 反応生成ガス G Xの発生量の激減を自動検出するこ とはできない。 しかし、 反応生成ガス G xの発生量の激減は、 処理室 1 7 の側壁に視窓 (図示せず) を設けておけば、 肉眼の目視により確認できる ので、 目視で確認することでエツチングを停止すればよレ、。  In each of the apparatuses shown in FIGS. 1, 4 and 5 described above, since the etching stop means 40 is not provided, it is impossible to automatically detect a sharp decrease in the amount of the reaction product gas GX. However, a drastic decrease in the amount of the reaction product gas G x can be visually confirmed by providing a viewing window (not shown) on the side wall of the processing chamber 17, so that etching can be visually confirmed. Stop it.
図 8は、 本発明の第 2の方法を実施する装置を例示する。  FIG. 8 illustrates an apparatus for implementing the second method of the present invention.
この実施形態では、 図 1の装置に、 被処理材の樹脂フィルム単体材 Fに、 この樹脂フィルム単体材 Fとは異なるガスを発生する 異種樹脂フイルム F Xを重ね合わせてガスエッチングする。 そのため未処理の樹脂フィル厶 単体材 Fを巻き上げた巻出しリール 1を設置した側に、 異種樹脂フィルム F xを巻き上げた巻出しリール 4 7を設置し、 処理後の樹脂フイルム単体 材 Fを巻き取る巻取りリール 2を設置した側に、 処理後の異種樹脂フィル ム F xを巻き取る巻取りリール 4 8を設置するようにしている。  In this embodiment, the apparatus shown in FIG. 1 is gas-etched by superimposing a resin film F X that generates a gas different from the resin film single material F on a resin film single material F to be processed. For this reason, on the side where the unwinding reel 1 that unwound the untreated resin film F alone was installed, an unwinding reel 47 that unwound a different type of resin film Fx was installed, and the untreated resin film F was wound. On the side where the take-up reel 2 to be taken is installed, a take-up reel 48 for taking up the treated different resin film Fx is provided.
巻出しリール 4 7と巻取りリール 4 8は、 それぞれ巻出しリール 1 と巻 取りリール 2と同期して間欠的に駆動され、 被処理材の樹脂フイルム単体 材 Fの下側に異種樹脂フイルム F Xを重ねるように加熱テーブル 3の上に セッ トされ、 かつ搬送されるようになっている。 Unwind reel 4 7 and take-up reel 4 8 It is intermittently driven in synchronization with the take-up reel 2, and is set on the heating table 3 so that different types of resin films FX are stacked under the resin film F of the material to be processed, and conveyed. Has become.
この装置もガスエッチングは真空雰囲気中で行われる。 すなわち、 互い に重ね合わされた樹脂フイルム単体材 Fと異種樹脂フィルム F xとは、 マ スク 4 と加熱テーブル 3の間に互いに密接するように挟まれ、 マスク 4の 側をェッチング用微細孔 4 aを介してガスエッチングされるようになって いる。 このような処理により樹脂フィルムの種類や穿設孔が貫通孔か否か 等の諸条件に影響されることなく迅速、 かつ高精度にェッチングすること ができる。  Also in this apparatus, gas etching is performed in a vacuum atmosphere. That is, the resin film unit material F and the dissimilar resin film Fx, which are superimposed on each other, are sandwiched between the mask 4 and the heating table 3 so as to be in close contact with each other, and the side of the mask 4 is etched into the fine holes 4a. Gas etching is performed via the. By such a treatment, etching can be performed quickly and with high precision without being affected by various conditions such as the type of the resin film and whether or not the perforated hole is a through hole.
図 9は、 本発明の第 2の方法を実施する装置の他の実施形態を例示する c この実施形態は、 図 8の装置に対して、 図 6と同様のエッチング停止手 段 4 0を設けたものである。 この図 9の装置では、 被処理材の樹脂フィル 厶 Fに異種樹脂フィル厶 F Xを重ねるようにしているので、 ガスエツチン グ処理は、 図 1 0 ( A ) , ( B ) , ( C ) のように行われる。 すなわち、 それぞれ図 1 0 ( A ) はエッチングを開始した初期状態、 (B ) はその末 期状態、 ( C ) は異種樹脂フィル厶 F Xのエツチングが開始した状態を示 す。  FIG. 9 illustrates another embodiment of an apparatus for carrying out the second method of the present invention. C This embodiment provides an etching stop means 40 similar to that of FIG. 6 for the apparatus of FIG. It is a thing. In the apparatus shown in Fig. 9, since the different resin film FX is superimposed on the resin film F of the material to be treated, the gas etching process is performed as shown in Figs. 10 (A), (B), and (C). Done in That is, each of FIGS. 10A and 10B shows an initial state where etching is started, FIG. 10B shows an end state thereof, and FIG. 10C shows a state where etching of a different resin film FX is started.
異種樹脂フィルム F Xは、 被処理材の樹脂フィル厶単体材 Fとは異なる 組成の反応生成ガスを発生するものが使用されている。 例えば、 被処理材 の樹脂フイルム単体材 Fがポリイ ミ ドフィルムの場合、 塩素を含有するポ リ塩化ビニリデンとか、 或いは硫黄を含有するポリエチレンサルフェート As the dissimilar resin film F X, one that generates a reaction product gas having a composition different from that of the resin film single material F as the material to be treated is used. For example, when the resin film F to be treated is a polyimide film, a polyvinylidene chloride containing chlorine or a polyethylene sulfate containing sulfur is used.
( P E S ) 等が使用さる。 エッチング処理の過程における図 1 0 ( A ) の初期状態及び図 1 0 ( B ) の末期状態では、 樹脂フィルム単体材 Fがェ ツチングされているため、 エッチング停止手段 4 0の受光器 4 3には、 図 1 1のグラフに実線で示すように反応生成ガス , G 2 の特定波長ス, , ス2 が強く現われるように検出される。 しかし、 図 1 0 (C) の異種樹脂 フィルム F Xのエツチングが開始し出す時点になると、 破線で示すように 反応生成ガス G3 の特定波長; I 3 が急激に出現し、 それまで出願していた 特定波長 I , , λ2 は急減する。 (PES) etc. are used. In the initial state of FIG. 10 (A) and the final state of FIG. 10 (B) during the etching process, since the resin film single material F has been etched, the light receiving device 43 of the etching stopping means 40 is not provided. As shown by the solid line in the graph of FIG. 11, the reaction product gas, the specific wavelength of G 2 ,, 2 is detected to appear strongly. However, at the time the out heterologously resin film FX of etching is started in FIG. 1 0 (C), a specific wavelength of the reaction product gas G 3 as indicated by the broken lines; I 3 is rapidly emerged, are filed so far The specific wavelengths I,, λ 2 decrease sharply.
異種樹脂フィルム F Xを重ね合わせないで、 樹脂フィルム単体材 Fを単 独でエッチングする場合は、 フイルム断面は図 7 (Α) , (Β) , (C) のように変化する。 したがって、 図 7 (Α) の初期状態及び (Β) の中期 状態では、 図 1 2のグラフに実線で示すように、 樹脂フイルム単体材 Fか ら発生する反応生成ガス d , G2 の特定波長; I , , λ2 が現われ、 次い で図 7 (C) の末期状態では、 破線で示すように前記特定波長 , λ2 が急減するだけで、 波長ス3 は出現しない。 When the resin film material F is etched by itself without overlapping the dissimilar resin films FX, the film cross section changes as shown in Fig. 7 (7), (Β), and (C). Therefore, in the initial state and middle state of (beta) in FIG. 7 (Alpha), as shown by the solid line in the graph of FIG. 1 2, resin film alone material F or we generated reaction product gas d, a specific wavelength of G 2 I ,, λ 2 appears, and then, in the terminal state of FIG. 7 (C), as shown by the broken line, only the specific wavelength, λ 2 sharply decreases, and the wavelength 3 does not appear.
かかる特定波長ス 3 の出現は、 異種樹脂フィルム F Xに基づいて、 樹脂 フィルム単体材 Fから発生する反応生成ガス G, , G2 とは異なる組成の 反応生成ガス G3 が発生したためであるから、 それをエッチング停止手段 4 0の受光器 4 3が検出したとき、 制御装置 4 7を介して原料ガス導入管 1 2の開閉弁を閉じ、 マイクロ波発振器 1 6の作動を停止してエッチング 操作を停止する。 反応生成ガス Gxの組成の激変検出に基づくエツチン グ操作の停止は、 激変の検出と同時であってもよく、 或いは一定時間経過 した時点で行ってもよい。 一定時間とは一般には数十秒である。 The appearance of the specific wavelength 3 is because the reaction product gas G 3 having a composition different from that of the reaction product gas G,, G 2 generated from the resin film single material F based on the heterogeneous resin film FX, When the photodetector 43 of the etching stopping means 40 detects this, the on / off valve of the raw material gas introduction pipe 12 is closed via the control device 47, and the operation of the microwave oscillator 16 is stopped to perform the etching operation. Stop. The stopping of the etching operation based on the detection of the drastic change in the composition of the reaction product gas Gx may be performed simultaneously with the detection of the drastic change, or may be performed after a certain time has elapsed. The fixed time is generally several tens of seconds.
エッチング停止手段 4 0を設けていない図 8のエッチング装置の場合は、 反応生成ガス Gxの組成の激変を自動検出はできないが、 反応生成ガス G3 の特定波長 λ 3 が出現すると発光層 4 6の色が変化するので、 それを 肉眼で目視することによりエッチングを停止することができる。 For etching apparatus of FIG. 8 not provided with the etching stopping means 4 0, but the upheaval of the composition of the reaction product gas Gx can not automatically detected emission layer that a particular wavelength lambda 3 to the appearance of the reaction product gas G 3 4 6 Since the color changes, the etching can be stopped by visually observing the color.
上述した図 8及び図 9の装置は、 二次元曲面型の加熱テーブル 8に代え て、 図 5のような平面型の加熱テーブル 8に設けてもよい。 枚葉型のマス ク 4についても、 図 4のような連続帯状型のマスク 4に代えてもよい。 被 処理材の移送方式も、 リール ' ツー ' リ一ルのリ一ル巻取式に代えて、 枚 葉式であってもよい。 8 and 9 described above may be provided on a flat heating table 8 as shown in FIG. 5 instead of the two-dimensional curved heating table 8. The single-wafer mask 4 may be replaced with a continuous band-shaped mask 4 as shown in FIG. Suffered The transfer method of the processing material may be a single-wafer method instead of the reel-to-reel reel winding method.
本発明に使用されるマスク 4は、 ガスエッチングするとき被処理材に密 接した状態にするので触媒作用の影響を最も受け易い。 すなわち、 マスク ニッケル N i、 鉄 F e、 クロム C rなどの触媒作用を有する金属箔か ら構成されていると、 エッチングガスの反応性活性ガス種 (酸素ラジカル、 水素ラジカル、 フッ素ラジカル、 塩素ラジカル等) が再結合することによ つて、 その反応性活性ガス種の濃度が激減するため穿孔速度が低下すると う問題がある。 しかし、 反応性活性ガス種に対して非触媒性のアルミニゥ 厶 A 1や酸化珪素 S i 〇2 などの材料から構成することによって、 穿孔速 度の低下を防止することができる。 The mask 4 used in the present invention is most susceptible to the effect of the catalytic action because it is brought into close contact with the material to be processed during gas etching. That is, if the mask is composed of a metal foil having a catalytic action such as nickel Ni, iron Fe, chromium Cr, etc., the reactive active gas species of the etching gas (oxygen radicals, hydrogen radicals, fluorine radicals, chlorine radicals) ) Recombine, the concentration of the reactive active gas species is drastically reduced, and there is a problem that the drilling speed is reduced. However, by constructing a non-catalytic Aruminiu厶A 1, silicon oxide S i 〇 2 material such as the reaction of active gas species, it is possible to prevent a decrease in drilling speed.
しかし、 アルミニウム等は常温のみならず、 例えば 2 0 0 °C以上の高温 下では強度が低下し、 かつ熱膨張が大きいため、 直接構造材として使用す ることには問題がある。 そのためアルミニウム A 1や酸化珪素 S i 〇2 は、 主材として強度や熱膨張性に有利な金属材、 ガラス材又はセラミ ック材な どを使用し、 その主材の表面に被覆材として使用することが好ましい。 また、 マスク以外の加熱テーブル等の装置構成部材については、 ニッケ ル N i、 鉄 F e、 クロム C rなどを含有するステンレス鋼 S U S等よりも、 アルミニウムから構成することが好ましい。 アルミニウムは、 酸素ラジカ ルにより、 その表面に化学的に安定、 かつ緻密な酸化アルミニウム A 1 2 0 3 の被膜を形成するからである。 この酸化アルミニウムの被膜は、 水素 ラジカルや、 フッ素ラジカルに対しても、 所定の温度以下では安定である から、 長期に亘つて耐えることができる。 However, there is a problem in using aluminum directly as a structural material because aluminum and the like have reduced strength and high thermal expansion not only at room temperature but also at a high temperature of, for example, 200 ° C. or higher. Therefore aluminum A 1, silicon oxide S i 〇 2 uses strength and thermal expansion Advantageously metallic material, a etc. glass material or Ceramic material as the main material, used as a coating material on the surface of the main member Is preferred. In addition, it is preferable that the device components other than the mask, such as the heating table, be made of aluminum rather than stainless steel SUS containing nickel Ni, iron Fe, chromium Cr, or the like. Aluminum, by oxygen the radical Le is because forming a chemically stable, and dense aluminum oxide A 1 2 0 3 coating on the surface thereof. The aluminum oxide film is stable to hydrogen radicals and fluorine radicals at a predetermined temperature or lower, and can withstand a long period of time.
図 1 3は、 本発明の第 3の方法を実施する装置の一例を示す。  FIG. 13 shows an example of an apparatus for performing the third method of the present invention.
この実施形態では、 被処理材として、 樹脂フィルムに金属箔を積層し、 かつその金属箔にェッチング用開口パターンを形成した積層材 F aを使用 している。 この積層材 F aは、 エッチング用開口パターンを形成した金属 箔側をェッチングガス供給部 5に対面させ、 反対の樹脂フィルム側を加熱 テーブル 8に密接させるようにセッ トしている。 この状態で、 真空雰囲気 下に積層材 F aの金属箔側をガスェッチングするようにしている。 In this embodiment, as a material to be treated, a laminated material Fa in which a metal foil is laminated on a resin film and an opening pattern for etching is formed on the metal foil is used. are doing. The laminated material Fa is set such that the metal foil side on which the opening pattern for etching is formed faces the etching gas supply unit 5 and the opposite resin film side is in close contact with the heating table 8. In this state, the metal foil side of the laminated material Fa is subjected to gas etching under a vacuum atmosphere.
したがって、 金属箔がマスクの役目をしているため、 マスクを設けてい ないことが特徴である。 このようにマスクを設けていないが、 金属箔がェ ツチング用開口パターンを有し、 そのエッチング用開口パターンを介して 樹脂フィル厶がエッチングされるので、 前述した各種形態の装置と同様に、 樹脂フイルムの種類や穿設孔が貫通孔か否か等の諸条件に影響されること なく、 迅速かつ高精度にエッチングすることができる。  Therefore, the feature is that no mask is provided because the metal foil functions as a mask. Although a mask is not provided in this manner, the metal foil has an opening pattern for etching, and the resin film is etched through the opening pattern for etching. The etching can be performed quickly and accurately without being affected by various conditions such as the type of the film and whether or not the perforated hole is a through hole.
なお、 例えば銅箔等のように、 金属箔が酸素ラジカルで著しく酸化され 易い材料の場合には、 その金属箔の表面を酸素ラジカルに侵されず、 かつ 触媒作用を有しない金メッキ又は金蒸着を施すことが好ましい。  If the metal foil is a material that is easily oxidized by oxygen radicals, such as copper foil, for example, gold plating or gold deposition that does not attack the surface of the metal foil by oxygen radicals and has no catalytic action is used. It is preferable to apply.
図 1 4は、 本発明の第 3の方法を実施する装置の他の実施形態を示す。 この実施形態は、 図 1 3の装置にエッチング停止手段 4 0を設けるよう にしたものである。 前述した図 6の装置と同様に、 反応生成ガスの発生量 の激減変化を検出することにより、 エッチング操作の停止制御を容易に、 かつ正確に行うことができる。  FIG. 14 shows another embodiment of an apparatus for performing the third method of the present invention. In this embodiment, an etching stop means 40 is provided in the apparatus shown in FIG. As in the apparatus shown in FIG. 6 described above, the stop control of the etching operation can be easily and accurately performed by detecting a drastic change in the amount of the reaction product gas generated.
図 1 3の装置では、 エッチング停止手段 4 0を設けていないが、 前述し た図 1の装置と同様に、 目視によって反応生成ガス G xの発生量の激減を 検知することにより、 エッチングの停止をすることができる。  Although the etching stop means 40 is not provided in the apparatus of FIG. 13, the etching is stopped by visually detecting a sharp decrease in the amount of the reaction product gas G x similarly to the apparatus of FIG. 1 described above. Can be.
前述した装置と同様に、 図 1 3及び図 1 4の装置についても、 二次元曲 面型の加熱テーブル 8に代えて、 図 5のような平面型の加熱テーブル 8を 使用すること、 また被処理材の移送方式をリール ' ツー . リールのリール 巻取式に代えて、 枚葉式にすることなどしてもよい。  Similarly to the above-described apparatus, the apparatus shown in FIGS. 13 and 14 also uses a flat heating table 8 as shown in FIG. Instead of a reel-to-reel reel winding method, the processing material may be transferred in a single-wafer manner.
また、 図 1 3及び図 1 4の装置において、 図 8の装置のように、 巻出し リール 4 7及び巻取りリール 4 8を設けて、 被処理材の積層材 F aに異種 樹脂フィル厶 F Xを重ねてエッチングするようにしてもよい。 この場合は、 異種樹脂フイルム F Xから発生した反応生成ガス G Xの組成を検出するこ とによって、 ガスエツチングを停止するようにすればよい。 In addition, in the apparatus shown in FIGS. 13 and 14, as shown in FIG. A reel 47 and a take-up reel 48 may be provided so that a different kind of resin film FX is overlapped on the laminated material Fa of the material to be processed and etched. In this case, the gas etching may be stopped by detecting the composition of the reaction product gas GX generated from the heterogeneous resin film FX.
上述したように、 本発明によれば、 樹脂フイルムの種類やエッチングす る孔が貫通孔であるか否か等の諸条件に影響されることなく、 迅速かつ高 精度にエツチングすることができるので、 汎用性の高いェッチングをする ことができる。  As described above, according to the present invention, it is possible to perform etching quickly and accurately without being affected by various conditions such as the type of resin film and whether or not a hole to be etched is a through hole. A highly versatile etching can be performed.
また、 エッチングに際して反応生成ガスの発生量を検出し、 該発生量が 所定値以上に激変したとき前記ガスェッチングを停止するようにした場合 には、 穿孔の停止制御を容易に、 かつ正確に行うことができる。 また、 マ スク等の装置構成部材として、 エツチングガスの反応性活性ガス種に対し て非触媒性の材料から構成した場合には、 エツチングガスの反応性活性ガ ス種の再結合による穿孔速度の低下を防止することができる。  In addition, when the amount of reaction product gas generated during etching is detected, and the gas etching is stopped when the amount of generated reaction gas suddenly exceeds a predetermined value, the stop control of the perforation is easily and accurately performed. Can be. When a mask or other device component is made of a material that is non-catalytic with respect to the reactive active gas species of the etching gas, the perforation rate due to recombination of the reactive active gas species of the etching gas is reduced. The drop can be prevented.
実施例 1  Example 1
被処理材として、 厚さ 5 0 z mのポリイミ ドフィルム単体材 (宇部興産 株式会社製 "ユーピレックス" ) を、 図 1のエッチング装置を使用し、 下 記の処理条件により酸素ラジカルでプラズマエツチングした。  As a material to be processed, a polyimide film single material ("UPILEX" manufactured by Ube Industries, Ltd.) having a thickness of 50 zm was plasma-etched with oxygen radicals using the etching apparatus shown in Fig. 1 under the following processing conditions.
処理後のポリイミ ドフイルム単体材には、 メタルマスクのエッチング用 開口の直径 5 0 mに対して、 上面での平均直径が 6 0 mで、 下面側に 向って径が縮小する平均テ一パ角度が 1 7 ° である多数のテーパー貫通孔 を得ることができた。 また、 フイルム上面での直径のバラツキは、 目標直 径の土 1 0 %以下であると共に、 孔壁傾斜角度も目標の 1 5度〜 4 5度の 範囲内であり、 実用に適するものであった。 また、 穿孔された全ての貫通 孔には残さ物は全く見当らなかった。  The treated polyimide film alone has an average taper angle at which the average diameter at the upper surface is 60 m and the diameter decreases toward the lower surface side, compared to the diameter of the metal mask etching opening of 50 m. A large number of tapered through-holes with an angle of 17 ° could be obtained. The variation in the diameter on the top surface of the film is not more than 10% of the target diameter of soil, and the hole wall inclination angle is within the target range of 15 to 45 degrees, which is suitable for practical use. Was. No residue was found in any of the drilled through holes.
〔処理条件〕 メタルマスク :厚さ 5 0 mのステンレス鋼 SUS 3 0 4板 [Processing conditions] Metal mask: 50 m thick stainless steel SUS 304 plate
エッチング用開口 直径 5 0〃 m  Etching opening diameter 50〃 m
装着張力 1. 5 k g  Mounting tension 1.5 kg
加熱テーブル :表面の曲率半径 8 0 0 mm  Heating table: Surface radius of curvature 800 mm
加熱温度 2 0 0 °C  Heating temperature 200 ° C
処理時間 (孔が貫通までの時間) 1 0分  Processing time (time until the hole penetrates) 10 minutes
マイク口波出力 : 1. 8 k w  Mic mouth wave output: 1.8 kw
プラズマ形成用ガス :酸素 1 0 0 0 m 1 Z分及び水蒸気 1 0 0 c c Z分 を供給  Gas for plasma formation: Supply of oxygen 100 m0Z and steam 1000 cZ
真空雰囲気の真空度: 1 3 3 P a  Degree of vacuum in vacuum atmosphere: 1 3 3 Pa
実施例 2〜 6  Examples 2 to 6
エッチング用開口の直径が、 それぞれ 7 5 m、 1 0 0 /zm. 1 5 0〃 m、 2 0 0〃m、 2 5 0〃 mと異なる 5種類のメタルマスクを使用したこ と以外は、 実施例 1 と同一条件で、 同じポリイミ ドフィルム単体材をエツ チングした (実施例 2〜6) 。  Except for using five types of metal masks, the diameters of the etching openings were 75 m, 100 m / zm, 150 m, 200 m, and 250 m, respectively. The same polyimide film single material was etched under the same conditions as in Example 1 (Examples 2 to 6).
実施例 2〜 6のいずれも、 ポリイミ ドフィルムの上面での直径のバラッ キは、 目標直径の ± 1 0 %以下であると共に、 孔壁傾斜角度も目標の 1 5 度〜 4 5度の範囲内にあり、 実用に適するものであった。  In all of Examples 2 to 6, the variation in diameter at the upper surface of the polyimide film was ± 10% or less of the target diameter, and the hole wall inclination angle was in the range of 15 to 45 degrees of the target. It was suitable for practical use.
実施例 7〜 1 7  Examples 7 to 17
図 1のエッチング装置において、 各構成部材をそれぞれ下記の材料で構 成し、 厚さ 5 0 /mのポリィミ ドフイルム単体材 (宇部興産株式会社製 "ユーピレックス" ) を、 下記の処理条件で酸素ラジカルで孔が貫通する までプラズマェッチングした。  In the etching apparatus shown in Fig. 1, each component was made of the following materials, and a 50 / m-thick polyimide film ("UPILEX" manufactured by Ube Industries, Ltd.) was treated with oxygen radicals under the following processing conditions. Plasma etching was performed until the hole penetrated.
このエッチング処理において、 マスクとマスクフレームと加熱テーブル とガス拡散板との組み合わせを、 その使用材質の面から図 1 5に記載のよ うに (a) 〜 (k) 通りに異ならせ (実施例 7〜 1 7) 、 そのエッチング 速度の材料依存性を調べた。 その測定結果を図 1 5に示す。 In this etching process, the combination of the mask, the mask frame, the heating table, and the gas diffusion plate was varied as shown in (a) to (k) in FIG. 15 in terms of the materials used (Example 7). ~ 1 7), its etching The material dependence of speed was investigated. Figure 15 shows the measurement results.
なお、 上記 (a) 〜 (k) は、 直径が 1 5 0〃mのエッチング用開口を 1 mmピッチで形成した下記材質からなるマスクを示す。 また、 エツチン グ速度については、 (a) のマスクを基準とする相対的倍率で示した。  The above (a) to (k) show masks made of the following materials in which openings for etching having a diameter of 150 μm are formed at a pitch of 1 mm. In addition, the etching speed is shown as a relative magnification based on the mask in (a).
〔装置の各構成部材〕  [Each component of the device]
マイクロ波透過板 1 4 :石英ガラス材  Microwave transmission plate 14 4: quartz glass material
原料ガス導入管 1 2 : アルミニウム材  Source gas inlet tube 1 2: Aluminum material
エツチングガス供給部 5 : アルミニウム材  Etching gas supply unit 5: Aluminum material
マスクフレーム 1 0 : アルミ二ゥ厶材  Mask frame 10: Aluminum material
ガス拡散板 1 5 :  Gas diffusion plate 15:
( 1 ) ステンレス鋼 SUS 3 0 4  (1) Stainless steel SUS304
( 2) アルミニウム材  (2) Aluminum material
加熱テーブル 3 :  Heating table 3:
( 1 ) ステンレス鋼 SUS 3 0 4  (1) Stainless steel SUS304
( 2) アルミニウム材  (2) Aluminum material
マスク 4 :  Mask 4:
(a) 厚さが 5 0〃mのステンレス鋼 SUS 3 0 4 ( 1 8 %C r + 8 %N i + 7 4 %F e) 材 (実施例 7 )  (a) Stainless steel with a thickness of 50 mm SUS304 (18% Cr + 8% Ni + 74% Fe) material (Example 7)
(b) 厚さが 5 0 mのステンレス鋼 SUS 4 3 0 ( 1 2 %C r + 8 8 % F e) 材 (実施例 8 )  (b) Stainless steel SUS430 (12% Cr + 88% Fe) with a thickness of 50 m (Example 8)
( c ) 厚さが 5 0 amのアンバー ( 3 6 %N i ; 6 4 %F e) 材 (実施例 9)  (c) Amber (36% Ni; 64% Fe) with a thickness of 50 am (Example 9)
( d) 上記①の材に S i 〇2を 0. 1 mスパッ夕リングした材 (実施例 1 0 ) (d) A material in which S i 〇 2 was sputtered for 0.1 m to the above material (Example 10)
(e) 上記 (a) 材にアルミニウムを 0. l 〃mスパッタリングし た材 (実施例 1 1 ) (f ) 上記 (b) 材に酸化珪素 S i 02 を 0. 1〃mスパッタリン グした材 (実施例 1 2) (e) The above (a) material sputtered with 0.1 μm of aluminum (Example 11) (f) above (b) material silicon oxide S i 0 2 to 0. 1〃M sputter-ring were wood (Example 1 2)
(g) 上記 (b) 材にアルミニウムを 0. 1; mスパッ夕リングし た材 (実施例 1 3)  (g) Aluminum (0.1) m sputtered to (b) above (Example 13)
(h) 上記 (c) 材に酸化珪素 02 を 0. 1 mスパッタリングし た材 (実施例 1 4 ) (h) the silicon oxide (c) material 0 2 0. 1 m sputtered Material (Example 1 4)
( i ) 上記 (c) 材にアルミニウムを 0. 1〃mスパッ夕リングし た材 (実施例 1 5 )  (i) A material in which aluminum was sputtered on the above material (c) at 0.1) m (Example 15)
( j ) 厚さが 1 20 mの石英ガラス材 (実施例 1 6 )  (j) Quartz glass material with a thickness of 120 m (Example 16)
(k) 厚さが 1 20〃mのアルカリガラス材 (実施例 1 7) (k) Alkaline glass material with a thickness of 120〃m (Example 17)
〔処理条件〕 [Processing conditions]
真空雰囲気の真空度: 1 99. 5 P a  Degree of vacuum in vacuum atmosphere: 199.5 Pa
プラズマ形成用ガス流量: 1 000 m 1 /分  Plasma forming gas flow rate: 1 000 m 1 / min
加熱温度: 250て  Heating temperature: 250
原料ガス :酸素及び水蒸気  Raw material gas: oxygen and water vapor
マイクロ波出力 : 2 kw (最大 5 kw)  Microwave power: 2 kw (maximum 5 kw)
図 1 5に示した結果から明らかなように、 N i 8 %を含有する SUS 3 04材に対し、 N iを含有しない S US 4 30材のエッチング速度は約 2 倍である。 これは、 SUS 304材及び S US 4 30材は共に、 緻密な C r 203被膜を形成し、 酸素ラジカルによるマスク材内部への酸化を阻 止して酸素ラジカルの消費を阻止しているが、 SUS 304材の被膜中に は触媒作用を有する N iを含有している為に、 [0] + [0] →02 の再 結合反応を生じ、 マスク近傍及びマスク孔内部では、 有効な酸素ラジカル が減少する為である。 As is clear from the results shown in FIG. 15, the etching rate of the SUS430 material containing 8% Ni is about twice that of the SUS430 material containing no Ni. This, SUS 304 material and S US 4 30 material together, the dense C r 2 0 3 coating was formed, and to prevent consumption of oxygen radicals sealed inhibitory oxidation to internal mask material by oxygen radicals but because during coating of SUS 304 material containing the N i having a catalytic action, [0] + [0] → 0 2 results in recombination reactions, in internal mask vicinity and the mask holes, effective This is because the number of oxygen radicals decreases.
ステンレス鋼 SUS 304材に対して約 5倍の N iを含有するアンバー 材のエッチング速度は約 1 Z3以下である。 これは、 酸素ラジカルが基材 をエッチングするまでに再結合させる触媒作用を有する N i含有量が多い ことに加えて、 内部酸化の進行を阻止する緻密な C r 2 O s の不動態膜形 成がない為である。 The etching rate of Invar containing Ni, which is about 5 times that of stainless steel SUS 304, is about 1 Z3 or less. This is because oxygen radicals This is because, in addition to having a large Ni content that has a catalytic action to recombine the oxides by etching, there is no formation of a dense passive film of Cr 2 O s that prevents the progress of internal oxidation.
ステンレス鋼 S U S 3 0 4材、 S U S 4 3 0材、 アンバー材の両面にス パッ夕リング法によってアルミニウムを被覆すると、 それらは、 非被覆の S U S 3 0 4材に対し、 約 6倍以上のエッチング速度が得られる。 これは、 触媒作用を有していないアルミニウム膜で被覆したことで酸素ラジカルの 再結合を阻止できる為と考えられる。  When both sides of stainless steel SUS304, SUS430 and amber are coated with aluminum by the sputtering method, they are etched about 6 times more than uncoated SUS304. Speed is obtained. This is considered to be because the recombination of oxygen radicals can be prevented by coating with an aluminum film having no catalytic action.
ステンレス鋼 S U S 3 0 4材、 S U S 4 3 0材、 アンバー材の両面にス パッ夕 、)ング法によって S i 〇2を被覆すると、 非被覆の S U S 3 0 4材 に対し、 約 8倍程度のエッチング速度が得られる。 Stainless steel SUS 3 0 4 material, SUS 4 3 0 material, the scan package evening on both surfaces of the Invar material) when covering the S i 〇 2 by ring method, with respect to SUS 3 0 4 material uncoated, approximately 8 times Is obtained.
これは、 触媒作用を有していない酸化珪素 S i 0 2 膜で被覆したことで 酸素ラジカルの再結合を阻止できる為と考えられ、 その効果は上記アルミ ニゥ厶膜の被覆よりもやや大きい。 しかし、 非金属材の石英ガラス材ゃァ ルカリガラス材のエッチング速度よりもやや遅い。 スパッ夕一膜が極薄膜 で多孔質であることに起因していると考えられる。 This is considered to be because recombination of oxygen radicals can be prevented by coating with the silicon oxide SiO 2 film having no catalytic action, and the effect is slightly larger than the above-described coating with the aluminum film. However, the etching rate is slightly lower than the etching rate of the non-metallic quartz glass alkali glass material. This is thought to be due to the fact that the sputter film is extremely thin and porous.
可撓性の石英ガラス材又はアル力リガラス材によると、 被被覆の S U S 3 0 4材に対し、 約 1 0倍程度のエッチング速度が得られる。  According to the flexible quartz glass material or the Al-Kyri glass material, an etching rate about 10 times as high as that of the coated SUS 304 material can be obtained.
石英ガラス材又はアル力リガラス材で構成されたマスクを用いると共に 装置の他の各部をアルミニウム材で構成した場合には、 最大のエッチング 速度を得ることができるが、 ガス分散板をアルミニウム材から S U S 3 0 4材に変更すると、 エッチング速度は半減する。 これは、 プラズマ室 1 1 で生成される酸素ラジカルが S U S 3 0 4製ガス分散板の触媒作用により 再結合し、 従って、 エッチングに供される酸素ラジカル濃度が低減する為 と考えられる。  If a mask made of quartz glass or Al-Li glass is used and other parts of the apparatus are made of aluminum, the maximum etching rate can be obtained, but the gas dispersion plate is made of SUS. When the material is changed to 304, the etching rate is reduced by half. This is presumably because oxygen radicals generated in the plasma chamber 11 recombine due to the catalytic action of the SUS304 gas dispersion plate, and thus the oxygen radical concentration used for etching is reduced.
同様に、 加熱テーブルをアルミニウム材から S U S 3 0 4材に変更する と、 エッチング速度は、 上記最大のエッチング速度の 6 5 %〜9 5 %程度 の範囲に減少し、 かつバラツキが大きくなる。 これはエッチングの末期状 態において樹脂フィルムに孔が貫通されると、 それまでは加熱テーブルは 酸素ラジカルに直接、 接触しない為に酸素ラジカルが有効に作用してエツ チングが高速に行われていたのが、 酸素ラジカルの接触により SUS 3 0 4材が触媒作用する為と考えられる。 Similarly, change the heating table from aluminum to SUS304 Then, the etching rate is reduced to a range of about 65% to 95% of the maximum etching rate and the variation is increased. This is because if a hole penetrates through the resin film in the final stage of etching, the heating table was not directly in contact with the oxygen radicals, so the oxygen radicals effectively acted and etching was performed at high speed. This is thought to be because the SUS304 material catalyzes the oxygen radical contact.
実施例 1 8, 1 9  Example 1 8, 1 9
図 1の装置からマスク 4を取り外した図 1 3の装置を使用して、 下記の 被処理材① (実施例 1 8) 及び② (実施例 1 9) を下記の処理条件でエツ チング処理した。  Using the apparatus shown in Fig. 13 with the mask 4 removed from the apparatus shown in Fig. 1, the following workpieces ① (Example 18) and ② (Example 19) were etched under the following processing conditions. .
その結果、 被処理材①の場合は 5分で貫通し、 被処理材②の場合は 1 2 分で貫通した。 また、 貫通孔の精度は、 いずれの実施例 1 8, 1 9も、 実 施例 1 と同様に、 直径のバラツキが目標直径の ± 1 0 %以下であると共に、 孔壁傾斜角度は目標の 1 6〜4 5度の範囲内であり、 実用に適するもので めつ 7こ。  As a result, in the case of the material to be treated 貫通, the material penetrated in 5 minutes, and in the case of the material to be treated ②, the material penetrated in 12 minutes. In addition, the accuracy of the through-holes in each of Examples 18 and 19 was the same as in Example 1 except that the diameter variation was ± 10% or less of the target diameter, and the hole wall inclination angle was the target. It is in the range of 16 to 45 degrees and is suitable for practical use.
〔被処理材〕  (Processed material)
被処理材①:直径が 1 0 0 の貫通孔を所定バーンに設けた厚さ が 2 0〃mのアルミニウム箔と、 厚さが 5 0〃mのポ リイミ ドフイルム (宇部興産株式会社製の "ユーピレ ックス" ) との積層材  Material to be treated: Aluminum foil with a diameter of 100m provided with through-holes with a diameter of 100m and a polyimide film with a thickness of 50m (made by Ube Industries, Ltd.) Iupirex ") and laminated materials
被処理材②:直径が 1 0 0 /mの貫通孔を所定バーンに設けた厚さ が 2 0 /mの SUS 3 0 4箔と、 厚さが 5 0 /zmのポ リイ ミ ドフイルム (宇部興産株式会社製の "ユーピレ ックス" ) との積層材  Material to be treated: SUS304 foil with a thickness of 200 / m and a through-hole with a diameter of 100 / m in a given burner, and poly-imide film with a thickness of 50 / zm (Ube Laminated material with "UPILEX" manufactured by Kosan Co., Ltd.
〔処理条件〕  [Processing conditions]
加熱テーブル:表面の曲率半径 8 0 0 mm 加熱温度: 2 0 0 °C Heating table: Surface radius of curvature 800 mm Heating temperature: 200 ° C
マイク口波出力: 1 . 8 k w  Mic mouth wave output: 1.8kw
プラズマ形成用ガス:酸素 1 0 0 0 c c Z分及び水蒸気 1 0 0 c c  Gas for plasma formation: oxygen 100 c c Z content and water vapor 100 c c
Z分を供給  Supply Z minutes
真空雰囲気の真空度: 1 3 3 P a 産業上の利用可能性  Degree of vacuum in vacuum atmosphere: 1 3 3 Pa Industrial applicability
樹脂フィル厶の乾式ェッチング方法及び装置として有効である。 特に、 F P C (Flexible Printed Circui t) 基板に用いられる樹脂フィルムの 表面をガスエツチングする場合に有用である。  It is effective as a dry etching method and apparatus for resin films. It is particularly useful when gas etching the surface of a resin film used for a FPC (Flexible Printed Circuit) substrate.

Claims

請求の範囲 The scope of the claims
1 . 樹脂フィルム単体材及び樹脂フィルムに金属箔を積層した積層材 のいずれかを被処理材とし、 該被処理材を挟むように片側の表面に加熱テ —ブルを密接すると共に、 反対側の表面にエッチング用開口パターンを形 成したマスクを密接させ、 該密接状態を保ちながら前記被処理材を真空雰 囲気下で前記マスク側からガスエツチングする樹脂フィルムの乾式ェッチ ング方法。  1. Either a resin film alone or a laminated material obtained by laminating a metal foil on a resin film is used as a material to be treated, and a heating table is closely attached to one surface so as to sandwich the material to be treated. A dry etching method for a resin film, wherein a mask having an opening pattern for etching formed on the surface thereof is closely contacted, and the material to be processed is gas-etched from the mask side in a vacuum atmosphere while maintaining the close contact state.
2 . 前記加熱テーブルを可動にする一方、 前記マスクを一定位置に固 定し、 前記加熱テーブルを前記被処理材に移動させて該被処理材を前記マ スクに押し当てることにより、 前記マスク、 被処理材及び加熱テーブルを 互いに密接させる請求の範囲 1に記載の樹脂フイルムの乾式エッチング方 法  2. While the heating table is movable, the mask is fixed at a fixed position, the heating table is moved to the material to be processed, and the material to be processed is pressed against the mask. The method for dry etching a resin film according to claim 1, wherein the material to be processed and the heating table are brought into close contact with each other.
3 . ガスエツチング中に前記マスクのエツチング用開口から放出され る反応生成ガスの発生量を検出し、 該発生量が所定値以上に激変したとき 前記ガスエツチングを停止する請求の範囲 1又は 2に記載の樹脂フィル厶 の乾式エッチング方法。  3. The method according to claim 1, wherein the amount of the reaction product gas released from the etching opening of the mask during the gas etching is detected, and the gas etching is stopped when the amount of the generated reaction gas suddenly changes to a predetermined value or more. A dry etching method for the resin film described in the above.
4 . 樹脂フィルム単体材を被処理材として、 該被処理材に該被処理材 とは異種のガスを発生する異種樹脂フィルムを重ね合わせ状態にし、 該異 種樹脂フイルム側の表面に加熱テーブルを密接させると共に、 前記被処理 材側の表面にエッチング用開口パターンを形成したマスクを密接させ、 該 密接状態を保ちながら前記被処理剤材を真空雰囲気下で前記マスク側から ガスエツチングする樹脂フィルムの乾式ェッチング方法。  4. With the resin film alone as the material to be treated, a different resin film that generates a different gas from the material to be treated is superimposed on the material to be treated, and a heating table is provided on the surface of the different resin film side. A resin film that is brought into close contact with a mask having an opening pattern for etching formed on the surface of the material to be treated, and gas-etching the material to be treated from the mask side in a vacuum atmosphere while maintaining the close contact state. Dry etching method.
5 . 前記加熱テーブルを可動にする一方、 前記マスクを一定位置に固 定し、 前記加熱テーブルを前記異種樹脂フィル厶に移動させて前記被処理 材を前記マスクに押し当てることにより、 前記マスク、 被処理材、 異種樹 脂フィル厶及び加熱テーブルを互いに密接させる請求項 4に記載の樹脂フ ィル厶の乾式ェッチング方法。 5. While the heating table is movable, the mask is fixed at a fixed position, the heating table is moved to the different resin film, and the material to be processed is pressed against the mask. The resin foil according to claim 4, wherein the material to be treated, the different resin film, and the heating table are brought into close contact with each other. Dry etching of film.
6. ガスエツチング中に前記マスクのエッチング用開口から放出され る反応生成ガスの組成を検出し、 該組成の種類が変化したとき前記ガスェ ッチングを停止する請求の範囲 4又は 5に記載の樹脂フィル厶の乾式ェッ チング方法。  6. The resin film according to claim 4, wherein the composition of the reaction product gas released from the etching opening of the mask during gas etching is detected, and the gas etching is stopped when the type of the composition changes. Dry etching method.
7. 樹脂フィルムの片面にエッチング用開口パターンを形成した金属 箔を積層した積層材を被処理材とし、 該被処理材の前記樹脂フィルム側の 表面に加熱テーブルを密接させ、 該密接状態を保ちながら前記被処理材の 前記金属箔側を真空雰囲気下でガスェッチングする樹脂フィルムの乾式ェ ッチング方法。  7. A laminated material obtained by laminating a metal foil having an opening pattern for etching on one side of a resin film is used as a material to be treated, and a heating table is brought into close contact with the surface of the material to be treated on the resin film side, and the close contact state is maintained. A dry etching method for a resin film, wherein the metal foil side of the material to be treated is gas-etched in a vacuum atmosphere.
8. ガスエツチング中に前記金属箔のェツチング用開口から放出され る反応生成ガスの発生量を検出し、 該発生量が所定値以上に激変したとき 前記ガスエッチングを停止する請求の範囲 7に記載の樹脂フィルムの乾式 エツチング方法。  8. The method according to claim 7, wherein during the gas etching, the amount of the reaction product gas released from the etching opening of the metal foil is detected, and the gas etching is stopped when the amount of the reaction gas changes drastically to a predetermined value or more. Dry etching method for resin film.
9. 前記加熱テーブルの押圧用の表面が凸状の二次元曲面に形成され ている請求の範囲 1 , 2, 4, 5, 7又は 8に記載の樹脂フイルムの乾式 エツチング方法。  9. The dry etching method for a resin film according to claim 1, wherein the pressing surface of the heating table is formed as a convex two-dimensional curved surface.
1 0. 前記ガスエッチングがプラズマエッチングである請求の範囲 1, 2, 4, 5, 7又は 8に記載の樹脂フイルムの乾式エッチング方法。  10. The dry etching method for a resin film according to claim 1, wherein said gas etching is plasma etching.
1 1. 前記被処理材を構成する樹脂フィルムがポリイミ ドフィルムで ある請求の範囲 1, 2, 4, 5, 7又は 8に記載の樹脂フィルムの乾式ェ ッチング方法。  1 1. The dry etching method for a resin film according to claim 1, wherein the resin film constituting the material to be treated is a polyimide film.
1 2. 内部を真空可能にする処理室 ( 1 7) と、 該処理室の内部に設 置されたエッチングガス供給部 (5 ) と、 該エッチングガス供給部のガス 流出口を覆うように装着されたエッチング用開口パターンを形成したマス ク (4) と、 前記処理室の内部に可動自在に設置された加熱テーブル ( 3) とからなり、 該加熱テーブル (3) が樹脂フィルムを主材とする被 処理材 (F) の片面に密接すると共に、 前記マスク (4) が前記被処理材 の反対側に密接するようにした、 樹脂フィル厶の乾式ェッチング装置。 1 2. A processing chamber (17) that enables vacuum inside, an etching gas supply section (5) installed inside the processing chamber, and a gas outlet installed to cover the etching gas supply section A mask (4) on which a patterned etching opening pattern is formed, and a heating table movably installed inside the processing chamber. (3), wherein the heating table (3) is in close contact with one surface of the material to be treated (F) mainly composed of a resin film, and the mask (4) is in close contact with the opposite side of the material to be treated. A dry etching device for resin film.
1 3. ガスエッチング中に前記マスク (4) のエッチング用開口から 放出される反応生成ガスの発生量を検出する検出手段 (4 0) と、 該検出 手段の検知信号に基づき前記ガスェッチングを停止するエツチング停止手 段を備えた請求の範囲 1 2に記載の樹脂フィル厶の乾式ェッチング装置。  1 3. Detecting means (40) for detecting the amount of reaction product gas released from the etching opening of the mask (4) during gas etching; and stopping the gas etching based on a detection signal of the detecting means. 13. The dry etching apparatus for a resin film according to claim 12, further comprising means for stopping etching.
1 4. 内部を真空可能にする処理室 ( 1 7) と、 該処理室の内部に設 置されたエッチングガス供給部 (5) と、 前記エッチングガス供給部のガ ス流出口を覆うように装着されたエツチング用開口パターンを形成したマ スク (4 ) と、 前記処理室 ( 1 7) の内部に可動自在に設置された加熱テ 一ブル ( 3) とからなり、 被処理材の樹脂フイルム単体材と該樹脂フィル ム単体材とは異種のガスを発生する異種樹脂フイルムとを重ね合わせた両 材料に対し、 前記加熱テーブル (3) が前記異種樹脂フィルムに密着する と共に、 前記マスク (4) が前記被処理材に密接するようにした、 樹脂フ ィル厶の乾式ェッチング装置。  1 4. A processing chamber (17) that enables vacuum inside, an etching gas supply section (5) installed inside the processing chamber, and a gas outlet of the etching gas supply section. A mask (4) having a mounted opening pattern for etching, and a heating table (3) movably installed in the processing chamber (17), and a resin film of a material to be processed. The heating table (3) closely adheres to the dissimilar resin film and the mask (4) for both materials obtained by laminating a dissimilar resin film that generates a different gas from the dissimilar resin material. A dry etching device for a resin film, wherein the device is in close contact with the material to be treated.
1 5. ガスエッチング中に前記マスク (4) のエッチング用開口から 放出される反応生成ガスの組成の変化を検出する検出手段 (4 0 ) と、 該 検出手段の検知信号に基づき前記ガスェッチングを停止するエツチング停 止手段を備えた請求の範囲 1 4に記載の樹脂フィルムの乾式エッチング装  1 5. Detection means (40) for detecting a change in the composition of the reaction product gas released from the etching opening of the mask (4) during gas etching; and stopping the gas etching based on a detection signal of the detection means. 14. The dry etching apparatus for a resin film according to claim 14, further comprising an etching stopping means.
1 6. 前記エッチングガス供給部 ( 5) にプラズマ発生室 ( 1 1 ) を 設けた請求の範囲 1 2, 1 3, 1 4又は 1 5に記載の樹脂フイルムの乾式 エツチング装置。 1 6. The dry etching apparatus for a resin film according to claim 12, wherein a plasma generation chamber (11) is provided in the etching gas supply section (5).
1 7. 前記マスク (4 ) を前記プラズマ発生室から流出するエツチン グガスの反応性活性ガス種に対して非触媒性の材料から構成した請求の範 囲 1 6に記載の樹脂フィルムの乾式エッチング装置。 1 7. The claim wherein the mask (4) is made of a material that is non-catalytic with respect to the reactive active gas species of the etching gas flowing out of the plasma generation chamber. A dry etching apparatus for a resin film according to box 16.
1 8. 前記非触媒性の材料が、 金属材、 ガラス材及びセラミック材の いずれかに、 アルミニゥ厶及び酸化珪素のいずれかで表面被覆したもので ある請求の範囲 1 7に記載の樹脂フィル厶の乾式エッチング装置。  18. The resin film according to claim 17, wherein the non-catalytic material is a metal material, a glass material, or a ceramic material, the surface of which is coated with either aluminum or silicon oxide. Dry etching equipment.
1 9. 内部を真空可能にする処理室 ( 1 7) と、 該処理室の内部に設 置されたエッチングガス供給部 ( 5) と、 前記処理室 ( 1 7) の内部に可 動自在に設置された加熱テーブル (3) とからなり、 樹脂フイルムの片面 にェッチング用開口パターンが形成された金属箔を積層した積層材を被処 理材として、 該被処理材の前記樹脂フィルム側に前記加熱テーブル ( 3 ) が密接するようにし、 前記金属箔側を前記エッチングガス供給部 ( 5) の ガス流出口に臨ませるようにした、 樹脂フイルムの乾式ェッチング装置。  1 9. A processing chamber (17) that enables the inside of the processing chamber to be evacuated, an etching gas supply unit (5) installed inside the processing chamber, and a movable chamber inside the processing chamber (17). A heat treatment table (3) installed, wherein a metal foil having an opening pattern for etching formed on one side of a resin film is laminated as a material to be treated, and the laminate is provided on the resin film side of the material to be treated. A dry etching apparatus for a resin film, wherein a heating table (3) is brought into close contact with the metal foil side to face a gas outlet of the etching gas supply section (5).
2 0. ガスエッチング中に前記金属箔のエッチング用開口から放出さ れる反応生成ガスの発生量を検出する検出手段 (4 0) と、 該検出手段の 検知信号に基づき前記ガスェッチングを停止するエツチング停止手段を備 えた請求の範囲 1 9に記載の樹脂フィルムの乾式エッチング装置。  20. Detecting means (40) for detecting the amount of reaction product gas released from the etching opening of the metal foil during gas etching, and stopping etching to stop the gas etching based on a detection signal of the detecting means. The dry etching apparatus for a resin film according to claim 19, comprising means.
2 1. 前記エッチングガス供給部 (5) にプラズマ発生室 ( 1 1 ) を 設けた請求の範囲 1 9又は 2 0に記載の樹脂フィル厶の乾式エッチング装  21. The dry etching apparatus for a resin film according to claim 19 or 20, wherein a plasma generation chamber (11) is provided in said etching gas supply section (5).
PCT/JP2000/007995 1999-11-15 2000-11-13 Method of dry-etching resin film and device therefor WO2001036181A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001538157A JP4536309B2 (en) 1999-11-15 2000-11-13 Method and apparatus for dry etching of resin film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP32355999 1999-11-15
JP11/323559 1999-11-15

Publications (1)

Publication Number Publication Date
WO2001036181A1 true WO2001036181A1 (en) 2001-05-25

Family

ID=18156057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/007995 WO2001036181A1 (en) 1999-11-15 2000-11-13 Method of dry-etching resin film and device therefor

Country Status (3)

Country Link
JP (1) JP4536309B2 (en)
TW (1) TW479446B (en)
WO (1) WO2001036181A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003051656A (en) * 2001-08-06 2003-02-21 Ulvac Japan Ltd Method and apparatus for winding-up type dry etching

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4529860A (en) * 1982-08-02 1985-07-16 Motorola, Inc. Plasma etching of organic materials
US4545851A (en) * 1983-05-09 1985-10-08 Fujitsu Limited Etching method for semiconductor devices
JPH05326457A (en) * 1992-05-19 1993-12-10 Hitachi Ltd Terminal detector for plasma etching equipment due to detection of components of exhaust gas
JPH08134666A (en) * 1994-11-10 1996-05-28 Mitsui Toatsu Chem Inc Dry etching method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59214210A (en) * 1983-05-20 1984-12-04 ティーディーケイ株式会社 Dielectric porcelain material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4529860A (en) * 1982-08-02 1985-07-16 Motorola, Inc. Plasma etching of organic materials
US4545851A (en) * 1983-05-09 1985-10-08 Fujitsu Limited Etching method for semiconductor devices
JPH05326457A (en) * 1992-05-19 1993-12-10 Hitachi Ltd Terminal detector for plasma etching equipment due to detection of components of exhaust gas
JPH08134666A (en) * 1994-11-10 1996-05-28 Mitsui Toatsu Chem Inc Dry etching method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003051656A (en) * 2001-08-06 2003-02-21 Ulvac Japan Ltd Method and apparatus for winding-up type dry etching

Also Published As

Publication number Publication date
TW479446B (en) 2002-03-11
JP4536309B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
KR100915722B1 (en) Constitutional member for semiconductor processing apparatus and method for producing same
WO2016031746A1 (en) Polymer film coated with layer of silane coupling agent
EP1271636A1 (en) Thermal oxidation process control by controlling oxidation agent partial pressure
KR101075131B1 (en) Evaporating apparatus, apparatus for controlling evaporating apparatus, method for controlling evaporating apparatus, method for using evaporating apparatus and method for manufacturing blowing port
JP5862238B2 (en) LAMINATE, MANUFACTURING METHOD THEREOF, AND DEVICE STRUCTURE MANUFACTURING METHOD USING THE SAME
Cruz et al. Fabrication and optimization of porous silicon substrates for diffusion membrane applications
JPWO2016031746A6 (en) Silane coupling agent layer laminated polymer film
US20090050600A1 (en) Method for manufacturing printed circuit boards
JP2006049892A (en) Method and device for manufacturing laminated structure for flexible circuit board, where metal plated layer is formed by vacuum evaporation
WO2002032660A1 (en) Multilayered metal laminate and process for producing the same
EP1475455A3 (en) Metal barrier film production apparatus, metal barrier film production method, metal film production method, and metal film production apparatus
KR101889239B1 (en) Manufacturing method for laminated body
WO2001036181A1 (en) Method of dry-etching resin film and device therefor
JP2002299792A (en) Method of manufacturing electronic component adopting wet etching, electronic component and suspension for hard disk
WO2004086143A3 (en) Multi-step process for etching photomasks
JP2007120777A (en) Drying storage method of resin film for two-layer flexible substrate, and heating dryer
WO1999028961A1 (en) Process for producing insulating film
JP2003051493A (en) Plasma processing apparatus
CN109689927A (en) Film formation device and film build method
TW325562B (en) Surface modification of magnetic heads
KR101025324B1 (en) Etching method
WO2016088560A1 (en) Method for manufacturing molded filter body
KR100826085B1 (en) Method for preparing metallic laminate and metallic laminate prepared by the method
JPWO2019135366A1 (en) Film laminate manufacturing method and film laminate manufacturing equipment
JP4780474B2 (en) Thin film laminate manufacturing method and manufacturing apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN IN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 538157

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase