WO2001034154A1 - Inhibiteurs de protease - Google Patents

Inhibiteurs de protease Download PDF

Info

Publication number
WO2001034154A1
WO2001034154A1 PCT/US2000/030634 US0030634W WO0134154A1 WO 2001034154 A1 WO2001034154 A1 WO 2001034154A1 US 0030634 W US0030634 W US 0030634W WO 0134154 A1 WO0134154 A1 WO 0134154A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
disease
formula
cathepsin
protease
Prior art date
Application number
PCT/US2000/030634
Other languages
English (en)
Inventor
Robert W. Marquis, Jr.
Yu Ru
Daniel Frank Veber
Original Assignee
Smithkline Beecham Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smithkline Beecham Corporation filed Critical Smithkline Beecham Corporation
Priority to EP00975609A priority Critical patent/EP1229912A4/fr
Priority to JP2001536152A priority patent/JP2003513922A/ja
Publication of WO2001034154A1 publication Critical patent/WO2001034154A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/02Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/04Drugs for skeletal disorders for non-specific disorders of the connective tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • This invention relates to a novel 4-amino-azepan-3-one protease inhibitor.
  • This compound is particularly an inhibitor of cysteine and serine proteases, more particularly an inhibitor of cysteine proteases.
  • the compound of this invention even more particularly inhibits cysteine proteases of the papain superfamily, and yet more particularly cysteine proteases of the cathepsin family.
  • this invention relates to a compound which inhibits cathepsin K.
  • Such compound is particularly useful for treating diseases in which cysteine proteases are implicated, especially diseases of excessive bone or cartilage loss, e.g., osteoporosis, periodontitis, and arthritis.
  • Cathepsin K is a member of the family of enzymes which are part of the papain superfamily of cysteine proteases. Cathepsins B, H, L, N and S have been described in the literature. Recently, cathepsin K polypeptide and the cDNA encoding such polypeptide were disclosed in U.S. Patent No. 5,501,969 (called cathepsin O therein). Cathepsin K has been recently expressed, purified, and characterized. Bossard, M. J., et al., (1996) J. Biol. Chem. 271, 12517-12524; Drake, F.H., et al., (1996) J. Biol. Chem. 271, 12511-12516; Bromme, D., et al., (1996) J. Biol. Chem. 271, 2126-2132.
  • Cathepsin K has been variously denoted as cathepsin O, cathepsin X or cathepsin 02 in the literature.
  • the designation cathepsin K is considered to be the more appropriate one (name assigned by Nomenclature Committee of the International Union of Biochemistry and Molecular Biology).
  • Cathepsins of the papain superfamily of cysteine proteases function in the normal physiological process of protein degradation in animals, including humans, e.g., in the degradation of connective tissue. However, elevated levels of these enzymes in the body can result in pathological conditions leading to disease.
  • cathepsins have been implicated in various disease states, including but not limited to, infections by pneumocystis carinii, trypsanoma cruzi, trypsanoma brucei brucei, and Crithidia fusiculata; as well as in schistosomiasis malaria, tumor metastasis, metachromatic leukodystrophy, muscular dystrophy, amytrophy, and the like. See International Publication Number WO 94/04172, published on March 3, 1994, and references cited therein. See also European Patent Application EP 0 603 873 Al, and references cited therein. Two bacterial cysteine proteases from P.
  • Bone is composed of a protein matrix in which spindle- or plate-shaped crystals of hydroxyapatite are incorporated.
  • Type I Collagen represents the major structural protein of bone comprising approximately 90% of the structural protein.
  • the remaining 10% of matrix is composed of a number of non-collagenous proteins, including osteocalcin, proteoglycans, osteopontin, osteonectin, thrombospondin, fibronectin, and bone sialoprotein.
  • Skeletal bone undergoes remodeling at discrete foci throughout life. These foci, or remodeling units, undergo a cycle consisting of a bone reso ⁇ tion phase followed by a phase of bone replacement.
  • Bone reso ⁇ tion is carried out by osteoclasts, which are multinuclear cells of hematopoietic lineage.
  • the osteoclasts adhere to the bone surface and form a tight sealing zone, followed by extensive membrane ruffling on their apical (i.e., resorbing) surface.
  • the low pH of the compartment dissolves hydroxyapatite crystals at the bone surface, while the proteolytic enzymes digest the protein matrix. In this way, a reso ⁇ tion lacuna, or pit, is formed.
  • osteoblasts lay down a new protein matrix that is subsequently mineralized.
  • disease states such as osteoporosis and Paget's disease
  • the normal balance between bone reso ⁇ tion and formation is disrupted, and there is a net loss of bone at each cycle.
  • this leads to weakening of the bone and may result in increased fracture risk with minimal trauma.
  • the abundant selective expression of cathepsin K in osteoclasts strongly suggests that this enzyme is essential for bone reso ⁇ tion.
  • selective inhibition of cathepsin K may provide an effective treatment for diseases of excessive bone loss, including, but not limited to, osteoporosis, gingival diseases such as gingivitis and periodontitis, Paget's disease, hypercalcemia of malignancy, and metabolic bone disease.
  • Cathepsin K levels have also been demonstrated to be elevated in chondroclasts of osteoarthritic synovium.
  • selective inhibition of cathepsin K may also be useful for treating diseases of excessive cartilage or matrix degradation, including, but not limited to, osteoarthritis and rheumatoid arthritis.
  • Metastatic neoplastic cells also typically express high levels of proteolytic enzymes that degrade the surrounding matrix.
  • selective inhibition of cathepsin K may also be useful for treating certain neoplastic diseases.
  • a certain novel compound is a protease inhibitor, most particularly an inhibitor of cathepsin K, and that this compound is useful for treating diseases characterized by bone loss, such as osteoporosis and gingival diseases, such as gingivitis and periodontitis, or by excessive cartilage or matrix degradation, such as osteoarthritis and rheumatoid arthritis.
  • An object of the present invention is to provide a 4-amino-azepan-3-one protease inhibitor, particularly an inhibitor of cysteine and serine proteases. More particularly, the present invention relates to such a compound which inhibits cysteine proteases, and yet more particularly cysteine proteases of the papain superfamily. Preferably, this invention relates to such a compound which inhibits cysteine proteases of the cathepsin family and most preferably, a compound which inhibits cathepsin K. The compound of the present invention is useful for treating diseases which may be therapeutically modified by altering the activity of such proteases.
  • this invention provides a compound, thieno[3,2- b]thiophene-2-carboxy lie acid ⁇ (S)-3-methy 1- 1 - [3-oxo- 1 -( 1 -oxy-pyridine-2-sulfonyl)- azepan-4-ylcarbamoyl]-butyl ⁇ amide, according to Formula I:
  • this invention provides a pharmaceutical composition comprising a compound according to Formula I and a pharmaceutically acceptable carrier.
  • this invention provides a method of treating diseases in which the disease pathology may be therapeutically modified by inhibiting proteases, such as cysteine and serine proteases.
  • the method includes treating diseases by inhibiting cysteine proteases, and particularly cysteine proteases of the papain superfamily. More particularly, the inhibition of cysteine proteases of the cathepsin family, such as cathepsin K is described.
  • the compound of this invention is especially useful for treating diseases characterized by bone loss, such as osteoporosis, and gingival diseases, such as gingivitis and periodontitis, or by excessive cartilage or matrix degradation, such as osteoarthritis and rheumatoid arthritis.
  • diseases characterized by bone loss such as osteoporosis, and gingival diseases, such as gingivitis and periodontitis, or by excessive cartilage or matrix degradation, such as osteoarthritis and rheumatoid arthritis.
  • the present invention provides a compound, thieno[3,2-b]thiophene-2-carboxylic acid ⁇ (S)-3-methyl- 1 -[3-oxo- 1 -( 1 -oxy-pyridine-2-sulfonyl)-azepan-4-ylcarbamoyl]- butyl ⁇ amide, of Formula (I):
  • the present invention includes all hydrates, solvates, complexes, polymo ⁇ hs and prodrugs of the compound of Formula (I).
  • Prodrugs are any covalently bonded compounds which release the active parent drug according to Formula (I) in vivo.
  • Prodrugs of the compound of the present invention include ketone derivatives, specifically ketals or hemiketals.
  • inventive compound may be used as a racemic mixture, an enantiomerically enriched mixture, or the racemic mixture may be separated using well-known techniques and an individual enantiomer may be used alone.
  • each tautomeric form is contemplated as being included within this invention whether existing in equilibrium or predominantly in one form.
  • the 7 membered ring compound of the present invention is configurationally more stable at the carbon center alpha to the ketone.
  • m- CPBA means m_. ⁇ -chloroperoxybenzoic acid
  • Boc means t_r.-butoxycarbonyl
  • EDC means l-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride
  • DMSO means methyl sulfoxide
  • TEA means triethylamine.
  • the compound of the Formula (I) is generally prepared according to Scheme 1.
  • the individual diastereomers of thieno[3,2-b]thiophene-2-carboxylic acid ⁇ (S)-3-methyl-l- [3-oxo-l-(l-oxy-pyridine-2-sulfonyl)-azepan-4-ylcarbamoyl]-butyl ⁇ amide 10 and 11 may be prepared as outlined in Scheme 1. Alkylation of allyl-carbamic acid benzyl ester (1) with 5-bromo- 1 -pentene in the presence of a base such as sodium hydride provides the diene 2.
  • Reagents and Conditions a.) NaH, 5-bromo- 1 -pentene, DMF; b.) bis(tricyclohexylphosphine)benzylidine ruthenium (IV) dichloride, CH-C1,; c.) m-CPBA, CH,C1,; d.) NaN 3 , CH 3 OH, H 2 0, NH 4 C1; e.) 1,3-propanedithiol, TEA, methanol; f.) N-Boc-leucine, EDC, CH 2 C1 2 ; g.) 10% Pd/C, H 2 ; h.) 2-pyridinesulphonyl chloride-N-oxide, sat.
  • Coupling methods to form amide bonds herein are generally well-known in the art.
  • the methods of peptide synthesis generally set forth by Bodansky et al., THE PRACTICE OF PEPTIDE SYNTHESIS, Springer- Verlag, Berlin, 1984; E. Gross and J. Meienhofer, THE PEPTIDES, Vol. 1, 1-284 (1979); and J.M. Stewart and J.D. Young, SOLID PHASE PEPTIDE SYNTHESIS, 2d Ed., Pierce Chemical Co., Rockford, 111., 1984, are generally illustrative of the technique and are inco ⁇ orated herein by reference.
  • amino protecting groups generally refers to the Boc, acetyl, benzoyl, Fmoc and Cbz groups and derivatives thereof as known to the art. Methods for protection and deprotection, and replacement of an amino protecting group with another moiety are well known.
  • Acid addition salts of the compound of Formula (I) are prepared in a standard manner in a suitable solvent from the parent compound and an excess of an acid, such as hydrochloric, hydrobromic, hydrofluoric, sulfuric, phosphoric, acetic, trifluoroacetic, maleic, succinic or methanesulfonic acid.
  • an acid such as hydrochloric, hydrobromic, hydrofluoric, sulfuric, phosphoric, acetic, trifluoroacetic, maleic, succinic or methanesulfonic acid.
  • the present invention also provides a novel intermediate, thieno[3,2-b]thiophene-2- carboxylic acid ⁇ (S)-3-methyl- 1 -[3-hydroxy- 1 -( 1 -oxy-pyridine-2-sulfonyl)-azepan-4- ylcarbamoyl] -butyl ⁇ amide (8-Scheme-l). of Formula (II), useful in the synthesis of the compound of Formula (I) according to Scheme 1.
  • the present invention provides a process for the synthesis of compounds of Formula (I) comprising the step of oxidizing the appropriate compound of Formula (II) with an oxidant to provide the compound of Formula (I) as a mixture of diastereomers.
  • the oxidant is sulfur trioxide pyridine complex in DMSO and triethylamine.
  • the process further comprises the step of separating the diasteromers of Formula (I) by separating means, preferably by high presssure liquid chromatography (HPLC).
  • separating means preferably by high presssure liquid chromatography (HPLC).
  • This invention also provides a pharmaceutical composition which comprises a compound according to Formula (I) and a pharmaceutically acceptable carrier, excipient or diluent.
  • the compound of Formula (I) may be used in the manufacture of a medicament.
  • Pharmaceutical compositions of the compound of Formula (I) prepared as hereinbefore described may be formulated as solutions or lyophilized powders for parenteral administration. Powders may be reconstituted by addition of a suitable diluent or other pharmaceutically acceptable carrier prior to use.
  • the liquid formulation may be a buffered, isotonic, aqueous solution.
  • Suitable diluents are normal isotonic saline solution, standard 5% dextrose in water, or buffered sodium or ammonium acetate solution.
  • Such formulation is especially suitable for parenteral administration, but may also be used for oral administration or contained in a metered dose inhaler or nebulizer for insufflation. It may be desirable to add excipients such as polyvinylpyrrolidone, gelatin, hydroxy cellulose, acacia, polyethylene glycol, mannitol, sodium chloride, or sodium citrate.
  • this compound may be encapsulated, tableted, or prepared in an emulsion or syrup for oral administration.
  • Pharmaceutically acceptable solid or liquid carriers may be added to enhance or stabilize the composition, or to facilitate preparation of the composition.
  • Solid carriers include starch, lactose, calcium sulfate dihydrate, terra alba, magnesium stearate or stearic acid, talc, pectin, acacia, agar or gelatin.
  • Liquid carriers include syrup, peanut oil, olive oil, saline and water.
  • the carrier may also include a sustained release material such as glyceryl monostearate or glyceryl distearate, alone or with a wax.
  • the amount of solid carrier varies but, preferably, will be between about 20 mg to about 1 g per dosage unit.
  • the pharmaceutical preparations are made following the conventional techniques of pharmacy involving milling, mixing, granulating, and compressing, when necessary, for tablet forms; or milling, mixing and filling for hard gelatin capsule forms.
  • a liquid carrier When a liquid carrier is used, the preparation will be in the form of a syrup, elixir, emulsion or an aqueous or non-aqueous suspension. Such a liquid formulation may be administered directly or filled into a soft gelatin capsule.
  • the compound of this invention may also be combined with excipients such as cocoa butter, glycerin, gelatin or polyethylene glycols and molded into a suppository.
  • the compound of Formula (I) is useful as a protease inhibitor, particularly as an inhibitor of cysteine and serine proteases, more particularly as an inhibitor of cysteine proteases, even more particularly as an inhibitor of cysteine proteases of the papain superfamily, yet more particularly as an inhibitor of cysteine proteases of the cathepsin family, most particularly as an inhibitor of cathepsin K.
  • the present invention also provides useful compositions and formulations of said compound, including pharmaceutical compositions and formulations of said compound.
  • the present compound is useful for treating diseases in which cysteine proteases are implicated, including infections by pneumocystis carinii, trypsanoma cruzi, trypsanoma brucei, and Crithidia fusiculata; as well as in schistosomiasis, malaria, tumor metastasis, metachromatic leukodystrophy, muscular dystrophy, amytrophy; and especially diseases in which cathepsin K is implicated, most particularly diseases of excessive bone or cartilage loss, including osteoporosis, gingival disease including gingivitis and periodontitis, arthritis, more specifically, osteoarthritis and rheumatoid arthritis, Paget's disease; hypercalcemia of malignancy, and metabolic bone disease.
  • Metastatic neoplastic cells also typically express high levels of proteolytic enzymes that degrade the surrounding matrix, and certain tumors and metastatic neoplasias may be effectively treated with the compound of this invention.
  • the present invention also provides methods of treatment of diseases caused by pathological levels of proteases, particularly cysteine and serine proteases, more particularly cysteine proteases, even more particularly cysteine proteases of the papain superfamily, yet more particularly cysteine proteases of the cathepsin family, which methods comprise administering to an animal, particularly a mammal, most particularly a human in need thereof the compound of the present invention.
  • the present invention especially provides methods of treatment of diseases caused by pathological levels of cathepsin K, which methods comprise administering to an animal, particularly a mammal, most particularly a human in need thereof, an inhibitor of cathepsin K, including the compound of the present invention.
  • the present invention particularly provides methods for treating diseases in which cysteine proteases are implicated, including infections by pneumocystis carinii, trypsanoma cruzi, trypsanoma brucei, and Crithidia fusiculata; as well as in schistosomiasis, malaria, tumor metastasis, metachromatic leukodystrophy, muscular dystrophy, amytrophy, and especially diseases in which cathepsin K is implicated, most particularly diseases of excessive bone or cartilage loss, including osteoporosis, gingival disease including gingivitis and periodontitis, arthritis, more specifically, osteoarthritis and rheumatoid arthritis, Paget's disease, hypercalcemia of malignancy, and metabolic bone disease.
  • diseases in which cysteine proteases are implicated, including infections by pneumocystis carinii, trypsanoma cruzi, trypsanoma brucei, and Crithidia fusiculata;
  • This invention further provides a method for treating osteoporosis or inhibiting bone loss which comprises internal administration to a patient of an effective amount of the compound of Formula (I), alone or in combination with other inhibitors of bone reso ⁇ tion, such as bisphosphonates (i.e., allendronate), hormone replacement therapy, anti-estrogens, or calcitonin.
  • an effective amount of the compound of Formula (I) is administered to inhibit the protease implicated in a particular condition or disease.
  • this dosage amount will further be modified according to the type of administration of the compound.
  • parenteral administration of the compound of Formula (I) is preferred.
  • the parenteral dose will be about 0.01 to about 100 mg/kg; preferably between 0.1 and 20 mg/kg, in a manner to maintain the concentration of drug in the plasma at a concentration effective to inhibit cathepsin K.
  • the compound is administered one to four times daily at a level to achieve a total daily dose of about 0.4 to about 400 mg/kg/day .
  • the precise amount of the inventive compound which is therapeutically effective, and the route by which such compound is best administered, is readily determined by one of ordinary skill in the art by comparing the blood level of the agent to the concentration required to have a therapeutic effect.
  • Prodrugs of the compound of the present invention may be prepared by any suitable method. Where the prodrug moiety is a ketone functionality, specifically ketals and/or hemiacetals, the conversion may be effected in accordance with conventional methods.
  • the compound of this invention may also be administered orally to the patient, in a manner such that the concentration of drug is sufficient to inhibit bone reso ⁇ tion or to achieve any other therapeutic indication as disclosed herein.
  • a pharmaceutical composition containing the compound is administered at an oral dose of between about 0.1 to about 50 mg/kg in a manner consistent with the condition of the patient.
  • the oral dose would be about 0.5 to about 20 mg/kg. No unacceptable toxicological effects are expected when compounds of the present invention are administered in accordance with the present invention.
  • the compound of this invention may be tested in one of several biological assays to determine the concentration of the compound which is required to have a given pharmacological effect. Determination of cathepsin K proteolytic catalytic activity
  • v is the velocity of the reaction with maximal velocity V m
  • A is the concentration of substrate with Michaelis constant of K a
  • / is the concentration of inhibitor
  • [AMC] v ss t + (vo - v ss ) [1 - exp (-k 0 b s t)] / k Q bs (2)
  • [AMC] is the concentration of product formed over time t, is the initial reaction velocity, and v ss is the final steady state rate.
  • Values for k 0D s were then analyzed as a linear function of inhibitor concentration to generate an apparent second order rate constant (kobs / inhibitor concentration or k 0 bs / [I]) describing the time-dependent inhibition.
  • kobs / inhibitor concentration or k 0 bs / [I] apparent second order rate constant
  • the compounds used in the method of the present invention have a K j value of less than 1 micromolar. Most preferably, said compounds have a Kj value of less than 100 nanomolar.
  • the cells were washed x2 with cold RPMI-1640 by centrifugation (1000 ⁇ m, 5 min at 4°C) and then transferred to a sterile 15 mL centrifuge tube. The number of mononuclear cells were enumerated in an improved Neubauer counting chamber.
  • Sufficient magnetic beads (5 / mononuclear cell), coated with goat anti-mouse IgG, were removed from their stock bottle and placed into 5 mL of fresh medium (this washes away the toxic azide preservative). The medium was removed by immobilizing the beads on a magnet and is replaced with fresh medium. The beads were mixed with the cells and the suspension was incubated for 30 minutes on ice. The suspension was mixed frequently. The bead-coated cells were immobilized on a magnet and the remaining cells (osteoclast-rich fraction) were decanted into a sterile 50 mL centrifuge tube. Fresh medium was added to the bead-coated cells to dislodge any trapped osteoclasts. This wash process was repeated xlO. The bead-coated cells were discarded.
  • the osteoclasts were enumerated in a counting chamber, using a large-bore disposable plastic pasteur pipette to charge the chamber with the sample.
  • the cells were pelleted by centrifugation and the density of osteoclasts adjusted to 1.5xl0 ⁇ /mL in EMEM medium, supplemented with 10% fetal calf serum and 1.7g/litre of sodium bicarbonate. 3 mL aliquots of the cell suspension ( per treatment) were decanted into 15 mL centrifuge tubes. These cells were pelleted by centrifugation. To each tube 3 mL of the appropriate treatment was added (diluted to 50 ⁇ M in the EMEM medium).
  • a positive control (87MEM1 diluted to 100 ug/mL) and an isotype control (IgG2a diluted to 100 ug/mL).
  • the tubes were incubated at 37°C for 30 minutes.
  • 0.5 mL aliquots of the cells were seeded onto sterile dentine slices in a 48-well plate and incubated at 37°C for 2 hours. Each treatment was screened in quadruplicate.
  • the slices were washed in six changes of warm PBS (10 mL / well in a 6- well plate) and then placed into fresh treatment or control and incubated at 37°C for 48 hours.
  • the slices were then washed in phosphate buffered saline and fixed in 2% glutaraldehyde (in 0.2M sodium cacodylate) for 5 minutes, following which they were washed in water and incubated in buffer for 5 minutes at 37°C.
  • the slices were then washed in cold water and incubated in cold acetate buffer / fast red garnet for 5 minutes at 4°C. Excess buffer was aspirated, and the slices were air dried following a wash in water.
  • the TRAP positive osteoclasts were enumerated by bright-field microscopy and were then removed from the surface of the dentine by sonication. Pit volumes were determined using the Nikon Lasertec ILM21W confocal microscope.
  • Example lj To a solution of the alcohol of Example lj (0.24 g, 0.42 mmol) in DMSO was added TEA (0.35 mL, 2.56 mmol) and pyridine sulfur trioxide complex (202 mg, 1.27 mmol). The reaction was stirred at room temperature for approximately 2 hours whereupon it was partitioned between ethyl acetate and water. The organic layer was washed with brine, dried, filtered and concentrated.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Rheumatology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Pain & Pain Management (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

L'invention concerne le composé de formule (I) ou bien un sel, hydrate, ou solvate correspondant pharmaceutiquement acceptable, qui tient lieu d'inhibiteur de cystéine protéase, en particulier la cathépsine K, et qui est utile dans le traitement des maladies pour lesquelles l'inhibition de la perte osseuse et de la dégradation de cartilage est un facteur de traitement.
PCT/US2000/030634 1999-11-10 2000-11-08 Inhibiteurs de protease WO2001034154A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP00975609A EP1229912A4 (fr) 1999-11-10 2000-11-08 Inhibiteurs de protease
JP2001536152A JP2003513922A (ja) 1999-11-10 2000-11-08 プロテアーゼ阻害剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16455999P 1999-11-10 1999-11-10
US60/164,559 1999-11-10

Publications (1)

Publication Number Publication Date
WO2001034154A1 true WO2001034154A1 (fr) 2001-05-17

Family

ID=22595053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/030634 WO2001034154A1 (fr) 1999-11-10 2000-11-08 Inhibiteurs de protease

Country Status (3)

Country Link
EP (1) EP1229912A4 (fr)
JP (1) JP2003513922A (fr)
WO (1) WO2001034154A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6534498B1 (en) 1999-11-10 2003-03-18 Smithkline Beecham Corporation Protease inhibitors
EP1303281A1 (fr) * 2000-04-18 2003-04-23 SmithKline Beecham Corporation Methodes de traitement
US6583137B1 (en) 1999-11-10 2003-06-24 Smithkline Beecham Corporation Protease inhibitors
EP1320370A1 (fr) * 2000-09-01 2003-06-25 SmithKline Beecham Corporation Procede de traitement
US6596715B1 (en) 1999-11-10 2003-07-22 Smithkline Beecham Corporation Protease inhibitors
US7071184B2 (en) 2000-03-21 2006-07-04 Smithkline Beecham Corporation Protease inhibitors
US7405209B2 (en) 1998-12-23 2008-07-29 Smithkline Beecham Corporation Protease inhibitors
CN106138023A (zh) * 2016-07-13 2016-11-23 临泉县雅保日用品有限公司 一种能够防治内分泌失调引起的牙龈炎的药物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ20012277A3 (cs) * 1998-12-23 2001-11-14 Smithkline Beecham Corporation Inhibitory proteázy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000038687A1 (fr) * 1998-12-23 2000-07-06 Smithkline Beecham Corporation Inhibiteurs de proteases

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DZ2285A1 (fr) * 1996-08-08 2002-12-25 Smithkline Beecham Corp Inhibiteurs de protéase de la cystéine.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000038687A1 (fr) * 1998-12-23 2000-07-06 Smithkline Beecham Corporation Inhibiteurs de proteases

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1229912A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7405209B2 (en) 1998-12-23 2008-07-29 Smithkline Beecham Corporation Protease inhibitors
US6534498B1 (en) 1999-11-10 2003-03-18 Smithkline Beecham Corporation Protease inhibitors
US6583137B1 (en) 1999-11-10 2003-06-24 Smithkline Beecham Corporation Protease inhibitors
US6596715B1 (en) 1999-11-10 2003-07-22 Smithkline Beecham Corporation Protease inhibitors
US7071184B2 (en) 2000-03-21 2006-07-04 Smithkline Beecham Corporation Protease inhibitors
US7563784B2 (en) 2000-03-21 2009-07-21 Smithkline Beecham Corporation Protease inhibitors
EP1303281A1 (fr) * 2000-04-18 2003-04-23 SmithKline Beecham Corporation Methodes de traitement
EP1303281A4 (fr) * 2000-04-18 2006-02-15 Smithkline Beecham Corp Methodes de traitement
EP1320370A1 (fr) * 2000-09-01 2003-06-25 SmithKline Beecham Corporation Procede de traitement
EP1320370A4 (fr) * 2000-09-01 2008-10-22 Smithkline Beecham Corp Procede de traitement
CN106138023A (zh) * 2016-07-13 2016-11-23 临泉县雅保日用品有限公司 一种能够防治内分泌失调引起的牙龈炎的药物
CN106138023B (zh) * 2016-07-13 2019-02-15 临泉县雅保日用品有限公司 一种能够防治内分泌失调引起的牙龈炎的药物

Also Published As

Publication number Publication date
JP2003513922A (ja) 2003-04-15
EP1229912A4 (fr) 2003-05-07
EP1229912A1 (fr) 2002-08-14

Similar Documents

Publication Publication Date Title
WO1998008802A1 (fr) Inhibiteurs de cysteine protease
WO2001034565A2 (fr) Inhibiteurs de protease
US6596715B1 (en) Protease inhibitors
US6534498B1 (en) Protease inhibitors
WO2000029408A1 (fr) Inhibiteurs de morpholino-ethoxybenzofuran protease
EP1229912A1 (fr) Inhibiteurs de protease
EP1229915A1 (fr) Inhibiteurs de protease
EP1231921A1 (fr) Inhibiteurs de proteases
EP1233771A1 (fr) Inhibiteurs de protease
EP1229911A1 (fr) Inhibiteurs de proteases
US6583137B1 (en) Protease inhibitors
WO2001034157A1 (fr) Inhibiteurs de protease
WO2001034566A2 (fr) Inhibiteurs de la protease
WO2001034159A1 (fr) Inhibiteurs de protease
US20040157828A1 (en) Protease inhibitors
EP1384713B1 (fr) Derives de 4-amino-azepan-3-one comme inhibiteurs de protease
US20020082426A1 (en) Protease inhibitors

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 536152

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 10129668

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000975609

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000975609

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000975609

Country of ref document: EP