WO2001033669A1 - Dielectric antenna - Google Patents

Dielectric antenna Download PDF

Info

Publication number
WO2001033669A1
WO2001033669A1 PCT/JP1999/006155 JP9906155W WO0133669A1 WO 2001033669 A1 WO2001033669 A1 WO 2001033669A1 JP 9906155 W JP9906155 W JP 9906155W WO 0133669 A1 WO0133669 A1 WO 0133669A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric
antenna
electrode
shows
antenna electrode
Prior art date
Application number
PCT/JP1999/006155
Other languages
French (fr)
Japanese (ja)
Inventor
Yuji Masumoto
Hirofumi Yamaguchi
Futoshi Kuroki
Original Assignee
Nippon Tungsten Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co., Ltd. filed Critical Nippon Tungsten Co., Ltd.
Priority to PCT/JP1999/006155 priority Critical patent/WO2001033669A1/en
Publication of WO2001033669A1 publication Critical patent/WO2001033669A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • H01Q9/27Spiral antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point

Definitions

  • the present invention relates to a dielectric antenna used for wireless communication of ultrashort waves, quasi-microwaves, microwaves, and millimeter waves.
  • Such a dielectric antenna is disclosed in, for example, Japanese Patent Application Laid-Open No. H10-174334, Japanese Patent Application Laid-Open No. A block-shaped or planar dielectric disclosed in Japanese Patent Application Laid-Open No. 0-247807 and Japanese Patent Application Laid-Open No. Hei 10-33612, and a ground formed on the bottom surface of the dielectric.
  • An electrode and a power supply terminal are formed, a strip-shaped antenna electrode formed on the upper surface of the dielectric is formed, and the power supply terminal and the antenna electrode are connected through the inside of the dielectric.
  • the use of a dielectric material as the main radiating element has improved the decrease in antenna efficiency due to the increase in frequency.
  • conventional dielectric antennas have many issues that need to be improved.
  • conventional dielectric antennas have a problem that they are not suitable for surface mounting because the power supply terminal is located in the center of the back surface. In this case, the performance is degraded due to the influence of the lines of electric force due to the proximity of the antenna electrodes, and furthermore, it is difficult to match each frequency range due to the frequency characteristics of the antenna. Disclosure of the invention
  • the problem to be solved by the present invention is to solve the above-mentioned problems in the conventional dielectric antenna and to prevent the performance degradation as a dielectric antenna while being excellent in mountability and small in size.
  • a feeding terminal is provided on a bottom surface or a side surface of a dielectric formed in a planar shape, and a band-shaped antenna electrode is formed on an upper surface of the dielectric.
  • a feed terminal and an antenna electrode are connected through the inside or the side surface of the dielectric.
  • the planar dielectric is formed of ceramics having a high dielectric constant.
  • the band-shaped antenna electrode on the top surface of the planar dielectric is formed in a spiral shape.
  • the strip-shaped antenna electrode in a spiral shape, radio waves can be radiated in all directions 0 and omnidirectionality can be achieved.
  • a dielectric material having a high dielectric constant such as alumina or epoxy resin, has a low dielectric constant of ⁇ r of about 2 to 10.
  • the dielectric antenna in which the strip-shaped antenna electrode on the upper surface of the dielectric is formed in a spiral shape in which the strip-shaped antenna electrode on the upper surface of the dielectric is formed in a spiral shape.
  • this matching element can be formed integrally with the antenna electrode on the dielectric substrate.
  • the “spiral shape” refers to a shape drawn in a single stroke from the outside to the inside of the quadrilateral with a line segment parallel to the four sides of the quadrilateral.
  • the corners connecting the line segments are not necessarily right angles but are formed by arcs.
  • the strip-shaped electrodes formed by line segments parallel to the four sides allow four directions parallel to the plane of the dielectric substrate and two directions perpendicular to the surface of the dielectric substrate, that is, in all directions. Radio waves are radiated and can be received. In other words, it becomes an omnidirectional antenna.
  • “spiral” refers to a simple spiral that has no linear portion. -Also refers to things.
  • FIG. 1 shows a first embodiment of the present invention, and shows a dielectric antenna in which a strip-shaped antenna electrode on the top surface of a dielectric is formed in a linear spiral shape.
  • FIG. 2 shows a second embodiment of the present invention, and shows an example in which a dielectric is laminated via a thin layer having a low dielectric constant.
  • FIG. 3 is a diagram for explaining the effect of the dielectric antenna having the dielectric layered, and shows the current distribution on the antenna and the electrode.
  • FIG. 4 is a diagram illustrating the effect of a dielectric antenna in which dielectrics are stacked.
  • FIG. 5 shows an example in which a dielectric substrate is further attached to the bottom of a dielectric antenna in which a dielectric is laminated.
  • FIG. 6 shows an example of connecting a coil to achieve matching at a desired frequency in the dielectric antenna of the present invention.
  • FIG. 7 shows an example in which a coil is integrated with an antenna electrode on a dielectric substrate in order to achieve matching at a desired frequency in the dielectric antenna of the present invention.
  • FIG. 8 is a diagram showing an example of samples 1 to 6 in which the size of the dielectric ceramic substrate and the electrode pattern are different in the first embodiment.
  • FIG. 9 shows a second embodiment.
  • FIG. 10 shows a case where power is supplied using a coplanar line in the method for feeding a dielectric antenna according to the present invention.
  • FIG. 11 shows the method of feeding a dielectric antenna according to the present invention.
  • FIG. 12 shows the case where the feeding method for the dielectric antenna according to the present invention is performed using a coaxial line 5.
  • FIG. 13 shows a method of feeding a dielectric antenna according to the present invention, in which a slot is not used and power is fed from a back surface-using a coplanar line by electromagnetic coupling.
  • FIG. 2 shows a second embodiment of the present invention.
  • antenna electrodes are provided on both surfaces of one dielectric ceramic substrate 1. 2 is formed, and both antenna electrodes are connected via the side electrode 3 in the figure.
  • the current distribution on the antenna is roughly divided into modes in which the current is maximum and minimum on the side electrode 3 which is the middle point of the antenna.
  • the former is called the even symmetric mode
  • the latter is called the odd symmetric mode. 5
  • Figure 3 shows the current distribution of the lowest mode.
  • the frequency at which these modes operate as an antenna is when the effective length of the antenna is an integral multiple of half a wavelength, and each operating frequency is f f. Then 0 2
  • a small and thin antenna can be realized even in the frequency band below the mouthpiece.
  • a thin low dielectric constant of about several tens m is provided between two ceramic substrates 1, 1 each having antenna electrodes 2, 2 'formed on one side thereof.
  • ⁇ r 1 0 about
  • the ceramic substrates 1, 1 each having antenna electrodes 2, 2 'formed on one side thereof.
  • ⁇ r 1 0 about
  • the interface between the high-Z low-dielectric layer becomes closer to the magnetic wall as the difference in relative dielectric constant between them increases.
  • Even thin-ceramic substrate enables even-symmetric mode excitation, and a small and thin dielectric antenna can be obtained even in the frequency band below quasi-microwave.
  • FIG. 5 shows that the dielectric substrate 6 is attached to one surface of the dielectric antenna according to the first embodiment or the second embodiment so that frequency adjustment and matching can be achieved, thereby improving the antenna characteristics. It can be easily achieved.
  • FIG. 6 shows that in the dielectric antenna of the present invention, in order to obtain matching at a desired frequency other than the method of FIG. 5 described above, according to the Smith chart, if the dielectric antenna 20 has a capacitance component, the inductor ( The former shows the case of installing a capacitor if the coil 6) is an inductor component.
  • FIG. 7 shows a case where the inductor (coil) 7 as a matching element is formed integrally with the antenna electrode 2 on the dielectric substrate 6 by the method of FIG. 6 above in the dielectric antenna of the present invention. I have.
  • FIG. 8 shows the results of measuring the frequency and the return loss characteristics of the first embodiment in which samples of (1) to (4) having different ceramic substrate sizes and electrode patterns were prototyped. Table 1 shows the measurement results. No. size (mm) Frequency (MHz) Return loss (dB)
  • FIG. 9 shows the second embodiment, in which samples of 1 to ⁇ having different electrode patterns are prototyped, and the frequency and the return loss characteristics are measured. Table 2 shows the measurement results.
  • FIG. 10 shows a case where power is supplied using the coplanar line 8 in the method of feeding a dielectric antenna according to the present invention.
  • FIG. 11 shows a case where power is supplied using nine microstrip lines in the method for supplying a dielectric antenna according to the present invention.
  • FIG. 12 shows a case where power is supplied using the coaxial line 10 in the method for feeding a dielectric antenna according to the present invention.
  • Fig. 13 shows the method of feeding a dielectric antenna according to the present invention. The case where power is supplied using the planar line 11 is shown.
  • the present invention has the following effects.
  • the dielectric antenna according to the present invention in which the strip-shaped antenna electrode on the upper surface of the dielectric is formed in a spiral shape, can achieve matching by connecting an inductance coil or a capacitor to its feeding terminal.
  • This invention can be utilized in manufacture of the dielectric antenna used for wireless communication.

Landscapes

  • Details Of Aerials (AREA)

Abstract

The invention provides a small dielectric antenna having good mountability and unlikely to deteriorate its performance. The dielectric antenna includes feeder terminals (3, 4) attached to the lower surface or a side of a flat dielectric material (1). A striplike antenna electrode (2) is formed on the upper surface of the dielectric material (1). The feeder terminals (3, 4) and the antenna electrode (2) are connected within or through the side of the dielectric material (1). The dielectric material (1) is formed of ceramic, and the striplike antenna electrode (2) is formed in a spiral.

Description

明 細 書  Specification
誘電体アンテナ Dielectric antenna
技術分野 Technical field
本発明は、 超短波、 準マイクロ波、 マイクロ波、 ミ リ波の無線通信に使用さ れる誘電体アンテナに関する。 背景技術  The present invention relates to a dielectric antenna used for wireless communication of ultrashort waves, quasi-microwaves, microwaves, and millimeter waves. Background art
係る誘電体アンテナとしては、 例えば、 特開平 1 0— 1 7 3 4 3 4号公報、 特開平:! 0— 2 4 7 8 0 7号公報、 特開平 1 0— 3 0 3 6 1 2号公報に開示さ れているブロック状または平面状の誘電体と、 この誘電体の底面に形成された グランド電極と給電端子が形成されており、 誘電体の上面に形成された帯状の アンテナ電極が形成されており、 さらに、 給電端子とアンテナ電極は誘電体の 内部を通って接続されている構造となっており、 誘電体を主な放射素子とした ことによって周波数上昇によるアンテナ効率の低下を改善したものである。 ところが、 従来の誘電体アンテナには、 改善すべき多くの課題がある。  Such a dielectric antenna is disclosed in, for example, Japanese Patent Application Laid-Open No. H10-174334, Japanese Patent Application Laid-Open No. A block-shaped or planar dielectric disclosed in Japanese Patent Application Laid-Open No. 0-247807 and Japanese Patent Application Laid-Open No. Hei 10-33612, and a ground formed on the bottom surface of the dielectric. An electrode and a power supply terminal are formed, a strip-shaped antenna electrode formed on the upper surface of the dielectric is formed, and the power supply terminal and the antenna electrode are connected through the inside of the dielectric. The use of a dielectric material as the main radiating element has improved the decrease in antenna efficiency due to the increase in frequency. However, conventional dielectric antennas have many issues that need to be improved.
例えば、 従来の誘電体アンテナには、 給電端子が裏面中央にあることから表 面実装には適さないという問題であり、 パッチ型、 平面積層型には指向性があ るという問題であり、 小型化した場合、 アンテナ電極が近接することにに伴う 電気力線の影響により性能の低下する問題であり、 さらには、 アンテナの周波 数特性から周波数範囲毎の整合が難しい問題である。 発明の開示  For example, conventional dielectric antennas have a problem that they are not suitable for surface mounting because the power supply terminal is located in the center of the back surface. In this case, the performance is degraded due to the influence of the lines of electric force due to the proximity of the antenna electrodes, and furthermore, it is difficult to match each frequency range due to the frequency characteristics of the antenna. Disclosure of the invention
本発明が解決しようとする課題は、 従来の誘電体アンテナにおける上記諸問 題を解決して、 実装性に優れ、 小型でありながらも、 誘電体アンテナとしての 性能劣化を防ぐことにある。  The problem to be solved by the present invention is to solve the above-mentioned problems in the conventional dielectric antenna and to prevent the performance degradation as a dielectric antenna while being excellent in mountability and small in size.
本発明の誘電体アンテナは、 平面状に形成された誘電体の底面もしくは側面 には給電端子が設けられ、 同誘電体の上面には帯状のアンテナ電極が形成され • ており、 さらに、 給電端子とアンテナ電極は誘電体の内部もしくは側面を通つ . て接続されている誘電体アンテナにおいて、 前記平面状の誘電体を高誘電率を - 有するセラミックスによって形成し、 且つ、 前記平面状の誘電体上面の帯状の . アンテナ電極をスパイラル状に形成したことを特徴とする。 In the dielectric antenna of the present invention, a feeding terminal is provided on a bottom surface or a side surface of a dielectric formed in a planar shape, and a band-shaped antenna electrode is formed on an upper surface of the dielectric. A feed terminal and an antenna electrode are connected through the inside or the side surface of the dielectric. In the dielectric antenna, the planar dielectric is formed of ceramics having a high dielectric constant. Further, the band-shaped antenna electrode on the top surface of the planar dielectric is formed in a spiral shape.
5 高誘電率を有するセラミックスとしては、 ε rが 3 0〜1 2 0程度の誘電率 - を有する B a T i〇3系、 B a (M g ! /3 T a 2 / 3) 0 3系、 B a ( Z n 1 / 3 T a 2 / 3) . 0 3系などのセラミックスが好適に使用できる。 これによつて高誘電率の誘電 . 体セラミックスによる波長短縮効果の理由から、 アンテナを小型化できる。 - また、 帯状のアンテナ電極をスパイラル状に形成したことによって、 全方位 0 に電波を放射し、 無指向性を達成できる。 5 As a ceramic having a high dielectric constant, a Ba T i〇3 system having a dielectric constant of ε r of about 30 to 120, Ba (M g! / 3 T a 2/3 ) 0 3 system, B a (Z n 1/ 3 T a 2/3). 0 such 3 based ceramics can be preferably used. This makes it possible to reduce the size of the antenna due to the wavelength shortening effect of the dielectric ceramic having a high dielectric constant. -In addition, by forming the strip-shaped antenna electrode in a spiral shape, radio waves can be radiated in all directions 0 and omnidirectionality can be achieved.
. また、 準マイクロ波以下の低周波数帯において小型化するために、 高誘電率 . の誘電体を、 アルミナやエポキシ樹脂のような、 ε rが 2〜 1 0程度の低誘電 . 率の薄層 (数十/ z m) を介して積層することによって、 広い範囲の周波数バン - ドに対応できる。In addition, in order to reduce the size in the low frequency band below the quasi-microwave, a dielectric material having a high dielectric constant, such as alumina or epoxy resin, has a low dielectric constant of ε r of about 2 to 10. By laminating through layers (several tens / zm), it is possible to cover a wide range of frequency bands.
5 さらに、 この積層誘電体アンテナもしくは片面スパイラル誘電体アンテナの - 底面に、 さらに、 誘電体基板を貼り付けることによって、 周波数調整と整合が . 取れ、 これによつて、 アンテナの特性を改善できる。  5 Furthermore, by attaching a dielectric substrate to the bottom surface of the laminated dielectric antenna or the single-sided spiral dielectric antenna, frequency adjustment and matching can be achieved, thereby improving the characteristics of the antenna.
- さらに、 本発明に係る誘電体上面の帯状のアンテナ電極をスパイラル状に形 . 成した誘電体アンテナは、 その給電端子にインダクタコイルやキャパシタなど -Further, according to the present invention, the dielectric antenna in which the strip-shaped antenna electrode on the upper surface of the dielectric is formed in a spiral shape.
20 の整合素子を接続することによって所望周波数での整合を取ることができる。 . 単にこの整合素子は誘電体基板上にアンテナ電極と一体形成できる。 By connecting 20 matching elements, matching at a desired frequency can be achieved. Simply, this matching element can be formed integrally with the antenna electrode on the dielectric substrate.
• ここで、 本明細書において、 「スパイラル状」 とは、 四辺形の外側から内側 - に向かって、 前記四辺形の 4辺に対して平行な線分で一筆書き状に描かれる形 • 状を言う。 なお、 各線分を結ぶ角部は、 必ずしも直角でなく、 円弧で形成され Here, in this specification, the “spiral shape” refers to a shape drawn in a single stroke from the outside to the inside of the quadrilateral with a line segment parallel to the four sides of the quadrilateral. Say The corners connecting the line segments are not necessarily right angles but are formed by arcs.
25 てもよい。 この 4辺に対して平行な線分で形成される帯状の電極により、 誘電 . 体基板の面平行な四方と、 誘電体基板の面に垂直な二方の六方向、 すなわち全 - 方向に対して電波が放射され、 また受信可能となる。 すなわち、 無指向性のァ . ンテナとなる。 また、 「スパイラル状」 とは、 直線部を有しない単に渦卷状の - ものも指す。 25 The strip-shaped electrodes formed by line segments parallel to the four sides allow four directions parallel to the plane of the dielectric substrate and two directions perpendicular to the surface of the dielectric substrate, that is, in all directions. Radio waves are radiated and can be received. In other words, it becomes an omnidirectional antenna. In addition, “spiral” refers to a simple spiral that has no linear portion. -Also refers to things.
• 図面の簡単な説明 • Brief description of the drawing
- 図 1は、 本発明の第 1の実施態様を示すもので、 誘電体上面の帯状のアンテ 5 ナ電極を直線スパイラル状に形成した誘電体アンテナを示す。  FIG. 1 shows a first embodiment of the present invention, and shows a dielectric antenna in which a strip-shaped antenna electrode on the top surface of a dielectric is formed in a linear spiral shape.
- 図 2は、 本発明の第 2の実施態様を示すもので、 低誘電率の薄層を介して誘 - 電体を積層した例を示す。 FIG. 2 shows a second embodiment of the present invention, and shows an example in which a dielectric is laminated via a thin layer having a low dielectric constant.
- 図 3は、 誘電体を積層した誘電体アンテナの効果を説明する図で、 アンテナ . 電極上の電流分布を示す。 -Fig. 3 is a diagram for explaining the effect of the dielectric antenna having the dielectric layered, and shows the current distribution on the antenna and the electrode.
0 図 4は、 誘電体を積層した誘電体アンテナの効果を説明する図である。 FIG. 4 is a diagram illustrating the effect of a dielectric antenna in which dielectrics are stacked.
- 図 5は、 誘電体を積層した誘電体アンテナの底面にさらに誘電体基板を貼り - 付けた例を示す。 FIG. 5 shows an example in which a dielectric substrate is further attached to the bottom of a dielectric antenna in which a dielectric is laminated.
• 図 6は、 本発明の誘電体アンテナにおいて、 所望の周波数での整合を取るた • めにコイルを接続した例を示す。 FIG. 6 shows an example of connecting a coil to achieve matching at a desired frequency in the dielectric antenna of the present invention.
5 図 7は、 本発明の誘電体アンテナにおいて、 所望の周波数での整合を取るた . めにコィルを誘電体基板上にアンテナ電極と一体化した例を示す。 5 FIG. 7 shows an example in which a coil is integrated with an antenna electrode on a dielectric substrate in order to achieve matching at a desired frequency in the dielectric antenna of the present invention.
- 図 8は、 第 1の実施態様において、 誘電体セラミック基板のサイズと電極パ . ターンの異なる①〜⑤のサンプルの例を示す図である。 -FIG. 8 is a diagram showing an example of samples 1 to 6 in which the size of the dielectric ceramic substrate and the electrode pattern are different in the first embodiment.
- 図 9は、 第 2の実施態様を表した図である。FIG. 9 shows a second embodiment.
0 図 1 0は、 本発明の誘電体アンテナの給電方法で、 コプレーナ線路を使用し - て給電した場合を示す。  0 FIG. 10 shows a case where power is supplied using a coplanar line in the method for feeding a dielectric antenna according to the present invention.
- 図 1 1は、 本発明の誘電体アンテナの給電方法で、 マイクロストリップ線路 -Fig. 11 shows the method of feeding a dielectric antenna according to the present invention.
• を使用して給電した場合を示す。 • Shows when power is supplied using.
- 図 1 2は、 本発明の誘電体アンテナの給電方法で、 同軸線路を使用して給電 5 した場合を示す。  -FIG. 12 shows the case where the feeding method for the dielectric antenna according to the present invention is performed using a coaxial line 5.
- 図 1 3は、 本発明の誘電体アンテナの給電方法で、 スロッ トを用いず、 裏面 - より電磁結合にてコプレーナ線路を使用して給電した場合を示す。 - 発明を実施するための最良の形態 -Fig. 13 shows a method of feeding a dielectric antenna according to the present invention, in which a slot is not used and power is fed from a back surface-using a coplanar line by electromagnetic coupling. -Best mode for carrying out the invention
. 本発明の実施の形態を添付図によって説明する。  An embodiment of the present invention will be described with reference to the accompanying drawings.
- 図 1は本発明の第 1の実施態様を示すもので、 高誘電率 ( = 9 0 ) のセ FIG. 1 shows a first embodiment of the invention, in which a high dielectric constant (= 90)
• ラミック基板 1を使用し、 セラミック基板 1の片面に帯状のアンテナ電極 2を 5 スパイラル状に形成した誘電体アンテナを示す。 アンテナ電極 2の形状をスパ . ィラル状にすることで、 無指向性になる。 マイクロ波、 ミリ波において、 (側 - 面) 電極 3もしくは (底面) 電極 4に給電することによって、 小型で軽量な特 . 性の良いアンテナが得られる。 • This shows a dielectric antenna in which a band-shaped antenna electrode 2 is formed in a 5-spiral shape on one side of a ceramic substrate 1 using a ceramic substrate 1. By making the shape of the antenna electrode 2 spiral, it becomes non-directional. By feeding power to the (side-to-side) electrode 3 or the (bottom) electrode 4 in microwaves and millimeter waves, a small and lightweight antenna with excellent characteristics can be obtained.
- 図 2は本発明の第 2の実施形態を示すものであり、 アンテナの小型化を図る 0 ため図 1の実施形態のように、 1枚の誘電体セラミック基板 1の両面にアンテ - ナ電極 2を形成し、 図中側面電極 3を介して両アンテナ電極を接続する。 この - 構造で上側アンテナ電極の中心から不平衡給電すると、 アンテナ上の電流分布 - は、 アンテナの中点である側面電極 3上で電流が最大、 及び最小になるモード . に大別される。 ここでは前者を偶対称モード、 後者を奇対称モードと呼ぶ。 5 さて、 これらのモードはさらに共振次数により細分化されるが、 そのうち最 • 低次モードの電流分布を図 3に示す。 これらのモードがアンテナとして動作す • る周波数は、 アンテナの実効長が半波長の整数倍のときであり、 それぞれの動 - 作周波数を f f 。とすると、 0 2  FIG. 2 shows a second embodiment of the present invention. In order to reduce the size of the antenna, as shown in the embodiment of FIG. 1, antenna electrodes are provided on both surfaces of one dielectric ceramic substrate 1. 2 is formed, and both antenna electrodes are connected via the side electrode 3 in the figure. When unbalanced power is supplied from the center of the upper antenna electrode in this structure, the current distribution on the antenna is roughly divided into modes in which the current is maximum and minimum on the side electrode 3 which is the middle point of the antenna. Here, the former is called the even symmetric mode, and the latter is called the odd symmetric mode. 5 These modes are further subdivided according to the resonance order. Figure 3 shows the current distribution of the lowest mode. The frequency at which these modes operate as an antenna is when the effective length of the antenna is an integral multiple of half a wavelength, and each operating frequency is f f. Then 0 2
. f  . f
ΛΙ  ΛΙ
- で表わされる。 ここでアンテナの物理長を L、 偶及び奇対称モードの実効誘電-Is represented by Where the physical length of the antenna is L, the effective dielectric of even and odd symmetric modes
• 率をそれぞれ £ 。、 また光速を C。 としている。 この式からもわかるよう• Rate each £. , And light speed C. And As you can see from this equation
25 に図 2のアンテナ構造に図 3 (a) に示す偶対称モードが励振できれば、 準マIf the even symmetric mode shown in Fig. 3 (a) can be excited in the antenna structure of Fig. 2 in Fig. 25,
• イク口波以下の周波数帯でも、 小型で薄型なアンテナが実現できる。 • A small and thin antenna can be realized even in the frequency band below the mouthpiece.
. ところで、 図 3において、 偶、 奇対称モードの # 1一 # 1 ' 面上での電気力 • 線と電流分布に注目すると、 それらは図 4に示すように、 偶対称モードに関し . ては図中 # 2— # 2 ' 面が磁気壁、 奇対称モードではこの面が電気壁になるよ - うに振る舞う。 従って、 準マイクロ波以下の周波数帯において、 厚さが高々数By the way, in Fig. 3, the electric force and the current distribution on the # 1-# 1 'plane of the even and odd symmetric modes. As shown in Fig. 4, they are related to the even symmetric mode. In the figure, the # 2— # 2 'surface becomes a magnetic wall, and in odd-symmetric mode, this surface becomes an electrical wall. Therefore, in the frequency band below the quasi-microwave,
• m m程度のセラミック基板を利用した両面アンテナ電極では、 アンテナ電極間 • の結合が強くなり、 図 4 ( b ) の奇対称モードが支配的となる。 また、 偶対称 5 モードを励振するためには、 セラミック基板を十分厚く しなければならず、 こ - の点がアンテナの小型化、 薄型化を妨げる要因であった。 • In a double-sided antenna electrode using a ceramic substrate of about mm, the coupling between the antenna electrodes becomes strong, and the odd-symmetric mode in Fig. 4 (b) becomes dominant. Also, in order to excite the even-symmetric five modes, the ceramic substrate had to be sufficiently thick, which was a factor that hindered the miniaturization and thinning of the antenna.
- そこで、 本発明では図 2のように、 それぞれ片面にアンテナ電極 2、 2 ' を . 形成した 2枚のセラミック基板 1、 1, の間に、 数十; m程度の薄い低誘電率 . ( ί r = 1 0程度) の層 5を設け且つ誘電体アンテナの側面には上下のアンテ 0 ナ電極 2、 2 ' を接続する側面電極 3を設ける。 こうすることにより、 セラミTherefore, according to the present invention, as shown in FIG. 2, a thin low dielectric constant of about several tens m is provided between two ceramic substrates 1, 1 each having antenna electrodes 2, 2 'formed on one side thereof. ί r = 1 0 about) to and side surfaces of the dielectric antenna provided with a layer 5 of providing the side electrodes 3 that connects the upper and lower antenna 0 Na electrodes 2, 2 '. By doing so, the ceramic
- ック基板側から低誘電率側を見た場合、 高 Z低誘電率層境界面は両者の比誘電 - 率の差が大きくなるほど、 磁気壁に近づき、 その結果図 4 ( c ) のように薄型 - セラミック基板を用いても偶対称モードの励振が可能となり、 準マイクロ波以 . 下の周波数帯においても小型で薄型な誘電体アンテナが得られる。 -When the low dielectric constant side is viewed from the side of the backing substrate, the interface between the high-Z low-dielectric layer becomes closer to the magnetic wall as the difference in relative dielectric constant between them increases. Even thin-ceramic substrate enables even-symmetric mode excitation, and a small and thin dielectric antenna can be obtained even in the frequency band below quasi-microwave.
15 図 5は、 第 1の実施態様または第 2の実施態様の誘電体アンテナの片面に誘 - 電体基板 6を貼り付けることで、 周波数調整と整合が取れるため、 アンテナ特 - 性の向上を容易に図ることができる。 15 FIG. 5 shows that the dielectric substrate 6 is attached to one surface of the dielectric antenna according to the first embodiment or the second embodiment so that frequency adjustment and matching can be achieved, thereby improving the antenna characteristics. It can be easily achieved.
. 図 6は、 本発明の誘電体アンテナにおいて、 上記の図 5の方法以外で、 所望 • の周波数でのマッチングを取るために、 スミスチャートより、 誘電体アンテナ 20 がキャパシタンス成分であればインダクタ (コイル 6 ) を、 インダクタ成分で - あればコンデンサを設置する場合のうち前者の場合を示している。  FIG. 6 shows that in the dielectric antenna of the present invention, in order to obtain matching at a desired frequency other than the method of FIG. 5 described above, according to the Smith chart, if the dielectric antenna 20 has a capacitance component, the inductor ( The former shows the case of installing a capacitor if the coil 6) is an inductor component.
- 図 7は、 本発明の誘電体アンテナにおいて、 上記の図 6の方法で、 単に整合 • 素子としてインダクタ (コイル) 7を誘電体基板 6上にアンテナ電極 2と一体 - 形成した場合を示している。  FIG. 7 shows a case where the inductor (coil) 7 as a matching element is formed integrally with the antenna electrode 2 on the dielectric substrate 6 by the method of FIG. 6 above in the dielectric antenna of the present invention. I have.
25 図 8は、 第 1の実施態様において、 セラミックス基板のサイズと電極パター - ンの異なる①〜⑤のサンプルを試作して、 周波数と反射損失特性を測定したも - のである。 その測定結果を表 1に示す。 サンプノレ No. サイズ(mm) 周波数 (MH z) 反射損失(d B)25 FIG. 8 shows the results of measuring the frequency and the return loss characteristics of the first embodiment in which samples of (1) to (4) having different ceramic substrate sizes and electrode patterns were prototyped. Table 1 shows the measurement results. No. size (mm) Frequency (MHz) Return loss (dB)
① 1 0 X 1 0 X 1 800 - 32. 23① 1 0 X 1 0 X 1 800-32.23
② 1 0 X 1 0 X 1 90 0 -33. 55② 1 0 X 1 0 X 1 90 0 -33.55
③ 5 X 5 X 1 1 500 - 1 5. 3 1③ 5 X 5 X 1 1 500-1 5.3 1
④ 5 X 5 X 1 1 900 - 1 8. 29④ 5 X 5 X 1 1 900-1 8.29
⑤ 5 X 5 X 1 2400 - 30. 00 この結果から、 800MH z〜2. 4 GH zの帯域でそれぞれのサンプルが アンテナとして機能していることが分かる。 ⑤ 5 X 5 X 1 2400-30.00 These results show that each sample functions as an antenna in the band from 800 MHz to 2.4 GHz.
図 9は、 第 2の実施態様を表したもので、 電極パターンの異なる⑥〜⑧のサ ンプルを試作して、 周波数と反射損失特性を測定したものである。 その測定結 果を表 2に示す。  FIG. 9 shows the second embodiment, in which samples of ① to の having different electrode patterns are prototyped, and the frequency and the return loss characteristics are measured. Table 2 shows the measurement results.
表 2  Table 2
Figure imgf000007_0001
この結果から、 200〜40 OMH zと低周波数帯域でも小型の誘電体アン テナがアンテナとして機能していることが分かる。
Figure imgf000007_0001
From this result, it can be seen that a small dielectric antenna functions as an antenna even in the low frequency band of 200 to 40 MHZ.
図 1 0は、 本発明の誘電体アンテナの給電方法で、 コプレーナ線路 8を使用 して給電した場合を示す。  FIG. 10 shows a case where power is supplied using the coplanar line 8 in the method of feeding a dielectric antenna according to the present invention.
図 1 1は、 本発明の誘電体ァンテナの給電方法で、 マイクロス トリツプ線 9 路を使用して給電した場合を示す。  FIG. 11 shows a case where power is supplied using nine microstrip lines in the method for supplying a dielectric antenna according to the present invention.
図 1 2は、 本発明の誘電体アンテナの給電方法で、 同軸線路 1 0を使用して 給電した場合を示す。  FIG. 12 shows a case where power is supplied using the coaxial line 10 in the method for feeding a dielectric antenna according to the present invention.
図 1 3は、 本発明の誘電体アンテナの給電方法で、 裏面より電磁結合にてコ プレーナ線路 1 1を使用して給電した場合を示す。 Fig. 13 shows the method of feeding a dielectric antenna according to the present invention. The case where power is supplied using the planar line 11 is shown.
上述したように、 本発明によれば下記の効果を奏する。  As described above, the present invention has the following effects.
( 1 ) 高誘電率を有する平面状の誘電体セラミックスによって形成し、 且つ、 前記平面状の誘電体上面の帯状のアンテナ電極をスパイラル状に形成したこと により、 小型の誘電体アンテナで無指向性を達成できる。  (1) Since it is formed of a planar dielectric ceramic having a high dielectric constant and the strip-shaped antenna electrode on the upper surface of the planar dielectric is formed in a spiral shape, it is omnidirectional with a small-sized dielectric antenna. Can be achieved.
( 2 ) 高誘電率を有する誘電体を低誘電率の薄層を介して積層することによつ て、 広い周波数バンドに対応でき、 アンテナ特性が向上する。  (2) By laminating a dielectric having a high dielectric constant via a thin layer having a low dielectric constant, it is possible to cope with a wide frequency band, and the antenna characteristics are improved.
( 3 ) さらに、 この積層誘電体アンテナの底面に、 誘電体基板を貼り付けるこ とによって、 容易に周波数調整と整合を取ることができる。  (3) Further, by attaching a dielectric substrate to the bottom surface of the laminated dielectric antenna, frequency adjustment and matching can be easily achieved.
( 4 ) さらに、 本発明に係る誘電体上面の帯状のアンテナ電極をスパイラル状 に形成した誘電体ァンテナは、 その給電端子にインダクタンスコイルまたはキ ャパシタを接続することによって、 整合を取ることができる。 産業上の利用可能性  (4) Furthermore, the dielectric antenna according to the present invention, in which the strip-shaped antenna electrode on the upper surface of the dielectric is formed in a spiral shape, can achieve matching by connecting an inductance coil or a capacitor to its feeding terminal. Industrial applicability
本発明は、 無線通信に使用される誘電体アンテナの製造において利用するこ とができる。  INDUSTRIAL APPLICATION This invention can be utilized in manufacture of the dielectric antenna used for wireless communication.

Claims

請 求 の 範 囲 The scope of the claims
1 . 平面状に形成された誘電体の底面もしくは側面には給電端子が設けられ、 同誘電体の上面には帯状のアンテナ電極が形成され、 さらに、 給電端子とアン テナ電極は誘電体の内部もしくは側面を通って接続されている誘電体アンテナ において、 前記平面状の誘電体を高誘電率を有するセラミックスによって形成 し、且つ、前記帯状のアンテナ電極をスパイラル状に形成した誘電体アンテナ。 1. A feed terminal is provided on the bottom or side surface of the dielectric formed in a plane, and a strip-shaped antenna electrode is formed on the upper surface of the dielectric. Further, the feed terminal and the antenna electrode are formed inside the dielectric. Alternatively, in the dielectric antenna connected through a side surface, the planar dielectric is formed of ceramics having a high dielectric constant, and the band-shaped antenna electrode is formed in a spiral shape.
2 . 平面状に形成された誘電体を低誘電率の薄層を介して積層した請求の範 囲 1に記載の誘電体アンテナ。 2. The dielectric antenna according to claim 1, wherein a dielectric formed in a planar shape is laminated via a thin layer having a low dielectric constant.
3 . 底面に、 さらに、 誘電体基板を貼り付けた請求の範囲 1または 2記載の誘 電体アンテナ。 3. The dielectric antenna according to claim 1, further comprising a dielectric substrate attached to the bottom surface.
4 . 誘電体基板上給電端子面にコイルやキャパシタのような整合回路をアン テナとともに一体形成した請求の範囲 1または 2記載の誘電体アンテナ。  4. The dielectric antenna according to claim 1, wherein a matching circuit such as a coil or a capacitor is formed integrally with the antenna on the power supply terminal surface on the dielectric substrate.
5 . 給電手段がアンテナ電極と同じ面のコプレーナ線路、 マイクロス トリツ プ線路、 同軸線路、 あるいはアンテナ電極の裏面からのコプレーナ、 マイクロ ストリップ、 同軸で給電する構成のいずれも可能な請求の範囲 1から 4のいず れかに記載の誘電体ァンテナ。  5. Claims 1 to 5 in which the feeding means can be a coplanar line, a microstrip line, a coaxial line on the same plane as the antenna electrode, or a coplanar, microstrip, or coaxial feed from the back side of the antenna electrode. 4. The dielectric antenna according to any one of 4.
PCT/JP1999/006155 1999-11-04 1999-11-04 Dielectric antenna WO2001033669A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/006155 WO2001033669A1 (en) 1999-11-04 1999-11-04 Dielectric antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/006155 WO2001033669A1 (en) 1999-11-04 1999-11-04 Dielectric antenna

Publications (1)

Publication Number Publication Date
WO2001033669A1 true WO2001033669A1 (en) 2001-05-10

Family

ID=14237197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/006155 WO2001033669A1 (en) 1999-11-04 1999-11-04 Dielectric antenna

Country Status (1)

Country Link
WO (1) WO2001033669A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1643727B (en) * 2002-09-20 2012-05-30 圣韵无线技术公司 Compact, low profile, single feed, multi-band, printed antenna
CN102035070B (en) * 2009-09-28 2014-01-01 深圳富泰宏精密工业有限公司 Antenna assembly
DE102007037614B4 (en) * 2007-08-09 2014-03-13 Continental Automotive Gmbh Multipart antenna with circular polarization

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08288727A (en) * 1995-04-14 1996-11-01 Matsushita Electric Works Ltd Portable communication equipment
JPH1098405A (en) * 1996-09-25 1998-04-14 Murata Mfg Co Ltd Antenna system
JPH11122024A (en) * 1997-10-13 1999-04-30 Tdk Corp Laminated chip antenna

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08288727A (en) * 1995-04-14 1996-11-01 Matsushita Electric Works Ltd Portable communication equipment
JPH1098405A (en) * 1996-09-25 1998-04-14 Murata Mfg Co Ltd Antenna system
JPH11122024A (en) * 1997-10-13 1999-04-30 Tdk Corp Laminated chip antenna

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1643727B (en) * 2002-09-20 2012-05-30 圣韵无线技术公司 Compact, low profile, single feed, multi-band, printed antenna
DE102007037614B4 (en) * 2007-08-09 2014-03-13 Continental Automotive Gmbh Multipart antenna with circular polarization
CN102035070B (en) * 2009-09-28 2014-01-01 深圳富泰宏精密工业有限公司 Antenna assembly

Similar Documents

Publication Publication Date Title
JP3932116B2 (en) ANTENNA DEVICE AND COMMUNICATION DEVICE USING THE SAME
EP1248316B1 (en) Antenna and communication apparatus having the same
JP4423809B2 (en) Double resonance antenna
US7642970B2 (en) Antenna device and wireless communication apparatus using same
JP6678722B1 (en) Antenna, wireless communication module and wireless communication device
JP2004088218A (en) Planar antenna
WO2014203977A1 (en) Antenna, antenna device, and wireless device
KR20050103972A (en) Antenna device
JPH10145123A (en) Meander line antenna
JP2000022421A (en) Chip antenna and radio device mounted with it
KR20020096016A (en) Surface-mounted antenna and communications apparatus comprising same
CN110311224A (en) Small spacing micro-strip antenna array
KR20070116550A (en) A chip antenna, an antenna device, and a communication equipment
US20080174503A1 (en) Antenna and electronic equipment having the same
JP3921425B2 (en) Surface mount antenna and portable radio
KR20010045692A (en) An element for antenna and a radio communication device using the same
WO2001006596A1 (en) Dielectric antenna
JPH11274845A (en) Antenna system
WO2005081364A1 (en) Dielectric antenna
JP3952385B2 (en) Surface mount antenna and communication device equipped with the same
WO2001033669A1 (en) Dielectric antenna
TWI815365B (en) Slot antenna
WO2014104228A1 (en) Multiband antenna and radio apparatus
JP4045459B2 (en) ANTENNA ELEMENT AND RADIO COMMUNICATION DEVICE USING THE SAME
JP2003037423A (en) Surface mounting antenna, and communication system loaded with the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase