WO2001030838A1 - Nouveau polypeptide, proteine g 17, et polynucleotide codant pour ce polypeptide - Google Patents

Nouveau polypeptide, proteine g 17, et polynucleotide codant pour ce polypeptide Download PDF

Info

Publication number
WO2001030838A1
WO2001030838A1 PCT/CN2000/000379 CN0000379W WO0130838A1 WO 2001030838 A1 WO2001030838 A1 WO 2001030838A1 CN 0000379 W CN0000379 W CN 0000379W WO 0130838 A1 WO0130838 A1 WO 0130838A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
protein
polynucleotide
sequence
seq
Prior art date
Application number
PCT/CN2000/000379
Other languages
English (en)
French (fr)
Inventor
Yumin Mao
Yi Xie
Original Assignee
Shanghai Bio Road Gene Development Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Bio Road Gene Development Ltd. filed Critical Shanghai Bio Road Gene Development Ltd.
Priority to AU12644/01A priority Critical patent/AU1264401A/en
Publication of WO2001030838A1 publication Critical patent/WO2001030838A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4722G-proteins

Definitions

  • the present invention belongs to the field of biotechnology. Specifically, the present invention describes a new polypeptide, a G protein 17, and a polynucleotide sequence encoding the polypeptide. The invention also relates to the preparation method and application of the polynucleotide and polypeptide.
  • GTP-binding protein (G protein for short) has a wide range of functions in the body, involving important biological functions such as cell proliferation, signal transduction, protein synthesis, and protein localization. GTP-binding proteins can be divided into various superfamily, such as Ras family, Rab family, etc. Each superfamily has many family members. The protein synthesis elongation factor EF-Tu was the first G protein to be discovered. Later, many other members of the GTP-binding protein family were cloned. Members of the G protein family all contain a conserved GTP binding motif. The GTP binding motif is used as a molecular switch in the body, and regulates protein expression and non-expression through its binding to GDP and GTP. Therefore, G protein has a very important role in the body. Abnormal expression of G protein will cause abnormal proliferation of tissue cells and abnormal expression of proteins, which will cause various related diseases, such as various malignant tumors and cancers, and various development. Disorders, various immune system diseases, etc.
  • Gl RVAVVGNVDAGKSTLL
  • G2 RH HEIESGRTSSVG
  • G3 ITFIDLAGHE
  • G4 FVVVTKID.
  • the new protein of the present invention has 55% identity and 74% similarity with the murine GP-1 protein at the protein level, and also contains two GTP binding motifs, G3 and G4 of the new G protein family.
  • G protein 17 A member of the new G protein family, which is named G protein 17. It is inferred that it is similar to murine GP-1, human GP-1, etc., is a member of the new G protein family, and has similar biological functions.
  • Another object of the invention is to provide a polynucleotide encoding the polypeptide.
  • Another object of the present invention is to provide a method for producing G protein 17.
  • Another object of the present invention is to provide an antibody against the polypeptide-G protein 17 of the present invention.
  • Another object of the present invention is to provide mimic compounds, antagonists, agonists, and inhibitors directed to the polypeptide-G protein 17 of the present invention.
  • Another object of the present invention is to provide a method for diagnosing and treating diseases related to G protein 17 abnormality. Summary of invention
  • a novel isolated G protein 17 is provided.
  • the polypeptide is of human origin and comprises: a polypeptide having the amino acid sequence of SEQ ID NO: 2, or a conservative variant polypeptide thereof, or an active fragment thereof. , Or its active derivative, analog.
  • the polypeptide is a polypeptide having the amino acid sequence of SEQ ID NO: 2.
  • a polynucleotide encoding these isolated polypeptides, the polynucleotide comprising a nucleotide sequence having at least 70 nucleotides with a nucleotide sequence selected from the group consisting of % Identity: (a) a polynucleotide encoding the above-mentioned G protein 17; (b) a polynucleotide complementary to the polynucleotide (a).
  • the polynucleotide encodes a polypeptide having the amino acid sequence shown in SEQ ID NO: 2.
  • sequence of the polynucleotide is one selected from the group consisting of: (a) a sequence having positions 712-1173 in SEQ ID NO: 1; and (b) a sequence having 1- in SEQ ID NO: 1 1957-bit sequence.
  • Fig. 1 is a comparison diagram of the amino acid sequence homology between G protein 17 of the present invention and human GTP-binding protein 1.
  • the upper sequence is G protein 17, and the lower sequence is human GTP-binding protein 1.
  • Identical amino acids are represented by single-character amino acids between the two sequences, and similar amino acids are represented by.
  • Figure 2 shows the polyacrylamide gel electrophoresis (SDS-PAGE) of the isolated G protein 17. 17kDa is the molecular weight of the protein. The arrow indicates the isolated protein band.
  • isolated refers to the separation of a substance from its original environment (if it is a natural substance, the original environment is the natural environment).
  • polynucleotides and polypeptides in a natural state in a living cell are not isolated and purified, but the same polynucleotides or polypeptides are separated and purified if they are separated from other substances in the natural state .
  • isolated G protein 17 means that G protein 17 is substantially free of other proteins, lipids, sugars, or other substances with which it is naturally associated. Those skilled in the art can purify G protein 17 using standard protein purification techniques. Substantially pure polypeptides produce a single main band on a non-reducing polyacrylamide gel. The purity of the G protein 17 polypeptide can be analyzed by amino acid sequence.
  • the present invention provides a new polypeptide G protein 17, which is basically composed of the amino acid sequence shown in SEQ ID NO: 2.
  • the polypeptide of the present invention may be a recombinant polypeptide, a natural polypeptide, a synthetic polypeptide, and preferably a recombinant Polypeptides.
  • Polypeptides of the invention can be naturally purified products or chemically synthesized products, or can be produced from prokaryotic or eukaryotic hosts (eg, bacteria, yeast, higher plants, insects, and mammalian cells) using recombinant techniques. According to For the host used in the recombinant production scheme, the polypeptide of the present invention may be glycosylated or may be non-glycosylated.
  • the polypeptide of the present invention may also include or exclude the initial methionine residue.
  • the invention also includes fragments, derivatives and analogs of G protein 17.
  • fragment refers to a polypeptide that substantially retains the same biological function or activity of the G protein 17 of the present invention.
  • a fragment, derivative or analog of the polypeptide of the present invention may be: (I) a type in which one or more amino acid residues are substituted with conservative or non-conservative amino acid residues (preferably conservative amino acid residues), and the substitution
  • the amino acid may or may not be encoded by the genetic code; or ( ⁇ ) such a type in which one group on one or more amino acid residues is replaced by another Group substitutions include substituents; or (III) such that the mature polypeptide is fused to another compound (such as a compound that extends the half-life of the polypeptide, such as polyethylene glycol); or (IV) such that additional A polypeptide sequence (such as a leader sequence or a secreted sequence or a sequence used to purify this polypeptide or a protein sequence) obtained by fusing the amino acid sequence of a mature polypeptide into a mature polypeptide.
  • a polypeptide sequence such as a leader sequence or a secreted sequence or a sequence used to purify this polypeptide or a
  • the present invention provides an isolated nucleic acid (polynucleotide), which basically consists of a polynucleotide encoding a polypeptide having the amino acid sequence of SEQ ID NO: 2.
  • the polynucleotide sequence of the present invention includes the nucleotide sequence of SEQ ID NO: 1.
  • the polynucleotide of the present invention is found from a cD library of human fetal brain tissue. It contains a polynucleotide sequence of 1957 bases in length and its open reading frame (712-1 173) encodes 153 amino acids. According to the amino acid sequence homology comparison, it was found that this polypeptide has 55% homology with human GTP-binding protein 1, and it can be deduced that the G protein 17 has similar structure and function to human GTP-binding protein 1.
  • the polynucleotide of the present invention may be in the form of DNA or RNA.
  • DNA forms include cDNA, genomic DNA, or synthetic DNA.
  • DNA can be single-stranded or double-stranded.
  • DNA can be coding or non-coding.
  • the coding region sequence encoding a mature polypeptide may be the same as the coding region sequence shown in SEQ ID NO: 1 or a degenerate variant.
  • a "degenerate variant" refers to a nucleic acid sequence encoding a protein or polypeptide having SEQ ID D NO: 2 but different from the coding region sequence shown in SEQ ID D NO: 1 in the present invention.
  • the polynucleotide encoding the mature polypeptide of SEQ ID NO: 2 includes: only the coding sequence of the mature polypeptide; the coding sequence of the mature polypeptide and various additional coding sequences; the coding sequence of the mature polypeptide (and optional additional coding sequences); Coding sequence.
  • polynucleotide encoding a polypeptide refers to a polynucleotide comprising the polypeptide and a polynucleotide comprising additional coding and / or non-coding sequences.
  • the invention also relates to variants of the polynucleotides described above, which encode polypeptides or fragments, analogs and derivatives of polypeptides having the same amino acid sequence as the invention. Variants of this polynucleotide can be naturally occurring allelic variants or non-naturally occurring variants. These nucleotide variants include substitution variants, deletion variants, and insertion variants.
  • an allelic variant is an alternative form of a polynucleotide that may be a substitution, deletion, or insertion of one or more nucleotides, but does not substantially change the function of the polypeptide it encodes .
  • the present invention also relates to a polynucleotide that hybridizes to a sequence described above 50% less, preferably 70% identity).
  • the invention particularly relates to polynucleotides that can hybridize to the polynucleotides of the invention under stringent conditions.
  • “strict conditions” means: (1) hybridization and elution at lower ionic strength and higher temperature, such as 0.2xSSC, 0.1% SDS, 6 (TC; or (2) added during hybridization) Use a denaturant, such as 50% (v / v) formamide, 0.1 ° / »calf serum / 0.1% Ficoll, 42 ° C, etc .; or (3) only the identity between the two sequences is at least Hybridization occurs at 95% or more, and more preferably 97% or more.
  • the polypeptide encoded by the hybridizable polynucleotide has the same biological function and activity as the mature polypeptide shown in SEQ ID NO: 2.
  • Acid fragment At least 10 nucleotides in length, preferably at least 20-30 nucleotides, more preferably at least 50-60 nucleotides, and most preferably at least 100 nucleotides. Nucleic acid fragments can also be used for nucleic acids Amplification technology (such as PCR) to identify and / or isolate a polynucleotide encoding G protein 17.
  • polypeptides and polynucleotides in the present invention are preferably provided in an isolated form and are more preferably purified to homogeneity.
  • the specific polynucleotide sequence encoding the G protein 17 of the present invention can be obtained by various methods.
  • polynucleotides are isolated using hybridization techniques well known in the art. These techniques include, but are not limited to: 1) hybridization of probes to genomic or cDNA libraries to detect homologous polynucleotide sequences, and 2) antibody screening of expression libraries to detect cloned polynucleosides with common structural characteristics Acid fragments.
  • the DNA fragment sequence of the present invention can also be obtained by the following methods: 1) isolating the double-stranded DNA sequence from the genomic DNA; 2) chemically synthesizing the DM sequence to obtain the double-stranded DNA of the polypeptide.
  • genomic DNA isolation is the least commonly used. Direct chemical synthesis of DNA sequences is often the method of choice. The more commonly used method is the isolation of cDNA sequences.
  • the standard method for isolating the cDNA of interest is to isolate mRM from donor cells that overexpress the gene and perform reverse transcription to form a plasmid or phage cDNA library.
  • mRNA extraction There are many mature techniques for mRNA extraction, and kits are also commercially available (Qiagene).
  • the construction of cDNA libraries is also a common method (Sambrook, et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory. New York, 1989).
  • Commercially available cDNA libraries are also available, such as different cDNA libraries from Clontech. When polymerase reaction technology is used in combination, even very small expression products can be cloned.
  • genes can be screened from these cDNA libraries by conventional methods. These methods include (but are not limited to): (l) DNA-DNA or DNA-RNA hybridization; (2) the presence or absence of marker gene function; (3) determination of the level of transcript G protein 17; (4) immunization Technology or measuring biological activity to detect Gene-expressed protein product. The above methods can be used singly or in combination.
  • the probe used for hybridization is homologous to any part of the polynucleotide of the present invention, and its length is at least 10 nucleotides, preferably at least 30 nucleotides, more preferably At least 50 nucleotides, preferably at least 100 nucleotides.
  • the length of the probe is usually within 2000 nucleotides, preferably within 1000 nucleotides.
  • the probe used here is usually a DNA sequence chemically synthesized based on the gene sequence information of the present invention.
  • the genes or fragments of the present invention can of course be used as probes.
  • DNA probes can be labeled with radioisotopes, luciferin, or enzymes (such as alkaline phosphatase).
  • the protein product of the G protein 17 gene expression can be detected by immunological techniques such as Western blotting, radioimmunoprecipitation, and enzyme-linked immunosorbent assay (ELISA).
  • immunological techniques such as Western blotting, radioimmunoprecipitation, and enzyme-linked immunosorbent assay (ELISA).
  • a method using PCR technology to amplify DNA / RNA is preferably used to obtain the gene of the present invention.
  • the RACE method RACE-Rapid Amplification of cDNA Ends
  • the primers for PCR can be appropriately based on the polynucleotide sequence information of the present invention disclosed herein Select and synthesize using conventional methods.
  • the amplified DNA / RNA fragments can be isolated and purified by conventional methods such as by gel electrophoresis.
  • polynucleotide sequence of the gene of the present invention or various DNA fragments and the like obtained as described above can be measured by a conventional method such as dideoxy chain termination method (Sanger et al. PNAS, 1977, 74: 5463-5467). Such polynucleotide sequences can also be determined using commercial sequencing kits and the like. In order to obtain the full-length cDM sequence, sequencing needs to be repeated. Sometimes it is necessary to determine the cDNA sequence of multiple clones in order to splice into a full-length cDNA sequence.
  • the present invention also relates to a vector comprising a polynucleotide of the present invention, and a host cell genetically engineered using the vector of the present invention or directly using a G protein 17 coding sequence, and a method for producing a polypeptide according to the present invention by recombinant technology.
  • a polynucleotide sequence encoding the G protein 17 may be inserted into a vector to constitute a recombinant vector containing the polynucleotide of the present invention.
  • vector refers to bacterial plasmids, phages, yeast plasmids, plant cell viruses, mammalian cell viruses such as adenoviruses, retroviruses, or other vectors well known in the art.
  • Vectors suitable for use in the present invention include, but are not limited to: T7 promoter-based expression vectors expressed in bacteria (Rosenberg, et al.
  • pMSXND expression vectors expressed in mammalian cells Lee and Nathans, J Bio Chem. 263: 3521, 1988
  • baculovirus-derived vectors expressed in insect cells In short, as long as it can replicate in the host And stable, any plasmid and vector can be used to construct recombinant expression vectors.
  • An important feature of expression vectors is that they usually contain an origin of replication, a promoter, a marker gene, and translational regulatory elements.
  • Methods known to those skilled in the art can be used to construct expression vectors containing a DNA sequence encoding G protein 17 and appropriate transcriptional / translational regulatory elements. These methods include in vitro recombinant DNA technology, DNA synthesis technology, and in vivo recombination technology (Sambroook, et al. Molecular Cloning, a Laboratory Manual, cold Spring Harbor Laboratory. New York, 1989).
  • the DNA sequence can be operably linked to an appropriate promoter in an expression vector to guide mRNA synthesis. Representative examples of these promoters are: the lac or trp promoter of E.
  • the expression vector also includes a ribosome binding site for translation initiation, a transcription terminator, and the like. Insertion of enhancer sequences into the vector will enhance its transcription in higher eukaryotic cells. Enhancers are cis-acting factors for DNA expression, usually about 10 to 300 base pairs, which act on promoters to enhance gene transcription. Illustrative examples include SV40 enhancers of 100 to 270 base pairs on the late side of the origin of replication, polyoma enhancers and adenovirus enhancers on the late side of the origin of replication.
  • the expression vector preferably contains one or more selectable marker genes to provide phenotypic traits for selection of transformed host cells, such as dihydrofolate reductase, neomycin resistance, and green for eukaryotic cell culture.
  • selectable marker genes to provide phenotypic traits for selection of transformed host cells, such as dihydrofolate reductase, neomycin resistance, and green for eukaryotic cell culture.
  • GFP fluorescent protein
  • tetracycline or ampicillin resistance for E. coli.
  • a polynucleotide encoding a G protein 17 or a recombinant vector containing the polynucleotide can be transformed or transduced into a host cell to form a genetically engineered host cell containing the polynucleotide or the recombinant vector.
  • host cell refers to a prokaryotic cell, such as a bacterial cell; or a lower eukaryotic cell, such as a yeast cell; or a higher eukaryotic cell, such as a mammalian cell. Representative examples are: E.
  • coli Streptomyces
  • bacterial cells such as Salmonella typhimurium
  • fungal cells such as yeast
  • plant cells insect cells
  • Drosophila S2 or Sf9 animal cells
  • animal cells such as CH0, COS or Bowes melanoma cells.
  • Transformation of a host cell with a DNA sequence described in the present invention or a recombinant vector containing the DNA sequence can be performed using conventional techniques well known to those skilled in the art.
  • the host is a prokaryote such as E. coli
  • Competent cells of DNA uptake can be harvested after exponential growth phase, treated with CaC l 2 method used in the step are well known in the art.
  • the alternative is to use MgC l 2 .
  • transformation can also be performed by electroporation.
  • the host is a eukaryote, the following DM transfection methods can be used: calcium phosphate co-precipitation method, or conventional mechanical methods such as microinjection, electroporation, and liposome packaging.
  • the present invention is the use of polynucleotide sequences may be used to express or produce recombinant protein G n (Sc i ence, 1984; 224: 1431) 0 in general the following steps:
  • the medium used in the culture may be selected from various conventional mediums. Culture is performed under conditions suitable for host cell growth. After the host cells have grown to an appropriate cell density, the selected promoter is induced by a suitable method (such as temperature conversion or chemical induction), and the cells are cultured for a period of time.
  • a suitable method such as temperature conversion or chemical induction
  • the recombinant polypeptide may be coated in a cell, expressed on a cell membrane, or secreted outside the cell. If necessary, the recombinant protein can be isolated and purified by various separation methods using its physical, chemical and other properties. These methods are well known to those skilled in the art. These methods include, but are not limited to: conventional renaturation treatment, protein precipitant treatment (salting out method), centrifugation, osmotic disruption, ultrasonic treatment, ultracentrifugation, molecular sieve chromatography (gel filtration), adsorption chromatography, ion Exchange chromatography, high performance liquid chromatography (HPLC) and various other liquid chromatography techniques and combinations of these methods.
  • conventional renaturation treatment protein precipitant treatment (salting out method), centrifugation, osmotic disruption, ultrasonic treatment, ultracentrifugation, molecular sieve chromatography (gel filtration), adsorption chromatography, ion Exchange chromatography, high performance liquid
  • polypeptides of the present invention can be directly used in the treatment of diseases, for example, they can treat malignant tumors, adrenal deficiency, skin diseases, various types of inflammation, HIV infection and immune diseases.
  • GTP-binding proteins can be divided into multiple superfamilies, with many family members. Members of each superfamily have a conserved GTP-binding motif.
  • the GTP-binding motif has a wide range of biological functions. It regulates cell proliferation, controls signal transduction, and expression of various proteins in vivo. The abnormal expression of these proteins will lead to abnormal proliferation of tissue cells and abnormal expression of proteins, which will cause a variety of related diseases, such as: various malignant tumors and cancers, various development disorders, various immune system diseases, etc.
  • the expression of the protein is related to the occurrence of various malignant tumors and cancers; therefore, the polypeptide of the present invention can be used for the diagnosis and treatment of many diseases, such as various malignant tumors related thereto.
  • these diseases include, but are not limited to, stomach cancer, liver cancer, colorectal cancer, breast cancer, lung cancer, prostate cancer, cervical cancer, pancreatic cancer, esophageal cancer, pituitary adenoma, benign thyroid tumor, thyroid cancer, parathyroid Adenoma, parathyroid carcinoma, adrenal myeloma, pheochromocytoma, islet cell tumor, multiple endocrine gland tumor, thymus tumor, etc.
  • the G protein 17 of the present invention can also be used for the diagnosis and treatment of various developmental disorders related thereto, including but not limited to the following, spina bifida, craniocerebral fissure, anencephaly, cerebral bulge, and foramen malformations , Do syndrome, congenital hydrocephalus, aqueduct malformation, dwarfism of cartilage hypoplasia, spinal epiphyseal dysplasia, pseudochondral hypoplasia, Langer-G i ed i on syndrome, funnel chest, gonad hypoplasia , Congenital adrenal hyperplasia, urethral fissure, cryptorchidism, short stature syndrome such as Conrad i syndrome and Danbo l t-C loss syndrome, congenital glaucoma or cataract, congenital lens position abnormality, congenital Small eyelid fissure, retinal dysplasia, congenital optic nerve atrophy, congenital sensorineural hearing loss, cleft foot and hand
  • the G protein 17 of the present invention can also be used to diagnose and treat various immune system diseases associated with abnormal expression, including but not limited to the following, rheumatoid arthritis, chronic active hepatitis, and primary dryness. Disease, acute Stammitis, arthritis after gonococcal infection, ankylosing spondylitis, hemochromatosis, immune complex glomerulonephritis, myocarditis after gonococcal infection, systemic lupus erythematosus, rheumatoid arthritis, Scleroderma, polymyositis, xerostomia, nodular polyarteritis, Wegener's granulomatosis, myasthenia gravis, Guillain-Barre syndrome, autoimmune hemolytic anemia, immune thrombocytopenia Purpura, autoimmune interstitial nephritis, autoimmune gastritis, insulin autoimmune syndrome, autoimmune thyroid disease, autoimmune heart disease, etc.
  • various immune system diseases associated with abnormal expression
  • the invention also provides methods for screening compounds to identify agents that increase (agonist) or suppress (antagonist) G protein 17.
  • Agonists enhance biological functions such as G protein 17 to stimulate cell proliferation, while antagonists block and treat disorders related to excessive cell proliferation, such as various cancers.
  • mammalian cells or membrane preparations expressing G protein II can be cultured together with labeled G protein II in the presence of a drug. The ability of the drug to increase or block this interaction is then determined.
  • Antagonists of G protein 17 include antibodies, compounds, receptor deletions, and the like that have been screened.
  • An antagonist of G protein ⁇ can bind to G protein 17 and eliminate its function, or inhibit the production of the polypeptide, or bind to the active site of the polypeptide so that the polypeptide cannot perform a biological function.
  • G protein 17 can be added to a bioanalytical assay to determine whether a compound is an antagonist by measuring the effect of the compound on the interaction between G protein 17 and its receptor.
  • receptor deletions and analogs that act as antagonists can be screened.
  • Polypeptide molecules capable of binding to G protein 17 can be obtained by screening a random peptide library composed of various possible combinations of amino acids bound to a solid phase. When screening, the G protein 17 molecule should generally be labeled.
  • the present invention provides a method for producing antibodies using polypeptides, and fragments, derivatives, analogs or cells thereof as antigens. These antibodies can be polyclonal or monoclonal antibodies.
  • the invention also provides antibodies against the G protein 17 epitope. These antibodies include (but are not limited to): polyclonal antibodies, monoclonal antibodies, chimeric antibodies, single chain antibodies, Fab fragments, and fragments produced by Fab expression libraries.
  • Polyclonal antibodies can be produced by injecting G protein 17 directly into immunized animals (such as rabbits, mice, rats, etc.).
  • immunized animals such as rabbits, mice, rats, etc.
  • a variety of adjuvants can be used to enhance the immune response, including but not limited to Freund's adjuvant.
  • Techniques for preparing monoclonal antibodies to G protein 17 include, but are not limited to, hybridoma technology (Kohler and Milstein. Nature, 1975, 256: 495-497), triple tumor technology, human beta-cell hybridoma technology, and EBV-hybridoma technology. Wait.
  • Chimeric antibodies that bind human constant regions to non-human-derived variable regions can be produced using existing techniques (Morrison et al, PNAS, 1985, 81: 6851).
  • the existing technology for producing single chain antibodies (U. S. Pat No. 4946778) can also be used to produce single chain antibodies against G protein 17.
  • Anti-G protein 17 antibodies can be used in immunohistochemical techniques to detect G protein 17 in biopsy specimens. Monoclonal antibodies that bind to G protein ⁇ can also be labeled with radioisotopes and injected into the body to track their location and distribution. This radiolabeled antibody can be used as a non-invasive diagnostic method to locate tumor cells and determine whether there is metastasis.
  • Antibodies can also be used to design immunotoxins that target a particular part of the body.
  • G protein 17 high affinity monoclonal antibodies can covalently bind to bacterial or plant toxins (such as diphtheria toxin, ricin, ormosine, etc.).
  • a common method is to attack the amino group of the antibody with a thiol cross-linking agent such as SPDP and bind the toxin to the antibody through the exchange of disulfide bonds. This hybrid antibody can be used to kill G protein 17 positive cells.
  • the antibodies in the present invention can be used to treat or prevent diseases related to G protein 17. Give proper dose The amount of antibody can stimulate or block the production or activity of G protein 17.
  • the invention also relates to a diagnostic test method for quantitative and localized detection of G protein 17 levels. These tests are well known in the art and include F I SH assays and radioimmunoassays.
  • the level of G protein 17 detected in the test can be used to explain the importance of G protein 17 in various diseases and to diagnose diseases where G protein 17 plays a role.
  • polypeptide of the present invention can also be used for peptide mapping analysis.
  • the polypeptide can be specifically cleaved by physical, chemical or enzymatic analysis, and subjected to one-dimensional or two-dimensional or three-dimensional gel electrophoresis analysis, and more preferably mass spectrometry analysis.
  • Polynucleotides encoding G protein 17 can also be used for a variety of therapeutic purposes. Gene therapy techniques can be used to treat abnormal cell proliferation, development, or metabolism caused by the non-expression or abnormal / inactive expression of G protein 17.
  • Recombinant gene therapy vectors (such as viral vectors) can be designed to express mutated G protein 17 to inhibit endogenous G protein 17 activity.
  • a mutated G protein 17 may be a shortened G protein 17 that lacks the signaling domain, and although it can bind to downstream substrates, it lacks signaling activity. Therefore, recombinant gene therapy vectors can be used to treat diseases caused by abnormal G protein 17 expression or activity.
  • Virus-derived expression vectors such as retroviruses, adenoviruses, adenovirus-associated viruses, herpes simplex virus, and parvoviruses can be used to transfer polynucleotides encoding G protein 17 into cells.
  • Methods for constructing recombinant viral vectors carrying a polynucleotide encoding a G protein 17 can be found in existing literature (Sambrook, et al.).
  • recombinant polynucleotide encoding G protein 17 can be packaged into liposomes and transferred into cells.
  • Methods for introducing a polynucleotide into a tissue or cell include: directly injecting the polynucleotide into a tissue in vivo; or introducing the polynucleotide into a cell in vitro through a vector (such as a virus, phage, or plasmid), and then transplanting the cell Into the body and so on.
  • a vector such as a virus, phage, or plasmid
  • Oligonucleotides including antisense RNA and DNA
  • ribozymes that inhibit G protein 17 mRNA are also within the scope of the present invention.
  • a ribozyme is an enzyme-like RNA molecule that specifically decomposes specific RNA. Its mechanism of action is that the ribozyme molecule specifically hybridizes with a complementary target RNA for endonucleation.
  • Antisense RNA and DNA are also within the scope of the present invention.
  • DNA and ribozymes can be obtained by any existing RNA or DNA synthesis technology.
  • the technique of solid-phase phosphate amide chemical synthesis to synthesize oligonucleotides has been widely used.
  • Antisense RNA molecules can be obtained by in vitro or in vivo transcription of a DNA sequence encoding the RNA. This DNA sequence has been integrated downstream of the RNA polymerase promoter of the vector.
  • it can be modified in a variety of ways, such as increasing the sequence length on both sides, and the ribonucleoside linkages should use phosphate thioester or peptide bonds instead of phosphodiester bonds.
  • the polynucleotide encoding G protein 17 can be used for the diagnosis of diseases related to G protein 17.
  • Polynucleotide encoding G protein 17 can be used to detect the expression of G protein 17 or the abnormal expression of G protein 17 in a disease state.
  • the DNA sequence encoding G protein 17 can be used to hybridize biopsy specimens to determine the expression of G protein 17.
  • Hybridization techniques include Southern blotting, Northern blotting, in situ hybridization, and the like. These techniques and methods are publicly available and mature, and related kits are commercially available.
  • polynucleotides of the present invention can be used as probes to be fixed on a microarray or a DM chip (also known as a "gene chip") for analyzing differential expression analysis and gene diagnosis of genes in tissues.
  • G protein 17 specific primers can also be used to detect G protein 17 transcripts by in vitro amplification of RNA-polymerase chain reaction (RT-PCR).
  • G protein 17 mutations include point mutations, translocations, deletions, recombinations, and any other abnormalities compared to the normal wild-type G protein 17 DNA sequence. Mutations can be detected using existing techniques such as Southern blotting, DNA sequence analysis, PCR and in situ hybridization. In addition, mutations may affect protein expression, so Northern blotting and Western blotting can be used to indirectly determine whether a gene is mutated.
  • sequences of the invention are also valuable for chromosome identification. This sequence will specifically target a specific position on a human chromosome and can hybridize to it. Currently, the specific loci of each gene on the chromosome need to be identified. Currently, only a few chromosome markers based on actual sequence data (repeating polymorphisms) can be used to mark chromosome locations. According to the present invention, in order to associate these sequences with disease-related genes, an important first step is to locate these DNA sequences on a chromosome.
  • PCR primers (preferably 15-35bp) can be prepared from cDNA to locate the sequence on the chromosomes. These primers were then used for PCR screening of somatic hybrid cells containing individual human chromosomes. Only those hybrid cells that contain the human gene corresponding to the primer will produce amplified fragments.
  • PCR localization of somatic hybrid cells is a quick way to localize DM to specific chromosomes.
  • oligonucleotide primers of the present invention by a similar method, a set of fragments from a specific chromosome or a large number of genomic clones can be used to achieve sublocalization.
  • Other similar strategies that can be used for chromosomal localization include in situ hybridization, chromosome pre-screening with labeled flow sorting, and hybrid pre-selection to construct chromosome-specific cDNA libraries.
  • Fluorescent in situ hybridization of cDNA clones to metaphase chromosomes allows precise chromosomal localization in one step.
  • FISH Fluorescent in situ hybridization
  • the physical location of the sequence on the chromosome can be correlated with the genetic map data. These data can be found in, for example, V. Mckus ck, Mende l ian Inher i tance in Man (available online with Johns Hopk ins University Wet ch Med ica l L brary). Linkage analysis can then be used to determine the relationship between genes and diseases that have been mapped to chromosomal regions.
  • the difference in cDNA or genomic sequence between the affected and unaffected individuals needs to be determined. If a mutation is observed in some or all of the affected individuals and the mutation is not observed in any normal individual, the mutation may be the cause of the disease. Comparing affected and unaffected individuals usually involves first looking for structural changes in the chromosome, such as deletions or translocations that are visible at the chromosomal level or detectable with cDNA sequence-based PCR. According to the resolution capabilities of current physical mapping and gene mapping technology, the cDNA accurately mapped to the disease-related chromosomal region can be one of 50 to 500 potentially pathogenic genes (assuming 1 megabase mapping resolution) Capacity and each 20kb corresponds to a gene).
  • the polypeptides, polynucleotides and mimetics, agonists, antagonists and inhibitors of the present invention can be used in combination with a suitable pharmaceutical carrier.
  • suitable pharmaceutical carrier can be water, glucose, ethanol, salts, buffers, glycerol, and combinations thereof.
  • the composition comprises a safe and effective amount of the polypeptide or antagonist, and carriers and excipients which do not affect the effect of the drug. These compositions can be used as drugs for the treatment of diseases.
  • the invention also provides a kit or kit containing one or more containers containing one or more ingredients of the pharmaceutical composition of the invention.
  • a kit or kit containing one or more containers containing one or more ingredients of the pharmaceutical composition of the invention.
  • these containers there may be instructional instructions given by government agencies that manufacture, use, or sell pharmaceuticals or biological products, which prompts permission for administration on the human body by government agencies that produce, use, or sell.
  • the polypeptides of the invention can be used in combination with other therapeutic compounds.
  • the pharmaceutical composition can be administered in a convenient manner, such as by a topical, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal route of administration.
  • G protein 17 is administered in an amount effective to treat and / or prevent a specific indication.
  • the amount and range of G protein 17 administered to a patient will depend on many factors, such as the mode of administration, the health conditions of the person to be treated, and the judgment of the diagnostician.
  • Total human fetal brain RNA was extracted by one-step method with guanidine isothiocyanate / phenol / chloroform.
  • Poly (A) mRNA was isolated from total RNA using Quik mRNA Isolation Kit (Qiegene). 2ug poly (A) mRNA is reverse transcribed to form cDNA.
  • a SMart cDNA cloning kit (purchased from Citronech) was used. The 0 fragment was inserted into the multicloning site of the pBSK (+) vector (Clontech) and transformed into DH5 ⁇ to form a cDNA library.
  • Dye terminate cycle reaction sequencing kit Perkin-Elmer
  • ABI 377 automatic sequencer Perkin-Elmer
  • the determined cDNA sequence was compared with the existing public DNA sequence database (Genebank), and the cDNA sequence of one of the clones 0703d08 was found to be a new DM.
  • a series of primers were synthesized to determine the inserted cDNA fragments of the clone in both directions.
  • the sequence of the G protein 17 of the present invention and the protein sequence encoded by the protein were subjected to the Blast program (Basic local alignment search tool) [Altschul, SF et al. J. Mol. Biol. 1990; 215: 403-10], in Genbank , Swissport and other databases for homology search.
  • the gene most homologous to the G protein 17 of the present invention is a known human GTP-binding protein 1, and its accession number to Genbank is 1187964.
  • the protein homology results are shown in Figure 1. The two are highly homologous, with an identity of 55% and a similarity of 74%.
  • Example 3 Cloning of a gene encoding G protein 17 by RT-PCR
  • CDNA was synthesized using fetal brain cell total RM as a template and oligo-dT as a primer.
  • PCR amplification was performed with the following primers:
  • Primerl 5'- GGAGGAAATGCGAGCTTCGCTCA-3 '(SEQ ID NO: 3)
  • Primer2 5'- TAAAAGAATTTTATTTAGTGGCC-3 '(SEQ ID NO: 4)
  • Primerl is a forward sequence located at the 5th end of SEQ ID NO: 1, starting at lbp;
  • Primer2 is the 3 'end reverse sequence in SEQ ID NO: 1.
  • Amplification conditions 50 ⁇ l reaction volume containing 50 ol / L KC1, 10mmol / L Tris-CI, (pH8.5), 1.5mmol / L MgCl 2 , 200 ⁇ mol / L dNTP, lOpmol Primer, 1U Taq DNA polymerase (Clontech).
  • the reaction was performed on a PE9600 DNA thermal cycler (Perkin-Elmer) for 25 cycles under the following conditions: 94 ° C 30sec; 55 ° C 30sec; 72 ° C 2min 0
  • ⁇ -act in was set as positive during RT-PCR Controls and template blanks are negative controls.
  • the amplified product was purified using a QIAGEN kit and ligated to a PCR vector (Invitrogen product) using a TA cloning kit.
  • the DNA sequence analysis results showed that the DM sequence of the PCR product was exactly the same as l-1957bp shown in SEQ ID NO: 1.
  • Example 4 Analysis of G protein 17 gene expression by Northern blot
  • RNA extraction in one step [Anal. Biochem 1987, 162, 156-159] 0
  • This method involves acid guanidinium thiocyanate-chloroform extraction. That is, the tissue is homogenized with 4M guanidine isothiocyanate-25mM sodium citrate, 0.2M sodium acetate (pH4.0), and 1 time volume of phenol and 1/5 volume of chloroform-isoamyl alcohol (49: 1 ) And centrifuge after mixing. Aspirate the aqueous layer, add isopropanol (0.8 vol) and centrifuge the mixture to obtain RNA precipitate. The resulting RNA was precipitated at 70 ° / °. Wash with ethanol, dry and dissolve in water.
  • RNA was synthesized by electrophoresis on a 1.2% agarose gel containing 20 mM 3- (N-morpholino) propanesulfonic acid (PH7.0)-5 mM sodium acetate-ImM EDTA-2.2M formaldehyde. It was then transferred to a nitrocellulose membrane.
  • Cc- 32 P dATP with 32 P- DM labeled probe prepared by random priming method.
  • the DNA probe used was the sequence of the G protein 17 coding region (712bp to 1173bp) amplified by PCR as shown in FIG. 1.
  • the 32 P- labeled probes (about 2 x l0 6 cpm / ml) and transferred to a nitrocellulose membrane RNA is hybridized overnight at 42 ° C in a solution, the solution comprising 50% formamide - 25mM KH 2 P0 4 (pH7.4) -5 x SSC-5 x Denhardt's solution and 200 ⁇ g / ml salmon sperm DNA. After hybridization, the filter was washed in 1 x SSC-0.1% SDS at 55 ° C for 30 min. Then, Phosphor Imager was used for analysis and quantification.
  • Example 5 In vitro expression, isolation and purification of recombinant G protein 17
  • Primer3 5'- CCCCATATGATGATCACCTTCATCGACCTGGC-3 '(Seq ID No: 5)
  • Primer4 5'- CCCGGATCCTCAGCTGCTGCATGAGTTCCTC -3, (Seq ID No: 6)
  • the 5 'ends of these two primers contain Ndel and BamHI digestion sites, respectively, followed by the coding sequences of the 5, and 3' ends of the target gene, respectively.
  • the Ndel and BamHI digestion sites correspond to the expression vector plasmid pET-28b ( +) (Novagen, Cat. No. 69865.3).
  • the PCR reaction was performed using the pBS-0703d08 plasmid containing the full-length target gene as a template.
  • the PCR reaction conditions are as follows: a total volume of 50 ⁇ 1 contains 10 pg of pBS-0703d08 plasmid, primers 1 ” ⁇ 61-3 and? ⁇ [ ⁇ 1-4 are 1 ( ⁇ 0101, Advantage polymerase Mix (Clontech)) 1 ⁇ 1 Cycle parameters: 25 cycles at 94 ° C 20s, 60 ° C 30s, 68 ° C 2 min. Nel and BamHI were used to double-digest the amplified product and plasmid pET-28 (+), respectively, to recover large The fragments were ligated with T4 ligase. The ligated product was transformed into E.
  • coli DH5a by the calcium chloride method, and cultured overnight in LB plates containing kanamycin (final concentration 30 g / ml), and then screened for positive clones by colony PCR. Sequencing was performed. A positive clone (pET-0703d08) with the correct sequence was selected. The recombinant plasmid was transformed into Escherichia coli BL21 (DE3) plySs (product of Novagen) by calcium chloride method.
  • Kanamycin-containing final concentration 30 Mg / ml) in LB liquid medium
  • host strain BL21 P ET-0703d08
  • IPTG was added to a final concentration lramol / L
  • incubation was continued for 5 hours.
  • Bind Quick Cartridge product of Novagen was chromatographed to obtain purified target protein G protein 17. After SDS-PAGE electrophoresis, a single band was obtained at 17 kDa ( Figure 2).
  • a peptide synthesizer (product of PE company) was used to synthesize the following G protein 17-specific peptides:
  • the polypeptide is coupled to hemocyanin and bovine serum albumin to form a complex, respectively.
  • hemocyanin and bovine serum albumin For methods, see: Avrameas, et al. Immunochemistry, 1969; 6: 43. Rabbits were immunized with 4 mg of the above-mentioned iL cyanin polypeptide complex plus complete Freund's adjuvant, and 15 days later the hemocyanin polypeptide complex plus incomplete Freund's adjuvant was used to boost the immunity once. Using a titration plate coated with I 5 g / ml bovine serum albumin peptide complex
  • the antibody titer in rabbit serum was measured by ELISA.
  • Protein A-Sepharose was used to isolate total IgG from antibody-positive rabbit serum.
  • the peptide was bound to a cyanogen bromide-activated Sepharose4B column, and anti-peptide antibodies were separated from the total IgG by affinity chromatography. Immunoprecipitation demonstrated that the purified antibody specifically binds to G protein 17.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Toxicology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

一种新的多肽 ~ G蛋白 17和编码这种多肽的多核苷酸
技术领域
本发明属于生物技术领域, 具体地说, 本发明描述了一种新的多肽一"" G 蛋白 17, 以及编码此多肽的多核苷酸序列。 本发明还涉及此多核苷酸和多肽 的制备方法和应用。
技术背景
GTP结合蛋白 (简称 G蛋白) 在生物体内有着广泛的作用, 涉及细胞的增 殖、 信号转导、 蛋白合成及蛋白定位等重要的生物学功能。 GTP 结合蛋白又可 分为各种超级家族, 如 Ras 家族、 Rab家族等, 各超级家族又拥有众多的家族 成员。 蛋白合成延长因子 EF-Tu是最早被发现的 G蛋白, 随后人们克隆得到了 大量 GTP结合蛋白家族的其它成员。 G蛋白家族的成员均含有保守的 GTP结合 基序, GTP 结合基序在生物体内被作为分子开关, 通过其与 GDP、 GTP 结合与 否来调节蛋白的表达与不表达。 因而, G蛋白在生物体内有着极为重要的作用, 其表达异常将导致组织细胞的异常增殖及蛋白的异常表达, 从而引发各种与之 相关的疾病,如各种恶性肿瘤及癌症、 各种发育紊乱症、 各种免疫系统疾病等。
1997 年, Staoru Senju, Yasuharhu Nishimura 等人从鼠中克隆得到了一 种新的编码含有 GTP结合基序的蛋白 GP - 1, 同源比较发现, 该蛋白与人的 GP - 1 蛋白及 AGP-1, CGP-1 蛋白均相似, 均为一新的 G 蛋白家族的成员, 且含有 保守的 GTP结合基序。
新的 G 蛋白家族的不同的成员具有不同的结构特征, 但它们含有高度保 守的四个氨基酸序列片段一 GTP 结合基序: Gl: RVAVVGNVDAGKSTLL; G2: RH HEIESGRTSSVG; G3: ITFIDLAGHE; G4: FVVVTKID。 这四个基序为 G 蛋白与 GTP、 GDP结合行使生物学功能的作用位点。这一新 G蛋白家族的成员与其它 GTP 结合蛋白相似, 在生物体内起着极其重要的作用, 调节着体内各种蛋白的正常 表达及细胞的增殖。
本发明的新的蛋白与鼠 GP-1蛋白在蛋白水平有 55%的同一性及 74%的相似 性, 且也含有新 G蛋白家族的 G3及 G4两个 GTP结合基序, 因而认为该蛋白为 新的 G 蛋白家族的成员, 将其命名为 G蛋白 1 7。 并以此推断其与鼠 GP-1、 人 GP-1等相似, 同为新 G蛋白家族的成员, 并具有相似的生物学功能。
发明目的
本发明的一个目的是提供分离的新的多肽一~ G蛋白 17 以及其片段、 类似 物和衍生物。
本发明的另一个目的是提供编码该多肽的多核苷酸。
本发明的另一个目的是提供含有编码 G蛋白 17的多核苷酸的重组载体。 本发明的另一个目的是提供含有编码 G蛋白 17 的多核苷酸的基因工程化 宿主细胞。
本发明的另一个目的是提供生产 G蛋白 17的方法。
本发明的另一个目的是提供针对本发明的多肽一~ G蛋白 17的抗体。
本发明的另一个目的是提供了针对本发明多肽一~ G 蛋白 17 的模拟化合 物、 拮抗剂、 激动剂、 抑制剂。
本发明的另一个目的是提供诊断治疗与 G蛋白 1 7异常相关的疾病的方法。 发明概要
在本发明的第一方面, 提供新颖的分离出的 G蛋白 17, 该多肽是人源的, 它包含: 具有 SEQ I D NO: 2 氨基酸序列的多肽、 或其保守性变异多肽、 或其活 性片段、 或其活性衍生物、 类似物。 较佳地, 该多肽是具有 SEQ ID NO: 2 氨基 酸序列的多肽。
在本发明的第二方面, 提供编码分离的这些多肽的多核苷酸, 该多核苷酸 包含一核苷酸序列, 该核苷酸序列与选自下组的一种核苷酸序列有至少 70%相 同性: (a)编码上述 G 蛋白 17 的多核苷酸; (b)与多核苷酸(a)互补的多核苷 酸。 较佳地, 该多核苷酸编码具有 SEQ ID NO: 2 所示氨基酸序列的多肽。 更佳 地, 该多核苷酸的序列是选自下组的一种: (a)具有 SEQ ID NO: 1 中 712-1 173 位的序列; 和(b)具有 SEQ ID NO: 1 中 1-1957位的序列。
在本发明的第三方面, 提供了含有上述多核苷酸的载体, 以及被该载体转 化或转导的宿主细胞或者被上述多核苷酸直接转化或转导的宿主细胞。
本发明的其它方面由于本文的技术的公开, 对本领域的技术人员而言是显而 易见的。 附图说明
下列附图用于说明本发明的具体实施方案, 而不用于限定由权利要求书 所界定的本发明范围。
图 1是本发明 G蛋白 17和人的 GTP结合蛋白 1的氨基酸序列同源性比较图。 上方序列是 G蛋白 17, 下方序列是人的 GTP结合蛋白 1。 相同氨基酸在两个序列 间用单字符氨基酸表示, 相似氨基酸用 表示。
图 2 为分离的 G蛋白 17 的聚丙烯酰胺凝胶电泳图 (SDS-PAGE ) 。 17kDa 为蛋 白质的分子量。 箭头所指为分离出的蛋白条带。
发明内容
如本发明所用, "分离的" 是指物质从其原始环境中分离出来 (如果是天 然的物质, 原始环境即是天然环境) 。 如活体细胞内的天然状态下的多聚核苷 酸和多肽是没有分离纯化的, 但同样的多聚核苷酸或多肽如从天然状态中同存 在的其他物质中分开, 则为分离纯化的。
如本文所用, "分离的 G蛋白 17" 是指 G蛋白 17基本上不含天然与其相 关的其它蛋白、 脂类、 糖类或其它物质。 本领域的技术人员能用标准的蛋白质 纯化技术纯化 G蛋白 17。 基本上纯的多肽在非还原聚丙烯酰胺凝胶上能产生单 一的主带。 G蛋白 17多肽的纯度能用氨基酸序列分析。
本发明提供了一种新的多肽一" G蛋白 17, 其基本上是由 SEQ ID N0: 2所示的 氨基酸序列组成的。 本发明的多肽可以是重组多肽、 天然多肽、 合成多肽, 优选 重组多肽。 本发明的多肽可以是天然纯化的产物, 或是化学合成的产物, 或使用 重组技术从原核或真核宿主(例如, 细菌、 酵母、 高等植物、 昆虫和哺乳动物细 胞)中产生。 根据重组生产方案所用的宿主, 本发明的多肽可以是糖基化的, 或 可以是非糖基化的。 本发明的多肽还可包括或不包括起始的甲硫氨酸残基。
本发明还包括 G蛋白 17 的片段、 衍生物和类似物。 如本发明所用, 术语 "片段" 、 "衍生物" 和 "类似物" 是指基本上保持本发明的 G 蛋白 1 7 相同 的生物学功能或活性的多肽。 本发明多肽的片段、衍生物或类似物可以是: ( I ) 这样一种, 其中一个或多个氨基酸残基被保守或非保守氨基酸残基 (优选的是 保守氨基酸残基) 取代, 并且取代的氨基酸可以是也可以不是由遗传密码子编 码的; 或者 ( Π ) 这样一种, 其中一个或多个氨基酸残基上的某个基团被其它 基团取代包含取代基; 或者 ( Π Ι ) 这样一种, 其中成熟多肽与另一种化合物 (比如延长多肽半衰期的化合物, 例如聚乙二醇)融合; 或者 ( IV )这样一种, 其中附加的氨基酸序列融合进成熟多肽而形成的多肽序列 (如前导序列或分泌 序列或用来纯化此多肽的序列或蛋白原序列) 通过本文的阐述, 这样的片段、 衍生物和类似物被认为在本领域技术人员的知识范围之内。
本发明提供了分离的核酸 (多核苷酸) , 基本由编码具有 SEQ ID NO: 2 氨 基酸序列的多肽的多核苷酸组成。 本发明的多核苷酸序列包括 SEQ ID N0: 1 的 核苷酸序列。 本发明的多核苷酸是从人胎脑组织的 cD 文库中发现的。 它包 含的多核苷酸序列全长为 1957个碱基, 其开放读框(712—— 1 173 )编码了 153 个氨基酸。根据氨基酸序列同源比较发现, 此多肽与人的 GTP结合蛋白 1有 55% 的同源性, 可推断出该 G蛋白 1 7具有人的 GTP结合蛋白 1相似的结构和功能。
本发明的多核苷酸可以是 DNA形式或是 RNA形式。 DNA形式包括 cDNA、 基 因组 DNA或人工合成的 DNA。 DNA 可以是单链的或是双链的。 DNA 可以是编码 链或非编码链。 编码成熟多肽的编码区序列可以与 SEQ ID NO: 1所示的编码区 序列相同或者是简并的变异体。 如本发明所用, "简并的变异体" 在本发明中 是指编码具有 SEQ I D NO: 2的蛋白质或多肽, 但与 SEQ I D NO: 1所示的编码区 序列有差别的核酸序列。
编码 SEQ ID NO: 2的成熟多肽的多核苷酸包括: 只有成熟多肽的编码序列; 成熟多肽的编码序列和各种附加编码序列; 成熟多肽的编码序列 (和任选的附 加编码序列) 以及非编码序列。
术语 "编码多肽的多核苷酸" 是指包括编码此多肽的多核苷酸和包括附加 编码和 /或非编码序列的多核苷酸。 本发明还涉及上述描述多核苷酸的变异体, 其编码与本发明有相同的氨基 酸序列的多肽或多肽的片断、 类似物和衍生物。 此多核苷酸的变异体可以是天 然发生的等位变异体或非天然发生的变异体。 这些核苷酸变异体包括取代变异 体、 缺失变异体和插入变异体。 如本领域所知的, 等位变异体是一个多核苷酸 的替换形式, 它可能是一个或多个核苷酸的取代、 缺失或插入, 但不会从实质 上改变其编码的多肽的功能。
本发明还涉及与以上所描述的序列杂交的多核苷酸 (两个序列之间具有至 少 50%, 优选具有 70%的相同性) 。 本发明特别涉及在严格条件下与本发明所 述多核苷酸可杂交的多核苷酸。 在本发明中, "严格条件" 是指: (1)在较低 离子强度和较高温度下的杂交和洗脱, 如 0.2xSSC, 0.1%SDS, 6(TC;或(2)杂交 时加用变性剂, 如 50%(v/v)甲酰胺, 0.1°/»小牛血清 /0. l%Ficoll, 42°C等; 或 (3)仅在两条序列之间的相同性至少在 95%以上,更好是 97%以上时才发生杂 交。 并且, 可杂交的多核苷酸编码的多肽与 SEQ ID NO: 2 所示的成熟多肽有 相同的生物学功能和活性。 酸片段"的长度至少含 10个核苷酸, 较好是至少 20-30个核苷酸, 更好是至少 50-60个核苷酸, 最好是至少 100 个核苷酸以上。 核酸片段也可用于核酸的扩 增技术(如 PCR)以确定和 /或分离编码 G蛋白 17的多核苷酸。
本发明中的多肽和多核苷酸优选以分离的形式提供, 更佳地被纯化至均质。 本发明的编码 G蛋白 17 的特异的多核苷酸序列能用多种方法获得。 例如, 用本领域熟知的杂交技术分离多核苷酸。 这些技术包括但不局限于: 1)用探针 与基因组或 cDNA 文库杂交以检出同源的多核苷酸序列, 和 2)表达文库的抗体 筛选以检出具有共同结构特征的克隆的多核苷酸片段。
本发明的 DNA片段序列也能用下列方法获得: 1)从基因组 DNA分离双链 DNA 序列; 2)化学合成 DM序列以获得所述多肽的双链 DNA。
上述提到的方法中, 分离基因组 DNA 最不常用。 DNA 序列的直接化学合成 是经常选用的方法。 更经常选用的方法是 cDNA序列的分离。 分离感兴趣的 cDNA 的标准方法是从高表达该基因的供体细胞分离 mRM 并进行逆转录, 形成质粒 或噬菌体 cDNA文库。 提取 mRNA 的方法已有多种成熟的技术, 试剂盒也可从商 业途径获得(Qiagene)。 而构建 cDNA 文库也是通常的方法(Sambrook, et al. , Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory. New York, 1989)。还可得到商业供应的 cDNA文库,如 Clontech公司的不同 cDNA 文库。 当结合使用聚合酶反应技术时, 即使极少的表达产物也能克隆。
可用常规方法从这些 cDNA 文库中筛选本发明的基因。 这些方法包括(但不 限于): (l)DNA- DNA 或 DNA- RNA 杂交; (2)标志基因功能的出现或丧失; (3)测 定 G蛋白 17 的转录本的水平; (4)通过免疫学技术或测定生物学活性, 来检测 基因表达的蛋白产物。 上述方法可单用, 也可多种方法联合应用。
在第(1)种方法中, 杂交所用的探针是与本发明的多核苷酸的任何一部分 同源, 其长度至少 10个核苷酸, 较好是至少 30个核苷酸, 更好是至少 50个 核苷酸, 最好是至少 100 个核苷酸。 此外, 探针的长度通常在 2000 个核苷酸 之内, 较佳的为 1000 个核苷酸之内。 此处所用的探针通常是在本发明的基因 序列信息的基础上化学合成的 DNA 序列。 本发明的基因本身或者片段当然可以 用作探针。 DNA探针的标记可用放射性同位素, 荧光素或酶(如碱性磷酸酶)等。
在第(4)种方法中, 检测 G蛋白 17基因表达的蛋白产物可用免疫学技术如 Western印迹法, 放射免疫沉淀法, 酶联免疫吸附法(ELISA)等。
应 用 PCR 技术 扩增 DNA/RNA 的 方 法 (Saiki, et al. Science 1985; 230: 1350-1354)被优选用于获得本发明的基因。 特别是很难从文库中得 到全长的 cDNA时, 可优选使用 RACE法(RACE - cDNA末端快速扩增法),用于 PCR 的引物可根据本文所公开的本发明的多核苷酸序列信息适当地选择, 并可用常 规方法合成。 可用常规方法如通过凝胶电泳分离和纯化扩增的 DNA/RNA片段。
如上所述得到的本发明的基因, 或者各种 DNA 片段等的多核苷酸序列可用 常规方法如双脱氧链终止法(Sanger et al. PNAS, 1977, 74: 5463- 5467)测 定。 这类多核苷酸序列测定也可用商业测序试剂盒等。 为了获得全长的 cDM 序列, 测序需反复进行。 有时需要测定多个克隆的 cDNA 序列, 才能拼接成全 长的 cDNA序列。
本发明也涉及包含本发明的多核苷酸的载体, 以及用本发明的载体或直接 用 G 蛋白 17 编码序列经基因工程产生的宿主细胞, 以及经重组技术产生本发 明所述多肽的方法。
本发明中, 编码 G 蛋白 17 的多核苷酸序列可插入到载体中, 以构成含有 本发明所述多核苷酸的重组载体。 术语 "载体" 指本领域熟知的细菌质粒、 噬 菌体、 酵母质粒、 植物细胞病毒、 哺乳动物细胞病毒如腺病毒、 逆转录病毒或 其它载体。 在本发明中适用的载体包括但不限于: 在细菌中表达的基于 T7 启 动子的表达载体(Rosenberg, et al. Gene, 1987, 56: 125); 在哺乳动物细胞 中表达的 pMSXND 表达载体(Lee and Nathans, J Bio Chem. 263: 3521, 1988) 和在昆虫细胞中表达的来源于杆状病毒的载体。 总之, 只要能在宿主体内复制 和稳定, 任何质粒和载体都可以用于构建重组表达载体。 表达载体的一个重要 特征是通常含有复制起始点、 启动子、 标记基因和翻译调控元件。
本领域的技术人员熟知的方法能用于构建含编码 G蛋白 17 的 DNA序列和 合适的转录 /翻译调控元件的表达载体。 这些方法包括体外重组 DNA 技术、 DNA 合成技术、 体内重组技术等 (Sambroook, et al. Molecular Cloning, a Laboratory Manual, cold Spring Harbor Laboratory. New York, 1989)。 所述的 DNA序列可有效连接到表达载体中的适当启动子上, 以指导 mRNA合成。 这些启动子的代表性例子有: 大肠杆菌的 lac 或 trp 启动子; λ噬菌体的 PL 启动子; 真核启动子包括 CMV 立即早期启动子、 HSV 胸苷激酶启动子、 早期和 晚期 SV40启动子、 反转录病毒的 LTRs 和其它一些已知的可控制基因在原核细 胞或真核细胞或其病毒中表达的启动子。 表达载体还包括翻译起始用的核糖体 结合位点和转录终止子等。 在载体中插入增强子序列将会使其在高等真核细胞 中的转录得到增强。 增强子是 DNA表达的顺式作用因子, 通常大约有 10到 300 个碱基对, 作用于启动子以增强基因的转录。 可举的例子包括在复制起始点晚 期一侧的 100 到 270 个碱基对的 SV40增强子、 在复制起始点晚期一侧的多瘤 增强子以及腺病毒增强子等。
此外, 表达载体优选地包含一个或多个选择性标记基因, 以提供用于选择 转化的宿主细胞的表型性状, 如真核细胞培养用的二氢叶酸还原酶、 新霉素抗 性以及绿色荧光蛋白(GFP), 或用于大肠杆菌的四环素或氨苄青霉素抗性等。
本领域一般技术人员都清楚如何选择适当的载体 /转录调控元件 (如启动 子、 增强子等) 和选择性标记基因。
本发明中, 编码 G 蛋白 17 的多核苷酸或含有该多核苷酸的重组载体可转 化或转导入宿主细胞, 以构成含有该多核苷酸或重组载体的基因工程化宿主细 胞。 术语 "宿主细胞" 指原核细胞, 如细菌细胞; 或是低等真核细胞, 如酵母 细胞; 或是高等真核细胞, 如哺乳动物细胞。 代表性例子有: 大肠杆菌, 链霉 菌属; 细菌细胞如鼠伤寒沙门氏菌; 真菌细胞如酵母; 植物细胞; 昆虫细胞如 果蝇 S2或 Sf9; 动物细胞如 CH0、 COS或 Bowes黑素瘤细胞等。
用本发明所述的 DNA序列或含有所述 DNA序列的重组载体转化宿主细胞可 用本领域技术人员熟知的常规技术进行。 当宿主为原核生物如大肠杆菌时, 能 吸收 DNA 的感受态细胞可在指数生长期后收获, 用 CaC l 2法处理, 所用的步骤 在本领域众所周知。 可供选择的是用 MgC l 2。 如果需要, 转化也可用电穿孔的 方法进行。 当宿主是真核生物, 可选用如下的 DM转染方法: 磷酸钙共沉淀法, 或者常规机械方法如显微注射、 电穿孔、 脂质体包装等。
通过常规的重组 DNA 技术, 利用本发明的多核苷酸序列可用来表达或生产 重组的 G蛋白 n (Sc i ence , 1984 ; 224: 1431) 0 一般来说有以下步骤:
(1) 用本发明的编码人 G 蛋白 17 的多核苷酸(或变异体), 或用含有该多 核苷酸的重组表达载体转化或转导合适的宿主细胞;
(2) 在合适的培养基中培养宿主细胞;
(3) 从培养基或细胞中分离、 纯化蛋白质。
在步骤 ( 2 ) 中, 根据所用的宿主细胞, 培养中所用的培养基可选自各种 常规培养基。 在适于宿主细胞生长的条件下进行培养。 当宿主细胞生长到适当 的细胞密度后, 用合适的方法(如温度转换或化学诱导)诱导选择的启动子, 将 细胞再培养一段时间。
在步骤 ( 3 ) 中, 重组多肽可包被于细胞内、 或在细胞膜上表达、 或分泌 到细胞外。 如果需要, 可利用其物理的、 化学的和其它特性通过各种分离方法 分离和纯化重组的蛋白。 这些方法是本领域技术人员所熟知的。 这些方法包括 但并不限于: 常规的复性处理、 蛋白沉淀剂处理(盐析方法)、 离心、 渗透破菌、 超声波处理、 超离心、 分子筛层析(凝胶过滤)、 吸附层析、 离子交换层析、 高 效液相层析(HPLC)和其它各种液相层析技术及这些方法的结合。
本发明的多肽以及该多肽的拮抗剂、 激动剂和抑制剂可直接用于疾病治 疗, 例如, 可治疗恶性肿瘤、 肾上腺缺乏症、 皮肤病、 各类炎症、 H I V 感染和 免疫性疾病等。
GTP 结合蛋白可分为多个超级家族, 具有众多的家族成员。 各超级家族的 成员均具有保守的 GTP 结合基序, GTP 结合基序具有广泛的生物学功能, 在生 物体内调节着细胞的增殖、 控制着信号的转导及各种蛋白在体内的表达。 这些 蛋白的表达异常将导致组织细胞的异常增殖及蛋白的异常表达, 从而引发各种 与之相关的疾病,如: 各种恶性肿瘤及癌症、 各种发育紊乱症、 各种免疫系统 疾病等。 具体就本发明的 G蛋白 1 7 而言, 该蛋白的表达与各种恶性肿瘤及癌症的 发生有关; 因此本发明的多肽可用于很多疾病的诊断和治疗, 如各种与之相关 的恶性肿瘤及癌症, 这些疾病包括但不限于以下所述, 胃癌、 肝癌、 大肠癌、 乳腺癌、 肺癌、 前列腺癌、 宫颈癌、 胰腺癌、 食道癌、 垂体腺瘤、 甲状腺良性 肿瘤、 甲状腺癌、 甲状旁腺腺瘤、 甲状旁腺癌、 肾上腺髓脂肪瘤、 嗜铬细胞瘤、 胰岛细胞肿瘤、 多发性内分泌腺肿瘤、 胸腺肿瘤等。
本发明的 G蛋白 17 还可用于诊断和治疗各种与之相关的发育紊乱症, 这 些疾病包括但不限于以下所述, 脊柱裂、 颅脑裂、 无脑畸形、 脑膨出、 孔脑畸 形、 Do 综合症、 先天性脑积水、 导水管畸形、 软骨发育不全性侏儒病、 脊 柱骨骺发育不良症、 假软骨发育不全症、 Langer- G i ed i on 综合症、 漏斗胸、 生殖腺发育不全、 先天性肾上腺增生、 尿道上裂、 隐睾、 伴有身材矮小的畸形 综合症如 Conrad i 综合症与 Danbo l t- C l o s s综合症、 先天性青光眼或白内障、 先天性晶状体位置异常、 先天性小睑裂、 视网膜发育异常、 先天性视神经萎缩、 先天性感觉神经性听觉损失、 裂手裂脚症、 畸胎、 Wi l l i ams综合症、 A l ag i l l e 综合症、 贝魏二氏综合症等。
本发明的 G 蛋白 17 还可用于诊断和治疗各种与之表达异常相关的免疫系 统疾病, 这些疾病包括但不限于以下所述, 类风湿性关节炎、 慢性活动性肝炎、 原发性干燥综合症、 急性前葡萄膜炎、 淋球菌感染后关节炎、 强直性脊柱炎、 血色素沉着症、 免疫复合物型肾小球肾炎、 淋球菌感染后心肌炎、 系统性红斑 狼疮、 类风湿性关节炎、 硬皮病、 多发性肌炎、 口眼干燥综合症、 结节性多动 脉炎、 Wegener 肉芽肿病、 重症肌无力、 格林-巴利综合症、 自身免疫性溶血 性贫血、 免疫性血小板减少性紫癜、 自身免疫性间质性肾炎、 自身免疫性胃炎、 胰岛素自身免疫性综合症、 自身免疫性甲状腺疾病、 自身免疫性心脏病等。
本发明也提供了筛选化合物以鉴定提高(激动剂)或阻遏(拮抗剂) G 蛋白 1 7 的药剂的方法。 激动剂提高 G 蛋白 1 7 刺激细胞增殖等生物功能, 而拮抗剂阻 止和治疗与细胞过度增殖有关的紊乱如各种癌症。 例如, 能在药物的存在下, 将哺乳动物细胞或表达 G蛋白 Π 的膜制剂与标记的 G蛋白 Π —起培养。 然后 测定药物提高或阻遏此相互作用的能力。
G蛋白 17 的拮抗剂包括筛选出的抗体、 化合物、 受体缺失物和类似物等。 G蛋白 Π 的拮抗剂可以与 G蛋白 17 结合并消除其功能, 或是抑制该多肽的产 生, 或是与该多肽的活性位点结合使该多肽不能发挥生物学功能。
在筛选作为拮抗剂的化合物时, 可以将 G 蛋白 17 加入生物分析测定中, 通过测定化合物对 G 蛋白 17 和其受体之间相互作用的影响来确定化合物是否 是拮抗剂。 用上述筛选化合物的同样方法, 可以筛选出起拮抗剂作用的受体缺 失物和类似物。 能与 G 蛋白 17 结合的多肽分子可通过筛选由各种可能组合的 氨基酸结合于固相物组成的随机多肽库而获得。 筛选时, 一般应对 G 蛋白 17 分子进行标记。
本发明提供了用多肽, 及其片段、 衍生物、 类似物或它们的细胞作为抗原 以生产抗体的方法。 这些抗体可以是多克隆抗体或单克隆抗体。 本发明还提供 了针对 G蛋白 17 抗原决定簇的抗体。 这些抗体包括(但不限于): 多克隆抗体、 单克隆抗体、 嵌合抗体、 单链抗体、 Fab片段和 Fab表达文库产生的片段。
多克隆抗体的生产可用 G 蛋白 17 直接注射免疫动物 (如家兔, 小鼠, 大 鼠等) 的方法得到, 多种佐剂可用于增强免疫反应, 包括但不限于弗氏佐剂等。 制备 G 蛋白 17 的单克隆抗体的技术包括但不限于杂交瘤技术(Kohler and Milstein. Nature, 1975, 256: 495-497) , 三瘤技术,人 Β-细胞杂交瘤技术, EBV- 杂交瘤技术等。 将人恒定区和非人源的可变区结合的嵌合抗体可用已有的技术 生产(Morrison et al , PNAS, 1985, 81: 6851)。而已有的生产单链抗体的技术(U. S. Pat No.4946778)也可用于生产抗 G蛋白 17的单链抗体。
抗 G蛋白 17的抗体可用于免疫组织化学技术中,检测活检标本中的 G蛋白 17。 与 G 蛋白 Π 结合的单克隆抗体也可用放射性同位素标记, 注入体内可跟 踪其位置和分布。 这种放射性标记的抗体可作为一种非创伤性诊断方法用于肿 瘤细胞的定位和判断是否有转移。
抗体还可用于设计针对体内某一特殊部位的免疫毒素。 如 G 蛋白 17 高亲 和性的单克隆抗体可与细菌或植物毒素(如白喉毒素, 蓖麻蛋白, 红豆碱等)共 价结合。 一种通常的方法是用巯基交联剂如 SPDP, 攻击抗体的氨基, 通过二硫 键的交换, 将毒素结合于抗体上, 这种杂交抗体可用于杀灭 G 蛋白 17 阳性的 细胞。
本发明中的抗体可用于治疗或预防与 G 蛋白 17 相关的疾病。 给予适当剂 量的抗体可以刺激或阻断 G蛋白 1 7的产生或活性。
本发明还涉及定量和定位检测 G 蛋白 1 7 水平的诊断试验方法。 这些试验 是本领域所熟知的, 且包括 F I SH 测定和放射免疫测定。 试验中所检测的 G 蛋 白 17水平, 可以用作解释 G蛋白 1 7在各种疾病中的重要性和用于诊断 G蛋白 17起作用的疾病。
本发明的多肽还可用作肽谱分析, 例如, 多肽可用物理的、 化学或酶进行 特异性切割, 并进行一维或二维或三维的凝胶电泳分析,更好的是进行质谱分析。
编码 G 蛋白 1 7 的多核苷酸也可用于多种治疗目的。 基因治疗技术可用于 治疗由于 G蛋白 17 的无表达或异常 /无活性表达所致的细胞增殖、 发育或代谢 异常。 重组的基因治疗载体(如病毒载体)可设计用于表达变异的 G蛋白 17 , 以 抑制内源性的 G蛋白 1 7活性。 例如, 一种变异的 G蛋白 1 7可以是缩短的、 缺 失了信号传导功能域的 G蛋白 17, 虽可与下游的底物结合, 但缺乏信号传导活 性。 因此重组的基因治疗载体可用于治疗 G 蛋白 17 表达或活性异常所致的疾 病。 来源于病毒的表达载体如逆转录病毒、 腺病毒、 腺病毒相关病毒、 单纯疱 疹病毒、 细小病毒等可用于将编码 G 蛋白 1 7 的多核苷酸转移至细胞内。 构建 携带编码 G 蛋白 17 的多核苷酸的重组病毒载体的方法可见于已有文献 (Sambrook, e t a l. )。 另外重组编码 G蛋白 1 7 的多核苷酸可包装到脂质体中转 移至细胞内。
多核苷酸导入组织或细胞内的方法包括: 将多核苷酸直接注入到体内组织 中; 或在体外通过载体(如病毒、 噬菌体或质粒等)先将多核苷酸导入细胞中, 再将细胞移植到体内等。
抑制 G蛋白 1 7 mRNA的寡核苷酸(包括反义 RNA和 DNA)以及核酶也在本发 明的范围之内。 核酶是一种能特异性分解特定 RNA 的酶样 RNA分子, 其作用机 制是核酶分子与互补的靶 RNA特异性杂交后进行核酸内切作用。 反义的 RNA和
DNA及核酶可用已有的任何 RNA或 DNA合成技术获得, 如固相磷酸酰胺化学合 成法合成寡核苷酸的技术已广泛应用。 反义 RNA分子可通过编码该 RNA 的 DNA 序列在体外或体内转录获得。 这种 DNA序列已整合到载体的 RNA聚合酶启动子 的下游。 为了增加核酸分子的稳定性, 可用多种方法对其进行修饰, 如增加两 侧的序列长度, 核糖核苷之间的连接应用磷酸硫酯键或肽键而非磷酸二酯键。 编码 G蛋白 17 的多核苷酸可用于与 G蛋白 17 的相关疾病的诊断。 编码 G 蛋白 17的多核苷酸可用于检测 G蛋白 17的表达与否或在疾病状态下 G蛋白 17 的异常表达。 如编码 G蛋白 17的 DNA序列可用于对活检标本进行杂交以判断 G 蛋白 17的表达状况。 杂交技术包括 Southern印迹法, Northern印迹法、 原位 杂交等。 这些技术方法都是公开的成熟技术, 相关的试剂盒都可从商业途径得 到。 本发明的多核苷酸的一部分或全部可作为探针固定在微阵列(Microarray) 或 DM 芯片(又称为 "基因芯片" )上, 用于分析组织中基因的差异表达分析和 基因诊断。 用 G蛋白 17特异的引物进行 RNA-聚合酶链反应(RT-PCR)体外扩增 也可检测 G蛋白 17的转录产物。
检测 G蛋白 17基因的突变也可用于诊断 G蛋白 17相关的疾病。 G蛋白 17 突变的形式包括与正常野生型 G蛋白 17 DNA序列相比的点突变、 易位、 缺失、 重组和其它任何异常等。 可用已有的技术如 Southern印迹法、 DNA序列分析、 PCR和原位杂交检测突变。 另外, 突变有可能影响蛋白的表达, 因此用 Northern 印迹法、 Western印迹法可间接判断基因有无突变。
本发明的序列对染色体鉴定也是有价值的。 该序列会特异性地针对某条 人染色体具体位置且并可以与其杂交。 目前, 需要鉴定染色体上的各基因的具 体位点。 现在, 只有很少的基于实际序列数据(重复多态性)的染色体标记物可 用于标记染色体位置。 根据本发明, 为了将这些序列与疾病相关基因相关联, 其重要的第一步就是将这些 DNA序列定位于染色体上。
简而言之, 根据 cDNA制备 PCR引物(优选 15- 35bp) , 可以将序列定位于染 色体上。 然后, 将这些引物用于 PCR筛选含各条人染色体的体细胞杂合细胞。 只有那些含有相应于引物的人基因的杂合细胞会产生扩增的片段。
体细胞杂合细胞的 PCR定位法, 是将 DM定位到具体染色体的快捷方法。 使用本发明的寡核苷酸引物, 通过类似方法, 可利用一组来自特定染色体的片 段或大量基因组克隆而实现亚定位。 可用于染色体定位的其它类似策略包括原 位杂交、 用标记的流式分选的染色体预筛选和杂交预选, 从而构建染色体特异 的 cDNA库。
将 cDNA克隆与中期染色体进行荧光原位杂交(FISH) , 可以在一个步骤中 精确地进行染色体定位。 此技术的综述, 参见 Verma等, Human Chromosomes: a Manua l of Bas i c Techniques, Pergamon Pres s , New York (1988)。
一旦序列被定位到准确的染色体位置, 此序列在染色体上的物理位置就 可以与基因图数据相关联。 这些数据可见于例如, V. Mckus i ck, Mende l ian Inher i tance in Man (可通过与 Johns Hopk ins Univers i ty We l ch Med ica l L i brary联机获得)。 然后可通过连锁分析, 确定基因与业已定位到染色体区域 上的疾病之间的关系。
接着, 需要测定患病和未患病个体间的 cDNA或基因组序列差异。 如果在 一些或所有的患病个体中观察到某突变, 而该突变在任何正常个体中未观察 到, 则该突变可能是疾病的病因。 比较患病和未患病个体, 通常涉及首先寻找 染色体中结构的变化, 如从染色体水平可见的或用基于 cDNA序列的 PCR可检测 的缺失或易位。 根据目前的物理作图和基因定位技术的分辨能力, 被精确定位 至与疾病有关的染色体区域的 cDNA , 可以是 50至 500个潜在致病基因间之一种 (假定 1兆碱基作图分辨能力和每 20kb对应于一个基因)。
可以将本发明的多肽、 多核苷酸及其模拟物、 激动剂、 拮抗剂和抑制剂与 合适的药物载体组合后使用。 这些载体可以是水、 葡萄糖、 乙醇、 盐类、 缓冲 液、 甘油以及它们的组合。 组合物包含安全有效量的多肽或拮抗剂以及不影响 药物效果的载体和赋形剂。 这些组合物可以作为药物用于疾病治疗。
本发明还提供含有一种或多种容器的药盒或试剂盒, 容器中装有一种或多 种本发明的药用组合物成分。 与这些容器一起, 可以有由制造、 使用或销售药 品或生物制品的政府管理机构所给出的指示性提示, 该提示反映出生产、 使用 或销售的政府管理机构许可其在人体上施用。 此外, 本发明的多肽可以与其它 的治疗化合物结合使用。
药物组合物可以以方便的方式给药, 如通过局部、 静脉内、 腹膜内、 肌内、 皮下、 鼻内或皮内的给药途径。 G 蛋白 17 以有效地治疗和 /或预防具体的适应 症的量来给药。 施用于患者的 G 蛋白 17 的量和剂量范围将取决于许多因素, 如给药方式、 待治疗者的健康条件和诊断医生的判断。
实施例
下面结合具体实施例, 进一步阐述本发明。 应理解, 这些实施例仅用于说 明本发明而不用于限制本发明的范围。 下列实施例中未注明具体条件的实验方 法, 通常按照常规条件如 Sambrook等人, 分子克隆: 实验室手册(New York: Cold Spring Harbor Laboratory Press, 1989)中所述的条件, 或按照制造厂 商所建议的条件。
实施例 1 G蛋白 17的克隆
用异硫氰酸胍 /酚 /氯仿一步法提取人胎脑总 RNA。 用 Quik mRNA Isolation Kit (Qiegene 公司产品) 从总 RNA中分离 poly (A) mRNA。 2ug poly (A) mRNA经逆转录 形成 cDNA。用 Sma r t cDNA克隆试剂盒(购自 C 1 on t ech )将。0 片段定向插入到 pBSK (+) 载体 (Clontech公司产品)的多克隆位点上, 转化 DH5 α, 细菌形成 cDNA文库。 用 Dye terminate cycle reaction sequencing ki t (Perkin-Elmer公司产品) 和 ABI 377 自动测序仪(Perkin- Elmer公司)测定所有克隆的 5'和 3'末端的序列。将测定的 cDNA 序列与已有的公共 DNA序列数据库 (Genebank) 进行比较, 结果发现其中一个克隆 0703d08的 cDNA序列为新的 DM。 通过合成一系列引物对该克隆所含的插入 cDNA片 段进行双向测定。结果表明, 0703d08克隆所含的全长 cDNA为 1957bp (如 SeqIDN0:l 所示) , 从第 712bp至 1173bp有一个 462bp的开放阅读框架 ( 0RF ) , 编码一个新的 蛋白质 (如 Seq ID NO: 2所示) 。 我们将此克隆命名为 pBS-0703d08, 编码的蛋白 质命名为 G蛋白 17。 实施例 2 cDNA 克隆的同源检索
将本发明的 G蛋白 17的序列及其编码的蛋白序列, 用 Blast程序(Basic local alignment search tool) [Altschul, SF et al. J.Mol. Biol.1990; 215: 403-10] , 在 Genbank、 Swissport等数据库进行同源检索。 与本发明的 G蛋白 17同源性最高的 基因是一种已知的人的 GTP结合蛋白 1, 其编码的蛋白在 Genbank的准入号为 1187964。 蛋白质同源结果示于图 1, 两者高度同源, 其相同性为 55%; 相似性为 74%。 实施例 3 用 RT-PCR方法克隆编码 G蛋白 17的基因
用胎脑细胞总 RM为模板,以 oligo-dT为引物进行逆转录反应合成 cDNA,用
Qiagene的试剂盒纯化后,用下列引物进行 PCR扩增:
Primerl: 5'- GGAGGAAATGCGAGCTTCGCTCA-3' (SEQ ID NO: 3)
Primer2: 5'- TAAAAGAATTTTATTTAGTGGCC-3' (SEQ ID NO: 4) Primerl为位于 SEQ ID NO: 1的 5,端的第 lbp开始的正向序列;
Primer2为 SEQ ID NO: 1的中的 3'端反向序列。
扩增反应的条件: 在 50 μ 1的反应体积中含有 50隨 ol/L KC1, 10mmol/L Tris - CI, (pH8.5), 1.5mmol/L MgCl2, 200 μ mol/L dNTP, lOpmol引物, 1U的 Taq DNA聚合 酶(Clontech公司产品)。 在 PE9600型 DNA热循环仪(Perkin-Elmer公司)上按下列条 件反应 25个周期: 94°C 30sec; 55°C 30sec; 72°C 2min0 在 RT-PCR时同时设 β - act in 为阳性对照和模板空白为阴性对照。 扩增产物用 QIAGEN公司的试剂盒纯化, 用 TA 克隆试剂盒连接到 PCR载体上 (Invitrogen公司产品) 。 DNA序列分析结果表明 PCR 产物的 DM序列与 SEQ ID NO: 1所示的 l-1957bp完全相同。 实施例 4 Northern 印迹法分析 G蛋白 17基因的表达
用一步法提取总 RNA[Anal. Biochem 1987, 162, 156-159] 0 该法包括酸性硫 氰酸胍苯酚 -氯仿抽提。 即用 4M异硫氰酸胍 -25mM柠檬酸钠, 0.2M乙酸钠 ( pH4.0 ) 对组织进行匀浆, 加入 1倍体积的苯酚和 1/5体积的氯仿-异戊醇 (49: 1 ) , 混合 后离心。 吸出水相层, 加入异丙醇 (0.8体积) 并将混合物离心得到 RNA沉淀。 将 得到的 RNA沉淀用 70°/。乙醇洗涤, 干燥并溶于水中。 用 20yg RNA, 在含 20mM 3- (N- 吗啉代) 丙磺酸 (PH7.0) -5mM乙酸钠 -ImM EDTA-2.2M甲醛的 1.2%琼脂糖凝胶上进 行电泳。 然后转移至硝酸纤维素膜上。 用 cc-32P dATP通过随机引物法制备 32P-标记 的 DM探针。 所用的 DNA探针为图 1所示的 PCR扩增的 G蛋白 17编码区序列(712bp至 1173bp)。 将 32P-标记的探针 (约 2 x l06cpm/ml ) 与转移了 RNA的硝酸纤维素膜在一 溶液中于 42°C杂交过夜, 该溶液包含 50%甲酰胺 - 25mM KH2P04 ( pH7.4 ) -5 χ SSC-5 χ Denhardt's溶液和 200 μ g/ml鲑精 DNA。 杂交之后, 将滤膜在 1 χ SSC-0.1%SDS中 于 55°C洗 30min。 然后, 用 Phosphor Imager进行分析和定量。 实施例 5 重组 G蛋白 17的体外表达、 分离和纯化
根据 SEQ ID N0: 1和图 1所示的编码区序列, 设计出一对特异性扩增引物, 序 列如下:
Primer3: 5'- CCCCATATGATGATCACCTTCATCGACCTGGC-3' ( Seq ID No: 5 ) Primer4: 5'- CCCGGATCCTCAGCTGCTGCATGAGTTCCTC -3, (Seq ID No: 6 ) 此两段引物的 5'端分别含有 Ndel和 BamHI酶切位点, 其后分别为目的基因 5,端 和 3'端的编码序列 , Ndel和 BamHI酶切位点相应于表达载体质粒 pET - 28b(+) (Novagen公司产品, Cat. No.69865.3)上的选择性内切酶位点。 以含有全长 目的基因的 pBS-0703d08质粒为模板, 进行 PCR反应。 PCR反应条件为: 总体积 50μ1 中含 pBS-0703d08质粒 10pg、 引物卩1"^61-3和?^[^1-4分别为1(^0101、 Advantage polymerase Mix ( Clontech公司产品) 1 μ 1。 循环参数: 94°C 20s, 60°C 30s, 68°C 2 min,共 25个循环。 用 Ndel和 BamHI分别对扩增产物和质粒 pET-28 (+)进行双酶切, 分别回收大片段,并用 T4连接酶连接。 连接产物转化用氯化钙法大肠杆细菌 DH5a, 在含卡那霉素 (终浓度 30 g/ml ) 的 LB平板培养过夜后, 用菌落 PCR方法筛选阳性 克隆, 并进行测序。 挑选序列正确的阳性克隆 (pET-0703d08)用氯化钙法将重组 质粒转化大肠杆菌 BL21(DE3)plySs(Novagen公司产品)。 在含卡那霉素 (终浓度 30 Mg/ml ) 的 LB液体培养基中, 宿主菌 BL21 ( PET-0703d08 ) 在 37。C培养至对数生长 期, 加入 IPTG至终浓度 lramol/L, 继续培养 5小时。 离心收集菌体, 经超声波破菌, 离心收集上清液, 用能与 6个组氨酸( 6His- Tag )结合的亲和层析柱 His. Bind Quick Cartridge (Novagen公司产品) 进行层析, 得到了纯化的目的蛋白 G蛋白 17。 经 SDS- PAGE电泳, 在 17kDa处得到一单一的条带 (图 2 ) 。 将该条带转移至 PVDF膜上 用 Edams水解法进行 N-端氨基酸序列分析, 结果 N-端 15个氨基酸与 SEQ ID NO: 2所 示的 N -端 15个氨基酸残基完全相同。 实施例 6 抗 G蛋白 17抗体的产生
用多肽合成仪 (PE公司产品) 合成下述 G蛋白 17特异性的多肽:
NH2-Met-Ile-Thr-Phe-Ile-Asp-Leu-Ala-Gly-His-His-Lys-Tyr-Leu-His-COOH
(SEQ ID NO: 7)。 将该多肽分别与血蓝蛋白和牛血清白蛋白耦合形成复合, 方法参 见: Avrameas, et al. Immunochemistry, 1969; 6: 43。 用 4mg上述 iL蓝蛋白多肽复 合物加上完全弗氏佐剂免疫家兔, 15天后再用血蓝蛋白多肽复合物加不完全弗氏 佐剂加强免疫一次。 采用经 I5 g/ml牛血清白蛋白多肽复合物包被的滴定板做
ELISA测定兔血清中抗体的滴度。 用蛋白 A - Sepharose从抗体阳性的家兔血清中分 离总 IgG。 将多肽结合于溴化氰活化的 Sepharose4B柱上, 用亲和层析法从总 IgG中 分离抗多肽抗体。 免疫沉淀法证明纯化的抗体可特异性地与 G蛋白 17结合。

Claims

权利要求
1、 一种分离的多肽- G 蛋白 1 7, 其特征在于它包含有: SEQ ID NO: 2 所 示的氨基酸序列的多肽、 或其多肽的活性片段、 类似物或衍生物。
2、 如权利要求 1 所述的多肽, 其特征在于所述多肽、 类似物或衍生物的 氨基酸序列具有与 SEQ I D NO: 2所示的氨基酸序列至少 95%的相同性。
3、 如权利要求 2 所述的多肽, 其特征在于它包含具有 SEQ I D NO: 2 所示 的氨基酸序列的多肽。
4、 一种分离的多核苷酸, 其特征在于所述多核苷酸包含选自下组中的一种:
(a) 编码具有 SEQ I D N0: 2所示氨基酸序列的多肽或其片段、 类似物、 衍 生物的多核苷酸;
(b) 与多核苷酸 (a ) 互补的多核苷酸; 或
(c) 与 (a ) 或 (b ) 有至少 70%相同性的多核苷酸。
5、 如权利要求 4 所述的多核苷酸, 其特征在于所述多核苷酸包含编码具 有 SEQ I D NO: 2所示氨基酸序列的多核苷酸。
6、 如权利要求 4 所述的多核苷酸, 其特征在于所述多核苷酸的序列包含 有 SEQ I D NO: 1 中 712-1 1 73位的序列或 SEQ ID NO: 1 中 1-1957位的序列。
7、 一种含有外源多核苷酸的重组载体, 其特征在于它是由权利要求 4 - 6 中的任一权利要求所述多核苷酸与质粒、 病毒或运载体表达载体构建而成的重 组载体。
8、 一种含有外源多核苷酸的遗传工程化宿主细胞, 其特征在于它是选自 于下列一种宿主细胞:
(a) 用权利要求 7所述的重组载体转化或转导的宿主细胞; 或
(b) 用权利要求 4-6中的任一权利要求所述多核苷酸转化或转导的宿主细胞。
9、一种具有 G蛋白 17活性的多肽的制备方法, 其特征在于所述方法包括:
(a) 在表达 G蛋白 1 7条件下, 培养权利要求 8所述的工程化宿主细胞;
(b) 从培养物中分离出具有 G蛋白 17活性的多肽。
1 0、 一种能与多肽结合的抗体,其特征在于所述抗体是能与 G蛋白 1 7特异 性结合的抗体。
1 1、 一类模拟或调节多肽活性或表达的化合物, 其特征在于它们是模拟、 促进、 拮抗或抑制 G蛋白 1 7的活性的化合物。
1 2、 如权利要求 1 1 所述的化合物, 其特征在于它是 SEQ I D NO: 1 所示的 多核苷酸序列或其片段的反义序列。
1 3、 一种权利要求 1 1 所述化合物的应用, 其特征在于所述化合物用于调 节 G蛋白 1 7在体内、 体外活性的方法。
14、 一种检测与权利要求 1-3 中的任一权利要求所述多肽相关的疾病或疾 病易感性的方法, 其特征在于其包括检测所述多肽的表达量, 或者检测所述多 肽的活性, 或者检测多核苷酸中引起所述多肽表达量或活性异常的核苷酸变异。
1 5、 如权利要求 1-3 中的任一权利要求所述多肽的应用, 其特征在于它应 用于筛选 G 蛋白 1 7 的模拟物、 激动剂, 拮抗剂或抑制剂; 或者用于肽指紋图 谱鉴定。
16、 如权利要求 4-6 中的任一权利要求所述的核酸分子的应用, 其特征在 于它作为引物用于核酸扩增反应, 或者作为探针用于杂交反应, 或者用于制造 基因芯片或微阵列。
1 7、 如权利要求 1-6 及 1 1 中的任一权利要求所述的多肽、 多核苷酸或化 合物的应用, 其特征在于用所述多肽、 多核苷酸或其模拟物、 激动剂、 拮抗剂 或抑制剂以安全有效剂量与药学上可接受的载体组成作为诊断或治疗与 G蛋白 1 7异常相关的疾病的药物组合物。
1 8、 权利要求 1-6 及 1 1 中的任一权利要求所述的多肽、 多核苷酸或化合 物的应用, 其特征在于用所述多肽、 多核苷酸或化合物制备用于治疗如恶性肿 瘤, 血液病, HIV感染和免疫性疾病和各类炎症的药物。
PCT/CN2000/000379 1999-10-28 2000-10-27 Nouveau polypeptide, proteine g 17, et polynucleotide codant pour ce polypeptide WO2001030838A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU12644/01A AU1264401A (en) 1999-10-28 2000-10-27 A novel polypeptide - gtp-binding protein 17 and a polynucleotide encoding the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN99119895.6 1999-10-28
CN99119895A CN1302878A (zh) 1999-10-28 1999-10-28 一种新的多肽——g蛋白17和编码这种多肽的多核苷酸

Publications (1)

Publication Number Publication Date
WO2001030838A1 true WO2001030838A1 (fr) 2001-05-03

Family

ID=5281186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2000/000379 WO2001030838A1 (fr) 1999-10-28 2000-10-27 Nouveau polypeptide, proteine g 17, et polynucleotide codant pour ce polypeptide

Country Status (3)

Country Link
CN (1) CN1302878A (zh)
AU (1) AU1264401A (zh)
WO (1) WO2001030838A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998025956A2 (en) * 1996-12-12 1998-06-18 Incyte Pharmaceuticals, Inc. Human gtp-binding proteins
US5871971A (en) * 1997-07-17 1999-02-16 Incyte Pharmaceuticals, Inc. Human developmentally regulated GTP-binding protein

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998025956A2 (en) * 1996-12-12 1998-06-18 Incyte Pharmaceuticals, Inc. Human gtp-binding proteins
US5871971A (en) * 1997-07-17 1999-02-16 Incyte Pharmaceuticals, Inc. Human developmentally regulated GTP-binding protein

Also Published As

Publication number Publication date
CN1302878A (zh) 2001-07-11
AU1264401A (en) 2001-05-08

Similar Documents

Publication Publication Date Title
WO2001038522A1 (fr) Nouveau polypeptide, histone humaine h2a.21, et polynucleotide codant pour ce polypeptide
WO2001031030A1 (fr) Nouveau polypeptide, phosphodiesterase 21 humaine de type acide sphingomyelinase, et polynucleotide codant pour ce polypeptide
WO2001030838A1 (fr) Nouveau polypeptide, proteine g 17, et polynucleotide codant pour ce polypeptide
WO2001029228A1 (fr) Nouveau polypeptide, caseine kinase humaine 48, et polynucleotide codant pour ce polypeptide
WO2001030837A1 (fr) Nouveau polypeptide, galectine 15, et polynucleotide codant pour ce polypeptide
WO2001038379A1 (fr) Nouvelle proteine ribosomique humaine l23 a base d'un polypeptide et polynucleotide codant cette proteine
WO2001032863A1 (fr) Nouveau polypeptide, proteine humaine 12 associee a l'apoptose (sag), et polynucleotide codant pour ce polypeptide
WO2001038375A1 (fr) Nouveau polypeptide, proteine a doigt de zinc 58 et polynucleotide codant pour ce polypeptide
WO2001038545A1 (fr) Nouveau polypeptide, acetyle galactosyle transferase 45 humain et polynucleotide codant ce polypeptide
WO2001030840A1 (fr) Nouveau polypeptide, une proteine 57 a doigt de zinc, et polynucleotide codant pour ce polypeptide
WO2001030818A1 (fr) Nouveau polypeptide, proteine de liaison 33 a l'arn, et polynucleotide codant pour ce polypeptide
WO2001032862A1 (fr) Nouveau polypeptide, proteine humaine 20 ribosome s4, et polynucleotide codant pour ce polypeptide
WO2001031024A1 (fr) Nouveau polypeptide, threonine synthetase 71, et polynucleotide codant pour ce polypeptide
WO2001027283A1 (fr) Nouveau polypeptide, proteine 16 de type transcriptase humaine inverse, et polynucleotide codant pour ce polypeptide
WO2001038389A1 (fr) Nouvelle proteine ribosomique l14.22 a base d'un polypeptide et polynucleotide codant cette proteine
WO2001031001A1 (fr) Nouveau polypeptide, facteur auxiliaire 28 du facteur de demarrage de la traduction, et polynucleotide codant pour ce polypeptide
WO2001031022A1 (fr) Nouveau polypeptide, arginyl arnt synthetase 44, et polynucleotide codant pour ce polypeptide
WO2001046441A1 (fr) Nouveau polypeptide, proteine humaine shc 43, et polynucleotide codant pour ce polypeptide
WO2001029229A1 (fr) Nouveau polypeptide, proteine humaine 20 de liaison de retinoblastome et polynucleotide le codant
WO2001030834A1 (fr) Nouveau polypeptide, proteine 33 a doigt de zinc, et polynucleotide codant pour ce polypeptide
WO2001030832A1 (fr) Nouveau polypeptide, proteine a doigt de zinc hkznf-23, et un polynucleotide codant pour ce polypeptide
WO2001081391A1 (fr) Nouveau polypeptide, proteine 29 semblable a g-beta, et polynucleotide codant pour ce polypeptide
WO2001030821A1 (fr) Nouveau polypeptide, arn cyclase humaine 41, et polynucleotide codant pour ce polypeptide
WO2001032698A1 (fr) Nouveau polypeptide, proteine humaine 16 associee aux maladies auto-immunes, et polynucleotide codant pour ce polypeptide
WO2001029080A1 (fr) Nouveau polypeptide, une proteine humaine hmg-13, et polynucleotide codant pour ce polypeptide

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP