WO2001027359A1 - Dispositif de cristallogenese et procede de fabrication d'un monocristal - Google Patents

Dispositif de cristallogenese et procede de fabrication d'un monocristal Download PDF

Info

Publication number
WO2001027359A1
WO2001027359A1 PCT/JP2000/004456 JP0004456W WO0127359A1 WO 2001027359 A1 WO2001027359 A1 WO 2001027359A1 JP 0004456 W JP0004456 W JP 0004456W WO 0127359 A1 WO0127359 A1 WO 0127359A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating furnace
heating
crystal
growth apparatus
crystal growth
Prior art date
Application number
PCT/JP2000/004456
Other languages
English (en)
French (fr)
Inventor
Hiroshi Maeda
Ryuichi Hirano
Tetsuya Yamamoto
Akira Hichiwa
Yoshiaki Kubota
Original Assignee
Nikko Materials Co., Ltd.
Hirochiku Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Co., Ltd., Hirochiku Co., Ltd. filed Critical Nikko Materials Co., Ltd.
Priority to US09/868,087 priority Critical patent/US6562134B1/en
Priority to EP00944253A priority patent/EP1143040B1/en
Publication of WO2001027359A1 publication Critical patent/WO2001027359A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/003Heating or cooling of the melt or the crystallised material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • C30B29/48AIIBVI compounds wherein A is Zn, Cd or Hg, and B is S, Se or Te
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1076Apparatus for crystallization from liquid or supercritical state having means for producing a moving solid-liquid-solid zone
    • Y10T117/1088Apparatus for crystallization from liquid or supercritical state having means for producing a moving solid-liquid-solid zone including heating or cooling details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1096Apparatus for crystallization from liquid or supercritical state including pressurized crystallization means [e.g., hydrothermal]

Definitions

  • the present invention relates to a crystal growth apparatus provided with a heating furnace having a multi-stage heater and, more particularly, to a compound semiconductor crystal growth apparatus requiring precise temperature control and a technique effective when applied to a crystal growth method using the same. . Background art
  • VVF vertical gradient, freezing
  • VB vertical Bridgman
  • HGF horizontal gradient'freezing
  • HB horizontal bridgman
  • a compound semiconductor single crystal is grown using a temperature gradient in a growth furnace.
  • a heating furnace having a multi-stage heater may be used in order to achieve a desired temperature gradient.
  • an invention using a heating furnace having a multi-stage heater there is, for example, an invention described in International Publication No. WO 95/22643.
  • the first temperature gradient in the vertical direction near the outer wall of the quartz ampoule corresponding to the raw material melt is increased by using the VGF method, and the second temperature gradient in the vertical direction above the upper end of the crucible is increased. While controlling the temperature distribution inside the heating furnace so that it becomes smaller, the temperature inside the heating furnace is gradually lowered so that crystals grow downward from the surface of the raw material melt.
  • FIG. 5 shows a schematic sectional view of the crystal growth apparatus.
  • the crystal growth apparatus 100 includes a heating furnace 110 composed of an upper heater section 101 to 104 and a lower heater section 105 to 107, and an electric energy to each heater. And a power supply unit for controlling the temperature distribution and the like in the furnace, and a pBN crucible l12 containing the raw material 113 is sealed in the heating furnace 110. Quartz ampoule with reservoir section 1 1 1 A 1 1 1 is arranged.
  • the heating furnace 110 heats the position corresponding to the crucible 111 to control the first temperature gradient, and heats the space above the upper end of the crucible 110 to heat the space.
  • the first temperature gradient and the second temperature gradient can be controlled very well because the heater is a multi-stage type, and the yield of the single crystal substrate is dramatically improved. There is an advantage that can be.
  • the yield of a single crystal substrate can be improved, but the obtained wafer has an in-plane surface. Focusing on the dopant (impurity) concentration, experiments have shown that there is at least a variation greater than the measurement error in the plane.
  • the present inventor conducted intensive research on the cause, and when growing a crystal using the above-described crystal growth apparatus, measured the temperature distribution around the crystal along the circumferential direction in the same horizontal plane. Only it was clearly lower than others. Then, when the temperature distribution was compared with the in-plane dopant concentration distribution in FIG. 18, it was found that the temperature distribution corresponded to the in-plane dopant concentration distribution. As a result, the in-plane temperature distribution of the heating furnace was not uniform, and the solidification process of the crystal was shifted in the same plane. As a result, it was concluded that the in-plane dopant concentration of the wafer was uneven.
  • FIG. 6 shows a perspective view of the upper heating section 101 to 104 in FIG.
  • the heater and the power supply or control device are connected via wiring, but in the conventional crystal growth equipment, the terminals 101a to 104a taken out from each heater are designed to be easily wired. However, they were always arranged at the same location on the circumference when viewed from the axial direction of the heating furnace. In this case, the temperature inside the furnace decreases slightly due to the heat radiation from the terminals, The temperature distribution in one horizontal plane was slightly scattered.
  • the present invention has been made in order to solve the above problems, and has a crystal growth apparatus provided with a heating furnace capable of uniformly controlling the temperature distribution in the same horizontal plane in the furnace, and a single crystal using the crystal growth apparatus. It is an object of the present invention to provide a method for producing the same. Disclosure of the invention
  • the present invention provides a crystal growth apparatus provided with a cylindrical heating furnace composed of multi-stage heaters, so that a terminal portion taken out from each heater is not biased to one place. By doing so, the in-plane temperature distribution in the heating furnace was made uniform.
  • the heaters are arranged so that the terminals are located substantially opposite to each other.
  • the terminal portion of the heater is a regular n-gon (n is 3 ⁇ n) when viewed from the axial direction of the heating furnace.
  • n is 3 ⁇ n
  • a heat-resistant vessel containing the raw materials is arranged in a heating furnace portion of the crystal growth apparatus, and the temperature is controlled in the furnace by controlling the temperature. It is preferable that the temperature of the heating furnace is gradually lowered while maintaining the above-mentioned temperature distribution to grow crystals. As a result, it is possible to greatly improve the uniformity of the obtained in-plane dopant concentration in the plane of FIG.
  • the heating furnace comprises an upper heater section for heating the crucible section containing the raw material of the compound semiconductor, and a lower heater section for heating the reservoir section connected to the quartz ampule enclosing the crucible.
  • the upper heating part is constituted by N layers stacked in multiple stages in the axial direction, and each of the upper heating parts is viewed from the axial direction of the heating furnace.
  • Arrange the terminals so that the terminals of the terminals are located at the vertices of the regular N-gon.
  • each heater and heater may be arranged such that the terminal portion of each heater of the upper heater draws a spiral along the outer periphery of the heating furnace.
  • the in-plane temperature distribution of the raw material section be kept uniform in the upper heater section, but also the lower heater section heats the reservoir section to evaporate volatile elements placed in the reservoir section.
  • the pressure in the closed vessel is controlled by the vapor pressure, and the point defect can be prevented from being generated in the crystal due to volatilization of the volatile component.
  • the quartz ampoule is placed in a quartz ampoule, and a simple substance or a compound made of at least one volatile element among the constituent elements of the compound semiconductor is put in a reservoir portion of the quartz ampoule.
  • the crystal growth apparatus is disposed inside the crystal growth apparatus such that the inside of the upper heating chamber and the reservoir section are inside the lower heating chamber, and controls the upper heating chamber to maintain a predetermined temperature in the furnace. After melting the raw material of the compound semiconductor by heating the crucible portion above the melting point of the raw material and melting the raw material of the compound semiconductor, heating the reservoir portion in the lower heating portion to remove the volatile element Both by controlling the pressure in the quartz ampoule by its vapor pressure by emitted, it may grow crystals gradually decreased temperature of the heating furnace while maintaining the temperature distribution.
  • FIG. 1 is a perspective view and a top view schematically showing an upper heater section of a heating furnace according to the present embodiment.
  • FIG. 2 is a graph showing the in-plane temperature distribution in the heating furnace.
  • FIG. 3 is a top view of the inside of the heating furnace showing the installation position of the thermocouple.
  • FIG. 4 shows mapping data indicating the in-plane Zn concentration of the semiconductor layer A8.
  • FIG. 5 is a cross-sectional view schematically showing a conventional crystal growth apparatus.
  • FIG. 6 is a perspective view schematically showing an upper part of a conventional heating furnace.
  • FIGS. 1A and 1B are schematic views of an upper heating section of a heating furnace according to the present embodiment, wherein FIG. 1A is a perspective view and FIG. 1B is a top view.
  • the upper heating section of the heating furnace 110 of the present embodiment is composed of four heating sections 101 to 104, and the terminal sections 101 a to 104 a of each heating section 101 to 104 are arranged in the axial direction Z of the heating furnace 110.
  • the sky 101-104 is arranged so as to be located at each vertex of the square when viewed from above.
  • the terminal portions 101a to 104a of the first stage 101 to 104 are the terminal portions of the second stage 101, and the terminal portion 102a of the second stage is the terminal portion of the first stage 101.
  • the third stage heater 103 has its terminal 103a 90 ° shifted from the terminal 102a of the second stage 102 at the fourth stage heater 104.
  • the in-plane temperature distribution in the heating furnace can be made uniform.
  • Fig. 2 shows the results of measuring the temperature distribution when a heating furnace was heated to about 1107 ° C using four thermocouples.
  • the four thermocouples are arranged around the quartz ampoule so as to be located at the vertices of a square on the same horizontal plane as shown by reference numerals 1, 2, 3, and 4 in FIG.
  • the temperature distribution in the heating furnace of this embodiment is represented by a white circle in FIG.
  • the in-plane temperature distribution in the heating furnace with the conventional heater structure is represented by Kuromaru, with the lowest part at 1105.0 ° C (position 4) and the highest part at 1107.5 ° C. ° C (position 3) and the temperature difference was 2.5 ° C.
  • the temperature at one point (position 4) was extremely low.
  • the temperature in the in-plane temperature in the heating furnace was improved. It can be seen that the distribution has been made uniform.
  • a CdZnTe unit was formed by the VGF method using the crystal growth apparatus. The case of growing a crystal will be described.
  • Cd single substance 114 which is an easily volatile element, is put in the reservoir section 111A of the quartz ampoule 111, and the CdZnTe raw material 113 is put in the crucible 111.
  • the quartz ampoule 111 was placed in the amble 111 and vacuum-sealed, the quartz amble was placed at a predetermined position in the crystal growth apparatus. Then, the temperature gradient in the axial direction above the crucible is 2 to 3 ° C / cm and the temperature gradient in the axial direction of the crucible is 2 to 3 ° C / cm in the upper stage.
  • the crucible is heated so that the temperature is slightly higher than the melting point (1092 ° C) of the CdZnT e raw material 113 to melt the Cd ZnT e raw material.
  • Cd 115 of the reservoir 101 A was heated to about 780 ° C and evaporated to control the vapor pressure.
  • the initial Zn concentration in the CdZnTe raw material melt 113 was 4.2%.
  • the inside of the heating furnace was gradually cooled at 0.1 ° C / hr while maintaining the two temperature gradients to grow a 4 inch diameter CdZnTe single crystal.
  • a CdZnTe single crystal was grown using a conventional crystal growth apparatus in which the upper heating section of the heating furnace 110 had the structure shown in FIG. It compared with the case where it was used.
  • Figure 4 (B) shows the results of the measurement using the MMS 1 mapping device. In most of the area (52/66), the Zn concentration is between 4.0 and 4.5%, but in the vicinity of the area, the Zn concentration decreases, and in the lower left part of the figure, Has an extremely low Zn concentration of 2.5 to 3.0%, which is not considered to be excellent in uniformity.
  • the uniformity of the in-plane temperature distribution in the furnace during the crystal growth process is greatly improved, and the dopant of the obtained CdZnTe single crystal is improved. It can be seen that the concentration can be made uniform within the same plane.
  • the present invention has been described based on the embodiments. However, the present invention is not limited to the embodiments.
  • a heating furnace in which the upper heater section is composed of four stages is used.
  • the present invention can be applied to a heating furnace composed of a multi-stage heater section. It may be composed of two or three stages or five or more stages. When there are two stages, it is most desirable to arrange the terminals so that the terminals are located at opposite positions, that is, at positions 180 ° apart. In addition, even when three or more heaters are used, the heaters are arranged so that the terminals of the heaters are located at the vertices of a regular polygon when viewed from the axial direction of the heating furnace.
  • the upper heater section is composed of N pieces (N is a positive integer of 3 or more)
  • the terminal section of each piece is a regular n-gon when viewed from the axial direction of the heating furnace (n is 3 ⁇ n ⁇ N).
  • the terminal sections of each heater section may be arranged at each vertex of a regular octagon when viewed from the axial direction of the heating furnace.
  • it may be arranged at each vertex of a regular pentagon or a regular hexagon.
  • two of the five vertices are overlapped with two terminals, and when placed at the vertices of a regular hexagon, two of the six vertices are used. In this case, the two terminal sections are overlapped.
  • the in-plane temperature distribution in the furnace can be made uniform.
  • the terminals where the terminal portions are arranged at the same vertex should be avoided from being adjacent to each other and should be separated from each other.
  • the position of the terminal does not need to be set exactly at the top of the regular polygon, but may be any position close to it.
  • CdZn by the VGF method using the crystal growth apparatus according to the present invention can be applied to the case where CdZnTe is grown by the VB method, the HGF method, or the HB method.
  • the compound is not limited to CdZnTe.
  • a compound semiconductor single crystal such as GaAs can be grown.

Description

明細書 結晶成長装置及び単結晶の製造方法 技術分野
本発明は、 多段型ヒー夕を有する加熱炉を備えた結晶成長装置に関し、 特に精 密な温度制御を要する化合物半導体の結晶成長装置およびそれを用いた結晶成長 方法に適用して有効な技術に関する。 背景技術
一般に、 化合物半導体単結晶の成長方法として、 垂直グラジェント , フリージ ング (V G F ) 法、 垂直ブリッジマン (V B ) 法、 水平グラジェント ' フリージ ング (H G F ) 法、 水平ブリッジマン (H B ) 法などが知られている。 これらの 方法では成長炉内の温度勾配を利用して化合物半導体単結晶を成長させている。 かかる成長方法を適用した結晶成長装置においては、 所望の温度勾配を実現す るため、 多段型ヒー夕を有する加熱炉が用いられることがある。 多段型ヒー夕を 有する加熱炉を用いた発明としては、 例えば、 国際公開番号 W O 9 5 / 2 2 6 4 3号公報に記載の発明がある。 この発明においては、 V G F法を利用して、 原料 融液に対応する石英アンプル外壁近傍における垂直方向の第 1の温度勾配が、 ル ッボの上端よりも上方における垂直方向の第 2の温度勾配より小さくなるように 加熱炉内の温度分布を制御しながら、 加熱炉内の温度を徐々に下げて原料融液表 面から下方に向かって結晶を成長させるようにしている。
また、 前記先願においては、 前記温度勾配を正確に制御するために、. 少なくと も 6つの加熱手段 (ヒー夕) からなる加熱炉を備えた結晶成長装置が提案されて いる。 該結晶成長装置の概略断面図を図 5に示す。 図 5において、 結晶成長装置 1 0 0は、 上段ヒータ部 1 0 1〜 1 0 4および下段ヒー夕部 1 0 5〜 1 0 7から なる加熱炉 1 1 0と、 各ヒー夕への電力量を制御して炉内温度分布等を制御する 制御装置と、 電源装置とで構成され、 前記加熱炉 1 1 0内に原料 1 1 3の入った p B N製のルッボl 1 2を封入されたリザ一バ部 1 1 1 Aを有する石英アンプル 1 1 1が配置されている。 加熱炉 1 1 0は、 ルツボ 1 1 2に対応する位置を加熱 して第 1の温度勾配を制御するヒー夕 1 0 3と、 ルツボ 1 1 2の上端よりも上方 の空間を加熱して第 2の温度勾配を制御するヒ一夕 1 0 2と、 前記リザーパ部 1 1 1 Aを加熱して蒸気圧を制御するヒ一夕 1 0 6と、 炉内温度分布に対する外乱 の影響を抑制するヒ一夕 1 0 1 , 1 0 7と、 前記ヒータ 1 0 3と前記ヒ一夕 1 0 6との相互の影響を抑制するヒ一夕 1 0 4, 1 0 5とで構成されている。
この結晶成長装置によれば、 ヒー夕を多段型としているため、 第 1の温度勾配 および第 2の温度勾配を極めて良好に制御することができ、 単結晶基板の収率を 飛躍的に向上させることができるという利点がある。
しかしながら、 上述した多段型ヒー夕を有する結晶成長装置を用いた化合物半 導体単結晶の成長では、 単結晶基板の収率を向上させることはできるが、 得られ たゥェ一ハの面内のド一パント (不純物) 濃度に着目すると、 面内で少なくとも 測定誤差以上のばらつきがあることが実験によって判明した。
そこで本発明者は、 その原因について鋭意研究を重ね、 上述した結晶成長装置 を用いて結晶を成長させる際、 結晶周囲の温度分布を同一水平面内で円周方向に 沿って測定したところ、 一箇所だけ他と比較して明らかに低くなつていた。 そし て、 その温度分布とゥヱ一八の面内ド一パント濃度分布とを比較したところ、 温 度分布と面内ドーパント濃度分布とが対応していることに気づいた。 これより、 加熱炉の面内温度分布が均一でないために結晶の固化過程が同一面内でずれてし まい、 その結果ゥエーハの面内ド一パント濃度のばらつきが発生しているとの結
6冊し達した。
しかも、 炉内の面内温度分布において、 温度が低くなつている部位はヒータの 端子の位置に対応していることを見いだした。 このことから、 炉内の面内温度分 布が均一にならないのは、 ヒー夕の端子部からの放熱が原因であることが判明し た。 図 6に、 図 5の上段ヒー夕部 1 0 1 〜 1 0 4の斜視図を示す。 ヒータと電源 装置または制御装置とは配線を介して接続されているが、 従来の結晶成長装置で は、 各ヒー夕から取り出される端子部 1 0 1 a〜 1 0 4 aは配線しやすいように、 常に加熱炉の軸方向から見て円周上の同一箇所に配置されていた。 この場合、 端 子部からの放熱があるためその付近の炉内温度が若干低下してしまい、 炉内の同 一水平面内の温度分布が微妙にばらついていたのである。
本発明は、 前記問題点を解決するためになされたもので、 炉内の同一水平面内 の温度分布を均一に制御できる加熱炉を備えた結晶成長装置並びに該結晶成長装 置を用いた単結晶の製造方法を提供することを目的とする。 発明の開示
前記目的を達成するために本発明は、 多段型のヒ一夕で構成される円筒型加熱 炉を備えた結晶成長装置において、 各ヒー夕から取り出される端子部が一力所に 偏らないようにすることにより、 加熱炉内の面内温度分布を均一にするようにし た。
具体的には、 前記ヒータの数が例えば 2個である場合、 端子がほぼ対向した位 置に来るように各ヒ一夕を配置するようにした。 また、 前記ヒータの数が N個 ( Nは 3以上の正の整数) である場合には、 前記ヒ一夕の端子部が該加熱炉の軸 方向からみて正 n角形 (nは 3≤n≤Nを満たす整数) の各頂点に位置するよう に各ヒ一夕を配置するようにした。 これにより、 端子部からの放熱が一力所に偏 らなくなるため、 加熱炉内の面内温度分を均一にすることができる。
前記結晶成長装置を用いて単結晶を成長させるには、 例えば、 原料を入れた耐 熱容器を前記結晶成長装置の加熱炉部分に配置し、 ヒー夕を制御して炉内を所定 の温度分布にするとともに耐熱容器部分が原料の融点以上となるように加熱して 原料を溶融した後、 前記温度分布を保ちつつ加熱炉の温度を徐々に下げて結晶を 成長させるとよい。 これにより、 得られるゥヱ一八の面内ド一パント濃度の均一 性を大幅に改善することができる。
また、 加熱炉が化合物半導体の原料を入れたルツボ部を加熱する上段ヒー夕部 と、 該ルツボを封入する石英アンプルと連通されたリザ一バ部を加熱する下段 ヒ一夕部とから構成されてなる化合物半導体の結晶成長装置において、 前記上段 ヒ一夕部を N個のヒー夕が軸方向に多段に積層されてなる構成とし、 該加熱炉の 軸方向からみて前記上段ヒー夕部の各ヒー夕の端子部が正 N角形の各頂点に位置 するように各ヒ一夕を配置する。 さらに、 前記上段ヒータ部の各ヒー夕の端子部 が加熱炉の外周に沿って螺旋を描くように各ヒー夕を配置するようにしてもよい。 これにより、 上段ヒー夕部で原料部の面内温度分布を均一に保つことができるだ けでなく、 下段ヒータ部でリザ一バ部を加熱してリザーバ部内に配置された揮発 性元素を蒸発させその蒸気圧により密閉容器内の圧力を制御するとともに易揮発 性成分の揮発により結晶中に点欠陥が発生するのを防止することもできる。 前記上段ヒー夕部と下段ヒー夕部とからなる円筒型加熱炉を備えた結晶成長装 置を用いて化合物半導体単結晶を成長させるには、 例えば化合物半導体の原料を 入れたルツボをリザ一パ部を有する石英アンプル内に配置するとともに、 該石英 アンプルのリザ一バ部に前記化合物半導体の構成元素のうち少なくとも 1種類の 揮発性元素よりなる単体または化合物を入れ、 該石英アンプルを前記ルッボが前 記上段ヒ一夕部の内側に、 また前記リザーバ部が前記下段ヒー夕の内側に来るよ うに前記結晶成長装置内に配置し、 前記上段ヒー夕部を制御して炉内を所定の温 度分布にするとともに前記ルツボ部分を前記原料の融点以上に加熱して前記化合 物半導体の原料を溶融した後、 前記下段ヒー夕部でリザ一バ部を加熱して前記揮 発性元素を蒸発させてその蒸気圧により前記石英アンプル内の圧力を制御すると ともに、 前記温度分布を保ちつつ前記加熱炉内の温度を徐々に下げて結晶を成長 させるとよい。 これにより、 化合物半導体単結晶の製造において、 得られた半導 体ゥエーハの面内ドーパント濃度の均一性を大幅に改善できるとともに、 易揮発 性成分の揮発により結晶中に点欠陥が発生するのを防止することができる。 図面の簡単な説明
図 1は、 本実施形態の加熱炉の上段ヒータ部の概略を示す斜視図及び上面図で ある。
図 2は、 加熱炉内の面内温度分布を示すグラフである。
図 3は、 熱電対の設置位置を示す加熱炉内の上面図である。
図 4は、 半導体ゥエー八の面内 Z n濃度を示すマッピングデータである。 図 5は、 従来の結晶成長装置の概略を示す断面図である。
図 6は、 従来の加熱炉の上段ヒ一夕部の概略を示す斜視図である。 発明を実施するため最良の形態 以下、 本発明の好適な実施の形態を図面に基づいて説明する。
本実施形態の結晶成長装置は、 図 5に示した結晶成長装置と構造的にほとんど 同じであり、 加熱炉 1 10の上段ヒー夕部の構造のみが異なる。 図 1は、 本実施 形態の加熱炉の上段ヒー夕部の概略図で、 (A) が斜視図、 (B) が上面図であ る。 本実施形態の加熱炉 1 10の上段ヒー夕部は、 4つのヒー夕 101〜 104 で構成されており、 各ヒー夕 101〜 104の端子部 101 a〜 104 aが加熱 炉 110の軸方向 Zから見て正方形の各頂点に位置するように各ヒ一夕 101〜 104が配置されている。 しかも、 本実施形態では、 各ヒ一夕 101〜 104の 端子部 101 a〜 104 aが、 2段目のヒ一夕 102はその端子部 102 aが 1 段目のヒ一夕 101の端子部 101 aと 180° ずれた位置に、 3段目のヒー夕 103はその端子部 103 aが 2段目のヒー夕 102の端子部 102 aと 90 ° ずれた位置に、 4段目のヒータ 104はその端子部 104 aが 3段目のヒ一夕 1 03の端子部 103 aと 180 ° ずれた位置にそれそれくるように配置されてい る。 本実施形態のように、 上下に隣接するヒータの端子位置はなるべく近づけな いような構造とするのが望ましい。
以上が本実施形態に係る結晶成長装置の構成、 主に加熱炉の上段ヒータ部の構 成である。 上述した結晶成長装置によると加熱炉内の面内温度分布を均一にする ことができる。 例えば、 加熱炉を約 1 107°Cに加熱したときの温度分布を、 4 つの熱電対により測定した結果を図 2に示す。 ここで、 4つの熱電対は、 図 3に 符号 1, 2, 3, 4で示すように同一水平面にてそれそれ正方形の頂点に位置す るように石英アンプル周囲に配置されている。 本実施形態の加熱炉内の温度分布 は図 2に白丸〇で表されており、 最も低い部分で 1 106. 8°C (位置 1) 、 最 も高い部分で 1 107. 8°C (位置 3) であり温度差は 1°C程度であった。 これ に対して、 従来のヒー夕構造をした加熱炉内の面内温度分布は黒丸翁で表され、 最も低い部分で 1 105. 0°C (位置 4) 、 最も高い部分で 1 107. 5°C (位 置 3) であり温度差は 2. 5°Cであった。 従来の加熱炉では一力所 (位置 4) の 温度だけが極端に低くなつていたが、 ヒー夕の端子位置を本実施形態のようにす ることにより改善され、 加熱炉内の面内温度分布が均一化されたことがわかる。 次に、 一例として、 前記結晶成長装置を用いて VGF法により CdZnTe単 結晶を成長させる場合について説明する。
まず、 石英アンプル 1 1 1のリザ一パ部 1 1 1 Aに易揮発性元素である Cd単 体 1 14を入れるとともに、 Cd Z nT e原料 1 1 3をルツボ 1 1 2に入れて石 英アンブル 1 1 1内に配置し、 石英アンプル 1 1 1を真空封止した後、 該石英ァ ンブルを結晶成長装置内の所定の位置に設置した。 そして、 上段ヒ一夕 1 0 1〜 1 04でルツボ上方の軸方向の温度勾配が 2〜3°C/cm、 ルツポ部の軸方向の 温度勾配が 2〜3°C/ cmとなるように温度制御するとともに、 Cd ZnT e原 料 1 1 3の融点 ( 1 09 2°C) よりも若干温度が高くなるようにルヅボを加熱し て Cd ZnT e原料を溶融し、 下段ヒー夕 1 05〜 1 07で約 780°Cにリザー バ部 1 0 1 Aの Cd 1 1 5を加熱して蒸発させ蒸気圧制御を行った。 このとき、 Cd Z nT e原料融液 1 1 3中の初期 Z n濃度は 4. 2%とした。 その後、 石英 アンプル内の圧力を制御するとともに、 前記 2つの温度勾配を保ちつつ加熱炉内 を 0. 1 °C/h rで徐々に冷却して、 直径 4インチの Cd ZnT e単結晶を成長 させた。
その得られた Cd ZnT e単結晶をスライスして C d Z nT eゥェ一ハとし、 固化率 g = 0 · 3付近のゥエー八について表面の Z n濃度をダイォ一ドアレイ型 の分光器 MM S 1 ( (株) Carl Zeiss社製) により測定した。 その結果を図 4 (A) にマツビングデ一夕で示す。 ゥェ一ハの大部分 ( 5 8/6 6) で Z n濃度 は 4. 8〜5. 3 %であり、 均一性のよい単結晶となっていることがわかる。 (比較例)
加熱炉 1 1 0の上段ヒー夕部が図 6に示す構造となっている従来の結晶成長装 置を用いて、 同様に Cd Z nT e単結晶を成長させ、 本実施形態の結晶成長炉を 用いた場合と比較した。
得られた C d Z nT e単結晶をスライスして Cd Z nT eゥェ一ハとし、 固化 率 g= 0. 5付近のゥェ一八について表面の Z n濃度をダイオードアレイ型の分 光器 MMS 1により測定した結果を図 4 (B) にマッピングデ一夕で示す。 ゥェ一八の大部分 ( 5 2 / 6 6 ) で Z n濃度は 4. 0〜4. 5 %であるが、 ゥェ一ハ周辺部分では Z n濃度が低下し、 図の左下部分においては極端に Z n濃 度が低く 2. 5〜3. 0 %となっており、 均一性に優れているとはいえない。 以上のことから、 本実施形態の結晶成長装置を用いることにより、 結晶成長過 程における炉内の面内温度分布の均一性は大幅に改善され、 得られる C d Z n T e単結晶のドーパント濃度を同一面内で均一にできることが分かる。
以上、 本発明を実施形態に基づき説明したが、 本発明は前記実施形態に限定さ れるものではない。
例えば、 本実施形態では上段ヒー夕部が 4段のヒー夕からなる加熱炉を用いた が、 多段型ヒー夕からなる加熱炉であれば本発明を適用することができ、 例えば 上段ヒータ部が 2段や 3段のヒ一夕あるいは 5段以上のヒー夕で構成されるよう にしてもよい。 ヒ一夕が 2段の場合には、 対向する位置すなわち 1 8 0 ° 離れた 位置に端子部が来るようにヒ一夕を配置するのが最も望ましい。 また、 3段以上 のヒー夕で構成される場合にも各ヒ一夕の端子部が加熱炉の軸方向から見たとき 正多角形の各頂点に位置するように各ヒー夕を配置、 すなわち、 上段ヒー夕部が N個 (Nは 3以上の正の整数) のヒ一夕からなる場合、 各ヒ一夕の端子部が加熱 炉の軸方向から見たとき正 n角形 (nは 3≤n≤Nを満たす整数) の各頂点に配 置されるようにすればよい。
さらに例えば、 上段ヒー夕部が 8個のヒ一夕からなる場合、 各ヒー夕の端子部 は加熱炉の軸方向から見て正 8角形の各頂点に配置されてよいのはいうまでもな く、 正 5角形や正 6角形の各頂点に配置されてもよい。 正 5角形の頂点に配置さ れる場合には 5つの頂点のうち 3頂点に 2つの端子部が重複して配置され、 正 6 角形の頂点に配置される場合には 6つの頂点のうち 2頂点に 2つの端子部が重複 して配置されることになる。 このように上段ヒー夕部が N個のヒ一夕で構成され る場合に、 Nよりも小さい正 n角形の頂点に各ヒ一夕の端子部がくるようにして も、 従来方式に比較して炉内の面内温度分布を均一にできる。 ただし、 その場合 にも、 同一頂点に端子部が配置されるヒー夕は隣接しているものを避け、 互いに 離れているもの同士を選択する。 さらに、 端子部の位置は、 厳密に正多角形の頂 点に設定される必要はなく、 それに近い位置であればよい。 産業上の利用可能性
以上の説明では、 本発明に係る結晶成長装置を用いた V G F法による C d Z n T e単結晶成長を例にとって説明したが、 本発明の結晶成長装置は VB法、 HG F法、 HB法により Cd ZnT eを成長させる場合にも適用することが可能であ り、 また成長させる化合物も CdZnTeに制限されず、 例えば GaAs等の化 合物半導体単結晶を成長させることも可能である。

Claims

請求の範囲
1 . 複数のヒー夕が軸方向に多段に積層されてなる円筒型加熱炉を備えた結晶成 長装置において、 隣接するヒー夕の端子部が該加熱炉の軸方向からみて同一位置 に重ならず互いに離れた位置にあるように各ヒー夕が配置されてなることを特徴 とする結晶成長装置。
2 . 前記ヒ一夕の数が 2個である場合に、 端子がほぼ対向した位置にあるように 各ヒー夕が配置されてなることを特徴とする請求項 1に記載の結晶成長装置。
3 . 前記ヒー夕の数が N個 (Nは 3以上の正の整数) である場合に、 前記ヒー夕 の端子部が該加熱炉の軸方向からみて正 n角形 (11は3 ≤ ]1≤ ^^を満たす整数) の各頂点に位置するように各ヒ一夕が配置されてなることを特徴とする請求項 1 に記載の結晶成長装置。
4 . 請求項 1乃至請求項 3に記載の構成を有する上段ヒー夕部と、 原料を入れた ルツボが封入される耐熱容器に連通されたリザーバ部を加熱する下段ヒータ部と からなる加熱炉を備えてなることを特徴とする化合物半導体の結晶成長装置。
5 . 請求項 1乃至請求項 3に記載の結晶成長装置を用いた単結晶の成長方法で あって、 原料を入れた耐熱容器を前記加熱炉内に配置し、 ヒー夕を制御して加熱 炉内を所定の温度分布にするとともに耐熱容器が融点以上となるように加熱して 原料を溶融した後、 前記温度分布を保ちつつ加熱炉の温度を徐々に下げて単結晶 を成長させることを特徴とする単結晶の製造方法。
6 . 請求項 4に記載の結晶成長装置を用いた化合物半導体単結晶の成長方法で あって、 化合物半導体の原料を入れたルツボをリザーパ部を有する石英アンプル 内に配置するとともに該石英アンプルのリザ一パ部に前記化合物半導体の構成元 素のうち少なくとも 1種類の揮発性元素よりなる単体または化合物を入れ、 該石 英アンプルを、 前記ルツポが上段ヒー夕部の内側に、 また前記リザーパ部が下段 ヒータ部の内側に来るように前記加熱炉内に配置し、 前記上段ヒータ部を制御し て加熱炉内を所定の温度分布にするとともに前記耐熱容器を前記原料の融点以上 に加熱して前記化合物半導体の原料を溶融した後、 前記下段ヒータ部で前記リ ザ一パ部を加熱して前記揮発性元素を蒸発させてその蒸気圧により石英アンプル 内の圧力を制御するとともに、 前記温度分布を保ちつつ加熱炉の温度を徐々に下 げて結晶を成長させることを特徴とする化合物半導体単結晶の製造方法。
PCT/JP2000/004456 1999-10-15 2000-07-05 Dispositif de cristallogenese et procede de fabrication d'un monocristal WO2001027359A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/868,087 US6562134B1 (en) 1999-10-15 2000-07-05 Crystal growing device and method of manufacturing single crystal
EP00944253A EP1143040B1 (en) 1999-10-15 2000-07-05 Crystal growing device and method of manufacturing single crystal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/293953 1999-10-15
JP29395399A JP3595977B2 (ja) 1999-10-15 1999-10-15 結晶成長装置及び単結晶の製造方法

Publications (1)

Publication Number Publication Date
WO2001027359A1 true WO2001027359A1 (fr) 2001-04-19

Family

ID=17801329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004456 WO2001027359A1 (fr) 1999-10-15 2000-07-05 Dispositif de cristallogenese et procede de fabrication d'un monocristal

Country Status (4)

Country Link
US (1) US6562134B1 (ja)
EP (1) EP1143040B1 (ja)
JP (1) JP3595977B2 (ja)
WO (1) WO2001027359A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112005000715B4 (de) * 2004-03-31 2016-02-04 Komatsu Denshi Kinzoku K.K. Halbleitereinkristall-Herstellungsvorrichtung
JP5343272B2 (ja) * 2005-09-30 2013-11-13 Sumco Techxiv株式会社 単結晶半導体製造装置および製造方法
JP2007261846A (ja) * 2006-03-28 2007-10-11 Sumco Techxiv株式会社 無欠陥のシリコン単結晶を製造する方法
KR101600378B1 (ko) * 2014-01-27 2016-03-07 한국원자력연구원 결정성장장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04318923A (ja) * 1991-04-17 1992-11-10 Tokyo Electron Sagami Ltd 加熱装置
JPH06256082A (ja) * 1993-03-03 1994-09-13 Asahi Glass Co Ltd 化合物半導体単結晶の製造装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995022643A1 (fr) 1994-02-21 1995-08-24 Japan Energy Corporation Procede de croissance d'un monocristal
JP3509556B2 (ja) * 1998-06-03 2004-03-22 日立電線株式会社 単結晶の製造方法および製造装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04318923A (ja) * 1991-04-17 1992-11-10 Tokyo Electron Sagami Ltd 加熱装置
JPH06256082A (ja) * 1993-03-03 1994-09-13 Asahi Glass Co Ltd 化合物半導体単結晶の製造装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1143040A4 *

Also Published As

Publication number Publication date
JP3595977B2 (ja) 2004-12-02
EP1143040A1 (en) 2001-10-10
EP1143040A4 (en) 2004-05-12
US6562134B1 (en) 2003-05-13
EP1143040B1 (en) 2006-09-27
JP2001114588A (ja) 2001-04-24

Similar Documents

Publication Publication Date Title
JP5608076B2 (ja) 原料の溶融物から結晶を製造するための構成および方法、ならびに単結晶
Gault et al. A novel application of the vertical gradient freeze method to the growth of high quality III–V crystals
KR102245507B1 (ko) 탄화규소 시드를 사용하여 벌크 탄화규소를 제조하기 위한 방법 및 장치
JP6876148B2 (ja) 安定化高ドープ・シリコン・カーバイド
KR102245508B1 (ko) 벌크 탄화규소를 제조하기 위한 장치
EP2664695B1 (en) Physical vapor transport growth system for simultaneously growing more than one SiC single crystal, and method of growing
CN105247115B (zh) 单晶硅制造方法
KR102266585B1 (ko) 벌크 탄화규소를 제조하기 위한 방법
EP1508632B1 (en) METHOD FOR PREPARATION OF Cl DOPED CdTe SINGLE CRYSTAL
EP3382068A1 (en) Silicon carbide substrate and method of growing sic single crystal boules
US7524375B1 (en) Growth of uniform crystals
KR101574749B1 (ko) 단결정 제조용 상부히터, 단결정 제조장치 및 단결정 제조방법
CA1080588A (en) Method of forming and growing a single crystal of a semiconductor compound
KR102245506B1 (ko) 탄화규소 전구체로부터 벌크 탄화규소를 제조하기 위한 방법 및 장치
KR101299037B1 (ko) 마이크로 웨이브를 이용한 단결정 성장장치 및 그 성장방법
US5871580A (en) Method of growing a bulk crystal
US20060260536A1 (en) Vessel for growing a compound semiconductor single crystal, compound semiconductor single crystal, and process for fabricating the same
WO2001027359A1 (fr) Dispositif de cristallogenese et procede de fabrication d'un monocristal
KR102245509B1 (ko) 저결함밀도를 갖는 벌크 탄화규소
US9437692B2 (en) Production and distribution of dilute species in semiconducting materials
JP5573753B2 (ja) SiC成長装置
JP2000313699A (ja) 半絶縁性InP単結晶の製造方法
US20240060208A1 (en) Heating part of silicon single crystal manufacturing device, convection pattern control method for silicon melt, silicon single crystal manufacturing method, silicon wafer manufacturing method, silicon single crystal manufacturing device, and convection pattern control system for silicon melt
JP7242989B2 (ja) SiC単結晶製造装置
JP3447977B2 (ja) 光アイソレーター素子

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2000944253

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09868087

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000944253

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000944253

Country of ref document: EP