WO2001025495A1 - Procede de traitement pyrometallurgique de dechets d'origine siderurgique - Google Patents

Procede de traitement pyrometallurgique de dechets d'origine siderurgique Download PDF

Info

Publication number
WO2001025495A1
WO2001025495A1 PCT/EP2000/009139 EP0009139W WO0125495A1 WO 2001025495 A1 WO2001025495 A1 WO 2001025495A1 EP 0009139 W EP0009139 W EP 0009139W WO 0125495 A1 WO0125495 A1 WO 0125495A1
Authority
WO
WIPO (PCT)
Prior art keywords
zone
waste
gases
metals
reduction
Prior art date
Application number
PCT/EP2000/009139
Other languages
English (en)
Inventor
Thomas Hansmann
Romain Frieden
Marc Solvi
Original Assignee
Paul Wurth S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Paul Wurth S.A. filed Critical Paul Wurth S.A.
Priority to AU75205/00A priority Critical patent/AU7520500A/en
Publication of WO2001025495A1 publication Critical patent/WO2001025495A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/14Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment
    • F27B9/16Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a circular or arcuate path
    • F27B9/18Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a circular or arcuate path under the action of scrapers or pushers
    • F27B9/185Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a circular or arcuate path under the action of scrapers or pushers multiple hearth type furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/10Making spongy iron or liquid steel, by direct processes in hearth-type furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B13/00Obtaining lead
    • C22B13/02Obtaining lead by dry processes
    • C22B13/025Recovery from waste materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/02Working-up flue dust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a process for pyrometallurgical treatment of waste, in particular of steel origin.
  • Waste treatment is a booming activity, often motivated by economic or ecological interests. It is interesting to treat steel waste, to obtain metals which can be recycled in new manufacturing processes, or simply to extract metals which pose a risk to the environment.
  • the steel industry is a sector that produces a large amount of metallic waste, in particular dust from the filtration of gases from blast furnaces and steel furnaces with metals such as iron (Fe), and heavy metals such as zinc (Zn ) and lead (Pb) in an oxidized form.
  • This dust also contains alkali metals generally in the form of chlorides.
  • the object of the present invention is to provide a process for pyrometallurgical treatment of waste allowing the extraction of undesirable compounds for the subsequent treatment of waste. According to the invention, this objective is achieved by a method according to claim 1.
  • the method according to the invention relates to the pyrometallurgical treatment of waste, in particular of steel origin, in a first zone comprising hearths spaced vertically from a multi-stage furnace, in which: from the first zone and gradually transferred to the lower floors;
  • the present method takes advantage of the capacity of the multi-stage oven to create particular atmospheres by zones and / or by floors, according to a reaction which it is desired to carry out. It will be appreciated that, according to the present invention, it is possible to pyrometallurgically treat waste, and to at least partially extract from it alkali metal salts, in particular alkali metal chlorides, and / or lead oxides. The waste is thus rid of the latter, and can undergo further treatment. The products, that is to say the metals, obtained by possible subsequent treatments will not be polluted with alkali metal salts, in particular alkali metal chlorides, and / or lead oxides. The purity of the metals obtained will thus be increased.
  • the present process allows the extraction of lead oxides in gaseous form, in particular PbO, at a temperature much lower than that used in the process of US patent 4,673,431. Indeed, it has been found that it is possible to easily extract lead oxide in gaseous form already at a temperature slightly above the melting point of lead oxide. It is therefore not necessary to heat the waste to a temperature of at least 1482 ° C (boiling point 1475 ° C), as recommended in document US 4,673,431.
  • step (b) the waste is brought to a temperature up to 1000 ° C and preferably up to 1100 ° C so as to calcine it and cause the volatilization of salts of alkali metals, in particular chlorides of alkali metals and / or lead oxides.
  • a process is particularly suitable for the extraction of lead oxides (mainly in the form of PbO) and of alkali metal salts and more particularly sodium chloride (NaCI) and potassium chloride (KCI).
  • lead in this type of waste is present in various oxidized forms such as, for example, PbCIOH, Pb2 (S ⁇ 4) 0 etc.
  • the first zone operates against the current, and the counter-current gases are extracted from the first zone at its upper part.
  • the counter-current gases contain the alkali metal salts, in particular the alkali metal chlorides, and / or the lead oxides of step (c). They are cooled and filtered so as to separate them from the rest of the gases.
  • the filtered gases can be reintroduced after treatment in the first zone, preferably after having been reheated. This increases the gas flow from the first zone. For a given metal, the flow of extracted metal is proportional to the flow of gas. The use of large quantities of gas therefore makes it possible to reduce the residence time of the waste in the first zone of the multi-stage oven.
  • the waste contains dioxins, it can be burned in the first zone by injecting a gas containing oxygen.
  • the remaining solid waste is transferred after step (c) into a second zone comprising vertically spaced sole, called “reduction zone”, located below the first zone, to be gradually transferred there. to the lower floors, brought into contact with a reducer and brought to a temperature allowing the reduction of metals.
  • a reaction zone located below the first zone
  • the reaction temperature allowing the reduction of metals in the waste can be between 800 and 1200 ° C, and is preferably between 1000 and 1100 ° C. At least part of the reduced metals in the reduction zone are volatilized at the reaction temperature. They will then be advantageously extracts from the reduction zone with the gases at the level of the sole on which they are formed.
  • the reduction reactions take place almost exclusively inside the layer of solids deposited on the soles.
  • the oxides of certain metals are reduced inside the solid layer, are then volatilized in reduced form and escape from the layer to come into contact with the atmosphere of the furnace.
  • These metals reoxidize in contact with the atmosphere and are extracted from the furnace in oxidized form.
  • the reduction zone operates co-current, the gases being all extracted from the reduction zone at its lower part. This makes it possible to increase the gas flow rate in the high temperature stages of the reduction zone, where the volatilization of reduced metals is more favorable.
  • All gases from the reduction zone of the multi-stage oven can be treated in an afterburner, cooled and filtered.
  • the volatilized metals are oxidized in the gas phase, cooled to condense them into dust, and filtered to be separated from the gases.
  • the zinc is vaporized; then extracted into gases and oxidized. It will be noted that the purity of the zinc oxides recovered is very satisfactory. In fact, the waste has been freed in the first zone from lead oxides, alkali metal salts, in particular alkali metal chlorides. If the waste had not been treated in the first zone, then the zinc-containing gases extracted from the reduction zone would also contain these lead oxides and alkali metal salts. The zinc oxides recovered would therefore be polluted by them.
  • the waste contains reduced metals in the reduction zone which cannot be extracted in gaseous form
  • the remaining waste will then advantageously be extracted from the multi-stage oven after reaching the bottom floor of the reduction zone, and can then be sorted, so as to separate the reduced non-volatilized metals.
  • the metals that cannot be extracted in the gas phase there is in particular iron and / or nickel.
  • a carbon reducing agent such as coal, solid or liquid petroleum products, synthetic materials such as plastics, gums, organic waste or mixtures thereof is used. In some cases, plastics and / or gums containing chlorine and sulfur can be used.
  • the waste can be dried on the upper floors of the multi-stage oven before being introduced into the first zone. This is interesting when the waste contains large quantities of water, such as steelworks sludge, or exhaust gas purification sludge from blast furnaces or converters.
  • the heating of the floors can be carried out directly or indirectly.
  • all the gases from the multi-stage oven are dechlorinated and desulfurized.
  • the waste is introduced into the first zone in the form of pellets.
  • the present process uses a multi-stage furnace to process waste from the steel industry.
  • This waste is often in the form of sludge containing iron oxides, zinc oxides, lead oxides, and alkali metal salts such as potassium chloride (KCI) and sodium chloride (NaCI).
  • KCI potassium chloride
  • NaCI sodium chloride
  • Oxide generally means oxidized form: oxide, hydroxide ...
  • this process has been used to treat waste from various electric furnaces (arc furnaces).
  • the composition of this dust was as follows:
  • a multi-stage oven composed of annular hearths spaced vertically.
  • loading and unloading decks are arranged alternately.
  • the former have a peripheral orifice, the peripheral orifices of two consecutive loading decks being diametrically opposite; the seconds have an open central circular part.
  • the oven is also provided, in its central part, with a vertical rotation shaft to which are attached rakes extending over the entire radius of the hearths.
  • Direct heating means such as burners or indirect means such as p. ex. electrical resistances allow each sole to be heated, in order to obtain different temperatures by zone and / or by sole.
  • a multi-stage oven is used comprising two functional zones: a first zone and a second zone called the reduction zone, the second zone being placed under the first zone.
  • the waste is introduced continuously on the first load floor- ment, ie the upper sole of the first zone.
  • the rakes driven by the vertical rotation shaft, spread the waste on the loading floor and bring it back to the peripheral opening through which it falls on the unloading floor located just below.
  • the rakes then direct the waste to the central orifice, through which they fall on the lower loading floor.
  • the waste progresses down the floors of the first zone.
  • At the level of the lower soles of the first zone there is a temperature of about 900 ° C to 1000 ° C. This temperature is obtained by burners which create an oxidizing atmosphere.
  • the waste is calcined and elements such as lead oxides and alkali metal salts, in particular alkali metal chlorides, are volatilized and entrained in the gases.
  • the saturated vapor pressure of the lead oxides and of the alkali metal salts, in particular of the alkali metal chlorides is such that it is possible to extract them from the gases in the zone without exceeding their boiling point. .
  • the temperature of the first zone is slightly higher than the melting point of PbO: 885 ° C, and is much lower than its boiling point: 1475 ° C.
  • the first zone operates against the current.
  • the gases in the first zone go up while the waste goes down.
  • the gas flow in the first zone is increased.
  • the greater the gas flow through the furnace the greater the quantity of material extracted per unit of time. It is thus possible to reduce the residence time of the waste in the first zone of the oven.
  • the counter-current gases are extracted outside the first zone at the level of the upper sole. These gases are then cooled and filtered so as to separate the lead oxides and the alkali metal salts, in particular the alkali metal chlorides from the rest of the gases.
  • the reduction gases containing the reduced metals in the gas phase, are extracted from the multi-stage oven in the lower part of the reduction zone, that is to say where they are formed. They are then sent to an afterburner, in which Zn is oxidized to ZnO, and is cooled and then filtered to be separated from the gas. It is important to note that the purity of the zinc oxide recovered in the gases of the reduction zone is appreciable, since the lead oxides and the alkali metal salts which would also have been volatilized in the reduction zone have already been extracts in the first zone.
  • All the gases from the multi-stage oven can be taken to a treatment plant to be cooled, dechlorinated and desulfurized, and filtered, before being released.
  • the waste is loaded into the multi-stage oven in the form of pellets.
  • micro-pellets with a diameter of around 1 to 3 mm are preferred.
  • the use of micro-pellets with pulverulent carbon allows a homogeneous mixture.
  • Part of the gases extracted from the first zone, once filtered, can be reintroduced into the first zone. To this end, they can be at least partially led to a heat exchanger to be reheated, then reinjected into the middle of the first zone. This makes it possible to increase the gas flow rate, and to accelerate the extraction of lead oxides and alkali metal salts.
  • the reduced metals which are not volatilized i.e. iron (and this would also be the case for nickel) are extracted from the oven with the rest of the waste (an inert matrix) and possibly an excess of reducing agent , through an outlet. Once cooled, the iron can be sorted by manual or automated methods (eg magnetic sorting).
  • Waste containing metals generally in oxidized form would then be dried on the upper floors of the first zone.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

On présente un procédé pour le traitement pyrométallurgique de déchets, notamment d'origine sidérurgique, dans une première zone comprenant des soles espacées verticalement d'un four multi-étages, dans lequel: (a) les déchets sont introduits sur la sole supérieure de la première zone et graduellement transférés vers les soles inférieures; (b) on crée dans la première zone des conditions propices à la volatilisation de sels de métaux alcalins, en particulier des chlorures de métaux alcalins, et d'oxydes de plomb; (c) on extrait de la première zone les gaz contenant les sels de métaux alcalins, en particulier des chlorures de métaux alcalins, et/ou les oxydes de plomb volatilisés.

Description

Procédé de traitement pyrométallurgique de déchets d'origine sidérurgique
La présente invention concerne un procédé de traitement pyrométallurgique de déchets, notamment d'origine sidérurgique.
Le traitement des déchets est une activité en plein essor, souvent motivée par des intérêts économiques ou écologiques. Il est intéressant de traiter des déchets sidérurgiques, pour obtenir des métaux qui pourront être recyclés dans de nouveaux procédé de fabrication, ou simplement pour extraire des métaux qui présentent un risque pour l'environnement.
La sidérurgie est un secteur qui produit de nombreux déchets métalliques, notamment des poussières provenant de la filtration des gaz sortant des hauts fourneaux et des fours d'aciéries avec des métaux comme le fer (Fe), et des métaux lourds comme le zinc (Zn) et le plomb (Pb) sous une forme oxydée. Ces poussières contiennent en outre des métaux alcalins généralement sous forme de chlorures.
La pureté des métaux obtenus par le traitement de ce type de poussières est souvent entachée par la présence de ces oxydes de plomb et chlorures de métaux alcalins présents initialement dans les déchets, et que l'on retrouve après traitement dans les métaux obtenus.
L'objet de la présente invention est de proposer un procédé de traitement pyrométallurgique de déchets permettant l'extraction de composés indésirables pour le traitements ultérieur des déchets. Conformément à l'invention, cet objectif est atteint par un procédé selon la revendication 1.
Le procédé selon l'invention concerne le traitement pyrométallurgique de déchets, notamment d'origine sidérurgique, dans une première zone comprenant des soles espacées verticalement d'un four multi-étages, dans lequel : (a) les déchets sont introduits sur la sole supérieure de la première zone et graduellement transférés vers les soles inférieures ;
(b) on crée dans la première zone des conditions propices à la volatili- sation de sels de métaux alcalins, en particulier des chlorures de métaux alcalins, et d'oxydes de plomb ;
(c) on extrait de la première zone les gaz contenant les sels de métaux alcalins, en particulier des chlorures de métaux alcalins, et/ou les oxydes de plomb volatilisés.
Le présent procédé met à profit la capacité du four multi-étages à créer des atmosphères particulières par zones et/ou par soles, en fonction d'une réaction que l'on souhaite réaliser. Il sera apprécié que selon la présente invention, il est possible de traiter pyrométallurgiquement des déchets, et d'en extraire au moins partiellement des sels de métaux alcalins, en particulier des chlorures de métaux alcalins, et/ou des oxydes de plomb. Les déchets sont ainsi débarrassés des ces derniers, et peuvent subir des traitements ultérieurs. Les produits, c'est-à-dire les métaux, obtenus par d'éventuels traitements ultérieurs ne seront pas pollués par des sels de métaux alcalins, en particulier des chlorures de métaux alcalins, et/ou des oxydes de plomb. La pureté des métaux obtenus sera ainsi accrue.
Il sera apprécié que le présent procédé permet l'extraction d'oxydes de plomb sous forme gazeuse, notamment le PbO, à une température nettement inférieure que celle utilisée dans le procédé du brevet US 4,673,431. En effet, on a constaté qu'il était possible d'extraire facilement l'oxyde de plomb sous forme gazeuse déjà à une température légèrement supérieure au point de fusion de l'oxyde de plomb. Il n'est donc pas nécessaire de chauffer les déchets à une température d'au moins 1482°C (Tébullition≈ 1475°C) , comme le recommande le document US 4,673,431. Selon un premier mode de réalisation du procédé, à l'étape (b) on porte les déchets à une température jusqu'à 1000°C et de préférence jusqu'à 1100°C de manière à les calciner et à provoquer la volatilisation de sels de métaux alcalins, en particulier des chlorures de métaux alcalins et/ou d'oxydes de plomb. Un tel procédé est particulièrement adapté à l'extraction d'oxydes de plomb (principalement sous forme de PbO) et de sels de métaux alcalins et plus particulièrement le chlorure de sodium (NaCI) et le chlorure de potassium (KCI). Il reste à noter que le plomb dans ce genre de déchets est présent sous diverses formes oxydées comme p.ex. sous forme de PbCIOH, de Pb2(Sθ4)0 etc.
Avantageusement, la première zone fonctionne à contre-courant, et les gaz de contre-courant sont extraits de la première zone au niveau de sa partie supérieure. Dans ce cas, les gaz de contre-courant contiennent les sels de métaux alcalins, en particulier les chlorures de métaux alcalins, et/ou les oxydes de plomb de l'étape (c). Ils sont refroidis et filtrés de manière à séparer ces derniers du restant des gaz. De plus, les gaz filtrés peuvent être réintroduits après traitement dans la première zone, de préférence après avoir été réchauffés. Ceci permet d'augmenter le débit de gaz de la première zone. Pour un métal donné, le débit de métal extrait est proportionnel au débit de gaz. L'utilisation de grandes quantités de gaz permet donc de réduire le temps de séjour des déchets dans la première zone du four multi-étages.
Si les déchets contiennent des dioxines, on peut les brûler dans la première zone en injectant un gaz contenant de l'oxygène.
Selon un autre mode de réalisation, les déchets sojides restant sont transférés après l'étape (c) dans une deuxième zone comportant des soles espacées verticalement, dite « zone de réduction », située en dessous de la première zone, pour y être graduellement transférés vers les soles inférieures, mis en contact avec un réducteur et portés à une température permettant la réduction de métaux. Il est ainsi possible, dans le même four multi-étages, d'extraire tout d'abord, à partir de déchets, des sels de métaux alcalins, en particulier des chlorures de métaux alcalins, et des oxydes de plomb. Puis, on peut procéder à un traitement ultérieur des déchets tel que la réduction des métaux qu'ils contiennent. La température de la réaction permettant la réduction de métaux dans les déchets peut être comprise entre 800 et 1200°C, et est de préférence entre 1000 et 1100°C. Au moins une partie des métaux réduits dans la zone de réduction sont volatilisés à la température de la réaction. Ils seront alors avantageusement extraits de la zone de réduction avec les gaz au niveau des soles sur lesquelles ils sont formés.
Il a été trouvé que dans la zone de réduction, les réactions de réduction se déroulent presque exclusivement à l'intérieur de la couche de solides déposées sur les soles. Les oxydes de certains métaux sont réduits à l'intérieur de la couche de solides, sont ensuite volatilisés sous forme réduite et s'échappent de la couche pour entrer en contact avec l'atmosphère du four. Ces métaux se réoxydent en contact avec l'atmosphère et sont extraits du four sous forme oxydés. De préférence, la zone de réduction fonctionne à co-courant, les gaz étant tous extraits de la zone de réduction au niveau de sa partie inférieure. Ceci permet d'augmenter le débit de gaz dans les étages de haute température de la zone de réduction, où la volatilisation de métaux réduits est plus favorable.
Tous les gaz issus de la zone de réduction du four multi-étages peuvent être traités dans un post-brûleur, refroidis et filtrés. Avantageusement, les métaux volatilisés sont oxydés en phase gazeuse, refroidis pour les condenser en poussières, et filtrés à pour être séparés des gaz.
Il est ainsi possible de réduire des oxydes de zinc contenus dans les déchets. Une fois réduit, le zinc est vaporisé ; puis extrait dans les gaz et oxydé. On remarquera que la pureté des oxydes de zinc récupérés est très satisfaisante. En effet, les déchets ont été débarrassés dans la première zone des oxydes de plomb, des sels de métaux alcalins, en particulier des chlorures de métaux alcalins. Si les déchets n'avaient pas subi le traitement de la première zone, alors les gaz contenant le zinc extraits de la zone de réduction contien- draient également ces oxydes de plomb et sels de métaux alcalins. Les oxydes de zinc récupérés seraient donc pollués par ces derniers.
Au cas où les déchets contiennent des métaux réduits dans la zone de réduction qui ne peuvent être extraits sous forme gazeuse, les déchets restant seront alors avantageusement extraits du four multi-étages après avoir atteint la sole inférieure de la zone de réduction, puis pourront être triés, de manière à séparer les métaux réduits non volatilisés. Parmi les métaux qui ne peuvent être extraits en phase gazeuse, il y a notamment le fer et/ou le nickel.
On utilise en tant que réducteur un réducteur carboné comme du charbon, des produits pétroliers solides ou liquides, des matières synthétiques tels que des matières plastiques, des gommes, des déchets organiques ou leurs mélanges. On peut dans certains cas utiliser des matières plastiques et/ou des gommes contenant du chlore et du soufre.
Les déchets peuvent être séchés sur les soles supérieures du four multi- étages avant d'être introduits dans la première zone. Ceci est intéressant quand les déchets contiennent de grandes quantités d'eau, comme par exemple des boues d'aciéries, ou des boues d'épuration de gaz d'échappement de hauts fourneaux ou de convertisseurs.
Suivant les débits de gaz et les concentrations métaux volatils , le chauffage des soles peut être effectué de manière directe ou indirecte.
De préférence, tous les gaz issus du four multi-étages sont déchlorurés et désulfurés.
Avantageusement, les déchets sont introduits dans la première zone sous forme de pellets.
D'autres particularités et caractéristiques de l'invention ressortiront de la description détaillée d'un mode de réalisation avantageux présenté ci-dessous, à titre d'illustration.
Le présent procédé utilise un four multi-étages pour traiter des déchets d'origine sidérurgique. Ces déchets se présentent souvent sous la forme de boues contenant des oxydes de fer, des oxydes de zinc, des oxydes de plomb, et des sels de métaux alcalins tels que le chlorure de potassium (KCI) et le chlorure de sodium (NaCI). Par oxyde on entend de manière générale forme oxydée : oxyde, hydroxyde...
En particulier, ce procédé a été utilisé pour traiter des déchets en provenance de divers four électriques (fours à arcs). La composition de ces poussières était la suivante:
Figure imgf000007_0001
On utilise un four multi-étages composé de soles annulaires espacées verticalement. Dans ce type de four, des soles de chargement et de déchargement sont disposées alternativement. Les premières possèdent un orifice périphérique, les orifices périphériques de deux soles de chargement consécutives étant diamétralement opposés ; les secondes possèdent une partie circulaire centrale ouverte. Le four est également muni, en sa partie centrale, d'un arbre de rotation vertical auquel sont attachés des râteaux s'étendant sur tout le rayon des soles. Des moyens de chauffage directs tels des brûleurs ou indirects comme p. ex. résistances électriques permettent de chauffer individuellement chaque sole, afin de d'obtenir des températures différentes par zones et/ou par soles. On utilise un four multi-étages comprenant deux zones fonctionnelles : une première zone et une deuxième zone dite zone de réduction, la deuxième zone étant placée sous la première zone.
Les déchets sont introduits en continu sur la première sole de charge- ment, c'est à dire la sole supérieure de la première zone. Les râteaux, entraînés par l'arbre de rotation vertical, étalent les déchets sur la sole de chargement et les ramènent vers l'ouverture périphérique par laquelle ils tombent sur la sole de déchargement située juste en dessous. Les râteaux dirigent ensuite les déchets vers l'orifice central, par lequel ils tombent sur la sole de chargement inférieure. Ainsi, les déchets progressent en descendant les soles de la première zone. Au niveau des soles inférieures de la première zone, il règne une température d'environ 900°C à 1000°C. Cette température est obtenue par des brûleurs qui créent une atmosphère oxydante. Les déchets sont calcinés et les éléments tels que les oxydes de plomb et les sels de métaux alcalins, en particulier les chlorures de métaux alcalins, sont volatilisés et entraînés dans les gaz.
On remarquera que la pression de vapeur saturante des oxydes de plomb et des sels de métaux alcalins, en particulier des chlorures de métaux alcalins, est telle qu'il est possible de les extraire dans les gaz de la zone sans dépasser leur température d'ébullition. D'ailleurs, la température de la première zone est légèrement supérieure à la température de fusion de PbO : 885°C, et est nettement inférieure à sa température d'ébullition : 1475°C.
De préférence, la première zone fonctionne à contre courant. Les gaz dans la première zone montent alors que les déchets descendent. En utilisant de grandes quantités de gaz, on augmente le débit de gaz dans la première zone. Plus le débit de gaz à travers le four est important, plus la quantité de matière extraite par unité de temps est importante. On peut ainsi réduire le temps de séjour des déchets dans la première zone du four. Les gaz de contre-courant sont extraits en dehors de la première zone au niveau des soles supérieures. Ces gaz sont alors refroidis et filtrés de manière à séparer les oxydes de plomb et les sels de métaux alcalins, en particulier les chlorures de métaux alcalins du reste des gaz.
Une fois que les déchets atteignent les soles inférieures de la première zone, ils sont débarrassés des oxydes de plomb et des sels de métaux alcalins, et peuvent faire l'objet de traitement ultérieurs. On remarquera que l'on peut injecter un gaz contenant de l'oxygène, de préférence de 3 à 10% d'O2, afin de brûler les dioxines éventuellement contenues dans les déchets. Dans ce cas, les gaz extraits de la première zone seront avantageusement refroidis très rapidement afin de produire l'effet de « quenching » qui évite la synthèse de dioxines dans les gaz.
Une fois arrivés sur la sole inférieure de la première zone, les déchets sont transférés dans la zone de réduction et chauffés à une température d'environ 1100°C. A cette température, des composés de zinc et de fer, comme les ferrites de zinc ZnFβ2θ4 sont décomposés en ZnO et FexOy. Dans cette zone de réduction on injecte un réducteur, de préférence du charbon de fine granulométrie. Les râteaux, par leur balayage, mélangent intimement les déchets au charbon, provoquant la réduction de métaux. Les oxydes et hy- droxydes de fer sont réduits, et continuent leur progression vers le bas du four multi-étages. Les oxydes ou hydroxydes de Zn sont réduits et le Zn est direc- tement volatilisé. Les gaz de la réduction, contenant les métaux réduits en phase gazeuse, sont extraits du four multi-étages dans la partie inférieure de la zone de réduction, c'est à dire là où ils sont formés. Ils sont ensuite envoyés vers un post-brûleur, dans lequel Zn est oxydé en ZnO, et est refroidi puis filtré pour être séparé du gaz. II est important de noter que la pureté de l'oxyde de zinc récupéré dans les gaz de la zone de réduction est appréciable, car les oxydes de plomb et les sels de métaux alcalins qui auraient également été volatilisés dans la zone de réduction ont déjà été extraits dans la première zone.
Tous les gaz issus du four multi-étages peuvent être conduits à une ins- tallation de traitement pour être refroidis, déchlorurés et désulfurés, et filtrés, avant d'être relâchés.
Avantageusement, les déchets sont chargés dans le four multi-étages sous forme de pellets. On préférera même des micro-pellets, d'un diamètre d'environ 1 à 3 mm. L'utilisation de micro-pellets avec un charbon pulvérulent permet un mélange homogène..
Il est possible d'opérer les première et deuxième zone à co-courant ou contre courant, suivant le type de circulation de gaz que l'on souhaite mettre en oeuvre dans chacune des zones. Par ailleurs, il est également possible d'extraire les gaz contenant les métaux réduits volatilisés ou les gaz contenant les oxydes de plomb et les sels de métaux alcalins au niveau des soles sur lesquelles ils sont formés.
Une partie des gaz extraits de la première zone, une fois filtrés, peuvent être réintroduits dans la première zone. A cet effet, ils peuvent être au moins partiellement conduits vers un échangeur de chaleur pour être réchauffés, puis réinjectés au milieu de la première zone. Ceci permet d'augmenter le débit de gaz, et d'accélérer l'extraction des oxydes de plomb et des sels de métaux alcalins.
Les métaux réduits qui ne sont pas volatilisés, c'est-à-dire le fer (et ce serait également le cas pour le nickel), sont extraits du four avec le reste des déchets (une gangue inerte) et éventuellement un excès de réducteur, par un orifice de sortie. Le fer, une fois refroidi, peut être trié par des méthodes manuelles ou automatisées (par ex. tri magnétique).
On remarquera qu'il est possible d'ajouter dans chacun des procédés précédents une étape destinée au séchage des déchets. Les déchets contenant des métaux généralement sous forme oxydée seraient alors séchés sur les soles supérieures de la première zone .

Claims

Revendications
1. Procédé pour le traitement pyrométallurgique de déchets, notamment d'origine sidérurgique, dans une première zone comprenant des soles espacées verticalement d'un four multi-étages, dans lequel :
(a) les déchets sont introduits sur la sole supérieure de la première zone et graduellement transférés vers les soles inférieures ;
(b) on crée dans la première zone des conditions propices à la volatilisation de sels de métaux alcalins, en particulier des chlorures de métaux alcalins, et d'oxydes de plomb ;
(c) on extrait de la première zone les gaz contenant les sels de métaux alcalins, en particulier des chlorures de métaux alcalins, et/ou les oxydes de plomb volatilisés.
2. Procédé selon la revendication 1 , caractérisé en ce que à l'étape (b) on porte les déchets à une température comprise entre 900°C et 1100°C de manière à les calciner et à provoquer la volatilisation de sels de métaux alcalins, en particulier de chlorures de métaux alcalins tels que KCI et NaCI, et/ou d'oxydes de plomb.
3. Procédé selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que la première zone fonctionne à contre-courant, et en ce que les gaz de contre-courant sont extraits de la première zone au niveau de sa partie supérieure.
4. Procédé selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que la première zone fonctionne à co-courant, et en ce que les gaz de co-courant sont extraits de la première zone au niveau de sa partie inférieure.
5. Procédé selon l'une quelconque des revendication 1 à 4, caractérisé en ce que les gaz contenant les sels de métaux alcalins, en particulier les chlorures de métaux alcalins, et/ou les oxydes de plomb de l'étape (c) sont refroidis et filtrés de manière à séparer ces derniers du restant des gaz.
6. Procédé selon la revendication précédente, caractérisé en ce que les gaz filtrés sont réintroduits dans la première zone après traitement, de préférence après avoir été réchauffés.
7. Procédé selon l'une quelconque des revendications précédentes, caractéri- se en ce que des dioxines contenues dans les déchets sont détruites dans la première zone en injectant un gaz contenant de l'oxygène à haute température.
8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les déchets sont transférés après l'étape (c) dans une deuxième zone comportant des soles espacées verticalement, dite zone de réduction, située en dessous de la première zone, pour y être graduellement transférés vers les soles inférieures, mis en contact avec un réducteur et portés à une température permettant la réduction de métaux contenus dans les déchets.
9. Procédé selon la revendication 8, caractérisé en ce que la température de la réaction permettant la réduction de métaux est comprise entre 800 et 1200°C, et est de préférence entre 1000 et 1100°C.
10. Procédé selon la revendication 8 ou 9, caractérisé en ce qu'au moins une partie des métaux réduits dans la zone de réduction sont volatilisés à la température de la réaction.
11. Procédé selon la revendication 10, caractérisé en ce que les métaux réduits volatilisés sont extraits de la zone de réduction avec les gaz.
12. Procédé selon la revendication 11 , caractérisé en ce que les métaux réduits volatilisés sont extraits de la zone de réduction au niveau des soles sur les- quelles ils sont formés.
13. Procédé selon la revendication 11 , caractérisé en ce que la zone de réduction fonctionne à co-courant, les gaz étant tous extraits de la zone de réduction au niveau de sa partie inférieure.
14. Procédé selon la revendication 11 , caractérisé en ce que la zone de réduc- tion fonctionne à contre-courant, les gaz étant tous extraits de la zone de réduction au niveau de sa partie supérieure.
15. Procédé selon l'une quelconque des revendications 8 à 14, caractérisé en ce que tous les gaz issus de la zone de réduction du four multi-étages sont traités dans un post-brûleur, refroidis et filtrés ; et en ce que les métaux ré- duits volatilisés sont oxydés en phase gazeuse, refroidis pour les condenser en poussières, et filtrés pour être séparés des gaz.
16. Procédé selon l'une quelconque des revendications 10 à 15, caractérisé en ce des métaux réduits dans la zone de réduction ne sont pas volatilisés à la température de la réaction.
17. Procédé selon la revendication 16, caractérisé en ce que le réducteur est du charbon, et les métaux réduits non volatilisés sont Fe et/ou Ni.
18. Procédé selon la revendication 16 ou 17, caractérisé en ce que les déchets sont extraits du four multi-étages après avoir atteint la sole inférieure de la zone de réduction.
19. Procédé selon la revendication 18, caractérisé en ce que les déchets issus de la zone de réduction sont triés après avoir été extraits du four multi- étages, de manière à séparer les métaux réduits non volatilisés.
20. Procédé selon la revendication 18, caractérisé en ce que les métaux réduits issus du four sont séparés par triage magnétique du reste du contenu de la zone de réduction.
21. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les déchets sont séchés dans une zone de séchage comportant des soles espacées verticalement, du four multi-étages, avant d'être introduits sur la sole supérieure de la première zone.
22. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le chauffage des soles est effectué de manière directe ou indirecte.
23. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les déchets sont introduits dans la première zone sous forme de pellets, de préférence des micro-pellets ayant un diamètre de l'ordre de 1 mm.
24. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les tous les gaz issus du four multi-étages sont déchlorurés et désulfurés.
PCT/EP2000/009139 1999-10-05 2000-09-19 Procede de traitement pyrometallurgique de dechets d'origine siderurgique WO2001025495A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU75205/00A AU7520500A (en) 1999-10-05 2000-09-19 Method for pyrometallurgical treatment of waste from iron and steel production

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
LU90454A LU90454B1 (fr) 1999-10-05 1999-10-05 Procede de traitement pyrometallurgique de dechets d'origine siderurgique
LU90454 1999-10-05

Publications (1)

Publication Number Publication Date
WO2001025495A1 true WO2001025495A1 (fr) 2001-04-12

Family

ID=19731839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/009139 WO2001025495A1 (fr) 1999-10-05 2000-09-19 Procede de traitement pyrometallurgique de dechets d'origine siderurgique

Country Status (4)

Country Link
AU (1) AU7520500A (fr)
LU (1) LU90454B1 (fr)
TW (1) TW459050B (fr)
WO (1) WO2001025495A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230340649A1 (en) * 2019-10-11 2023-10-26 Newsouth Innovations Pty Limited Preparation of nickel-based alloys using waste materials

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4046086A (en) * 1976-07-19 1977-09-06 Nichols Engineering & Research Corporation Treatment of waste material containing alkali metals in a controlled atmosphere furnace
US4261268A (en) * 1979-05-21 1981-04-14 Nichols Engineering & Research Corp. Method and apparatus for treating waste material
US5547490A (en) * 1992-03-26 1996-08-20 Sudweststahl Gmbh Method and installation for removing lead and zinc from foundry dust
LU90273B1 (de) * 1998-08-11 2000-02-14 Wurth Paul Sa Verfahren zur thermischen Behandlung schwermetall-und eisenoxidhaltiger Reststoffe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4046086A (en) * 1976-07-19 1977-09-06 Nichols Engineering & Research Corporation Treatment of waste material containing alkali metals in a controlled atmosphere furnace
US4261268A (en) * 1979-05-21 1981-04-14 Nichols Engineering & Research Corp. Method and apparatus for treating waste material
US5547490A (en) * 1992-03-26 1996-08-20 Sudweststahl Gmbh Method and installation for removing lead and zinc from foundry dust
LU90273B1 (de) * 1998-08-11 2000-02-14 Wurth Paul Sa Verfahren zur thermischen Behandlung schwermetall-und eisenoxidhaltiger Reststoffe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230340649A1 (en) * 2019-10-11 2023-10-26 Newsouth Innovations Pty Limited Preparation of nickel-based alloys using waste materials

Also Published As

Publication number Publication date
AU7520500A (en) 2001-05-10
LU90454B1 (fr) 2001-04-09
TW459050B (en) 2001-10-11

Similar Documents

Publication Publication Date Title
TWI402356B (zh) 回收具有高含量鋅及硫酸鹽之殘餘物的方法
JPH0335365B2 (fr)
CA2106014A1 (fr) Procede de recuperation de plomb, provenant notamment de la matiere active de batteries usagees et four electrique destine notamment a mettre en oeuvre le procede
CA1117097A (fr) Methode et dispositif de fabrication du coke actif
EP2066820A1 (fr) Procede de traitement thermique de residus metalliques contamines par des composes organiques et dispositif pour sa mise en oeuvre
WO2001025495A1 (fr) Procede de traitement pyrometallurgique de dechets d'origine siderurgique
RU2218417C2 (ru) Способ термической обработки содержащих тяжелые металлы и оксиды железа отходов
EP1797207B1 (fr) Traitement de boues d'usines sidérurgiques dans un four à étages
FR2534930A1 (fr) Procede de fabrication d'alliages de silicium-aluminium
EP1192288A1 (fr) Procede de traitement pyrometallurgique de dechets contenant des metaux
FR2649191A1 (fr) Unite pour l'obtention du plomb metallique a partir des concentres de plomb sulfures
WO1998048065A1 (fr) Procede de recyclage de dechets de fonderies de laitons
EP0933434A1 (fr) Procédé de réduction d'oxydes de fer et installation à cet effet
EP2584262A1 (fr) Procédé de traitement pyrolytique de résidus organiques et inorganiques en four à étages pour la récuperation de sous-produits valorisables
EP0032412B1 (fr) Procédé amélioré de fabrication de coke métallurgique à partir d'un mélange de charbons
BE1007625A6 (fr) Procede de valorisation des residus ferreux siderurgiques.
WO2013057073A1 (fr) Procede de traitement pyrolytique de résidus organiques et inorganiques en four a etages pour la récupération de sous-produits valorisables
EP0422309A1 (fr) Four à cuve pour la réduction d'oxyde de fer par l'hydrogène en vue de la production de poudre de fer pour frittage
EP4121574A1 (fr) Procédé de récupération dans des ferro-alliages des métaux contenus dans des catalyseurs usés
FR2628119A1 (fr) Procede de traitement de produits sulfures plombiferes par fusion dans une torche d'un gaz contenant de l'oxygene et en presence d'un reducteur carbone
BE344778A (fr)
BE881162A (fr) Procede ameliore de fabrication de coke metallurgique a partir d'un melange de charbons.
RU2205229C2 (ru) Способ прямого получения железа в многоподовой печи
BE1012434A3 (fr) Procede pour produire du fer liquide a partir d'oxydes de fer.
EP0022050A1 (fr) Procédé et installation pour la réduction en continu du minerai de fer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP