WO2001025157A1 - Material for use in denitrification for the purpose of removing nitrate nitrogen and method for preparing the same - Google Patents

Material for use in denitrification for the purpose of removing nitrate nitrogen and method for preparing the same Download PDF

Info

Publication number
WO2001025157A1
WO2001025157A1 PCT/JP2000/006777 JP0006777W WO0125157A1 WO 2001025157 A1 WO2001025157 A1 WO 2001025157A1 JP 0006777 W JP0006777 W JP 0006777W WO 0125157 A1 WO0125157 A1 WO 0125157A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfur
denitrification
nitrate nitrogen
powder
calcium carbonate
Prior art date
Application number
PCT/JP2000/006777
Other languages
French (fr)
Japanese (ja)
Inventor
Tomomichi Gunji
Atsushi Yatagai
Toru Oishi
Original Assignee
Nitchitsu Co., Ltd.
Nippon Steel Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP28207799A external-priority patent/JP4269086B2/en
Priority claimed from JP2000264564A external-priority patent/JP4269087B2/en
Application filed by Nitchitsu Co., Ltd., Nippon Steel Chemical Co., Ltd. filed Critical Nitchitsu Co., Ltd.
Publication of WO2001025157A1 publication Critical patent/WO2001025157A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a material for removing nitrate nitrogen (hereinafter, also referred to as a material for denitrification) for removing nitrate nitrogen such as nitrate ions and nitrite ions by microorganisms, and a method for producing the same.
  • This material for denitrification is used as a substrate for water purification or microbial culture solution.
  • heterotrophic denitrification and autotrophic denitrification are known as techniques for removing nitrate nitrogen from wastewater or environmental water.
  • Heterotrophic denitrification is a method of denitrification using the organic carbon source in methanol-sludge as a hydrogen donor.
  • the heterotrophic denitrification method is problematic in that it is easily affected by decomposition systems other than the target bacterium, and the denitrification efficiency per substrate is low.
  • Autotrophic denitrification is a method of denitrifying mainly sulfur and sulfur compounds as a nutrient source. In this autotrophic denitrification method, bacteria that denitrify using sulfur as a substrate, such as Thiobacillus Denitrificans, are used.
  • denitrification is selectively performed by the action of denitrifying microorganisms that use sulfur (collectively, denitrifying bacteria), the denitrification efficiency per substrate is high. Also, if the product sulfate ion is completely neutralized, it will not be a limiting factor in the water quality environment, and the effect of wastewater on ecosystems outside the reaction system will be small.
  • Japanese Patent Publication No. 62-56798 Japanese Patent Publication No. 63-45274, Japanese Patent Publication No. 60-3876, Japanese Patent Publication No. 3
  • Japanese Patent Publication No. Hei 04-9119 Japanese Patent Laid-Open No. 04-74598
  • Japanese Patent Laid-Open No. 04-151000 Japanese Patent Laid-Open No. 04-197498
  • Japanese Patent Laid-Open No. 06-182393 Has been proposed.
  • This denitrification composition enables efficient denitrification.Also, calcium ions and sulfate ions generated in the denitrification system can be kept approximately neutral in almost equal amounts, It is preferable because the denitrification capacity does not decrease due to the decrease.
  • the denitrification composition is obtained by heating and melting sulfur, mixing it with calcium carbonate powder or other powder raw materials, and rapidly cooling the slurry-like mixed composition. It is disclosed to be manufactured.
  • a composition excellent in strength can be obtained by rapidly cooling and solidifying a material obtained by sufficiently melting and mixing the raw materials, and other powder raw materials can be added to the sulfur matrix.
  • the structure can be uniformly dispersed, and the solidified body can be crushed to form a fractured surface with many microprojections.
  • the present inventors have also proposed a denitrification material which can be in contact with wastewater even at the time of water and can always maintain a high denitrification rate.
  • a composite denitrification material consisting of a mixture of mineral fibers and a denitrification material coexisting with calcium carbonate-containing substances and sulfur.
  • the inclusion of granular rock wool and denitrifying materials ensures water retention and a home for denitrifying bacteria. And stable nitric nitrogen denitrification is realized.
  • the present invention does not require the supply of an essential carbon source for microorganisms, has excellent balance in the system before and after the reaction, and has a stable function with little influence of pH and chemical substances on water bodies.
  • An object of the present invention is to provide a material for denitrification for removing nitrate nitrogen by a microorganism that exerts its effect.
  • Another object of the present invention is to provide a method for producing the above-mentioned denitrification material, which can produce sulfur as a main raw material in powder form by pressure molding.
  • the present invention provides a method for producing a denitrifying material that can efficiently coexist with denitrifying bacteria without killing or pyrolyzing denitrifying bacteria and other micronutrients. Aim.
  • the present invention relates to a method in which a powder containing calcium carbonate and a powder containing sulfur are used as main raw materials, and the mixture is mixed to form a powder mixture. And a method for producing a material for removing nitrate nitrogen. Further, the present invention provides a powder containing 2,000 to 5000 cm 2 Zg of calcium carbonate as a Blaine value and a sulfur-containing powder having an average particle size of 0.01 to 2 mm in a weight ratio of 3 ::!
  • a powder in which denitrifying bacteria are supported on a porous body is mixed with the main raw material as an additive. It is advantageous to use them.
  • the present invention is a material for removing nitrate nitrogen, in which sulfur, mineral fibers or a powder containing mineral fibers and calcium carbonate are integrated.
  • the present invention uses a powder containing sulfur and a powder containing mineral fibers or mineral fibers and calcium carbonate as main raw materials, and melts and mixes them at a temperature equal to or higher than the melting temperature of sulfur.
  • a method for producing a nitrate-nitrogen removing material in the form of a lump or a particle having a predetermined shape or size It is advantageous that these materials for removing nitrate nitrogen contain an additive selected from a cation-exchange-capability retaining substance, a flame retardant, and a microporous substance.
  • mineral fibers mineral fibers such as wool containing calcium are advantageous.
  • Nitrogen-removing materials are selected from materials obtained by the melt-integration method, materials obtained by the press-integration method, and materials with additives added to them. is there.
  • the denitrification material of the present invention is a material for removing nitrate nitrogen such as nitrate ions and nitrite ions.
  • the material for denitrification of the present invention contains calcium carbonate and sulfur as essential components, and, if necessary, a powder having mineral fibers and denitrifying bacteria supported on a porous material; Contains microporous material.
  • the carbon source for denitrifying bacteria synthesis is sufficiently present in the water to be treated and the acidity of the treated water can be separately corrected, the blending of calcium carbonate can be omitted.
  • the blending of calcium carbonate is omitted, it is advantageous to blend mineral fibers containing calcium.
  • This denitrification material is mainly composed of a powder containing calcium carbonate and a powder containing sulfur, which are mixed at a temperature lower than the melting point of sulfur, preferably at room temperature, by powder mixing.
  • a powder mixture is pressed at a temperature lower than the melting point of sulfur, preferably at room temperature.
  • Powders containing calcium carbonate include calcium carbonate, limestone powder, shell powder, shell fossil powder, coral powder, eggshell powder, coral sand powder or crushed material, and other calcareous grains and calcareous fossil powder.
  • One or two or more kinds of materials can be used. In particular, they do not matter in their purity, but they should be low in impurities because they serve as water purification and denitrification materials, but they weigh 70 weight. /. Moderate purity (excluding water) is acceptable.
  • the sulfur-containing powder examples include petroleum desulfurization and coal desulfurization brands, sulfur recovered from exhaust gas desulfurization brands, and natural sulfur. used.
  • the purity of the powder is not limited, but it is preferable that the powder containing sulfur is also free of impurities, but the weight is 70 weight. /. A degree of purity (excluding water) is acceptable.
  • the average particle size of the powder containing calcium carbonate has a Blaine value of 2000 to 5000 cm 2 / g, preferably 2500 to 4000 cm 2 Zg.
  • the average particle size of the sulfur-containing powder is preferably about 0.01 to 2 mm, more preferably about 0.05 to 1.5 mm.
  • a ratio of around 1: 1 is preferable, usually a ratio of 3: 1 to I: 2, preferably 5: 2 to 2: 3, more preferably 6: 5 to 2: 1.
  • the amount of carbonic acid is more than twice the amount of sulfur, the formability is deteriorated, and the denitrification material becomes more easily disintegrated in water. Therefore, it is preferable to limit the amount to at most three times the amount.
  • the material for denitrification according to the present invention which does not require mineral fibers, has a power of mainly using a powder containing calcium carbonate and a powder containing sulfur. Powder supported on the body can be blended.
  • a powder containing calcium carbonate and a powder containing sulfur Powder supported on the body can be blended.
  • the porous material for supporting the denitrifying bacteria inorganic porous materials such as diatomaceous earth, zeolite, pumice, lengah, silica gel, soil and volcanic emissions can be used.
  • clay minerals that swell with water are not suitable for use because they may cause the denitrification material to collapse in water.
  • Carbonaceous porous materials such as activated carbon and rice husk charcoal are also useful, but care must be taken because nitrate nitrogen may increase from unburned matter.
  • the carrier may be immersed in a culture solution of the denitrifying bacteria for several days and then air-dried and pulverized. It is also possible to mix soil containing denitrifying bacteria. In this case, it is advisable to air dry the soil and use a decoration with openings of 75 m. The more the denitrifying bacterial carrier is prepared, the faster the denitrification reaction appears.However, the effect is sufficient until the growth of the bacteria begins.Therefore, the mixing ratio is about 10 wt% of the carbonated sulfur-sulfur mixture. You.
  • the amount of the powder carrying the denitrifying bacteria in the porous body can be added within the range that can be pressed, but the sulfur content is about 1/3 to 2/3 of the whole, preferably 1 / 2 about 2 to 20 weight of the whole. /. Good degree.
  • the denitrification material of the present invention which contains a powder in which a denitrifying bacterium is supported on a porous body, is used for the water quality of a vegetable cultivation plant drainage or industrial wastewater having a low density of denitrifying bacteria, groundwater, etc. Suitable for purification.
  • the above-mentioned denitrification material is mainly composed of powder mainly composed of calcium carbonate and powder mainly composed of sulfur. It is also advantageous to incorporate a small amount of a substance, a substance having a cation exchange capacity, a microporous substance, a flame retardant substance, or the like, preferably 30% by weight or less. As for such compounding substances, those described below can be used.
  • the mixing of the main raw material and the raw material added as required is not particularly limited as long as the raw powder material can be sufficiently mixed.
  • the mixing can be performed using a known powder mixing device.
  • a liquid substance for example, a liquid fertilizer for agriculture, may be used as a nutrient source of the denitrifying bacteria.
  • the liquid substance may be stirred and mixed while being gradually dropped.
  • care must be taken to raise the temperature of the powder raw material.
  • some water such as an aqueous solution may be replenished as described above, but in this case, it is desirable to dry before press molding. However, the presence of a small amount of water is effective in providing a hard molded product.
  • the mixed powder mixture is pressed and hardened.
  • ⁇ Te press molding pressure Nitsu Rere or, 300 ⁇ 900Kg / cm 2 (about 30 ⁇ 90MPa), desired laid (or 400 ⁇ 700KgZ cm 2 (yo when about 40 ⁇ 70MPa) with pressure molding les.
  • the press Batch molding using a flat plate press, continuous molding using a roll briquetter, etc. can be applied to molding. If the molding pressure is low, the service life of the denitrification material is shortened, but an early manifestation of the denitrification effect can be expected. If the molding pressure is high, the effect is delayed, Long life of denitrification material can be expected.
  • the molding pressure when the molding pressure is less than 300 Kgcm2 (about 30 MPa), the denitrification material becomes more disintegratable in water. Conversely, if the molding pressure is 900 KgZ cm 2 (approximately 90 MPa) or more, a phenomenon occurs in which the molded body is destroyed when the pressure is gradually reduced, and the production efficiency is reduced.
  • the temperature is not higher than the melting temperature of sulfur. However, when a denitrifying bacterium is contained, the temperature is not higher than the temperature at which it does not die, for example, not higher than 40 ° C., and preferably not higher than room temperature.
  • the denitrification materials include those that require sulfur and mineral fibers as essential, and those that require sulfur and calcium carbonate powder and mineral fibers, which are integrated so as not to break even in water.
  • sulfur and calcium carbonate used here the same sulfur and calcium carbonate as described above can be used.
  • the mineral fibers for example, one or more of rock wool, glass wool, ceramic wool, and carbon fiber can be used, but preferably they contain calcium and are inexpensive. It is easy-to-granulate, and has a wealth of experience as an agricultural medium. It contains slag wool as well as mouth wool.
  • the water retentivity and granular voids of granular rock wool having a particle size of about 30 to 5 mm not only have a favorable effect on the good growth of microorganisms, but also make it easy to obtain granular materials of an appropriate size. Can be.
  • powdered rock wool provides a favorable effect.
  • the rock wool field As raw materials, steel slag is used in addition to natural rocks.
  • the rock is rich in mineral components such as Mn, Zn, Cu, Mo, Fe, B, etc., and has the effect of being dissolved to activate sulfur-oxidizing bacteria. It also has the effect of summing.
  • Mineral fibers having large voids are suitable for breeding other microorganisms such as ammonia-utilizing bacteria and organic matter-degrading organisms such as protozoa.
  • a cation exchange ability-retaining substance in addition to the above essential components, it is also possible to add a cation exchange ability-retaining substance, a nutrient component, a flame retardant substance, a microporous substance, and the like, if necessary. It is preferable that the content of these components is 30 wt% or less of the whole. It is also desirable that the maximum particle size of the cation-exchange-capability retaining substance, the flame retardant substance, and the microporous substance be 1 mm or less.
  • Examples of the cation-exchange capacity-retaining substance include zeolite powder not crushed, non-swellable to weakly swellable bentonite powder not crushed, acid clay powder and crushed, silica silicate powder not crushed and One or two or more of activated clay powder and crushed material, various types of landslides, tephra, tuff powder and crushed material can be used.
  • Examples of the flame retardant include rock powders such as aluminum hydroxide, magnesium hydroxide, quartzite, granite and andesite, powders containing the surface soil of these rocks, and mineral powders such as feldspar-quartz 'alunite' tourmaline. , Fly ash, bami kiuraito concentrate or fine to fine granules
  • microporous material examples include diatomaceous earth, diatomaceous earth fired particles and powder, minestone powder and crushed material, shirasu, shirasu balloon, perlite, sericite, brick powder, pottery powder, crystal ballite, One or more kinds of charcoal powder, activated carbon powder not yet, coat powder, sepiolite powder, and crushed material can be used.
  • the preferred mixing ratio is 50 to 100 parts by weight of sulfur and 20 to 50 parts by weight of powder containing calcium carbonate, and 5 to 20 parts by weight of mineral fiber as granular wool.
  • cation exchange capacity retention substance the case of adding a flame retarding material or micropores material, Shi desirable to add the total 10 to 30 wt% Rere 0
  • the denitrification material obtained in this way is suitable for water purification related to the removal of nitrate nitrogen, and the mineral fibers work effectively as a habitat for sulfur oxidizing bacteria, and the high denitrification ability is long-term. Is stably expressed over a period of time. Also, a large amount of sulfur-oxidizing bacteria can be carried, facilitating the early start of denitrification.
  • non-binder treated granular rock wool is used for mineral fibers, not only can a granular denitrification material be easily obtained, but also powder generation during crushing can be significantly suppressed.
  • the yield of products with a particle size of 2.5 mm or more can reach 90% or more.
  • the denitrification material of the present invention contains nutrients for sulfur oxidizing bacteria having an action of denitrifying nitrate nitrogen and is consumed when denitrification. It can also be referred to as a microbial activity imparting composition or a nitrate nitrogen denitrifying substrate.
  • nitrate nitrogen means nitrate ion and nitrite ion.
  • the denitrification material of the present invention there is no particular limitation on the shape of the denitrification material of the present invention, but the denitrification material itself is prevented from flowing out in order to increase the contact area with raw water and wastewater to be denitrified. Therefore, it is advantageous to have a certain size and a surface area as large as possible. Therefore, a shape such as a lump, a granule, and a molded product is preferably mentioned.
  • the molded product refers to a product having a certain shape such as a plate shape, a rod shape, and a honeycomb shape.
  • This denitrification material is suitable for water purification of nitrate nitrogen, is excellent in removing high concentration of nitrate nitrogen, and the pH of treated water does not become strongly acidic.
  • the denitrification water treated with the denitrification material of the present invention has a substantially improved neutrality and a high pH because the measured pH is almost neutral. Nitrogen can be reliably denitrified, which can greatly contribute to the improvement of the water environment.
  • the material for denitrification of the present invention can be used for treating wastewater containing nitrate nitrogen.
  • it is used for treatment of agricultural drainage such as factory drainage, city drainage, and farm culvert drainage.
  • the method of use includes a method of putting it in a basket or a net and immersing it in drainage, a method of filling it in a column, and a method of dispersing it in a tank.
  • the method is also advantageous. If the wastewater has a relatively low concentration such as agricultural wastewater, it can be used continuously for several years.
  • FIG. 1 is a graph showing a change in the concentration of nitrate nitrogen in raw water when the materials for denitrification (A) to (F) are used.
  • Fig. 2 is a graph showing the residual nitrate nitrogen in raw water when using the denitrification materials (H) and (I) prepared by changing the molding pressure in batch molding using a hydraulic press. It is.
  • Fig. 3 shows the results of using the denitrification materials (J) and (K) mixed with a carrier for denitrification bacteria and the denitrification material (A) in distilled water with potassium nitrate and phosphorus.
  • 4 is a graph showing the residual rate of nitrate nitrogen in synthetic raw water not containing denitrifying bacteria prepared by dissolving an acid salt.
  • G is an example in which no denitrification material is used.
  • Crystalline limestone powder (2900 cm 2 / g in Blaine value) was used as calcium carbonate, and this was mixed with powdered sulfur (200 mesh) using a high-speed impeller to form a dry compound. It was compression molded at a pressure of 650 KgZ cm 2 to obtain the denitrification materials (A) to (C) of the present invention.
  • the compounding and molding conditions of the prepared dry compound are as follows.
  • a denitrification test was performed using the above denitrification materials (A) to (F).
  • the denitrification materials (A) to (F) were immersed in raw water 5 times in weight ratio to perform a batch test, and a change in the total amount of nitrate ions and nitrite ions was traced.
  • a test (G) that does not use a denitrification material was also performed.
  • Figure 1 shows the results.
  • the nitrogen concentration in the raw water was almost zero in 14 days.
  • the pH after 14 days was 4.5 for (E) and 7.7 for (F).
  • a denitrification test was performed in the same manner as in Example 3 using the above denitrification materials (H) and (I).
  • Figure 2 shows the results.
  • the vertical axis in the figure indicates the residual rate (%) of nitrate nitrogen.
  • the nitrification material (I) having a low molding pressure had almost zero nitrate nitrogen by 10 days after the start of the experiment. It took about 2 weeks to remove nitrate nitrogen in raw water with high-denitrification material (H).
  • Example 5
  • (a) is a field soil (black soil of a leek field in Fukaya, Saitama prefecture).
  • the air-dried 60 mesh sieve is used as a carrier
  • (b) is a zeolite (Okutama Industries: Tamalite (trade name: TZ-0503) was used as a carrier, and these carriers were immersed in the raw water used in Example 3 for 3 days to carry the denitrifying bacteria, then air-dried and pulverized.
  • the mesh material was used as a carrier (a) or (b) for denitrifying bacteria.
  • a denitrification test was performed using the above denitrification materials (J) and (K). In addition, a denitrification test using the denitrification material (A) and a test (G) using no denitrification material were performed.
  • the raw water used in this experiment was distilled water containing 0.51 g ZL and nitric acid. 0.18 g / L of sodium hydrogen oxyhydrate was dissolved to prepare a liquid without denitrifying bacteria (ion nitrate concentration 300 mg ZL, phosphate ion concentration 50 mg / L). This was added so as to be 5 times the weight of the denitrification material, and a change in water quality was tracked as in Example 3.
  • Example 8 The same procedure as in Example 7 was repeated except that 25 parts by weight of calcium carbonate, 75 parts by weight of sulfur, 9 parts by weight of granular wool, 14 parts by weight of zeolite, and 10 parts by weight of aluminum hydroxide were used. A 20 mm denitrification material (N) was obtained.
  • Example 7 37.5 parts by weight of calcium carbonate, 75 parts by weight of sulfur, 9 parts by weight of granular rock wool and 14 parts by weight of zeolite were used in the same manner as in Example 7 for denitrification with a particle size of 5 to 20 mm.
  • the material (O) was obtained.
  • the denitrification material of the present invention which requires the mineral fiber as the essential component, is not limited to underdrainage from agricultural tracts where it is difficult to reduce fertilization; Also, it has excellent effect of removing nitrate nitrogen from wastewater that has been mineralized by primary treatment water of agricultural village wastewater and combined septic tank.
  • the denitrification material of the present invention containing a cation-exchange capacity-retaining substance, a flame retardant substance, a microporous substance, and the like can further enhance these effects and produce a substance during storage. It is possible to suppress the risk of combustion.
  • the denitrification material of the present invention can be made suitable for various types of wastewater by changing its manufacturing method and the type and amount of additives. For example, in the treatment of a plurality of wastewaters such as wastewater without and without denitrifying bacteria, wastewater with high and low nitrate nitrogen concentrations, wastewater with high acidity and low wastewater, the denitrification material of the present invention or By selecting the production method of the present invention, an excellent nitrate nitrogen removal effect can be obtained for any wastewater.
  • the material for denitrification for removing nitrate nitrogen by the microorganism of the present invention has an excellent nitrate nitrogen removal rate because calcium carbonate and sulfur coexist, and it is necessary to supply an essential nutrient source of the microorganism. Instead, the in-system balance before and after the reaction can be kept good, and it can be used directly as a substrate for culturing microorganisms.

Abstract

A material for denitrification which is used in decomposing a nitrate nitrogen in a waste water by sulfur-oxidizing bacteria utilizing sulfur and a carbonate as nutrients and which comprises a composition having sulfur and calcium carbonate particles dispersed therein or a uniform mixture of calcium carbonate particles and sulfur particles; a method for preparing the material for use in denitrification which comprises admixing a powder containing calcium carbonate and having a Blaine's value of 2000 to 5000 cm2/g and a powder containing sulfur and having an average particle diameter of 0.01 to 2 mm in a weight ratio of 3:1 to 1:2, to provide a powdery mixture, and subjecting the powdery mixture to press forming under a pressure of 30 to 90 Mpa; and a material for use in denitrification wherein a powder containing sulfur and calcium carbonate and mineral fibers are formed in one piece.

Description

明 細 書 硝酸態窒素を除去するための脱窒用材料及びその製造方法  Description: Denitrifying material for removing nitrate nitrogen and method for producing the same
(技術分野) (Technical field)
本発明は、 微生物によ り硝酸イオン、 亜硝酸イオンのよ うな硝酸態窒素 を除去するための硝酸態窒素除去用材料 (以下、 脱窒用材料と もいう) 及 びその製造方法に関するものである。 この脱窒用材料は、 水質浄化又は微 生物培養液の基質等と して用いられる。 詳しく は、 農業排水、 園芸排水、 暗渠排水、 養液栽培排液、 畜産排水、 ステンレス製造等の金属加工排水、 合併浄化槽排水、 各種下水処理排水及び地下水 · 湖沼河川海洋等の水圏か ら、 独立栄養性脱窒素細菌等による硝酸性窒素の除去するための脱窒用材 料に関するものである。  The present invention relates to a material for removing nitrate nitrogen (hereinafter, also referred to as a material for denitrification) for removing nitrate nitrogen such as nitrate ions and nitrite ions by microorganisms, and a method for producing the same. . This material for denitrification is used as a substrate for water purification or microbial culture solution. In detail, it is independent from agricultural drainage, horticultural drainage, underdrainage drainage, hydroponics drainage, livestock drainage, metalworking drainage such as stainless steel manufacturing, combined septic tank drainage, various sewage treatment drainage and groundwater, lakes, rivers and oceans It relates to a denitrification material for removing nitrate nitrogen by vegetative denitrification bacteria and the like.
(背景技術) 一般に、 硝酸態窒素分を排水中あるいは環境水中から除去する技術と し ては従属栄養性脱窒法と独立栄養性脱窒法とが知られている。 (Background Art) Generally, heterotrophic denitrification and autotrophic denitrification are known as techniques for removing nitrate nitrogen from wastewater or environmental water.
従属栄養性脱窒法は、 メ タ ノールゃ汚泥中の有機炭素源を水素供与体と して脱窒する方法である。 その従属栄養性脱窒法では、 目的細菌以外の分 解系の影響を受け易く 、 基質当たりの脱窒効率は低いなどの問題がある。 独立栄養性脱窒法は、 主と して硫黄や硫黄化合物を栄養源に脱窒する方 法である。 この独立栄養性脱窒法では、 チォバチルスデニ ト リ フイカンス ( Thiobacillus Denitrificans) などの硫黄を基質と して脱窒素を行う細菌 あるいは硫黄を利用する脱窒微生物(これらを総称して脱窒素細菌という) の作用によ り脱窒が選択的に行われるため、基質当たり の脱窒効率が高い。 また、 生成物である硫酸イオンは完全に中和されていれば水質環境の制限 因子とならず、 排水が反応系外の生態系に与える影響も小さい。 Heterotrophic denitrification is a method of denitrification using the organic carbon source in methanol-sludge as a hydrogen donor. The heterotrophic denitrification method is problematic in that it is easily affected by decomposition systems other than the target bacterium, and the denitrification efficiency per substrate is low. Autotrophic denitrification is a method of denitrifying mainly sulfur and sulfur compounds as a nutrient source. In this autotrophic denitrification method, bacteria that denitrify using sulfur as a substrate, such as Thiobacillus Denitrificans, are used. Alternatively, since denitrification is selectively performed by the action of denitrifying microorganisms that use sulfur (collectively, denitrifying bacteria), the denitrification efficiency per substrate is high. Also, if the product sulfate ion is completely neutralized, it will not be a limiting factor in the water quality environment, and the effect of wastewater on ecosystems outside the reaction system will be small.
チォバチルスデニ ト リ フ ィ カンス (Thiobacillus Denitrificans ) 等を脱 窒素細菌と して使用する場合、例えば、次のよ うな反応式が知られている。  When using Thiobacillus denitrificans or the like as a denitrifying bacterium, for example, the following reaction formula is known.
1. 114 S + N O a ~ + 0.669 H 2 O + 0.337 C〇 2 + 0.0842 H C O 3 " 1.114 S + NO a ~ + 0.669 H 2 O + 0.337 C〇 2 + 0.0842 HCO 3 "
-→ 0.0742 C 5 H 7 N O 2 + 0.5 N 2 + 1. 114 S O 4 2 " + 1.228 H + -→ 0.0742 C 5 H 7 NO 2 + 0.5 N 2 + 1.114 SO 4 2 "+ 1.228 H +
この硫黄や硫黄化合物を用いた独立栄養性脱窒の方法と して、 例えば特 公昭 62— 56798号公報、 特公昭 63— 45274号公報、 特公昭 60— 3876号公 報、特公平 0 1— 3 1958号公報、特公平 04— 9 119号公報、特開平 04— 74598 号公報、 特開平 04— 15 1000 号公報、 特開平 04— 197498 号公報、 特開平 06 - 182393号公報記載の各方法が提案されている。  As methods of autotrophic denitrification using sulfur and sulfur compounds, for example, Japanese Patent Publication No. 62-56798, Japanese Patent Publication No. 63-45274, Japanese Patent Publication No. 60-3876, Japanese Patent Publication No. 3 Each method described in 1958, Japanese Patent Publication No. Hei 04-9119, Japanese Patent Laid-Open No. 04-74598, Japanese Patent Laid-Open No. 04-151000, Japanese Patent Laid-Open No. 04-197498, and Japanese Patent Laid-Open No. 06-182393. Has been proposed.
その硫黄や硫黄化合物を用いて脱窒素細菌を作用させる硝酸態窒素除去 用材料と して、 本発明者らは脱窒素細菌の栄養源である硫黄と菌体合成に 必要な炭素源を同一の組成物内に共存させる脱窒用組成物を先に提案した ( WO 0 0 / 1 8 6 9 4号公報)。  As a material for removing nitrate nitrogen which causes denitrifying bacteria to act using the sulfur and sulfur compounds, the present inventors have identified the same source of sulfur as the nutrient source of denitrifying bacteria and the carbon source necessary for cell synthesis. A composition for denitrification coexisting in the composition has been previously proposed (WO 00/18664).
この脱窒用組成物は、 効率よ く脱窒を行わせるこ とを可能にし、 また、 脱窒系内で生成されるカルシウムイオンと硫酸イオンはほぼ等量で概略中 性を保てるため、 pH 低下による脱窒能の低下は起こ らないと ころから好 ま しい。  This denitrification composition enables efficient denitrification.Also, calcium ions and sulfate ions generated in the denitrification system can be kept approximately neutral in almost equal amounts, It is preferable because the denitrification capacity does not decrease due to the decrease.
それに加えて、 径を大き く することで放置したまま気泡を抜く こ とがで き、 生成した窒素ガスが粒子間に滞留しあるいは窒素ガスが粒全体を覆つ てしま う こ とを抑止できる。 このため、 排水等の脱窒処理を行う際に攪拌 や脱気は不要であり、 特殊な反応槽ゃ脱気槽などがなく ても脱窒反応が停 止するこ とはない。 従って、 無電源でメ ンテナンスフ リーの脱窒処理が可 能となり、 ラ ンニングコス トが殆ど掛らない。 In addition, by increasing the diameter, air bubbles can be removed while standing, and the generated nitrogen gas can be prevented from staying between particles or covering the entire particle with nitrogen gas. . Therefore, when performing denitrification treatment of wastewater, etc. No degassing is required, and the denitrification reaction does not stop without a special reaction tank or degassing tank. Therefore, maintenance-free denitrification can be performed without a power source, and running costs are almost negligible.
その脱窒用組成物は、 硫黄を加熱溶融させて炭酸カルシゥム粉末及び又 はその他の粉体原料と混合し、 ス ラ リ一状となつた混合組成物を急冷 ■ 破 碎することによ り製造するよ う開示されている。  The denitrification composition is obtained by heating and melting sulfur, mixing it with calcium carbonate powder or other powder raw materials, and rapidly cooling the slurry-like mixed composition. It is disclosed to be manufactured.
この硫黄の加熱溶融による製造方法では、 原料を十分に溶融混合したも のを急冷固化するこ とで強度的に優れた組成物となり、 他の粉体原料を硫 黄マ ト リ ク ス中に均一に分散でき、 また、 固化体を破砕するこ とで微小突 起の多い破断面にできることから、脱窒素細菌が定着し易い構造にできる。  In this method of manufacturing by heating and melting sulfur, a composition excellent in strength can be obtained by rapidly cooling and solidifying a material obtained by sufficiently melting and mixing the raw materials, and other powder raw materials can be added to the sulfur matrix. The structure can be uniformly dispersed, and the solidified body can be crushed to form a fractured surface with many microprojections.
しかし、 その硫黄の加熱溶融による製造方法では加熱混練機内で溶解し ている硫黄を再び固化させないよ う、 混合物温度を 1 2 0〜 1 8 0 °Cで維 持しながら攪拌を継続する必要があるため、 脱窒素細菌や微量栄養素を製 造時に添加しょ う と しても、 これらが死滅又は熱分解してしま う こ とによ り 良好に共存させるこ とができない。  However, in the production method by heating and melting the sulfur, it is necessary to continue stirring while maintaining the mixture temperature at 120 to 180 ° C so that the sulfur dissolved in the heating kneader is not solidified again. Therefore, even if denitrifying bacteria and micronutrients are added during production, they cannot coexist satisfactorily due to their death or thermal decomposition.
そして、 脱窒素細菌や微量要素を脱窒用材料に共存させることで、 脱窒 菌密度の低い野菜栽培工場の排水や工業廃水、 含有成分の過不足が著しい 地下水等の水質にも簡単確実に使用できるよ うになる。  By coexisting denitrifying bacteria and trace elements in the material for denitrification, it is easy and reliable to discharge water from vegetable cultivation factories with low density of denitrifying bacteria, industrial wastewater, and groundwater, etc. It can be used.
WO2000/18694号公報の方法において、 本発明者らは渴水時においても 排水との接触が可能で常時高い脱窒率を維持できる脱窒用材料の提案も行 つた。  In the method of WO2000 / 18694, the present inventors have also proposed a denitrification material which can be in contact with wastewater even at the time of water and can always maintain a high denitrification rate.
これは、 炭酸カルシウム含有物質及び硫黄が共存する脱窒用材料と鉱物 繊維との混合物から成る複合脱窒用材料である。 例えば、 粒状ロ ッ ク ウー ルと脱窒用材料を混含するこ とによ り保水性と脱窒菌の住み場が確保され て安定した硝酸性窒素の脱窒が実現する。 This is a composite denitrification material consisting of a mixture of mineral fibers and a denitrification material coexisting with calcium carbonate-containing substances and sulfur. For example, the inclusion of granular rock wool and denitrifying materials ensures water retention and a home for denitrifying bacteria. And stable nitric nitrogen denitrification is realized.
そこで、 本発明は、 微生物の必須炭素源の供給が必要と されず、 反応前 - 反応後の系内のバラ ンスに優れ、 しかも水域への pH や化学物質の影響も 少なく 、 安定した機能を発揮する微生物による硝酸態窒素を除去するため の脱窒用材料を提供することを目的とする。  Therefore, the present invention does not require the supply of an essential carbon source for microorganisms, has excellent balance in the system before and after the reaction, and has a stable function with little influence of pH and chemical substances on water bodies. An object of the present invention is to provide a material for denitrification for removing nitrate nitrogen by a microorganism that exerts its effect.
また、 本発明は、 主原料である硫黄を粉体のまま加圧成型によ り製造で きる前記脱窒用材料の製造方法を提供することを目的とする。  Another object of the present invention is to provide a method for producing the above-mentioned denitrification material, which can produce sulfur as a main raw material in powder form by pressure molding.
それと共に、 本発明は脱窒素菌体やその他の微量栄養素を死滅又は熱分 解させるこ となく 、 特に、 脱窒素菌体を効率よく共存させられる脱窒用材 料の製造方法を提供することを目的とする。  At the same time, the present invention provides a method for producing a denitrifying material that can efficiently coexist with denitrifying bacteria without killing or pyrolyzing denitrifying bacteria and other micronutrients. Aim.
更に、 本発明の目的は、 水分や懸濁液を適量保持するこ とのできる脱窒 用材料を提供することにある。 '  It is a further object of the present invention to provide a denitrifying material capable of holding an appropriate amount of water or suspension. '
(発明の開示) 本発明は、 炭酸カルシウムを含有する粉体と、 硫黄を含有する粉体とを 主原料と し、 それを混合して、 粉体混合物と し、 この混合物をプレス成形 するこ とを特徴とする硝酸態窒素除去用材料の製造方法である。 また、 本 発明は、 ブレーン値で 2000〜5000cm2Z gの炭酸カルシウムを含有する粉 体と、平均粒径 0. 0 1〜2mmの硫黄を含有する粉体とを重量比 3 : :! 〜 1 : 2 の割合で混合して、粉体混合物と し、 この混合物を成形圧力 300〜900Kg Zcm2 (約 30〜90MPa) でプレス成形する硝酸態窒素除去用材料の製造方 法である。 上記硝酸態窒素除去用用材料の製造の際、 前記主原料の他に、 脱窒素細菌を多孔質体に担持させた粉体を、 添加材と して主原料に混合し て使用することが有利である。 (Disclosure of the Invention) The present invention relates to a method in which a powder containing calcium carbonate and a powder containing sulfur are used as main raw materials, and the mixture is mixed to form a powder mixture. And a method for producing a material for removing nitrate nitrogen. Further, the present invention provides a powder containing 2,000 to 5000 cm 2 Zg of calcium carbonate as a Blaine value and a sulfur-containing powder having an average particle size of 0.01 to 2 mm in a weight ratio of 3 ::! This is a method for producing a nitrate-nitrogen-removing material in which a powder mixture is mixed at a ratio of 1: 2 to form a powder mixture, and the mixture is press-molded at a molding pressure of 300 to 900 kg Zcm 2 (about 30 to 90 MPa). In the production of the nitrate-nitrogen-removing material, in addition to the main raw material, a powder in which denitrifying bacteria are supported on a porous body is mixed with the main raw material as an additive. It is advantageous to use them.
また、 本発明は、 硫黄と、 鉱物繊維又は鉱物繊維と炭酸カルシウムを含 有する粉体とが一体化した硝酸態窒素除去用材料である。  Further, the present invention is a material for removing nitrate nitrogen, in which sulfur, mineral fibers or a powder containing mineral fibers and calcium carbonate are integrated.
また、 本発明は、 硫黄を含有する粉体と、 鉱物繊維又は鉱物繊維と炭酸 カルシウムを含有する粉体とを主原料と し、 それを硫黄の溶融温度以上で 溶融混合し、 これを冷却し、 所定の形状又は大きさの塊又は粒子とする硝 酸態窒素除去用材料の製造方法である。 これらの硝酸態窒素除去用材料に は、 陽イオン交換能保持物質、 難燃剤及び微細孔隙物質から選ばれる添加 材を含有させるこ とが有利である。 また、 鉱物繊維と してはカルシウム分 を含む口 ック ウール等の鉱物繊維が有利である。  In addition, the present invention uses a powder containing sulfur and a powder containing mineral fibers or mineral fibers and calcium carbonate as main raw materials, and melts and mixes them at a temperature equal to or higher than the melting temperature of sulfur. A method for producing a nitrate-nitrogen removing material in the form of a lump or a particle having a predetermined shape or size. It is advantageous that these materials for removing nitrate nitrogen contain an additive selected from a cation-exchange-capability retaining substance, a flame retardant, and a microporous substance. As mineral fibers, mineral fibers such as wool containing calcium are advantageous.
また、 本発明は、 脱窒素細菌の存在しない排水と、 存在する排水を含む 複数の排水の処理に当たり 、 炭酸カルシウムを含有する粉体と硫黄又はこ れら と鉱物繊維を一体化してなる硝酸態窒素除去用材料と して、 溶融一体 化法で得られた材料とプレス一体化法で得られた材料及びこれらに添加材 が配合された材料から選択する硝酸態窒素除去用材料の使用方法である。 本発明の脱窒用材料は、 硝酸イオン、 亜硝酸イ オンのよ う な硝酸態窒素 除去用材料である。 本発明の脱窒用材料は、 炭酸カルシウム及び硫黄とを 必須成分と して含有し、 必要に応じて鉱物繊維、 脱窒素細菌を多孔質体に 担持させた粉体、 陽イオン交換能保持物質、 微細孔隙物質を含有する。 但 し、 脱窒菌体合成に係る炭素源が被処理水中に十分存在し、 且つ処理水の 酸度矯正を別途行える場合には、 炭酸カルシウムの配合を省略するこ とが できる。 しかし、 炭酸カルシウムの配合を省略する場合は、 カルシウム分 を含有する鉱物繊維を配合することが有利である。  Further, in the present invention, in treating wastewater free of denitrifying bacteria and a plurality of wastewaters including the existing wastewater, a nitrate state obtained by integrating calcium carbonate-containing powder with sulfur or a mineral fiber with sulfur or the same. Nitrogen-removing materials are selected from materials obtained by the melt-integration method, materials obtained by the press-integration method, and materials with additives added to them. is there. The denitrification material of the present invention is a material for removing nitrate nitrogen such as nitrate ions and nitrite ions. The material for denitrification of the present invention contains calcium carbonate and sulfur as essential components, and, if necessary, a powder having mineral fibers and denitrifying bacteria supported on a porous material; Contains microporous material. However, if the carbon source for denitrifying bacteria synthesis is sufficiently present in the water to be treated and the acidity of the treated water can be separately corrected, the blending of calcium carbonate can be omitted. However, when the blending of calcium carbonate is omitted, it is advantageous to blend mineral fibers containing calcium.
まず、 鉱物繊維を必須と しない本発明に係る脱窒用材料の製造方法につ いて説明する。 この脱窒用材料は、 炭酸カルシウムを含有する粉体と、 硫 黄を含有する粉体とを主原料と し、 これを硫黄の融点以下、 好ま しく は常 温下で粉体混合によ り、 粉体混合物と し、 これを硫黄の融点以下、 好ま し く は常温下でプレス成形する方法である。 First, a method for producing a denitrification material according to the present invention, which does not require mineral fibers, is described. Will be described. This denitrification material is mainly composed of a powder containing calcium carbonate and a powder containing sulfur, which are mixed at a temperature lower than the melting point of sulfur, preferably at room temperature, by powder mixing. In this method, a powder mixture is pressed at a temperature lower than the melting point of sulfur, preferably at room temperature.
炭酸カルシウムを含有する粉体と しては、炭酸カルシウム、石灰石粉末、 貝殻粉末、 貝化石粉末、 サンゴ粉末、 卵殻粉末、 コーラルサン ド粉末又は 破砕物、 その他の石灰質穀ゃ石灰質化石の粉末及び破砕物などの 1種又は 2 種以上を用いることができる。 特に、 これらの純度は問わないが、 水質 浄化脱窒材と して供するため、 不純物は少ないものがよいが、 70重量。 /。程 度の純度 (水分を除く) でも差し支えない。  Powders containing calcium carbonate include calcium carbonate, limestone powder, shell powder, shell fossil powder, coral powder, eggshell powder, coral sand powder or crushed material, and other calcareous grains and calcareous fossil powder. One or two or more kinds of materials can be used. In particular, they do not matter in their purity, but they should be low in impurities because they serve as water purification and denitrification materials, but they weigh 70 weight. /. Moderate purity (excluding water) is acceptable.
硫黄を含有する粉体と しては、 例えば石油脱硫や石炭脱硫ブラン トゃ排 ガス脱硫ブラン トの回収硫黄や天然硫黄などを用いることができ、 その形 態は粉末、 粒状等の固体硫黄が使用される。 特に、 これらの純度は問わな いが、 硫黄を含有する粉体と しても同様に不純物を含まないものが好ま し いが、 70重量。/。程度の純度 (水分を除く) でも差し支えない。  Examples of the sulfur-containing powder include petroleum desulfurization and coal desulfurization brands, sulfur recovered from exhaust gas desulfurization brands, and natural sulfur. used. In particular, the purity of the powder is not limited, but it is preferable that the powder containing sulfur is also free of impurities, but the weight is 70 weight. /. A degree of purity (excluding water) is acceptable.
炭酸カルシウムを含有する粉体の平均の粒子の大き さは、 ブレーン値で 2000〜 5000cm2/ g、好ま しく は 2500〜 4000cm2Z gのものがよい。 また、 硫黄含有する粉体の平均の粒子の大き さは、 粒径 0.0 1〜2mm、 好ま しく は 0.05〜1.5 mm程度のものが好ま しレ、。 The average particle size of the powder containing calcium carbonate has a Blaine value of 2000 to 5000 cm 2 / g, preferably 2500 to 4000 cm 2 Zg. In addition, the average particle size of the sulfur-containing powder is preferably about 0.01 to 2 mm, more preferably about 0.05 to 1.5 mm.
双方と も、 粒径が粗すぎる と成形体と したときの強度が落ち、 逆に細か いと加圧成形中に空気が抜けにく く 、 徐圧される と同時に成形体が破壊さ れるこ とから製品歩留ま り が悪く なる。 また、 双方の粒度の差が大きいと 成形体中に均一に分散させることが困難になる。  In both cases, if the particle size is too coarse, the strength of the molded body will be reduced, and if it is too small, air will not easily escape during pressure molding, and the molded body will be destroyed at the same time as the pressure is reduced. The product yield is worse. In addition, if the difference between the two particle sizes is large, it is difficult to uniformly disperse the particles in the molded product.
炭酸カルシウムと硫黄は脱窒反応によ り ほぼ等量が消費されるため、 重 量比で 1 : 1近辺が好ま しく 、 通常 3 : 1 〜: I : 2、 好ま しく は 5 : 2〜 2 : 3、 よ り好ま しく は 6 : 5〜 2 : 1 の範囲で混合すればよいが、 被処理水 の pHや共存させる添加物等の影響を勘案し、 処理中の反応槽内水及び処 理後の排水が概略中性に保てるよ う混合するのが望ま しい。 但し、 炭酸力 ルシゥムが硫黄の 2倍量を超える配合は成形性が悪く なり 、 脱窒用材料の 水中崩壊性が大き く なるので多く とも 3倍量以下にと どめることがよい。 鉱物繊維を必須と しない本発明に係る脱窒用材料は、 炭酸カルシウムを 含有する粉体と、硫黄を含有する粉体とを主原料とする力 主原料の他に、 脱窒素細菌を多孔質体に担持した粉体を配合するこ とができる。 脱窒素細 菌を担持させるための多孔質体と しては、 珪藻土、 ゼォライ ト、 軽石、 レ ンガ、 シリ カゲルなどの無機多孔質体や土壌や火山放出物を用いるこ とが できる。 但し、 含水膨潤するよ うな粘土鉱物等は脱窒用材料の水中での崩 壊を招く恐れがあるから使用に適さない。 また、 活性炭、 籾がらく ん炭な どの炭質多孔体も有用であるが、 未焼分から硝酸態窒素が増加するこ と も あるので注意を要する。 Calcium carbonate and sulfur are almost equally consumed by the denitrification reaction. A ratio of around 1: 1 is preferable, usually a ratio of 3: 1 to I: 2, preferably 5: 2 to 2: 3, more preferably 6: 5 to 2: 1. Although it is good, it is desirable to consider the effects of the pH of the water to be treated and the coexisting additives, etc., and to mix them so that the water in the reaction tank during the treatment and the wastewater after the treatment can be kept approximately neutral. However, if the amount of carbonic acid is more than twice the amount of sulfur, the formability is deteriorated, and the denitrification material becomes more easily disintegrated in water. Therefore, it is preferable to limit the amount to at most three times the amount. The material for denitrification according to the present invention, which does not require mineral fibers, has a power of mainly using a powder containing calcium carbonate and a powder containing sulfur. Powder supported on the body can be blended. As the porous material for supporting the denitrifying bacteria, inorganic porous materials such as diatomaceous earth, zeolite, pumice, lengah, silica gel, soil and volcanic emissions can be used. However, clay minerals that swell with water are not suitable for use because they may cause the denitrification material to collapse in water. Carbonaceous porous materials such as activated carbon and rice husk charcoal are also useful, but care must be taken because nitrate nitrogen may increase from unburned matter.
脱窒素細菌を担持体に担持させるには、 担持体を脱窒素細菌の培養液に 数日浸漬した後、 風乾 ' 粉砕すればよい。 また、 脱窒素細菌を含む土壌を 混合するこ と もでき、 この場合には土壌を風乾し、 目開き 75 mの飾下を 用いる と よい。 脱窒素細菌担持体を多く調合する程、 脱窒反応は早く発現 するが、 効果は菌の増殖が始まるまででよいため、 配合比と しては炭酸力 ルシゥム - 硫黄混合物の 10wt%程度で足り る。脱窒素細菌を多孔質体に担 持した粉体の配合量は、 加圧成形可能な範囲で加えるこ とができるが、 硫 黄が全体の 1/3〜2/3程度、 好ま しく は 1/2程度となるよ う にすることがよ く 、 全体の 2〜20重量。/。程度がよい。 脱窒素細菌を多孔質体に担持した粉体を配合した本発明の脱窒用材料は、 脱窒菌密度の低い野菜栽培工場排水や工業廃水、 含有成分の過不足が著し い地下水等の水質浄化に適する。 In order to carry the denitrifying bacteria on the carrier, the carrier may be immersed in a culture solution of the denitrifying bacteria for several days and then air-dried and pulverized. It is also possible to mix soil containing denitrifying bacteria. In this case, it is advisable to air dry the soil and use a decoration with openings of 75 m. The more the denitrifying bacterial carrier is prepared, the faster the denitrification reaction appears.However, the effect is sufficient until the growth of the bacteria begins.Therefore, the mixing ratio is about 10 wt% of the carbonated sulfur-sulfur mixture. You. The amount of the powder carrying the denitrifying bacteria in the porous body can be added within the range that can be pressed, but the sulfur content is about 1/3 to 2/3 of the whole, preferably 1 / 2 about 2 to 20 weight of the whole. /. Good degree. The denitrification material of the present invention, which contains a powder in which a denitrifying bacterium is supported on a porous body, is used for the water quality of a vegetable cultivation plant drainage or industrial wastewater having a low density of denitrifying bacteria, groundwater, etc. Suitable for purification.
上記脱窒用材料は、 炭酸カルシウムを主成分とする粉体と、 硫黄を主成 分とする粉体とを主原料とするが、 必要によ り硫黄以外で、 脱窒素細菌の 栄養源となる物質や、 陽イオン交換能保持物質、 微細孔物質、 難燃化物質 等を少量、 好ま しく は全体の 30 重量%以下配合するこ と も有利である。 かかる配合物質については、 後記するものが使用できる。  The above-mentioned denitrification material is mainly composed of powder mainly composed of calcium carbonate and powder mainly composed of sulfur. It is also advantageous to incorporate a small amount of a substance, a substance having a cation exchange capacity, a microporous substance, a flame retardant substance, or the like, preferably 30% by weight or less. As for such compounding substances, those described below can be used.
次に、 上記脱窒用材料の製造法について説明する。 前記主原料と必要に よ り加えられる原料の混合については、 粉未原料を十分に混合できるもの であれば、 格別の制限はなく 、 例えば、 既知の粉体混合機器を用いて行う ことができる。 脱窒素細菌の栄養源となる物質と しては液状の物質、 例え ば農業用の液肥などを用い得るが、 この場合は、 液状の物質を徐々に滴下 しながら攪拌混合するこ と もよい。 但し、 高速攪拌翼で混合する ミ キサー の場合には粉体原料の温度上昇に注意を要する。  Next, a method for producing the above-mentioned denitrification material will be described. The mixing of the main raw material and the raw material added as required is not particularly limited as long as the raw powder material can be sufficiently mixed. For example, the mixing can be performed using a known powder mixing device. . A liquid substance, for example, a liquid fertilizer for agriculture, may be used as a nutrient source of the denitrifying bacteria. In this case, the liquid substance may be stirred and mixed while being gradually dropped. However, in the case of a mixer mixed with a high-speed stirring blade, care must be taken to raise the temperature of the powder raw material.
粉体の混合の際には上記のよ う に水溶液等の多少の水分が補給されても よいが、 この場合はプレス成形する前に乾燥することが望ま しい。 しかし ながら、 少量の水分の存在は硬い成形物を与えることに有効である。  When mixing the powder, some water such as an aqueous solution may be replenished as described above, but in this case, it is desirable to dry before press molding. However, the presence of a small amount of water is effective in providing a hard molded product.
混合された粉体混合物は、 プレス成形して固める。 プレス成形圧力につ レヽて ίま、 300 ~ 900Kg/ cm2 (約 30〜90MPa)、 望ま しく (ま 400〜 700KgZ cm2 (約 40〜70MPa) で加圧成形する と よレ、。 このプレス成形には、 平板 プレスによる回分成形、 ロールブリ ケッターによる連続成形等が適用でき る。 その成形圧力が低いと、 脱窒用材料の寿命は短く なるが、 脱窒効果の 早期発現が見込める。 一方、成形圧力が高いと、効果発現は遅れるものの、 脱窒用材料の長寿命が期待できる。 The mixed powder mixture is pressed and hardened. Ί Te press molding pressure Nitsu Rere or, 300 ~ 900Kg / cm 2 (about 30~90MPa), desired laid (or 400~ 700KgZ cm 2 (yo when about 40~70MPa) with pressure molding les. The press Batch molding using a flat plate press, continuous molding using a roll briquetter, etc. can be applied to molding.If the molding pressure is low, the service life of the denitrification material is shortened, but an early manifestation of the denitrification effect can be expected. If the molding pressure is high, the effect is delayed, Long life of denitrification material can be expected.
例えば、 その成形圧力が 300 Kg cm2 (約 30MPa) 以下では、 脱窒用 材料の水中崩壊性が大き く なる。 逆に、 成形圧力が 900 KgZ cm2 (約 90MPa) 以上では、 成形体が徐圧時に破壊されてしま う現象が生じ、 生産 効率が低下する。 また、 温度は硫黄の溶融温度以下であるが、 脱窒素細菌 を含有させる場合は、 それが死滅しない温度以下、 例えば 40°C以下、 好ま しく は常温以下に保持する。 For example, when the molding pressure is less than 300 Kgcm2 (about 30 MPa), the denitrification material becomes more disintegratable in water. Conversely, if the molding pressure is 900 KgZ cm 2 (approximately 90 MPa) or more, a phenomenon occurs in which the molded body is destroyed when the pressure is gradually reduced, and the production efficiency is reduced. The temperature is not higher than the melting temperature of sulfur. However, when a denitrifying bacterium is contained, the temperature is not higher than the temperature at which it does not die, for example, not higher than 40 ° C., and preferably not higher than room temperature.
プレス成形による成形体の形状は粒状物、 板状物等制限はないが、 表面 積を高めるため、 粒状に成形することが有利であるが、 板状に成形し、 こ れを割って粒状の破片とすること も可能である。  There is no limitation on the shape of the compact formed by press molding, such as granules and plates.However, it is advantageous to form the granules to increase the surface area. Debris can also be used.
次に、鉱物繊維を必須とする本発明に係る脱窒用材料について説明する。 この脱窒用材料は、 硫黄と鉱物繊維を必須とするものと、 硫黄と炭酸カル シゥムの粉末と鉱物繊維を必須とするものがあり 、 これらは水中でも壊れ ないよ うに一体化されている。  Next, the denitrification material according to the present invention, which requires mineral fibers, will be described. The denitrification materials include those that require sulfur and mineral fibers as essential, and those that require sulfur and calcium carbonate powder and mineral fibers, which are integrated so as not to break even in water.
ここで使用する硫黄及び炭酸カルシウムと しては、 前記と同じ硫黄及び 炭酸カルシウムを使用するこ とができる。  As the sulfur and calcium carbonate used here, the same sulfur and calcium carbonate as described above can be used.
鉱物繊維と しては、 例えばロ ック ウール、 グラスウール、 セラ ミ ツク ウ ール、 炭素繊維などの 1種又は 2種以上を用いることができるが、 好ま し く はカルシウム分を含有し、 安価で粒状加工しやすく農業用培地と しての 実績も豊富な口 ック ウール (口 ック ウールだけでなく これと同等のスラグ ウールを含む) である。 特に、 粒径 30〜5mm 程度の粒状ロ ック ウールの 保水性と粒內空隙は、微生物の良好な活動増殖に好ま しい効果を与える他、 適当な大き さの粒状物を容易に得るこ とができる。 また、 ロ ッ ク ウールを 粉砕した粉末であっても好ま しい効果を与える。 なお、 ロ ッ ク ウールの原 料と しては、 天然岩石の他、 鉄鋼スラグが多く用いられている。 ロ ック ゥ ールは、 Mn、 Zn、 Cu、 Mo、 Fe、 B 等のミネラル成分に富み、 これが溶 出して硫黄酸化細菌を活性化する効果がある他、 炭酸カルシウム と同様に 酸性を中和する作用をも有する。 また、 大きな空隙を有する鉱物繊維は、 その空隙がアンモニア資化菌、 原生動物等の有機物分解生物など他の微生 物を繁殖させるのに好適である。 As the mineral fibers, for example, one or more of rock wool, glass wool, ceramic wool, and carbon fiber can be used, but preferably they contain calcium and are inexpensive. It is easy-to-granulate, and has a wealth of experience as an agricultural medium. It contains slag wool as well as mouth wool. In particular, the water retentivity and granular voids of granular rock wool having a particle size of about 30 to 5 mm not only have a favorable effect on the good growth of microorganisms, but also make it easy to obtain granular materials of an appropriate size. Can be. Also, powdered rock wool provides a favorable effect. The rock wool field As raw materials, steel slag is used in addition to natural rocks. The rock is rich in mineral components such as Mn, Zn, Cu, Mo, Fe, B, etc., and has the effect of being dissolved to activate sulfur-oxidizing bacteria. It also has the effect of summing. Mineral fibers having large voids are suitable for breeding other microorganisms such as ammonia-utilizing bacteria and organic matter-degrading organisms such as protozoa.
前記必須成分の他に、必要に応じて陽イオン交換能保持物質、栄養成分、 難燃化物質、 微細孔隙物質等を配合すること も可能である。 これらの配合 量は全体の 30wt%以下であるこ とが好ま しい。 陽イオン交換能保持物質、 難燃化物質、 微細孔隙物質についても最大粒径が 1mm 以下であるこ とが 望ましい。  In addition to the above essential components, it is also possible to add a cation exchange ability-retaining substance, a nutrient component, a flame retardant substance, a microporous substance, and the like, if necessary. It is preferable that the content of these components is 30 wt% or less of the whole. It is also desirable that the maximum particle size of the cation-exchange-capability retaining substance, the flame retardant substance, and the microporous substance be 1 mm or less.
陽ィオン交換能保持物質と しては、 例えばゼォライ ト粉未及び破砕物、 非膨潤性〜弱膨潤性ベン トナイ ト粉未及び破砕物、 酸性白土粉末及び破砕 物、 珪酸白土粉未及び破砕物、 活性白土粉末及び破砕物、 各種土壊、 テフ ラ、凝灰岩粉末及び破砕物などの 1種又は 2種以上を用いるこ とができる。 難燃化物質と しては、例えば水酸化アルミニウム、水酸化マグネシウム、 珪岩、 花崗岩 ·安山岩等の岩石粉末、 それら岩石の表土を含む粉末、 長石 - 石英 ' 明ばん石 ' 電気石等の鉱物粉末、 フライアッシュ、 バーミ キユラィ ト精鉱微粒〜細粒などの 1種又は 2種以上を用いることができる  Examples of the cation-exchange capacity-retaining substance include zeolite powder not crushed, non-swellable to weakly swellable bentonite powder not crushed, acid clay powder and crushed, silica silicate powder not crushed and One or two or more of activated clay powder and crushed material, various types of landslides, tephra, tuff powder and crushed material can be used. Examples of the flame retardant include rock powders such as aluminum hydroxide, magnesium hydroxide, quartzite, granite and andesite, powders containing the surface soil of these rocks, and mineral powders such as feldspar-quartz 'alunite' tourmaline. , Fly ash, bami kiuraito concentrate or fine to fine granules
微細孔隙物質と しては、 例えば珪藻土、 珪藻土焼成物微粒〜粉末、 坑火 石粉末及び破砕物、 シラス、 シラスバルーン、 パーライ ト、 セ リサイ ト、 レンガ粉末、 陶器粉末、 ク リ ス トバライ ト、 炭類粉末、 活性炭粉未、 コ ー タ ス粉末、 セピオライ ト粉末及び破砕物などの 1種又は 2種以上を用いる ことができる。 これらの好ま しい混合割合は、 炭酸カルシウムを含有する粉体 20〜50 重量部に対し、 硫黄 50〜: 100重量部、 鉱物繊維は粒状口 ック ウールと して 5〜20 重量部が好ま しく 、 陽イオン交換能保持物質、 難燃化物質又は微細 孔隙物質を添加する場合は、 全体の 10〜30 重量%添加することが望ま し レヽ 0 Examples of the microporous material include diatomaceous earth, diatomaceous earth fired particles and powder, minestone powder and crushed material, shirasu, shirasu balloon, perlite, sericite, brick powder, pottery powder, crystal ballite, One or more kinds of charcoal powder, activated carbon powder not yet, coat powder, sepiolite powder, and crushed material can be used. The preferred mixing ratio is 50 to 100 parts by weight of sulfur and 20 to 50 parts by weight of powder containing calcium carbonate, and 5 to 20 parts by weight of mineral fiber as granular wool. , cation exchange capacity retention substance, the case of adding a flame retarding material or micropores material, Shi desirable to add the total 10 to 30 wt% Rere 0
この範囲の混含割合にないと、鉱物繊維と一体化した組成物が得られず、 繊維の中心部分が未処理の状態となったり 、 組成物が緻密になりすぎ鉱物 繊維を用いる意義が失われてしま う。  If the content is not within this range, a composition integrated with the mineral fiber cannot be obtained, and the central portion of the fiber becomes untreated, or the composition becomes too dense and the significance of using mineral fiber is lost. I will.
次に、 鉱物繊維を必須とする本発明に係る脱窒用材料の製造方法につい て説明する。 上記のよ う なプレス成形も場合によっては可能であるが、 一 定量以上の鉱物繊維が含まれる とプレス成形で得られたものは水中で崩壊 しゃすいものとなるので、 硫黄を溶融させ、 それに鉱物繊維や炭酸カルシ ゥムを含有する紛体やその他の成分を配合し、 含浸又は混合させ、 これを 水冷、 固化し、 破砕するこ となどによ り得る方法が好適である。  Next, a method for producing a denitrification material according to the present invention, which requires mineral fibers, will be described. Press forming as described above is possible in some cases, but if a certain amount or more of mineral fiber is contained, the product obtained by press forming will collapse in water and become slushy. A method is preferred in which a powder or other component containing mineral fiber or calcium carbonate is blended, impregnated or mixed, and then cooled with water, solidified, or crushed.
このよ う にして得られる脱窒用材料は、 硝酸性窒素の除去に係る水質浄 化に適し、 しかも鉱物繊維が硫黄酸化細菌の住み場と して有効に働き、 高 ぃ脱窒能が長期に亘り安定して発現される。 また、 硫黄酸化細菌を多量に 担持させること もでき、 脱窒の早期開始を容易にする。  The denitrification material obtained in this way is suitable for water purification related to the removal of nitrate nitrogen, and the mineral fibers work effectively as a habitat for sulfur oxidizing bacteria, and the high denitrification ability is long-term. Is stably expressed over a period of time. Also, a large amount of sulfur-oxidizing bacteria can be carried, facilitating the early start of denitrification.
更に、 鉱物繊維に非バイ ンダー処理の粒状ロ ック ウールを用いれば、 容 易に粒状の脱窒用材料が得られるばかりでなく 、 破砕時の粉末発生を大幅 に抑制するこ とができ、 2.5mm 以上の粒度の製品の収率は 90 %以上に達 すること もできる。  Further, if non-binder treated granular rock wool is used for mineral fibers, not only can a granular denitrification material be easily obtained, but also powder generation during crushing can be significantly suppressed. The yield of products with a particle size of 2.5 mm or more can reach 90% or more.
本発明の脱窒用材料は、 硝酸性窒素を脱窒する作用を有する硫黄酸化細 菌に対する栄養素を含み、 且つ脱窒する際に消費されるものであるので、 微生物活性付与組成物又は硝酸態窒素脱窒基質と もいう ことができる。 こ こで、 硝酸性窒素とは硝酸イオン、 亜硝酸イオンをいう。 The denitrification material of the present invention contains nutrients for sulfur oxidizing bacteria having an action of denitrifying nitrate nitrogen and is consumed when denitrification. It can also be referred to as a microbial activity imparting composition or a nitrate nitrogen denitrifying substrate. Here, nitrate nitrogen means nitrate ion and nitrite ion.
本発明の脱窒用材料の形状には格別の制限はないが、 脱窒処理すべき原 水や排水との接触面積を高めるため、 脱窒用材料自体が流出してしま うの を防止するため、 ある程度の大き さがあって、 表面積が可及的に大きいも のであるこ とが有利である。 したがって、 塊状、 粒状、 成形物等の形状が 好ま しく挙げられる。 こ こで、 成形物とは板状、 棒状、 ハニカム状等一定 の型を有するものをいう。 塊状にした場合、 粒径 0. 25〜lmm、 粒径 1〜 3 mm , 粒径 3〜5mm のものなどに即効性があるが、 粒径 0. 25〜: Imm の ものが最も速効性に優れる。 しかし、 粒形が小さいと閉塞や流出損失の増 大等があるので、 使用態様によ り好適な大き さは異なる。 実用的に長期間 使用するためには、 平均粒径が 2〜 5 0 mm 程度が適当であるが、 平均粒 形が 1 0 0 mmを越えないことが有利である。  There is no particular limitation on the shape of the denitrification material of the present invention, but the denitrification material itself is prevented from flowing out in order to increase the contact area with raw water and wastewater to be denitrified. Therefore, it is advantageous to have a certain size and a surface area as large as possible. Therefore, a shape such as a lump, a granule, and a molded product is preferably mentioned. Here, the molded product refers to a product having a certain shape such as a plate shape, a rod shape, and a honeycomb shape. When agglomerated, those with a particle size of 0.25 to 1 mm, a particle size of 1 to 3 mm, and a particle size of 3 to 5 mm have immediate effect, but those with a particle size of 0.25 to: Imm have the fastest effect. Excellent. However, if the particle size is small, blockage and outflow loss increase, etc., so the preferred size differs depending on the use mode. For practical use over a long period of time, an average particle size of about 2 to 50 mm is appropriate, but it is advantageous that the average particle size does not exceed 100 mm.
本脱窒用材料は硝酸態窒素に係る水質浄化に適し、 高濃度の硝酸態窒素 の除去にも優れ、 また、 処理水 pHが強酸性になること もない。  This denitrification material is suitable for water purification of nitrate nitrogen, is excellent in removing high concentration of nitrate nitrogen, and the pH of treated water does not become strongly acidic.
本発明の脱窒用材料による処理水は、 測定される pH もほぼ中性でィォ ンバラ ンス もよいこ とから脱窒能が飛躍的に向上し、 例えば停滞水中の 150ppm を超える高濃度の硝酸態窒素も確実に脱窒させるこ とができ、 水 質環境の改善に大き く寄与できる。  The denitrification water treated with the denitrification material of the present invention has a substantially improved neutrality and a high pH because the measured pH is almost neutral. Nitrogen can be reliably denitrified, which can greatly contribute to the improvement of the water environment.
本発明の脱窒用材料は、 硝酸態窒素を含む排水等の処理に使用可能であ る。 例えば、 工場排水、 都市下水排水、 農場暗渠排水等の農業排水等の処 理に使用される。 使用態様と しては、 これを籠又は網に入れて排水等に浸 漬する方法、 カラムに充填して使用する方法、 タンクに分散させて使用す る方法などがあるが、 暗渠排水等の流水路に浸漬して、 長期間使用する方 法も有利である。 農業排水等の比較的低濃度の排水であれば、 数年間の連 続使用も可能である。 The material for denitrification of the present invention can be used for treating wastewater containing nitrate nitrogen. For example, it is used for treatment of agricultural drainage such as factory drainage, city drainage, and farm culvert drainage. The method of use includes a method of putting it in a basket or a net and immersing it in drainage, a method of filling it in a column, and a method of dispersing it in a tank. For long-term use by immersing in running water The method is also advantageous. If the wastewater has a relatively low concentration such as agricultural wastewater, it can be used continuously for several years.
(図面の簡単な説明) 図 1 は、 脱窒用材料 (A) 〜 ( F ) を使用したときの、 原水中の硝酸態 窒素の濃度変化を示すグラフである。 図 2 は、 油圧プレス機を用いた回分 成形で成形圧力を変化させて調製した脱窒用材料 (H ) 及び ( I ) を使用 したときの、 原水中の硝酸態窒素の残存率を示すグラフである。 図 3 は、 脱窒素細菌の担持体を混合した脱窒用材料 ( J ) 及び (K ) と前記脱窒用 材料 (A) を使用 したと きの、 蒸留水に硝酸カ リ ウム及びリ ン酸塩を溶解 させて調製した脱窒素細菌を含まない合成原水中の硝酸態窒素の残存率を 示すグラフである。 なお、 (G ) は脱窒用材料を使用しない例である。 (Brief Description of the Drawings) FIG. 1 is a graph showing a change in the concentration of nitrate nitrogen in raw water when the materials for denitrification (A) to (F) are used. Fig. 2 is a graph showing the residual nitrate nitrogen in raw water when using the denitrification materials (H) and (I) prepared by changing the molding pressure in batch molding using a hydraulic press. It is. Fig. 3 shows the results of using the denitrification materials (J) and (K) mixed with a carrier for denitrification bacteria and the denitrification material (A) in distilled water with potassium nitrate and phosphorus. 4 is a graph showing the residual rate of nitrate nitrogen in synthetic raw water not containing denitrifying bacteria prepared by dissolving an acid salt. (G) is an example in which no denitrification material is used.
(発明の最良の実施の形態) 実施例 1 BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1
炭酸カルシゥムと して結晶質石灰岩の粉末 (ブレーン値で 2900cm2/ g) を用い、 これと粉末硫黄 (200 メ ッシュ) を高速回転翼による攪拌機によ り混合して ドライ コンパウン ドと し、 成形圧力 650KgZ cm2で圧縮成形し て本発明品の脱窒用材料 (A) 〜 (C) を得た。 Crystalline limestone powder (2900 cm 2 / g in Blaine value) was used as calcium carbonate, and this was mixed with powdered sulfur (200 mesh) using a high-speed impeller to form a dry compound. It was compression molded at a pressure of 650 KgZ cm 2 to obtain the denitrification materials (A) to (C) of the present invention.
その調製した ドライ コンパウン ドの配合と成形条件は、次の通りである。  The compounding and molding conditions of the prepared dry compound are as follows.
(A) 硫黄 : 炭酸カルシウム = 5 : 6、 油圧プレス機による回分成形  (A) Sulfur: calcium carbonate = 5: 6, batch forming by hydraulic press
( B) 硫黄 : 炭酸カルシウム = 1 : 2、 油圧プレス機による回分成形 (C) 硫黄 : 炭酸カルシウム =5 : 6、 ロールプレス機による連続成形 実施例 2 (比較例) (B) Sulfur: calcium carbonate = 1: 2, batch forming by hydraulic press (C) Sulfur: calcium carbonate = 5: 6, continuous forming by roll press machine Example 2 (Comparative example)
また、 比較のために、 次の脱窒用材料 (D) 〜 (F) を得た。 使用した原 料は実施例 1 と同じである。  The following materials for denitrification (D) to (F) were obtained for comparison. The raw materials used are the same as in Example 1.
(D) 硫黄 : 炭酸カルシウム =5 : 6、 硫黄を加熱溶融させ、 炭酸カルシゥ ムを分散させ、 水冷後、 破砕して調製  (D) Sulfur: calcium carbonate = 5: 6, heat and melt sulfur, disperse calcium carbonate, cool with water, crush and prepare
(E) 硫黄のみを使用し、 これを油圧プレス機による回分成形品  (E) Using only sulfur, batch-formed product by hydraulic press
(F) 炭酸カルシウムのみを使用し、 油圧プレス機による回分成形品 実施例 3 (脱窒試験)  (F) Batch molding using hydraulic press with only calcium carbonate Example 3 (denitrification test)
上記脱窒用材料 (A) 〜 (F) を使用 して、 脱窒試験を行った。 原水と しては、 脱窒素細菌の培養液 (硝酸イオンと亜硝酸イオンからなる硝酸態 窒素の濃度 18mgZ L, pH=7. 2) を用いた。 (A) 〜 ( F ) の脱窒用材料 を重量比で 5倍の原水に浸漬してバッチ試験を行い、 硝酸イオン及び亜硝 酸イ オンの総量の変化を追跡検査した。 また、 比較のため脱窒用材料を使 用しない試験 (G) を併せて行った。  A denitrification test was performed using the above denitrification materials (A) to (F). As the raw water, a culture solution of denitrifying bacteria (concentration of nitrate nitrogen consisting of nitrate and nitrite: 18 mgZL, pH = 7.2) was used. The denitrification materials (A) to (F) were immersed in raw water 5 times in weight ratio to perform a batch test, and a change in the total amount of nitrate ions and nitrite ions was traced. For comparison, a test (G) that does not use a denitrification material was also performed.
その結果を図 1 に示す。 本発明の脱窒用材料 (A) 〜 (C) 及び硫黄と 炭酸カルシウムを含む脱窒材 (D) 用いた実験では、 原水中の前記窒素濃 度は、 14 日で殆ど 0になることが分かるが、 pH変化は殆どなかった。 ( E) 及び (F) を用いた実験では原水中の前記窒素濃度には、 変化は見られな かったものの、 14 日後の pHは (E) が 4.5、 (F) が 7.7 となった。  Figure 1 shows the results. In an experiment using the denitrification materials (A) to (C) of the present invention and the denitrification material containing sulfur and calcium carbonate (D), the nitrogen concentration in the raw water was almost zero in 14 days. As can be seen, there was almost no pH change. In the experiments using (E) and (F), no change was observed in the nitrogen concentration in the raw water, but the pH after 14 days was 4.5 for (E) and 7.7 for (F).
実施例 4 Example 4
硫黄 : 炭酸カルシウム =5 : 6の ドライ コンパゥン ドを用い、 成形圧力を 変えて成形した脱窒用材料について、 実施例 1 と同様の試験を行った。 成 形は油圧プレス機を用いた回分成形で、 成形圧力 880KgZcm2で成形した 脱窒用材料 (H) 及び eSOKgZcm2で成形した脱窒用材料 ( I ) を調製し た。 The same test as in Example 1 was conducted on a denitrification material molded using a dry compound of sulfur: calcium carbonate = 5: 6 and changing the molding pressure. Formed form the batch molding using a hydraulic press and molded at a molding pressure 880KgZcm 2 De窒用material (H) and molded de窒用material eSOKgZcm 2 (I) was prepared.
上記脱窒用材料 (H) 及び ( I ) を使用 して、 実施例 3 と同様にして脱 窒試験を行った。  A denitrification test was performed in the same manner as in Example 3 using the above denitrification materials (H) and (I).
その結果を図 2に示す。 図中の縦軸は硝酸態窒素の残存率(%) を示す。 本発明の脱窒用材料 (H) 及び ( I ) の内、 成形圧力の低い脱窒用材料 ( I ) は実験開始後 10 日までに硝酸態窒素がほぼ 0 %となったが、 成形圧力の 高い脱窒材 (H) では原水中の硝酸態窒素の除去に約 2週間を要した。 実施例 5  Figure 2 shows the results. The vertical axis in the figure indicates the residual rate (%) of nitrate nitrogen. Among the denitrification materials (H) and (I) of the present invention, the nitrification material (I) having a low molding pressure had almost zero nitrate nitrogen by 10 days after the start of the experiment. It took about 2 weeks to remove nitrate nitrogen in raw water with high-denitrification material (H). Example 5
硫黄 : 炭酸カルシウム 5: 6の ドライ コ ンパゥン ドに、 脱窒素細菌の担 持体 (a) 又は ( b ) を 5 重量%混合し、 成形圧力 650KgZcm2でプレス 成形した他は実施例 1 と同様にして脱窒用材料 ( J ) 及び (K) を得た。 なお、 脱窒用材料 ( J ) に使用 した脱窒素細菌の担持体 (a) と脱窒用材 料 ( K ) に使用した脱窒素細菌の担持体 ( b ) は、 次のよ う にして得たも のである。 Sulfur: Calcium carbonate 5: 6 dry co Npaun de of the denitrification bacteria responsible bearing member (a) or (b) mixing 5% by weight, other article obtained by press molding at a molding pressure 650KgZcm 2 is as in Example 1 Thus, materials (J) and (K) for denitrification were obtained. The carrier for denitrifying bacteria (a) used for the denitrification material (J) and the carrier for denitrification bacteria (b) used for the denitrification material (K) were obtained as follows. It is a thing.
(a) は畑土 (埼玉県深谷巿内のネギ畑の黒ポク土) 風乾物の 60 メ ッシ ュ篩下物を担持体と し、 ( b ) はゼォライ ト (奥多摩工業社製 : 商品名タマ ライ ト · TZ— 0503) を担持体と し、 これらの担持体を実施例 3で使用 した 原水に 3 日間浸漬して、 脱窒素細菌を担持させた後、 風乾、 粉砕し、 100 メ ッシュ箭下物を脱窒素細菌の担持体 (a) 又は ( b ) と した。  (a) is a field soil (black soil of a leek field in Fukaya, Saitama prefecture). The air-dried 60 mesh sieve is used as a carrier, and (b) is a zeolite (Okutama Industries: Tamalite (trade name: TZ-0503) was used as a carrier, and these carriers were immersed in the raw water used in Example 3 for 3 days to carry the denitrifying bacteria, then air-dried and pulverized. The mesh material was used as a carrier (a) or (b) for denitrifying bacteria.
上記脱窒用材料 ( J ) 及び (K) を使用 して、 脱窒試験を行った。 併せ て、 前記脱窒用材料 (A) を使用した脱窒試験及び脱窒材を使用しない試 験 (G) を行った。  A denitrification test was performed using the above denitrification materials (J) and (K). In addition, a denitrification test using the denitrification material (A) and a test (G) using no denitrification material were performed.
この実験で使用 した原水は、 蒸留水に硝酸力 リ ウム 0. 51gZL及びリ ン 酸水素ニナ ト リ ウム 0. 18g/ Lを溶解させ、 脱窒素細菌不在の液 (硝酸ィ オン濃度 300mgZ L, リ ン酸イオン濃度 50mg/ L) を調製した。 これを脱 窒用材料重量の 5倍となるよ う に添加し、 実施例 3 と同様に水質変化を追 跡検査した。 The raw water used in this experiment was distilled water containing 0.51 g ZL and nitric acid. 0.18 g / L of sodium hydrogen oxyhydrate was dissolved to prepare a liquid without denitrifying bacteria (ion nitrate concentration 300 mg ZL, phosphate ion concentration 50 mg / L). This was added so as to be 5 times the weight of the denitrification material, and a change in water quality was tracked as in Example 3.
その結果は図 3で示す通り であり 、 いずれの試料も実施後 7 日までは水 質に殆ど変化が現れなかったが、 脱窒用材料 ( J ) 及び (K ) は、 その後 に脱窒効果が発現した。  The results are as shown in Fig. 3. In any of the samples, little change was observed in the water quality until 7 days after the test, but the materials for denitrification (J) and (K) showed no denitrification effect after that. Was expressed.
実施例 6 Example 6
炭酸カルシウムと して結晶質石灰岩の粉末 (T一 200、 ニッチッ社製、 ブ レーン値 2900cm2/ g) 50 重量部を用い、 粉未硫黄 (200 メ ッシュ、 軽井 沢製鍊社製) 50 重量部と明ばん石破砕物 (1mm 以下、 宇久須鉱山産) 20 重量部、 水酸化アルミニウム (ハイジライ ト、 昭和電工社製) 10重量部及 び粒状ロ ック ウール (エスファイバー粒状綿、 新日化ロ ック ウール社製) 20重量部を混合し、 180°Cにて加熱攪拌後、 水中にて固化し、 径 5〜: 10mm 程度に粒状化した脱窒用材料 ( L ) を作製した。 Using 50 parts by weight of crystalline limestone powder (T-200, manufactured by Niche Corporation, Brain value: 2900 cm 2 / g) as calcium carbonate, 50 parts by weight of unsulfurized powder (200 mesh, manufactured by Karuizawa Co., Ltd.) 20 parts by weight, aluminum hydroxide (Heigelite, manufactured by Showa Denko KK), 10 parts by weight, and granular rock wool (S-fiber granular cotton, Shin-Nikka Chemical) 20 parts by weight of Rockwool Co., Ltd.) were mixed, heated and stirred at 180 ° C., then solidified in water to prepare a denitrification material (L) granulated to a diameter of about 5 to 10 mm.
実施例 7 Example 7
炭酸カルシウム 25 重量部、 硫黄 75 重量部を十分に混合した後、 180°C にて加熱混合し、 混合物がスラ リ一化したと ころへ粒状口 ック ウール 8重 量部を添加し加熱撹件を継続し、粒状口 ック ウールにスラ リ一を含浸させ、 次にゼォライ ト (TZ0700、 奥多摩工業社製) 10 重量部と水酸化アルミ二 ゥム 10 重量部を添加し、 加熱混合を行った。 ス ラ リーがほとんど粒状口 ック ウールに含浸した時点で水中にて急冷固化、 粒状化し粒径 5〜20mm の脱窒用材料 (M ) を得た。  After thoroughly mixing 25 parts by weight of calcium carbonate and 75 parts by weight of sulfur, heat and mix at 180 ° C, and add 8 parts by weight of granular mouth wool to the mixture where the mixture has become a slurry, and heat and stir. The granulation wool was impregnated with slurry, and then 10 parts by weight of Zeolite (TZ0700, manufactured by Okutama Industries) and 10 parts by weight of aluminum hydroxide were added. went. When the slurry was almost completely impregnated in granular wool, it was quenched and solidified in water to obtain a denitrification material (M) with a particle size of 5 to 20 mm.
実施例 8 炭酸カルシウム 25重量部、硫黄 75重量部、粒状口 ック ウール 9重量部、 ゼォライ ト 14重量部と水酸化アルミ ニウム 10重量部を使用 した他は実施 例 7 と同様にして、 粒径 5〜20mmの脱窒用材料 (N ) を得た。 Example 8 The same procedure as in Example 7 was repeated except that 25 parts by weight of calcium carbonate, 75 parts by weight of sulfur, 9 parts by weight of granular wool, 14 parts by weight of zeolite, and 10 parts by weight of aluminum hydroxide were used. A 20 mm denitrification material (N) was obtained.
実施例 9 Example 9
炭酸カルシウム 37. 5重量部、 硫黄 75重量部、 粒状ロ ック ウール 9重 量部とゼォライ ト 14重量部を使用 した他は実施例 7 と同様にして、粒径 5 〜20mmの脱窒用材料 (O ) を得た。  37.5 parts by weight of calcium carbonate, 75 parts by weight of sulfur, 9 parts by weight of granular rock wool and 14 parts by weight of zeolite were used in the same manner as in Example 7 for denitrification with a particle size of 5 to 20 mm. The material (O) was obtained.
実施例 1 0 Example 10
硫黄 75重量部を 180°Cにて加熱し、液状化したと ころへ粒状口 ック ウー ル 9重量部を添加し、 加熱攪拌した。 液状硫黄がほとんど粒状ロ ック ウー ルに合浸した時点で水中にて急冷固化、 粒状化し粒径 5〜20mm の脱窒用 材料 ( P ) を得た。  75 parts by weight of sulfur was heated at 180 ° C., and 9 parts by weight of granular wool was added to the liquefied liquid, followed by heating and stirring. When the liquid sulfur was almost impregnated into the granular rock wool, it was quenched and solidified in water and granulated to obtain a denitrifying material (P) with a particle size of 5 to 20 mm.
実施例 1 1 Example 1 1
炭酸カルシウム 37.5重量部、 硫黄 75重量部及び粒状ロ ッ ク ウール 9重 量部を使用 した他は実施例 7 と同様にして、 粒径 5〜20mm の脱窒用材料 A denitrification material having a particle size of 5 to 20 mm as in Example 7 except that 37.5 parts by weight of calcium carbonate, 75 parts by weight of sulfur and 9 parts by weight of granular rock wool were used.
( Q ) を得た。 (Q) was obtained.
実施例 1 2 (脱窒試験) Example 1 2 (denitrification test)
前記のよ う にして得られた脱窒用材料 (L) 〜 (Q ) を使用して、 硝酸性 窒素 90mg/ L に調製した水温 20°Cの溶液に、 硫黄酸化細菌の活動する埼 玉県深谷市人見のネギ畑の黒ボク土 10wt %を添加したものを原水と して 脱窒実験を行った。 原水 300g に対し脱窒用材料 50g を使用 してバッチ試 験を行った。 なお、 比較のために脱窒材を使用しない実験を併せて行った その結果を表 1 に示す。 表 1 から脱窒用材料を使用 しない実験を除き、 初期の硝酸性窒素濃度 90m gZ L 力';、 いずれも 1/5 以下に減少しているこ とが分かる Using the denitrification materials (L) to (Q) obtained as described above, a solution at a water temperature of 20 ° C adjusted to 90 mg / L of nitrate nitrogen was used to prepare Saitama, where sulfur-oxidizing bacteria are active. A denitrification experiment was performed using 10% by weight of Andosol in a leek field in Hitomi, Fukaya, Japan as raw water. A batch test was conducted using 50g of denitrification material for 300g of raw water. For comparison, Table 1 shows the results of an experiment that did not use a denitrifying agent. Table 1 shows that the initial nitrate nitrogen concentration was 90 mgZL, except for the experiment using no denitrification material. Understand
【表 1】 【table 1】
Figure imgf000020_0001
Figure imgf000020_0001
(産業上の利用の可能性) 本発明に係る鉱物繊維を含まない硝酸態窒素除去用材料のプレス成形に よる製造方法によれば、 加熱が不要であり 、 バッチ式のみならず、 連続成 形も適用できるため、生産性を大幅に向上させるこ とが可能である。また、 硝酸態窒素を含む排水等から硝酸態窒素を効率よ く 除去するこ とができる 脱窒用材料を製造できる。また、プレス成形圧力を変化させることによ り 、 脱窒効果発現までの期間を調節するこ と も可能である。 更に、 脱窒素細菌 担持体を混合できるこ とから、 脱窒素細菌不在の被処理水においても、 硝 酸態窒素の除去が達成可能な脱窒用材料を製造できる。 (Possibility of Industrial Use) According to the method for producing a nitrate-nitrogen-removing material that does not contain mineral fibers by press molding according to the present invention, heating is unnecessary, and not only batch-type but also continuous molding is possible. Since it can also be applied, productivity can be greatly improved. Further, a denitrification material capable of efficiently removing nitrate nitrogen from wastewater containing nitrate nitrogen can be manufactured. Also, by changing the press molding pressure, it is possible to adjust the period until the denitrification effect appears. Further, since the denitrifying bacteria carrier can be mixed, a denitrifying material capable of achieving the removal of nitrate nitrogen can be produced even in the water to be treated without the denitrifying bacteria.
また、 本発明の鉱物繊維を必須とする脱窒用材料は、 施肥削減の困難な 農地の暗渠排水ゃ圃場浸透水、 養液栽培における排液のよ うな高硝酸性排 水はも と よ り 、 農業集落排水の一次処理水や合併浄化槽等によ り無機化さ れた排水中の硝酸性窒素の除去効果にも優れる。  In addition, the denitrification material of the present invention, which requires the mineral fiber as the essential component, is not limited to underdrainage from agricultural tracts where it is difficult to reduce fertilization; Also, it has excellent effect of removing nitrate nitrogen from wastewater that has been mineralized by primary treatment water of agricultural village wastewater and combined septic tank.
また、 陽イ オン交換能保持物質、 難燃化物質、 微細孔隙物質等を配合し た本発明の脱窒用材料は、 これらの効果をよ り増大させたり、 貯蔵中に生 ずる恐れのある燃焼を抑制したり ることができる。 In addition, the denitrification material of the present invention containing a cation-exchange capacity-retaining substance, a flame retardant substance, a microporous substance, and the like can further enhance these effects and produce a substance during storage. It is possible to suppress the risk of combustion.
また、 本発明の脱窒用材料は、 その製法や添加材の種類や量を変化させ るこ とによ り 、各種排水に適した脱窒用材料とするこ とができる。例えば、 脱窒素細菌の存在しない排水と存在する排水、 硝酸性窒素濃度の高い排水 と低い排水、酸性度が高い排水と低い排水等の複数の排水の処理に当たり 、 本発明の脱窒用材料又は本発明の製造法を選択することによ り、 いずれの 排水に対しても優れた硝酸態窒素除去効果を奏する。  Further, the denitrification material of the present invention can be made suitable for various types of wastewater by changing its manufacturing method and the type and amount of additives. For example, in the treatment of a plurality of wastewaters such as wastewater without and without denitrifying bacteria, wastewater with high and low nitrate nitrogen concentrations, wastewater with high acidity and low wastewater, the denitrification material of the present invention or By selecting the production method of the present invention, an excellent nitrate nitrogen removal effect can be obtained for any wastewater.
本発明の微生物によ り硝酸態窒素を除去するための脱窒用材料は、 炭酸 カルシウム と硫黄とが共存するため、 硝酸態窒素の除去率に優れ、 微生物 の必須栄養源を供給する必要がなく 、 反応前、 反応後の系内バラ ンスを良 好に保て、 微生物培養の基質と して直接用いることができる。  The material for denitrification for removing nitrate nitrogen by the microorganism of the present invention has an excellent nitrate nitrogen removal rate because calcium carbonate and sulfur coexist, and it is necessary to supply an essential nutrient source of the microorganism. Instead, the in-system balance before and after the reaction can be kept good, and it can be used directly as a substrate for culturing microorganisms.

Claims

請求の範囲 The scope of the claims
( 1 ) 炭酸カルシウムを含有する粉体と、 硫黄を含有する粉体とを主原 料と し、 それを混合して、 粉体混合物と し、 この混合物をプレス成形する ことを特徴とする硝酸態窒素除去用材料の製造方法。 (1) Nitric acid characterized by using a powder containing calcium carbonate and a powder containing sulfur as main raw materials, mixing them to form a powder mixture, and press-molding this mixture. Method for producing a material for removing nitrogen.
( 2 ) ブレーン値で 2000〜5000cm2/ gの炭酸カルシウムを含有する粉 体と、平均粒径 0. 0 1〜2mmの硫黄を含有する粉体とを重量比 3 : :!〜 1 : 2 の割合で混合して、粉体混合物と し、 この混合物を成形圧力 300〜900Kg / cm2 (約 30〜90MPa) でプレス成形する請求項 1 に記載の硝酸態窒素除 去用材料の製造方法。 (2) The weight ratio of the powder containing calcium carbonate having a Blaine value of 2000 to 5000 cm 2 / g and the powder containing sulfur having an average particle diameter of 0.01 to 2 mm is 3::! To 1: 2. 2.The method for producing a material for removing nitrate nitrogen according to claim 1, wherein the mixture is press-formed at a molding pressure of 300 to 900 kg / cm 2 (about 30 to 90 MPa). .
( 3 ) 炭酸カルシウムを含有する粉体と、 硫黄を含有する粉体とを主原 料と し、 脱窒素細菌を多孔質体に担持させた粉体を、 主原料と混合して、 粉体混合物と し、 この混合物をプレス成形する請求項 1記載の硝酸態窒素 除去用材料の製造方法。  (3) A powder containing calcium carbonate and a powder containing sulfur as main raw materials, and a powder having denitrifying bacteria supported on a porous body mixed with the main raw material to obtain a powder. 2. The method for producing a material for removing nitrate nitrogen according to claim 1, wherein the mixture is press-formed.
( 4 ) プレス成形して得られる成形品の形状が粒状である請求項 1 に記 載の硝酸態窒素除去用材料の製造方法。  (4) The method for producing a material for removing nitrate nitrogen according to claim 1, wherein the shape of the molded product obtained by press molding is granular.
( 5 ) 硫黄とカルシウム分を含有する鉱物繊維が一体化した組成物であ ることを特徴とする硝酸態窒素除去用材料。  (5) A material for removing nitrate nitrogen, which is a composition in which mineral fibers containing sulfur and calcium are integrated.
( 6 ) 炭酸カルシウムを含有する粉体と、 硫黄と鉱物繊維が一体化した 組成物であることを特徴とする硝酸態窒素除去用材料。  (6) A material for removing nitrate nitrogen, which is a composition in which powder containing calcium carbonate is integrated with sulfur and mineral fibers.
( 7 ) 鉱物繊維がロ ッ ク ウールである請求項 5又は 6 に記載の硝酸態窒 素除去用材料。  (7) The material for removing nitrate nitrogen according to (5) or (6), wherein the mineral fiber is rock wool.
( 8 ) 炭酸カルシウムを含有する粉体と、 硫黄を混合し、 硫黄を溶融さ せて混合物全体がスラ リ一化した中に鉱物繊維を加え、 加熱攪拌しながら スラ リ ーを繊維中に含浸、 混合させ、 これを急冷固化し、 その固化物を破 砕して、 炭酸カルシウムを含有する粉体、 硫黄と鉱物繊維が一体化した組 成物とするこ とを特徴とする硝酸態窒素除去用材料の製造方法。 (8) Calcium carbonate-containing powder is mixed with sulfur, and the sulfur is melted to add a mineral fiber while the whole mixture is slurryed, and heated and stirred. The slurry is impregnated and mixed into the fiber, quenched and solidified, and the solidified product is crushed to form a composition containing calcium carbonate-containing powder, sulfur and mineral fibers integrated. A method for producing a material for removing nitrate nitrogen, the method comprising:
( 9 ) 硫黄を溶融し、 これにカルシウム分を含有する鉱物繊維を加え、 加熱攪拌しながら硫黄を繊維中に含浸、 混合させ、 これを急冷固化し、 そ の固化物を破砕して、 硫黄と鉱物繊維が一体化した組成物とするこ とを特 徴とする硝酸態窒素除去用材料の製造方法。  (9) Sulfur is melted, mineral fiber containing calcium is added to the sulfur, the sulfur is impregnated and mixed in the fiber while heating and stirring, and this is quenched and solidified, and the solidified product is crushed to obtain sulfur. A method for producing a material for removing nitrate nitrogen, characterized in that the composition is obtained by integrating a mineral fiber with a mineral fiber.
( 1 0 ) 陽イオン交換能保持物質、 難燃化物質及び微細孔隙物質から選 ばれる 1種又は 2種以上の添加材を鉱物繊維と共に加える請求項 8又は 9 に記載の硝酸態窒素除去用材料の製造方法。  (10) The material for removing nitrate nitrogen according to claim 8 or 9, wherein one or two or more additives selected from a cation exchange capacity retaining substance, a flame retardant substance, and a microporous substance are added together with mineral fibers. Manufacturing method.
( 1 1 ) 脱窒素細菌の存在しない排水と、 存在する排水を含む複数の排 水の処理に当たり、 炭酸カルシウムを含有する粉体と硫黄又はこれらと鉱 物繊維を一体化してなる硝酸態窒素除去用材料と して、 溶融一体化法で得 られた硝酸態窒素除去用材料とプレス成形一体化法で得られた硝酸態窒素 除去用材料及びこれらに添加材が配合された硝酸態窒素除去用材料から選 択する硝酸態窒素除去用材料の使用方法。  (11) In the treatment of wastewater without denitrifying bacteria and multiple wastewater containing existing wastewater, removal of nitrate nitrogen by integrating calcium carbonate-containing powder with sulfur or mineral fiber with them Materials for nitrate nitrogen removal obtained by the melt-integration method, nitrate nitrogen removal material obtained by the press-molding integration method, and nitrate nitrogen removal obtained by mixing these with additives How to use nitrate nitrogen removal material selected from materials.
PCT/JP2000/006777 1999-10-01 2000-09-29 Material for use in denitrification for the purpose of removing nitrate nitrogen and method for preparing the same WO2001025157A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP11/282077 1999-10-01
JP28207799A JP4269086B2 (en) 1999-10-01 1999-10-01 Nitrate nitrogen denitrification composition and method for producing the same
JP2000/264564 2000-08-31
JP2000264564A JP4269087B2 (en) 2000-08-31 2000-08-31 Method for producing activated material for removing nitrate nitrogen

Publications (1)

Publication Number Publication Date
WO2001025157A1 true WO2001025157A1 (en) 2001-04-12

Family

ID=26554461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/006777 WO2001025157A1 (en) 1999-10-01 2000-09-29 Material for use in denitrification for the purpose of removing nitrate nitrogen and method for preparing the same

Country Status (1)

Country Link
WO (1) WO2001025157A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105621609A (en) * 2016-04-05 2016-06-01 中国地质大学(北京) Material for removing nitrates in water by autotrophic microbe denitrification process
CN113121013A (en) * 2021-04-16 2021-07-16 无锡映川环境技术有限公司 Autotrophic denitrification filter material with active bacteria coating and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6129799B2 (en) * 1983-04-15 1986-07-09 Susumu Hashimoto
JPH06495A (en) * 1992-06-19 1994-01-11 Nippon Steel Chem Co Ltd Filter medium for purifying sewage
JPH11285377A (en) * 1998-04-02 1999-10-19 Hiroshi Masujima Composition provided with microbial activity, and its production
WO2000018694A1 (en) * 1998-09-25 2000-04-06 Nitchitsu Co, Ltd. Denitrifying composition for removing nitrate nitrogen and process for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6129799B2 (en) * 1983-04-15 1986-07-09 Susumu Hashimoto
JPH06495A (en) * 1992-06-19 1994-01-11 Nippon Steel Chem Co Ltd Filter medium for purifying sewage
JPH11285377A (en) * 1998-04-02 1999-10-19 Hiroshi Masujima Composition provided with microbial activity, and its production
WO2000018694A1 (en) * 1998-09-25 2000-04-06 Nitchitsu Co, Ltd. Denitrifying composition for removing nitrate nitrogen and process for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105621609A (en) * 2016-04-05 2016-06-01 中国地质大学(北京) Material for removing nitrates in water by autotrophic microbe denitrification process
CN113121013A (en) * 2021-04-16 2021-07-16 无锡映川环境技术有限公司 Autotrophic denitrification filter material with active bacteria coating and preparation method thereof

Similar Documents

Publication Publication Date Title
CN102266752B (en) Method for preparing carbonizing absorption grains used for purifying water
JP4032199B2 (en) Nitrate nitrogen denitrification substrate
US7109022B1 (en) Composition containing calcium carbonate particles dispersed in sulfur for removing nitrate nitrogen
KR102032335B1 (en) Soil conditioner with function of growth assistance using bottom ash and fly ash of thermal power plant, and production method thereof
KR100836661B1 (en) Porous media for autotrophic denitrification using sulfur
JP4269086B2 (en) Nitrate nitrogen denitrification composition and method for producing the same
KR101279135B1 (en) Treating method for ferment of sewage sludge
JP2001047086A (en) Activation material for denitrifying nitrate nitrogen
JP3430364B2 (en) Microbial activity imparting composition and method for producing the same
JP4947247B2 (en) Composition for removing nitrate nitrogen and the like and method for producing the same
JP4269087B2 (en) Method for producing activated material for removing nitrate nitrogen
JP2004167471A (en) Water treatment material, nitrate nitrogen treating material, and its production method
WO2001025157A1 (en) Material for use in denitrification for the purpose of removing nitrate nitrogen and method for preparing the same
CN110655204A (en) Microbial repairing agent for black smelly water treatment and preparation method thereof
JP2007245022A (en) Method for preventing groundwater pollution due to nitrate nitrogen
JP3040097B2 (en) Contact purification material and method for producing the same
JP5422461B2 (en) Purifying material and method for purifying nitrate-containing water
KR101448799B1 (en) Organic fertilizers using the ashes are burned from excrement and manufacturing
CN113979687A (en) Microbial composite filler, preparation method and application thereof
CN112158986B (en) Method for treating sewage containing high ammonia, nitrogen and phosphorus in livestock and poultry farm by using boric sludge
KR100727123B1 (en) Method of fertilizing sewage sludge using minenal and blood meal, phyllite,olivine,complex microbial
JP4391392B2 (en) Method for producing granules for nitrate nitrogen treatment
JP2005095758A (en) Method and apparatus for treating water containing inorganic-state nitrogen or phosphorus
JP4593183B2 (en) Nitrate-containing nitrogen-treated material containing denitrifying bacteria and method for producing the same
PL208365B1 (en) Denitrification of aquarium water

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase