WO2001020606A1 - Method and device for stabilizing magnetic tape conveying and magnetic tape processing device - Google Patents

Method and device for stabilizing magnetic tape conveying and magnetic tape processing device Download PDF

Info

Publication number
WO2001020606A1
WO2001020606A1 PCT/JP2000/006356 JP0006356W WO0120606A1 WO 2001020606 A1 WO2001020606 A1 WO 2001020606A1 JP 0006356 W JP0006356 W JP 0006356W WO 0120606 A1 WO0120606 A1 WO 0120606A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic tape
tape
transport
stabilizing
magnetic
Prior art date
Application number
PCT/JP2000/006356
Other languages
French (fr)
Japanese (ja)
Inventor
Minoru Araki
Hirokazu Ishii
Hisashi Suzuki
Original Assignee
Fuji Photo Film Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co., Ltd. filed Critical Fuji Photo Film Co., Ltd.
Publication of WO2001020606A1 publication Critical patent/WO2001020606A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B15/00Driving, starting or stopping record carriers of filamentary or web form; Driving both such record carriers and heads; Guiding such record carriers or containers therefor; Control thereof; Control of operating function
    • G11B15/60Guiding record carrier
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B15/00Driving, starting or stopping record carriers of filamentary or web form; Driving both such record carriers and heads; Guiding such record carriers or containers therefor; Control thereof; Control of operating function
    • G11B15/60Guiding record carrier
    • G11B15/62Maintaining desired spacing between record carrier and head
    • G11B15/64Maintaining desired spacing between record carrier and head by fluid-dynamic spacing

Definitions

  • the present invention belongs to the technical field of magnetic tapes used for information recording and Z reproduction, and more specifically, in the manufacturing process of a magnetic tape, even if the magnetic tape is transported at a high speed, no slip occurs, and
  • the present invention relates to a method and an apparatus for stabilizing the transfer of a magnetic tape, which can prevent damage to the tape and disorder of the winding shape, and preferably can stably transfer the magnetic tape with reduced cupping.
  • the present invention relates to a magnetic tape processing apparatus that produces a magnetic tape that does not cause slippage and has small cutting even when the magnetic tape is transported at a high speed in a tape manufacturing process and the like. Background art
  • a magnetic tape used for recording and reproducing information basically includes a base layer which is a film such as PET (polyethylene terephthalate), a magnetic layer formed on one surface of the base layer,
  • the base layer is composed of a back layer and the like formed on the surface opposite to the magnetic layer.
  • the magnetic tape (hereinafter, also simply referred to as “tape”) is subjected to various processes such as cutting by a slit or cleaning of a surface by a blade while being conveyed in a longitudinal direction. And rolled up in a hub etc. Set as a set and sent to the next process or delivery destination.
  • the tape transfer speed in various processes has been increasing.
  • the tape is transported by winding a tape around a capstan roller and rotating the capstan roller.
  • the tape entrains air (entrained air) in various types of manufacturing equipment such as a blade machine, causing the tape to float with a capstan roller or the like, thereby causing the tape to slip.
  • air entrained air
  • the tape collides with or improperly contacts the capstan roller, guide roller, blade blade, etc. in various manufacturing equipment, causing the tape or tape edge to be broken, the tape to be worn or peeled off the magnetic layer, etc. Damage will occur and the resulting tape will be unsuitable as a product.
  • the tape manufacturing equipment is equipped with a roller (measurement roller) to measure the length of the tape as necessary. There is also a problem in that an error occurs in the length measurement, and production control cannot be performed properly.
  • the characteristics as a magnetic tape May fluctuate and the desired performance may not be obtained.
  • adjusting the prescription of the back layer and improving the suitability for high-speed transport of the tape while preventing the performance from deteriorating is a very time-consuming task. Disadvantageous in that.
  • Cutting is the curl (curvature) of the magnetic tape in the width direction, which is mainly caused by the difference in the shrinkage of the binder used between the magnetic layer and the back layer.
  • the recording density of magnetic tapes has been increasing in recent years.
  • the thickness of the magnetic material layer is becoming thinner and the thickness of the backing layer is reduced.
  • the strength is reduced, causing problems in practical durability.
  • the prescription of the magnetic layer or the back layer is changed, the characteristics of the magnetic tape may fluctuate, and the desired performance may not be obtained.
  • adjusting the prescription of the magnetic layer and the back layer while reducing the performance while preventing reduction in power is a very time-consuming task. Disadvantageous in this respect.
  • the present invention has been made in view of the above circumstances, and a first object of the present invention is that no slip occurs even when a magnetic tape is conveyed at high speed, resulting in damage to the magnetic tape or damage to the magnetic tape. It is an object of the present invention to provide a method for stabilizing the transport of a magnetic tape and a device therefor, which can prevent the winding form from being disturbed.
  • the present invention has been made in view of the above circumstances, and a second object of the present invention is that no slip or the like occurs even when a magnetic tape is conveyed at a high speed. It is an object of the present invention to provide a method for stabilizing the transport of a magnetic tape and a device therefor, which can prevent damage to the tape and disorder of the winding shape, and also enable accurate positioning in the width direction of the tape.
  • a second object of the present invention is to provide a magnetic tape processing apparatus that can be suitably applied to a magnetic tape processing apparatus, has a simple configuration, and can position the magnetic tape in the width direction. It is an object of the present invention to provide a method for chemical conversion and a device therefor.
  • the present invention has been made in view of the above circumstances, and a third object of the present invention is to irradiate a back layer of a magnetic tape with a laser beam or the like so that a concave portion ( To provide a magnetic tape transport stabilization method and an apparatus for effectively stabilizing a magnetic tape to be processed at a focal position of a processing laser beam very accurately, for example, when performing processing for forming a groove). It is in.
  • a fourth object of the present invention is to solve the above-mentioned problems of the prior art.
  • a magnetic tape manufacturing apparatus such as a blade machine or a winder machine
  • the capstan An object of the present invention is to provide a magnetic tape processing apparatus capable of producing a magnetic tape having excellent characteristics without causing tape slippage on rollers or the like and having small cutting, with good production efficiency.
  • a first aspect of the present invention is to remove or remove a magnetic force by removing at least a part of an air layer accompanying the magnetic tape when the magnetic tape is transported in a longitudinal direction. By using at least one of them, the lifting of the magnetic tape from the magnetic tape support is prevented, and the conveyance of the magnetic tape is stabilized.
  • At the time of transporting the magnetic tape in the longitudinal direction at least the upstream portion of the support of the magnetic tape in the transport direction is set to a negative pressure, and the transport of the magnetic tape is stabilized. It is intended to provide a method for stabilizing the conveyance of a magnetic tape characterized by the above.
  • An object of the present invention is to provide a method for stabilizing the transport of a magnetic tape, characterized by stabilizing the transport of the tape.
  • a relief groove of an air layer accompanying the magnetic tape is provided on the surface of the support of the magnetic tape, and the magnetic tape is entrained by the magnetic tape.
  • a method for stabilizing the transfer of a magnetic tape comprising stabilizing the transfer of the magnetic tape by reducing the thickness of an air layer by the grooves.
  • a first aspect of the present invention is a transport stabilizing device for transporting a magnetic tape in a longitudinal direction, wherein the magnetic tape from the magnetic tape support is provided.
  • An object of the present invention is to provide a magnetic tape transport stabilizing device characterized by having a floating preventing means for preventing the tape from floating.
  • a first mode of the present embodiment is a transport stabilizing device for transporting a magnetic tape in the longitudinal direction, and at least a means for applying a negative pressure to an upstream portion of the magnetic tape support in the transport direction. It is intended to provide a magnetic tape transport stabilizing device characterized by having the following.
  • a second mode of the present aspect is a transport stabilizing device for transporting a magnetic tape in a longitudinal direction, wherein the support of the magnetic tape is formed of a magnetic material. Is provided.
  • a third aspect of the present invention is a transport stabilizing apparatus for transporting a magnetic tape in a longitudinal direction, wherein a stabilizing device for evacuating an air layer accompanying the magnetic tape to a surface of a support of the magnetic tape.
  • An object of the present invention is to provide a magnetic tape transport stabilizing device characterized by having grooves.
  • a fourth mode of the present aspect is a transport stabilizing device for transporting a magnetic tape in a longitudinal direction, wherein the support of the magnetic tape has a shape having an edge on an upstream side thereof. It is intended to provide a magnetic tape transport stabilizing device. Further, in order to achieve the second object, a second aspect of the present invention provides a method for moving a magnetic tape in a width direction orthogonal to a traveling direction of the magnetic tape when the magnetic tape is transported in a longitudinal direction. To stabilize the transport of the magnetic tape by providing a method for stabilizing the transport of the magnetic tape.
  • Another object of the present invention is to provide a method for stabilizing the transport of a magnetic tape, characterized by the above feature.
  • the biasing is preferably performed by a magnetic force or a spring force.
  • the magnetic tape transport guide portion for guiding the magnetic tape is integrally moved in a direction perpendicular to the traveling direction of the magnetic tape.
  • the present invention provides a method for stabilizing the transport of a magnetic tape, wherein the transport of the magnetic tape is stabilized.
  • the moving amount of the magnetic tape conveyance guide portion is determined based on a detection result of a moving state of the magnetic tape in a direction orthogonal to a traveling direction of the magnetic tape.
  • a third mode of the second aspect is a transport stabilizing method for transporting a magnetic tape in a longitudinal direction, wherein the magnetic tape is transported by a roller transport unit, and the roller transport unit is
  • the present invention provides a method for stabilizing the transfer of a magnetic tape, characterized in that the positioning is performed by the widthwise transfer stabilizing means of the magnetic tape.
  • the positioning by the width-direction conveyance stabilizing means is based on the width-direction position regulating collar of the roller conveyance means or by a self-correcting function of the roller conveyance means.
  • the roller conveying means is a crown roller having a large diameter at the center or a concave roller having a small diameter at the center.
  • a second aspect of the present invention is a transport stabilizing device for transporting a magnetic tape in a longitudinal direction, the transport stabilizing device being orthogonal to a traveling direction of the magnetic tape.
  • An object of the present invention is to provide a magnetic tape transport stabilizing device, comprising a width direction movement adjusting means for adjusting the movement of the magnetic tape in the width direction. That is, a first mode of the present embodiment is a transport stabilizing device for transporting a magnetic tape in a longitudinal direction, wherein a holding device that curves the magnetic tape along a traveling direction thereof. And a biasing means for biasing the magnetic tape locked by the holding means in a direction orthogonal to the traveling direction of the magnetic tape. It is.
  • the urging unit is a unit that urges by a magnetic force or a spring.
  • a second mode of the present aspect is a transport stabilizing device for transporting a magnetic tape in a longitudinal direction, wherein a magnetic tape transport guide portion for guiding the magnetic tape is integrally swingable.
  • the present invention provides a magnetic tape transport stabilizing device, further comprising means for moving the magnetic tape transport guide portion in a direction perpendicular to the direction of travel of the magnetic tape.
  • the magnetic tape transport stabilizing device further includes a magnetic tape position detecting unit, and the movement amount of the magnetic tape transport guide portion is determined by the position of the magnetic tape. It is an object of the present invention to provide a magnetic tape transport stabilizing device characterized in that it is determined based on a result of detection of a moving state in a direction orthogonal to a traveling direction of a magnetic tape detected by a detecting means.
  • a third mode of the second aspect is a transport stabilizing device for transporting a magnetic tape in a longitudinal direction
  • the transport stabilizing device includes a roller transport unit that transports the magnetic tape
  • the roller transport unit includes:
  • the present invention provides a magnetic tape conveyance stabilizing device, comprising: a width direction conveyance stabilizing means for positioning the magnetic tape conveyed by the roller conveying means in a width direction.
  • the width direction conveyance stabilizing unit is a collar for positioning the magnetic tapes at both ends of the roller conveyance unit in the width direction, or a self-correcting function of the roller conveyance unit itself.
  • the interval between the collars provided at both ends of the roller conveying means is slightly narrower than the width of the magnetic tape.
  • the roller conveying means having the self-correcting function is a crown roller having a large diameter at the center or a convey roller having a small diameter at the center.
  • a third aspect of the present invention is directed to a magnetic method comprising: adjusting a vertical position of the magnetic tape when conveying the magnetic tape in a longitudinal direction.
  • An object of the present invention is to provide a method for stabilizing the conveyance of a tape.
  • a first mode of the present embodiment is a transport stabilizing method for transporting a magnetic tape in a longitudinal direction, comprising detecting a vertical position of the magnetic tape, and detecting a vertical position of the magnetic tape. It is another object of the present invention to provide a method for stabilizing the transfer of a magnetic tape, wherein the position of the magnetic tape in the vertical direction is corrected based on a detection result.
  • a second mode of the third aspect is a transport stabilization method for transporting a magnetic tape in a longitudinal direction, wherein a portion of the magnetic tape that requires positional accuracy in a vertical direction is rotated by a predetermined amount. It is an object of the present invention to provide a method for stabilizing the transfer of a magnetic tape, characterized by using a roller transfer means having accuracy.
  • a third mode of the third aspect is a transport stabilizing method for transporting a magnetic tape in a longitudinal direction, wherein a magnetic tape transport guide portion for guiding the magnetic tape is directed to a reference position. And a method for stabilizing the transport of the magnetic tape, wherein the magnetic tape is transported via the biased magnetic tape transport guide portion.
  • a third aspect of the present invention is a transport stabilizing device for transporting a magnetic tape in a longitudinal direction, comprising: It is intended to provide a magnetic tape transport stabilizing device, which has a vertical position adjusting means for adjusting a positional change in the direction.
  • a first mode of the present embodiment is a transport stabilizing device for transporting a magnetic tape in a longitudinal direction, comprising: a magnetic tape position detecting means for detecting a vertical position of the magnetic tape; Magnetic tape position correcting means for correcting the vertical position of the magnetic tape based on the result of detecting the vertical position of the magnetic tape by the tape position detecting means.
  • Equipment is provided.
  • the magnetic tape position detecting means is preferably a displacement measuring means using a laser.
  • the magnetic tape position correcting means integrally moves a predetermined unit in an apparatus for handling the magnetic tape.
  • a second aspect of the third aspect is a transport stabilizing device for transporting a magnetic tape in a longitudinal direction, wherein a predetermined position of the magnetic tape in a vertical direction is required before and after a portion requiring vertical position accuracy.
  • An object of the present invention is to provide a magnetic tape conveyance stabilizing device provided with roller conveyance means having rotation accuracy.
  • the magnetic tape transport stabilizing device is used for a magnetic tape processing device that performs laser processing on the magnetic tape, and the rotation accuracy of the roller transporting unit is such that the magnetic tape is laser-processed. It is preferable that the magnetic tape be placed within a range where the attenuation of the power of the laser beam used for the laser processing at the processing position is within 5% of its maximum value.
  • a third aspect of the third aspect is a transport stabilizing device for transporting a magnetic tape in a longitudinal direction, wherein the device for handling the magnetic tape is a magnetic tape transporting device.
  • the inner portion is made swingable, and the magnetic tape transport guide portion is configured to be urged toward a predetermined reference position of a device that handles the magnetic tape.
  • An apparatus is provided.
  • the predetermined reference position of the device that handles the magnetic tape is preferably a processing stage for performing a predetermined process on the magnetic tape.
  • the magnetic tape transport guide portion includes at least a tape supporting means for supporting the magnetic tape.
  • a fourth aspect of the present invention provides an optical system for projecting one or more laser beams for processing a back layer of a long magnetic tape into a predetermined processing position, Conveying means for conveying the magnetic tape in the longitudinal direction, an axis in a direction orthogonal to the conveying direction of the magnetic tape, and supporting the magnetic tape on the side surface, so that the back layer is on the laser beam incident side.
  • a support having a cylindrical portion for holding the magnetic tape at the processing position toward the processing position, and a flange portion provided on the cylindrical portion and abutting against an end of the magnetic tape to regulate a position in a width direction of the magnetic tape.
  • a magnetic tape processing device having a drum.
  • FIG. 1 is a side view showing a schematic configuration of an embodiment of a magnetic tape processing apparatus to which the first embodiment of the magnetic tape transport stabilizing apparatus according to the first aspect of the present invention is applied.
  • FIG. 2 is a side view showing a main configuration of an embodiment of a magnetic tape processing apparatus to which the second embodiment of the present embodiment is applied.
  • FIG. 3A shows one embodiment of a magnetic tape processing apparatus to which the third embodiment of the present embodiment is applied.
  • FIG. 3B is a side view showing a configuration of a main part of FIG. 3, and
  • FIG. 3B is a top view thereof.
  • FIG. 4 is a side view showing a main configuration of an embodiment of a magnetic tape processing apparatus to which a fourth embodiment of the present embodiment is applied.
  • FIG. 5 is a top view showing a main configuration of an embodiment of a magnetic tape processing apparatus to which the fifth embodiment of the present embodiment is applied.
  • FIG. 6 is a side view showing a configuration of a main part of an embodiment of a magnetic tape processing apparatus to which the sixth embodiment of the present embodiment is applied.
  • FIGS. 7A and 7B show processing lines (recesses) formed on a back layer of a magnetic tape by a magnetic tape processing apparatus to which the method and apparatus for stabilizing magnetic tape transport according to the second embodiment of the present invention are applied. It is a top view which shows an example.
  • FIGS. 8A, 8B, and 8C show the processing formed on the back layer of the magnetic tape by the magnetic tape processing apparatus to which the method and apparatus for stabilizing the transfer of the magnetic tape according to the second embodiment of the present invention are applied. It is sectional drawing which shows the cross-sectional shape of a line (recess).
  • FIG. 9 is a schematic configuration diagram showing one embodiment of a magnetic tape processing apparatus to which the magnetic tape positioning method of the magnetic tape transport stabilizing method and apparatus according to the second embodiment of the present invention is applied. .
  • FIG. 10 is a conceptual diagram for explaining a multi-lens used in the magnetic tape processing apparatus shown in FIG.
  • FIGS. 11A and 11B show examples of the configuration of the tape positioning unit according to the first embodiment of the magnetic tape transport stabilizing apparatus of the present embodiment incorporated in the magnetic tape processing apparatus shown in FIG. It is the side view and top view shown.
  • FIGS. 12A and 12B are tape positives according to the second embodiment of the present embodiment, respectively. It is the side view and top view which show the example of a structure of a shocking part.
  • FIGS. 13A and 13B are a side view and a top view, respectively, showing a configuration example of a tape positioning unit according to a third example of the present embodiment.
  • FIGS. 14A, 14B and 14C are a side view and a top view, respectively, showing a configuration example of a tape positioning section according to a fourth embodiment of the present embodiment, and a side sectional view of a movable tape guide. is there.
  • FIGS. 15A and 15B are a side view and a top view, respectively, showing a configuration example of a tape positioning unit according to a fifth example of the present embodiment.
  • FIG. 16 is a schematic configuration diagram showing one embodiment of a magnetic tape transfer control unit of a magnetic tape processing apparatus to which the method and apparatus for stabilizing transfer of a magnetic tape according to the third embodiment of the present invention are applied.
  • FIG. 17 is a schematic configuration diagram showing an embodiment of a magnetic tape processing apparatus to which the magnetic tape positioning method of the magnetic tape transporting method and apparatus according to the fourth embodiment of the present invention is applied.
  • FIG. 18 is a side view showing a configuration example of a tape positioning unit according to a first embodiment of the magnetic tape transport stabilization device of the present embodiment incorporated in the magnetic tape processing device shown in FIG.
  • FIG. 19 is a side view of one embodiment of a flanged roller used in the tape positioning section shown in FIG.
  • FIG. 2OA is a side view showing the initial state of the brim roller
  • FIG. 20B is a side view showing the worn state.
  • FIG. 21A shows a configuration example of the tape positioning unit according to the second example of the present embodiment.
  • FIG. 21B is a side view showing an embodiment of a crown roller used for this.
  • FIG. 22A is an overall configuration diagram illustrating a configuration example of a tape positioning unit according to a third example of the present embodiment
  • FIG. 22B is a side view illustrating a conscape roller used for the tape positioning unit.
  • FIG. 23 is a schematic configuration diagram showing one embodiment of a magnetic tape transfer control unit of a magnetic tape processing apparatus to which the method and apparatus for stabilizing transfer of a magnetic tape according to the fifth embodiment of the present invention are applied.
  • FIG. 24 is a schematic configuration diagram showing one embodiment of a magnetic tape processing apparatus to which the method and apparatus for stabilizing the transfer of a magnetic tape according to the sixth embodiment of the present invention are applied.
  • FIG. 25 is a side view showing a configuration example of a magnetic tape transport control unit according to one embodiment of the magnetic tape transport stabilizing device of the present embodiment incorporated in the magnetic tape processing device shown in FIG.
  • FIG. 26A is a schematic conceptual diagram of one embodiment of the magnetic tape processing apparatus according to the seventh aspect of the present invention
  • FIG. 26B is a schematic view of the magnetic tape processing apparatus shown in FIG. 26A
  • FIG. 4 is a schematic diagram when a holding drum is viewed from a tape transport direction.
  • FIG. 27 is a schematic conceptual diagram of one embodiment of a beam splitting optical system used in the magnetic tape processing device shown in FIG. 26A.
  • FIG. 28 is a schematic conceptual diagram of another embodiment of the beam splitting optical system used in the magnetic tape processing device shown in FIG. 26A.
  • FIGS. 29A and 29B are schematic diagrams for explaining another embodiment of the magnetic tape processing apparatus of the present embodiment.
  • a magnetic tape to which the magnetic tape transport stabilization method according to the first aspect of the present invention can be applied and a magnetic tape used for a magnetic tape transport stabilization apparatus are made of a base made of PET, aramid resin, or the like.
  • the magnetic layer has a magnetic layer on one side of the layer, a back layer on the other side, or an overcoat layer (protective layer) or an undercoat layer. Any tape is acceptable.
  • FIG. 1 shows a magnetic tape processing apparatus to which a first embodiment of a magnetic tape transport stabilizing apparatus for performing a tape transport stabilizing method according to a first mode of the first aspect of the present invention is applied.
  • 1 shows a conceptual diagram of one embodiment.
  • a magnetic tape processing device (hereinafter simply referred to as a processing device) 10 is a magnetic tape processing device.
  • a suitable processing is performed in the longitudinal direction of the tape T (hereinafter simply referred to as a tape).
  • 22 is a guide roller
  • 24 is a capstan roller.
  • the processing is performed while transporting the tape T in the longitudinal direction (the arrow X direction in the figure).
  • a predetermined process is performed on the tape T by the unit 12.
  • the tape T is transported with its magnetic layer facing upward in the figure.
  • the processing performed on the tape T in the processing unit 12 is not particularly limited. For example, as illustrated in FIGS. 7A, 7B, 8A, 8B, and 8C described below, Various kinds of processing using laser light can be given. The details of these processings will be described later.
  • the tape supports 18a and 18b come into contact with the back surface (back layer side) of the tape T to be conveyed, and position the tape T at a predetermined position (particularly in the height direction in the figure). Control). Further, the suction means 20a, 2Ob arranged near the tape supports 18a, 18b apply a pressure lower than the surrounding pressure, as shown in FIG.
  • the bodies 18a and 18b are located immediately before the upstream side in the tape transport direction.
  • the suction means 20a and 2Ob arranged in this way are connected to a suction pump (not shown) and generate a pressure lower than the surrounding pressure.
  • the action of pressing against the tape supports 18a and 18b is shown. As a result, an abnormal situation such that the tape is lifted from the tape supports 18a and 18b and cannot be normally conveyed does not occur.
  • FIG. 2 shows a schematic configuration of a main part of another embodiment of the processing apparatus to which the second embodiment (second embodiment) of the present embodiment is applied.
  • the processing apparatus 10a is characterized in that at least portions of the tape supports 18c and 18d that come into contact with the tape are made of a magnetic material. With such a configuration, the suction means 20a and 2Ob shown in the processing apparatus 10 to which the first embodiment of FIG. 1 is applied become unnecessary.
  • Other components of the processing device 10a shown in FIG. 2 are the same as those of the processing device 10 shown in FIG. 1, and therefore, the same components are denoted by the same reference numerals. However, detailed description thereof is omitted.
  • the tape supports 18c and 18d according to the present embodiment can be formed of various magnetic materials at least in the tape contact portion or in whole.
  • a permanent magnet made of iron, cobalt, nickel, or an alloy or oxide thereof can be suitably used.
  • an abnormal condition such that the tape crests float from the tape supports 18c and 18d and cannot be normally conveyed does not occur.
  • FIG. 3A and 3B show a schematic configuration of a main part of another embodiment of the processing apparatus to which the third embodiment (third embodiment) of the present embodiment is applied, respectively.
  • FIG. 3A is a side view
  • FIG. 3B is a top view.
  • the tape support 18 e is formed as one large block, and the surface thereof (the upper surface in the figure, the surface in contact with the tape T) is provided with the tape T.
  • a plurality of grooves 26a in the same direction as the traveling direction are provided.
  • suction means reference numerals 20a and 20b in FIG. 1 as shown in the first embodiment is unnecessary.
  • Other components are the same as those of the processing apparatus 10 of the first embodiment shown in FIG.
  • FIG. 3B only a uniform linear groove is shown as the groove 26a provided on the surface of the tape support 18e.
  • the present invention is not limited to this.
  • a groove having a variable width and depth may be provided.
  • the cross-sectional shape of the groove 26a various shapes such as V-shaped, U-shaped, square or semicircular are effective. Further, the size and number of the grooves may be appropriately determined according to the width of the tape T, the transport speed, and the like.
  • FIG. 4 shows a schematic configuration of a main part of another embodiment of the processing apparatus to which the fourth embodiment (fourth embodiment) of the present embodiment is applied.
  • the tape supports 18f and 18g are formed as edges having an acute angle formed on the upstream side in the transport direction of the tape T.
  • the angle of the edge is preferably, for example, within 45 degrees. It is preferable that the tips of the tape supports 18 f and 18 g are polished so as not to damage the tape T.
  • the suction means reference numerals 20a and 20b in FIG. 1 as shown in the first embodiment is unnecessary. Other components are the same as those of the processing apparatus 10 of the first embodiment shown in FIG.
  • the tape supports 18f and 18g described above have the sharp edges that act to separate the air layer moving along with the tape from the tape T.
  • the air layer between the tape T and the tape supports 18 f and 18 g can be made thinner, and the tape T floats from the tape supports 18 f and 18 g. As a result, a situation in which normal transport cannot be performed does not occur.
  • the material constituting the tape supports 18f and 18g is not particularly limited, and any material having sufficient abrasion resistance can be used.
  • any material having sufficient abrasion resistance can be used.
  • suction means 20a and 20b as shown in FIG. 1 may be used together.
  • FIG. 5 shows a schematic configuration of a main part of another embodiment of a processing apparatus to which another embodiment of the present aspect is applied.
  • the embodiment shown in FIG. 5 is an improvement of the groove 26a provided on the surface of the tape support 18e of the processing apparatus 10b of the third embodiment shown in FIG. 3B.
  • the groove provided on the tape support 18 h is replaced with an inclined groove 26 b extending toward the downstream side in the tape transport direction.
  • the suction means 20c and 20d are arranged at each end of 26b, that is, on both side surfaces of the tape support 18h.
  • the air between the tape support 18 h and the tape T is separated by suction means 2 disposed on both side surfaces of the tape support 18 h. Since the tape T is eliminated from 0c20d, the tape T is transported in sufficient contact with the tape support 18h, and the effect that transport problems such as slippage can be prevented beforehand. can get.
  • the shape (inclination angle, etc.) and dimensions (width, depth, etc.) of the inclined groove 26 b may be determined as appropriate within a range based on the purpose of the present embodiment.
  • suction means 20c and 20d are not necessarily provided, and the shape (inclination angle, etc.) and dimensions (width, depth, etc.) of the above-mentioned inclined groove 26b are appropriately set. In many cases, sufficient effects can be obtained.
  • FIG. 6 shows a schematic configuration of a main part of another embodiment of a processing apparatus to which another embodiment of the present embodiment is applied.
  • the processing apparatus 10d according to the present embodiment is obtained by partially changing the configuration of the processing apparatus 10 according to the embodiment shown in FIG. 1, and an air layer accompanying the tape T is formed by a suction drum. By 28, the suction is removed.
  • the magnetic tape transport stabilizing method and apparatus according to the first aspect of the present invention are basically configured as described above.
  • the magnetic tape applicable to each embodiment of the present invention has a magnetic layer on one surface of a base layer (base film) made of PET, an aramide resin, or the like as described above, and has a magnetic layer on the other surface of the base layer.
  • a base layer made of PET, an aramide resin, or the like as described above
  • a magnetic tape processing apparatus performs a process of forming the above-described “escape route” of entrained air, which is formed of a concave portion (preferably a groove), on the back layer of the magnetic tape.
  • FIGS. 7A and 7B are plan views of a magnetic tape processing apparatus to which the present invention is applied (hereinafter, simply referred to as a processing apparatus). Is shown.
  • a plurality of processing lines a extending in the longitudinal direction of the tape T are formed on the back layer of the tape T.
  • the back layer is intermittently processed in the example shown in Fig. 7A.
  • This is an example in which the processing line is divided into lines (indicated by the processing line segment b).
  • the length of the processing line segment b is not particularly limited. Further, the lengths of the processing line segments b may be all the same, or line segments having different lengths may be mixed.
  • the tape T having the concave portion (processed line a, processed line segment b) in the back layer has a cutting force that is a curl in the width direction of the tape T as compared with the conventional tape.
  • the reduction in appearance due to cutting, deterioration of head contact, and damage to the tape edge are also greatly reduced as compared with conventional tapes.
  • Air can be preferably removed from the processing line (recess).
  • such a tape T can be used to remove air between the tapes during winding.
  • the rolled shape when rolled up into a cartridge or pancake is also beautiful.
  • FIG. 8A a rectangular shape as shown in FIG. 8A, a triangular shape as shown in FIG. 8B, a semicircle as shown in FIG. 8C ( Bow type) and the like.
  • These shapes can be realized by adjusting the intensity distribution (profile) of the beam spot of the laser beam used when processing the back layer.
  • the depth of the recess there is also no particular limitation on the depth of the recess, and in general, the width of the tape, the forming material and thickness of the back layer, the forming material and thickness of the base, the process after forming the recess, and the user's application. In consideration of the load on the tape (transport speed, tension, etc.) due to the tape processing, etc., it may be appropriately determined according to the required tape strength and the like. As an example, the depth of the recess is preferably at least 0.1 // m, more preferably at least 0.2 wm.
  • the size (line width) and the formation density of the concave portion are not particularly limited, and may be appropriately determined according to the strength and width (size) of the tape.
  • a tape having a width of 0.5 inch is used.
  • the width is about 3 m to 10 and several to 100 in the width direction. It is preferable to form a processing line of the order.
  • the method and apparatus for stabilizing the transport of the magnetic tape of the present invention are performed by irradiating the laser beam or the like described above onto the back layer of the magnetic tape.
  • the case where the present invention is applied to a tape conveying means of a magnetic tape processing apparatus for forming a concave portion (groove) in the back layer will be described as a typical example, but the present invention is not limited to this.
  • FIG. 9 shows an embodiment of a magnetic tape processing apparatus to which a magnetic tape transport stabilizing apparatus for performing the magnetic tape transport stabilizing method according to the first and second embodiments of the second aspect of the present invention is applied.
  • FIG. The processing device 30 shown in FIG. 9 is a processing device for manufacturing the magnetic tape T as described above using a processing method using a laser beam.
  • the processing apparatus 30 in the illustrated example forms a processing line a and a processing line segment b extending in the longitudinal direction of the tape T as shown in FIGS. 7A and 7B described above.
  • An optical system including a light source 32 for emitting light, a pulse modulator 34, a mirror 36, a beam expander 38, a beam profiler 40, and a multi-lens lens 42, and a tape transport means 44 .
  • the (magnetic) tape T is ejected from the light source 32 while being transported in the longitudinal direction (the arrow X direction in the figure) while the tape T is being positioned at a predetermined processing position by the tape transport means 44.
  • the processed laser beam is incident on the processing position by an optical system to form a processing line on the tape.
  • the tape T is conveyed with its back layer facing upward (toward the laser beam incidence side), so that the back layer of the tape ⁇ is processed by the laser beam.
  • any light source (laser oscillator) can be used as long as it has an output capable of processing the back layer of the tape T.
  • at least one of an ultraviolet region or a visible region laser beam is used. What can emit light is used.
  • a laser beam having a short wavelength is preferable, and a laser beam in the ultraviolet region is the best, but a laser beam in the visible region is preferable in terms of cost, safety, workability, and the like.
  • argon (ion) lasers and YAG lasers are converted to wavelengths by SHG (second harmonic generation) second harmonic generation (SHG) devices.
  • SHG second harmonic generation
  • a light source that emits a laser beam is exemplified.
  • the pulse modulator 34 modulates a laser beam with a pulse to form a processing line segment b as shown in FIG. 7B. Therefore, the pulse modulator 34 is unnecessary when the light source 32 can directly perform pulse modulation or when only a processing line as shown in FIG. 7A is formed.
  • the pulse modulator 34 a known modulation means such as an AOM (acoustic optical modulator) can be used. Also, by adjusting the modulation period, the length of the processing line segment b can be adjusted. Further, the processing line segment b may be patterned by modulation. The laser beam is reflected in a predetermined direction by the mirror 36, and then enters the beam spreader 38.
  • AOM acoustic optical modulator
  • the processing apparatus 30 shown in the present embodiment divides one laser beam and forms a processing line on the tape, but the processing line is formed on the entire surface in the width direction corresponding to the tape T having various widths. Is preferably formed. However, in general, the diameter of the laser beam emitted from the light source is about 1 mm, and the width of the tape T is wider than that. Therefore, the entire surface of the tape T in the width direction cannot be processed as it is.
  • the beam expander 38 is arranged to expand the diameter of the laser beam emitted from the light source 32.
  • the diameter of the laser beam may be expanded to about 15 to 20 times. Further, it is preferable that the diameter expansion ratio of the laser beam in the beam expander 38 can be adjusted.
  • the laser beam expanded by the beam expander 38 then enters a beam profile shaper (hereinafter simply referred to as a shaper) 40.
  • the shaper 40 makes the intensity of the laser beam substantially uniform over the entire beam spot, that is, makes the intensity distribution of the laser beam substantially uniform.
  • the laser beam emitted from the light source 32 has an intensity distribution such as a Gaussian distribution. Therefore, when processing the tape T with this laser beam, the processing line a and the processing line segment b ( (Hereinafter, these are simply referred to as processing lines.) Therefore, by disposing the molding device 40, the intensity distribution of the laser beam can be made uniform, and the depth of the processing line to be formed can be made uniform.
  • the shaping device 40 various optical filters, an aperture having the same diameter as a laser beam for shaping a beam profile using Fresnel diffraction, a multi-lens lens, and the like can be used.
  • the laser beam then enters the multi-lens lens 42.
  • the multi-lens lens 42 is made up of a number of microball lenses or self-occurring lenses, the optical axis of which is parallel to the laser beam, and arranged in a direction orthogonal to the optical axis. Then, it is incident on a predetermined processing position and forms an image. As a result, the back layer of the tape T is processed by the laser beam to form a processing line or the like (recess).
  • FIG. 10 is a schematic view of one embodiment of the multi-lens lens 42 when viewed from the optical axis direction.
  • the multi-lens lens 42 in the illustrated example is, for example, a microball lens or a selfoc lens (hereinafter, both are collectively referred to as a lens) in which 5 ⁇ 5 lenses are arranged in a close-packed state.
  • the lens array line indicated by the one-dot chain line is arranged with a slight inclination with respect to the transport direction X and the width direction of the tape T. This makes it possible to form a total of 25 (rows) processing lines a extending in the longitudinal direction only by transporting the tape T once (one pass) in the longitudinal direction.
  • the interval between the additional lines a can be adjusted.However, in order to efficiently form a processing line, this angle is The optical axis of the lens (the center of the beam waist) must be set so that it does not overlap in the transport direction X.
  • the lens arrangement line in the width direction of the tape T when paying attention to the lens arrangement line in the width direction of the tape T, if the number of multi-lens lenses in a row is N, and the angle between the transport direction X and the arrangement line is ;, the following equation is satisfied.
  • the optical axes of the lenses do not overlap in the transport direction X.
  • the lens array of the multi-lens lens 42 is not limited to the close-packed state shown in FIG. 10, and various types can be used.
  • the tape ⁇ is moved to a predetermined processing position by turning the back layer side (back side) toward the upstream side (laser beam incident side) of the laser beam optical path by the tape transport means 44. It is conveyed in the longitudinal direction while being regulated (that is, the conveying direction X is made to coincide with the longitudinal direction).
  • the tape transport means 44 includes transport drive means (not shown) such as a capstan roller, a rewinder, and a winder (for example, see FIG. 1), guide rollers 46 and 48, and a tape flattener 501. And power! Is done.
  • the tape flattener 50 abuts on the surface (magnetic layer side) of the tape T to be conveyed, and holds the tape T at a predetermined processing position (position regulation).
  • the transport path of the tape T is formed below the tape flattener 50 by the guide rollers 46 and 48 arranged in the transport direction X with the tape flatner 50 interposed therebetween. As a result, the tape T is pressed and supported by the tape flattener 50, and its position is regulated at the processing position.
  • the processing by the laser beam is performed as fine as 3 m to 10 m in width, as shown in the example of the tape T having a width of 0.5 inches described above. Since it is processing, the beam spot diameter incident on the processing position is small, that is, the allowable range of the beam waist is very narrow.
  • the tape flattener 50 is required to position the tape T with high precision, preferably with an error of 10 or less, in the depth of focus direction of the multi-lens 42.
  • the processing position is emitted from the light source 32, modulated by the pulse modulator 34 if necessary, reflected by the mirror 36, and expanded by the beam expander 38.
  • the intensity distribution is made uniform by the molding machine 40, and the laser beam divided and modulated by the multi-lens lens 42 is incident and forms an image.
  • the tape T is transported in the longitudinal direction while being positioned at the processing position by the tape flattener 50 in a state where the back surface is directed upstream of the laser beam optical path by the tape transport means 44.
  • a processing line (recess) extending in the longitudinal direction is formed on the back layer. In the case of the above example, 25 processing lines are obtained by one transfer. Is formed.
  • a removal means for removing the above-mentioned processing residue and gas in the vicinity of the processing position For example, a means for spraying ion wind and dust which is separated and suspended by the ion wind It is desirable to provide a dust removing means composed of a suction means for inhaling and the like. Further, it is preferable to provide a cleaning means downstream of the processing position to remove foreign matter attached to at least the back surface (back layer surface), preferably the front and back surfaces of the tape T.
  • FIGS. 11A and 11B in the tape processing apparatus 30, means for positioning (positioning) the tape T conveyed by the tape conveying means 44 to a predetermined processing position (hereinafter referred to as “tape positioning”).
  • FIG. 11A is a side view showing the winding state of the tape T around the tape supports 50a and 50Ob of the tape flattener 50 in FIG. 9, and FIG. It is a top view.
  • 52 a, 52 b, and 52 c are tape guides that regulate one end of the tape T
  • 54 a and 54 b are tapes T
  • the tape guides 52 a, 52 b, 5 2 Magnet to be attracted in the c direction are tape guides that regulate one end of the tape T.
  • the tape positioning section 51a is configured such that the tape T is wound around the tape supports 50a and 50b at an angle of a certain degree or more.
  • the tape T in FIG. Magnetics 54a and 54b directions). In this way, by winding the tape T around the tape supports 50a and 50Ob at an angle of a certain degree or more, the tape T is not deformed in the width direction, but is only moved in the width direction. It becomes possible.
  • the magnetic tape can be positioned at a fixed position in the width direction with a simple configuration, which can be suitably applied to various processing apparatuses for processing a magnetic tape.
  • a magnetic tape transport stabilization device capable of performing the above can be realized.
  • magnets 54a and 54b in the tape positioning section 51a of the processing apparatus various magnetic materials, specifically, iron, cobalt, nickel, and alloys thereof.
  • a permanent magnet made of an oxide can be suitably used.
  • the tape guides 52a, 52b and 52c are made of a material having good abrasion resistance and slipperiness, for example, made (or covered) of plastic such as Teflon or polyethylene. Can be suitably used.
  • the tape supports 50a and 50Ob are not particularly limited as long as they are wear-resistant materials, and examples thereof include sapphire blades.
  • FIG. 12A is a side view showing the winding state of the tape T around the tape supports 50a and 50Ob of the tape flattener 50 in FIG. 9, and FIG. It is a top view.
  • 52 is a tape guide that regulates one end of the tape T. Denotes a magnet for attracting the tape T in the direction of the tape guide 52.
  • the tape positioning unit 51b according to the present embodiment is different from the tape positioning unit 51a according to the first embodiment in that the tape guide and the magnet, which are divided into a plurality of parts, are arranged. In the state where the tape T is wound around the tape supports 50a and 50b at an angle of a certain degree or more, the tape T is lifted upward in FIG. It is configured to urge the magnet (4 directions).
  • the tape T By wrapping the tape T around the tape supports 50a and 50 at a certain angle, the tape T can be moved only in the width direction without deforming the tape T in the width direction. And
  • the effect obtained by the configuration according to the present embodiment is that, in addition to the fact that the magnetic tape can be positioned at a fixed position in the width direction as in the first embodiment, the configuration of the positioning mechanism can be further simplified. It is in.
  • magnet 54 used in the above embodiment various magnetic materials, specifically, iron, cono- lt, nickel, and the like, like the magnets 54a and 54b shown in the first embodiment. Permanent magnets made of the above alloys or oxides can be suitably used.
  • the tape guide 52 is made of Teflon or polyethylene which has the same abrasion resistance and slipperiness as the tape guides 52a, 52b and 52c shown above (or is covered). What was done can be used suitably.
  • the tape guide 52 and the magnet 54 are shown as separate members in FIGS. 12A and 12B, the tape guide 52 may have a built-in magnet, for example. Uniting and standardizing, that is, having magnetism It is also possible to use as a tape guide. With this configuration, the configuration of the tape positioning unit 5 lb can be further simplified.
  • FIGS. 13A and 13B show a third embodiment of the tape positioning unit 51c.
  • FIG. 13A is a side view showing the winding state of the tape T around the tape guide rollers 56a and 56b before and after the tape flattener 50 in Fig. 9, and Fig. 13B is the above tape guide.
  • FIG. 7 is a side sectional view of rollers 56a and 56b.
  • reference numeral 57 denotes the main shaft of the tape guide rollers 56a and 56b
  • 58 denotes the movable flange 59 in the direction of the stepped portion of the main shaft 57 (a reference surface when pressing the tape T).
  • And 60 denotes a stopper.
  • the tape T is moved in the width direction of the tape T by the movable flanges 59 of the tape guide rollers 56a and 56b having the built-in springs 58.
  • the feature is that it is configured to be pressed in the direction of the stepped portion of the main shaft 57 having a guide function for regulating the position.
  • the tape guide rollers 56a and 56b shown in Fig. 13A and Fig. 13B have a built-in weak spring 58, and can be pushed through this weak spring 58.
  • the tape T is pressed by the movable flange 59 that is provided.
  • Teflon-Polyethylene having good slipperiness can be suitably used.
  • Figure 14-8, Figure 14B and Figure 14C show the tape positioning section 5 1 dffi 4— The following shows an example.
  • FIG. 14A shows the movable tape guides (pushers) 62a and 62b provided so as to be extrapolated to the tape supports 50a and 50Ob of the tape flattener 50 in Fig. 9.
  • FIG. 14B is a top view of the same part, showing the winding state of the tape T
  • FIG. 14C is a side sectional view of the movable tape guides 62a and 62b.
  • the movable tape guides (pushers) 62a and 62b are fixed to the tape supports 50a and 50ob so as to be extrapolated to the tape supports 50a and 50b.
  • Fig. 14A, Fig. 14B and Fig. 14C 52 is a (fixed) tape guide, 63 is a movable tape guide (pusher), 62a and 62b stoppers, and 64 is a flange-shaped A spring for pressing the movable guide 65 against the spindle tape guide 52 is shown.
  • the tape T is moved in the direction of the tape guide 52 by the movable guides 65 of the movable tape guides (pushers) 62a and 62b having the built-in springs 64.
  • the feature is that it is configured to be pressed against. With such a configuration, the same effects as those obtained by the above-described first to third embodiments of the first and second embodiments of the present embodiment can be obtained.
  • FIGS. 15A and 15B show a fifth embodiment of the tape positioning unit 51 e.
  • the tape flattener 50 in FIG. 9 and the tape guide rollers 69a and 69b before and after the tape flattener 50 are integrated into
  • the tape T is configured to be movable, and a sensor for detecting an edge position in this direction (width direction) of the tape T is provided. It is.
  • a roller with a flange as shown in FIG. 15B that is, a roller having a rib for regulating the position at both ends of the tape conveying surface is preferable.
  • the two flanges provided at both ends of the tape guide rollers 69a and 69b have a height of about lmm to 3mm, and a distance between them (that is, the surface length of the rollers). Is preferably slightly smaller than the width of the tape T in order to realize stable conveyance.
  • FIG. 15E is a side view of the tape positioning unit 51 e according to the present embodiment
  • FIG. 15B is a top view of the same.
  • reference numeral 66 denotes an optical head of the laser displacement meter, which includes a light emitting unit 66a and a light receiving unit 66b.
  • the optical head 66 is adjusted so as to detect the position of the object (tape T) by receiving the laser beam emitted from the light projecting unit 66 a at the light receiving unit 66 b.
  • a control unit 67 controls the optical head 66 and outputs a control signal for controlling a tape transport unit position correcting unit 68 described later based on the light receiving result of the light receiving unit 66 b. Unit.
  • the tape transport unit position correcting means 68 is a tape flattener that supports the tape T.
  • a motor drive mechanism for positioning the tape T at a predetermined position by moving the pedestal 68 a in the width direction of the tape T by rotating the 68 b synchronously is provided.
  • the tape positioning section 51 e of the present embodiment configured as described above, the laser beam emitted from the light projecting section 66 a of the optical head 66 of the laser displacement meter 66 b
  • the control unit 67 obtains information on the position of the tape T on the basis of the degree of light received by the control unit 67, and controls the tape transport unit position correcting means 68 on the basis of this position information.
  • the tape positioning unit 51 e of the present embodiment can quickly correct the fluctuation.
  • the largest cause of the change in the position of the tape T is the abrasion of the tape flattener 50 due to the continuous transport of the tape T at a high speed.
  • the tape positioning unit 51 e of the present embodiment can cope with whatever the cause of the position variation of the tape T.
  • the method and apparatus for stabilizing the transfer of a magnetic tape according to the first and second embodiments of the second aspect of the present invention are basically configured as described above.
  • the transport stabilizing method and apparatus according to the present embodiment are also applied to the back layer of the magnetic tape by irradiating the laser beam or the like as described above with a concave portion (groove).
  • a concave portion groove
  • the case where the present invention is applied to a tape transport control unit of a magnetic tape processing apparatus for performing a process for forming the above will be described as a typical example, but the present invention is not limited to this.
  • the magnetic tape transport stabilizing apparatus for performing the magnetic tape transport stabilizing method according to the first mode of the third aspect of the present invention is a tape transporting means 44 of a processing apparatus 30 shown in FIG. It can be applied as a transport control unit.
  • FIG. 16 shows a schematic configuration of an embodiment of a magnetic tape transport control unit applied to the processing device 30 shown in FIG.
  • a laser beam is incident on the back layer of the tape T, and the concave portion (groove, processing line a or processing line segment b (FIG. 7A and FIG. 7B)
  • the concave portion groove, processing line a or processing line segment b (FIG. 7A and FIG. 7B)
  • the tape positioning units 51 a to 51 e which are the examples of the first and second embodiments of the second embodiment of the present invention shown in FIG. 11A to FIG.
  • the conveyance stability of the magnetic tape T in the width direction is secured.
  • the third aspect of the present invention shown in FIG. 16 The magnetic tape transport controller 70 according to the embodiment of the first embodiment is for ensuring the transport stability of the tape T in the vertical direction (the focal direction of the laser beam) in the figure.
  • reference numeral 72 denotes an optical head of the laser displacement meter, which includes a light projecting unit and a light receiving unit.
  • the optical head 72 is adjusted so that the laser beam emitted from the light projecting unit and reflected by the object (tape T) is received by the light receiving unit.
  • a control unit 74 performs measurement control of the optical head 72 and outputs a control signal for controlling a tape transport unit position correcting means 76 described later based on a light reception result of the light receiving unit. Is shown.
  • the tape transport unit position correcting means 76 includes a pedestal 76a for supporting the tape flattener 50 for supporting the tape T, and the pedestal 76a is vertically moved by four screw shafts 76b. It is composed of a lift mechanism 76c. Although not shown, the four screw shafts 76b are rotated in synchronization with the lift mechanism 76c to move the pedestal 76a up and down. A motor drive mechanism for positioning the tape T at a predetermined position is provided.
  • the tape transport control unit 70 of the present embodiment configured as described above receives the laser beam emitted from the light emitting unit of the optical head 72 of the laser displacement meter and reflected by the tape T at the light receiving unit.
  • the control unit obtains information on the position of the tape T based on, for example, positional information of the received laser light on the light receiving surface, and based on this information, It controls the tape transport section position correcting means 76.
  • the tape transport control unit 70 By performing such a control operation, even if the position of the tape T fluctuates, the tape transport control unit 70 according to the present embodiment can quickly correct the fluctuation.
  • the largest cause of the change in the position of the tape T is the abrasion of the tape flattener 50 due to the continuous transport of the tape T at a high speed.
  • the tape transport controller 70 according to the present embodiment can cope with any change in the position of the tape T.
  • the tape position correction function of the tape transport control unit is operated to constantly monitor the change in the position of the tape T at the processing position.
  • the force to which the tape position correcting function is applied is substantially limited to the tape flattener 50. This is appropriate for the size (may be called mass) as the control object. The present invention should not be limited to this. In addition, since the movement distance of the tape flattener 50 is extremely small in practice, the front and rear tape guide rollers do not need to be changed.
  • the tape position detecting means for monitoring the change in the position of the tape T is not limited to the one based on the position at which the reflected laser light is received as shown in the embodiment, but may be highly utilizing the interference between the projected light and the reflected light. Means for performing position detection with accuracy can be used.
  • the position (position) for monitoring the change in the position of the tape T is not limited to the upstream side of the processing position W as shown in FIG. 16, but may be the downstream side, or the tapes may be detected simultaneously at both positions. May be.
  • the magnetic tape transport stabilizing method and apparatus according to the first mode of the third aspect of the present invention are basically configured as described above.
  • the transport stabilizing method and apparatus according to the present embodiment are also configured such that a laser beam or the like as described above is incident on a back layer of a magnetic tape, and a concave portion ( A case where the present invention is applied to a tape transport means of a magnetic tape processing apparatus for performing processing for forming a groove will be described as a typical example, but the present invention is not limited to this.
  • FIG. 17 shows a conceptual diagram of a processing apparatus for manufacturing such a magnetic tape by using a processing method using a laser beam.
  • the processing device 80 shown in FIG. 17 is the same as the processing device 30 shown in FIG.
  • the same components have the same configuration except that a tape flatner 82 is provided in place of the tape flatner 50 forming the steps 4 4, so that the same components are denoted by the same reference numerals.
  • the reference numerals are used, and the detailed description is omitted.
  • the processing device 80 shown in FIG. 17 is similar to the processing device 30 shown in FIG. 9 in that the processing line a or the processing line extending in the longitudinal direction of the tape as shown in FIG. 7A and FIG.
  • a light source 32 that emits a laser beam, a pulse modulator 34, a mirror 36, a beam expander 38, a beam profile shaper 40, and a multi-lens lens 42 It has an optical system and a not-shown transport drive means such as a capstan roller, a rewinder and a winder, and a tape transport means 44 composed of guide rollers 46 and 48 and a tape flatner 82.
  • the tape flatner 82 is composed of high-precision flanged rollers 82a and 82b as described later.
  • the tape flatner 82 comes into contact with the surface (magnetic layer side) of the tape T to be conveyed. T is positioned (held) at a predetermined processing position.
  • the guide rollers 46 and 48 arranged in the transport direction X with the collar rollers 82a and 82b therebetween form a transport path below the tape flatner 82. Is done.
  • the tape T is pressed and supported by the tape flattener 82, and is regulated (attached) to the processing position.
  • the processing by the laser beam is performed in the width 3 im to l0 as described in the example of the tape T having a width of 0.5 inches described above. Because of such fine processing, the beam spot diameter incident on the processing position is small, that is, the allowable range of the beam waist is very narrow. For this reason, the tapered rollers 8 2 a and 8 2 b constituting the tape flattener 82 are provided with high precision in the direction of the depth of focus of the multilens lens 42, preferably with an error of about l O im. It is required to position T.
  • the processing position is emitted from the light source 12, modulated by the pulse modulator 14 as necessary, reflected by the mirror 16, and expanded by the beam expander 18.
  • the intensity distribution is made uniform by the molding device 20, and the laser beam divided and modulated by the multi-lens lens 22 enters and forms an image.
  • the position is regulated at the processing position by the flanged rollers 8 2a and 8 2b constituting the tape flatner 82.
  • a processing line (concave) extending in the longitudinal direction is formed in the back layer of the tape T.
  • 25 processing lines are formed.
  • the transport stability in the width direction is important.
  • FIG. 18 shows a first embodiment of the tape positioning unit for regulating (positioning) the position of the tape T at a predetermined processing position in the processing apparatus 80 shown in FIG.
  • the tape positioning section 81a shown in FIG. 18 is constituted by the tape flatner 82 itself, and the tape flatner 82 is constituted by flanged rollers 82a and 82b.
  • FIG. 19 is a side sectional view of the ribbed rollers 82a and 82b constituting the tape flattener 82 shown in FIG.
  • reference numeral 83 denotes a flange with a height of about 1 mm to 3 mm provided at the end of the ⁇ ⁇ _8 2 at 8 2 b ⁇ Is shown.
  • the flanged rollers 82a and 82b each have a width (surface length) slightly smaller than the width of the tape T, and have both ends curved as shown in FIG. Part 84.
  • the curvature of the curved surface processing portion 84 is appropriately determined based on the type and thickness of the tape T.
  • the surface length of the above-mentioned flanged rollers 82a and 82b this is slightly narrower (specifically, for example, about 1%) than the tape width.
  • the surface length of the attached rollers 82a and 82b is the same as the tape width, as shown in Fig. 2OA and Fig. 20B, the initially flat roller surface (Fig. The OA flanged roller 85) wears, causing dents 87, 87 at both ends due to wear (see the flanged roller 86 in Fig. 20B), which can cause damage to the tape T. This is to prevent
  • the surface shape of both ends of the rimmed rollers 82a and 82b is processed into a curved surface so that the rimmed roller 82m is narrower than the width of the tape T. , 82b, the effect of improving the familiarity of the tape T between the brims at both ends.
  • the magnetic tape can be applied to various processing apparatuses for processing a magnetic tape, etc.
  • a magnetic tape transport stabilization device capable of positioning can be realized.
  • FIG. 21A and FIG. 21B show a second embodiment of the tape positioning unit 81b.
  • the tape positioning unit 81b shown in FIG. 21A is the same as the tape positioning unit 81a shown in FIG.
  • a tape flattener 50 (see FIG. 9) composed of tape supports 50a and 50b, each consisting of a sapphire blade, etc., and the preceding stage (upstream side) Roller whose center is enlarged as a so-called crown roller.
  • the crown roller 88 has a diameter at the center portion larger than the diameter at both end portions, that is, D i> d, so that when the web is conveyed, If it is used, it will automatically correct this deviation even when the positional deviation (meandering) in the horizontal direction of the web occurs.
  • D i> d the diameter at both end portions
  • only one crown roller 88 may be used, but in order to further ensure the effect, it is preferable to use at least two crown rollers in pairs.
  • the tape positioning unit 8 1b has a crown roller 88 instead of the ribbed rollers 8 2a and 8 2b shown in the first embodiment.
  • FIGS. 22A and 22B show a third example of the tape positioning unit 81c.
  • the tape positioning section 8 1c shown in FIG. 22A is replaced by a tape support instead of the two crown rollers 88 of the tape positioning section 8 1b shown in FIG. 21A.
  • the con Cape roller 8 9 also, as is well known, the diameter of the central portion is smaller than the diameter of both ends, i.e., which is configured to D 2 ⁇ d 2, when conveying a web When this is used, even if a positional deviation (meandering) in the horizontal direction of the web occurs, this deviation is automatically corrected.
  • a positional deviation (meandering) in the horizontal direction of the web occurs, this deviation is automatically corrected.
  • only one convey roller 89 may be used, it is preferable to use at least two pairs in order to further ensure the effect.
  • the same effects as those obtained by the first and second embodiments described above can also be obtained by the tape positioning unit 81c according to the present embodiment.
  • the configuration of the tape positioning units 81a, 81b and 81c shown in the first, second and third embodiments, their components and their various means should be set within a range that does not conflict with each other. It goes without saying that they may be used in appropriate combinations.
  • the magnetic tape transport stabilizing method and apparatus according to the third mode of the second aspect of the present invention are basically configured as described above.
  • a magnetic tape transport stabilizing apparatus for performing the magnetic tape transport stabilizing method according to the second mode of the third aspect of the present invention is provided in a tape transport means 44 of a processing apparatus 80 shown in FIG. It is applied as a tape transport control unit.
  • FIG. 23 shows a schematic configuration of an embodiment of a magnetic tape transport control unit applied to the processing apparatus 80 shown in FIG.
  • the laser beam is incident on the back layer of the tape T, and the concave portion (the groove, the processing line a or the processing line segment b (FIG. 7A And Fig. 7B)
  • the concave portion the groove, the processing line a or the processing line segment b (FIG. 7A And Fig. 7B)
  • the tape positioning units 81 a to 81 c of the third embodiment of the second aspect of the present invention shown in FIGS. 18 to 22B are transported by a tape transport unit 44.
  • the magnetic tape transport controller 90 according to the embodiment of the present embodiment is for ensuring the transport stability of the tape T in the vertical direction (the focal direction of the laser beam) in the figure.
  • reference numeral 72 denotes an optical head of the laser displacement meter, which includes a light projecting unit and a light receiving unit.
  • the optical head 72 is adjusted so that the laser beam emitted from the light projecting portion and reflected by the object (tape T) is received by the light receiving portion, and is provided at least on one of the upstream side and the downstream side of the processing position. It is good.
  • Reference numeral 74 controls the measurement of the optical head 72, and measures the position of the tape T.
  • the figure shows a control unit that outputs the result to display means (not shown).
  • the optical head 72 and the control unit 74 used in the tape transport controller 90 those used in the tape transport controller 70 shown in FIG. 16 can be used.
  • the flanged rollers 82a and 82b constituting the tape flatner 82 have a height of about 1 mm to 3 mm at both ends as shown in FIG. It is a special roller that has flanges 83 and 83, has a width (surface length) slightly smaller than the width of the tape T, and has curved end portions 84 at both ends.
  • the rotation accuracy (axis run-out) has the accuracy described below.
  • the surface lengths of the flanged rollers 82a and 82b are made slightly smaller (specifically, for example, about 1%) than the tape width. As described above, this is to minimize the cause of damage to the tape T.
  • the surface shape of both ends of the rimmed rollers 82a and 82b is processed into a curved surface, so that the rimmed rollers 82a and 82b are narrower than the width of the tape T.
  • the familiarity of the tape T can be improved between the flanges on both side ends of the 8 2 b.
  • the focal position of the laser beam is, in practical use, centered on the position where the laser power reaches its maximum value, and before and after the position where the laser power reaches its maximum value. It is possible to consider including the range of 95% or more.
  • the depth of the focus position of the practical laser beam changes depending on the spot diameter of the laser beam. For example, when the spot diameter of the laser beam is 10, the depth of the focus position is about 30 m. Become. ⁇ Therefore, the ribbed rollers 82a and 82b constituting the tape flatner 82 need to be formed so as to clear this accuracy.
  • the axial runout of the flanged rollers 82a and 82b corresponds to, for example, the range where the attenuation of the power of the processing laser light (laser beam) is within 5% of the maximum value. Any size may be used.
  • the tape transport controller 90 of the present embodiment configured as described above controls the position in the width direction by the flanged rollers 82a and 82b, and also controls the flanged rollers 82a and 82b themselves. Since the position in the height direction is regulated by the rotation accuracy of the tape T, when applied to an apparatus for performing laser processing of the tape T, it has an effect that extremely stable transport of the tape T can be realized.
  • the laser beam emitted from the light projecting unit of the optical head 72 of the laser displacement meter and reflected by the tape T is received by the light receiving unit, and the control unit 7 In step 4, by outputting the position information of the received laser beam on the light receiving surface, for example, to a display device, it is possible to monitor changes in the shaft runout of the flanged rollers 82a and 82b. Based on the results, appropriate measures such as replacement can be taken.
  • the height and thickness of the flanges of the flanged rollers 82a and 82b, the curvature of the curved surface processed portions at both ends, and the like may be appropriately determined according to the type and thickness of the tape T. Further, as for the method of checking the shaft runout state of the flanged rollers 82a and 82b by monitoring the position of the tape T, other position monitoring methods other than the means described in the embodiment may be used. Needless to say.
  • the magnetic tape transport stabilizing method and apparatus according to the second mode of the third aspect of the present invention are basically configured as described above.
  • the method and apparatus for stabilizing the conveyance according to the present embodiment are also applied to the back layer of the magnetic tape by irradiating the laser beam or the like to the back layer of the magnetic tape.
  • a case where the present invention is applied to a tape transport control unit of a magnetic tape processing device for performing processing for forming (grooves) will be described as a representative example, but the present invention is not limited to this.
  • Figure 24 shows the magnetic tape used to manufacture the magnetic tape described above. 1 shows a conceptual diagram of a processing apparatus.
  • the processing apparatus 100 shown in FIG. 24 is different from the processing apparatus 30 shown in FIG. 9 in that the tape flattener 50 and the tape flattener 50 constituting the tape transporting means 44 are replaced with a tape flattener 102 and a tape transporter. Except for having the bearing portion 104, they have the same configuration, so the same components are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the processing device 100 shown in FIG. 24 is similar to the processing device 30 shown in FIG. 9 in that the processing line a and the processing line a extending in the longitudinal direction of the tape as shown in FIG. 7A and FIG.
  • An optical system having a laser light source 32, a pulse modulator 34, a mirror 36, a beam expander 38, a beam profile shaper 40, and a multi-lens lens 42;
  • a transporting means such as a capstan roller, a rewinder, and a winder (not shown), guide rollers 46, 48, a tape flattener 102, and a tape transporting support 104, which are not shown.
  • the tape flattener 102 and the tape transport support 104 are provided with a magnetic tape transport stabilizing device for performing the magnetic tape transport stabilizing method according to the third embodiment of the third aspect of the present invention. Is configured.
  • FIG. 25 shows a schematic configuration of an embodiment of the magnetic tape transport control unit 101 applied to the processing apparatus 100 shown in FIG.
  • the laser beam is made incident on the back layer of the tape T, and the concave portion (the groove, the processing line a or the processing line segment b (FIG. 7A And Fig. 7B)).
  • the focal point of the laser beam dome which is an object to be processed, must be extremely accurate. It is necessary to regulate the position accurately.
  • the tape transport support unit 104 supports the tape flatner 102, and supports the tape flatner 102 via at least four springs 104a.
  • a position regulating means for maintaining a constant planar positional relationship between the tape flattener 102 and the base of the tape transport support 104 is also provided.
  • the tape flattener 102 includes rollers 102 a and 102 b supporting the tape T and a base 102 c supporting the rollers 102 a and 102 b.
  • the rollers 102a and 102b are urged by the above-mentioned spring 104a via the tape T so as to abut against the rollers 106a and 106b fixed to the apparatus body. Have been (biasing: ").
  • the force of pressing down the tape flattener 102 by the tension of the tape T is f T
  • the wear of rollers 106a and 106b which is small and determines the height of the tape, is negligible.
  • the tape transport control unit 101 of the present embodiment configured as described above always contacts the rollers 106 a. 106 b fixed to the apparatus main body, although the tape flattener 102 is under a small force. So that some sort of Even if the position of the rollers 102a and 102b supporting the tape T of the tape flattener 102 fluctuates due to the cause, the function of maintaining the position of the tape cutter constant regardless of the fluctuation. It has.
  • the tape transport control unit 101 of the present embodiment for example, continuously transports the tape T at a high speed, and thereby the tape flattener 102 (specifically, the rollers 102 a, 1 Even when 0 2 b) is worn, it is possible to eliminate the need to control the position of the tape T.
  • the tape transport controller 101 corresponds to whatever the cause of the change in the position of the tape T. be able to.
  • the tape position automatic correction function of the tape transport control unit 101 is actuated, so that the position of the tape T at the processing position can be adjusted. This has the effect that fluctuations can always be automatically corrected.
  • the target to which the tape position correcting function is applied is substantially limited to the tape flattener 102.
  • the size of the control target (may be called mass) is appropriate. Therefore, the present invention should not be limited to this.
  • the movement distance of the tape flattener 102 is extremely small in practice, there is no need to change the front and rear tape guide rollers.
  • the correction function various alternative means such as a correction mechanism using an automatic position adjustment method other than the push-up method using the spring shown in the embodiment can be used, and the correction function is provided within a range that does not change the gist of the present invention. Needless to say, these configuration changes may be made freely.
  • the rollers 102a, 102b and 106a, 106b are used as fixed guides or a combination of rollers and fixed guides.
  • the magnetic tape transport stabilizing method and apparatus according to the third mode of the third aspect of the present invention are basically configured as described above.
  • FIGS. 26A to 29B Next, a magnetic tape processing device according to a fourth embodiment of the present invention will be described with reference to FIGS. 26A to 29B.
  • FIGS. 26A and 26B are conceptual diagrams of the processing apparatus of the present invention for producing a (magnetic) tape having the above-described concave portions.
  • the illustrated processing apparatus 110 includes an optical system including a light source 112, a pulse modulator 114, a mirror 116, and a beam splitting optical system 118, and a tape transport device 120. .
  • the tape T is transported (running) in the longitudinal direction (arrow X direction in the figure) by the tape transport device 120 while the tape T is positioned at the predetermined processing position W,
  • the beam is incident on the processing position W by the optical system.
  • processing line a (see FIG. 7A) and processing line segment b (see FIG. 7B), hereinafter also collectively referred to as processing lines) are formed.
  • the light source 1 1 2, the pulse modulator 1 1 4 and the mirror 1 1 16 are respectively the light source 1 2, the pulse modulator 1 4 and the mirror 1 constituting the processing apparatus 30 shown in FIG. 6 can be used, and a detailed description thereof will be omitted.
  • the laser beam emitted from the light source 112 is pulse-modulated by the pulse modulator 114, reflected by the mirror 116 in a predetermined direction, and then enters the beam splitting optical system 118.
  • a beam expander for expanding the beam diameter of the laser beam, and the intensity of the laser beam as needed
  • Various optical members such as a beam profiler for making the laser beam almost uniform, that is, for making the intensity distribution of the laser beam almost uniform may be arranged.
  • the beam splitting optical system 1 18 splits one laser beam into a plurality of laser beams arranged in the width direction of the tape T (in the direction perpendicular to the transport direction), and places each split laser beam at the processing position. It is incident on W.
  • a beam splitting optical system 118 various types of optical systems can be used as long as they have such an effect.
  • the one shown in FIG. 27 is exemplified. .
  • the beam splitting optical system 118 includes a beam waist position adjusting means 122, a beam splitter 124, and a converging lens 126.
  • FIG. 27 shows this optical system as viewed from the longitudinal direction of the tape T. Therefore, the tape T is conveyed at a processing position W in a direction perpendicular to the plane of the paper.
  • the laser beam is adjusted after the beam waist position is adjusted by the beam waist position adjusting means 122. Then, the beam is split into a plurality of laser beams (beam No. 1 to beam O. N) arranged in the width direction of the tape according to the number of processing lines to be formed by the beam splitters 124.
  • the split laser beam is converged and imaged by the converging lens 126 and is incident on the back layer of the tape T conveyed in the longitudinal direction while being held at the processing position W by the tape conveying device 120.
  • each laser beam processes the back layer, and according to the number of laser beams incident on the back layer of the tape T, a plurality of processing lines (recesses) extending in the longitudinal direction of the tape T are formed. Formed in layers.
  • the laser beam does not form an image at the processing position W (that is, the processing position W is not the converging position of the laser beam by the converging lens 126), and the beam waist position is adjusted.
  • the light is adjusted by means 122 so that the beam waist position comes to the processing position W.
  • the beam waist position W of each laser beam is substantially on the same plane.
  • the beam waist position adjusting means 122 is a known waist position adjusting means for a laser beam.
  • a means for adjusting the position of the beam waist based on the calculation based on the ABCD matrix derived by H. Koji 1 nik using a group of lenses whose position on the optical axis and the distance between them can be adjusted is exemplified. .
  • FIG. 28 shows another embodiment of the beam splitting optical system.
  • the beam splitting optical system 1 28 shown in FIG. 28 uses a rod lens 130, a cylindrical lens 13 2, and an aperture plate 1 34 having a large number of apertures in place of the beam splitter 124.
  • the laser beam that has been divided and modulated so that the power processing position W becomes the beam waist is applied to the back of the tape T held at the processing position W. It is incident on the layer to form a processing line.
  • the laser beam whose beam waist position has been adjusted by the beam waist position adjusting means 122 is expanded in the width direction of the tape T by the rod lens 130, and then collimated by the cylindrical lens 132. (Made into a sheet-like laser beam).
  • the sheet-like laser light is then incident on an aperture plate 1334 having a large number (N) of apertures (holes) arranged in the width direction of the tape T, and the laser light passing through the holes is , As a laser beam divided into N beams arranged in the width direction, enters the converging lens 126, converges and enters the processing position W, and forms a processing line on the back layer of the tape T .
  • the method of converting the laser beam into a sheet-like laser beam is not limited to the method using the rod lens 130 and the cylindrical lens 132, and various known methods can be used. It is.
  • the optical system for processing the back layer by irradiating the laser beam to the processing position W is not limited to the above example, and one optical system is provided at a predetermined processing position.
  • laser beam preferably multiple lasers
  • a beam more preferably a plurality of laser beams obtained by splitting a single laser beam, can be incident and imaged (or the beam waist position and the processing position coincide with each other) to process the back layer.
  • various optical systems are available.
  • the beam waist position adjusting means 122 is not used, and a number of lenses are arranged in the width direction instead of the aperture plate 134 and the converging lens 126.
  • An optical system using a multi-lens lens 42 as shown in FIG. 10 is exemplified.
  • the laser light sheet-shaped by the cylindrical lens 132 is incident on the multi-lens lens.
  • the laser light incident on each lens of the multi-lens is imaged on the back layer of the tape T located at the processing position W by each lens, so that a plurality of laser beams arranged in the width direction are formed. Then, the back layer is processed.
  • the tape T is moved in the longitudinal direction (the direction of the arrow X) while being positioned at the processing position W, with the back layer facing upward (the laser beam incident side) by the tape transport device 120. Conveyed (conveyed with the longitudinal direction and conveyance direction coincide). Therefore, a plurality of processing lines extending in the longitudinal direction (N in the above example) and a plurality of tapes extending in the width direction by the plurality of laser beams incident on the processing position W and arranged in the width direction. Formed on T back layer.
  • the tape transport device 120 is configured by appropriately combining a capstan roller, a pinch roller, a winder, a rewinder, a guide roller (142, 144), etc., and transports the tape T in the longitudinal direction. It is configured to include a known tape transport means (details omitted) and a support drum 136. As shown in FIG. 26A and FIG. 26B, the support drum 1336 is disposed on a cylindrical portion 1338 having an axis in the width direction of the tape cutter, and on both end surfaces of the cylindrical portion 138. It is composed of disc-shaped flanges 140 and 140 whose centers coincide with the cylindrical portion 113 and which have a large diameter.
  • the holding drum 1336 is disposed such that the uppermost portion of the side surface of the cylindrical portion 1338 is at the processing position W.
  • the tape T is guided upward by the guide rollers 14 2, is supported from below by the side surface of the cylindrical portion 1 38 of the holding drum 1 36, passes through the processing position W, and is guided downward by the guide rollers 144. Then, it is transported to the next process. Further, the tape T does not move in the width direction by a predetermined amount or more at the processing position W because the tape edge (end) abuts on the flange 140.
  • the tape T abuts the tape edge at the position in the depth of focus direction (the direction of laser beam travel) by the side surface of the cylindrical portion 138 having an axis in the width direction.
  • the position in the width direction is regulated by the flange portion 140, and a part of the back layer is processed while being conveyed in the longitudinal direction while being positioned at the processing position W with high accuracy.
  • the cylindrical portion is not necessarily required. It is not necessary that the uppermost part of the part 1 38 be the processing position W of the tape T.
  • the cylindrical part 1338 and the optical system are positioned so that the laser beam is perpendicularly incident on the tape T (so that the laser beam is directed to the axis of the cylindrical part). Is preferably set.
  • the support drum 1336 may be engaged with a drive source and rotate by itself according to the transport speed of the tape T, or may be rotatably supported by bearings or the like to transport the tape ⁇ . May be used as a drive source to rotate.
  • the diameter of the cylindrical portion 138 is not particularly limited, either, depending on the transport path, the size (width) of the tape ⁇ ⁇ to be processed, and the device configuration at the processing position W (members arranged in the vicinity). It may be determined appropriately.
  • the width w of the flange 140 is based on the width of the tape ⁇ ⁇ ⁇ to be processed, based on the width of the tape ⁇ ⁇ to be processed (variation in width), and the processing accuracy (width of the processing line) required for the processing apparatus of this embodiment.
  • the position may be determined as appropriate according to the direction accuracy, etc., and may be larger or smaller than the width of the tape.
  • the width of the tape ⁇ is various and cannot be particularly specified, but usually, the interval w is about ⁇ 0.005 mm to ⁇ 0.1 mm of the width of the tape ⁇ .
  • the height h of the flange portion 140 (the level difference from the cylindrical portion 138), and the height at which the position in the width direction of the tape T can be appropriately regulated by contacting the tape edge. It should be about 2 mm to 5 mm.
  • the flange portion 140 may be a flat surface (linear shape) orthogonal to the circumferential portion 1380 (the side surface), or may have a curvature (round). It may be one that has a flat surface that is ground by use and becomes orthogonal.
  • the orthogonal plane can increase the positional accuracy in the width direction of the tape T, but increases the possibility of causing damage to the tape edge. Therefore, it may be appropriately determined according to the required accuracy and the like.
  • the flange portion 140 is located at both ends of the cylindrical portion 1338.
  • the present invention is not limited to this, and may be formed so as to protrude from the side surface of the cylindrical portion 138.
  • the cylindrical portion 1338 and the flange portion 140 may be formed integrally or may be formed by combining different members to form the support drum 1336.
  • the flange portion 140 is intermittent in the circumferential direction even if it is not formed over the entire circumference of the cylindrical portion 1380. May be formed.
  • both the thermal processing of the laser beam and the processing by abrasion (dissociation and release) with the laser beam occur in a combined manner, and the back layer is processed. It is conceivable that. Therefore, processing residue (dust etc.) and harmful gas may be generated by processing the back layer.
  • Cleaning means such as tape
  • FIG. 29A and FIG. 29B schematically show another embodiment of the (magnetic tape) processing apparatus of the present invention.
  • a plurality of the processing apparatuses 110 shown in FIG. 26A are arranged in the transport direction of the tape T, and each processing apparatus is adjusted by, for example, adjusting the position of the optical system.
  • the processing lines (concave portions) formed by 110 are shifted from each other in the width direction. With such a configuration, the processing density of the processing line formed on the back layer of the tape can be improved.
  • the example shown in FIG. 29B shows that the light source It has a configuration in which a plurality of optical systems each composed of 1 12 and a beam splitting optical system 1 18 are arranged, and processing lines formed by each optical system are shifted in the width direction as in the previous example. . Also in this configuration, similarly, the processing density of the processing line formed on the back layer can be improved.
  • the laser beam emitted from one optical system may be divided in the transport direction of the tape T and made incident on different positions in the width direction to improve the processing density of the processing line.
  • the processing of the tape T according to the present invention described above may be performed at any time in the magnetic tape manufacturing process as long as it is after the back layer is formed.For example, before the tape is cut into a product width by slitting. May also be after cutting.
  • the magnetic tape processing apparatus is basically configured as described above.
  • the transfer speed is reduced. Even with high speed capstan rollers There is no slip, so that high-speed and accurate transport can be performed.
  • a concave portion is formed in the back layer of the magnetic tape by irradiating a laser beam or the like to the back layer of the magnetic tape.
  • the magnetic tape processing apparatus of the fourth aspect of the present invention even if the transport speed is increased, no slip is caused by the capstan roller or the like, and therefore, high-speed and accurate transport can be performed. Moreover, a magnetic tape with less cutting and excellent characteristics can be obtained efficiently.
  • the magnetic tape manufactured by the processing apparatus of this embodiment By using the magnetic tape manufactured by the processing apparatus of this embodiment, high-speed and accurate tape conveyance can be performed in a magnetic tape manufacturing apparatus such as a blade machine, and as a result, appropriate production management can be achieved. Under the conditions, magnetic tapes without damage can be manufactured stably with high production efficiency, and the appearance of the rolls when wound on cartridges and pancakes can be made beautiful. Deterioration and tape edge damage can be prevented.

Landscapes

  • Registering, Tensioning, Guiding Webs, And Rollers Therefor (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

A magnetic-tape-conveying stabilizing method and device, for stabilizing magnetic tape conveying by vacuumizing portions in front of and at the back of a magnetic tape support, by bringing the magnetic tape to the support by a magnetic force, and by providing an escaping groove for a tape-carried air layer in a support surface or by removing the carried air layer by a support edge. The method and the device for stabilizing width-direction conveying by urging a curved magnetic tape in its width direction or by using a collared roller, crown roller or concave roller. The method and the device for stabilizing vertical-direction conveying by detecting and correcting the vertical position of the magnetic tape, and by using a roller having a specified rotation accuracy or urging a magnetic-tape-conveying guiding portion to a reference position. Whereby, a magnetic tape processing device can process magnetic tape with a high accuracy by stabilizing magnetic conveying.

Description

明 細 書 磁気テープの搬送安定化方法および装置ならびに磁気テープの加工装置 技術分野  Description Magnetic tape transport stabilization method and apparatus, and magnetic tape processing apparatus
本発明は、 情報記録 Z再生に供する磁気テープの技術分野に属し、 詳しくは、 磁気テープの製造工程等において、 高速で磁気テープを搬送させても、 スリップ が発生せず、 これに起因する磁気テープの損傷や巻き姿の乱れを防止でき、 好ま しくは、 しかも、 カツピングも低減した磁気テープを安定して搬送することがで きる磁気テープの搬送安定化方法およびそのための装置に関し、 また、 磁気 テープの製造工程等において、 高速で磁気テープを搬送させても、 スリップが発 生せず、 かつカツビングも小さい磁気テープを製造する磁気テープの加工装置に 関する。 背景技術  The present invention belongs to the technical field of magnetic tapes used for information recording and Z reproduction, and more specifically, in the manufacturing process of a magnetic tape, even if the magnetic tape is transported at a high speed, no slip occurs, and The present invention relates to a method and an apparatus for stabilizing the transfer of a magnetic tape, which can prevent damage to the tape and disorder of the winding shape, and preferably can stably transfer the magnetic tape with reduced cupping. The present invention relates to a magnetic tape processing apparatus that produces a magnetic tape that does not cause slippage and has small cutting even when the magnetic tape is transported at a high speed in a tape manufacturing process and the like. Background art
情報の記録や再生に利用される磁気テープは、 基本的に、 P E T (ポリ エチレンテレフ夕レート) 等のフィルムであるベース層と、 このベース層の一方 の面に形成される磁性体層と、 搬送安定性や強度の向上等を目的として、 上記ベース層の、 磁性体層とは逆の面に形成されるバック層等から構成される。 このような磁気テープの製造工程においては、 磁気テープ (以下、 単にテープ ともいう) は、 長手方向に搬送されつつ、 スリツ夕による裁断やブレード刃によ る表面の清掃等の各種の処理を施されて、 ハブ等に巻き取られてパンケーキや力 セットとされ、 次工程や納入先に送られる。 また、 近年では、 生産性を向上させ るために、 各種の工程 (ブレード機やワインダ等の製造装置) におけるテープの 搬送速度が高速化する傾向にある。 A magnetic tape used for recording and reproducing information basically includes a base layer which is a film such as PET (polyethylene terephthalate), a magnetic layer formed on one surface of the base layer, For the purpose of improving transport stability and strength, the base layer is composed of a back layer and the like formed on the surface opposite to the magnetic layer. In the manufacturing process of such a magnetic tape, the magnetic tape (hereinafter, also simply referred to as “tape”) is subjected to various processes such as cutting by a slit or cleaning of a surface by a blade while being conveyed in a longitudinal direction. And rolled up in a hub etc. Set as a set and sent to the next process or delivery destination. In recent years, in order to improve productivity, the tape transfer speed in various processes (manufacturing equipment such as blade machines and winders) has been increasing.
テープの搬送は、 一般的に、 テ一プをキヤプスタンローラに巻き掛け、 キヤプ スタンローラを回転することによって行われる。  In general, the tape is transported by winding a tape around a capstan roller and rotating the capstan roller.
ところが、 テープの搬送速度を速くすると、 ブレード機等の各種の製造装置に おいて、 テープが空気 (同伴空気) を巻き込んで、 キヤブスタンローラ等で テープが浮上し、 これによりテープがスリップして、 正常な搬送ができなく なってしまう場合がある。  However, when the transport speed of the tape is increased, the tape entrains air (entrained air) in various types of manufacturing equipment such as a blade machine, causing the tape to float with a capstan roller or the like, thereby causing the tape to slip. As a result, normal conveyance may not be possible.
その結果、 テープが各種の製造装置において、 キヤプスタンローラ, ガイ ドローラ, ブレード刃等に衝突あるいは不適正に接触し、 テープやテープエッジ の折れ, 磁性体層等の磨耗や剥離等のテープの損傷が発生し、 得られた テープが、 製品として不適正なものとなってしまう。 また、 テープを製造する装 置には、 必要に応じてテープの長さを測定するローラ (検尺ローラ) が必要に応 じて装着されるが、 この検尺ローラでテープがスリップすると、 テープの長さ測 定に誤差が生じ、 生産管理も適正に行えなくなるという問題点もある。  As a result, the tape collides with or improperly contacts the capstan roller, guide roller, blade blade, etc. in various manufacturing equipment, causing the tape or tape edge to be broken, the tape to be worn or peeled off the magnetic layer, etc. Damage will occur and the resulting tape will be unsuitable as a product. Also, the tape manufacturing equipment is equipped with a roller (measurement roller) to measure the length of the tape as necessary. There is also a problem in that an error occurs in the length measurement, and production control cannot be performed properly.
そのため、 要求される生産効率に良好に対応するように、 テープの製造におけ るテープ搬送速度を高速化することが困難になっている。  For this reason, it has become difficult to increase the tape transport speed in tape manufacturing so that the required production efficiency can be met satisfactorily.
ところで、 上述のような、 テープの高速搬送適性を向上させるためには、 バック層の処方を調整する等の方法によって改善することもできるが、 処方上の 各種の問題によって、 改善には限界がある。  By the way, in order to improve the suitability for high-speed transport of the tape as described above, it can be improved by adjusting the formulation of the backing layer, etc., but there are limits to the improvement due to various problems in the formulation. is there.
具体的には、 テープのバック層の処方を変更すると、 磁気テープとしての特性 が変動し、 目的とする性能が得られなくなってしまう可能性が有る。 すなわち、 性能の低下を防止しつつ、 バック層の処方を調整してテープの高速搬送適性を向 上させることは、 非常に手間のかかる作業であり、 開発の効率や磁気テープのコ スト等の点で不利である。 Specifically, by changing the formulation of the back layer of the tape, the characteristics as a magnetic tape May fluctuate and the desired performance may not be obtained. In other words, adjusting the prescription of the back layer and improving the suitability for high-speed transport of the tape while preventing the performance from deteriorating is a very time-consuming task. Disadvantageous in that.
また、 これに対しては、 磁気テープのバック層に同伴される空気を、 磁気 テープのバック層に 「逃げ道」 を作ることで、 その影響をなくすことが考えられ る。 このような磁気テープのバック層への加工に際しては、 磁気テープを、 加工 位置に正確に位置付けすることが必要であるが、 この場合にも、 前述の同伴空気 が悪影響を及ぼして、 正確な位置付けができなくなるという問題がある。  In addition, it is conceivable to eliminate the effect of air entrained in the back layer of the magnetic tape by creating an “escape route” in the back layer of the magnetic tape. When processing such a magnetic tape into the back layer, it is necessary to accurately position the magnetic tape at the processing position.In this case, however, the above-mentioned entrained air has an adverse effect, and the accurate positioning is required. There is a problem that can not be.
そこで、 磁気テープを、 例えば、 E P C (edge pos i t i on control)と呼ばれる 技術などを用いて、 幅方向に位置決めすることが有効となるが、 従来の E P C技 術では、 テープのようなウェブを搬送する際に、 少なくとも 1本のローラの角度 を変えることによって、 いわゆるステアリング効果を利用しており、 この方式で は、 構造が複雑になると共に、 大きなスペースを必要とするという別の問題が発 生してしまう。  Therefore, it is effective to position the magnetic tape in the width direction using, for example, a technique called EPC (edge position control), but in the conventional EPC technology, a web such as a tape is transported. In this case, the so-called steering effect is used by changing the angle of at least one roller, and this method has another problem that the structure is complicated and a large space is required. Resulting in.
また、 磁気テープの別の問題点として、 前述のカツビングが知られてい る。 カツビングとは、 磁気テープの幅方向のカール (湾曲) で、 主に、 磁性体層 とバック層とで用いられるバインダの収縮率の違いによって生じる。  As another problem of the magnetic tape, the above-mentioned cutting is known. Cutting is the curl (curvature) of the magnetic tape in the width direction, which is mainly caused by the difference in the shrinkage of the binder used between the magnetic layer and the back layer.
カツビングが発生すると、 製品としての磁気テープの外観の低下;記録へッド や読取へッドへの磁気テープの当りが悪くなり記録誤差や読取誤差が生じる可能 性がある;磁気テープのエッジにダメージが生じ易く耐久性が低下する等;様々 な問題が生じる。 このようなカツピングは、 磁性体層を厚くする、 バック層を薄くする、 磁性体 層やバック層の処方を調整する、 等の方法によって改善することができるが、 ェ 程上、 処方上、 性能上等の各種の問題によって、 改善には限界がある。 When cutting occurs, the appearance of the magnetic tape as a product deteriorates; the contact of the magnetic tape with the recording head and the reading head becomes poor, which may cause a recording error or a reading error; Damage is likely to occur and durability is reduced; various problems occur. Such cupping can be improved by increasing the thickness of the magnetic layer, thinning the back layer, adjusting the prescription of the magnetic layer or the back layer, and the like. There are limits to improvement due to the various issues mentioned above.
具体的には、 近年では磁気テープの記録密度が向上しており、 これを実現する ために、 磁性体層の厚さは薄くなる方向にある上に、 バック層を薄くすると、 磁 気テープの強度が低下して、 実用上の耐久性に問題が生じてしまう。 また、 磁性 体層やバック層の処方を変更すると、 磁気テープとしての特性が変動し、 目的と する性能が得られなくなってしまう可能性が有る。 すなわち、 性能の低下を防止 しつつ、 磁性体層やバック層等の処方を調整して力ッピングを低減することは、 非常に手間のかかる作業であり、 開発の効率や磁気テープのコスト等の点で不利 である。  Specifically, the recording density of magnetic tapes has been increasing in recent years. To achieve this, the thickness of the magnetic material layer is becoming thinner and the thickness of the backing layer is reduced. The strength is reduced, causing problems in practical durability. Also, if the prescription of the magnetic layer or the back layer is changed, the characteristics of the magnetic tape may fluctuate, and the desired performance may not be obtained. In other words, adjusting the prescription of the magnetic layer and the back layer while reducing the performance while preventing reduction in power is a very time-consuming task. Disadvantageous in this respect.
また、 別の方法として、 磁気テープのバック層に凹部 (溝) を設けること も考えられるが、 この方法を採用する場合には、 実際の製造工程において、 レーザビームなどを磁気テープのバック層に入射させて、 凹部 (溝) を形成する 加工を施す際に、 加工精度を維持するためには、 加工対象である磁気テープを加 ェ用レーザビームの焦点位置に極めて正確に位置付けすることが必要である。  As another method, it is conceivable to provide recesses (grooves) in the back layer of the magnetic tape. However, when this method is adopted, in the actual manufacturing process, a laser beam or the like is applied to the back layer of the magnetic tape. Injecting to form recesses (grooves) When processing, in order to maintain processing accuracy, it is necessary to position the magnetic tape to be processed at the focal position of the processing laser beam very accurately. It is.
発明の開示 Disclosure of the invention
本発明は、 上記事情に鑑みてなされたものであり、 その第 1の目的とするとこ ろは、 磁気テープを高速で搬送してもスリップが発生せず、 これに起因する磁気 テープの損傷や巻き姿の乱れを防止可能な磁気テープの搬送安定化方法およびそ のための装置を提供することにある。 また、 本発明は、 上記事情に鑑みてなされたものであり、 その第 2の目的とす るところは、 磁気テープを高速で搬送してもスリップなどが発生せず、 これに起 因する磁気テープの損傷や巻き姿の乱れを防止可能であり、 さらに、 テープの幅 方向の正確な位置決めが可能な磁気テープの搬送安定化方法およびそのための装 置を提供することにある。 The present invention has been made in view of the above circumstances, and a first object of the present invention is that no slip occurs even when a magnetic tape is conveyed at high speed, resulting in damage to the magnetic tape or damage to the magnetic tape. It is an object of the present invention to provide a method for stabilizing the transport of a magnetic tape and a device therefor, which can prevent the winding form from being disturbed. The present invention has been made in view of the above circumstances, and a second object of the present invention is that no slip or the like occurs even when a magnetic tape is conveyed at a high speed. It is an object of the present invention to provide a method for stabilizing the transport of a magnetic tape and a device therefor, which can prevent damage to the tape and disorder of the winding shape, and also enable accurate positioning in the width direction of the tape.
より具体的には、 本発明の第 2の目的は、 磁気テープを加工する装置などに好 適に適用可能な、 簡単な構成で、 磁気テープの幅方向のポジショニングが可能な 磁気テープの搬送安定化方法およびそのための装置を提供することにある。 また、 本発明は、 上記事情に鑑みてなされたものであり、 その第 3の目的とす るところは、 レーザビームなどを磁気テープのバック層に入射させて、 この テープのバック層に凹部 (溝) を形成する加工を施す際などに、 加工対象である 磁気テープを加工用レーザビームの焦点位置に極めて正確に位置付けするために 有効な磁気テープ搬送安定化方法およびそのための装置を提供することにある。 また、 本発明の第 4の目的は、 前記従来技術の問題点を解決することにあり、 ブレード機ゃワインダ機等の磁気テープの製造装置において、 テープの搬送速度 を高速化してもキヤプスタンローラ等におけるテープのスリップを生じることが なく、 その上、 カツビングも小さい、 優れた特性を有する磁気テープを、 良好な 製造効率で製造することができる磁気テープ加工装置を提供することにある。 上記第 1の目的を達成するために、 本発明の第 1の態様は、 磁気テープを長手 方向に搬送するに際し、 前記磁気テープに同伴される空気層の少なくとも一部を 除去するかまたは磁力を用いるかの少なくとも一方により、 前記磁気テープ支持 体からの前記磁気テープの浮き上がりを防止して、 前記磁気テープの搬送安定化 を行うことを特徴とする磁気テ一プの搬送安定化方法を提供するものである。 すなわち、 本態様の第 1の形態は、 磁気テープを長手方向に搬送するに際し、 少なくとも、 前記磁気テープの支持体の搬送方向上流部分を負圧にして、 前記磁 気テープの搬送を安定化することを特徴とする磁気テープの搬送安定化方法を提 供するものである。 More specifically, a second object of the present invention is to provide a magnetic tape processing apparatus that can be suitably applied to a magnetic tape processing apparatus, has a simple configuration, and can position the magnetic tape in the width direction. It is an object of the present invention to provide a method for chemical conversion and a device therefor. The present invention has been made in view of the above circumstances, and a third object of the present invention is to irradiate a back layer of a magnetic tape with a laser beam or the like so that a concave portion ( To provide a magnetic tape transport stabilization method and an apparatus for effectively stabilizing a magnetic tape to be processed at a focal position of a processing laser beam very accurately, for example, when performing processing for forming a groove). It is in. A fourth object of the present invention is to solve the above-mentioned problems of the prior art. In a magnetic tape manufacturing apparatus such as a blade machine or a winder machine, even if the tape transport speed is increased, the capstan An object of the present invention is to provide a magnetic tape processing apparatus capable of producing a magnetic tape having excellent characteristics without causing tape slippage on rollers or the like and having small cutting, with good production efficiency. In order to achieve the first object, a first aspect of the present invention is to remove or remove a magnetic force by removing at least a part of an air layer accompanying the magnetic tape when the magnetic tape is transported in a longitudinal direction. By using at least one of them, the lifting of the magnetic tape from the magnetic tape support is prevented, and the conveyance of the magnetic tape is stabilized. And stabilizing the transfer of the magnetic tape. That is, in the first mode of the present embodiment, at the time of transporting the magnetic tape in the longitudinal direction, at least the upstream portion of the support of the magnetic tape in the transport direction is set to a negative pressure, and the transport of the magnetic tape is stabilized. It is intended to provide a method for stabilizing the conveyance of a magnetic tape characterized by the above.
また、 本態様の第 2の形態は、 磁気テープを長手方向に搬送するに際し、 前記 磁気テープの支持体を磁性体で構成し、 磁力により磁気テープを前記支持体に密 着させて、 前記磁気テープの搬送を安定化することを特徴とする磁気テープの搬 送安定化方法を提供するものである。  In a second mode of the present aspect, when the magnetic tape is transported in the longitudinal direction, the support of the magnetic tape is formed of a magnetic material, and the magnetic tape is adhered to the support by a magnetic force. An object of the present invention is to provide a method for stabilizing the transport of a magnetic tape, characterized by stabilizing the transport of the tape.
また、 本態様の第 3の形態は、 磁気テープを長手方向に搬送するに際し、 前記 磁気テープの支持体の表面に磁気テープに同伴される空気層の逃げ溝を設け、 磁 気テープに同伴される空気層を前記溝により薄層化して、 前記磁気テープの搬送 を安定化することを特徴とする磁気テープの搬送安定化方法を提供するものであ る。  Further, in a third mode of the present embodiment, when the magnetic tape is transported in the longitudinal direction, a relief groove of an air layer accompanying the magnetic tape is provided on the surface of the support of the magnetic tape, and the magnetic tape is entrained by the magnetic tape. A method for stabilizing the transfer of a magnetic tape, comprising stabilizing the transfer of the magnetic tape by reducing the thickness of an air layer by the grooves.
また、 本態様の第 4の形態は、 磁気テープを長手方向に搬送するに際し、 前記 磁気テープの支持体を、 その上流側がエッジを有する形状とし、 前記磁気テープ に同伴される空気層を前記エッジにより除去して、 前記磁気テープの搬送を安定 化することを特徴とする磁気テープの搬送安定化方法を提供するものである。 また、 上記第 1の目的を達成するために、 本発明の第 1の態様は、 磁気テープ を長手方向に搬送するための搬送安定化装置であって、 前記磁気テープ支持体か らの前記磁気テープの浮き上がりを防止する浮上防止手段を有することを特徴と する磁気テープの搬送安定化装置を提供するものである。 すなわち、 本態様の第 1の形態は、 磁気テープを長手方向に搬送するための搬 送安定化装置であって、 少なくとも、 前記磁気テープの支持体の搬送方向上流部 分を負圧にする手段を備えたことを特徴とする磁気テープの搬送安定化装置を提 供するものである。 In a fourth mode of the present aspect, when the magnetic tape is transported in the longitudinal direction, the support of the magnetic tape has a shape having an edge on the upstream side, and the air layer entrained by the magnetic tape is formed by the edge. And stabilizing the transport of the magnetic tape by providing a method for stabilizing the transport of the magnetic tape. Further, in order to achieve the first object, a first aspect of the present invention is a transport stabilizing device for transporting a magnetic tape in a longitudinal direction, wherein the magnetic tape from the magnetic tape support is provided. An object of the present invention is to provide a magnetic tape transport stabilizing device characterized by having a floating preventing means for preventing the tape from floating. That is, a first mode of the present embodiment is a transport stabilizing device for transporting a magnetic tape in the longitudinal direction, and at least a means for applying a negative pressure to an upstream portion of the magnetic tape support in the transport direction. It is intended to provide a magnetic tape transport stabilizing device characterized by having the following.
また、 本態様の第 2の形態は、 磁気テープを長手方向に搬送するための搬送安 定化装置であって、 前記磁気テープの支持体を磁性体で構成したことを特徴とす る磁気テープの搬送安定化装置を提供するものである。  Further, a second mode of the present aspect is a transport stabilizing device for transporting a magnetic tape in a longitudinal direction, wherein the support of the magnetic tape is formed of a magnetic material. Is provided.
また、 本態様の第 3の形態は、 磁気テープを長手方向に搬送するための搬送安 定化装置であって、 前記磁気テープの支持体の表面に磁気テープに同伴される空 気層の逃げ溝を設けたことを特徴とする磁気テープの搬送安定化装置を提供する ものである。  A third aspect of the present invention is a transport stabilizing apparatus for transporting a magnetic tape in a longitudinal direction, wherein a stabilizing device for evacuating an air layer accompanying the magnetic tape to a surface of a support of the magnetic tape. An object of the present invention is to provide a magnetic tape transport stabilizing device characterized by having grooves.
また、 本態様の第 4の形態は、 磁気テープを長手方向に搬送するための搬送安 定化装置であって、 前記磁気テープの支持体をその上流側がエツジを有する形状 としたことを特徴とする磁気テープの搬送安定化装置を提供するものである。 また、 上記第 2の目的を達成するために、 本発明の第 2の態様は、 磁気テープ を長手方向に搬送するに際し、 前記磁気テープの進行方向と直交する幅方向への 前記磁気テープの移動を調整して、 前記磁気テープの搬送安定化を行うことを特 徴とする磁気テープの搬送安定化方法を提供するものである。  A fourth mode of the present aspect is a transport stabilizing device for transporting a magnetic tape in a longitudinal direction, wherein the support of the magnetic tape has a shape having an edge on an upstream side thereof. It is intended to provide a magnetic tape transport stabilizing device. Further, in order to achieve the second object, a second aspect of the present invention provides a method for moving a magnetic tape in a width direction orthogonal to a traveling direction of the magnetic tape when the magnetic tape is transported in a longitudinal direction. To stabilize the transport of the magnetic tape by providing a method for stabilizing the transport of the magnetic tape.
すなわち、 本態様の第 1の形態は、 磁気テープを長手方向に搬送するに際し、 前記磁気テープを、 その進行方向に沿って湾曲させた状態で、 その進行方向に直 交する方向に付勢することを特徴とする磁気テープの搬送安定化方法を提供する ものである。 ここで、 前記付勢は, 磁力またはばね力によるものであるのが好ま しい。 That is, in the first mode of the present embodiment, when the magnetic tape is transported in the longitudinal direction, the magnetic tape is urged in a direction orthogonal to the traveling direction while being curved along the traveling direction. Another object of the present invention is to provide a method for stabilizing the transport of a magnetic tape, characterized by the above feature. Here, the biasing is preferably performed by a magnetic force or a spring force. New
また、 本態様の第 2の形態は、 磁気テープを長手方向に搬送するに際し、 前記 磁気テープを案内する磁気テープ搬送案内部分を一体的に、 前記磁気テープの進 行方向に直交する方向に移動させて、 前記磁気テープの搬送を安定化することを 特徴とする磁気テープの搬送安定化方法を提供するものである。 ここで、 前記磁 気テープ搬送案内部分の移動量は、 前記磁気テープの進行方向に直交する方向へ の移動状態の検知結果に基づいて決定されるのが好ましい。  According to a second mode of the present aspect, when the magnetic tape is transported in the longitudinal direction, the magnetic tape transport guide portion for guiding the magnetic tape is integrally moved in a direction perpendicular to the traveling direction of the magnetic tape. In addition, the present invention provides a method for stabilizing the transport of a magnetic tape, wherein the transport of the magnetic tape is stabilized. Here, it is preferable that the moving amount of the magnetic tape conveyance guide portion is determined based on a detection result of a moving state of the magnetic tape in a direction orthogonal to a traveling direction of the magnetic tape.
また、 上記第 2の態様の第 3の形態は、 磁気テープを長手方向に搬送する際の 搬送安定化方法であって、 前記磁気テープを、 ローラ搬送手段によって搬送し、 かつ、 前記ローラ搬送手段の有する幅方向搬送安定化手段により位置決めするこ とを特徴とする磁気テープの搬送安定化方法を提供するものである。 ここで、 前 記幅方向搬送安定化手段による位置決めは、 前記ローラ搬送手段の有する幅方向 位置規制用つばによるものであるか、 または前記ローラ搬送手段の有する自己修 正機能によるものであるのが好ましい。 また、 前記ローラ搬送手段は、 その中央 が大径であるのクラウンローラまたはその中央が小径であるのコンケープローラ であるのが好ましい。  Further, a third mode of the second aspect is a transport stabilizing method for transporting a magnetic tape in a longitudinal direction, wherein the magnetic tape is transported by a roller transport unit, and the roller transport unit is The present invention provides a method for stabilizing the transfer of a magnetic tape, characterized in that the positioning is performed by the widthwise transfer stabilizing means of the magnetic tape. Here, the positioning by the width-direction conveyance stabilizing means is based on the width-direction position regulating collar of the roller conveyance means or by a self-correcting function of the roller conveyance means. preferable. Further, it is preferable that the roller conveying means is a crown roller having a large diameter at the center or a concave roller having a small diameter at the center.
また、 上記第 2の目的を達成するために、 本発明の第 2の態様は、 磁気テープ を長手方向に搬送するための搬送安定化装置であつて、 前記磁気テープの進行方 向と直交する幅方向への前記磁気テープの移動を調整する幅方向移動調整手段を 有することを特徴とする磁気テープの搬送安定化装置を提供するものである。 すなわち、 本態様の第 1の形態は、 磁気テープを長手方向に搬送するための搬 送安定化装置であって、 前記磁気テープをその進行方向に沿って湾曲させる保持 手段と、 該保持手段に係止されている磁気テープを、 その進行方向に直交する方 向に付勢する付勢手段とを有することを特徴とする磁気テープの搬送安定化装置 を提供するものである。 ここで、 前記付勢手段は、 磁力によって付勢するもの、 またはばねであるのが好ましい。 In order to achieve the second object, a second aspect of the present invention is a transport stabilizing device for transporting a magnetic tape in a longitudinal direction, the transport stabilizing device being orthogonal to a traveling direction of the magnetic tape. An object of the present invention is to provide a magnetic tape transport stabilizing device, comprising a width direction movement adjusting means for adjusting the movement of the magnetic tape in the width direction. That is, a first mode of the present embodiment is a transport stabilizing device for transporting a magnetic tape in a longitudinal direction, wherein a holding device that curves the magnetic tape along a traveling direction thereof. And a biasing means for biasing the magnetic tape locked by the holding means in a direction orthogonal to the traveling direction of the magnetic tape. It is. Here, it is preferable that the urging unit is a unit that urges by a magnetic force or a spring.
また、 本態様の第 2の形態は、 磁気テープを長手方向に搬送するための搬送安 定化装置であって、 前記磁気テープを案内する磁気テープ搬送案内部分を一体的 に揺動可能に構成すると共に、 前記磁気テープ搬送案内部分を、 前記磁気テープ の進行方向に直交する方向に移動させる手段を有することを特徴とする磁気 テープの搬送安定化装置を提供するものである。  Further, a second mode of the present aspect is a transport stabilizing device for transporting a magnetic tape in a longitudinal direction, wherein a magnetic tape transport guide portion for guiding the magnetic tape is integrally swingable. In addition, the present invention provides a magnetic tape transport stabilizing device, further comprising means for moving the magnetic tape transport guide portion in a direction perpendicular to the direction of travel of the magnetic tape.
また、 本態様の好ましい形態は、 上記磁気テープの搬送安定化装置であって、 さらに、 前記磁気テープの位置検知手段を有し、 前記磁気テープ搬送案内部分の 移動量を、 前記磁気テープの位置検知手段により検知した磁気テープの進行方向 に直交する方向への移動状態検知結果に基づいて決定することを特徴とする磁気 テープの搬送安定化装置を提供するものである。  In a preferred embodiment of the present aspect, the magnetic tape transport stabilizing device further includes a magnetic tape position detecting unit, and the movement amount of the magnetic tape transport guide portion is determined by the position of the magnetic tape. It is an object of the present invention to provide a magnetic tape transport stabilizing device characterized in that it is determined based on a result of detection of a moving state in a direction orthogonal to a traveling direction of a magnetic tape detected by a detecting means.
また、 上記第 2の態様の第 3の形態は、 磁気テープを長手方向に搬送する際の 搬送安定化装置であって、 磁気テープを搬送するローラ搬送手段と、 このローラ 搬送手段に備えられ、 前記ローラ搬送手段によって搬送される磁気テープを幅方 向に位置決めする幅方向搬送安定化手段とを具備することを特徴とする磁気 テープの搬送安定化装置を提供するものである。 ここで、 前記幅方向搬送安定化 手段は、 前記ローラ搬送手段の両端部に有する磁気テープを幅方向に位置決めす るためのつば、 または前記ローラ搬送手段自体の有する自己修正機能であるのが 好ましい。 また、 前記ローラ搬送手段の両端に有する前記つばの間隔が、 磁気テープの幅よりも僅かに狭いものであるのが好ましい。 また、 前記自己修正 機能を有するローラ搬送手段は、 その中央が大径であるのクラウンローラまたは その中央が小径であるのコンケ一ブローラであるのが好ましい。 Further, a third mode of the second aspect is a transport stabilizing device for transporting a magnetic tape in a longitudinal direction, wherein the transport stabilizing device includes a roller transport unit that transports the magnetic tape, and the roller transport unit includes: The present invention provides a magnetic tape conveyance stabilizing device, comprising: a width direction conveyance stabilizing means for positioning the magnetic tape conveyed by the roller conveying means in a width direction. Here, it is preferable that the width direction conveyance stabilizing unit is a collar for positioning the magnetic tapes at both ends of the roller conveyance unit in the width direction, or a self-correcting function of the roller conveyance unit itself. . Further, the interval between the collars provided at both ends of the roller conveying means, Preferably, it is slightly narrower than the width of the magnetic tape. Preferably, the roller conveying means having the self-correcting function is a crown roller having a large diameter at the center or a convey roller having a small diameter at the center.
また、 上記第 3の目的を達成するために、 本発明の第 3の態様は、 磁気テープ を長手方向に搬送するに際し、 前記磁気テープの上下方向の位置変動を調整する ことを特徴とする磁気テープの搬送安定化方法を提供するものである。  Further, in order to achieve the third object, a third aspect of the present invention is directed to a magnetic method comprising: adjusting a vertical position of the magnetic tape when conveying the magnetic tape in a longitudinal direction. An object of the present invention is to provide a method for stabilizing the conveyance of a tape.
すなわち、 本態様の第 1の形態は、 磁気テープを長手方向に搬送するための搬 送安定化方法であって、 前記磁気テープの上下方向の位置を検知し、 前記 磁気テープの上下方向の位置検知結果に基づいて、 前記磁気テープの上下方向の 位置を修正することを特徴とする磁気テープの搬送安定化方法を提供するもので ある。  That is, a first mode of the present embodiment is a transport stabilizing method for transporting a magnetic tape in a longitudinal direction, comprising detecting a vertical position of the magnetic tape, and detecting a vertical position of the magnetic tape. It is another object of the present invention to provide a method for stabilizing the transfer of a magnetic tape, wherein the position of the magnetic tape in the vertical direction is corrected based on a detection result.
また、 上記第 3の態様の第 2の形態は、 磁気テープを長手方向に搬送する際の 搬送安定化方法であって、 前記磁気テープの上下方向の位置精度を要する部分に ついて、 所定の回転精度を有するローラ搬送手段を用いることを特徴とする磁気 テープの搬送安定化方法を提供するものである。  A second mode of the third aspect is a transport stabilization method for transporting a magnetic tape in a longitudinal direction, wherein a portion of the magnetic tape that requires positional accuracy in a vertical direction is rotated by a predetermined amount. It is an object of the present invention to provide a method for stabilizing the transfer of a magnetic tape, characterized by using a roller transfer means having accuracy.
また、 上記第 3の態様の第 3の形態は、 磁気テープを長手方向に搬送する際の 搬送安定化方法であって、 前記磁気テープを案内する磁気テープ搬送案内部分を 基準となる位置に向けて付勢し、 該付勢された磁気テープ搬送案内部分を介して 前記磁気テープの搬送を行うことを特徴とする磁気テープの搬送安定化方法を提 供するものである。  A third mode of the third aspect is a transport stabilizing method for transporting a magnetic tape in a longitudinal direction, wherein a magnetic tape transport guide portion for guiding the magnetic tape is directed to a reference position. And a method for stabilizing the transport of the magnetic tape, wherein the magnetic tape is transported via the biased magnetic tape transport guide portion.
また、 上記第 3の目的を達成するために、 本発明の第 3の態様は、 磁気テープ を長手方向に搬送するための搬送安定化装置であって、 前記磁気テープの上下方 向の位置変動を調整する上下方向位置調整手段を有することを特徴とする 磁気テープの搬送安定化装置を提供するものである。 In order to achieve the third object, a third aspect of the present invention is a transport stabilizing device for transporting a magnetic tape in a longitudinal direction, comprising: It is intended to provide a magnetic tape transport stabilizing device, which has a vertical position adjusting means for adjusting a positional change in the direction.
すなわち、 本態様の第 1の形態は、 磁気テープを長手方向に搬送するための搬 送安定化装置であって、 前記磁気テープの上下方向の位置を検知する磁気テープ 位置検知手段と、 該磁気テープ位置検知手段による前記磁気テープの上下方向の 位置検知結果に基づいて、 前記磁気テープの上下方向の位置を修正する磁気 テープ位置修正手段とを備えたことを特徴とする磁気テープの搬送安定化装置を 提供するものである。 ここで、 前記磁気テープ位置検知手段は、 レーザを用いる 変位測定手段であるのが好ましい。 また、 前記磁気テープ位置修正手段は、 前記 磁気テープを取り扱う装置中における所定のュニットを一体的に移動させるもの であるのが好ましい。  That is, a first mode of the present embodiment is a transport stabilizing device for transporting a magnetic tape in a longitudinal direction, comprising: a magnetic tape position detecting means for detecting a vertical position of the magnetic tape; Magnetic tape position correcting means for correcting the vertical position of the magnetic tape based on the result of detecting the vertical position of the magnetic tape by the tape position detecting means. Equipment is provided. Here, the magnetic tape position detecting means is preferably a displacement measuring means using a laser. In addition, it is preferable that the magnetic tape position correcting means integrally moves a predetermined unit in an apparatus for handling the magnetic tape.
また、 上記第 3の態様の第 2の形態は、 磁気テープを長手方向に搬送する際の 搬送安定化装置であって、 前記磁気テープの上下方向の位置精度を要する部分の 前後に、 所定の回転精度を有するローラ搬送手段を設けたことを特徴とする磁気 テープの搬送安定化装置を提供するものである。 ここで、 上記磁気テープの搬送 安定化装置は、 前記磁気テープをレーザ加工する磁気テープの加工装置に用いら れるものであり、 前記ローラ搬送手段の回転精度は、 前記磁気テープをレーザ加 ェする加工位置における前記レーザ加工に用いられるレーザ光のパワーの減衰が その最大値の 5 %以内である範囲内に前記磁気テープをおくものであるのが好ま しい。  A second aspect of the third aspect is a transport stabilizing device for transporting a magnetic tape in a longitudinal direction, wherein a predetermined position of the magnetic tape in a vertical direction is required before and after a portion requiring vertical position accuracy. An object of the present invention is to provide a magnetic tape conveyance stabilizing device provided with roller conveyance means having rotation accuracy. Here, the magnetic tape transport stabilizing device is used for a magnetic tape processing device that performs laser processing on the magnetic tape, and the rotation accuracy of the roller transporting unit is such that the magnetic tape is laser-processed. It is preferable that the magnetic tape be placed within a range where the attenuation of the power of the laser beam used for the laser processing at the processing position is within 5% of its maximum value.
また、 上記第 3の態様の第 3の形態は、 磁気テープを長手方向に搬送するため の搬送安定化装置であって、 前記磁気テープを取り扱う装置の磁気テープ搬送案 内部分を揺動可能とすると共に、 前記磁気テープ搬送案内部分を、 前記磁気 テープを取り扱う装置の所定の基準位置に向けて付勢するように構成したことを 特徴とする磁気テープの搬送安定化装置を提供するものである。 ここで、 前記磁 気テープを取り扱う装置の所定の基準位置は、 前記磁気テープに所定の処理を施 すための処理ステージであるのが好ましい。 また、 前記磁気テープ搬送案内部分 は、 少なくとも、 前記磁気テープを支持するテープ支持手段を含むものであるの が好ましい。 A third aspect of the third aspect is a transport stabilizing device for transporting a magnetic tape in a longitudinal direction, wherein the device for handling the magnetic tape is a magnetic tape transporting device. The inner portion is made swingable, and the magnetic tape transport guide portion is configured to be urged toward a predetermined reference position of a device that handles the magnetic tape. An apparatus is provided. Here, the predetermined reference position of the device that handles the magnetic tape is preferably a processing stage for performing a predetermined process on the magnetic tape. Further, it is preferable that the magnetic tape transport guide portion includes at least a tape supporting means for supporting the magnetic tape.
また、 上記第 4の目的を達成するために、 本発明の第 4の態様は、 長尺な磁気 テープのバック層を加工する 1以上のレーザビームを所定の加工位置に入射する 光学系と、 前記磁気テープを長手方向に搬送する搬送手段と、 前記磁気テープの 搬送方向と直交する方向に軸線を有し、 側面で磁気テープを支持することに より、 バック層を前記レーザビームの入射側に向けて前記加工位置に磁気テープ を保持する円筒部、 および前記円筒部に設けられ、 前記磁気テープの端部に当接 することにより、 磁気テープの幅方向の位置を規制する鍔部を有する支持ドラム とを有することを特徴とする磁気テープ加工装置を提供するものである。 図面の簡単な説明  Further, in order to achieve the fourth object, a fourth aspect of the present invention provides an optical system for projecting one or more laser beams for processing a back layer of a long magnetic tape into a predetermined processing position, Conveying means for conveying the magnetic tape in the longitudinal direction, an axis in a direction orthogonal to the conveying direction of the magnetic tape, and supporting the magnetic tape on the side surface, so that the back layer is on the laser beam incident side. A support having a cylindrical portion for holding the magnetic tape at the processing position toward the processing position, and a flange portion provided on the cylindrical portion and abutting against an end of the magnetic tape to regulate a position in a width direction of the magnetic tape. And a magnetic tape processing device having a drum. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の第 1の態様の磁気テープの搬送安定化装置の第 1の実施例を 適用する磁気テープの処理装置の一実施例の概略構成を示す側面図である。 図 2は、 本態様の第 2の実施例を適用する磁気テープの処理装置の一実施例の 要部構成を示す側面図である。  FIG. 1 is a side view showing a schematic configuration of an embodiment of a magnetic tape processing apparatus to which the first embodiment of the magnetic tape transport stabilizing apparatus according to the first aspect of the present invention is applied. FIG. 2 is a side view showing a main configuration of an embodiment of a magnetic tape processing apparatus to which the second embodiment of the present embodiment is applied.
図 3 Aは、 本態様の第 3の実施例を適用する磁気テープの処理装置の一実施例 の要部構成を示す側面図であり、 図 3 Bは、 その上面図である。 FIG. 3A shows one embodiment of a magnetic tape processing apparatus to which the third embodiment of the present embodiment is applied. FIG. 3B is a side view showing a configuration of a main part of FIG. 3, and FIG. 3B is a top view thereof.
図 4は、 本態様の第 4の実施例を適用する磁気テープの処理装置の一実施例の 要部構成を示す側面図である。  FIG. 4 is a side view showing a main configuration of an embodiment of a magnetic tape processing apparatus to which a fourth embodiment of the present embodiment is applied.
図 5は、 本態様の第 5の実施例を適用する磁気テープの処理装置の一実施例の 要部構成を示す上面図である。  FIG. 5 is a top view showing a main configuration of an embodiment of a magnetic tape processing apparatus to which the fifth embodiment of the present embodiment is applied.
図 6は、 本態様の第 6の実施例を適用する磁気テープの処理装置の一実施例の 要部構成を示す側面図である。  FIG. 6 is a side view showing a configuration of a main part of an embodiment of a magnetic tape processing apparatus to which the sixth embodiment of the present embodiment is applied.
図 7 Aおよび図 7 Bは、 それぞれ本発明の第 2の態様の磁気テープの搬送安定 化方法および装置を適用する磁気テープの加工装置によって磁気テープのバック 層に形成される加工線 (凹部) の一例を示す平面図である。  FIGS. 7A and 7B show processing lines (recesses) formed on a back layer of a magnetic tape by a magnetic tape processing apparatus to which the method and apparatus for stabilizing magnetic tape transport according to the second embodiment of the present invention are applied. It is a top view which shows an example.
図 8 A、 図 8 Bおよび図 8 Cは、 それぞれ本発明の第 2の態様の磁気テープの 搬送安定化方法および装置を適用する磁気テープの加工装置によって磁気テープ のバック層に形成される加工線 (凹部) の断面形状を示す断面図である。  FIGS. 8A, 8B, and 8C show the processing formed on the back layer of the magnetic tape by the magnetic tape processing apparatus to which the method and apparatus for stabilizing the transfer of the magnetic tape according to the second embodiment of the present invention are applied. It is sectional drawing which shows the cross-sectional shape of a line (recess).
図 9は、 本発明の第 2の態様の磁気テープの搬送安定化方法および装置の磁気 テ一プポジショニング方法を適用する磁気テ一プの加工装置の一実施例を示す概 略構成図である。  FIG. 9 is a schematic configuration diagram showing one embodiment of a magnetic tape processing apparatus to which the magnetic tape positioning method of the magnetic tape transport stabilizing method and apparatus according to the second embodiment of the present invention is applied. .
図 1 0は、 図 9に示す磁気テープの加工装置に用いられる多眼レンズを説明す るための概念図である。  FIG. 10 is a conceptual diagram for explaining a multi-lens used in the magnetic tape processing apparatus shown in FIG.
図 1 1 Aおよび図 1 1 Bは、 それぞれ図 1 0に示す磁気テープ加工装置に組み 込まれる本態様の磁気テープの搬送安定化装置の第 1の実施例に係るテープポジ ショニング部の構成例を示す側面図および上面図である。  FIGS. 11A and 11B show examples of the configuration of the tape positioning unit according to the first embodiment of the magnetic tape transport stabilizing apparatus of the present embodiment incorporated in the magnetic tape processing apparatus shown in FIG. It is the side view and top view shown.
図 1 2 Aおよび図 1 2 Bは、 それぞれ本態様の第 2の実施例に係るテープポジ ショニング部の構成例を示す側面図および上面図である。 FIGS. 12A and 12B are tape positives according to the second embodiment of the present embodiment, respectively. It is the side view and top view which show the example of a structure of a shocking part.
図 1 3 Aおよび図 1 3 Bは、 それぞれ本態様の第 3の実施例に係るテープポジ ショニング部の構成例を示す側面図および上面図である。  FIGS. 13A and 13B are a side view and a top view, respectively, showing a configuration example of a tape positioning unit according to a third example of the present embodiment.
図 1 4 A、 図 1 4 Bおよび図 1 4 Cは、 それぞれ本態様の第 4の実施例に係る テープポジショニング部の構成例を示す側面図および上面図、 ならびに可動 テープガイドの側断面図である。  FIGS. 14A, 14B and 14C are a side view and a top view, respectively, showing a configuration example of a tape positioning section according to a fourth embodiment of the present embodiment, and a side sectional view of a movable tape guide. is there.
図 1 5 Aおよび図 1 5 Bは、 それぞれ本態様の第 5の実施例に係るテープポジ ショニング部の構成例を示す側面図および上面図である。  FIGS. 15A and 15B are a side view and a top view, respectively, showing a configuration example of a tape positioning unit according to a fifth example of the present embodiment.
図 1 6は、 本発明の第 3の態様の磁気テープの搬送安定化方法および装置を適 用する磁気テープの加工装置の磁気テープ搬送制御部の一実施例を示す概略構成 図である。  FIG. 16 is a schematic configuration diagram showing one embodiment of a magnetic tape transfer control unit of a magnetic tape processing apparatus to which the method and apparatus for stabilizing transfer of a magnetic tape according to the third embodiment of the present invention are applied.
図 1 7は、 本発明の第 4の態様の磁気テープの搬送安定化方法および装置の磁 気テープポジショニング方法を適用する磁気テープの加工装置の一実施例を示す 概略構成図である。  FIG. 17 is a schematic configuration diagram showing an embodiment of a magnetic tape processing apparatus to which the magnetic tape positioning method of the magnetic tape transporting method and apparatus according to the fourth embodiment of the present invention is applied.
図 1 8は、 図 1 7に示す磁気テープ加工装置に組み込まれる本態様の磁気 テープの搬送安定化装置の第 1の実施例に係るテープポジショニング部の構成例 を示す側面図である。  FIG. 18 is a side view showing a configuration example of a tape positioning unit according to a first embodiment of the magnetic tape transport stabilization device of the present embodiment incorporated in the magnetic tape processing device shown in FIG.
図 1 9は、 図 1 8に示すテープポジショニング部に用いられるつば付きローラ 一実施例の側面図である。  FIG. 19 is a side view of one embodiment of a flanged roller used in the tape positioning section shown in FIG.
図 2 O Aは、 つば付きローラの当初の状況を示す側面図であり、 図 2 0 Bは、 磨耗した状況を示す側面図である。  FIG. 2OA is a side view showing the initial state of the brim roller, and FIG. 20B is a side view showing the worn state.
図 2 1 Aは、 本態様の第 2の実施例に係るテープポジショニング部の構成例を 示す全体構成図であり、 図 2 1 Bは、 これに用いられるクラウンローラの一実施 例を示す側面図である。 FIG. 21A shows a configuration example of the tape positioning unit according to the second example of the present embodiment. FIG. 21B is a side view showing an embodiment of a crown roller used for this.
図 2 2 Aは、 本態様の第 3の実施例に係るテープポジショニング部の構成例を 示す全体構成図であり、 図 2 2 Bは、 これに用いられるコンケープローラを示す 側面図である。  FIG. 22A is an overall configuration diagram illustrating a configuration example of a tape positioning unit according to a third example of the present embodiment, and FIG. 22B is a side view illustrating a conscape roller used for the tape positioning unit.
図 2 3は、 本発明の第 5の態様の磁気テープの搬送安定化方法および装置を適 用する磁気テープの加工装置の磁気テープ搬送制御部の一実施例を示す概略構成 図である。  FIG. 23 is a schematic configuration diagram showing one embodiment of a magnetic tape transfer control unit of a magnetic tape processing apparatus to which the method and apparatus for stabilizing transfer of a magnetic tape according to the fifth embodiment of the present invention are applied.
図 2 4は、 本発明の第 6の態様の磁気テープの搬送安定化方法および装置を適 用する磁気テープの加工装置の一実施例を示す概略構成図である。  FIG. 24 is a schematic configuration diagram showing one embodiment of a magnetic tape processing apparatus to which the method and apparatus for stabilizing the transfer of a magnetic tape according to the sixth embodiment of the present invention are applied.
図 2 5は、 図 2 4に示す磁気テープ加工装置に組み込まれる本態様の磁気 テープの搬送安定化装置の一実施例に係る磁気テープ搬送制御部の構成例を示す 側面図である。  FIG. 25 is a side view showing a configuration example of a magnetic tape transport control unit according to one embodiment of the magnetic tape transport stabilizing device of the present embodiment incorporated in the magnetic tape processing device shown in FIG.
図 2 6 Aは、 本発明の第 7の態様の磁気テープ加工装置の一実施例の線図的概 念図であり、 図 2 6 Bは、 図 2 6 Aに示される磁気テープ加工装置の保持ドラム をテープ搬送方向から見た際の概略図である。  FIG. 26A is a schematic conceptual diagram of one embodiment of the magnetic tape processing apparatus according to the seventh aspect of the present invention, and FIG. 26B is a schematic view of the magnetic tape processing apparatus shown in FIG. 26A. FIG. 4 is a schematic diagram when a holding drum is viewed from a tape transport direction.
図 2 7は、 図 2 6 Aに示される磁気テープ加工装置に用いられるビーム分割光 学系の一実施例の線図的概念図である。  FIG. 27 is a schematic conceptual diagram of one embodiment of a beam splitting optical system used in the magnetic tape processing device shown in FIG. 26A.
図 2 8は、 図 2 6 Aに示される磁気テープ加工装置に用いられるビーム分割光 学系の別の実施例の線図的概念図である。  FIG. 28 is a schematic conceptual diagram of another embodiment of the beam splitting optical system used in the magnetic tape processing device shown in FIG. 26A.
図 2 9 Aおよび図 2 9 Bは、 それぞれ本態様の磁気テープ加工装置の別の実施 例を説明するための概略図である。 発明を実施するための最良の形態 FIGS. 29A and 29B are schematic diagrams for explaining another embodiment of the magnetic tape processing apparatus of the present embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
本発明に係る磁気テープの搬送安定化方法および装置ならびに磁気テープ加工 装置を添付の図面に示す好適実施例に基づいて以下に詳細に説明する。  DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method and an apparatus for stabilizing the transfer of a magnetic tape and a magnetic tape processing apparatus according to the present invention will be described in detail below based on preferred embodiments shown in the accompanying drawings.
最初に、 図 1〜図 6を参照して、 本発明の第 1の態様の磁気テープの搬送安定 化方法および装置について説明する。  First, a method and an apparatus for stabilizing the transport of a magnetic tape according to a first embodiment of the present invention will be described with reference to FIGS.
まず、 本発明の第 1の態様に係る磁気テープの搬送安定化方法を適用可能な磁 気テープぉよび磁気テープの搬送安定化装置に使用される磁気テープは、 P E T やァラミド樹脂等からなるベース層の一面に磁性体層を有し、 他方の面にバック 層を有し、 あるいは、 さらにオーバーコート層 (保護層) や下塗り層を有してな る、 通常の層構成を^ rする磁気テープであればよい。  First, a magnetic tape to which the magnetic tape transport stabilization method according to the first aspect of the present invention can be applied and a magnetic tape used for a magnetic tape transport stabilization apparatus are made of a base made of PET, aramid resin, or the like. The magnetic layer has a magnetic layer on one side of the layer, a back layer on the other side, or an overcoat layer (protective layer) or an undercoat layer. Any tape is acceptable.
上述のような、 本態様に係る搬送安定化方法装置を適用した場合には、 ブレード機ゃワインダその他のテープの製造装置においてテープを高速で搬送し た場合でも、 テープによる空気の巻き込みを低減することができる。  As described above, when the transport stabilizing method apparatus according to this aspect is applied, even when the tape is transported at high speed in a blade machine, a winder, or another tape manufacturing apparatus, air entrapment by the tape is reduced. be able to.
また、 テープを高速搬送した場合にも、 キヤプスタンローラ等でテープが浮き 上がってスリップすることがなく、 これに起因するテープの損傷や搬送長の誤差 がないので、 高速で正確なテープ搬送を行って、 適正な生産管理の下、 適正品質 の磁気テープを、 安定して高効率に製造できる。  In addition, even when the tape is transported at high speed, the tape is not lifted and slipped by the capstan rollers, etc., and there is no damage to the tape or errors in the transport length, resulting in high-speed and accurate tape transport. In this way, magnetic tapes of the appropriate quality can be manufactured stably and efficiently under appropriate production management.
図 1に、 本発明の第 1の態様の第 1の形態に係るテープの搬送安定化方法を実 施する磁気テープの搬送安定化装置の第 1の実施例を適用した磁気テープの処理 装置の一実施例の概念図を示す。  FIG. 1 shows a magnetic tape processing apparatus to which a first embodiment of a magnetic tape transport stabilizing apparatus for performing a tape transport stabilizing method according to a first mode of the first aspect of the present invention is applied. 1 shows a conceptual diagram of one embodiment.
図示例の磁気テープの処理装置 (以下、 単に処理装置という) 1 0は、 磁 気テープ (以下、 単にテープという) Tの長手方向に適宜の処理を施すもので、 処理部 1 2と、 この処理部 1 2にテープ Tを供給するリワインダ 1 4と、 処理の 終了したテープ Tを巻き取るワインダ 1 6と、 テープ Tを処理部 1 2に対して所 定の位置に位置決めするためのテープ支持体 1 8 a , 1 8 b , および、 この テープ支持体 1 8 a, 1 8 bの近傍に配置された吸引手段 2 0 a, 2 O bとを有 する。 なお、 2 2はガイドローラ、 2 4はキヤプスタンローラである。 In the illustrated example, a magnetic tape processing device (hereinafter simply referred to as a processing device) 10 is a magnetic tape processing device. A suitable processing is performed in the longitudinal direction of the tape T (hereinafter simply referred to as a tape). A processing unit 12, a rewinder 14 that supplies the tape T to the processing unit 12, and a tape T that has been processed 16a, 18b, and tape supports 18a, 18b for positioning the tape T at a predetermined position with respect to the processing section 12, and the tape supports 18a, 18 It has suction means 20a and 2Ob arranged near b. Here, 22 is a guide roller, and 24 is a capstan roller.
このような処理装置 1 0においては、 テープ支持体 1 8 a, 1 8 bに よってテープ Tを所定の処理位置に位置規制しつつ、 長手方向 (図中矢印 X方向) に搬送しながら、 処理部 1 2により、 テープ Tに所定の処理が施さ れる。 なお、 テープ Tは、 ここではその磁性体層を図中で上方に向けて搬送され ている。 この処理部 1 2において、 テープ Tに施される処理は、 特に制限はない が、 例えば、 後述する図 7 A、 図 7 B、 図 8 A、 図 8 Bおよび図 8 Cに示すよう な、 レーザ光を用いた各種の加工処理を挙げることができる。 これらの加工処理 の詳細については後述する。  In such a processing apparatus 10, while the position of the tape T is regulated to a predetermined processing position by the tape supports 18 a and 18 b, the processing is performed while transporting the tape T in the longitudinal direction (the arrow X direction in the figure). A predetermined process is performed on the tape T by the unit 12. Here, the tape T is transported with its magnetic layer facing upward in the figure. The processing performed on the tape T in the processing unit 12 is not particularly limited. For example, as illustrated in FIGS. 7A, 7B, 8A, 8B, and 8C described below, Various kinds of processing using laser light can be given. The details of these processings will be described later.
テープ支持体 1 8 a, 1 8 bは、 搬送されるテープ Tの裏面 (バック層側) に 当接して、 テープ Tを所定の位置 (特に、 図中での高さ方向) に位置付ける (規 制する) ものである。 また、 このテープ支持体 1 8 a , 1 8 bの近傍に配置され ている吸引手段 2 0 a, 2 O bは、 周囲の圧力より低い圧力で、 図に示されてい るように、 テープ支持体 1 8 a, 1 8 bに対して、 それぞれそのテープ搬送方向 上流側直前に配置されている。  The tape supports 18a and 18b come into contact with the back surface (back layer side) of the tape T to be conveyed, and position the tape T at a predetermined position (particularly in the height direction in the figure). Control). Further, the suction means 20a, 2Ob arranged near the tape supports 18a, 18b apply a pressure lower than the surrounding pressure, as shown in FIG. The bodies 18a and 18b are located immediately before the upstream side in the tape transport direction.
このように配置された吸引手段 2 0 a, 2 O bは、 図示されていない吸引 ポンプに接続されており、 周囲の圧力より低い圧力を発生するため、 テープ Tを テープ支持体 1 8 a , 1 8 bに押圧する作用を示す。 これにより、 テープ丁が、 テープ支持体 1 8 a, 1 8 bから浮上して、 正常な搬送ができなくなるというよ うな異常事態は発生しなくなる。 The suction means 20a and 2Ob arranged in this way are connected to a suction pump (not shown) and generate a pressure lower than the surrounding pressure. The action of pressing against the tape supports 18a and 18b is shown. As a result, an abnormal situation such that the tape is lifted from the tape supports 18a and 18b and cannot be normally conveyed does not occur.
図 2に、 本態様の第 2の実施例 (第 2の形態) を適用する処理装置の別の実施 例の要部の概略構成を示す。  FIG. 2 shows a schematic configuration of a main part of another embodiment of the processing apparatus to which the second embodiment (second embodiment) of the present embodiment is applied.
本実施例に係る処理装置 1 0 aにおいては、 テープ支持体 1 8 c , 1 8 dの少 なくともテープと接触する部分を磁性体により構成したことがその特徴である。 このように構成することにより、 図 1の第 1の実施例を適用する処理装置 1 0に 示される吸引手段 2 0 a、 2 O bは、 不要となる。 図 2に示す処理装置 1 0 aに おいて、 その他の構成要素については、 図 1に示す処理装置 1 0の構成要素と同 様であるので、 同一の構成要素には、 同一の番号を付し、 その詳細な説明は省略 する。  The processing apparatus 10a according to the present embodiment is characterized in that at least portions of the tape supports 18c and 18d that come into contact with the tape are made of a magnetic material. With such a configuration, the suction means 20a and 2Ob shown in the processing apparatus 10 to which the first embodiment of FIG. 1 is applied become unnecessary. Other components of the processing device 10a shown in FIG. 2 are the same as those of the processing device 10 shown in FIG. 1, and therefore, the same components are denoted by the same reference numerals. However, detailed description thereof is omitted.
本実施例に係るテープ支持体 1 8 c , 1 8 dは、 少なくともテープ接触部分ま たはその全部を、 各種の磁性体により形成することができる。 磁性体としては、 具体的には、 鉄, コバルト, ニッケルおよびこれらの合金や酸化物を原料とする 永久磁石が好適に用い得る。  The tape supports 18c and 18d according to the present embodiment can be formed of various magnetic materials at least in the tape contact portion or in whole. As the magnetic material, specifically, a permanent magnet made of iron, cobalt, nickel, or an alloy or oxide thereof can be suitably used.
本実施例によれば、 このように構成したことにより、 テープ丁が、 テープ支持 体 1 8 c, 1 8 dから浮上して、 正常な搬送ができなくなるというような異常事 態は発生しなくなる。  According to the present embodiment, with such a configuration, an abnormal condition such that the tape crests float from the tape supports 18c and 18d and cannot be normally conveyed does not occur. .
図 3 Aおよび図 3 Bに、 それぞれ本態様の第 3の実施例 (第 3の形態) を適用 する処理装置の別の実施例の要部の概略構成を示す。 なお、 図 3 Aは、 その側面 図であり、 図 3 Bは、 その上面図である。 本実施例に係る処理装置 1 O bにおいては、 テープ支持体 1 8 eを、 1つの大 きなブロックとして、 その表面 (図中では上面で、 テープ Tが接触する面) に、 テープ Tの進行方向と同じ方向の溝 2 6 aを複数設けたものである。 3A and 3B show a schematic configuration of a main part of another embodiment of the processing apparatus to which the third embodiment (third embodiment) of the present embodiment is applied, respectively. FIG. 3A is a side view, and FIG. 3B is a top view. In the processing apparatus 1 Ob according to the present embodiment, the tape support 18 e is formed as one large block, and the surface thereof (the upper surface in the figure, the surface in contact with the tape T) is provided with the tape T. A plurality of grooves 26a in the same direction as the traveling direction are provided.
本構成においても、 第 1の実施例に示したような吸引手段 (図 1の参照 符号 2 0 a , 2 0 b ) は不要である。 その他の構成要素については、 図 1に示す 第 1の実施例の処理装置 1 0の構成要素と同様である。  Also in this configuration, the suction means (reference numerals 20a and 20b in FIG. 1) as shown in the first embodiment is unnecessary. Other components are the same as those of the processing apparatus 10 of the first embodiment shown in FIG.
図 3 Bにおいては、 テープ支持体 1 8 eの表面に設ける溝 2 6 aとして、 一様 な直線状のもののみを示しているが、 これに限定されるものではなく、 波形形状 の溝や、 幅, 深さの変化する溝を設けてもよい。  In FIG. 3B, only a uniform linear groove is shown as the groove 26a provided on the surface of the tape support 18e. However, the present invention is not limited to this. A groove having a variable width and depth may be provided.
また、 溝 2 6 aの断面形状についても、 V字型, U字型, 4角形あるいは半円 形など、 各種の形状のものが有効である。 さらに、 溝のサイズや数も、 テープ T の幅や搬送速度などに応じて、 適宜決定してよい。  Regarding the cross-sectional shape of the groove 26a, various shapes such as V-shaped, U-shaped, square or semicircular are effective. Further, the size and number of the grooves may be appropriately determined according to the width of the tape T, the transport speed, and the like.
本実施例によれば、 このように構成したことにより、 テープ Tが、 テープ支持 体 1 8 eから浮き上って、 正常な搬送ができなくなるというような異常事態は発 生しなくなる。  According to the present embodiment, with such a configuration, an abnormal situation in which the tape T rises from the tape support 18e and cannot be transported normally cannot occur.
図 4に、 本態様の第 4の実施例 (第 4の形態) を適用する処理装置の別の実施 例の要部の概略構成を示す。  FIG. 4 shows a schematic configuration of a main part of another embodiment of the processing apparatus to which the fourth embodiment (fourth embodiment) of the present embodiment is applied.
本実施例に係る処理装置 1 0 cにおいては、 テープ支持体 1 8 f, 1 8 gを、 テープ Tの搬送方向上流側が鋭角に形成されたエツジとしたものである。 このエッジの角度としては、 例えば、 4 5度以内が好ましい。 また、 テープ支持 体 1 8 f, 1 8 gの先端部は、 テープ Tを損傷しないように研磨してあることが 好ましい。 本構成においても、 第 1の実施例に示したような吸引手段 (図 1の参照 符号 2 0 a, 2 0 b ) は不要である。 その他の構成要素については、 図 1に示す 第 1の実施例の処理装置 1 0の構成要素と同様である。 In the processing apparatus 10c according to the present embodiment, the tape supports 18f and 18g are formed as edges having an acute angle formed on the upstream side in the transport direction of the tape T. The angle of the edge is preferably, for example, within 45 degrees. It is preferable that the tips of the tape supports 18 f and 18 g are polished so as not to damage the tape T. Also in this configuration, the suction means (reference numerals 20a and 20b in FIG. 1) as shown in the first embodiment is unnecessary. Other components are the same as those of the processing apparatus 10 of the first embodiment shown in FIG.
上述のテープ支持体 1 8 f , 1 8 gは、 その鋭角のエッジにより、 テープ丁に 同伴されて移動する空気層をテープ Tから剥離する作用を行う。  The tape supports 18f and 18g described above have the sharp edges that act to separate the air layer moving along with the tape from the tape T.
これにより、 本実施例によれば、 テープ Tとテープ支持体 1 8 f , 1 8 gとの 間の空気層を薄層化でき、 テープ Tがテープ支持体 1 8 f , 1 8 gから浮き 上って、 正常な搬送ができなくなるというような事態は発生しなくなる。  Thereby, according to the present embodiment, the air layer between the tape T and the tape supports 18 f and 18 g can be made thinner, and the tape T floats from the tape supports 18 f and 18 g. As a result, a situation in which normal transport cannot be performed does not occur.
上記テープ支持体 1 8 f , 1 8 gを構成する材料は、 特に限定されるものでは なく、 十分な耐磨耗性を有する材料であれば用いることができる。 また、 このテープ支持体 1 8 f , 1 8 gのテープ Tとの接触面に、 前述のような溝を形 成することにより、 両者の効果を合わせて得ることも可能である。 さらに、 図 1 に示したような吸引手段 2 0 a , 2 0 bを併用してもよい。  The material constituting the tape supports 18f and 18g is not particularly limited, and any material having sufficient abrasion resistance can be used. In addition, by forming the above-described groove in the contact surface of the tape supports 18f and 18g with the tape T, it is possible to obtain both effects in combination. Further, suction means 20a and 20b as shown in FIG. 1 may be used together.
このように、 上述の各実施例に示した、 テープ Tに同伴されて移動する空気層 をテープ Tから剥離ないしは除去する手段を、 複数種類組み合わせて用いること により、 より確実なテープ搬送を実現することが可能になる。  As described above, a more reliable tape transport is realized by using a combination of a plurality of types of means for peeling or removing the air layer moving accompanying the tape T from the tape T shown in each of the above-described embodiments. It becomes possible.
また、 上記実施例に示した手段以外にも、 以下に説明するような各種の手段が 利用できる。  Various means described below can be used in addition to the means described in the above embodiment.
図 5に、 さらに、 本態様の他の実施例を適用する処理装置の別の実施例の要部 の概略構成を示す。  FIG. 5 shows a schematic configuration of a main part of another embodiment of a processing apparatus to which another embodiment of the present aspect is applied.
図 5に示す実施例は、 図 3 Bに示す第 3の実施例の処理装置 1 0 bのテープ支 持体 1 8 eの表面に設ける溝 2 6 aを改良したものである。 図 5に示す実施例で は、 溝 2 6 aを持つテープ支持体 1 8 eの代わりに、 テープ支持体 1 8 hに設け る溝を、 テープ搬送方向下流側に向かって広がる傾斜溝 2 6 bとして、 さらに、 この溝 2 6 bの各終端部、 つまり、 テープ支持体 1 8 hの両側面に、 吸引 手段 2 0 c, 2 0 dを配置したものである。 The embodiment shown in FIG. 5 is an improvement of the groove 26a provided on the surface of the tape support 18e of the processing apparatus 10b of the third embodiment shown in FIG. 3B. In the embodiment shown in FIG. Instead of the tape support 18 e having the groove 26 a, the groove provided on the tape support 18 h is replaced with an inclined groove 26 b extending toward the downstream side in the tape transport direction. The suction means 20c and 20d are arranged at each end of 26b, that is, on both side surfaces of the tape support 18h.
このように構成することにより、 本実施例に係る処理装置においては、 テープ 支持体 1 8 hとテープ Tとの間の空気が、 テープ支持体 1 8 hの両側面に配置し た吸引手段 2 0 c 2 0 dから排除されるので、 テープ Tがテープ支持体 1 8 h に十分接触して搬送されるようになり、 スリップなどの搬送上のトラブルを未然 に防止することができるという効果が得られる。  With such a configuration, in the processing apparatus according to the present embodiment, the air between the tape support 18 h and the tape T is separated by suction means 2 disposed on both side surfaces of the tape support 18 h. Since the tape T is eliminated from 0c20d, the tape T is transported in sufficient contact with the tape support 18h, and the effect that transport problems such as slippage can be prevented beforehand. can get.
ここで、 上記傾斜溝 2 6 bの形状 (傾斜角度など) , 寸法 (幅, 深さなど) は 本実施例の趣旨に基づく範囲内で、 適宜決定してよい。  Here, the shape (inclination angle, etc.) and dimensions (width, depth, etc.) of the inclined groove 26 b may be determined as appropriate within a range based on the purpose of the present embodiment.
また、 ここでは、 吸引手段 2 0 c, 2 0 dは必ずしも設ける必要はなく、 上記 傾斜溝 2 6 bの形状 (傾斜角度など) , 寸法 (幅, 深さなど) を、 適切に設定す れば、 十分な効果が得られる場合も多い。  Here, the suction means 20c and 20d are not necessarily provided, and the shape (inclination angle, etc.) and dimensions (width, depth, etc.) of the above-mentioned inclined groove 26b are appropriately set. In many cases, sufficient effects can be obtained.
図 6に、 さらに、 本態様の他の実施例を適用する処理装置の別の実施例の要部 の概略構成を示す。  FIG. 6 shows a schematic configuration of a main part of another embodiment of a processing apparatus to which another embodiment of the present embodiment is applied.
本実施例に係る処理装置 1 0 dは、 先に図 1に示す実施例の処理装置 1 0の構 成を一部変更したものであり、 テープ Tに同伴されてくる空気層を、 サクシヨン ドラム 2 8によって、 吸引 '除去するものである。  The processing apparatus 10d according to the present embodiment is obtained by partially changing the configuration of the processing apparatus 10 according to the embodiment shown in FIG. 1, and an air layer accompanying the tape T is formed by a suction drum. By 28, the suction is removed.
本実施例によっても、 テープ Tのスリップなどの搬送上のトラブルを未然に防 止することができるという効果が得られる。  According to this embodiment as well, an effect is obtained that transport troubles such as slipping of the tape T can be prevented.
なお、 上記各実施例は、 いずれも本態様の一例を示したものであり、 本発明は これらに限定されるべきものではない。 It should be noted that each of the above embodiments is merely an example of the present embodiment, and the present invention It should not be limited to these.
また、 前述の通り、 上記各実施例に示した各種の処理装置の種々の構成要素や 手段を、 競合しない範囲内で、 適宜、 自由に組み合わせることにより、 より効果 的なテープの搬送安定化を実現することも可能である。  In addition, as described above, more effective tape stabilization can be achieved by freely combining various components and means of the various types of processing apparatuses shown in the above embodiments within a range that does not compete with each other. It is also possible to realize.
本発明の第 1の態様に係る磁気テープの搬送安定化方法および装置は、 基本的 に以上のように構成される。  The magnetic tape transport stabilizing method and apparatus according to the first aspect of the present invention are basically configured as described above.
次に、 図 7 A〜図 8 Cを参照して、 本発明の各態様に係る磁気テープの搬送安 定化方法および装置が適用される磁気テープの加工装置および本発明の第 4の態 様の磁気テープの加工装置によって加工される磁気テープについて説明する。 ここで、 本発明の各態様に適用可能な磁気テープは、 上述したように P E Tや ァラミド樹脂等からなるベース層 (ベースフィルム) の一面に磁性体層を有し、 ベース層の他方の面にバック層 (バックコート層) を有し、 あるいはさら に、 オーバーコート層 (保護層) や下塗り層を有してなる、 通常の層構成を有す る磁気テープであればよい。 なお、 以下の説明では、 磁気テープの加工装置 によって、 磁気テープのバック層に、 凹部 (好ましくは溝) からなる、 上述した ような同伴空気の 「逃げ道」 を形成する加工を施すものとする。  Next, referring to FIGS. 7A to 8C, a magnetic tape processing apparatus to which the magnetic tape transport stabilizing method and apparatus according to each embodiment of the present invention are applied, and a fourth embodiment of the present invention The magnetic tape processed by the magnetic tape processing apparatus described above will be described. Here, the magnetic tape applicable to each embodiment of the present invention has a magnetic layer on one surface of a base layer (base film) made of PET, an aramide resin, or the like as described above, and has a magnetic layer on the other surface of the base layer. Any magnetic tape having a normal layer structure, which has a back layer (back coat layer) or further has an overcoat layer (protective layer) and an undercoat layer, may be used. In the following description, it is assumed that a magnetic tape processing apparatus performs a process of forming the above-described “escape route” of entrained air, which is formed of a concave portion (preferably a groove), on the back layer of the magnetic tape.
図 7 Aおよび図 7 Bに、 本発明が適用される磁気テープの加工装置 (以下、 単 に加工装置という) によって加工され、 凹部が形成された磁気テープのバック層 の一例の平面図を概念的に示す。  FIGS. 7A and 7B are plan views of a magnetic tape processing apparatus to which the present invention is applied (hereinafter, simply referred to as a processing apparatus). Is shown.
図 7 Aに示される例は、 テープ Tのバック層に、 テープ Tの長手方向に延在す る加工線 aを複数本、 形成してなるものである。  In the example shown in FIG. 7A, a plurality of processing lines a extending in the longitudinal direction of the tape T are formed on the back layer of the tape T.
図 7 Bに示される例は、 図 7 Aに示される例において、 バック層の加工を断続 的にして、 加工線を線分化 (加工線分 bで示される) した例である。 なお、 ここ で、 加工線分 bの長さには、 特に限定はない。 また、 加工線分 bの長さは、 全て 同じであっても、 異なる長さの線分が混在してもよい。 In the example shown in Fig. 7B, the back layer is intermittently processed in the example shown in Fig. 7A. This is an example in which the processing line is divided into lines (indicated by the processing line segment b). Here, the length of the processing line segment b is not particularly limited. Further, the lengths of the processing line segments b may be all the same, or line segments having different lengths may be mixed.
図 7 Aおよび図 7 Bに示されるような, バック層に凹部 (加工線 a, 加工 線分 b ) を有するテープ Tは、 テープ Tの幅方向のカールであるカツビングも、 従来のテープに比して少なくなり、 カツビングに起因する外観の低下、 ヘッド当 りの悪化、 テープエッジのダメージ等も、 従来のテープに比して大幅に低減され る。  As shown in FIGS. 7A and 7B, the tape T having the concave portion (processed line a, processed line segment b) in the back layer has a cutting force that is a curl in the width direction of the tape T as compared with the conventional tape. The reduction in appearance due to cutting, deterioration of head contact, and damage to the tape edge are also greatly reduced as compared with conventional tapes.
なお、 バック層に凹部を形成することにより、 カツビングが低減できる理由は 明らかではないが、 前記バインダの収縮率差に起因してテープの幅方向で生じる 応力が凹部で寸断されるため、 テープの幅方向に生じる力が全体として小さくな り、 その結果、 カツビングを防止できるものと考えられる。  Although the reason why cutting can be reduced by forming a concave portion in the back layer is not clear, stress generated in the width direction of the tape due to the difference in the shrinkage ratio of the binder is cut at the concave portion. It is considered that the force generated in the width direction is reduced as a whole, and as a result, cutting can be prevented.
さらに、 ブレード機ゃワインダ等のテープの製造装置においてテープを高速で 搬送した場合でも、 テープによる空気の巻き込みを低減し、 または空気の巻き込 みが少なく、 また、 空気を巻き込んだ場合でも、 その空気を加工線 (凹部) から 好適に排除することができる。  Furthermore, even when the tape is conveyed at a high speed in a tape manufacturing device such as a blade machine or a winder, even if the air is entrapped by the tape or the air entanglement is small, Air can be preferably removed from the processing line (recess).
このため、 ブレード機等のテープの製造装置でテープを高速搬送しても、 製造 装置のキヤプスタンローラ等でテ一プが浮き上がってスリップすることがなく、 これに起因するテープの損傷や搬送長の誤差がない。 従って、 このテープを利用 することにより、 高速で正確なテープ搬送を行って、 適正な生産管理の下、 適正 品質の磁気テープを、 安定して高効率に製造することが可能となる。  For this reason, even when the tape is transported at high speed by a tape manufacturing device such as a blade machine, the tape does not rise and slip due to the capstan rollers or the like of the manufacturing device. There is no length error. Therefore, by using this tape, it is possible to carry out high-speed and accurate tape conveyance, and to manufacture magnetic tape of proper quality stably and efficiently under proper production control.
また、 このようなテープ Tは、 巻き取りの際にも、 テープ間の空気を好適に抜 くことができるので、 カートリッジやパンケーキに巻き取った際の巻き姿も美し い。 In addition, such a tape T can be used to remove air between the tapes during winding. The rolled shape when rolled up into a cartridge or pancake is also beautiful.
上述の凹部の形状 (断面形状) には特に限定はなく、 例えば図 8 Aに示される ような矩形状、 図 8 Bに示されるような三角形状、 図 8 Cに示されるような半円 (弓型) 等が例示される。 これらの形状は、 バック層を加工する際に用いる レーザビームのビームスポットの強度分布 (プロファイル) を調整することによ り、 実現できる。  There is no particular limitation on the shape (cross-sectional shape) of the concave portion described above. For example, a rectangular shape as shown in FIG. 8A, a triangular shape as shown in FIG. 8B, a semicircle as shown in FIG. 8C ( Bow type) and the like. These shapes can be realized by adjusting the intensity distribution (profile) of the beam spot of the laser beam used when processing the back layer.
また、 凹部の深さにも特に限定はなく、 一般的に、 テープの幅, バック層の形 成材料や厚さ, ベースの形成材料や厚さ, 凹部形成以降の工程やユーザ先での加 ェ処理などのテープにかかる負荷 (搬送速度やテンション等) を考慮して、 要求 されるテープ強度等に応じて、 適宜決定すればよい。 一例としては、 凹部の深さ は、 0 . 1 // m以上とするのが好ましく、 特に、 0 . 2 w m以上とするのがより 好ましい。  There is also no particular limitation on the depth of the recess, and in general, the width of the tape, the forming material and thickness of the back layer, the forming material and thickness of the base, the process after forming the recess, and the user's application. In consideration of the load on the tape (transport speed, tension, etc.) due to the tape processing, etc., it may be appropriately determined according to the required tape strength and the like. As an example, the depth of the recess is preferably at least 0.1 // m, more preferably at least 0.2 wm.
さらに、 凹部のサイズ (線幅) や形成密度にも、 特に限定はなく、 テープの強 度や幅 (サイズ) 等に応じて、 適宜決定すればよく、 例えば、 幅が 0 . 5インチ のテープに、 図 7 A, 図 7 Bに示されるような、 長手方向に延在する加工線等を 形成する場合には、 幅 3 m〜 1 0 程度で、 幅方向に数本〜 1 0 0本程度の 加工線を形成することが好ましい。  Furthermore, the size (line width) and the formation density of the concave portion are not particularly limited, and may be appropriately determined according to the strength and width (size) of the tape. For example, a tape having a width of 0.5 inch is used. In addition, when forming processing lines extending in the longitudinal direction as shown in FIGS. 7A and 7B, the width is about 3 m to 10 and several to 100 in the width direction. It is preferable to form a processing line of the order.
次に、 図 9〜図 1 5 Bを参照して、 本発明の第 2の態様の第 1および第 2の形 態に係る磁気テープの搬送安定化方法および装置を説明する。 なお、 以下に説明 する実施例においては、 本発明の磁気テープの搬送安定化方法および装置を、 上 述のようなレーザビームなどを磁気テ一プのバック層に入射させて、 このテープ のバック層に凹部 (溝) を形成する加工を施すための磁気テープの加工装置 のテープ搬送手段に適用した場合を代表例として説明するが、 本発明は、 これに 限定されるわけではない。 Next, a method and an apparatus for stabilizing the transfer of a magnetic tape according to the first and second embodiments of the second embodiment of the present invention will be described with reference to FIGS. 9 to 15B. In the embodiments described below, the method and apparatus for stabilizing the transport of the magnetic tape of the present invention are performed by irradiating the laser beam or the like described above onto the back layer of the magnetic tape. The case where the present invention is applied to a tape conveying means of a magnetic tape processing apparatus for forming a concave portion (groove) in the back layer will be described as a typical example, but the present invention is not limited to this.
図 9に、 本発明の第 2の態様の第 1および第 2の形態に係る磁気テープの搬送 安定化方法を実施する磁気テープの搬送安定化装置を適用した磁気テープの加工 装置の一実施例の概念図を示す。 図 9に示す加工装置 3 0は、 上述のような磁気 テープ Tを、 レーザビームを用いる加工方法を利用して製造するための加工処理 装置である。  FIG. 9 shows an embodiment of a magnetic tape processing apparatus to which a magnetic tape transport stabilizing apparatus for performing the magnetic tape transport stabilizing method according to the first and second embodiments of the second aspect of the present invention is applied. FIG. The processing device 30 shown in FIG. 9 is a processing device for manufacturing the magnetic tape T as described above using a processing method using a laser beam.
図示例の加工装置 3 0は、 前述の図 7 Aおよび図 7 Bに示されるような、 テープ Tの長手方向に延在する加工線 aおよび加工線分 bを形成するもの で、 レーザビームを射出する光源 3 2と、 パルス変調器 3 4、 ミラー 3 6、 ビームェクスパンダ 3 8、 ビームプロファイル成形器 4 0および多眼レンズ 4 2 を有する光学系と、 テープ搬送手段 4 4とを有する。  The processing apparatus 30 in the illustrated example forms a processing line a and a processing line segment b extending in the longitudinal direction of the tape T as shown in FIGS. 7A and 7B described above. An optical system including a light source 32 for emitting light, a pulse modulator 34, a mirror 36, a beam expander 38, a beam profiler 40, and a multi-lens lens 42, and a tape transport means 44 .
このような加工装置 3 0においては、 テープ搬送手段 4 4によって (磁 気) テープ Tを所定の加工位置に位置付けしつつ長手方向 (図中矢印 X方向) に 搬送しながら、 光源 3 2から射出されたレーザビームを光学系によって前記加工 位置に入射することにより、 テープに加工線を形成する。 ここで、 テープ Tは、 そのバック層を上方 (レーザビーム入射側) に向けて搬送されており、 従って、 レーザビームによつてテ一プ τのバック層が加工される。  In such a processing apparatus 30, the (magnetic) tape T is ejected from the light source 32 while being transported in the longitudinal direction (the arrow X direction in the figure) while the tape T is being positioned at a predetermined processing position by the tape transport means 44. The processed laser beam is incident on the processing position by an optical system to form a processing line on the tape. Here, the tape T is conveyed with its back layer facing upward (toward the laser beam incidence side), so that the back layer of the tape τ is processed by the laser beam.
光源 3 2としては、 テープ Tのバック層を加工可能な出力を有するものであれ ば、 各種の光源 (レーザ発振器) が利用可能であり、 好ましくは紫外域もしくは 可視域のレーザビームの少なくとも一方を出射できるものが使用される。 なお、 加工性の点では、 波長の短いレーザビームの方が好ましく、 紫外域のレーザ ビームが最も良好であるが、 コスト, 安全性, 作業性等の点では、 可視域の レーザビームが好ましい。 As the light source 32, any light source (laser oscillator) can be used as long as it has an output capable of processing the back layer of the tape T. Preferably, at least one of an ultraviolet region or a visible region laser beam is used. What can emit light is used. In addition, From the viewpoint of workability, a laser beam having a short wavelength is preferable, and a laser beam in the ultraviolet region is the best, but a laser beam in the visible region is preferable in terms of cost, safety, workability, and the like.
具体的には、 4 8 8 n mや 5 1 5 n mのアルゴン (イオン) レーザや YA Gレーザを S H G (second harmoni c generat i on二次高調波発生) 素子で波 長変換した 5 3 2 n mのレーザビームを射出する光源等が例示される。  Specifically, 532 nm and 515 nm argon (ion) lasers and YAG lasers are converted to wavelengths by SHG (second harmonic generation) second harmonic generation (SHG) devices. A light source that emits a laser beam is exemplified.
パルス変調器 3 4は、 図 7 Bに示されるような加工線分 bを形成するために、 レーザビームをパルス変調するものである。 従って、 光源 3 2が直接パルス変調 可能である場合や、 図 7 Aに示されるような加工線のみを形成する場合に は、 パルス変調器 3 4は不要である。  The pulse modulator 34 modulates a laser beam with a pulse to form a processing line segment b as shown in FIG. 7B. Therefore, the pulse modulator 34 is unnecessary when the light source 32 can directly perform pulse modulation or when only a processing line as shown in FIG. 7A is formed.
パルス変調器 3 4としては、 AOM (音響光学変調器) 等の公知の変調手段が 利用可能である。 また、 変調周期を調整することにより、 加工線分 bの長さを調 整することができる。 また、 変調により加工線分 bをパターン化しても良い。 レーザビームは、 ミラー 3 6で所定方向に反射され、 次いで、 ビームェク スパンダ 3 8に入射する。  As the pulse modulator 34, a known modulation means such as an AOM (acoustic optical modulator) can be used. Also, by adjusting the modulation period, the length of the processing line segment b can be adjusted. Further, the processing line segment b may be patterned by modulation. The laser beam is reflected in a predetermined direction by the mirror 36, and then enters the beam spreader 38.
本実施例に示す加工装置 3 0は、 1本のレーザビームを分割して、 テープ丁に 加工線を形成するが、 多種の幅のテープ Tに対応して、 その幅方向の全面に加工 線を形成可能であるのが好ましい。 しかしながら、 一般的に、 光源から射出され るレーザビームの径は 1 mm前後であり、 テープ Tの幅はそれよりも広いので、 そのままでは、 テープ Tの幅方向全面に加工を行うことはできない。  The processing apparatus 30 shown in the present embodiment divides one laser beam and forms a processing line on the tape, but the processing line is formed on the entire surface in the width direction corresponding to the tape T having various widths. Is preferably formed. However, in general, the diameter of the laser beam emitted from the light source is about 1 mm, and the width of the tape T is wider than that. Therefore, the entire surface of the tape T in the width direction cannot be processed as it is.
そのため、 加工装置 3 0では、 ビームェクスパンダ 3 8を配置し、 光源 3 2か ら射出されたレーザビームを拡径する。 例えば、 光源 3 2から射出される 一:!! ビームの径が l mmで、 テープ Tの幅が 0 . 5インチである場合には、 1 5倍〜 2 0倍程度にレーザビームを拡径すればよい。 また、 ビームェクスパンダ 3 8で のレーザビームの拡径率は、 調整可能にしておくのがよい。 Therefore, in the processing apparatus 30, the beam expander 38 is arranged to expand the diameter of the laser beam emitted from the light source 32. For example, light emitted from light source 3 2 If the beam diameter is l mm and the width of the tape T is 0.5 inch, the diameter of the laser beam may be expanded to about 15 to 20 times. Further, it is preferable that the diameter expansion ratio of the laser beam in the beam expander 38 can be adjusted.
ビームェクスパンダ 3 8で拡径されたレーザビームは、 次いで、 ビーム プロファイル成形器 (以下、 単に成形器という) 4 0に入射する。 成形器 4 0は、 レーザビームの強度をビームスポット全面で略均一にする、 すなわち、 レーザビームの強度分布を略均一化するものである。  The laser beam expanded by the beam expander 38 then enters a beam profile shaper (hereinafter simply referred to as a shaper) 40. The shaper 40 makes the intensity of the laser beam substantially uniform over the entire beam spot, that is, makes the intensity distribution of the laser beam substantially uniform.
通常、 光源 3 2から射出されるレーザビームは、 ガウス分布のような強度分布 を持っているので、 このレーザビームでテープ Tを加工すると、 強度分布に応じ て加工線 aや加工線分 b (以下、 単に加工線と総称する) の深さが異なってしま う。 そのため、 成形器 4 0を配置することにより、 レーザビームの強度分布 を均一にして、 形成する加工線の深さを均一にすることができる。  Normally, the laser beam emitted from the light source 32 has an intensity distribution such as a Gaussian distribution. Therefore, when processing the tape T with this laser beam, the processing line a and the processing line segment b ( (Hereinafter, these are simply referred to as processing lines.) Therefore, by disposing the molding device 40, the intensity distribution of the laser beam can be made uniform, and the depth of the processing line to be formed can be made uniform.
なお、 成形器 4 0としては、 各種の光学フィルタ, フレネル回折を利用し てビームプロファイルの成形を行うレーザビームと同径のアパーチャ, 多眼 レンズ等が利用可能である。  As the shaping device 40, various optical filters, an aperture having the same diameter as a laser beam for shaping a beam profile using Fresnel diffraction, a multi-lens lens, and the like can be used.
レーザビームは、 次いで、 多眼レンズ 4 2に入射する。  The laser beam then enters the multi-lens lens 42.
多眼レンズ 4 2は、 マイクロボールレンズやセルフオックレンズを、 その光軸 をレーザビームに平行として、 光軸と直交する方向に多数配列したものであり、 入射したレーザビームを、 多数のレーザビームに分割して、 所定の加工位置に入 射、 結像する。 これにより、 レーザビームによってテープ Tのバック層を加工し て、 加工線等 (凹部) を形成する。  The multi-lens lens 42 is made up of a number of microball lenses or self-occurring lenses, the optical axis of which is parallel to the laser beam, and arranged in a direction orthogonal to the optical axis. Then, it is incident on a predetermined processing position and forms an image. As a result, the back layer of the tape T is processed by the laser beam to form a processing line or the like (recess).
図 1 0に、 多眼レンズ 4 2の一実施例を光軸方向から見た際の概略図を示す。 図示例の多眼レンズ 4 2は、 一例として、 マイクロボールレンズやセル フォックレンズ (以下、 両者をまとめてレンズという) を 5個 X 5個で最密状態 に配列したものであり、 図 1 0に示すように、 一点鎖線で示されているレンズの 配列線をテープ Tの搬送方向 Xおよび幅方向に対して若干傾けた状態で配置され る。 これにより、 テープ Tを長手方向に一回搬送 (1パス) するだけで、 長手方 向に延在する計 2 5本 (列) の加工線 aを形成することができる。 FIG. 10 is a schematic view of one embodiment of the multi-lens lens 42 when viewed from the optical axis direction. The multi-lens lens 42 in the illustrated example is, for example, a microball lens or a selfoc lens (hereinafter, both are collectively referred to as a lens) in which 5 × 5 lenses are arranged in a close-packed state. As shown in (1), the lens array line indicated by the one-dot chain line is arranged with a slight inclination with respect to the transport direction X and the width direction of the tape T. This makes it possible to form a total of 25 (rows) processing lines a extending in the longitudinal direction only by transporting the tape T once (one pass) in the longitudinal direction.
ここで、 搬送方向 Xとレンズの配列線との角度を調整することにより、 加 ェ線 aの間隔を調整することができるが、 効率良く加工線を形成するためには、 この角度は、 各レンズの光軸 (ビームウェストの中心) が搬送方向 Xで重ならな いように設定する必要がある。  Here, by adjusting the angle between the transport direction X and the lens arrangement line, the interval between the additional lines a can be adjusted.However, in order to efficiently form a processing line, this angle is The optical axis of the lens (the center of the beam waist) must be set so that it does not overlap in the transport direction X.
例えば、 テープ Tの幅方向のレンズの配列線に注目した際に、 一列の多眼 レンズの数を N;搬送方向 Xと配列線との角度を Θ ; とすると、 下記式が満たさ れる場合には、 搬送方向 Xでレンズの光軸は重ならない。  For example, when paying attention to the lens arrangement line in the width direction of the tape T, if the number of multi-lens lenses in a row is N, and the angle between the transport direction X and the arrangement line is ;, the following equation is satisfied. The optical axes of the lenses do not overlap in the transport direction X.
s in [ ( 2 π / 3 ) + θ ≥Ν · s in θ  s in [(2 π / 3) + θ ≥Νsin θ
なお、 多眼レンズ 4 2のレンズ配列は、 図 1 0に示される最密状態には限定さ れず、 各種のものが利用可能である。  The lens array of the multi-lens lens 42 is not limited to the close-packed state shown in FIG. 10, and various types can be used.
図 9に示す加工装置 3 0において、 テープ Τは、 テープ搬送手段 4 4によって バック層側 (裏面側) をレーザビーム光路の上流側 (レーザビーム入射側) に向 けて、 所定の加工位置に規制されつつ (つまり、 搬送方向 Xと長手方向とを一致 させて) 、 長手方向に搬送される。 なお、 テープ搬送手段 4 4は、 図示されてい ないキヤプスタンローラ, リワインダ, ワインダ等の搬送駆動手段 (例えば、 図 1参照) と、 ガイドローラ 4 6および 4 8と、 テープフラットナ 5 0一と力!^冓成 される。 In the processing device 30 shown in FIG. 9, the tape Τ is moved to a predetermined processing position by turning the back layer side (back side) toward the upstream side (laser beam incident side) of the laser beam optical path by the tape transport means 44. It is conveyed in the longitudinal direction while being regulated (that is, the conveying direction X is made to coincide with the longitudinal direction). The tape transport means 44 includes transport drive means (not shown) such as a capstan roller, a rewinder, and a winder (for example, see FIG. 1), guide rollers 46 and 48, and a tape flattener 501. And power! Is done.
テープフラットナ 5 0は、 搬送されるテープ Tの表面 (磁性体層側) に当接し て、 テープ Tを所定の加工位置に保持 (位置規制) するものである。  The tape flattener 50 abuts on the surface (magnetic layer side) of the tape T to be conveyed, and holds the tape T at a predetermined processing position (position regulation).
テープ Tは、 搬送方向 Xにテープフラッ トナ 5 0を挟んで配置される ガイドローラ 4 6および 4 8によって、 テープフラットナ 5 0よりも下方を通る 搬送経路を形成される。 これにより、 テープ Tは、 テープフラットナ 5 0に押圧 され、 支持されて、 加工位置に位置規制される。  The transport path of the tape T is formed below the tape flattener 50 by the guide rollers 46 and 48 arranged in the transport direction X with the tape flatner 50 interposed therebetween. As a result, the tape T is pressed and supported by the tape flattener 50, and its position is regulated at the processing position.
本実施例に示すテープ加工装置 3 0においては、 レーザビームによる加工は、 前述の幅 0 . 5インチ幅のテープ Tの例でも示したように、 幅 3 z m〜 1 0 m というように微細な加工であるので、 加工位置に入射するビームスポット径は小 さく、 すなわち、 ビームウェストの許容範囲は非常に狭い。  In the tape processing apparatus 30 shown in the present embodiment, the processing by the laser beam is performed as fine as 3 m to 10 m in width, as shown in the example of the tape T having a width of 0.5 inches described above. Since it is processing, the beam spot diameter incident on the processing position is small, that is, the allowable range of the beam waist is very narrow.
そのため、 テープフラットナ 5 0には、 多眼レンズ 4 2の焦点深度方向に、 高 い精度、 好ましくは、 誤差 1 0 以下の精度でテープ Tを位置付けすることが 要求される。  Therefore, the tape flattener 50 is required to position the tape T with high precision, preferably with an error of 10 or less, in the depth of focus direction of the multi-lens 42.
前述のように、 加工位置には、 光源 3 2から射出され、 必要に応じてパルス変 調器 3 4で変調され、 ミラ一 3 6で反射され、 ビームェクスパンダ 3 8で拡径さ れて成形器 4 0で強度分布を均一化され、 多眼レンズ 4 2で分割, 調光され たレーザビームが入射, 結像している。  As described above, the processing position is emitted from the light source 32, modulated by the pulse modulator 34 if necessary, reflected by the mirror 36, and expanded by the beam expander 38. Thus, the intensity distribution is made uniform by the molding machine 40, and the laser beam divided and modulated by the multi-lens lens 42 is incident and forms an image.
従って、 テープ搬送手段 4 4によって、 裏面側をレーザビーム光路の上流に向 けた状態で、 テープフラットナ 5 0によって加工位置に位置しつつ、 テープ Tを 長手方向に搬送することにより、 テープ Tのバック層には、 長手方向に延在する 加工線 (凹部) が形成され、 前述の例であれば、 一回の搬送で、 2 5本の加工線 が形成される。 Therefore, the tape T is transported in the longitudinal direction while being positioned at the processing position by the tape flattener 50 in a state where the back surface is directed upstream of the laser beam optical path by the tape transport means 44. A processing line (recess) extending in the longitudinal direction is formed on the back layer. In the case of the above example, 25 processing lines are obtained by one transfer. Is formed.
なお、 本態様においては、 幅方向の搬送安定性が重要であることは、 以下に説 明する通りである。  In the present embodiment, the importance of transport stability in the width direction is as described below.
また、 テープ加工装置においては、 テープ Tのバック層の加工によって、 粉塵 等の加工カスやガスが発生する場合が多々ある。  Also, in the tape processing apparatus, there are many cases in which processing residue and gas such as dust are generated by processing the back layer of the tape T.
そのため、 加工位置近傍には、 上述の加工カスやガスを除去するための除去手 段を設けるのが好ましく、 例えば、 イオン風の吹付け手段とこのイオン風により 遊離 ·浮遊するようになった粉塵などを吸入するための吸引手段とから構成され る粉塵除去手段を設けることが望ましい。 また、 加工位置よりも下流に、 テープ Tの少なくとも裏面 (バック層面) 、 好ましくは表裏面に付着した異物を取り除 く、 清掃手段を設けるのが好ましい。  Therefore, it is preferable to provide a removal means for removing the above-mentioned processing residue and gas in the vicinity of the processing position. For example, a means for spraying ion wind and dust which is separated and suspended by the ion wind It is desirable to provide a dust removing means composed of a suction means for inhaling and the like. Further, it is preferable to provide a cleaning means downstream of the processing position to remove foreign matter attached to at least the back surface (back layer surface), preferably the front and back surfaces of the tape T.
図 1 1 Aおよび図 1 1 Bに、 上記テープ加工装置 3 0において、 テープ搬送手 段 4 4によって搬送されるテープ Tを所定の加工位置に位置規制する (位置付け る) 手段 (以下、 テープポジショニング部という) の第 1の実施例を示す。 図 1 1 Aは、 図 9中のテープフラットナ 5 0のテープ支持体 5 0 a, 5 O bに おけるテープ Tの巻き掛け状況を示す側面図であり、 図 1 1 Bは、 同部の上面図 である。 なお、 図中、 5 2 a, 5 2 b , 5 2 cはテープ Tの一端を規制する テープガイ ド、 5 4 a, 5 4 bはテープ Tを、 上記テープガイド 5 2 a, 5 2 b , 5 2 c方向に吸引するマグネットを示している。  In FIGS. 11A and 11B, in the tape processing apparatus 30, means for positioning (positioning) the tape T conveyed by the tape conveying means 44 to a predetermined processing position (hereinafter referred to as “tape positioning”). A first embodiment of the present invention will be described. FIG. 11A is a side view showing the winding state of the tape T around the tape supports 50a and 50Ob of the tape flattener 50 in FIG. 9, and FIG. It is a top view. In the figures, 52 a, 52 b, and 52 c are tape guides that regulate one end of the tape T, 54 a and 54 b are tapes T, and the tape guides 52 a, 52 b, 5 2 Magnet to be attracted in the c direction.
両図に示すように、 本実施例に係るテープポジショニング部 5 1 aは、 テープ Tをテープ支持体 5 0 a , 5 0 bにある程度以上の角度で巻き掛けた状態にして おき、 この状態で、 テープ Tを、 図 1 1 Bにおいて、 上方 (すなわち、 マグネット 5 4 a, 5 4 b方向) に付勢するように構成されている。 この ように、 テープ Tをある程度以上の角度でテープ支持体 5 0 a , 5 O bに巻き掛 けておくことにより、 テープ Tを幅方向には変形させずに、 幅方向への移動のみ を可能となる。 As shown in both figures, the tape positioning section 51a according to the present embodiment is configured such that the tape T is wound around the tape supports 50a and 50b at an angle of a certain degree or more. , The tape T in FIG. (Magnets 54a and 54b directions). In this way, by winding the tape T around the tape supports 50a and 50Ob at an angle of a certain degree or more, the tape T is not deformed in the width direction, but is only moved in the width direction. It becomes possible.
上記実施例に示したテープポジショニング部 5 1 aの構成によれば、 磁気 テープを加工する各種の加工装置などに好適に適用可能な、 簡単な構成で、 磁気 テープの幅方向一定位置へのポジショニングが可能な、 磁気テープの搬送安定化 装置が実現できる。  According to the configuration of the tape positioning section 51a shown in the above embodiment, the magnetic tape can be positioned at a fixed position in the width direction with a simple configuration, which can be suitably applied to various processing apparatuses for processing a magnetic tape. A magnetic tape transport stabilization device capable of performing the above can be realized.
なお、 本実施例に係る加工装置のテープポジショニング部 5 1 aにおけ るマグネット 5 4 a, 5 4 bとしては、 各種の磁性体、 具体的には、 鉄, コバルト, ニッケルおよびこれらの合金や酸化物を原料とする永久磁石が好適に 用い得る。  As the magnets 54a and 54b in the tape positioning section 51a of the processing apparatus according to the present embodiment, various magnetic materials, specifically, iron, cobalt, nickel, and alloys thereof. A permanent magnet made of an oxide can be suitably used.
また、 テープガイド 5 2 a, 5 2 b , 5 2 cとしては、 耐磨耗性と滑り性のよ い材質で構成されたもの、 例えば、 テフロンやポリエチレンなどのプラスチック で構成 (または被覆) されたものが好適に用い得る。 テープ支持体 5 0 a , 5 O bとしては、 耐摩耗性材料であれば、 特に制限はないが、 例えば、 サファイアブレードなどを挙げることができる。  The tape guides 52a, 52b and 52c are made of a material having good abrasion resistance and slipperiness, for example, made (or covered) of plastic such as Teflon or polyethylene. Can be suitably used. The tape supports 50a and 50Ob are not particularly limited as long as they are wear-resistant materials, and examples thereof include sapphire blades.
図 1 2 Aおよび図 1 2 Bに、 テープポジショニング部 5 1 bの第 2の実施例を 示す。  12A and 12B show a second embodiment of the tape positioning section 51b.
図 1 2 Aは、 図 9中のテープフラットナ 5 0のテープ支持体 5 0 a , 5 O bに おけるテープ Tの巻き掛け状況を示す側面図であり、 図 1 2 Bは、 同部の上面図 である。 なお、 図中、 5 2はテープ Tの一端を規制するテープガイド、 5 4 はテープ Tを、 上記テープガイド 5 2方向に吸引するマグネットを示している。 両図に示すように、 本実施例に係るテープポジショニング部 5 1 bは、 第 1の 実施例のテープポジショニング部 5 1 aでは複数個に分割して配置されてい たテープガイドおよびマグネットを、 いずれも一体化した点に特徴を有するもの であり、 テープ Tをテープ支持体 5 0 a, 5 0 bにある程度以上の角度で巻き掛 けた状態にした状態で、 図 1 2 Bにおいて上方 (すなわち、 マグネット 5 4 方向) に付勢するように構成されている。 FIG. 12A is a side view showing the winding state of the tape T around the tape supports 50a and 50Ob of the tape flattener 50 in FIG. 9, and FIG. It is a top view. In the figure, 52 is a tape guide that regulates one end of the tape T. Denotes a magnet for attracting the tape T in the direction of the tape guide 52. As shown in both figures, the tape positioning unit 51b according to the present embodiment is different from the tape positioning unit 51a according to the first embodiment in that the tape guide and the magnet, which are divided into a plurality of parts, are arranged. In the state where the tape T is wound around the tape supports 50a and 50b at an angle of a certain degree or more, the tape T is lifted upward in FIG. It is configured to urge the magnet (4 directions).
このように、 テープ Tをある程度以上の角度でテープ支持体 5 0 a , 5 0 に 巻き掛けておくことにより、 テープ Tを幅方向には変形させずに、 幅方向への移 動のみを可能とする。 本実施例に係る構成により得られる効果は、 第 1の実施 例と同様な、 磁気テープの幅方向一定位置へのポジショニングが可能となること に加えて、 ポジショニング機構の構成をより簡略化できる点にある。  By wrapping the tape T around the tape supports 50a and 50 at a certain angle, the tape T can be moved only in the width direction without deforming the tape T in the width direction. And The effect obtained by the configuration according to the present embodiment is that, in addition to the fact that the magnetic tape can be positioned at a fixed position in the width direction as in the first embodiment, the configuration of the positioning mechanism can be further simplified. It is in.
上記実施例に用いられるマグネット 5 4としては、 第 1の実施例に示し たマグネット 5 4 a , 5 4 bと同様に、 各種の磁性体、 具体的には、 鉄, コノ ルト, ニッケルおよびこれらの合金や酸化物を原料とする永久磁石が好適に 用い得る。  As the magnet 54 used in the above embodiment, various magnetic materials, specifically, iron, cono- lt, nickel, and the like, like the magnets 54a and 54b shown in the first embodiment. Permanent magnets made of the above alloys or oxides can be suitably used.
また、 テープガイド 5 2としては、 先に示したテープガイド 5 2 a , 5 2 b , 5 2 cと同様の耐磨耗性と滑り性のよいテフロンやポリエチレンなどで構成 (も しくは被覆) されたものが好適に用い得る。  The tape guide 52 is made of Teflon or polyethylene which has the same abrasion resistance and slipperiness as the tape guides 52a, 52b and 52c shown above (or is covered). What was done can be used suitably.
なお、 図 1 2 Aおよび図 1 2 Bでは、 テープガイド 5 2とマグネット 5 4とを 別々の物として示したが、 テープガイド 5 2を、 例えば、 マグネットを内蔵した ものとすることにより、 これらを一体化, 共通化すること、 すなわち、 磁性を有 するテープガイドとすることも可能である。 このように構成した場合には、 テープポジショニング部 5 l bの構成を、 さらに簡略化することができる。 Although the tape guide 52 and the magnet 54 are shown as separate members in FIGS. 12A and 12B, the tape guide 52 may have a built-in magnet, for example. Uniting and standardizing, that is, having magnetism It is also possible to use as a tape guide. With this configuration, the configuration of the tape positioning unit 5 lb can be further simplified.
図 1 3 Aおよび図 1 3 Bに、 テープポジショニング部 5 1 cの第 3の実施例を 示す。  FIGS. 13A and 13B show a third embodiment of the tape positioning unit 51c.
図 1 3 Aは、 図 9中のテープフラットナ 5 0の前後のテープガイドローラ 5 6 a , 5 6 bにおけるテープ Tの巻き掛け状況を示す側面図、 図 1 3 Bは、 上 記テープガイドローラ 5 6 a, 5 6 bの側断面図である。 なお、 図中、 5 7 はテープガイドローラ 5 6 a, 5 6 bの主軸、 5 8は可動フランジ 5 9を上記主 軸 5 7の段付き部 (テープ Tを押圧する際の基準面) 方向に押圧するスプ リング、 6 0はストッパを示している。  Fig. 13A is a side view showing the winding state of the tape T around the tape guide rollers 56a and 56b before and after the tape flattener 50 in Fig. 9, and Fig. 13B is the above tape guide. FIG. 7 is a side sectional view of rollers 56a and 56b. In the figure, reference numeral 57 denotes the main shaft of the tape guide rollers 56a and 56b, and 58 denotes the movable flange 59 in the direction of the stepped portion of the main shaft 57 (a reference surface when pressing the tape T). , And 60 denotes a stopper.
本実施例に係るテープポジショニング部 5 1 cにおいては、 テープ Tを、 スプ リング 5 8を内蔵したテープガイドロ一ラ 5 6 a, 5 6 bの可動フランジ 5 9に より、 テープ Tの幅方向位置を規制するガイドの機能を有する主軸 5 7の段付き 部方向に押圧する構成としたことがその特徴である。 このように構成することに よっても、 本態様の第 1および第 2の形態の第 1 , 第 2の実施例により得られる 効果と同様な効果が得られる。  In the tape positioning section 51c according to this embodiment, the tape T is moved in the width direction of the tape T by the movable flanges 59 of the tape guide rollers 56a and 56b having the built-in springs 58. The feature is that it is configured to be pressed in the direction of the stepped portion of the main shaft 57 having a guide function for regulating the position. With such a configuration, effects similar to those obtained by the first and second examples of the first and second embodiments of the present embodiment can be obtained.
図 1 3 Aおよび図 1 3 Bに示したテープガイドローラ 5 6 a, 5 6 bは、 弱い スプリング 5 8を内蔵しているもので、 この弱いスプリング 5 8を介して押し込 み可能に構成されている可動フランジ 5 9により、 テープ Tを押圧するものであ る。 この可動フランジ 5 9を構成する材料としては、 滑り性のよいテフロンゃポ リェチレンなどが好適に用い得る。  The tape guide rollers 56a and 56b shown in Fig. 13A and Fig. 13B have a built-in weak spring 58, and can be pushed through this weak spring 58. The tape T is pressed by the movable flange 59 that is provided. As a material for forming the movable flange 59, Teflon-Polyethylene having good slipperiness can be suitably used.
図 1 4八、 図1 4 Bおよび図 1 4 Cに、 テープポジショニング部 5 1 dffi 4— の実施例を示す。 Figure 14-8, Figure 14B and Figure 14C show the tape positioning section 5 1 dffi 4— The following shows an example.
図 1 4 Aは、 図 9中のテープフラットナ 5 0のテープ支持体 5 0 a, 5 O bに 外挿される形で設けられた可動テープガイド (プッシャ) 6 2 a, 6 2 bにおけ るテープ Tの巻き掛け状況を示す側面図、 図 1 4 Bは、 同部の上面図、 図 1 4 C は上記可動テープガイド 6 2 a, 6 2 bの側断面図である。 なお、 この可動 テープガイド (プッシャ) 6 2 a, 6 2 bは、 テープ支持体 5 0 a , 5 0 bに外 挿する形でテープ支持体 5 0 a, 5 O bに固定されている。  Fig. 14A shows the movable tape guides (pushers) 62a and 62b provided so as to be extrapolated to the tape supports 50a and 50Ob of the tape flattener 50 in Fig. 9. FIG. 14B is a top view of the same part, showing the winding state of the tape T, and FIG. 14C is a side sectional view of the movable tape guides 62a and 62b. The movable tape guides (pushers) 62a and 62b are fixed to the tape supports 50a and 50ob so as to be extrapolated to the tape supports 50a and 50b.
図 1 4 A、 図 1 4 Bおよび図 1 4 Cにおいて、 5 2は (固定) テープガイド、 6 3は可動テープガイド (プッシャ) 6 2 a, 6 2 bのストッパ、 6 4は フランジ状の可動ガイド 6 5を上記主軸テープガイド 5 2に押圧するスプリング を示している。  In Fig. 14A, Fig. 14B and Fig. 14C, 52 is a (fixed) tape guide, 63 is a movable tape guide (pusher), 62a and 62b stoppers, and 64 is a flange-shaped A spring for pressing the movable guide 65 against the spindle tape guide 52 is shown.
本実施例に係るテープポジショニング部 5 1 dにおいては、 テープ Tを、 スプ リング 6 4を内蔵した可動テープガイド (プッシャ) 6 2 a, 6 2 bの可動 ガイド 6 5により、 テープガイド 5 2方向に押圧する構成としたことがその特徴 である。 このように構成することによつても、 前述の本態様の第 1および第 2の 形態の第 1〜第 3の実施例により得られる効果と同様な効果が得られる。  In the tape positioning section 51d according to the present embodiment, the tape T is moved in the direction of the tape guide 52 by the movable guides 65 of the movable tape guides (pushers) 62a and 62b having the built-in springs 64. The feature is that it is configured to be pressed against. With such a configuration, the same effects as those obtained by the above-described first to third embodiments of the first and second embodiments of the present embodiment can be obtained.
図 1 5 Aおよび図 1 5 Bに、 テープポジショニング部 5 1 eの第 5の実施例を 示す。  FIGS. 15A and 15B show a fifth embodiment of the tape positioning unit 51 e.
本実施例に係るテープポジショニング部においては、 図 9中のテープフラット ナ 5 0とその前後のテープガイドローラ 6 9 a , 6 9 bとを一体化して、 テープ Tの進行方向に直交する方向に移動可能に構成すると共に、 テープ Tのこの方向 (幅方向) におけるエッジ位置を検知するセンサを設けたことを特徴とするもの一 である。 In the tape positioning section according to the present embodiment, the tape flattener 50 in FIG. 9 and the tape guide rollers 69a and 69b before and after the tape flattener 50 are integrated into The tape T is configured to be movable, and a sensor for detecting an edge position in this direction (width direction) of the tape T is provided. It is.
上記テープガイドローラ 6 9 a, 6 9 bとしては、 図 1 5 Bに示されているよ うなつば付きローラ、 すなわち、 テープ搬送面の両端に位置規制用のつばを有す るものが好適に用い得る。 ここで、 上記テープガイドローラ 6 9 a, 6 9 bの両 端に設けられた 2枚のつばは、 その高さが l mm〜3 mm程度、 また、 その間隔 (つまり、 ローラの面長) は、 テープ Tの幅よりも僅かに狭くしておくのが、 安 定搬送を実現する上で好ましい。  As the tape guide rollers 69a and 69b, a roller with a flange as shown in FIG. 15B, that is, a roller having a rib for regulating the position at both ends of the tape conveying surface is preferable. Can be used. Here, the two flanges provided at both ends of the tape guide rollers 69a and 69b have a height of about lmm to 3mm, and a distance between them (that is, the surface length of the rollers). Is preferably slightly smaller than the width of the tape T in order to realize stable conveyance.
図1 5八は、 本実施例に係るテープポジショニング部 5 1 eの側面図であり、 図 1 5 Bは、 同上面図である。 図中、 6 6はレーザ変位計の光学ヘッドであり、 投光部 6 6 aおよび受光部 6 6 bを備えている。 この光学ヘッド 6 6は、 投光部 6 6 aから出射したレーザ光を受光部 6 6 bで受光することにより、 対象 物 (テープ T) の位置を検知するように調整されている。 また、 6 7は上記光学 へッド 6 6の測定制御を行うと共に、 受光部 6 6 bの受光結果に基づいて、 後述 するテープ搬送部位置修正手段 6 8を制御する制御信号を出力する制御ュニット を示している。  FIG. 15E is a side view of the tape positioning unit 51 e according to the present embodiment, and FIG. 15B is a top view of the same. In the figure, reference numeral 66 denotes an optical head of the laser displacement meter, which includes a light emitting unit 66a and a light receiving unit 66b. The optical head 66 is adjusted so as to detect the position of the object (tape T) by receiving the laser beam emitted from the light projecting unit 66 a at the light receiving unit 66 b. A control unit 67 controls the optical head 66 and outputs a control signal for controlling a tape transport unit position correcting unit 68 described later based on the light receiving result of the light receiving unit 66 b. Unit.
上記テープ搬送部位置修正手段 6 8は、 テープ Tを支持するテープフラットナ The tape transport unit position correcting means 68 is a tape flattener that supports the tape T.
5 0を支承する台座 6 8 aと、 この台座 6 8 aをスクリューシャフト 6 8 bによ り、 テープ Tの幅方向 (図の紙面に垂直な方向) に移動させる移動機構部 6 8 c から構成されている。 この移動機構部 6 8 c内には、 2本のスクリユーシャフトThe pedestal 68 a that supports 50 and the moving mechanism part 68 c that moves the pedestal 68 a in the width direction of the tape T (the direction perpendicular to the plane of the drawing) by the screw shaft 68 b. It is configured. Two screw shafts are installed in this moving mechanism section 6 8c.
6 8 bを、 同期をとつて回転させることにより、 上記台座 6 8 aをテープ Tの幅 方向に移動させて、 テープ Tを所定の位置に位置決めするためのモータ駆動機構 が設けられている。 上述のように構成された本実施例のテープポジショニング部 5 1 eにお いては、 レーザ変位計の光学へッド 6 6の投光部 6 6 aから出射されたレーザ光 受光部 6 6 bで受光される度合いに基づいて、 テープ Tの位置に関する情報 を得、 制御ユニット 6 7において、 この位置情報に基づいて、 テープ搬送部位置 修正手段 6 8を制御する。 A motor drive mechanism for positioning the tape T at a predetermined position by moving the pedestal 68 a in the width direction of the tape T by rotating the 68 b synchronously is provided. In the tape positioning section 51 e of the present embodiment configured as described above, the laser beam emitted from the light projecting section 66 a of the optical head 66 of the laser displacement meter 66 b The control unit 67 obtains information on the position of the tape T on the basis of the degree of light received by the control unit 67, and controls the tape transport unit position correcting means 68 on the basis of this position information.
すなわち、 テープ Tが所定の位置にある場合には特に制御動作は必要ないが、 テープ Tの位置が所定の位置から外れた場合には、 そのズレ量を検知してそれを 修正 (つまり、 テープ Tを所定の位置に位置付け) するように、 前述の移動機構 部 6 8 cに信号を送り、 スクリューシャフト 6 8 bを介して台座 6 8 aを、 テープ Tの幅方向に移動させる。  That is, when the tape T is at the predetermined position, no particular control operation is required. However, when the position of the tape T deviates from the predetermined position, the deviation amount is detected and corrected (that is, the tape T). A signal is sent to the above-described moving mechanism section 68c so that the T is positioned at a predetermined position, and the base 68a is moved in the width direction of the tape T via the screw shaft 68b.
このような制御を行うことにより、 本実施例のテープポジショニング部 5 1 e においては、 テープ Tの位置の変動があっても、 これを速やかに修正することが 可能になる。 なお、 ここで、 テープ Tの位置の変動要因としては、 テープ Tが連 続的に高速で搬送されることによる、 テープフラットナ 5 0の磨耗が、 最も大き なものであると考えられる。 ただし、 本実施例のテープポジショニング部 5 1 e においては、 テープ Tの位置の変動要因が何であっても、 それに対応することが できる。  By performing such control, even if the position of the tape T fluctuates, the tape positioning unit 51 e of the present embodiment can quickly correct the fluctuation. Here, it is considered that the largest cause of the change in the position of the tape T is the abrasion of the tape flattener 50 due to the continuous transport of the tape T at a high speed. However, the tape positioning unit 51 e of the present embodiment can cope with whatever the cause of the position variation of the tape T.
なお、 上記各実施例は、 いずれも本態様の第 1および第 2の形態の一例を示し たものであり、 本発明はこれらに限定されるべきものではない。  It should be noted that each of the embodiments described above is an example of the first and second embodiments of the present embodiment, and the present invention is not limited to these embodiments.
例えば、 上記各実施例に示した各種のテープポジショニング部 5 1 a、 5 1 b , 5 1 c、 5 1 dおよび 5 1 eなどやこれらに用いられる種々の手段を、 競合しない範囲内で、 適宜、 自由に組み合わせることにより、 より効果的な テープの搬送安定化を実現することも可能である。 For example, the various tape positioning sections 51 a, 51 b, 51 c, 51 d and 51 e shown in the above embodiments and various means used for them, as long as they do not compete, Combining them as appropriate to make them more effective It is also possible to stabilize the transport of the tape.
本発明の第 2の態様の第 1および第 2の形態に係る磁気テープの搬送安定化方 法および装置は、 基本的に以上のように構成される。  The method and apparatus for stabilizing the transfer of a magnetic tape according to the first and second embodiments of the second aspect of the present invention are basically configured as described above.
次に、 図 9および図 1 6を参照して、 本発明の第 3の態様の第 1の形態に係る 磁気テープの搬送安定化方法および装置について説明する。 なお、 以下に説明す る実施例においても、 本形態の搬送安定化方法および装置を、 上述のような レーザビームなどを磁気テープのバック層に入射させて、 このテープのバック層 に凹部 (溝) を形成する加工を施すための磁気テープの加工装置のテープ搬送制 御部に適用した場合を代表例として説明するが、 本発明はこれに限定されるわけ ではない。  Next, a method and an apparatus for stabilizing the transfer of a magnetic tape according to the first embodiment of the third embodiment of the present invention will be described with reference to FIG. 9 and FIG. In the examples described below, the transport stabilizing method and apparatus according to the present embodiment are also applied to the back layer of the magnetic tape by irradiating the laser beam or the like as described above with a concave portion (groove). The case where the present invention is applied to a tape transport control unit of a magnetic tape processing apparatus for performing a process for forming the above will be described as a typical example, but the present invention is not limited to this.
本発明の第 3の態様の第 1の形態に係る磁気テープの搬送安定化方法を実施す る磁気テープの搬送安定化装置は、 図 9に示す加工装置 3 0のテープ搬送 手段 4 4にテープ搬送制御部として適用することができる。  The magnetic tape transport stabilizing apparatus for performing the magnetic tape transport stabilizing method according to the first mode of the third aspect of the present invention is a tape transporting means 44 of a processing apparatus 30 shown in FIG. It can be applied as a transport control unit.
図 1 6に、 図 9に示される加工装置 3 0に適用される磁気テープ搬送制御部の 一実施例を示す概略構成を示す。  FIG. 16 shows a schematic configuration of an embodiment of a magnetic tape transport control unit applied to the processing device 30 shown in FIG.
ところで、 前述したように、 図 9に示される加工装置 3 0において、 レーザビームをテープ Tのバック層に入射させて、 凹部 (溝、 加工線 aまたは加 ェ線分 b (図 7 Aおよび図 7 B参照) ) を形成する加工を施す際には、 加工精度 を維持するために、 加工対象であるテープ Tをレーザビームの焦点位置に極めて 正確に位置規制することが必要である。  By the way, as described above, in the processing apparatus 30 shown in FIG. 9, a laser beam is incident on the back layer of the tape T, and the concave portion (groove, processing line a or processing line segment b (FIG. 7A and FIG. 7B) When processing to form), it is necessary to regulate the position of the tape T to be processed to the focal position of the laser beam very accurately in order to maintain the processing accuracy.
なお、 図 1 1 A〜図 1 5 Bに示す本発明の第 2の態様の第 1および第 2の形態 の実施例であるテープポジショニング部 5 1 a〜5 1 eは、 テープ搬 丰 4 4 によって搬送されるテープ Tを所定の加工位置に位置規制する際に重要な 磁気テープ Tの幅方向の搬送安定性を確保するものであるが、 図 1 6に示す本発 明の第 3の態様の第 1の形態の実施例である磁気テープ搬送制御部 7 0は、 テープ Tの図中上下方向 (レーザビームの焦点方向) の搬送安定性を確保するた めのものである。 In addition, the tape positioning units 51 a to 51 e which are the examples of the first and second embodiments of the second embodiment of the present invention shown in FIG. 11A to FIG. When the position of the tape T conveyed by the magnetic tape T is regulated to a predetermined processing position, the conveyance stability of the magnetic tape T in the width direction is secured. The third aspect of the present invention shown in FIG. 16 The magnetic tape transport controller 70 according to the embodiment of the first embodiment is for ensuring the transport stability of the tape T in the vertical direction (the focal direction of the laser beam) in the figure.
図 1 6に示されるテ一プ搬送制御部 7 0において、 7 2はレーザ変位計の光学 ヘッドであり、 投光部および受光部を備えている。 この光学ヘッド 7 2は、 投光 部から出射され、 対象物 (テープ T) で反射したレーザ光を受光部で受光するよ うに調整されている。 また、 7 4は上記光学ヘッド 7 2の測定制御を行うととも に、 上記受光部の受光結果に基づいて、 後述するテープ搬送部位置修正手段 7 6 を制御する制御信号を出力する制御ュニットを示している。  In the tape transport controller 70 shown in FIG. 16, reference numeral 72 denotes an optical head of the laser displacement meter, which includes a light projecting unit and a light receiving unit. The optical head 72 is adjusted so that the laser beam emitted from the light projecting unit and reflected by the object (tape T) is received by the light receiving unit. A control unit 74 performs measurement control of the optical head 72 and outputs a control signal for controlling a tape transport unit position correcting means 76 described later based on a light reception result of the light receiving unit. Is shown.
上記テープ搬送部位置修正手段 7 6は、 テープ Tを支持するテープフラットナ 5 0を支承する台座 7 6 aと、 この台座 7 6 aを 4本のスクリューシャフト 7 6 bにより上下方向に移動させるリフト機構部 7 6 cから構成されている。 こ のリフト機構部 7 6 c内には、 図示されていないが、 上記 4本のスクリユー シャフト 7 6 bを、 同期をとつて回転させることにより、 上記台座 7 6 aを上下 に移動させて、 テープ Tを所定の位置に位置決めするためのモータ駆動機構が設 けられている。  The tape transport unit position correcting means 76 includes a pedestal 76a for supporting the tape flattener 50 for supporting the tape T, and the pedestal 76a is vertically moved by four screw shafts 76b. It is composed of a lift mechanism 76c. Although not shown, the four screw shafts 76b are rotated in synchronization with the lift mechanism 76c to move the pedestal 76a up and down. A motor drive mechanism for positioning the tape T at a predetermined position is provided.
上述のように構成された本実施例のテープ搬送制御部 7 0は、 レーザ変位計の 光学へッド 7 2の投光部から出射され、 テープ Tで反射したレーザ光を受光部で 受光し、 制御ユニットにおいてこの受光したレーザ光の、 例えば、 受光面上での 位置情報に基づいて、 テープ Tの位置に関する情報を得、 この情報に基 いて—、— テープ搬送部位置修正手段 7 6を制御する。 The tape transport control unit 70 of the present embodiment configured as described above receives the laser beam emitted from the light emitting unit of the optical head 72 of the laser displacement meter and reflected by the tape T at the light receiving unit. The control unit obtains information on the position of the tape T based on, for example, positional information of the received laser light on the light receiving surface, and based on this information, It controls the tape transport section position correcting means 76.
すなわち、 テープ Tが、 前述の加工位置にある場合にはとくに制御動作は必要 ないが、 テープ Tの位置が、 前述の加工位置を外れた場合には、 そのズレ量を検 知して修正 (つまり、 テープ Tを所定の位置に位置付け) するように、 前述 のリフト機構部 7 6 cに信号を送り、 スクリユーシャフト 7 6 bを介して 台座 7 6 aを上下させる。  That is, when the tape T is at the above-mentioned processing position, no particular control operation is required. However, when the position of the tape T is out of the above-mentioned processing position, the deviation amount is detected and corrected ( In other words, a signal is sent to the above-described lift mechanism 76c so that the tape T is positioned at a predetermined position, and the base 76a is moved up and down via the screw shaft 76b.
このような制御動作を行うことにより、 本実施例に係るテープ搬送制御部 7 0 においては、 テープ Tの位置の変動があっても、 これを速やかに修正することが 可能になる。 なお、 ここで、 テープ Tの位置の変動要因としては、 テープ Tが連 続的に高速で搬送されることによる、 テープフラットナ 5 0の磨耗が、 最も大き なものであると考えられる。 ただし、 本実施例に係るテープ搬送制御部 7 0にお いては、 テープ Tの位置の変動が何であっても、 それに対応することができる。 上記実施例によれば、 テープ Tを長手方向に搬送しつつ加工する際に上記 テープ搬送制御部のテープ位置修正機能を作用させることにより、 上記加工位置 におけるテープ Tの位置の変動を常に監視し、 この関し結果に基づいて、 位置の 変動を修正できるという効果を奏するものである。  By performing such a control operation, even if the position of the tape T fluctuates, the tape transport control unit 70 according to the present embodiment can quickly correct the fluctuation. Here, it is considered that the largest cause of the change in the position of the tape T is the abrasion of the tape flattener 50 due to the continuous transport of the tape T at a high speed. However, the tape transport controller 70 according to the present embodiment can cope with any change in the position of the tape T. According to the above embodiment, when the tape T is processed while being transported in the longitudinal direction, the tape position correction function of the tape transport control unit is operated to constantly monitor the change in the position of the tape T at the processing position. However, there is an effect that the position fluctuation can be corrected based on the result of this.
上記実施例においては、 テープ位置修正機能を作用させる対象を、 テープ フラットナ 5 0に実質的に限定している力 これは、 制御対象としての大き さ (質量といってもよい) が適切であるからであり、 本発明はこれに限定される べきものではない。 また、 テープフラットナ 5 0の移動距離は実際には極めて僅 かであるので、 前後のテープガイド用ローラには変更を要しない。  In the above embodiment, the force to which the tape position correcting function is applied is substantially limited to the tape flattener 50. This is appropriate for the size (may be called mass) as the control object. The present invention should not be limited to this. In addition, since the movement distance of the tape flattener 50 is extremely small in practice, the front and rear tape guide rollers do not need to be changed.
なお、 上記各実施例は、 いずれも本発明の一例を示したものであり、 本発明は これらに限定されるべきものではない。 Each of the above embodiments is merely an example of the present invention. It should not be limited to these.
例えば、 テープ Tの位置の変動を監視するテープ位置検知手段は、 実施例に示 したような反射レーザ光の受光位置に基づくもの以外にも、 投射光と反射光の千 渉を利用して高精度に位置検出を行う手段などが用い得る。 なお、 テープ Tの位 置の変動を監視する場所 (位置) は、 図 1 6に示すような加工位置 Wの上流側に 限定されず、 下流側であっても良いし、 両方で同時に検出しても良い。  For example, the tape position detecting means for monitoring the change in the position of the tape T is not limited to the one based on the position at which the reflected laser light is received as shown in the embodiment, but may be highly utilizing the interference between the projected light and the reflected light. Means for performing position detection with accuracy can be used. The position (position) for monitoring the change in the position of the tape T is not limited to the upstream side of the processing position W as shown in FIG. 16, but may be the downstream side, or the tapes may be detected simultaneously at both positions. May be.
また、 テープ Tの位置修正を行うテープ搬送部位置修正手段についても、 実施 例に示したリフト機構以外の、 他の位置調整方式を用いる修正機構など、 種々の 代替手段が利用可能であり、 本発明の要旨を変更しない範囲内でのこれらの構成 の変更は、 自由に行ってよいことはいうまでもない。  Various alternative means such as a correction mechanism using another position adjustment method other than the lift mechanism shown in the embodiment can be used for the tape transport unit position correction means for correcting the position of the tape T. It goes without saying that these configuration changes may be freely made without departing from the spirit of the invention.
本発明の第 3の態様の第 1の形態に係る磁気テープの搬送安定化方法および装 置は、 基本的に以上のように構成される。  The magnetic tape transport stabilizing method and apparatus according to the first mode of the third aspect of the present invention are basically configured as described above.
次に、 図 1 7〜図 2 2 Bを参照して、 本発明の第 2の態様第 3の形態に係る磁 気テープの搬送安定化方法および装置ついて説明する。 なお、 以下に説明す る実施例においても、 本形態の搬送安定化方法および装置を、 上述のような レ一ザビームなどを磁気テープのバック層に入射させて、 このテープのバック層 に凹部 (溝) を形成する加工を施すための磁気テープの加工装置のテープ搬送手 段に適用した場合を代表例として説明するが、 本発明はこれに限定されるわけで はない。  Next, a method and an apparatus for stabilizing the transfer of a magnetic tape according to a third embodiment of the second aspect of the present invention will be described with reference to FIGS. 17 to 22B. In the examples described below, the transport stabilizing method and apparatus according to the present embodiment are also configured such that a laser beam or the like as described above is incident on a back layer of a magnetic tape, and a concave portion ( A case where the present invention is applied to a tape transport means of a magnetic tape processing apparatus for performing processing for forming a groove will be described as a typical example, but the present invention is not limited to this.
図 1 7に、 このような磁気テープを、 レーザビームを用いる加工方法を利用し て製造するための加工装置の概念図を示す。  FIG. 17 shows a conceptual diagram of a processing apparatus for manufacturing such a magnetic tape by using a processing method using a laser beam.
図 1 7に示す加工装置 8 0は、 図 9に示す加工装置 3 0と、 テープ搬送手 段 4 4を構成するテープフラットナ 5 0の代わりに、 テープフラットナ 8 2を有 している点を除いて、 同一の構成を有しているので、 同一の構成要素には、 同一 の参照符号を付し、 その詳細な説明は省略する。 The processing device 80 shown in FIG. 17 is the same as the processing device 30 shown in FIG. The same components have the same configuration except that a tape flatner 82 is provided in place of the tape flatner 50 forming the steps 4 4, so that the same components are denoted by the same reference numerals. The reference numerals are used, and the detailed description is omitted.
図 1 7に示す加工装置 8 0は、 図 9に示す加工装置 3 0と同様に前述の図 7 A および図 7 Bに示されるようなテープの長手方向に延在する加工線 aや加工線分 bを形成するもので、 レーザビームを射出する光源 3 2と、 パルス変調器 3 4、 ミラ一 3 6、 ビームェクスパンダ 3 8、 ビームプロファイル成形器 4 0および多 眼レンズ 4 2を有する光学系と、 図示されていないキヤプスタンローラ, リワインダ, ワインダ等の搬送駆動手段、 ガイドローラ 4 6、 4 8およびテープ フラットナ 8 2とから構成されるテープ搬送手段 4 4とを有する。  The processing device 80 shown in FIG. 17 is similar to the processing device 30 shown in FIG. 9 in that the processing line a or the processing line extending in the longitudinal direction of the tape as shown in FIG. 7A and FIG. A light source 32 that emits a laser beam, a pulse modulator 34, a mirror 36, a beam expander 38, a beam profile shaper 40, and a multi-lens lens 42 It has an optical system and a not-shown transport drive means such as a capstan roller, a rewinder and a winder, and a tape transport means 44 composed of guide rollers 46 and 48 and a tape flatner 82.
テープフラットナ 8 2は、 後述するような、 高精度なつば付きローラ 8 2 a, 8 2 bから構成されており、 搬送されるテープ Tの表面 (磁性体層側) に当接し て、 テープ Tを所定の加工位置に位置 (保持) するものである。  The tape flatner 82 is composed of high-precision flanged rollers 82a and 82b as described later. The tape flatner 82 comes into contact with the surface (magnetic layer side) of the tape T to be conveyed. T is positioned (held) at a predetermined processing position.
テープ Tには、 搬送方向 Xに上記つば付きローラ 8 2 a, 8 2 bを挟んで配置 されるガイドロ一ラ 4 6および 4 8によって、 テープフラットナ 8 2よりも下方 を通る搬送経路が形成される。 これにより、 テープ Tは、 テープフラットナ 8 2 に押圧され、 支持されて、 加工位置に位置規制 (付け) される。  In the tape T, the guide rollers 46 and 48 arranged in the transport direction X with the collar rollers 82a and 82b therebetween form a transport path below the tape flatner 82. Is done. As a result, the tape T is pressed and supported by the tape flattener 82, and is regulated (attached) to the processing position.
本実施例に示す加工装置 8 0においては、 加工装置 3 0と同様に、 レーザ ビームによる加工は、 前述の幅 0 . 5インチ幅のテープ Tの例でも示したよ うに、 幅 3 i m〜l 0 というように微細な加工であるので、 加工位置に入射 するビームスポット径は小さく、 すなわち、 ビームウェストの許容範囲は非常に 狭い。 そのため、 テープフラットナ 8 2を構成するつば付きローラ 8 2 a , 8 2 bに は、 多眼レンズ 4 2の焦点深度方向に、 高い精度、 好ましくは、 誤差 l O i m程 度の精度でテープ Tを位置付けすることが要求される。 In the processing apparatus 80 shown in the present embodiment, similarly to the processing apparatus 30, the processing by the laser beam is performed in the width 3 im to l0 as described in the example of the tape T having a width of 0.5 inches described above. Because of such fine processing, the beam spot diameter incident on the processing position is small, that is, the allowable range of the beam waist is very narrow. For this reason, the tapered rollers 8 2 a and 8 2 b constituting the tape flattener 82 are provided with high precision in the direction of the depth of focus of the multilens lens 42, preferably with an error of about l O im. It is required to position T.
前述のように、 加工位置には、 光源 1 2から射出され、 必要に応じてパルス変 調器 1 4で変調され、 ミラー 1 6で反射され、 ビームェクスパンダ 1 8で拡径さ れて成形器 2 0で強度分布を均一化され、 多眼レンズ 2 2で分割, 調光され たレーザビームが入射, 結像している。  As described above, the processing position is emitted from the light source 12, modulated by the pulse modulator 14 as necessary, reflected by the mirror 16, and expanded by the beam expander 18. The intensity distribution is made uniform by the molding device 20, and the laser beam divided and modulated by the multi-lens lens 22 enters and forms an image.
従って、 テープ搬送手段 2 4によって、 裏面側をレーザビーム光路の上流に向 けた状態で、 テープフラットナ 8 2を構成するつば付きローラ 8 2 a , 8 2 bに よって加工位置に位置規制 (付け) しつつ、 テープ Tを長手方向に搬送すること により、 テープ Tのバック層には、 長手方向に延在する加工線 (凹部) が形成さ れ、 例えば前述の例であれば、 一回の搬送で、 2 5本の加工線が形成される。 なお、 本形態でも、 幅方向の搬送安定性が重要であることは、 以下に説明する 通りである。  Therefore, with the back side facing the upstream of the laser beam optical path by the tape conveying means 24, the position is regulated at the processing position by the flanged rollers 8 2a and 8 2b constituting the tape flatner 82. While the tape T is conveyed in the longitudinal direction, a processing line (concave) extending in the longitudinal direction is formed in the back layer of the tape T. In the transfer, 25 processing lines are formed. In the present embodiment, as described below, the transport stability in the width direction is important.
図 1 8に、 図 1 7に示す加工装置 8 0において、 テープ Tを所定の処理位置に 位置規制する (位置付ける) テープポジショニング部の第 1の実施例を示す。 図 1 8に示すテープポジショニング部 8 1 aは、 テープフラットナ 8 2自体に よって構成され、 テープフラットナ 8 2は、 つば付きローラ 8 2 aおよび 8 2 b によって構成される。  FIG. 18 shows a first embodiment of the tape positioning unit for regulating (positioning) the position of the tape T at a predetermined processing position in the processing apparatus 80 shown in FIG. The tape positioning section 81a shown in FIG. 18 is constituted by the tape flatner 82 itself, and the tape flatner 82 is constituted by flanged rollers 82a and 82b.
図 1 9は、 図 1 8に示されるテープフラットナ 8 2を構成するつば付きローラ 8 2 a , 8 2 bの側断面図である。 なお、 図 1 9において、 8 3はつば付き ロー ¾_8 2 a t 8 2 b麵端に設けられている、 高さが 1 mm〜 3 mm程度のつ ばを示している。 FIG. 19 is a side sectional view of the ribbed rollers 82a and 82b constituting the tape flattener 82 shown in FIG. In FIG. 19, reference numeral 83 denotes a flange with a height of about 1 mm to 3 mm provided at the end of the 付 き _8 2 at 8 2 b 麵 Is shown.
また、 上記つば付きローラ 8 2 a , 8 2 bは、 テープ Tの幅よりも僅かに狭い 幅 (面長) を有するものであり、 かつ、 図 1 9に示すように、 両端部を曲面加工 部 8 4としたものである。 この曲面加工部 8 4の曲率は、 テープ Tの種類, 厚み などに基づいて、 適宜決定されるものである。  The flanged rollers 82a and 82b each have a width (surface length) slightly smaller than the width of the tape T, and have both ends curved as shown in FIG. Part 84. The curvature of the curved surface processing portion 84 is appropriately determined based on the type and thickness of the tape T.
上記つば付きローラ 8 2 a , 8 2 bの面長に付いては、 これをテープ幅よりも 僅かに (具体的には、 例えば約 1 %程度) 狭くしているが、 この理由は、 つば付 きローラ 8 2 a , 8 2 bの面長をテープ幅と同じにした場合には、 図 2 O Aおよ び図 2 0 Bに示すように、 当初は平坦であったローラ表面 (図 2 O Aのつば付き ローラ 8 5参照) に、 磨耗により、 両端部に凹み 8 7、 8 7ができて (図 2 0 B のつば付きローラ 8 6参照) 、 これがテープ Tを損傷する原因になるのを防止す るためである。  Regarding the surface length of the above-mentioned flanged rollers 82a and 82b, this is slightly narrower (specifically, for example, about 1%) than the tape width. When the surface length of the attached rollers 82a and 82b is the same as the tape width, as shown in Fig. 2OA and Fig. 20B, the initially flat roller surface (Fig. The OA flanged roller 85) wears, causing dents 87, 87 at both ends due to wear (see the flanged roller 86 in Fig. 20B), which can cause damage to the tape T. This is to prevent
また、 つば付きローラ 8 2 a, 8 2 bの両端部の表面形状を、 図 1 9に示した ように、 曲面に加工しておくことにより、 テープ Tの幅より狭いつば付きローラ 8 2 a , 8 2 bの両側端部のつばの間への、 テープ Tの馴染みをよくすることが できるという効果がある。  Also, as shown in Fig. 19, the surface shape of both ends of the rimmed rollers 82a and 82b is processed into a curved surface so that the rimmed roller 82m is narrower than the width of the tape T. , 82b, the effect of improving the familiarity of the tape T between the brims at both ends.
上記実施例に示したテープポジショニング部 8 1 aの構成によれば、 磁気 テープを加工する各種の加工処理装置などに好適に適用可能な、 簡単な構成で、 磁気テープの幅方向一定位置へのポジショニングが可能な、 磁気テープの搬送安 定化装置が実現できる。  According to the configuration of the tape positioning section 81a shown in the above embodiment, the magnetic tape can be applied to various processing apparatuses for processing a magnetic tape, etc. A magnetic tape transport stabilization device capable of positioning can be realized.
図 2 1 Aおよび図 2 1 Bに、 テープポジショニング部 8 1 bの第 2の実施例を 示す。 図 2 1 Aに示すテープポジショニング部 8 1 bは、 図 1 8に示すテープ ポジショニング部 8 1 aにおいて、 つば付きローラ 8 2 a , 8 2 bから構成され るテープフラットナ 8 2およびその前段 (上流側) のガイドロ一ラ 2 6の代わり に、 それぞれサファイアブレード等からなるテープ支持体 5 0 a , 5 0 bから構 成されるテープフラットナ 5 0 (図 9参照) およびその前段 (上流側) のガイド ローラとして、 いわゆるクラウンローラと呼ばれる、 中央部が拡径されたローラFIG. 21A and FIG. 21B show a second embodiment of the tape positioning unit 81b. The tape positioning unit 81b shown in FIG. 21A is the same as the tape positioning unit 81a shown in FIG. Instead of the guide roller 26 on the upstream side, a tape flattener 50 (see FIG. 9) composed of tape supports 50a and 50b, each consisting of a sapphire blade, etc., and the preceding stage (upstream side) Roller whose center is enlarged as a so-called crown roller.
(図 2 1 B参照) 8 8を 2本組み合わせて用いることを特徴とするものである。 このクラウンローラ 8 8は、 よく知られているように、 その中央部の径が両端 部の径よりも大きく、 すなわち、 D i > d , に構成されたものであり、 ウェブを 搬送する際に用いると、 ウェブの左右方向の位置ズレ (蛇行) が発生した場合に も、 このズレを自動修正するものである。 ここで、 上記クラウンローラ 8 8は、 1本のみを用いても良いが、 その効果をより確実にするためには、 少なくと も 2本を対にして用いることが好ましい。 (Refer to Fig. 21B) It is characterized in that two of eight are used in combination. As is well known, the crown roller 88 has a diameter at the center portion larger than the diameter at both end portions, that is, D i> d, so that when the web is conveyed, If it is used, it will automatically correct this deviation even when the positional deviation (meandering) in the horizontal direction of the web occurs. Here, only one crown roller 88 may be used, but in order to further ensure the effect, it is preferable to use at least two crown rollers in pairs.
両図に示すように、 本実施例に係るテープポジショニング部 8 1 bは、 第 1の 実施例に示したつば付きローラ 8 2 a, 8 2 bに代えて、 クラウンローラ 8 8を 配したことにより、 第 1の実施例と同様な、 磁気テープの幅方向一定位置へのポ ジショニングが可能となることに加えて、 ポジショニング機構の構成をより 簡略化できるという利点がある。  As shown in both figures, the tape positioning unit 8 1b according to the present embodiment has a crown roller 88 instead of the ribbed rollers 8 2a and 8 2b shown in the first embodiment. As a result, in addition to being able to position the magnetic tape at a fixed position in the width direction as in the first embodiment, there is an advantage that the configuration of the positioning mechanism can be further simplified.
図 2 2 Aおよび図 2 2 Bに、 テープポジショニング部 8 1 cの第 3の実施例を 示す。  FIGS. 22A and 22B show a third example of the tape positioning unit 81c.
図 2 2 Aに示すテープポジショニング部 8 1 cは、 図 2 1 Aに示すテープ ポジショニング部 8 1 bの 2本のクラウンローラ 8 8の代わりに、 テープ支持体 5 0 a , 5 0 bから構成されるテープフラットナ 5 0の前段のガイドローラとし て、 中央部が縮径されたローラ (図 2 2 B参照、 コンケ一ブローラと呼ばれる) 8 9を 2本組み合わせて用いる構成としたことを特徴とするものである。 The tape positioning section 8 1c shown in FIG. 22A is replaced by a tape support instead of the two crown rollers 88 of the tape positioning section 8 1b shown in FIG. 21A. A roller whose center is reduced in diameter (refer to Fig. 22B, called a convey roller) 8 9 as a guide roller in front of the tape flattener 50 composed of 50a and 50b It is characterized in that it is configured to be used in combination.
このコンケープローラ 8 9も、 よく知られているように、 その中央部の径が両 端部の径よりも小さく、 すなわち、 D 2 < d 2 に構成されたものであり、 ウェブ を搬送する際に用いると、 ウェブの左右方向の位置ズレ (蛇行) が発生した場合 にも、 このズレを自動修正するものである。 上記コンケ一ブローラ 8 9も、 1本 のみを用いても良いが、 その効果をより確実にするためには、 少なくとも 2本を 対にして用いることが好ましい。 The con Cape roller 8 9 also, as is well known, the diameter of the central portion is smaller than the diameter of both ends, i.e., which is configured to D 2 <d 2, when conveying a web When this is used, even if a positional deviation (meandering) in the horizontal direction of the web occurs, this deviation is automatically corrected. Although only one convey roller 89 may be used, it is preferable to use at least two pairs in order to further ensure the effect.
本実施例に係るテープポジショニング部 8 1 cによっても、 先に示した第 1お よび第 2の実施例によって得られる効果と同様の効果を得ることができる。 なお、 上記第 1, 第 2および第 3の実施例に示したテープポジショニング 部 8 1 a、 8 1 bおよび 8 1 cの構成、 その構成要素およびその種々の手段を、 競合しない範囲内で、 適宜組み合わせて用いてもよいことはいうまでもない。 本発明の第 2の態様の第 3の形態に係る磁気テープ搬送安定化方法および装置 は、 基本的に以上のように構成される。  The same effects as those obtained by the first and second embodiments described above can also be obtained by the tape positioning unit 81c according to the present embodiment. The configuration of the tape positioning units 81a, 81b and 81c shown in the first, second and third embodiments, their components and their various means should be set within a range that does not conflict with each other. It goes without saying that they may be used in appropriate combinations. The magnetic tape transport stabilizing method and apparatus according to the third mode of the second aspect of the present invention are basically configured as described above.
次に、 図 1 7および図 2 3を参照して、 本発明の第 3の態様の第 2の形態に係 る磁気テープ搬送安定化方法および装置を説明する。 なお、 本発明の第 3の態様 の第 1の形態と同様に、 以下に説明する本発明の第 3の態様第 2の形態の実施例 においても、 本形態の搬送安定化方法および装置を、 上述のようなレーザビーム などを磁気テープのバック層に入射させて、 このテープのバック層に凹部 (溝) を形成する加工を施すための磁気テープの加工装置のテープ搬送制御部に適用し た場合を代表例として説明するが、 本発明はこれに限定されるわけではない。 本発明の第 3の態様の第 2の形態に係る磁気テープの搬送安定化方法を実施す る磁気テープの搬送安定化装置は、 図 1 7に示す加工装置 8 0のテープ搬送手段 4 4にテープ搬送制御部として適用するものである。 Next, a magnetic tape transport stabilization method and apparatus according to a second embodiment of the third embodiment of the present invention will be described with reference to FIGS. Note that, similarly to the first embodiment of the third embodiment of the present invention, in the embodiment of the third embodiment and the second embodiment of the present invention described below, The above-described laser beam or the like is incident on the back layer of the magnetic tape, and is applied to a tape transport control unit of a magnetic tape processing apparatus for forming a recess (groove) in the back layer of the tape. The following is a typical example, but the present invention is not limited to this. A magnetic tape transport stabilizing apparatus for performing the magnetic tape transport stabilizing method according to the second mode of the third aspect of the present invention is provided in a tape transport means 44 of a processing apparatus 80 shown in FIG. It is applied as a tape transport control unit.
図 2 3に、 図 1 7に示される加工装置 8 0に適用される磁気テープ搬送制御部 の一実施例を示す概略構成を示す。  FIG. 23 shows a schematic configuration of an embodiment of a magnetic tape transport control unit applied to the processing apparatus 80 shown in FIG.
ところで、 前述したように、 図 1 7に示される加工装置 8 0においても、 レーザビームをテープ Tのバック層に入射させて、 凹部 (溝、 加工線 aまたは加 ェ線分 b (図 7 Aおよび図 7 B参照) ) を形成する加工を施す際には、 加工精度 を維持するために、 加工対象であるテープ Tをレーザビームの焦点位置に極めて 正確に位置規制することが必要である。  By the way, as described above, in the processing apparatus 80 shown in FIG. 17 as well, the laser beam is incident on the back layer of the tape T, and the concave portion (the groove, the processing line a or the processing line segment b (FIG. 7A And Fig. 7B) When performing processing to form), it is necessary to regulate the position of the tape T to be processed to the focal position of the laser beam very accurately in order to maintain processing accuracy.
なお、 図 1 8〜図 2 2 Bに示す本発明の第 2の態様の第 3の形態の実施例であ るテープポジショニング部 8 1 a〜8 1 cは、 テープ搬送手段 4 4によって搬送 されるテープ Tを所定の加工位置に位置規制する際に重要な磁気テープ Tの幅方 向の搬送安定性を確保するものであるが、 図 2 3に示す本発明の第 3の態様の第 2の形態の実施例である磁気テープ搬送制御部 9 0は、 テープ Tの図中上下方向 (レーザビームの焦点方向) の搬送安定性を確保するためのものである。  The tape positioning units 81 a to 81 c of the third embodiment of the second aspect of the present invention shown in FIGS. 18 to 22B are transported by a tape transport unit 44. When the position of the tape T is regulated to a predetermined processing position, the transport stability in the width direction of the magnetic tape T, which is important when securing the position of the tape T, is ensured. The magnetic tape transport controller 90 according to the embodiment of the present embodiment is for ensuring the transport stability of the tape T in the vertical direction (the focal direction of the laser beam) in the figure.
図 2 3に示されるテープ搬送制御部 9 0において、 7 2はレーザ変位計の光学 ヘッドであり、 投光部および受光部を備えている。 この光学ヘッド 7 2は、 投光 部から出射され、 対象物 (テープ T) で反射したレーザ光を受光部で受光するよ うに調整されており加工位置の上流側および下流側の少なくとも一方に設ければ 良い。 また、 7 4は上記光学ヘッド 7 2の測定制御を行い、 テープ Tの位置測定 結果を、 図示されていない表示手段などに出力する制御ユニットを示している。 テープ搬送制御部 9 0に用いられる光学へッド 7 2および制御ュニッ卜 7 4は、 図 1 6に示すテープ搬送制御部 7 0に用いられるものを用いることができる。 また、 前述したように、 テープフラットナ 8 2を構成するつば付きローラ 8 2 a, 8 2 bは、 図 1 9に示すように、 その両端に、 1 mm〜 3 mm程度の高さを 有するつば 8 3 , 8 3を備えており、 テープ Tの幅よりも僅かに狭い幅 (面長) を有すると共に、 両端部を曲面加工部 8 4とした特殊なローラである。 In the tape transport control unit 90 shown in FIG. 23, reference numeral 72 denotes an optical head of the laser displacement meter, which includes a light projecting unit and a light receiving unit. The optical head 72 is adjusted so that the laser beam emitted from the light projecting portion and reflected by the object (tape T) is received by the light receiving portion, and is provided at least on one of the upstream side and the downstream side of the processing position. It is good. Reference numeral 74 controls the measurement of the optical head 72, and measures the position of the tape T. The figure shows a control unit that outputs the result to display means (not shown). As the optical head 72 and the control unit 74 used in the tape transport controller 90, those used in the tape transport controller 70 shown in FIG. 16 can be used. Further, as described above, the flanged rollers 82a and 82b constituting the tape flatner 82 have a height of about 1 mm to 3 mm at both ends as shown in FIG. It is a special roller that has flanges 83 and 83, has a width (surface length) slightly smaller than the width of the tape T, and has curved end portions 84 at both ends.
なお、 その回転精度 (軸振れ) については、 以下に説明するような精度を有す るものである。  The rotation accuracy (axis run-out) has the accuracy described below.
まず、 つば付きローラ 8 2 a , 8 2 bの面長については、 これをテープ幅より も僅かに (具体的には、 例えば、 約 1 %程度) 狭くしているが、 この理由は、 前 述した通り、 テープ Tの損傷の原因をできるだけなくすためである。  First, the surface lengths of the flanged rollers 82a and 82b are made slightly smaller (specifically, for example, about 1%) than the tape width. As described above, this is to minimize the cause of damage to the tape T.
また、 つば付きローラ 8 2 a, 8 2 bの両端部の表面形状を、 図 1 9に 示すように、 曲面に加工しておくことにより、 テープ Tの幅より狭いつば 付きローラ 8 2 a, 8 2 bの両側端部のつばの間への、 テープ Tの馴染みをよく することができるという効果があることも前述した通りである。  Also, as shown in FIG. 19, the surface shape of both ends of the rimmed rollers 82a and 82b is processed into a curved surface, so that the rimmed rollers 82a and 82b are narrower than the width of the tape T. As described above, there is an effect that the familiarity of the tape T can be improved between the flanges on both side ends of the 8 2 b.
一方、 上述のようなテープ Tのレーザ加工においては、 レーザビームの焦点位 置は、 実用上は、 レーザパワーがその最大値となる位置を中心として、 その前後 に、 レーザパワーがその最大値の 9 5 %以上となる範囲を含めて、 考えてよい。 この実用上のレーザビームの焦点位置の深度は、 レーザビームのスポット径 によって変化するものであり、 例えば、 レーザビームのスポット径が 1 0 で ある場合、 上記焦点位置の深度は約 3 0 mとなる。 ― そこで、 上記のテープフラットナ 8 2を構成するつば付きローラ 8 2 a , 8 2 bは、 この精度をクリアするように形成することが必要である。 より具体的 には、 上記つば付きローラ 8 2 a , 8 2 bの軸振れを、 例えば、 加工用レーザ光 (レーザビーム) のパワーの減衰が、 その最大値の 5 %以内である範囲に相当す る寸法とするものであればよい。 On the other hand, in the laser processing of the tape T as described above, the focal position of the laser beam is, in practical use, centered on the position where the laser power reaches its maximum value, and before and after the position where the laser power reaches its maximum value. It is possible to consider including the range of 95% or more. The depth of the focus position of the practical laser beam changes depending on the spot diameter of the laser beam. For example, when the spot diameter of the laser beam is 10, the depth of the focus position is about 30 m. Become. ― Therefore, the ribbed rollers 82a and 82b constituting the tape flatner 82 need to be formed so as to clear this accuracy. More specifically, the axial runout of the flanged rollers 82a and 82b corresponds to, for example, the range where the attenuation of the power of the processing laser light (laser beam) is within 5% of the maximum value. Any size may be used.
上述のように構成された本実施例のテープ搬送制御部 9 0は、 つば付きローラ 8 2 a , 8 2 bにより幅方向の位置規制を行うと共に、 つば付きローラ 8 2 a, 8 2 b自体の回転精度により高さ方向の位置規制を行うので、 テープ Tのレーザ 加工を行う装置に適用した場合に、 極めて安定したテープ Tの搬送を実現できる という効果を奏するものである。  The tape transport controller 90 of the present embodiment configured as described above controls the position in the width direction by the flanged rollers 82a and 82b, and also controls the flanged rollers 82a and 82b themselves. Since the position in the height direction is regulated by the rotation accuracy of the tape T, when applied to an apparatus for performing laser processing of the tape T, it has an effect that extremely stable transport of the tape T can be realized.
また、 本実施例のテープ搬送制御部 9 0においては、 レーザ変位計の光学 へッド 7 2の投光部から出射され、 テープ Tで反射したレーザ光を受光部で受光 し、 制御ユニット 7 4においてこの受光したレーザ光の、 例えば、 受光面上での 位置情報を表示装置などに出力することで、 つば付きローラ 8 2 a, 8 2 bの軸 振れの状況変化を監視可能とし、 その結果に基づいて、 適宜交換などの処置が取 れるものである。  In the tape transport controller 90 of the present embodiment, the laser beam emitted from the light projecting unit of the optical head 72 of the laser displacement meter and reflected by the tape T is received by the light receiving unit, and the control unit 7 In step 4, by outputting the position information of the received laser beam on the light receiving surface, for example, to a display device, it is possible to monitor changes in the shaft runout of the flanged rollers 82a and 82b. Based on the results, appropriate measures such as replacement can be taken.
すなわち、 テープ Tが、 前述の加工位置にある場合にはとくに処置は必要ない が、 テープ Tの位置が、 前述の加工位置を外れた場合には、 つば付きローラ 8 2 a , 8 2 bを新しいものに交換するなどの処置をとることができる。 この際、 交換が必要な状況になったことを、 音声, 警告ランプの点灯などの より、 オペレータに知らせるようにすることも可能である。  In other words, if the tape T is at the above-mentioned processing position, no special treatment is necessary.However, if the position of the tape T is out of the above-mentioned processing position, the flanged rollers 8 2 a and 8 2 b are removed. Actions such as replacing with new ones can be taken. At this time, it is also possible to notify the operator of the situation where replacement is necessary, by sound or by turning on a warning lamp.
ト ΪΗ室旆例によれば、 テープ Τを長手:^]に搬送しつつ加工する際に、 上記テープ搬送制御部 9 0のつば付きローラ 8 2 a , 8 2 bによりテ一プ位置を 所定のいちに維持することができるので、 レーザ加工などの加工を行う際に、 位 置精度を正確に出すことができるという効果を奏するものである。 According to the example of 旆 室 室, when the tape Τ is processed while being transported to the length: ^] Since the tape position can be maintained at a predetermined level by the flanged rollers 82a and 82b of the tape transport control unit 90, when performing processing such as laser processing, accurate positioning accuracy is achieved. It has the effect that it can be put out.
なお、 上記各実施例は、 いずれも本発明の一例を示したものであり、 本発明は これらに限定されるべきものではない。  Each of the above embodiments is merely an example of the present invention, and the present invention should not be limited to these.
例えば、 上記実施例においては、 本発明をレーザ加工によるテープの加工装置 に適用した例を示したが、 本発明は、 他の各種のテープ搬送を伴う装置に広く適 用可能である。  For example, in the above-described embodiment, an example in which the present invention is applied to a tape processing apparatus using laser processing has been described. However, the present invention can be widely applied to other apparatuses that involve tape transport.
また、 例えば、 つば付きローラ 8 2 a , 8 2 bのつばの高さやその厚み, 両端 部の曲面加工部分の曲率などは、 テープ Tの種類, 厚みなどによって、 適宜決定 してよい。 さらに、 テープ Tの位置監視を行うことによるつば付きローラ 8 2 a , 8 2 bの軸振れ状況のチェック方法についても、 実施例に示した手段以 外の、 他の位置監視方式を用いてよいことはいうまでもない。  Further, for example, the height and thickness of the flanges of the flanged rollers 82a and 82b, the curvature of the curved surface processed portions at both ends, and the like may be appropriately determined according to the type and thickness of the tape T. Further, as for the method of checking the shaft runout state of the flanged rollers 82a and 82b by monitoring the position of the tape T, other position monitoring methods other than the means described in the embodiment may be used. Needless to say.
本発明の第 3の態様の第 2の形態に係る磁気テープ搬送安定化方法および装置 は、 基本的に以上のように構成される。  The magnetic tape transport stabilizing method and apparatus according to the second mode of the third aspect of the present invention are basically configured as described above.
次に、 図 2 4〜図 2 5を参照して、 本発明の第 3の態様の第 3の形態に係る磁 気テープ搬送安定化方法および装置を説明する。 なお、 以下に説明する実施例に おいても、 本形態の搬送安定化方法および装置を、 上述のようなレーザビームな どを磁気テープのバック層に入射させて、 このテープのバック層に凹部 (溝) を 形成する加工を施すための磁気テープの加工装置のテープ搬送制御部に適用した 場合を代表例として説明するが、 本発明はこれに限定されるわけではない。 図 2 4に、 上述のような磁気テープを製造するために用いられる磁気テープの 加工装置の概念図を示す。 Next, a magnetic tape transport stabilizing method and apparatus according to a third embodiment of the third aspect of the present invention will be described with reference to FIGS. In the examples described below, the method and apparatus for stabilizing the conveyance according to the present embodiment are also applied to the back layer of the magnetic tape by irradiating the laser beam or the like to the back layer of the magnetic tape. A case where the present invention is applied to a tape transport control unit of a magnetic tape processing device for performing processing for forming (grooves) will be described as a representative example, but the present invention is not limited to this. Figure 24 shows the magnetic tape used to manufacture the magnetic tape described above. 1 shows a conceptual diagram of a processing apparatus.
図 2 4に示す加工装置 1 0 0は、 図 9に示す加工装置 3 0と、 テープ搬送手段 4 4を構成するテープフラットナ 5 0の代わりに、 テープフラットナ 1 0 2およ びテープ搬送支承部 1 0 4を有している点を除いて、 同一の構成を有しているの で、 同一の構成要素には同一の参照符号を付し、 その詳細な説明は省略する。 図 2 4に示す加工装置 1 0 0は、 図 9に示す加工装置 3 0と同様に前述の 図 7 Aおよび図 7 Bに示されるようなテープの長手方向に延在する加工線 a や加工線分 bを形成するもので、 レーザ光源 3 2と、 パルス変調器 3 4、 ミラー 3 6、 ビームェクスパンダ 3 8、 ビームプロファイル成形器 4 0および多 眼レンズ 4 2を有する光学系と、 図示されていないキヤブスタンローラ, リワインダ, ワインダ等の搬送駆動手段、 ガイドローラ 4 6、 4 8、 テープ フラットナ 1 0 2およびテープ搬送支承部 1 0 4とから構成されるテープ搬送手 段 4 4とを有する。  The processing apparatus 100 shown in FIG. 24 is different from the processing apparatus 30 shown in FIG. 9 in that the tape flattener 50 and the tape flattener 50 constituting the tape transporting means 44 are replaced with a tape flattener 102 and a tape transporter. Except for having the bearing portion 104, they have the same configuration, so the same components are denoted by the same reference numerals, and detailed description thereof will be omitted. The processing device 100 shown in FIG. 24 is similar to the processing device 30 shown in FIG. 9 in that the processing line a and the processing line a extending in the longitudinal direction of the tape as shown in FIG. 7A and FIG. An optical system having a laser light source 32, a pulse modulator 34, a mirror 36, a beam expander 38, a beam profile shaper 40, and a multi-lens lens 42; A transporting means such as a capstan roller, a rewinder, and a winder (not shown), guide rollers 46, 48, a tape flattener 102, and a tape transporting support 104, which are not shown. And
ここで、 テープフラットナ 1 0 2およびテープ搬送支承部 1 0 4は、 本発明の 第 3の態様の第 3の形態に係る磁気テープの搬送安定化方法を実施する磁気 テープの搬送安定化装置を構成する。  Here, the tape flattener 102 and the tape transport support 104 are provided with a magnetic tape transport stabilizing device for performing the magnetic tape transport stabilizing method according to the third embodiment of the third aspect of the present invention. Is configured.
図 2 5に、 図 2 4に示される加工装置 1 0 0に適用される磁気テープ搬送制御 部 1 0 1の一実施例を示す概略構成を示す。  FIG. 25 shows a schematic configuration of an embodiment of the magnetic tape transport control unit 101 applied to the processing apparatus 100 shown in FIG.
ところで、 前述したように、 図 2 4に示される加工装置 1 0 0において、 レーザビームをテープ Tのバック層に入射させて、 凹部 (溝、 加工線 aまたは加 ェ線分 b (図 7 Aおよび図 7 B参照) ) を形成する加工を施す際には、 加工精度 - 椎 す めに 加丁 象である亍ープ レーザドームの焦点位置に極めて 正確に位置規制することが必要である。 By the way, as described above, in the processing apparatus 100 shown in FIG. 24, the laser beam is made incident on the back layer of the tape T, and the concave portion (the groove, the processing line a or the processing line segment b (FIG. 7A And Fig. 7B)). When processing to form), the focal point of the laser beam dome, which is an object to be processed, must be extremely accurate. It is necessary to regulate the position accurately.
図 25に示すテープ搬送制御部 101において、 テープ搬送支承部 104は、 テープフラットナ 1 02を支承するものであり、 少なくとも 4本のスプリン グ 104 aを介してテープフラットナ 102を支承する。 なお、 図示は省略され ているが、 テープフラットナ 102と、 テープ搬送支承部 104のベースとの平 面的な位置関係を一定に維持するための位置規制手段が合わせて備えられて いる。  In the tape transport control unit 101 shown in FIG. 25, the tape transport support unit 104 supports the tape flatner 102, and supports the tape flatner 102 via at least four springs 104a. Although not shown, a position regulating means for maintaining a constant planar positional relationship between the tape flattener 102 and the base of the tape transport support 104 is also provided.
このテープフラッ トナ 1 02は、 ここでは、 テープ Tを支持するローラ 1 0 2 a, 1 0 2 bと、 これらのローラ 1 0 2 a, 1 0 2 bを支持する ベース 1 02 cから構成されており、 上記ローラ 1 02 a, 1 0 2 bは、 テープ Tを介して、 上述のスプリング 104 aにより、 装置本体に固定され ているローラ 1 06 a, 1 06 bに当接するように付勢されている (付勢 力: " ) 。  Here, the tape flattener 102 includes rollers 102 a and 102 b supporting the tape T and a base 102 c supporting the rollers 102 a and 102 b. The rollers 102a and 102b are urged by the above-mentioned spring 104a via the tape T so as to abut against the rollers 106a and 106b fixed to the apparatus body. Have been (biasing: ").
ここで、 図 25において、 テープ Tの張力によりテープフラットナ 102が押 し下げられる力を fT 、 スプリング 104 aによりテープフラットナ 102から ローラ 1 06 a, 1 06 bに加わる力を f B ( f B = f A — f T ) とする と、 fA > fT 、 かつ、 fA fT であれば、 f B 0となり、 テープフラット ナ 102からローラ 106 a, 106 bに加わる力は極めて小さく、 テープ丁の 高さ位置を決めるローラ 106 a, 106 bの磨耗は無視し得る。 Here, in FIG. 25, the force of pressing down the tape flattener 102 by the tension of the tape T is f T , and the force applied to the rollers 106 a and 106 b from the tape flattener 102 by the spring 104 a is f B ( f B = f a - If f T) to, f a> f T and,, f if a f T, f B 0, and the force applied from the tape flattener 102 on roller 106 a, 106 b is extremely The wear of rollers 106a and 106b, which is small and determines the height of the tape, is negligible.
上述のように構成された本実施例のテープ搬送制御部 1 0 1は、 テープ フラットナ 102が小さな力によってではあるが、 常に、 装置本体に固定されて いるローラ 1 06 a. 106 bに当接するように付勢されているので、 何等かの 原因で、 テープフラットナ 1 0 2のテープ Tを支持するローラ 1 0 2 a, 1 0 2 bの位置が変動した場合においても、 この変動にかかわらず、 テープ丁の 位置を一定に維持する機能を有するものである。 The tape transport control unit 101 of the present embodiment configured as described above always contacts the rollers 106 a. 106 b fixed to the apparatus main body, although the tape flattener 102 is under a small force. So that some sort of Even if the position of the rollers 102a and 102b supporting the tape T of the tape flattener 102 fluctuates due to the cause, the function of maintaining the position of the tape cutter constant regardless of the fluctuation. It has.
すなわち、 本実施例のテープ搬送制御部 1 0 1は、 例えば、 テープ Tが連 続的に高速で搬送されることによりテープフラットナ 1 0 2 (具体的には、 ローラ 1 0 2 a, 1 0 2 b ) が磨耗した場合でも、 テープ Tの位置制御を行う必 要はないという効果を奏するものである。  That is, the tape transport control unit 101 of the present embodiment, for example, continuously transports the tape T at a high speed, and thereby the tape flattener 102 (specifically, the rollers 102 a, 1 Even when 0 2 b) is worn, it is possible to eliminate the need to control the position of the tape T.
なお、 テープ Tの位置の変動要因はこれ以外にも考えられるが、 本実施例に係 るテープ搬送制御部 1 0 1においては、 テープ Tの位置の変動原因が何であって も、 それに対応することができる。  There are other possible causes of the change in the position of the tape T, but the tape transport controller 101 according to the present embodiment corresponds to whatever the cause of the change in the position of the tape T. be able to.
上記実施例によれば、 テープ Tを長手方向に搬送しつつ加工する際に上記 テープ搬送制御部 1 0 1のテープ位置自動修正機能を作用させることにより、 上 記加工位置におけるテープ Tの位置の変動を常に自動修正できるという効果を奏 するものである。  According to the above-described embodiment, when the tape T is processed while being transported in the longitudinal direction, the tape position automatic correction function of the tape transport control unit 101 is actuated, so that the position of the tape T at the processing position can be adjusted. This has the effect that fluctuations can always be automatically corrected.
上記実施例においては、 テープ位置修正機能を作用させる対象を、 テープ フラットナ 1 0 2に実質的に限定しているが、 これは、 制御対象としての大きさ (質量といってもよい) が適切であるからであり、 本発明はこれに限定されるべ きものではない。 また、 テープフラットナ 1 0 2の移動距離は実際には極めて僅 かであるので、 前後のテープガイド用ローラには変更を要しない。  In the above embodiment, the target to which the tape position correcting function is applied is substantially limited to the tape flattener 102. However, the size of the control target (may be called mass) is appropriate. Therefore, the present invention should not be limited to this. In addition, since the movement distance of the tape flattener 102 is extremely small in practice, there is no need to change the front and rear tape guide rollers.
なお、 上記各実施例は、 いずれも本形態の一例を示したものであり、 本発明は これらに限定されるべきものではない。  It should be noted that each of the above embodiments is merely an example of the present embodiment, and the present invention should not be limited to these embodiments.
例えば、 テープ Tの位置自動修正を行うためのテープ搬送制御部における自動 修正機能についても、 実施例に示したスプリングによる押上げ方式以外の、 他の 位置自動調整方式を用いる修正機構など、 種々の代替手段が利用可能であり、 本 発明の要旨を変更しない範囲内でのこれらの構成の変更は、 自由に行ってよいこ とはいうまでもない。 具体的には、 ローラ 1 0 2 a, 1 0 2 bや 1 0 6 a , 1 0 6 bは、 固定ガイドまたは、 ローラと固定ガイ ドの組み合わせとして ちょい。 For example, in the tape transport control unit for automatically correcting the position of the tape T, Regarding the correction function, various alternative means such as a correction mechanism using an automatic position adjustment method other than the push-up method using the spring shown in the embodiment can be used, and the correction function is provided within a range that does not change the gist of the present invention. Needless to say, these configuration changes may be made freely. Specifically, the rollers 102a, 102b and 106a, 106b are used as fixed guides or a combination of rollers and fixed guides.
本発明の第 3の態様の第 3の形態に係る磁気テープの搬送安定化方法および装 置は、 基本的に以上のように構成される。  The magnetic tape transport stabilizing method and apparatus according to the third mode of the third aspect of the present invention are basically configured as described above.
次に、 図 2 6 A〜図 2 9 Bを参照して、 本発明の第 4の態様に係る磁気テープ の加工装置を説明する。  Next, a magnetic tape processing device according to a fourth embodiment of the present invention will be described with reference to FIGS. 26A to 29B.
図 2 6 Aおよび図 2 6 Bに、 上述のような凹部を有する (磁気) テープを製造 する、 本発明の加工装置の概念図を示す。  FIGS. 26A and 26B are conceptual diagrams of the processing apparatus of the present invention for producing a (magnetic) tape having the above-described concave portions.
図示例の加工装置 1 1 0は、 光源 1 1 2、 パルス変調器 1 1 4、 ミラー 1 1 6 およびビーム分割光学系 1 1 8を有する光学系と、 テープ搬送装置 1 2 0とを有 する。  The illustrated processing apparatus 110 includes an optical system including a light source 112, a pulse modulator 114, a mirror 116, and a beam splitting optical system 118, and a tape transport device 120. .
このような加工装置 1 1 0においては、 テープ搬送装置 1 2 0によって、 テープ Tを所定の加工位置 Wに位置して長手方向 (図中矢印 X方向) に搬送 (走 行) しつつ、 レーザビームを光学系によって加工位置 Wに入射する。  In such a processing device 110, the tape T is transported (running) in the longitudinal direction (arrow X direction in the figure) by the tape transport device 120 while the tape T is positioned at the predetermined processing position W, The beam is incident on the processing position W by the optical system.
ここで、 テープ Tは、 そのバック層を上方 (レーザビーム入射側) に向けて搬 送されているので、 レーザビームによってテープ Tのバック層が加工され、 前述 のようなテープ Tの長手方向に延在する凹部等 (加工線 a (図 7 A参照) や加工 線分 b (図 7 B参照) 、 以下、 総称して加工線ともいう) が形成される。 ここで、 光源 1 1 2、 パルス変調器 1 1 4およびミラ一 1 1 6としては、 それ ぞれ図 9に示される加工装置 3 0を構成する光源 1 2、 パルス変調器 1 4および ミラー 1 6を用いることができるので、 その詳細な説明は省略する。 Here, since the tape T is transported with its back layer facing upward (the laser beam incident side), the back layer of the tape T is processed by the laser beam, and the tape T is moved in the longitudinal direction of the tape T as described above. Extending recesses and the like (processing line a (see FIG. 7A) and processing line segment b (see FIG. 7B), hereinafter also collectively referred to as processing lines) are formed. Here, the light source 1 1 2, the pulse modulator 1 1 4 and the mirror 1 1 16 are respectively the light source 1 2, the pulse modulator 1 4 and the mirror 1 constituting the processing apparatus 30 shown in FIG. 6 can be used, and a detailed description thereof will be omitted.
光源 1 1 2から射出されたレーザビームは、 パルス変調器 1 1 4でパルス変調 された後、 ミラー 1 1 6で所定方向に反射され、 次いで、 ビーム分割光学 系 1 1 8に入射する。  The laser beam emitted from the light source 112 is pulse-modulated by the pulse modulator 114, reflected by the mirror 116 in a predetermined direction, and then enters the beam splitting optical system 118.
なお、 ミラ一 1 1 6とビーム分割光学系 1 1 8の間には、 必要に応じて、 レーザビームのビーム径を拡径するビームェクスパンダや、 レーザビームの強度 をビ一ムスポット全面でほぼ均一にする、 すなわちレーザビームの強度分布をほ ぼ均一化するビームプロフアイル成形器等の各種の光学部材を配置してもよい。 ビーム分割光学系 1 1 8は、 1本のレーザビームをテープ Tの幅方向 (搬送方 向と直交方向) に配列される複数本のレーザビームに分割して、 分割した各 レーザビームを加工位置 Wに入射するものである。  In addition, between the mirror 116 and the beam splitting optical system 118, a beam expander for expanding the beam diameter of the laser beam, and the intensity of the laser beam as needed, Various optical members such as a beam profiler for making the laser beam almost uniform, that is, for making the intensity distribution of the laser beam almost uniform may be arranged. The beam splitting optical system 1 18 splits one laser beam into a plurality of laser beams arranged in the width direction of the tape T (in the direction perpendicular to the transport direction), and places each split laser beam at the processing position. It is incident on W.
このようなビーム分割光学系 1 1 8としては、 このような作用を有するもので あれば、 各種の光学系が利用可能であるが、 好ましい一例として、 図 2 7に示さ れるものが例示される。  As such a beam splitting optical system 118, various types of optical systems can be used as long as they have such an effect. As a preferable example, the one shown in FIG. 27 is exemplified. .
このビーム分割光学系 1 1 8は、 ビームウェスト位置調整手段 1 2 2、 ビーム スプリツ夕 1 2 4、 および収束レンズ 1 2 6を有して構成されるものである。 な お、 図 2 7は、 この光学系をテープ Tの長手方向から見たものであり、 従って、 テープ Tは、 加工位置 Wにおいて紙面と垂直方向に搬送される。  The beam splitting optical system 118 includes a beam waist position adjusting means 122, a beam splitter 124, and a converging lens 126. FIG. 27 shows this optical system as viewed from the longitudinal direction of the tape T. Therefore, the tape T is conveyed at a processing position W in a direction perpendicular to the plane of the paper.
図 2 7に示されるビーム分割光学系 1 1 8においては、 レーザビームは、 ビームウェスト位置調整手段 1 2 2によってビームウェス卜位置を調整された後 に、 ビームスプリツ夕 1 2 4によって、 形成する加工線の数に応じてテープ丁の 幅方向に配列される複数のレーザビームに分割 (ビーム N o . 1〜ビーム o . N) される。 分割されたレーザビームは、 収束レンズ 1 2 6によって 収束 '結像されて、 テープ搬送装置 1 2 0によって、 加工位置 Wに保持されつつ 長手方向に搬送されるテープ Tのバック層に入射する。 In the beam splitting optical system 1 18 shown in FIG. 27, the laser beam is adjusted after the beam waist position is adjusted by the beam waist position adjusting means 122. Then, the beam is split into a plurality of laser beams (beam No. 1 to beam O. N) arranged in the width direction of the tape according to the number of processing lines to be formed by the beam splitters 124. The split laser beam is converged and imaged by the converging lens 126 and is incident on the back layer of the tape T conveyed in the longitudinal direction while being held at the processing position W by the tape conveying device 120.
これにより、 各レ一ザビームがバック層を加工して、 テープ Tのバック層に入 射したレーザビームの数に応じて、 テープ Tの長手方向に延在する複数の加工線 (凹部) がバック層に形成される。  As a result, each laser beam processes the back layer, and according to the number of laser beams incident on the back layer of the tape T, a plurality of processing lines (recesses) extending in the longitudinal direction of the tape T are formed. Formed in layers.
ここで、 この光学系においては、 レーザビームは、 加工位置 Wに結像するので はなく (すなわち、 加工位置 Wは、 収束レンズ 1 2 6によるレーザビームの収束 位置ではなく) 、 ビームウェスト位置調整手段 1 2 2によって、 加工位置 W にビームウェスト位置が来るように調光される。  Here, in this optical system, the laser beam does not form an image at the processing position W (that is, the processing position W is not the converging position of the laser beam by the converging lens 126), and the beam waist position is adjusted. The light is adjusted by means 122 so that the beam waist position comes to the processing position W.
なお、 図 2 7に示されるように、 ビームスプリッタ 1 2 4で分割された各 レーザビームの光路長は、 ほぼ等しいので、 各レーザビームのビームウェスト位 置 Wは、 ほぼ同一平面上となる。  As shown in FIG. 27, since the optical path lengths of the laser beams split by the beam splitters 124 are substantially equal, the beam waist position W of each laser beam is substantially on the same plane.
ビームウェスト位置調整手段 1 2 2は、 公知のレーザビームのウェスト位置調 整手段である。 例えば、 光軸上における位置や互いの間隔が調整可能な組レンズ 等を用い、 H. K o g e 1 n i kの導出した A B C Dマトリクスによる計算に基 づいたビームウェストの位置調整をする手段が例示される。  The beam waist position adjusting means 122 is a known waist position adjusting means for a laser beam. For example, a means for adjusting the position of the beam waist based on the calculation based on the ABCD matrix derived by H. Koji 1 nik using a group of lenses whose position on the optical axis and the distance between them can be adjusted is exemplified. .
ビームスプリッタ 1 2 4にも特に限定はなく、 誘電体多層膜を用いるビームス プリッタ等、 1本のレーザビームを一方向に配列される複数本に分割できるもの であれば、 公知のものが各種利用可能である。 図 2 8に、 ビーム分割光学系の別の実施例を示す。 There is no particular limitation on the beam splitter 124, and various known types can be used as long as one laser beam can be divided into a plurality of beams arranged in one direction, such as a beam splitter using a dielectric multilayer film. It is possible. FIG. 28 shows another embodiment of the beam splitting optical system.
図 2 8に示されるビーム分割光学系 1 2 8は、 ビームスプリッタ 1 2 4に 代えて、 ロッ ドレンズ 1 3 0、 シリンドリカルレンズ 1 3 2、 および多数 のアパーチャを有するアパーチャ板 1 3 4を用いるものであり、 前記図 2 8に示 される例と同様に、 分割され、 力つ加工位置 Wがビームウェストとなるように調 光されたレーザビームを、 加工位置 Wに保持されるテープ Tのバック層に入射し て、 加工線を形成するものである。  The beam splitting optical system 1 28 shown in FIG. 28 uses a rod lens 130, a cylindrical lens 13 2, and an aperture plate 1 34 having a large number of apertures in place of the beam splitter 124. In the same manner as in the example shown in FIG. 28, the laser beam that has been divided and modulated so that the power processing position W becomes the beam waist is applied to the back of the tape T held at the processing position W. It is incident on the layer to form a processing line.
すなわち、 ビームウェスト位置調整手段 1 2 2によってビームウェスト位置を 調整されたレ一ザビームは、 ロッドレンズ 1 3 0によってテープ Tの幅方向に拡 大された後、 シリンドリカルレンズ 1 3 2によって、 平行光とされる (シート状 のレーザ光とされる) 。  That is, the laser beam whose beam waist position has been adjusted by the beam waist position adjusting means 122 is expanded in the width direction of the tape T by the rod lens 130, and then collimated by the cylindrical lens 132. (Made into a sheet-like laser beam).
シート状にされたレーザ光は、 次いで、 テープ Tの幅方向に配列された 多数 (N個) のアパーチャ (孔) を有するアパーチャ板 1 3 4に入射して、 この 孔を通過したレーザ光が、 幅方向に配列される N本に分割されたレーザビームと して、 収束レンズ 1 2 6に入射し、 収束されて加工位置 Wに入射して、 テープ T のバック層に加工線を形成する。  The sheet-like laser light is then incident on an aperture plate 1334 having a large number (N) of apertures (holes) arranged in the width direction of the tape T, and the laser light passing through the holes is , As a laser beam divided into N beams arranged in the width direction, enters the converging lens 126, converges and enters the processing position W, and forms a processing line on the back layer of the tape T .
なお、 このビーム分割光学系において、 レーザビームをシート状のレーザ光と する方法は、 ロッドレンズ 1 3 0およびシリンドリカルレンズ 1 3 2を用いる方 法に限定はされず、 公知の方法が各種利用可能である。  In this beam splitting optical system, the method of converting the laser beam into a sheet-like laser beam is not limited to the method using the rod lens 130 and the cylindrical lens 132, and various known methods can be used. It is.
本発明の加工装置において、 レーザビームを加工位置 W (テープ丁の バック層) に入射して、 バック層を加工する光学系は、 上述の例に限定は されず、 所定の加工位置に 1本以上のレーザビーム、 好ましくは複数本のレーザ ビーム、 より好ましくは 1本のレーザビームを分割した複数本のレーザビームを 入射、 結像 (あるいは、 ビームウェスト位置と加工位置とを一致して入射) して、 バック層を加工できるものであれば、 各種の光学系が利用可能である。 例えば、 図 2 8に示される例において、 ビームウェスト位置調整手段 1 2 2を 用いず、 さらに、 アパーチャ板 1 3 4および収束レンズ 1 2 6に変えて、 幅方向 に多数のレンズを配列してなる図 1 0に示すような多眼レンズ 4 2を用いる光学 系が例示される。 In the processing apparatus of the present invention, the optical system for processing the back layer by irradiating the laser beam to the processing position W (the back layer of the tape) is not limited to the above example, and one optical system is provided at a predetermined processing position. Above laser beam, preferably multiple lasers A beam, more preferably a plurality of laser beams obtained by splitting a single laser beam, can be incident and imaged (or the beam waist position and the processing position coincide with each other) to process the back layer. For example, various optical systems are available. For example, in the example shown in FIG. 28, the beam waist position adjusting means 122 is not used, and a number of lenses are arranged in the width direction instead of the aperture plate 134 and the converging lens 126. An optical system using a multi-lens lens 42 as shown in FIG. 10 is exemplified.
この光学系においては、 シリンドリカルレンズ 1 3 2によってシート状にされ たレーザ光を多眼レンズに入射する。 この多眼レンズの各レンズに入射した レーザ光を、 それぞれのレンズで加工位置 Wに位置されるテープ Tのバック層に 結像することにより、 レーザ光を幅方向に配列された複数のレーザビームに分割 し、 これによつてバック層を加工する。  In this optical system, the laser light sheet-shaped by the cylindrical lens 132 is incident on the multi-lens lens. The laser light incident on each lens of the multi-lens is imaged on the back layer of the tape T located at the processing position W by each lens, so that a plurality of laser beams arranged in the width direction are formed. Then, the back layer is processed.
前述のように、 テープ Tは、 テープ搬送装置 1 2 0によって、 そのバック層を 上方 (レーザビーム入射側) に向けた状態で、 加工位置 Wに位置されつつ長手方 向 (矢印 X方向) に搬送されている (長手方向と搬送方向とを一致して、 搬送さ れる) 。 従って、 加工位置 Wに入射した、 幅方向に配列された複数のレーザ ビームによって、 長手方向に延在する加工線が、 幅方向に複数本 (前述の例であ れば、 N本) 、 テープ Tのバック層に形成される。  As described above, the tape T is moved in the longitudinal direction (the direction of the arrow X) while being positioned at the processing position W, with the back layer facing upward (the laser beam incident side) by the tape transport device 120. Conveyed (conveyed with the longitudinal direction and conveyance direction coincide). Therefore, a plurality of processing lines extending in the longitudinal direction (N in the above example) and a plurality of tapes extending in the width direction by the plurality of laser beams incident on the processing position W and arranged in the width direction. Formed on T back layer.
テープ搬送装置 1 2 0は、 キヤプスタンローラ、 ピンチローラ、 ワインダ、 リ ワインダ、 ガイ ドローラ ( 1 4 2, 1 4 4 ) 等が適宜組み合わされて構成 される、 テープ Tを長手方向に搬送する公知のテープ搬送手段 (詳細省略) と、 支持ドラム 1 3 6とを有して構成されるものである。 図 2 6 Aおよび図 2 6 Bに示されるように、 支持ドラム 1 3 6は、 テープ丁の 幅方向に軸線を有する円筒部 1 3 8と、 円筒部 1 3 8の両端面に配置される、 円 筒部 1 1 3 8と中心を一致し、 かつ径の大きな円板状の鍔部 1 4 0および 1 4 0 とから構成される。 The tape transport device 120 is configured by appropriately combining a capstan roller, a pinch roller, a winder, a rewinder, a guide roller (142, 144), etc., and transports the tape T in the longitudinal direction. It is configured to include a known tape transport means (details omitted) and a support drum 136. As shown in FIG. 26A and FIG. 26B, the support drum 1336 is disposed on a cylindrical portion 1338 having an axis in the width direction of the tape cutter, and on both end surfaces of the cylindrical portion 138. It is composed of disc-shaped flanges 140 and 140 whose centers coincide with the cylindrical portion 113 and which have a large diameter.
図示例において、 保持ドラム 1 3 6は、 円筒部 1 3 8の側面の最上部が加工位 置 Wとなるように、 配置される。  In the illustrated example, the holding drum 1336 is disposed such that the uppermost portion of the side surface of the cylindrical portion 1338 is at the processing position W.
テープ Tは、 ガイドローラ 1 4 2によって上方に案内され、 保持ドラム 1 3 6 の円筒部 1 3 8の側面によって下方から支えられて加工位置 Wを通過し、 ガイド ローラ 1 4 4によって下方に案内されて、 次の工程に搬送される。 また、 テープ Tは、 テープエッジ (端部) が鍔部 1 4 0と当接することにより、 加工位置 Wに おいて所定量以上、 幅方向に移動することはない。  The tape T is guided upward by the guide rollers 14 2, is supported from below by the side surface of the cylindrical portion 1 38 of the holding drum 1 36, passes through the processing position W, and is guided downward by the guide rollers 144. Then, it is transported to the next process. Further, the tape T does not move in the width direction by a predetermined amount or more at the processing position W because the tape edge (end) abuts on the flange 140.
つまり、 本態様の加工装置 1 1 0においては、 テープ Tは、 幅方向に軸線を有 する円筒部 1 3 8の側面によって焦点深度方向 (レーザビーム進行方向) の位置 を、 テープエッジに当接する鍔部 1 4 0によって幅方向の位置を、 それぞれ規制 されて、 一部を高精度に加工位置 Wに位置されつつ、 長手方向に搬送され、 バック層を加工される。  In other words, in the processing apparatus 110 of this embodiment, the tape T abuts the tape edge at the position in the depth of focus direction (the direction of laser beam travel) by the side surface of the cylindrical portion 138 having an axis in the width direction. The position in the width direction is regulated by the flange portion 140, and a part of the back layer is processed while being conveyed in the longitudinal direction while being positioned at the processing position W with high accuracy.
なお、 本態様においては、 円筒部 1 3 8へのテープ Tの巻きかかり状態に応じ て、 テープ Tが円筒部 1 3 8に当接して支持されている部分であれば、 必ず しも、 円筒部 1 3 8の最上部がテープ Tの加工位置 Wとなる必要はない。  In this embodiment, if the tape T is in contact with and supported by the cylindrical portion 138 according to the state of winding of the tape T around the cylindrical portion 138, the cylindrical portion is not necessarily required. It is not necessary that the uppermost part of the part 1 38 be the processing position W of the tape T.
また、 加工精度や加工密度等の点で、 円筒部 1 3 8と前記光学系は、 レーザビームがテープ Tに垂直に入射するように (レーザビームが円筒部の軸線 に向かうように) 、 位置を設定するのが好ましい。 支持ドラム 1 3 6は、 駆動源に係合されてテープ Tの搬送速度に応じて自ら回 転するものであってもよく、 あるいは、 軸受等によって回転自在に軸支さ れ、 テープ Τの搬送を駆動源として回転するものであってもよい。 In terms of processing accuracy and processing density, the cylindrical part 1338 and the optical system are positioned so that the laser beam is perpendicularly incident on the tape T (so that the laser beam is directed to the axis of the cylindrical part). Is preferably set. The support drum 1336 may be engaged with a drive source and rotate by itself according to the transport speed of the tape T, or may be rotatably supported by bearings or the like to transport the tape Τ. May be used as a drive source to rotate.
また、 円筒部 1 3 8の径にも、 特に限定はなく、 搬送経路や加工するテープ Τ のサイズ (幅) 、 加工位置 Wにおける装置構成 (近傍に配置される部材等) に応 じて、 適宜決定すればよい。  The diameter of the cylindrical portion 138 is not particularly limited, either, depending on the transport path, the size (width) of the tape す る to be processed, and the device configuration at the processing position W (members arranged in the vicinity). It may be determined appropriately.
鍔部 1 4 0の間隔 wは、 加工するテープ Τの幅を基本として、 加工するテープ Τの幅の精度 (幅のバラツキ) 、 本態様の加工装置に要求される加工精度 (加工 線の幅方向の位置精度) 等に応じて、 適宜決定すればよく、 従って、 テープ丁の 幅よりも広くても狭くてもよい。 テープ Τは、 多種多様であり、 特に規定はでき ないが、 通常、 この間隔 wは、 テープ Τの幅 ± 0 . 0 0 5 mm〜± 0 . 1 mm程 度である。  The width w of the flange 140 is based on the width of the tape テ ー プ to be processed, based on the width of the tape す る to be processed (variation in width), and the processing accuracy (width of the processing line) required for the processing apparatus of this embodiment. The position may be determined as appropriate according to the direction accuracy, etc., and may be larger or smaller than the width of the tape. The width of the tape Τ is various and cannot be particularly specified, but usually, the interval w is about ± 0.005 mm to ± 0.1 mm of the width of the tape Τ.
また、 鍔部 1 4 0の高さ h (円筒部 1 3 8との段差) にも特に限定はな く、 テープエッジに当接することにより、 テープ Tの幅方向の位置を適正に規制 できる高さとすればよいが、 通常、 2 mm〜 5 mm程度である。  There is also no particular limitation on the height h of the flange portion 140 (the level difference from the cylindrical portion 138), and the height at which the position in the width direction of the tape T can be appropriately regulated by contacting the tape edge. It should be about 2 mm to 5 mm.
さらに、 鍔部 1 4 0は、 円周部 1 3 8 (その側面) に対して、 直交する平 面 (直線状) でもよく、 あるいは曲率を有する (ラウンドする) ものでもよく、 当初は曲率を有し、 使用によって研削されて直交する平面状となったものでもよ い。 直交する平面の方が、 テープ Tの幅方向の位置精度は高くできる反面、 テープエッジの損傷を招く可能性は高くなるので、 要求される精度等に応じて、 適宜決定すればよい。  Further, the flange portion 140 may be a flat surface (linear shape) orthogonal to the circumferential portion 1380 (the side surface), or may have a curvature (round). It may be one that has a flat surface that is ground by use and becomes orthogonal. The orthogonal plane can increase the positional accuracy in the width direction of the tape T, but increases the possibility of causing damage to the tape edge. Therefore, it may be appropriately determined according to the required accuracy and the like.
なお、 図示例においては、 鍔部 1 4 0は、 円筒部 1 3 8の両端部に位置されて いるが、 本発明はこれに限定はされず、 円筒部 1 3 8の側面から突出するように 形成されてもよい。 また、 円筒部 1 3 8と鍔部 1 4 0とは、 一体成型であっても 別部材を組み合わせて支持ドラム 1 3 6を構成してもよい。 In the illustrated example, the flange portion 140 is located at both ends of the cylindrical portion 1338. However, the present invention is not limited to this, and may be formed so as to protrude from the side surface of the cylindrical portion 138. Further, the cylindrical portion 1338 and the flange portion 140 may be formed integrally or may be formed by combining different members to form the support drum 1336.
さらに、 目的とするテープ Tの幅方向の位置精度を達成できるものであれば、 鍔部 1 4 0は、 円筒部 1 3 8の円周全域に形成されなくても、 円周方向に断続的 に形成されるものであってもよい。  Further, as long as the desired positional accuracy in the width direction of the tape T can be achieved, the flange portion 140 is intermittent in the circumferential direction even if it is not formed over the entire circumference of the cylindrical portion 1380. May be formed.
ところで、 レーザビームを用いる本態様の加工装置においては、 レーザビーム の熱加工、 レーザビームでのアブレ一シヨン (解離、 遊離) による加工の両者が 複合的に発生して、 バック層が加工されると考えられる。 そのため、 バック層の 加工によって、 加工カス (粉塵等) や有害なガスが発生する場合がある。  By the way, in the processing apparatus of this embodiment using a laser beam, both the thermal processing of the laser beam and the processing by abrasion (dissociation and release) with the laser beam occur in a combined manner, and the back layer is processed. it is conceivable that. Therefore, processing residue (dust etc.) and harmful gas may be generated by processing the back layer.
本態様の加工装置においては、 これらによる作業環境の汚染や、 テープ表裏面 の損傷や汚れを防ぐため、 加工位置 Wの下流 (テープ Tの搬送方向) に、 テープ Tの表面を清浄化する粘着テープなどのクリーニング手段 (等) や、 ガスを吸引 するダクト等を設けてもよい。  In the processing apparatus of this embodiment, in order to prevent contamination of the working environment and damage and dirt on the front and back surfaces of the tape due to the above, an adhesive for cleaning the surface of the tape T downstream of the processing position W (in the direction of transport of the tape T). Cleaning means (such as tape) or a duct for sucking gas may be provided.
図 2 9 Aおよび図 2 9 Bに、 本発明の (磁気テープ) 加工装置の別の実施例の 概念的を示す。  FIG. 29A and FIG. 29B schematically show another embodiment of the (magnetic tape) processing apparatus of the present invention.
図 2 9 Aに示される例は、 図 2 6 Aに示される加工装置 1 1 0をテープ Tの搬 送方向に複数配列すると共に、 例えば光学系の位置を調整する方法等によって、 各加工装置 1 1 0によって形成される加工線 (凹部) を、 互いに幅方向にずらし た構成を有するものである。 このような構成とすることにより、 テープ丁の バック層に形成する加工線の加工密度を向上することができる。  In the example shown in FIG. 29A, a plurality of the processing apparatuses 110 shown in FIG. 26A are arranged in the transport direction of the tape T, and each processing apparatus is adjusted by, for example, adjusting the position of the optical system. The processing lines (concave portions) formed by 110 are shifted from each other in the width direction. With such a configuration, the processing density of the processing line formed on the back layer of the tape can be improved.
また、 図 2 9 Bに示される例は、 1つの保持ドラム 1 3 6に対して、 光源 1 1 2やビーム分割光学系 1 1 8からなる光学系を複数配置すると共に、 先の例 と同様に、 各光学系によって形成する加工線を互いに幅方向にズラした構成を有 するものである。 この構成でも、 同様に、 バック層に形成する加工線の加工密度 を向上することができる。 Further, the example shown in FIG. 29B shows that the light source It has a configuration in which a plurality of optical systems each composed of 1 12 and a beam splitting optical system 1 18 are arranged, and processing lines formed by each optical system are shifted in the width direction as in the previous example. . Also in this configuration, similarly, the processing density of the processing line formed on the back layer can be improved.
あるいは、 一つの光学系から射出されるレーザビームを、 テープ Tの搬送方向 に分割して、 互いに幅方向に異なる位置に入射させて、 加工線の加工密度を向上 してもよい。  Alternatively, the laser beam emitted from one optical system may be divided in the transport direction of the tape T and made incident on different positions in the width direction to improve the processing density of the processing line.
以上説明した、 本発明によるテープ Tの加工は、 バック層を形成した後であれ ば、 磁気テープ製造工程のいつ行っても良く、 例えば、 スリツ夕によってテープ を製品幅に切断する前であっても、 切断した後であってもよい。  The processing of the tape T according to the present invention described above may be performed at any time in the magnetic tape manufacturing process as long as it is after the back layer is formed.For example, before the tape is cut into a product width by slitting. May also be after cutting.
本発明の第 4の態様に係る磁気テープの加工装置は、 基本的に以上のように構 成される。  The magnetic tape processing apparatus according to the fourth aspect of the present invention is basically configured as described above.
以上、 本発明に係る磁気テープの搬送安定化方法および装置ならびに磁 気テープの加工装置について上述の様々な態様について上記の種々の実施例を挙 げて詳細に説明したが、 本発明はこれらの種々の実施例に限定されるものではな く、 本発明の要旨を逸脱しない範囲において、 各種の改良や変更を行ってもよい ことはもちろんである。 産業上の利用可能性  As mentioned above, the method and the apparatus for stabilizing the transfer of the magnetic tape and the apparatus for processing the magnetic tape according to the present invention have been described in detail with respect to the above-mentioned various embodiments by using the above-mentioned various embodiments. It is needless to say that the present invention is not limited to the various embodiments, and various improvements and changes may be made without departing from the spirit of the present invention. Industrial applicability
以上、 詳細に説明したように、 本発明の第 1および第 2の態様に係る磁気 テープの搬送安定化方法および装置によれば、 ブレード機ゃワインダ等の磁 気テープの製造装置において、 搬送速度を高速化してもキヤプスタンローラ等で スリップすることがなく、 従って、 高速で正確な搬送を行うことができる。 また、 本発明の第 3の態様に係る磁気テープの搬送安定化方法および装置によ れば、 レーザビームなどを磁気テープのバック層に入射させて、 このテープ のバック層に凹部 (溝) を形成する加工を施す際などに、 加工対象である磁 気テープを加工用レーザビームの焦点位置に極めて正確に位置規制 (位置付け) することが可能になるという効果が得られる。 As described above in detail, according to the method and apparatus for stabilizing the transfer of the magnetic tape according to the first and second aspects of the present invention, in the apparatus for manufacturing a magnetic tape such as a blade machine or a winder, the transfer speed is reduced. Even with high speed capstan rollers There is no slip, so that high-speed and accurate transport can be performed. Further, according to the method and apparatus for stabilizing the transport of a magnetic tape according to the third aspect of the present invention, a concave portion (groove) is formed in the back layer of the magnetic tape by irradiating a laser beam or the like to the back layer of the magnetic tape. When the forming process is performed, it is possible to extremely accurately regulate (position) the magnetic tape to be processed at the focal position of the processing laser beam.
また、 本発明の第 4の態様の磁気テープの加工装置によれば、 搬送速度を高速 化してもキヤプスタンローラ等でスリップすることがなく、 従って、 高速で正確 な搬送を行うことができ、 しかも、 カツビングの少ない、 優れた特性を有する磁 気テープを、 効率良く得ることができる。  Further, according to the magnetic tape processing apparatus of the fourth aspect of the present invention, even if the transport speed is increased, no slip is caused by the capstan roller or the like, and therefore, high-speed and accurate transport can be performed. Moreover, a magnetic tape with less cutting and excellent characteristics can be obtained efficiently.
このような本態様の加工装置によって作製された磁気テープを用いることによ り、 ブレード機等の磁気テープの製造装置において高速かつ正確なテープ搬送を 行うことができ、 その結果、 適正な生産管理の下、 損傷の無い磁気テープを安定 して高生産効率で製造でき、 かつカートリッジゃパンケーキに巻き取った際の卷 き姿も美しくでき、 かつ、 カツビングに起因するテープの外観低下、 ヘッド当り の悪化、 テープエッジの損傷等も防止できる。  By using the magnetic tape manufactured by the processing apparatus of this embodiment, high-speed and accurate tape conveyance can be performed in a magnetic tape manufacturing apparatus such as a blade machine, and as a result, appropriate production management can be achieved. Under the conditions, magnetic tapes without damage can be manufactured stably with high production efficiency, and the appearance of the rolls when wound on cartridges and pancakes can be made beautiful. Deterioration and tape edge damage can be prevented.

Claims

特許請求の範囲 Claims
1 . 磁気テープを長手方向に搬送するに際し、 前記磁気テープに同伴される 空気層の少なくとも一部を除去するかまたは磁力を用いるかの少なくとも一方に より、 前記磁気テープ支持体からの前記磁気テープの浮き上がりを防止して、 前 記磁気テープの搬送安定化を行うことを特徴とする磁気テープの搬送安定化 方法。 1. When the magnetic tape is transported in the longitudinal direction, at least one of removing at least a part of an air layer entrained by the magnetic tape or using magnetic force, the magnetic tape from the magnetic tape support. A method for stabilizing the transfer of a magnetic tape, comprising stabilizing the transfer of the magnetic tape by preventing floating of the magnetic tape.
2 . 前記磁気テープ支持体からの前記磁気テープの浮き上がりは、 少なくと も、 前記磁気テープ支持体の搬送方向上流部分を負圧にするか、 前記磁気テープ 支持体を磁性体で構成し、 磁力により前記磁気テープを前記磁気テープ支持体に 密着させるか、 前記磁気テープ支持体の表面に前記磁気テープに同伴される空気 層の逃げ溝を設け、 前記磁気テープに同伴される空気層を前記逃げ溝により薄層 化するか、 または、 前記磁気テープ支持体の上流側の形状をエッジを有する形状 とし、 前記磁気テープに同伴される空気層を前記エッジにより除去するかの少な くとも 1つにより、 防止されることを特徴とする請求項 1に記載の磁気テープの 搬送安定化方法。  2. The lifting of the magnetic tape from the magnetic tape support may be at least a negative pressure in an upstream portion of the magnetic tape support in the transport direction, or the magnetic tape support may be made of a magnetic material, The magnetic tape is brought into close contact with the magnetic tape support, or a relief groove for an air layer accompanying the magnetic tape is provided on the surface of the magnetic tape support, so that the air layer accompanying the magnetic tape escapes. At least one of thinning by a groove or forming the upstream side of the magnetic tape support into a shape having an edge, and removing the air layer entrained by the magnetic tape by the edge. 2. The method for stabilizing the transport of a magnetic tape according to claim 1, wherein the method is prevented.
3 . 磁気テープを長手方向に搬送するための搬送安定化装置であって、 前記 磁気テープ支持体からの前記磁気テープの浮き上がりを防止する浮上防止手段を 有することを特徴とする磁気テープの搬送安定化装置。  3. A transport stabilizing device for transporting a magnetic tape in a longitudinal direction, the device comprising a floating prevention unit for preventing the magnetic tape from floating from the magnetic tape support. Device.
4 . 前記浮上防止手段が、 少なくとも、 前記磁気テープの支持体の搬送方向 上流部分に設けられ、 この上流部分を負圧にする吸引手段、 前記磁気テープ支持 体の少なくとも前記磁気テープと接触する部分を構成する磁性体、 前記磁気 テープの支持体の表面に設けられた、 前記磁気テープに同伴される空気層の逃げ 溝および前記磁気テープ支持体の上流側に設けられたエッジを有する形状の少な くとも 1つであることを特徴とする請求項 3に記載の磁気テープの搬送安定化装 4. The floating prevention means is provided at least in an upstream portion of the magnetic tape support in the transport direction of the support, and a suction means for applying a negative pressure to the upstream portion; a portion of the magnetic tape support which contacts at least the magnetic tape. A magnetic material constituting the magnetic material At least one of a shape having a relief groove for an air layer accompanying the magnetic tape and an edge provided on the upstream side of the magnetic tape support provided on the surface of the tape support. 4. A device for stabilizing the transfer of a magnetic tape according to claim 3, wherein
5 . 磁気テープを長手方向に搬送するに際し、 前記磁気テープの進行方向と 直交する幅方向への前記磁気テープの移動を調整して、 前記磁気テープの搬送安 定化を行うことを特徴とする磁気テープの搬送安定化方法。 5. When the magnetic tape is transported in the longitudinal direction, the movement of the magnetic tape in the width direction orthogonal to the traveling direction of the magnetic tape is adjusted to stabilize the transport of the magnetic tape. A method for stabilizing the transport of magnetic tape.
6 . 前記磁気テープの前記幅方向への移動の調整は、 前記磁気テープを加工 する加工位置において行われることを特徴とする請求項 5に記載の磁気テープの 搬送安定化方法。  6. The method according to claim 5, wherein the adjustment of the movement of the magnetic tape in the width direction is performed at a processing position where the magnetic tape is processed.
7 . 前記磁気テープの前記幅方向への移動の調整は、 前記磁気テープを、 そ の進行方向に沿って湾曲させた状態で、 その進行方向に直交する方向に付勢する ことによって行うことを特徴とする請求項 5または 6に記載の磁気テープの搬送 安定化方法。  7. Adjustment of the movement of the magnetic tape in the width direction is performed by urging the magnetic tape in a direction perpendicular to the traveling direction while bending the magnetic tape along the traveling direction. 7. The method for stabilizing transport of a magnetic tape according to claim 5, wherein the method is characterized in that:
8 . 前記付勢は, 磁力またはばね力によるものである請求項 7に記載の磁気 テープの搬送安定化方法。  8. The method according to claim 7, wherein the urging is performed by a magnetic force or a spring force.
9 . 前記磁気テープの前記幅方向への移動の調整は、 前記磁気テープき案内 する磁気テープ搬送案内部分を一体的に、 前記磁気テープの進行方向に直交する 方向に移動させることによって行うことを特徴とする請求項 5または 6に記載の 磁気テープの搬送安定化方法。  9. Adjustment of the movement of the magnetic tape in the width direction is performed by integrally moving a magnetic tape conveyance guide portion for guiding the magnetic tape in a direction perpendicular to the traveling direction of the magnetic tape. 7. The method for stabilizing the transport of a magnetic tape according to claim 5, wherein
1 0 . 前記磁気テープ搬送案内部分の移動量は、 前記磁気テープの進行方向 に直交する方向への移動状態の検知結果に基づいて決定される請求項 9に記載の 磁気テープの搬送安定化方法。 10. The method according to claim 9, wherein the amount of movement of the magnetic tape transport guide portion is determined based on a detection result of a state of movement of the magnetic tape in a direction orthogonal to a traveling direction of the magnetic tape. A method for stabilizing the transport of magnetic tape.
1 1 . 前記磁気テープの前記幅方向への移動の調整は、 前記磁気テープを、 ローラ搬送手段によって搬送し、 かつ、 前記ローラ搬送手段の有する幅方向搬送 安定化手段により位置決めすることによって行うことを特徴とする請求項 5また は 6に記載の磁気テープの搬送安定化方法。  11. Adjustment of the movement of the magnetic tape in the width direction is performed by conveying the magnetic tape by a roller conveyance unit and positioning the magnetic tape by a width conveyance stabilization unit of the roller conveyance unit. 7. The method for stabilizing the transfer of a magnetic tape according to claim 5, wherein:
1 2 . 前記幅方向搬送安定化手段による位置決めは、 前記ローラ搬送手段の 有する幅方向位置規制用つばによるものである請求項 1 1に記載の磁気テープの 搬送安定化方法。  12. The magnetic tape transport stabilizing method according to claim 11, wherein the positioning by the widthwise transport stabilizing means is performed by a widthwise position regulating collar of the roller transporting means.
1 3 . 前記幅方向搬送安定化手段による位置決めは、 前記ローラ搬送手段の 有する自己修正機能によるものである請求項 1 1または 1 2に記載の磁気テープ の搬送安定化方法。  13. The magnetic tape transport stabilizing method according to claim 11, wherein the positioning by the widthwise transport stabilizing means is performed by a self-correction function of the roller transporting means.
1 4 . 前記ローラ搬送手段は、 その中央が大径であるのクラウンローラまた はその中央が小径であるのコンケープローラである請求項 1 3に記載の磁気 テープの搬送安定化方法。  14. The method for stabilizing the transfer of a magnetic tape according to claim 13, wherein the roller transfer means is a crown roller having a large diameter at the center thereof or a concave roller having a small diameter at the center thereof.
1 5 . 磁気テープを長手方向に搬送するための搬送安定化装置であって、 前 記磁気テープの進行方向と直交する幅方向への前記磁気テープの移動を調整する 幅方向移動調整手段を有することを特徴とする磁気テープの搬送安定化装置。  15. A transport stabilizing device for transporting a magnetic tape in a longitudinal direction, comprising a width direction movement adjusting means for adjusting the movement of the magnetic tape in a width direction orthogonal to the traveling direction of the magnetic tape. A magnetic tape transport stabilizing device, characterized in that:
1 6 . 前記幅方向移動調整手段は、 前記磁気テープを加工する加工位置にお いて前記磁気テープの前記幅方向への移動の調整を行うことを特徴とする請求項 1 5に記載の磁気テープの搬送安定化装置。  16. The magnetic tape according to claim 15, wherein the width direction movement adjusting means adjusts the movement of the magnetic tape in the width direction at a processing position where the magnetic tape is processed. Transport stabilization device.
1 7 . 前記幅方向移動調整手段は、 前記磁気テープをその進行方向に沿って 湾曲させる保持手段と、 該保持手段に係止されている磁気テープを前記幅方向に 付勢する付勢手段とを有することを特徴とする請求項 1 5または 1 6に記載の磁 気テープの搬送安定化装置。 17. The width direction movement adjusting means includes: holding means for bending the magnetic tape along the traveling direction; and moving the magnetic tape locked by the holding means in the width direction. The magnetic tape transport stabilizing device according to claim 15 or 16, further comprising an urging means for urging.
1 8 . 前記付勢手段は、 磁力によって付勢するものまたはばねである請求項 1 7に記載の磁気テープの搬送安定化装置。  18. The magnetic tape transport stabilizing apparatus according to claim 17, wherein the urging means is a member which is urged by a magnetic force or a spring.
1 9 . 前記幅方向移動調整手段は、 前記磁気テープを案内する磁気テープ搬 送案内部分を一体的に揺動可能に構成すると共に、 前記磁気テープ搬送案内部分 を、 前記磁気テープの前記幅方向に移動させる手段を有することを特徴とする請 求項 1 5または 1 6に記載の磁気テープの搬送安定化装置。  19. The width direction movement adjusting means is configured to integrally swing a magnetic tape transport guide portion for guiding the magnetic tape, and to move the magnetic tape transport guide portion in the width direction of the magnetic tape. 17. The magnetic tape transport stabilizing apparatus according to claim 15, further comprising: means for moving the magnetic tape.
2 0 . 請求項 1 9に記載の磁気テープの搬送安定化装置であって、 さらに、 前記磁気テープの位置検知手段を有し、 前記磁気テープ搬送案内部分 の移動量を、 前記位置検知手段により検知した前記磁気テープの前記幅方向への 移動状態検知結果に基づいて決定することを特徴とする磁気テープの搬送安定化  20. The magnetic tape transport stabilizing device according to claim 19, further comprising a magnetic tape position detecting unit, wherein the moving amount of the magnetic tape transport guiding portion is determined by the position detecting unit. The stabilization of the transport of the magnetic tape is determined on the basis of the result of detection of the detected moving state of the magnetic tape in the width direction.
2 1 . 前記幅方向移動調整手段は、 前記磁気テープを搬送するローラ搬送手 段と、 このローラ搬送手段に備えられ、 前記ローラ搬送手段によって搬送される 磁気テープを幅方向に位置決めする幅方向搬送安定化手段とを具備することを特 徴とする請求項 1 5または 1 6に記載の磁気テープの搬送安定化装 。 21. The width direction movement adjusting means is provided with a roller conveyance means for conveying the magnetic tape, and a width direction conveyance provided in the roller conveyance means for positioning the magnetic tape conveyed by the roller conveyance means in the width direction. 17. The magnetic tape conveyance stabilizing device according to claim 15, further comprising a stabilizing unit.
2 2 . 前記幅方向搬送安定化手段は、 前記ローラ搬送手段の両端部に有する 磁気テープを幅方向に位置決めするためのつば、 または前記ローラ搬送手段自体 の有する自己修正機能である請求項 2 1に記載の磁気テープの搬送安定化装置。  22. The widthwise transport stabilizing means is a collar for positioning a magnetic tape at both ends of the roller transporting means in the widthwise direction, or a self-correcting function of the roller transporting means itself. 4. The magnetic tape transport stabilizing device according to claim 1.
2 3 . 前記ローラ搬送手段の両端に有する前記つばの間隔が、 磁気テープの 幅よりも僅かに狭いものである請求項 2 2に記載の磁気テープの搬送安定化 23. The magnetic tape transport stabilization according to claim 22, wherein a distance between the collars provided at both ends of the roller transport means is slightly smaller than a width of the magnetic tape.
2 4 . 前記自己修正機能を有するローラ搬送手段は、 その中央が大径である のクラウンローラまたはその中央が小径であるのコンケープローラである請求項 2 2に記載の磁気テープの搬送安定化装置。 24. The magnetic tape transport stabilizing apparatus according to claim 22, wherein the roller transporting means having the self-correcting function is a crown roller having a large diameter at the center thereof or a conceal roller having a small diameter at the center thereof. .
2 5 . 磁気テープを長手方向に搬送するに際し、 前記磁気テープの上下方向 の位置変動を調整することを特徴とする磁気テープの搬送安定化方法。  25. A method for stabilizing the transport of a magnetic tape, comprising: adjusting the vertical position of the magnetic tape when transporting the magnetic tape in the longitudinal direction.
2 6 . 前記磁気テープの上下方向の位置変動の調整は、 前記磁気テープを加 ェする加工位置において行われることを特徴とする請求項 2 5に記載の磁気 テープの搬送安定化方法。  26. The method according to claim 25, wherein the adjustment of the vertical position fluctuation of the magnetic tape is performed at a processing position where the magnetic tape is applied.
2 7 . 前記磁気テープの上下方向の位置変動の調整は、 前記磁気テープの上 下方向の位置を検知し、 前記磁気テープの上下方向の位置検知結果に基づいて、 前記磁気テープの上下方向の位置を修正することによって行うことを特徴とする 請求項 2 5または 2 6に記載の磁気テープの搬送安定化方法。  27. The adjustment of the vertical position fluctuation of the magnetic tape is performed by detecting the vertical position of the magnetic tape, and detecting the vertical position of the magnetic tape based on the vertical position detection result of the magnetic tape. The method according to claim 25 or 26, wherein the method is performed by correcting the position.
2 8 . 前記磁気テープの上下方向の位置変動の調整は、 前記磁気テープの上 下方向の位置精度を要する部分について、 所定の回転精度を有するローラ搬送手 段を用いることによって行うことを特徴とする請求項 2 5または 2 6に記載の磁 気テープの搬送安定化方法。  28. The adjustment of the vertical position fluctuation of the magnetic tape is performed by using a roller conveying means having a predetermined rotational accuracy for a portion requiring the vertical position accuracy of the magnetic tape. The method for stabilizing the transfer of a magnetic tape according to claim 25 or 26, wherein
2 9 . 前記磁気テープの上下方向の位置変動の調整は、 前記磁気テープを案 内する磁気テープ搬送案内部分を基準となる位置に向けて付勢し、 該付勢された 磁気テープ搬送案内部分を介して前記磁気テープを搬送することによって行うこ とを特徴とする請求項 2 5または 2 6に記載の磁気テープの搬送安定化方法。  29. The adjustment of the vertical position fluctuation of the magnetic tape is performed by urging the magnetic tape transport guide portion within the magnetic tape toward a reference position, and the biased magnetic tape transport guide portion. 27. The method for stabilizing the transfer of a magnetic tape according to claim 25, wherein the method is performed by transferring the magnetic tape via a magnetic tape.
3 0 . 磁気テープを長手方向に搬送するための搬送安定化装置であって、 前 記磁気テープの上下方向の位置変動を調整する上下方向位置調整手段を有するこ とを特徴とする磁気テ一プの搬送安定化装置。 30. A transport stabilizing device for transporting the magnetic tape in the longitudinal direction, An apparatus for stabilizing the transfer of a magnetic tape, comprising a vertical position adjusting means for adjusting a vertical position change of the magnetic tape.
3 1 . 前記上下方向位置調整手段は、 前記磁気テープを加工する加工位置に おいて前記磁気テープの前記上下方向の位置変動の調整を行うことを特徴とする 請求項 3 0に記載の磁気テープの搬送安定化装置。  31. The magnetic tape according to claim 30, wherein the vertical position adjusting means adjusts the vertical position fluctuation of the magnetic tape at a processing position where the magnetic tape is processed. Transport stabilization device.
3 2 . 前記上下方向位置調整手段は、 前記磁気テープの上下方向の位置を検 知する磁気テープ位置検知手段と、 該磁気テープ位置検知手段による前記磁 気テープの上下方向の位置検知結果に基づいて、 前記磁気テープの上下方向の位 置を修正する磁気テープ位置修正手段とを備えたことを特徴とする請求項 3 0ま たは 3 1に記載の磁気テープの搬送安定化装置。  32. The vertical position adjusting means includes: a magnetic tape position detecting means for detecting a vertical position of the magnetic tape; and a vertical tape position detecting result by the magnetic tape position detecting means. 32. The magnetic tape transport stabilizing apparatus according to claim 30, further comprising: a magnetic tape position correcting unit configured to correct a vertical position of the magnetic tape.
3 3 . 前記磁気テープ位置検知手段は、 レーザを用いる変位測定手段である 請求項 3 2に記載の磁気テープの搬送安定化装置。  33. The magnetic tape transport stabilizing apparatus according to claim 32, wherein the magnetic tape position detecting means is a displacement measuring means using a laser.
3 4 . 前記磁気テープ位置修正手段は、 前記磁気テープを取り扱う装置中に おける所定のユニットを一体的に移動させるものである請求項 3 2または 3 3に 記載の磁気テープの搬送安定化装置。  34. The magnetic tape transport stabilizing device according to claim 32, wherein the magnetic tape position correcting means integrally moves a predetermined unit in a device for handling the magnetic tape.
3 5 . 前記上下方向位置調整手段は、 前記磁気テープの上下方向の位置精度 を要する部分の前後に設けられた、 所定の回転精度を有するローラ搬送手段であ ることを特徴とする請求項 3 0または 3 1に記載の磁気テープの磁気テープの搬 送安定化装置。  35. The vertical position adjusting means is a roller conveying means having a predetermined rotational accuracy, provided before and after a portion of the magnetic tape requiring vertical position accuracy. 31. The magnetic tape transport stabilizing device according to 0 or 31.
3 6 . 前記磁気テープをレーザ加工する磁気テープの加工装置に用いられる 請求項 3 5に記載の磁気テープの搬送安定化装置であって、 前記ローラ搬送手段 の回転精度は、 前記磁気テープをレーザ加工する加工位置における前記レーザ加 ェに用いられるレーザ光のパワーの減衰がその最大値の 5 %以内である範囲内に 前記磁気テープをおくものであることを特徴とする磁気テープの搬送安定化 36. The magnetic tape transport stabilizing apparatus according to claim 35, which is used in a magnetic tape processing apparatus that performs laser processing on the magnetic tape, wherein the rotation accuracy of the roller transport unit is such that the magnetic tape is laser-driven. The laser processing at the processing position to be processed Characterized in that the magnetic tape is placed within a range where the attenuation of the power of the laser beam used in the laser is within 5% of its maximum value.
3 7 . 前記上下方向位置調整手段は、 前記磁気テープを取り扱う装置の磁気 テープ搬送案内部分を揺動可能とすると共に、 前記磁気テープ搬送案内部分を、 前記磁気テープを取り扱う装置の所定の基準位置に向けて付勢するように構成し たことを特徴とする請求項 3 0または 3 1に記載の磁気テープの搬送安定化 37. The vertical position adjusting means makes the magnetic tape transport guide portion of the device for handling the magnetic tape swingable, and moves the magnetic tape transport guide portion to a predetermined reference position of the device for handling the magnetic tape. 31. The magnetic tape transport stabilization according to claim 30, wherein the magnetic tape is configured to be biased toward the magnetic tape.
3 8 . 前記磁気テープを取り扱う装置の所定の基準位置は、 前記磁気テープ に所定の処理を施すための処理ステージである請求項 3 7に記載の磁気テープの 搬送安定化装置。 38. The magnetic tape transport stabilizing apparatus according to claim 37, wherein the predetermined reference position of the device that handles the magnetic tape is a processing stage for performing a predetermined process on the magnetic tape.
3 9 . 前記磁気テープ搬送案内部分は、 少なくとも、 前記磁気テープを支持 するテープ支持手段を含むものである請求項 3 7または 3 8に記載の磁気テープ の搬送安定化装置。  39. The magnetic tape transport stabilizing device according to claim 37, wherein the magnetic tape transport guide portion includes at least a tape supporting means for supporting the magnetic tape.
4 0 . 長尺な磁気テープのバック層を加工する 1以上のレーザビームを所定 の加工位置に入射する光学系と、 前記磁気テープを長手方向に搬送する搬送手段 と、 前記磁気テープの搬送方向と直交する方向に軸線を有し、 側面で磁気テープ を支持することにより、 バック層を前記レーザビームの入射側に向けて前記加工 位置に磁気テープを保持する円筒部、 および前記円筒部に設けられ、 前記磁気テ 一プの端部に当接することにより、 磁気テープの幅方向の位置を規制する鍔部を 有する支持ドラムとを有することを特徴とする磁気テープ加工装置。  40. An optical system for processing one or more laser beams for processing a back layer of a long magnetic tape at a predetermined processing position, a transport unit for transporting the magnetic tape in a longitudinal direction, and a transport direction of the magnetic tape A backing layer is provided on the cylindrical portion for holding the magnetic tape at the processing position with the back layer facing the laser beam incident side by supporting the magnetic tape on the side surface, and having an axis in a direction orthogonal to And a supporting drum having a flange portion for restricting a position in a width direction of the magnetic tape by contacting an end of the magnetic tape.
PCT/JP2000/006356 1999-09-16 2000-09-18 Method and device for stabilizing magnetic tape conveying and magnetic tape processing device WO2001020606A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP26268299A JP2001084669A (en) 1999-09-16 1999-09-16 Method for stabilizing conveyance of magnetic tape and device therefor
JP11/262682 1999-09-16

Publications (1)

Publication Number Publication Date
WO2001020606A1 true WO2001020606A1 (en) 2001-03-22

Family

ID=17379136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/006356 WO2001020606A1 (en) 1999-09-16 2000-09-18 Method and device for stabilizing magnetic tape conveying and magnetic tape processing device

Country Status (2)

Country Link
JP (1) JP2001084669A (en)
WO (1) WO2001020606A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014014093A1 (en) 2014-09-23 2016-03-24 Carl Zeiss Meditec Ag Eye surgery system and method for operating an eye surgery system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5590058U (en) * 1978-12-08 1980-06-21
JPH0284138U (en) * 1988-12-15 1990-06-29
GB2272559A (en) * 1992-11-13 1994-05-18 Hewlett Packard Ltd Rotary head drum with peripheral grooves
US5737158A (en) * 1994-11-15 1998-04-07 Alpse Electric Co., Ltd. Magnetic head device with tape guide secondary portions molded onto tape guide primary portions of differing material
US5847906A (en) * 1995-09-29 1998-12-08 Sony Corporation Recording/reproducing apparatus, magnetic head and tape cartridge
JPH1145480A (en) * 1997-07-24 1999-02-16 Canon Inc Recording or reproducing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5590058U (en) * 1978-12-08 1980-06-21
JPH0284138U (en) * 1988-12-15 1990-06-29
GB2272559A (en) * 1992-11-13 1994-05-18 Hewlett Packard Ltd Rotary head drum with peripheral grooves
US5737158A (en) * 1994-11-15 1998-04-07 Alpse Electric Co., Ltd. Magnetic head device with tape guide secondary portions molded onto tape guide primary portions of differing material
US5847906A (en) * 1995-09-29 1998-12-08 Sony Corporation Recording/reproducing apparatus, magnetic head and tape cartridge
JPH1145480A (en) * 1997-07-24 1999-02-16 Canon Inc Recording or reproducing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014014093A1 (en) 2014-09-23 2016-03-24 Carl Zeiss Meditec Ag Eye surgery system and method for operating an eye surgery system
US9579019B2 (en) 2014-09-23 2017-02-28 Carl Zeiss Meditec Ag Eye surgery system and method of operating an eye surgery system

Also Published As

Publication number Publication date
JP2001084669A (en) 2001-03-30

Similar Documents

Publication Publication Date Title
US5975745A (en) Method of and apparatus for measuring curl of web, method of and apparatus for correcting curl of web, and apparatus for cutting web
US20020149866A1 (en) Process for producing magnetic tape
WO2001020606A1 (en) Method and device for stabilizing magnetic tape conveying and magnetic tape processing device
JP2001084579A (en) Magnetic tape machining device
JP2005162472A (en) Winding method for tape, device and pancake
US7381286B2 (en) Laminate sheet material punching method and optical disk manufacturing method
JP2003300193A (en) Method of manufacturing magnetic tape
JP2001110049A (en) Feed stabilizing method of magnetic tape
JP2001143256A (en) Device for stabilizing carrying of magnetic tape
JP2001101655A (en) Method and device for stabilizing transportation of magnet tape
JP2001110047A (en) Feed stabilizing method of magnetic tape
JP2001101654A (en) Method and device for stabilizing transportation of magnetic tape
JP2005041625A (en) Web cutting device
JP2001110045A (en) Magnetic tape machining device
JP2001084575A (en) Magnetic tape machining device
JP2001110046A (en) Magnetic tape machining device
JP2001110048A (en) Magnetic tape machining device
JP5659814B2 (en) Conveyance speed control system
JP2001084577A (en) Method and device for machining magnetic tape
JP2004071039A (en) Manufacturing method of magnetic tape
JP2001076339A (en) Magnetic tape working device
JP2000268359A (en) Method for processing magnetic tape and magnetic tape- processing apparatus
JP2001093143A (en) Magnetic tape processing device
JP2005162440A (en) Winding method for tape, device and pan cake
JP2012161938A (en) Method and apparatus for cutting lithographic printing plate

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WA Withdrawal of international application