WO2001020236A1 - Cooling device - Google Patents

Cooling device Download PDF

Info

Publication number
WO2001020236A1
WO2001020236A1 PCT/JP2000/005823 JP0005823W WO0120236A1 WO 2001020236 A1 WO2001020236 A1 WO 2001020236A1 JP 0005823 W JP0005823 W JP 0005823W WO 0120236 A1 WO0120236 A1 WO 0120236A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow passage
water
cooling device
cooling
air
Prior art date
Application number
PCT/JP2000/005823
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Ichigaya
Original Assignee
Seft Development Laboratory Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seft Development Laboratory Co.,Ltd. filed Critical Seft Development Laboratory Co.,Ltd.
Priority to AU2000267336A priority Critical patent/AU2000267336A1/en
Priority to PCT/JP2000/005823 priority patent/WO2001020236A1/en
Publication of WO2001020236A1 publication Critical patent/WO2001020236A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0035Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using evaporation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0035Indoor units, e.g. fan coil units characterised by introduction of outside air to the room
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0035Indoor units, e.g. fan coil units characterised by introduction of outside air to the room
    • F24F1/0038Indoor units, e.g. fan coil units characterised by introduction of outside air to the room in combination with simultaneous exhaustion of inside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0083Indoor units, e.g. fan coil units with dehumidification means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D5/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/54Free-cooling systems

Definitions

  • the present invention relates to a cooling device that efficiently cools a cooling target with low power consumption by utilizing the removal of vaporization heat from the surroundings when water vaporizes.
  • the most common indoor cooling system is a type of air conditioner that uses a compressor.
  • Various types of such air conditioners have been developed for household, automotive and commercial use.
  • the basic principle is that a compressor compresses refrigerant and the heat generated at this time is exchanged by heat exchange.
  • the common feature is that the refrigerant is adiabatically expanded after being discharged, and at that time, heat is taken from the surroundings to cool the target space.
  • the air conditioner has a problem that the structure is complicated and expensive, and the running cost is high because the power consumption is large. For this reason, places where air conditioners can be installed are limited, and installation must be hesitated in places where there are relatively few people. In addition, due to its large power consumption, if it spreads so much in the world, the effect on global warming cannot be ignored. ⁇ Furthermore, in the case of air conditioners that use chlorofluorocarbon as a refrigerant, the equipment must be discarded. Occasionally, chlorofluorocarbons leak into the atmosphere, causing the problem of destruction of the ozone layer.
  • the present invention has been made in view of such a technical background, and an object of the present invention is to provide a cooling device that has a simple structure, consumes little power, and can reduce the overall cost.
  • a cooling device includes a first flow passage through which air flows, and a fluid to be cooled, which is provided at a predetermined interval inside the first flow passage.
  • a plurality of second flow paths through which flow without flowing out to the first flow path; Air blowing means for feeding air into the first flow path, water holding means provided on the outer surface of the second flow path, and water supply means for supplying water to the water holding means.
  • the fluid flowing through the second flow passage is cooled by flowing air through the first flow passage and promoting the vaporization of water from the water holding means to lower the temperature of the second flow passage.
  • the second flow passage is formed in a hollow flat plate shape using a metal, and has a fluid inlet and a fluid outlet.
  • a plurality of the second flow passages are set up in the first flow passage. They are installed in parallel in a state where they are set.
  • a spillage drain is provided at the bottom of the first flow passage to take out excess water accumulated at the bottom to the outside.
  • the water supply means is provided at an upper portion of the first flow passage, and supplies the water by dropping water from above the water holding means.
  • the water holding means has a sheet shape and is provided so as to cover at least an upper portion and both side portions of the second flow passage.
  • FIG. 1 is a schematic overall view in the case of cooling a room using the cooling device of the first embodiment
  • FIG. 2 is a schematic perspective view of a cooling device main body of the first embodiment
  • FIG. 3 (a) is a side view of the cooling box, (b) is a plan view of the cooling box, FIG. 4 (a) is a perspective view of the cooling unit, (b) is a bottom view of the cooling unit, and (c) is a bottom view of the cooling unit.
  • Side view of the cooling unit
  • FIG. 5 is a schematic overall view when a room is cooled using the cooling device of the second embodiment
  • FIG. 6 is a schematic diagram of a pre-processing unit
  • FIG. 7 is a schematic overall view when a room is cooled using the cooling device of the third embodiment.
  • FIG. 1 is a schematic overall view when a room is cooled using the cooling device of the first embodiment
  • FIG. 2 is a schematic perspective view of the cooling device main body of the first embodiment.
  • the air in the room 2 is sent into the cooling device 1 via the pipe 4 by the fan 3 and cooled to return to the room.
  • the water piping system is omitted for simplicity.
  • the cooling device 1 of the present embodiment includes a cooling device main body 5, a control unit 6 for controlling the cooling device main body 5, a cooling box 11 and a fan 1 2 for sucking outside air.
  • a spill catcher 13 for collecting excess water in the cooling box 11, a concentration detector 14 for detecting the impurity concentration of water in the spill catcher 13, and a water in the spill catcher 13
  • a valve 16 for circulating and using the water in the spill receiver 13, a valve 17 for opening and closing tap water, an outside air inlet 18, Exit 19 is provided.
  • the cooling device 1 of the present embodiment sets temperature / humidity detecting means for detecting the temperature and humidity of the outside air, air flow detecting means for detecting the air flow of the fan 12, and sets a target indoor cooling temperature. Setting means for performing the setting.
  • the cooling box 11 has a case 21 having an outside air inlet 2la and an outside air outlet 21b, and a room housed in the case 21 at regular intervals.
  • the air conditioner includes a plurality of cooling units 30 serving as air flow passages, and a water tank 22 provided on an upper part of the case 21.
  • the outlet 21b of the cooling box 11 also serves as the outside air outlet 19 of the cooling device body 5, but the outlet 21b and the outside air outlet 19 are provided separately. You may do so.
  • a drain pipe 21c for draining accumulated water is provided at the bottom of the cooling box 11.
  • a plurality of holes 23 for dropping water are formed in the bottom of the water tank 22 above the cooling unit 30 (that is, on the ceiling of the case 21). The water in the water tank 22 is dropped onto the upper part of the cooling unit 30 from the hole 23 by water pressure.
  • cooling units 30 are arranged for simplification of the drawing.
  • this cooling unit depends on the size of the room to be cooled. Dozens of them are arranged accordingly. For example, when cooling a room of 8 tatami mats, it is necessary to arrange about 40 cooling units 30 for 15 Omm x 15 OmmX width and 3 band width. The space between the cooling units is about 5 mm. This cold The 5 mm gap between the cooling units forms the outside air flow passage (hereinafter, also referred to as the first flow passage) 25, and the hollow portion of the cooling unit having the three widths forms the indoor air flow passage (hereinafter, the second flow passage).
  • the width of the cooling unit is preferably 2 mm to 20 mm, and the interval is preferably about 2 mm to 30 mm.
  • the cooling unit 30 includes a main body 31 formed in a hollow shape as shown in FIG. 4, and a vaporization sheet 34 attached to cover an upper portion and both side portions of the main body 31.
  • the main body 31 serves as an indoor air flow passage (second flow passage 35), and is used to discharge indoor air intake 32, indoor air outlet 33, and dew condensation water. And a hole 36 formed at the bottom.
  • the main body 31 is formed using a material having high thermal conductivity, for example, aluminum or the like.
  • the vaporized sheet 34 corresponds to the “water holding means J” of the present invention.
  • the vaporized sheet 34 is preferably a fibrous material that is as thin as possible, has low thermal resistance, and easily absorbs water and easily diffuses.
  • the vaporizing sheet 34 for example, cotton cut into a predetermined size is used as the vaporizing sheet 34.
  • the water supplied from the pump to the water tank 22 is supplied to the hole 2 of the water tank 22.
  • the water is dropped onto the upper part of the vaporized sheet 34 attached in an inverted U-shape from 3.
  • the dropped water flows from the upper part to the lower part of the side part due to the capillary action of the fibers constituting the vaporized sheet 34. It diffuses and the entire vaporized sheet 34 quickly becomes moist.
  • the holes 23 are not circular but elongated holes, in order to drop as uniformly as possible onto the upper part of the vaporized sheet 34. It may be formed in a shape.
  • the control unit 6 controls the fans 3 and 12, the valves 15 and 17 and the pump 16 so that the room temperature becomes a constant temperature set by the setting means. Further, the control unit 6 controls the pump 16 and / or the valve based on data such as the outside air temperature, the outside air humidity and the amount of air blown from the fan sent from each detecting means, and the set temperature sent from the setting means. Control 17 to adjust the amount of water supplied. When the amount of water supplied to the vaporizing sheet is small and the vaporizing sheet dries, impurities in the water will evaporate as described later. And the water retention capacity of the vaporized sheet decreases.
  • the amount of water to be supplied is adjusted by the control unit 6 so that the vaporized sheet does not dry even if water is vaporized by the vaporized sheet.
  • the pump 16 and the valve 17 may be manually adjusted in advance so that the vaporized sheet does not dry.
  • the valve 17 is opened, tap water is supplied to the water tank 22, and the water is dropped from the hole 23 to the vaporizing sheet 34.
  • the entire surface of the vaporization sheet 34 holds water, and the surplus water is accumulated in the spill receiver 13 via the pipe 21 c at the bottom of the cooling box 11.
  • the water accumulated in the spill reservoir 13 is supplied again to the water tank 22 by the pump 16 and reused.
  • the reason for recovering a certain amount of water as surplus water is to prevent the precipitation of impurities.
  • Tap water contains impurities mainly composed of calcium carbonate. When all water is evaporated by the vaporization sheet 34, the impurities are precipitated as residues.
  • the control unit 6 controls the drive of the pump 16 to reuse the collected water. I do.
  • the pump 16 is stopped and the valve 15 is opened in order to discharge the water in the spill receiver 13. State. By performing such control, it is possible to reliably prevent impurities from being deposited on the vaporized sheet 34 even when water is circulated and used.
  • the outside air is sucked in from the outside air intake port 18 on the left side of Fig. Send it to the box.
  • the supplied outside air passes through the first flow passage 25 between the cooling units and is discharged to the outside from the outside air discharge port 19.
  • the water held in the vaporization sheet 34 comes into close contact with the outside air flowing through the first flow passage 25. Thereby, the vaporization of the water held in the vaporization sheet 34 is promoted, and the amount of evaporation is greatly increased as compared with the case where the outside air is not circulated.
  • the outside air flows through the first flow passage 25 from the left side to the right side of FIG. 2 as shown by the arrow A in FIG. 2, and the indoor air flows through the second flow passage 35 as shown by the arrow B in FIG. Flows from the right side to the left side.
  • the air can be efficiently cooled by the principle of the heat exchanger. That is, in the first flow passage 25, the outside air flows from the left side to the right side in FIG. 2, and therefore, the humidity of the outside air is lower toward the left side in the first flow passage 25. The lower the humidity, the more water evaporates, so the cooling effect is high, and the temperature of the cooling unit 30 is lower on the left than on the right.
  • the cooling device of the present invention is the same as a conventional cooling device in that cooling is performed by utilizing the heat of vaporization taken from the surroundings when the liquid refrigerant evaporates. You. However, since water is used as an inexpensive and favorable material for the global environment as a refrigerant, even if it is vaporized to remove heat of vaporization from the surroundings and then discharged directly into the atmosphere, it has no effect on the global environment. Has no effect. This eliminates the need for the process of compressing refrigerants, which are expensive and have a negative impact on the global environment, for reuse as in conventional cooling systems. Generally, a large amount of power is consumed in this compression process, but the power consumption is greatly reduced by eliminating the need for the compression process as in the present invention. Therefore, the electric power required to operate the cooling device of the present embodiment is a fan 12 for circulating outside air in the first flow passage 25, and a fan for circulating room air to the cooling unit 30. 3. Very little power is needed to drive pumps 16 and so on.
  • the cooling device 1 of the present embodiment has a relatively simple structure as described above, even when a large cooling box is used to cool a large building, the required manufacturing costs and installation costs are extremely low. Small enough. For this reason, if it is used as a cooling system for large-scale warehouses that store products that must maintain a certain low temperature, such as agricultural products, the operating costs of warehouses can be reduced. In the livestock industry, it may be necessary to cool down the barn in order to maintain the milking capacity of dairy cows in hot seasons such as midsummer. In such a case, the cooling device of the present embodiment 1 Is very effective. Of course, it is suitable not only for dairy cows but also as a cooling facility for stables for raising pigs and sheep, or stables for riding and racehorses.
  • the cooling device of the present embodiment is suitable as a cooling device for such a facility because the temperature inside the facility can be reduced without replacing the internal air with the outside air.
  • the installation cost and the running cost of the cooling device 1 of the present embodiment can be extremely small, a place where the air conditioner has conventionally been hesitated to be installed from an economic viewpoint, For example, it can be easily attached to toilets, etc. be able to. Also, because of low power consumption and low running cost, a small amount of electricity is required even if the switch is turned on and the operation is continued for a long time in summer.
  • the cooling device 1 of the present embodiment has a simple structure and low running cost, it is installed not only in indoor facilities but also in outdoor facilities such as parks and auto campsites, or in stalls, for example. Even when used in a mode where only a specific area is partially cooled, a sufficiently practical cooling effect can be obtained without paying much attention to the electricity bill.
  • the cooling device 10 of the second embodiment shown in FIG. 5 is different from the cooling device 1 of the first embodiment shown in FIG. 1 in that the cooling device 10 of the second embodiment includes an outside air drying device 40. .
  • Other parts are the same as those of the cooling device 1 of the first embodiment. Therefore, in the second embodiment, components having the same functions as those in the first embodiment are given the same reference numerals or corresponding reference numerals, and the detailed description thereof is omitted.
  • the inside of the room 2 is cooled by utilizing absorption of heat of vaporization from the surroundings when water is vaporized.
  • this method there is a problem that the temperature of the cooling unit 30 drops only to the temperature of the wet bulb of the thermometer even in an ideal case. Since the temperature of the wet bulb depends on the temperature and humidity of the atmosphere at that time, it may not be possible to obtain a sufficient cooling effect in high humidity conditions.
  • the outside air drying device 40 when the humidity of the outside air is high, the outside air drying device 40 is operated to first dry the outside air to sufficiently reduce the humidity, and thereafter, the first flow passage 25 of the cooling box 11 Flowing inside.
  • the humidity of the outside air is low, the room is cooled only by the cooling device 1 without operating the outside air drying device 40.
  • the cooling device 10 of the present embodiment includes a detecting means for detecting the humidity of the outside air, a detecting means for detecting the temperature of the room, and a setting means for setting the target cooling temperature of the room.
  • the control unit 60 determines the operation rate of the outside air drying device 40 based on the data from these means, that is, the humidity of the outside air, the target cooling temperature of the star, and the room temperature.
  • FIG. 6 is a diagram showing the outside air drying device 40 used in the present embodiment.
  • the device 40 includes a drying unit 41 and a heat exchanging unit 42, as shown in FIG.
  • the drying section 41 has a disk-shaped member 43 as shown in FIG. 3 (b).
  • the disk-shaped member 43 has a fine honeycomb structure, and the outside air can pass from one side of the disk to the other side through the space between the members constituting the honeycomb structure.
  • Silica gel is attached to the surface of the members constituting the honeycomb structure, and comes into contact with the silica gel when air permeates.
  • the drying section 41 has a reproduction area 44 at the lower angle range of about 90 degrees and a drying area 45 at the remaining angle area of about 2.7 degrees.
  • the disc-shaped member 43 is rotatable, and is rotated in a fixed direction at a relatively slow speed during use. Therefore, each part of the disc-shaped member 43 repeats the state in the reproduction area 44 and the state in the drying area 45 at a constant cycle.
  • Such outside air drying devices are widely used in various fields where dry air is required.
  • outside air is allowed to pass through the drying area 45 from left to right.
  • the moisture coming out of the drying area 45 is dried because the moisture is absorbed by the silica gel.
  • silica gel cannot absorb more water after absorbing a certain amount of water.
  • hot air is sent from a heat source (not shown) from right to left in order to blow off the water absorbed by the silica gel.
  • This hot air causes the silica gel to release the absorbed water and become ready to absorb water again.
  • This hot air is preferably 100 or more if possible.
  • As a heat source fuel using kerosene, solar heat, or the like can be used.
  • the temperature of the disk-shaped member 43 increases. Also, the temperature of silica gel itself rises when it absorbs moisture. For this reason, the temperature of the outside air passing through the drying area 45 also increases. Therefore, the temperature of the outside air passing through the drying area 45 is reduced by using the heat exchange section 42.
  • dehumidification may be performed using an ion exchange membrane.
  • the water vapor By applying pressure to the ion exchange membrane and sending air in, the water vapor can be separated and removed, and the outside air can be dried.
  • the outside air thus obtained is guided to the first flow passage 25 described above, and is allowed to flow through the first flow passage 25.
  • the vaporizing sheet Sufficient moisture can be vaporized from 34, and the cooling effect can be secured.
  • the same operation and effect as those of the first embodiment can be obtained.
  • the cooling device 100 of the third embodiment differs from the cooling device 100 of the second embodiment in that the cooling device 100 of the third embodiment includes a heat exchange device 70.
  • Other parts are the same as those of the cooling device 10 of the second embodiment. Therefore, the components having the same functions as those of the second embodiment are given the same reference numerals or corresponding reference numerals, and the detailed description is omitted.
  • the heat exchange device 70 of the third embodiment cools the high-temperature outside air to be sucked by using the outside air cooled through the cooling device main body 5.
  • the temperature has decreased to some extent due to the vaporization of the water.
  • the damper 180 When the heat exchange device 70 of the present embodiment is stopped, the damper 180 is kept in an open state, and the wet outside air is directly discharged to the outside similarly to the second embodiment.
  • the operation rate of the heat exchange device 70 of the present embodiment can be controlled, but since the heat exchange device 70 consumes almost no energy such as electric power, the means for controlling the operation rate of the heat exchange device 70 is omitted. It is also possible to abbreviate.
  • the inside of the room 2 can be cooled comfortably.
  • Other operations and effects are the same as those of the second embodiment.
  • the present invention is not limited to the above embodiment, and various modifications are possible.
  • a hollow flat plate is used as the second flow passage, but the second flow passage may be a pipe.
  • a large number of fins may be formed inside the second flow passage. Thereby, the room air flowing through the second flow passage can be efficiently cooled.
  • a guide may be provided in the second flow passage so that the air flows evenly and evenly in the second flow passage.
  • the water holding means may be formed integrally with the second flow passage.
  • fine grooves are formed on the surface of the cooling unit by etching the surface (for example, the upper surface and both side surfaces).
  • the grooves to be formed consist of a large number of grooves arranged at a high density in parallel with the direction of air flow, and a groove arranged in a direction perpendicular to the direction of air flow, the smaller the density.
  • the radius of each groove is, for example, about 30 microns.
  • the front side of the aluminum cooling unit can be used as water holding means.
  • a widely-used general cooling device (air conditioner) is installed in front of the cooling device 1, and first, the cooling device cools the outside air. And dehumidification, and the air thus obtained is cooled.
  • the power consumption throughout the year can be significantly reduced as compared with a case where only a general cooling device is installed. You.
  • the operation ratio of the cooling device is determined in substantially the same manner as the method of determining the operation ratio of the second embodiment. You may make it.
  • the present invention consumes less power, the load on the vehicle-mounted battery can be reduced even when power is supplied from the vehicle-mounted battery. For this reason, for example, during delivery by truck, If the engine stops idling when the vehicle is taking a break in the vehicle, the cooling system can be operated only with the power of the onboard battery during that time. Therefore, in a hot season such as midsummer, when the driver who has completed delivery returns to the car, the inside of the car can be kept cool and the working environment can be improved.
  • the cooling device of the present embodiment has an excellent feature that the cooling effect is higher in hotter months. Furthermore, if solar cells are installed on the roof of a car and power is obtained from them, the amount of power generated will increase, especially in summer when the sun is strong, and the fans 1 and 3 will operate at high speed. To increase the amount of water vaporized. In other words, the feature that the cooling effect increases as the temperature increases is further enhanced.
  • the cooling device of the present embodiment When the cooling device of the present embodiment is used in a car, if the outside air intake port is arranged in the front direction of the car and the outside air discharge port is arranged in the rear direction of the car, a fan for taking in the outside air during traveling is provided. Even if stopped, sufficient outside air can be sent into the first flow passage.
  • heat of the engine of the automobile or solar heat may be used as the heat source.
  • the water to be supplied to the cooling unit may be fresh water such as well water, or fresh water may be obtained.
  • seawater may be used. That is, in the claims of the present application, the water supplied to the water holding means is a concept that includes not only fresh water but also seawater.
  • the cooling object of the present invention is not limited to air, but may be a liquid such as water.
  • the present invention can be used instead of a closed cooling tower.
  • a large amount of cooling water is used in various manufacturing processes such as chemical factories. These waters are usually circulated by pumps, cooled in cooling towers and reused.
  • the present invention it is possible to provide a cooling tower that has a simpler configuration than conventional ones, has low energy consumption and low noise, and has high cooling efficiency. Further, according to the present invention, it is possible to reliably prevent foreign matter such as dust from entering water to be cooled.
  • the present invention it is possible to flow air through the first flow passage, forcibly vaporize the water held in the water holding means, and take heat of vaporization from the surroundings when the water evaporates. Since the temperature of the fluid flowing through the second flow passage is reduced by using the air conditioner, the structure of the device is greatly simplified as compared with a general air conditioner, and the manufacturing cost and installation cost can be reduced. it can. In addition, since the power consumption is extremely low compared to a general air conditioner, the running cost is low, and even if the installation of the air conditioner has been hesitant so far, it can be installed easily. There is a feature that can be.
  • the present invention is an apparatus that can efficiently cool a target space with low power consumption by utilizing the heat of vaporization taken from the surroundings when water evaporates.
  • cooling devices such as air conditioners are widely used
  • air conditioners can be used in the same way, and because of their low power consumption characteristics, air conditioners must be used in the past. It can also be used in open places, for example outdoors. Therefore, it can be widely used in industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)

Abstract

A cooling device simple in structure, less in power consumption, and capable of reducing total costs, wherein outside air is circulated through the inside of a first flow passage (25) by a fan (12) so that water is evaporated forcibly on an evaporation sheet (34) to increase the amount of evaporation in order to absorb more heat than usual, whereby the temperature of a cooling unit (30) in contact with the evaporation sheet (34) is lowered suddenly, and thus the air in a room circulating through the inside of a second flow passage inside the cooling unit (30) can be cooled.

Description

明細書 冷却装置 技術分野  Description Cooling device Technical field
本発明は、 水が気化するときに周囲から気化熱を奪うことを利用することによ り、 少ない消費電力で効率よく冷却対象を冷却する冷却装置に関する。  The present invention relates to a cooling device that efficiently cools a cooling target with low power consumption by utilizing the removal of vaporization heat from the surroundings when water vaporizes.
背景技術  Background art
現在、 最も一般的な室内用冷房装置は、 コンプレッサーを用いるタイプのェ ァーコンディショナーである。 このようなエア一コンディショナーは、 家庭用、 自動車用、 業務用とさまざまなタイプのものが開発されているが、 基本的な原理 は、 コンプレッサーで冷媒を圧縮し、 このとき生じる熱を熱交換で排出したあと に冷媒を断熱膨張させ、 その際に周囲から熱を奪うことを利用して、 対象となる 空間を冷却するというものである点で共通する。  At present, the most common indoor cooling system is a type of air conditioner that uses a compressor. Various types of such air conditioners have been developed for household, automotive and commercial use.The basic principle is that a compressor compresses refrigerant and the heat generated at this time is exchanged by heat exchange. The common feature is that the refrigerant is adiabatically expanded after being discharged, and at that time, heat is taken from the surroundings to cool the target space.
しかしながら、 エア一コンディショナーは構造が複雑で高価であり、 また、 消 費電力が大きいためにランニングコストも高くつくという問題がある。 このた め、 エア一コンディショナーを設置できる場所は制限され、 人の出入りが比較的 少ない場所には設置を躊躇せざるを得ない。 また、 消費電力が大きいため、 世界 中でこれだけ多く普及すると、 地球温暖化という問題に対する影響も無視できな レ^ さらに、 冷媒としてフロンを用いるタイプのエア一コンデイショナの場合に は、 装置を廃棄するときにフロンが大気中に漏れ出し、 オゾン層を破壊するとい う問題を引き起こす。  However, the air conditioner has a problem that the structure is complicated and expensive, and the running cost is high because the power consumption is large. For this reason, places where air conditioners can be installed are limited, and installation must be hesitated in places where there are relatively few people. In addition, due to its large power consumption, if it spreads so much in the world, the effect on global warming cannot be ignored. レ Furthermore, in the case of air conditioners that use chlorofluorocarbon as a refrigerant, the equipment must be discarded. Occasionally, chlorofluorocarbons leak into the atmosphere, causing the problem of destruction of the ozone layer.
本発明は、 このような技術的背景のもとになされたものであり、 その目的は、 簡易な構造で、 消費電力が少なく、 総体的なコストを小さくできる冷却装置を提 供することである。  The present invention has been made in view of such a technical background, and an object of the present invention is to provide a cooling device that has a simple structure, consumes little power, and can reduce the overall cost.
発明の開示  Disclosure of the invention
上記の目的を達成するために、 本発明に係る冷却装置は、 空気が流通する第 1 流通路と、 前記第 1流通路の内部に所定の間隔を保って設けられた、 冷却対象と なる流体が前記第 1流通路に流出することなく流通する複数の第 2流通路と、 前 記第 1流通路に空気を送り込む送風手段と、 前記第 2流通路の外側表面に設けら れた水保持手段と、 前記水保持手段に水を供給する水供給手段と、 を具備し、 前 記第 1流通路に空気を流し、 前記水保持手段からの水の気化を促進させて前記第 2流通路の温度を下げることにより、 前記第 2流通路を流れる流体を冷却するこ とを特徴とする。 In order to achieve the above object, a cooling device according to the present invention includes a first flow passage through which air flows, and a fluid to be cooled, which is provided at a predetermined interval inside the first flow passage. A plurality of second flow paths through which flow without flowing out to the first flow path; Air blowing means for feeding air into the first flow path, water holding means provided on the outer surface of the second flow path, and water supply means for supplying water to the water holding means. The fluid flowing through the second flow passage is cooled by flowing air through the first flow passage and promoting the vaporization of water from the water holding means to lower the temperature of the second flow passage. And
前記第 2流通路は、 金属を用いて中空の平板状に形成され、 流体の流入口と流 出口とを備えたものであり、 前記第 1流通路内に複数の前記第 2流通路が立てた 状態で並列に設られている。  The second flow passage is formed in a hollow flat plate shape using a metal, and has a fluid inlet and a fluid outlet. A plurality of the second flow passages are set up in the first flow passage. They are installed in parallel in a state where they are set.
前記第 1流通路の底部には、 底部に溜まった余分な水を外部に取り出すための 余水排水口が設けられている。  A spillage drain is provided at the bottom of the first flow passage to take out excess water accumulated at the bottom to the outside.
前記水供給手段は、 前記第 1流通路の上部に設けられ、 前記水保持手段の上方 から水を滴下するようにして供給するものである。  The water supply means is provided at an upper portion of the first flow passage, and supplies the water by dropping water from above the water holding means.
前記水保持手段は、 シート状のものであり、 少なくとも、 前記第 2流通路の上 部と両側部とを覆うようにして設けられたものである。  The water holding means has a sheet shape and is provided so as to cover at least an upper portion and both side portions of the second flow passage.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
図 1は、 実施形態 1の冷却装置を用いて部屋を冷房する場合の概略全体図、 図 2は、 実施形態 1の冷却装置本体の概略斜視図、  FIG. 1 is a schematic overall view in the case of cooling a room using the cooling device of the first embodiment, FIG. 2 is a schematic perspective view of a cooling device main body of the first embodiment,
図 3の (a ) は冷却ボックスの側面図、 (b ) は冷却ボックスの平面図、 図 4の (a ) は冷却ユニットの斜視図、 (b ) は冷却ユニットの底面図、 ( c ) は冷却ユニットの側面図、  3 (a) is a side view of the cooling box, (b) is a plan view of the cooling box, FIG. 4 (a) is a perspective view of the cooling unit, (b) is a bottom view of the cooling unit, and (c) is a bottom view of the cooling unit. Side view of the cooling unit,
図 5は、 実施形態 2の冷却装置を用いて部屋を冷房する場合の概略全体図、 図 6は、 前処理部の概略図、  FIG. 5 is a schematic overall view when a room is cooled using the cooling device of the second embodiment, FIG. 6 is a schematic diagram of a pre-processing unit,
図 7は、 実施形態 3の冷却装置を用いて部屋を冷房する場合の概略全体図、 で ある。  FIG. 7 is a schematic overall view when a room is cooled using the cooling device of the third embodiment.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 図面を参照して本発明の実施の形態について説明する。 なお、 以下で は、 本発明の冷却装置を部屋の冷房装置として用いる場合について説明する。  An embodiment of the present invention will be described below with reference to the drawings. Hereinafter, a case where the cooling device of the present invention is used as a room cooling device will be described.
[実施形態 1 ]  [Embodiment 1]
図 1は、 実施形態 1の冷却装置を用いて部屋を冷房する場合の概略全体図、 図 2は、 実施形態 1の冷却装置本体の概略斜視図である。 FIG. 1 is a schematic overall view when a room is cooled using the cooling device of the first embodiment, FIG. 2 is a schematic perspective view of the cooling device main body of the first embodiment.
図 1に示すように、 部屋 2内の空気は、 ファン 3によりパイプ 4を介して冷却 装置 1内に送り込まれ、 冷却されて部屋に戻る。 なお、 図 1では、 図を簡略化す るために、 水の配管系は省略している。  As shown in FIG. 1, the air in the room 2 is sent into the cooling device 1 via the pipe 4 by the fan 3 and cooled to return to the room. In FIG. 1, the water piping system is omitted for simplicity.
本実施形態の冷却装置 1は、 図 1及び図 2に示すように、 冷却装置本体 5と、 冷却装置本体 5を制御する制御部 6と、 冷却ボックス 1 1と、 外気を吸入する ファン 1 2と、 冷却ボックス 1 1の余った水を回収する余水受け 1 3と、 余水受 け 1 3内の水の不純物濃度を検出する濃度検出器 1 4と、 余水受け 1 3内の水を 排出する弁 1 5と、 余水受け 1 3内の水を循環して使用するためのポンプ 1 6 と、 水道水を開閉するための弁 1 7と、 外気吸入口 1 8と、 外気排出口 1 9とを 備えている。 なお、 本実施形態の冷却装置 1は、 図示しないが、 外気の温度や湿 度を検出する温湿度検出手段、 ファン 1 2の送風量を検出する風量検出手段、 部 屋内の目標冷却温度を設定する設定手段等を備えている。  As shown in FIGS. 1 and 2, the cooling device 1 of the present embodiment includes a cooling device main body 5, a control unit 6 for controlling the cooling device main body 5, a cooling box 11 and a fan 1 2 for sucking outside air. , A spill catcher 13 for collecting excess water in the cooling box 11, a concentration detector 14 for detecting the impurity concentration of water in the spill catcher 13, and a water in the spill catcher 13 , A valve 16 for circulating and using the water in the spill receiver 13, a valve 17 for opening and closing tap water, an outside air inlet 18, Exit 19 is provided. Although not shown, the cooling device 1 of the present embodiment sets temperature / humidity detecting means for detecting the temperature and humidity of the outside air, air flow detecting means for detecting the air flow of the fan 12, and sets a target indoor cooling temperature. Setting means for performing the setting.
冷却ボックス 1 1は、 図 2及び図 3に示すように、 外気の吸入口 2 l aと外気 の排出口 2 1 bと有するケース 2 1と、 ケース 2 1内に一定の間隔で収納された 室内空気の流通路となる複数の冷却ュニット 3 0と、 ケース 2 1の上部に設けら れた水タンク 2 2とを備えている。 なお、 本実施形態では、 冷却ボックス 1 1の 排出口 2 1 bが冷却装置本体 5の外気排出口 1 9も兼ねているが、 排出口 2 1 b と外気排出口 1 9とは別個に設けるようにしてもよい。  As shown in Fig. 2 and Fig. 3, the cooling box 11 has a case 21 having an outside air inlet 2la and an outside air outlet 21b, and a room housed in the case 21 at regular intervals. The air conditioner includes a plurality of cooling units 30 serving as air flow passages, and a water tank 22 provided on an upper part of the case 21. In this embodiment, the outlet 21b of the cooling box 11 also serves as the outside air outlet 19 of the cooling device body 5, but the outlet 21b and the outside air outlet 19 are provided separately. You may do so.
冷却ボックス 1 1の底部には溜まった水を排水するための排水用のパイプ 2 1 cが設けられている。 また、 冷却ユニット 3 0上方の水タンク 2 2の底部 (すな わち、 ケース 2 1の天井部) には、 水を滴下するための複数の孔 2 3が形成され ている。 水タンク 2 2内の水は、 水圧により、 この孔 2 3から冷却ユニット 3 0 の上部に滴下される。  At the bottom of the cooling box 11, a drain pipe 21c for draining accumulated water is provided. A plurality of holes 23 for dropping water are formed in the bottom of the water tank 22 above the cooling unit 30 (that is, on the ceiling of the case 21). The water in the water tank 22 is dropped onto the upper part of the cooling unit 30 from the hole 23 by water pressure.
なお、 図 2及び図 3では、 図を簡略化するために、 4個の冷却ユニット 3 0し か配置していないが、 実際には、 この冷却ユニットは冷却対象となる部屋の大き さ等に応じて、 数十個配置されている。 例えば、 8畳間の部屋を冷却する場合に は、 計算上、 縦 1 5 O mmX横 1 5 O mmX幅 3匪の冷却ュニット 3 0であれば、 約 4 0個配置すれば足りる。 また、 冷却ユニット間の間隔は約 5 mmである。 この冷 却ユニット間の 5 mmの隙間が外気の流通路 (以下、 第 1流通路とも称する。 ) 2 5となり、 冷却ユニットの幅 3態の中空部分が室内空気の流通路 (以下、 第 2流 通路とも称する。 ) 3 5となる。 このように、 第 1流通路 2 5や第 2流通路 3 5 を狭くしているのは、 外気と室内空気との熱交換効率を高めるためである。 な お、 冷却ユニットの幅や間隔が大きすぎると、 熱交換効率が悪くなり、 小さ過ぎ ると、 送風時の抵抗が大きくなり、 ファン 1 2の負荷が大きくなる。 したがつ て、 本実施形態のように冷却対象が気体である場合、 冷却ユニットの幅は 2 mm 〜 2 0 mm、 間隔は 2 mm〜 3 0 mm位が望ましい。 In FIGS. 2 and 3, only four cooling units 30 are arranged for simplification of the drawing. However, in actuality, this cooling unit depends on the size of the room to be cooled. Dozens of them are arranged accordingly. For example, when cooling a room of 8 tatami mats, it is necessary to arrange about 40 cooling units 30 for 15 Omm x 15 OmmX width and 3 band width. The space between the cooling units is about 5 mm. This cold The 5 mm gap between the cooling units forms the outside air flow passage (hereinafter, also referred to as the first flow passage) 25, and the hollow portion of the cooling unit having the three widths forms the indoor air flow passage (hereinafter, the second flow passage). 3 5 The reason why the first flow passage 25 and the second flow passage 35 are narrowed in this way is to increase the efficiency of heat exchange between the outside air and the indoor air. If the cooling unit width or interval is too large, the heat exchange efficiency will be poor. If it is too small, the resistance at the time of air blowing will increase, and the load on the fan 12 will increase. Therefore, when the object to be cooled is a gas as in the present embodiment, the width of the cooling unit is preferably 2 mm to 20 mm, and the interval is preferably about 2 mm to 30 mm.
冷却ユニット 3 0は、 図 4に示すように中空状に形成された本体部 3 1と、 本 体部 3 1の上部と両側部を覆うように貼り付けられた気化シート 3 4とを備えて いる。 本体部 3 1は、 室内空気の流通路 (第 2流通路 3 5 ) となるものであり、 室内空気の吸入口 3 2と、 室内空気の送出口 3 3と、 結露した水を排出するため に底部に形成された孔 3 6とを有する。 本体部 3 1は、 熱伝導率の大きい材料、 例えばアルミニウム等を用いて形成する。 気化シート 3 4は、 本発明の 「水保持 手段 J に対応する。 この気化シート 3 4は、 出来るだけ薄くて熱抵抗が小さく、 しかも水を吸収し易く、 拡散し易い繊維状の素材が好ましい。 本実施形態では、 例えば綿を所定の大きさに裁断したものを気化シート 3 4として用いている。 ポ ンプゃ水道から水タンク 2 2に供給された水は、 水タンク 2 2の孔 2 3から逆 U 字状に貼り付けられた気化シート 3 4の上部に滴下される。 滴下された水は、 気 化シ一ト 3 4を構成する繊維の毛管現象によって上部から側面部の下方に拡散 し、 気化シート 3 4の全体が速やかに湿った状態になる。 なお、 孔 2 3は、 気化 シート 3 4の上部にできるだけ均一に滴下するために、 円状ではなく、 長孔状ゃ スリット状に形成してもよい。  The cooling unit 30 includes a main body 31 formed in a hollow shape as shown in FIG. 4, and a vaporization sheet 34 attached to cover an upper portion and both side portions of the main body 31. I have. The main body 31 serves as an indoor air flow passage (second flow passage 35), and is used to discharge indoor air intake 32, indoor air outlet 33, and dew condensation water. And a hole 36 formed at the bottom. The main body 31 is formed using a material having high thermal conductivity, for example, aluminum or the like. The vaporized sheet 34 corresponds to the “water holding means J” of the present invention. The vaporized sheet 34 is preferably a fibrous material that is as thin as possible, has low thermal resistance, and easily absorbs water and easily diffuses. In the present embodiment, for example, cotton cut into a predetermined size is used as the vaporizing sheet 34. The water supplied from the pump to the water tank 22 is supplied to the hole 2 of the water tank 22. The water is dropped onto the upper part of the vaporized sheet 34 attached in an inverted U-shape from 3. The dropped water flows from the upper part to the lower part of the side part due to the capillary action of the fibers constituting the vaporized sheet 34. It diffuses and the entire vaporized sheet 34 quickly becomes moist.The holes 23 are not circular but elongated holes, in order to drop as uniformly as possible onto the upper part of the vaporized sheet 34. It may be formed in a shape.
制御部 6は、 ファン 3, 1 2、 弁 1 5, 1 7、 ポンプ 1 6を制御して、 部屋の 温度が設定手段で設定された一定温度となるように制御する。 また、 制御部 6 は、 各検出手段から送られてくる外気温度、 外気湿度及びファンの送風量、 並び に設定手段から送られてくる設定温度等のデータに基づいて、 ポンプ 1 6及び 又は弁 1 7を制御して供給する水の量を調整する。 気化シートに供給する水量が 少なく、 気化シートが乾燥すると、 後述するように水の中の不純物が気化シート で固まり、 気化シートの水保持能力が低下する。 このため、 本実施形態では、 気 化シートで水が気化しても、 気化シートが乾燥しないように、 制御部 6により供 給する水量を調節している。 なお、 このような制御部 6による制御をしなくて も、 気化シートが乾燥しないように、 手動で予めポンプ 1 6や弁 1 7を調整する ようにしておいてもよい。 The control unit 6 controls the fans 3 and 12, the valves 15 and 17 and the pump 16 so that the room temperature becomes a constant temperature set by the setting means. Further, the control unit 6 controls the pump 16 and / or the valve based on data such as the outside air temperature, the outside air humidity and the amount of air blown from the fan sent from each detecting means, and the set temperature sent from the setting means. Control 17 to adjust the amount of water supplied. When the amount of water supplied to the vaporizing sheet is small and the vaporizing sheet dries, impurities in the water will evaporate as described later. And the water retention capacity of the vaporized sheet decreases. For this reason, in the present embodiment, the amount of water to be supplied is adjusted by the control unit 6 so that the vaporized sheet does not dry even if water is vaporized by the vaporized sheet. Even without such control by the controller 6, the pump 16 and the valve 17 may be manually adjusted in advance so that the vaporized sheet does not dry.
次に、 本実施形態の動作について説明する。 まず、 弁 1 7を開いて、 水道水を 水タンク 2 2に供給して、 水を孔 2 3から気化シート 3 4に滴下する。 これによ り、 気化シート 3 4の全面が水を保持した状態となり、 余った水は、 冷却ボック ス 1 1底部の管 2 1 cを介して余水受け 1 3に溜まる。 余水受け 1 3に溜まった 水はポンプ 1 6により、 再び水タンク 2 2に供給して、 再利用する。 このように ある程度の水を余水として回収するのは、 不純物が析出するのを防止するためで ある。 水道水には、 炭酸カルシウムを主成分とする不純物が含まれており、 気化 シート 3 4ですベての水を蒸発させると、 この不純物が残留物として析出する。 このような残留物の析出が起こると、 気化シート 3 4において効率よく水を気化 させることができなくなり、 冷却効果が大きく低下する。 このため、 実際に気化 する水の量よりも多くの水を供給し、 ある程度の水を 「余水」 として回収するこ とにより、 かかる問題を回避している。 なお、 他の方法として、 浄水器などで水 道水の残留物を除去し、 これを気化シート 3 4に供給するようにしてもよい。 ま た、 余水受け 1 3には、 気化シートに供給して余った水だけでなく、 冷却ボック ス内に結露した水も回収される。 この結露した水は、 水道水と異なり不純物が含 まれておらず、 蒸留水に近いものであり、 水質としては水道水よりも優れてい る。 このため、 本実施形態では、 この結露した水も余水と共に再利用している。 なお、 制御部 6は、 余水受け 1 3内に設けられた濃度検出器 1 4からの値が一定 値より小さいときには、 回収した水を再利用するために、 ポンプ 1 6の駆動を制 御する。 一方、 濃度検出器 1 4からの値が、 予め定めた一定値以上となったとき には、 ポンプ 1 6を停止して、 余水受け 1 3の水を排出するべく、 弁 1 5を開状 態とする。 このような制御を行うことにより、 水を循環利用する場合でも、 気化 シート 3 4に不純物が析出するのを確実に防止することができる。  Next, the operation of the present embodiment will be described. First, the valve 17 is opened, tap water is supplied to the water tank 22, and the water is dropped from the hole 23 to the vaporizing sheet 34. As a result, the entire surface of the vaporization sheet 34 holds water, and the surplus water is accumulated in the spill receiver 13 via the pipe 21 c at the bottom of the cooling box 11. The water accumulated in the spill reservoir 13 is supplied again to the water tank 22 by the pump 16 and reused. The reason for recovering a certain amount of water as surplus water is to prevent the precipitation of impurities. Tap water contains impurities mainly composed of calcium carbonate. When all water is evaporated by the vaporization sheet 34, the impurities are precipitated as residues. When such a residue is deposited, water cannot be efficiently vaporized in the vaporization sheet 34, and the cooling effect is greatly reduced. For this reason, the problem is avoided by supplying more water than the amount of water that actually evaporates and recovering some water as “spill water”. As another method, a residue of the tap water may be removed by a water purifier or the like, and the residue may be supplied to the vaporizing sheet 34. In addition, not only surplus water supplied to the vaporization sheet but also water condensed in the cooling box is collected in the spill water receiver 13. This dew water contains no impurities unlike tap water, is close to distilled water, and is superior in water quality to tap water. For this reason, in the present embodiment, the condensed water is reused together with the remaining water. When the value from the concentration detector 14 provided in the spill receiver 13 is smaller than a certain value, the control unit 6 controls the drive of the pump 16 to reuse the collected water. I do. On the other hand, when the value from the concentration detector 14 exceeds a predetermined value, the pump 16 is stopped and the valve 15 is opened in order to discharge the water in the spill receiver 13. State. By performing such control, it is possible to reliably prevent impurities from being deposited on the vaporized sheet 34 even when water is circulated and used.
また、 ファン 1 2により図 2の左側の外気吸入口 1 8から外気を吸引して、 冷 却ボックスに送り込む。 送り込まれた外気は、 冷却ユニット間の第 1流通路 2 5 を通って、 外気排出口 1 9から外部に排出される。 第 1流通路 2 5に外気を流通 させると、 気化シート 3 4に保持されている水は、 第 1流通路 2 5内を流れる外 気と密に接触する。 これにより、 気化シート 3 4に保持されている水の気化が促 進され、 外気を流通させない場合に比べて蒸発量が大幅に増える。 The outside air is sucked in from the outside air intake port 18 on the left side of Fig. Send it to the box. The supplied outside air passes through the first flow passage 25 between the cooling units and is discharged to the outside from the outside air discharge port 19. When the outside air is circulated through the first flow passage 25, the water held in the vaporization sheet 34 comes into close contact with the outside air flowing through the first flow passage 25. Thereby, the vaporization of the water held in the vaporization sheet 34 is promoted, and the amount of evaporation is greatly increased as compared with the case where the outside air is not circulated.
ところで、 水は気化するときに、 1 c c当たり約 5 8 0カロリーの気化熱を周 囲から吸収する。 このため、 第 1流通路 2 5に空気を流し、 気化シート 3 4にお いて水を強制的に気化させて蒸発量を増やすと、 多くの熱が吸収され、 気化シー ト 3 4と接している冷却ユニット 3 0の温度は急速に低下する。 これにより、 冷 却ユニット 3 0の第 2流通路 3 5内を流通する室内空気が冷却される。 一方、 気 化した水分は、 第 1流通路 2 5内を流れる空気とともに、 外気排気口 1 9から外 部へ排出されるので、 部屋 2内の湿度が高くなることはない。  By the way, when water evaporates, it absorbs around 580 calories of heat of vaporization per cc from the surroundings. Therefore, when air is flowed through the first flow passage 25 and water is forcibly vaporized in the vaporization sheet 34 to increase the amount of evaporation, a large amount of heat is absorbed, and the vaporization sheet 34 contacts the vaporization sheet 34. The temperature of the cooling unit 30 is rapidly reduced. As a result, the room air flowing through the second flow passage 35 of the cooling unit 30 is cooled. On the other hand, the vaporized moisture is discharged to the outside from the outside air exhaust port 19 together with the air flowing through the first flow passage 25, so that the humidity in the room 2 does not increase.
外気は、 図 2の矢印 Aに示すように、 第 1流通路 2 5を図 2の左側から右側に 向かって流れ、 室内空気は第 2流通路 3 5を矢印 Bに示すように、 図 2の右側か ら左側に向かって流れる。 このように、 外気と室内の空気の流通方向を逆方向と することにより、 熱交換器の原理により、 効率良く空気を冷却することができ る。 すなわち、 第 1流通路 2 5内では、 外気は図 2の左側から右側へ向かう方向 に流れているため、 第 1流通路 2 5内では、 左側ほど外気の湿度が低い。 湿度が 低いほど水はより多く気化するので、 冷却効果も高く、 冷却ユニット 3 0の温度 も、 左側の方が右側よりも低くなる。 この状態で、 第 2流通路 3 5の室内空気を 図 2の左側から右側へ向かう方向に流すと、 左側では室内空気と冷却ユニット 3 0の温度差が非常に大きいが、 右側に流れるほど、 冷却ユニットと室内空気の温 度差は小さくなる。 このため空気の冷え方にむらができ、 冷却効率が下がる。 こ れに対して、 本実施形態のように第 2流通路 3 5の空気を右側から左側へ向かう 方向に流すようにすると、 冷却ユニットと空気の温度差が比較的均一化され、 室 内空気は徐々に冷やされることになるので、 冷却効率を向上させることができ る。  The outside air flows through the first flow passage 25 from the left side to the right side of FIG. 2 as shown by the arrow A in FIG. 2, and the indoor air flows through the second flow passage 35 as shown by the arrow B in FIG. Flows from the right side to the left side. In this way, by making the flow direction of the outside air and the room air reverse, the air can be efficiently cooled by the principle of the heat exchanger. That is, in the first flow passage 25, the outside air flows from the left side to the right side in FIG. 2, and therefore, the humidity of the outside air is lower toward the left side in the first flow passage 25. The lower the humidity, the more water evaporates, so the cooling effect is high, and the temperature of the cooling unit 30 is lower on the left than on the right. In this state, when the room air in the second flow passage 35 flows in the direction from the left side to the right side in FIG. 2, the temperature difference between the room air and the cooling unit 30 is very large on the left side, The temperature difference between the cooling unit and the room air becomes smaller. This results in uneven cooling of the air and lowers the cooling efficiency. On the other hand, when the air in the second flow passage 35 is caused to flow from the right side to the left side as in the present embodiment, the temperature difference between the cooling unit and the air becomes relatively uniform, and the indoor air Is cooled gradually, so that the cooling efficiency can be improved.
上記の本発明の冷却装置は、 液体の冷媒が気化する際に周囲から気化熱を奪う ことを利用して冷却するという点では、 これまでの一般的な冷房装置と同じであ る。 しかし、 冷媒として、 水という安価でかつ地球環境にとって好ましい物質を 用いているため、 気化させて周囲から気化熱を奪ったあとにこれをそのまま大気 中に排出しても、 地球環境に対して何ら影響を及ぼすことはない。 このため、 こ れまでの一般的な冷房装置のように、 高価でかつ地球環境に悪影響を及ぼす冷媒 を再利用のために圧縮するという過程が不要となる。 一般に、 この圧縮過程では 大量の電力が消費されるが、 本発明のように圧縮過程が不要になることによつ て、 電力消費が大幅に抑えられる。 したがって、 本実施形態の冷却装置を作動さ せるために必要な電力は、 第 1流通路 2 5内に外気を流通させるためのファン 1 2、 冷却ユニット 3 0に室内空気を循環させるためのファン 3、 ポンプ 1 6など を駆動するために必要なごく僅かな電力で足りる。 The cooling device of the present invention is the same as a conventional cooling device in that cooling is performed by utilizing the heat of vaporization taken from the surroundings when the liquid refrigerant evaporates. You. However, since water is used as an inexpensive and favorable material for the global environment as a refrigerant, even if it is vaporized to remove heat of vaporization from the surroundings and then discharged directly into the atmosphere, it has no effect on the global environment. Has no effect. This eliminates the need for the process of compressing refrigerants, which are expensive and have a negative impact on the global environment, for reuse as in conventional cooling systems. Generally, a large amount of power is consumed in this compression process, but the power consumption is greatly reduced by eliminating the need for the compression process as in the present invention. Therefore, the electric power required to operate the cooling device of the present embodiment is a fan 12 for circulating outside air in the first flow passage 25, and a fan for circulating room air to the cooling unit 30. 3. Very little power is needed to drive pumps 16 and so on.
また、 本実施形態の冷却装置 1は、 上述のように比較的簡易な構造であるた め、 冷却ボックスを大きくして大きな建物を冷却する場合でも、 必要な製造コス 卜、 設置コストは非常に小さくて済む。 このため、 例えば農産物のようにある程 度の低温を維持しなければならないものを貯蔵する大規模な倉庫などを冷却する ための設備として利用すれば、 倉庫の運用コストを削減することができる。 ま た、 畜産分野では、 真夏のような暑い時期における乳牛の搾乳量を維持するため に畜舎を冷房しなければならない場合があるが、 そのような場合にも、 本実施形 態の冷却装置 1は非常に有効である。 もちろん、 乳牛に限らず、 豚、 羊などを飼 育する畜舎、 あるいは乗馬馬や競走馬を飼育する厩舎などの冷却設備としても適 している。  Further, since the cooling device 1 of the present embodiment has a relatively simple structure as described above, even when a large cooling box is used to cool a large building, the required manufacturing costs and installation costs are extremely low. Small enough. For this reason, if it is used as a cooling system for large-scale warehouses that store products that must maintain a certain low temperature, such as agricultural products, the operating costs of warehouses can be reduced. In the livestock industry, it may be necessary to cool down the barn in order to maintain the milking capacity of dairy cows in hot seasons such as midsummer. In such a case, the cooling device of the present embodiment 1 Is very effective. Of course, it is suitable not only for dairy cows but also as a cooling facility for stables for raising pigs and sheep, or stables for riding and racehorses.
また、 内部に発熱源を有する工場などでは、 工場内部の温度が非常に高くな る。 このような工場の中には保安上の観点から、 また、 化学物質を扱う工場など では周囲の環境への配慮などから、 容易に屋内の空気を外気と換気できないとこ ろがある。 本実施形態の冷却装置は、 内部の空気を外気と入れ換えることなく施 設内の温度を下げることができるので、 このような施設のための冷却装置として も適している。  In a factory with a heat source inside, the temperature inside the factory becomes extremely high. Some of these factories cannot easily ventilate indoor air with the outside air from the viewpoint of security, and the factories handling chemical substances take into consideration the surrounding environment. The cooling device of the present embodiment is suitable as a cooling device for such a facility because the temperature inside the facility can be reduced without replacing the internal air with the outside air.
さらに、 本実施形態の冷却装置 1は設置コスト及びランニングコス卜が非常に 小さて済むので、 従来は経済的な観点からエアーコンディショナを設置するのを 躊躇せざるを得なかったような場所、 例えばトイレなどにも、 気軽に取り付ける ことができる。 また、 消費電力が少なくランニングコストが小さいため、 夏など はスィツチを入れたまま長時間運転を継続させておいても、 僅かな電気代で済 む。 Further, since the installation cost and the running cost of the cooling device 1 of the present embodiment can be extremely small, a place where the air conditioner has conventionally been hesitated to be installed from an economic viewpoint, For example, it can be easily attached to toilets, etc. be able to. Also, because of low power consumption and low running cost, a small amount of electricity is required even if the switch is turned on and the operation is continued for a long time in summer.
また、 本実施形態の冷却装置 1は、 構造が簡単でランニングコストが小さいの で、 屋内施設だけでなく、 例えば、 公園やオートキャンプ場などの屋外施設、 あ るいは屋台などに設置して、 特定の場所だけを部分的に冷却するという態様で使 用しても、 電気代をあまり気にせずに十分に実用的な冷却効果が得られる。  Further, since the cooling device 1 of the present embodiment has a simple structure and low running cost, it is installed not only in indoor facilities but also in outdoor facilities such as parks and auto campsites, or in stalls, for example. Even when used in a mode where only a specific area is partially cooled, a sufficiently practical cooling effect can be obtained without paying much attention to the electricity bill.
[実施形態 2 ]  [Embodiment 2]
次に、 本発明の実施形態 2について、 図 5及び図 6を参照して説明する。 図 5 に示す実施形態 2の冷却装置 1 0が図 1に示す実施形態 1の冷却装置 1と異なる のは、 実施形態 2の冷却装置 1 0が外気乾燥装置 4 0を備えている点である。 そ の他の部分は実施形態 1の冷却装置 1と同じである。 したがって、 実施形態 2に おいて実施形態 1と同様の機能を有するものには、 同一の符号又は対応する符号 を付することにより、 その詳細な説明を省略する。  Next, a second embodiment of the present invention will be described with reference to FIGS. The cooling device 10 of the second embodiment shown in FIG. 5 is different from the cooling device 1 of the first embodiment shown in FIG. 1 in that the cooling device 10 of the second embodiment includes an outside air drying device 40. . Other parts are the same as those of the cooling device 1 of the first embodiment. Therefore, in the second embodiment, components having the same functions as those in the first embodiment are given the same reference numerals or corresponding reference numerals, and the detailed description thereof is omitted.
本発明は、 水が気化する際に周囲から気化熱を吸収することを利用して部屋 2 内を冷却する。 この方式だと、 冷却ユニット 3 0の温度は、 理想的な場合を考え ても寒暖計の湿球の温度までしか下がらないという問題がある。 湿球の温度は、 そのときの大気の温度や湿度に依存するので、 湿度が高い状況下では、 十分な冷 却効果が得られない可能性がある。  According to the present invention, the inside of the room 2 is cooled by utilizing absorption of heat of vaporization from the surroundings when water is vaporized. With this method, there is a problem that the temperature of the cooling unit 30 drops only to the temperature of the wet bulb of the thermometer even in an ideal case. Since the temperature of the wet bulb depends on the temperature and humidity of the atmosphere at that time, it may not be possible to obtain a sufficient cooling effect in high humidity conditions.
そこで実施形態 2では、 外気の湿度が高い場合には、 外気乾燥装置 4 0を稼働 させて、 先ず外気を乾燥して湿度を十分に下げ、 その後に冷却ボックス 1 1の第 1流通路 2 5内に流している。 外気の湿度が低い場合には、 外気乾燥装置 4 0を 稼働せずに、 冷却装置 1だけで部屋を冷却する。  Therefore, in the second embodiment, when the humidity of the outside air is high, the outside air drying device 40 is operated to first dry the outside air to sufficiently reduce the humidity, and thereafter, the first flow passage 25 of the cooling box 11 Flowing inside. When the humidity of the outside air is low, the room is cooled only by the cooling device 1 without operating the outside air drying device 40.
本実施形態の冷却装置 1 0は、 図示しないが、 外気の湿度を検出する検出手段 と部屋の温度を検出する検出手段と部屋の目標冷却温度を設定する設定手段とを 備えている。 制御部 6 0は、 これらの手段からデータ、 すなわち外気の湿度、 部 星の目標冷却温度及び部屋の温度に基づいて外気乾燥装置 4 0の稼働率を決定す る。  Although not shown, the cooling device 10 of the present embodiment includes a detecting means for detecting the humidity of the outside air, a detecting means for detecting the temperature of the room, and a setting means for setting the target cooling temperature of the room. The control unit 60 determines the operation rate of the outside air drying device 40 based on the data from these means, that is, the humidity of the outside air, the target cooling temperature of the star, and the room temperature.
図 6は、 本実施形態で使用する外気乾燥装置 4 0を示す図である。 外気乾燥装 置 4 0は、 図 6 ( a ) に示すように、 乾燥部 4 1と熱交換部 4 2とを備えてい る。 乾燥部 4 1は、 図 3 ( b ) に示すような円盤状部材 4 3を有している。 この 円盤状部材 4 3は細かい蜂の巣構造になっており、 外気は蜂の巣構造を構成する 部材の間を通って円盤の一方の側から他方の側へ透過することができる。 蜂の巣 構造を構成する部材の表面にはシリカゲルが付着されており、 空気が透過すると きにこのシリカゲルと接触する。 また、 乾燥部 4 1は、 図 6 ( b ) に示すよう に、 下側の約 9 0度の角度範囲が再生領域 4 4、 残りの約 2 7 0度の角度領域が 乾燥領域 4 5とされている。 円盤状部材 4 3は回転可能とされており、 使用時に は比較的ゆっくりな速度で一定方向に回転させておく。 従って、 円盤状部材 4 3 のそれぞれの部分は、 一定の周期で再生領域 4 4にある状態と乾燥領域 4 5にあ る状態を繰り返す。 このような外気乾燥装置は、 乾燥空気が必要とされる種々の 分野で広く使用されている。 FIG. 6 is a diagram showing the outside air drying device 40 used in the present embodiment. Outside air drying equipment The device 40 includes a drying unit 41 and a heat exchanging unit 42, as shown in FIG. The drying section 41 has a disk-shaped member 43 as shown in FIG. 3 (b). The disk-shaped member 43 has a fine honeycomb structure, and the outside air can pass from one side of the disk to the other side through the space between the members constituting the honeycomb structure. Silica gel is attached to the surface of the members constituting the honeycomb structure, and comes into contact with the silica gel when air permeates. As shown in Fig. 6 (b), the drying section 41 has a reproduction area 44 at the lower angle range of about 90 degrees and a drying area 45 at the remaining angle area of about 2.7 degrees. Have been. The disc-shaped member 43 is rotatable, and is rotated in a fixed direction at a relatively slow speed during use. Therefore, each part of the disc-shaped member 43 repeats the state in the reproduction area 44 and the state in the drying area 45 at a constant cycle. Such outside air drying devices are widely used in various fields where dry air is required.
乾燥領域 4 5には、 図 6 ( a ) に示すように左から右に向かって外気を透過さ せる。 外気が乾燥領域 4 5を通過するときにはシリカゲルによって水分が吸収さ れるので、 乾燥領域 4 5から出てきた空気は乾燥する。 しかし、 シリカゲルは、 一定の水分を吸収するとそれ以上の水分を吸収することができなくなる。 このた め、 シリカゲルが吸収した水分を飛ばすために、 再生領域 4 4では、 右から左に 向かって熱源 (不図示) から熱風を送り込む。 この熱風によって、 シリカゲルは 吸収した水分を放出し、 再び水分を吸収できる状態になる。 この熱風は、 できれ ば 1 0 0で以上であることが望ましい。 熱源としては、 灯油を燃料とするものや 太陽熱等を用いることができる。 このように熱風を用いると円盤状部材 4 3の温 度が上昇する。 また、 シリカゲルそのものも、 水分を吸収するときに温度が上昇 する。 このため、 乾燥領域 4 5を透過した外気の温度も高くなる。 そこで熱交換 部 4 2を用いて乾燥領域 4 5を透過した外気の温度を下げる。  As shown in FIG. 6 (a), outside air is allowed to pass through the drying area 45 from left to right. When the outside air passes through the drying area 45, the moisture coming out of the drying area 45 is dried because the moisture is absorbed by the silica gel. However, silica gel cannot absorb more water after absorbing a certain amount of water. For this reason, in the regeneration area 44, hot air is sent from a heat source (not shown) from right to left in order to blow off the water absorbed by the silica gel. This hot air causes the silica gel to release the absorbed water and become ready to absorb water again. This hot air is preferably 100 or more if possible. As a heat source, fuel using kerosene, solar heat, or the like can be used. When hot air is used, the temperature of the disk-shaped member 43 increases. Also, the temperature of silica gel itself rises when it absorbs moisture. For this reason, the temperature of the outside air passing through the drying area 45 also increases. Therefore, the temperature of the outside air passing through the drying area 45 is reduced by using the heat exchange section 42.
なお、 上記の乾燥剤を用いた外気乾燥装置の代わりに、 イオン交換膜を用いて 除湿するようにしてもよい。 イオン交換膜に圧力を加えて空気を送り込むことに より、 水蒸気を分離除去して、 外気を乾燥することができる。  In addition, instead of the outside air drying apparatus using the above desiccant, dehumidification may be performed using an ion exchange membrane. By applying pressure to the ion exchange membrane and sending air in, the water vapor can be separated and removed, and the outside air can be dried.
こうして得られた外気を前述の第 1流通路 2 5へ導き、 第 1流通路 2 5内を流 通させる。 このようにすることにより、 大気の湿度が高い場合でも、 気化シート 3 4から十分な水分を気化させることができ、 冷却効果を確保することができ る。 また、 実施形態 2によれば、 上記の実施形態 1と同様の作用,効果を奏す る。 The outside air thus obtained is guided to the first flow passage 25 described above, and is allowed to flow through the first flow passage 25. In this way, even if the atmospheric humidity is high, the vaporizing sheet Sufficient moisture can be vaporized from 34, and the cooling effect can be secured. According to the second embodiment, the same operation and effect as those of the first embodiment can be obtained.
[実施形態 3 ]  [Embodiment 3]
次に、 本発明の実施形態 3について図 7を参照して説明する。 実施形態 3の冷 却装置 1 0 0が実施形態 2の冷却装置 1 0と異なるのは、 実施形態 3の冷却装置 1 0 0が熱交換装置 7 0を備えている点である。 その他の部分は、 実施形態 2の 冷却装置 1 0と同様である。 したがって、 実施形態 2と同様の機能を有するもの には、 同一の符号又は対応する符号を付することにより、 その詳細な説明を省略 する。 実施形態 3の熱交換装置 7 0は、 吸引する高温の外気を、 冷却装置本体 5 を通って冷やされた外気を用いて冷却するものである。 すなわち、 冷却装置本体 5の第 1流通路 2 5を通過した空気は多くの水分を含んではいるが、 水が気化し たことによって温度はある程度低下している。 この冷やされた空気と高温の外気 との間で熱交換を行って外気を冷却し、 その後にこの外気を第 1流通路 2 5へ導 くようにすることにより、 冷却効果をより高めることができる。  Next, a third embodiment of the present invention will be described with reference to FIG. The cooling device 100 of the third embodiment differs from the cooling device 100 of the second embodiment in that the cooling device 100 of the third embodiment includes a heat exchange device 70. Other parts are the same as those of the cooling device 10 of the second embodiment. Therefore, the components having the same functions as those of the second embodiment are given the same reference numerals or corresponding reference numerals, and the detailed description is omitted. The heat exchange device 70 of the third embodiment cools the high-temperature outside air to be sucked by using the outside air cooled through the cooling device main body 5. That is, although the air that has passed through the first flow passage 25 of the cooling device main body 5 contains a lot of moisture, the temperature has decreased to some extent due to the vaporization of the water. By exchanging heat between the cooled air and the high-temperature outside air to cool the outside air, and then guiding the outside air to the first flow passage 25, the cooling effect can be further enhanced. it can.
なお、 本実施形態の熱交換装置 7 0を停止するときには、 ダンバ一 8 0を開状 態として、 実施形態 2と同様に湿った外気を外部に直接排出する。 なお、 本実施 形態の熱交換装置 7 0の稼働率を制御することもできるが、 本熱交換装置 7 0は 電力等のエネルギーを殆ど消費しないので、 本装置の稼働率を制御する手段は省 略することも可能である。  When the heat exchange device 70 of the present embodiment is stopped, the damper 180 is kept in an open state, and the wet outside air is directly discharged to the outside similarly to the second embodiment. The operation rate of the heat exchange device 70 of the present embodiment can be controlled, but since the heat exchange device 70 consumes almost no energy such as electric power, the means for controlling the operation rate of the heat exchange device 70 is omitted. It is also possible to abbreviate.
上記の実施形態 3によれば、 外気が高温であるときでも、 部屋 2内を快適に冷 房することができる。 その他の作用,効果は実施形態 2と同様である。  According to the third embodiment, even when the outside air is at a high temperature, the inside of the room 2 can be cooled comfortably. Other operations and effects are the same as those of the second embodiment.
なお、 本発明は上記の実施形態に限定されるものではなく、 種々の変形が可能 である。 例えば、 上記の実施形態では、 第 2流通路として、 中空の平板状のもの を用いしたが、 第 2流通路はパイプ状のものであってもよい。 また、 第 2流通路 の内部に多数のフィンを形成してもよい。 これにより、 第 2流通路を流通する部 屋空気を効率よく冷却することができる。 更に、 第 2流通路内を空気が隈なく平 均して流れるように、 第 2流通路内にガイドを設けるようにしてもよい。  Note that the present invention is not limited to the above embodiment, and various modifications are possible. For example, in the above embodiment, a hollow flat plate is used as the second flow passage, but the second flow passage may be a pipe. Also, a large number of fins may be formed inside the second flow passage. Thereby, the room air flowing through the second flow passage can be efficiently cooled. Further, a guide may be provided in the second flow passage so that the air flows evenly and evenly in the second flow passage.
また、 上記の実施形態では、 水保持手段として気化シートを用いた場合につい て説明したが、 水保持手段を第 2流通路と一体的に構成することもできる。 例え ば、 冷却ユニットの表面 (例えば、 上面と両側面) にエッチングを施すことに よって、 表面に微細な溝を形成する。 形成する溝は、 空気の流れる方向と平行に 高い密度で多数配列されたものと、 空気の流れる方向とは垂直に、 密度がある程 度小さく配列されたものからなる。 各溝の半径は例えば 3 0ミクロン程度とす る。 In the above embodiment, the case where the vaporized sheet is used as the water holding means is described. As described above, the water holding means may be formed integrally with the second flow passage. For example, fine grooves are formed on the surface of the cooling unit by etching the surface (for example, the upper surface and both side surfaces). The grooves to be formed consist of a large number of grooves arranged at a high density in parallel with the direction of air flow, and a groove arranged in a direction perpendicular to the direction of air flow, the smaller the density. The radius of each groove is, for example, about 30 microns.
このような微細な溝を冷却ュニッ卜の表側に形成し、 上面に水を滴下すると、 水は毛管現象によって両側面の下端部に向かって拡散する。 このため、 ちょうど 気化シートの場合と同様に、 アルミニウム製の冷却ュニッ卜の表側を水保持手段 として利用することができる。  When such fine grooves are formed on the front side of the cooling unit and water is dropped on the upper surface, the water is diffused toward the lower ends on both sides by capillary action. For this reason, just like the case of the vaporized sheet, the front side of the aluminum cooling unit can be used as water holding means.
また、 本発明の冷却装置 1を単独で設置する代わりに、 広く普及している一般 的な冷房装置 (エア一コンディショナー) を冷却装置 1の前段に設置し、 まずこ の冷房装置によって外気の冷却と除湿を行い、 こうして得られた空気を冷却装置 Instead of installing the cooling device 1 of the present invention alone, a widely-used general cooling device (air conditioner) is installed in front of the cooling device 1, and first, the cooling device cools the outside air. And dehumidification, and the air thus obtained is cooled.
1の第 1流通路 2 5へ流すようにすることもできる。 このようにすると、 外気の 湿度が高く寒暖計の湿球温度が高いときでも、 第 1流通路 2 5内における水の気 化が促進され、 冷却装置 1による冷却効果をさらに高めることができる。 また、 この場合には、 寒暖計の湿球温度が高いときは前段の冷房装置を作動させて冷却 装置 1の冷却効果を高め、 湿球温度が比較的低いときには前段の冷房装置を停止 させて冷却装置 1だけを作動させるようにしてもよい。 このように一般的な冷房 装置と本発明の冷却装置を直列的に接続した場合でも、 一般的な冷房装置だけを 設置した場合と比べると、 年間を通しての消費電力を大幅に削減することができ る。 なお、 このように、 一般的な冷房装置と本発明の冷却装置 1を直列的に接続 する場合には、 実施形態 2の稼働率の決定方法と略同じ方法で、 冷房装置の稼働 率を決定するようにしてもよい。 It can also be made to flow to the 1st 1st flow channel 25. In this way, even when the humidity of the outside air is high and the wet bulb temperature of the thermometer is high, vaporization of water in the first flow passage 25 is promoted, and the cooling effect of the cooling device 1 can be further enhanced. In this case, when the wet bulb temperature of the thermometer is high, the cooling device of the preceding stage is activated to enhance the cooling effect of the cooling device 1, and when the wet bulb temperature is relatively low, the cooling device of the preceding stage is stopped and cooled. Only the device 1 may be operated. Thus, even when a general cooling device and the cooling device of the present invention are connected in series, the power consumption throughout the year can be significantly reduced as compared with a case where only a general cooling device is installed. You. As described above, when the general cooling device and the cooling device 1 of the present invention are connected in series, the operation ratio of the cooling device is determined in substantially the same manner as the method of determining the operation ratio of the second embodiment. You may make it.
また、 上記の実施形態では、 本発明の冷却装置を用いて部屋を冷房する場合に ついて説明したが、 本発明はこれに限定されるものではなく、 本発明の冷却装置 は、 例えば自動車に用いることもできる。 本発明は、 上述したように、 消費電力 が少ないので、 車載バッテリーから電力供給を受ける場合でも、 車載バッテリー の負担は小さくて済む。 このため、 例えば、 トラックでの配送中や、 ドライバ一 が車内で休憩しているときなどにエンジンのアイドリングを停止させる場合に も、 その間車載バッテリーの電力だけで冷却装置を作動させておくことが可能で ある。 従って、 真夏のように暑い季節などに、 配送を終えたドライバ一が自動車 に戻った時に車内を涼しい状態に維持しておくことができ、 労働環境を改善する ことができる。 Further, in the above embodiment, the case where the room is cooled using the cooling device of the present invention has been described. However, the present invention is not limited to this. You can also. As described above, since the present invention consumes less power, the load on the vehicle-mounted battery can be reduced even when power is supplied from the vehicle-mounted battery. For this reason, for example, during delivery by truck, If the engine stops idling when the vehicle is taking a break in the vehicle, the cooling system can be operated only with the power of the onboard battery during that time. Therefore, in a hot season such as midsummer, when the driver who has completed delivery returns to the car, the inside of the car can be kept cool and the working environment can be improved.
なお、 アイスボックスの中に氷を入れ、 この中を通した空気を車内に流す方法 で、 アイドリングを停止した車内の温度を下げる商品がカー用品店などで実際に 販売されている。 これは、 氷が融解するときに周囲から融解熱を吸収することを 利用したものであるが、 氷の融解熱は、 水の気化熱に比べて一桁程度小さい。 こ のため、 冷却効率という点からは十分ではないし、 また、 氷が完全に解けてしま うと、 冷却できないとう問題もある。  In addition, products that reduce the temperature inside a car that has stopped idling by putting ice in an ice box and letting the air flow through the car are actually sold at car supply stores. This utilizes the fact that ice absorbs heat of fusion from the surroundings when it melts, but the heat of fusion of ice is about an order of magnitude lower than the heat of vaporization of water. For this reason, cooling efficiency is not sufficient, and there is also a problem that cooling cannot be performed if the ice is completely melted.
また、 真夏のような暑い時期には、 自動車の屋根に照りつける日差しによって 気化シート 3 4の温度が上昇するので、 流通させる空気の量が同じであってもよ り多くの水分が気化する。 このため、 本実施形態の冷却装置は、 暑い時期ほど冷 却効果が高いという優れた特徴を備えている。 さらに、 自動車の屋根の上などに 太陽電池を設置し、 ここから電力を得るようにすれば、 特に、 日差しの強い夏な どには発電量が多くなり、 それだけファン 1 2及びファン 3を高速に回転させて 水の気化量を多くすることができる。 すなわち、 暑いときほど冷却効果も高まる という特徴がさらに強化される。 なお、 本実施形態の冷却装置を自動車に用いる 場合、 外気吸入口が車の前方向に、 外気排出口が車の後方向に向くように配置す れば、 走行中は外気を吸入するファンを停止しても、 十分な外気を第 1流通路に 送り込むことができる。 また、 実施形態 2を自動車に用いる場合は、 熱源とし て、 自動車のエンジンの熱や太陽熱を用いるようにしてもよい。  Further, in a hot season such as midsummer, the temperature of the vaporizing sheet 34 rises due to the sunlight shining on the roof of the car, so that more moisture vaporizes even if the amount of air to be circulated is the same. For this reason, the cooling device of the present embodiment has an excellent feature that the cooling effect is higher in hotter months. Furthermore, if solar cells are installed on the roof of a car and power is obtained from them, the amount of power generated will increase, especially in summer when the sun is strong, and the fans 1 and 3 will operate at high speed. To increase the amount of water vaporized. In other words, the feature that the cooling effect increases as the temperature increases is further enhanced. When the cooling device of the present embodiment is used in a car, if the outside air intake port is arranged in the front direction of the car and the outside air discharge port is arranged in the rear direction of the car, a fan for taking in the outside air during traveling is provided. Even if stopped, sufficient outside air can be sent into the first flow passage. When Embodiment 2 is used in an automobile, heat of the engine of the automobile or solar heat may be used as the heat source.
また、 上記の実施形態では、 冷却ユニットに供給する水として水道水を用いた 場合について説明したが、 冷却ュニッ卜に供給する水は井戸水等の真水であって もよいし、 或いは真水の入手が難しいときには、 海水を用いるようにしてもよい。 すなわち、 本願の請求の範囲における、 水保持手段に供給される水というのは、 真水だけでなく、 海水も含む概念である。  Further, in the above embodiment, the case where tap water is used as the water to be supplied to the cooling unit has been described. However, the water to be supplied to the cooling unit may be fresh water such as well water, or fresh water may be obtained. When difficult, seawater may be used. That is, in the claims of the present application, the water supplied to the water holding means is a concept that includes not only fresh water but also seawater.
更に、 上記の各実施形態では、 冷却対象の流体が空気である場合について説明 したが、 本発明の冷却対象は、 空気に限られるものではなく、 水等の液体であつ てもよい。 例えば、 密閉式のクーリングタワーの代わりに本発明を用いることが できる。 化学工場等の各種の製造工程では大量の冷却水を使用している。 これら の水は、 通常、 ポンプによって循環され、 クーリングタワーで冷却されて再利用 される。 本発明を用いることにより、 従来のものに比べて構成が簡易で、 しかも エネルギー消費量や騒音が少なく、 冷却効率が高いクーリングタワーを提供する ことができる。 また、 本発明によれば、 冷却対象である水にゴミ等の異物が混入 するのを確実に防ぐことができる。 Further, in each of the above embodiments, the case where the fluid to be cooled is air will be described. However, the cooling object of the present invention is not limited to air, but may be a liquid such as water. For example, the present invention can be used instead of a closed cooling tower. A large amount of cooling water is used in various manufacturing processes such as chemical factories. These waters are usually circulated by pumps, cooled in cooling towers and reused. By using the present invention, it is possible to provide a cooling tower that has a simpler configuration than conventional ones, has low energy consumption and low noise, and has high cooling efficiency. Further, according to the present invention, it is possible to reliably prevent foreign matter such as dust from entering water to be cooled.
以上説明したように、 本発明によれば、 第 1流通路に空気を流し、 水保持手段 に保持されている水を強制的に気化させ、 水が気化するときに周囲から気化熱を 奪うことを利用して第 2流通路内を流通する流体の温度を下げるので、 装置の構 造が、 一般的なエア一コンディショナーに比べて非常に簡略化され、 製造コスト 及び設置コストを小さくすることができる。 また、 一般的なエア一コンディショ ナーに比べて電力消費が極めて小さいので、 ランニングコストが小さく、 これま でエアーコンディショナ一を設置するのがためらわれたような場所であっても気 軽に設置できるという特長がある。  As described above, according to the present invention, it is possible to flow air through the first flow passage, forcibly vaporize the water held in the water holding means, and take heat of vaporization from the surroundings when the water evaporates. Since the temperature of the fluid flowing through the second flow passage is reduced by using the air conditioner, the structure of the device is greatly simplified as compared with a general air conditioner, and the manufacturing cost and installation cost can be reduced. it can. In addition, since the power consumption is extremely low compared to a general air conditioner, the running cost is low, and even if the installation of the air conditioner has been hesitant so far, it can be installed easily. There is a feature that can be.
産業上の利用可能性  Industrial applicability
以上説明したように、 本発明は、 水が気化するときに周囲から気化熱を奪う ことを利用して、 少ない消費電力で効率よく対象となる空間を冷却することがで きる装置であり、 これまで広く普及していきるエアーコンディショナー等の冷房 装置が使われている分野において、 同じように使用することができるだけでなく、 消費電力が小さいという特性から、 従来エアーコンディショナ一が使われていな かった場所、 例えば屋外などでも使用することができる。 このため、 産業上広く 用することができる。  As described above, the present invention is an apparatus that can efficiently cool a target space with low power consumption by utilizing the heat of vaporization taken from the surroundings when water evaporates. In the field where cooling devices such as air conditioners are widely used, air conditioners can be used in the same way, and because of their low power consumption characteristics, air conditioners must be used in the past. It can also be used in open places, for example outdoors. Therefore, it can be widely used in industry.

Claims

請求の範囲 The scope of the claims
1 . 空気が流通する第 1流通路と、  1. A first flow passage through which air flows,
前記第 1流通路の内部に所定の間隔を保って設けられた、 冷却対象となる流体 が前記第 1流通路に流出することなく流通する複数の第 2流通路と、  A plurality of second flow passages provided at predetermined intervals inside the first flow passage, through which a fluid to be cooled flows without flowing out to the first flow passage;
前記第 1流通路に空気を送り込む送風手段と、  Blowing means for feeding air into the first flow passage,
前記第 2流通路の外側表面に設けられた水保持手段と、  Water holding means provided on the outer surface of the second flow passage;
前記水保持手段に水を供給する水供給手段と、  Water supply means for supplying water to the water holding means,
を具備し、  With
前記第 1流通路に空気を流し、 前記水保持手段からの水の気化を促進させて前 記第 2流通路の温度を下げることにより、 前記第 2流通路を流れる流体を冷却す ることを特徴とする冷却装置。  By flowing air through the first flow passage and promoting the vaporization of water from the water holding means to lower the temperature of the second flow passage, it is possible to cool the fluid flowing through the second flow passage. Characterized cooling device.
2 . 前記第 2流通路は、 金属を用いて中空の平板状に形成され、 流体の流入口と 流出口とを備えたものであり、 前記第 1流通路内に複数の前記第 2流通路が立て た状態で並列に設られていることを特徴とする請求項 1記載の冷却装置。  2. The second flow passage is formed as a hollow flat plate using metal, and has a fluid inlet and a fluid outlet. The plurality of second flow passages are provided in the first flow passage. 2. The cooling device according to claim 1, wherein the cooling devices are provided in parallel in a state in which they are set up.
3 . 前記第 1流通路の底部には、 底部に溜まった余分な水を外部に取り出すため の余水排水口が設けられていることを特徴とする請求項 1又は 2記載の冷却装 置。 3. The cooling device according to claim 1, wherein a spillage drain is provided at a bottom of the first flow passage to take out excess water accumulated at the bottom to the outside.
4 . 前記水供給手段は、 前記第 1流通路の上部に設けられ、 前記水保持手段の上 方から水を滴下するようにして供給するものであることを特徴とする請求項 1、 2又は 3記載の冷却装置。  4. The water supply means is provided at an upper part of the first flow passage, and supplies water so as to drop water from above the water holding means. 3. The cooling device according to 3.
5 . 前記水保持手段は、 シート状のものであり、 少なくとも、 前記第 2流通路の 上部と両側部とを覆うようにして設けられたものであることを特徴とする請求項 1、 2、 3又は 4記載の冷却装置。  5. The water holding means is sheet-shaped, and is provided so as to cover at least an upper portion and both side portions of the second flow passage. The cooling device according to 3 or 4.
6 . 前記第 1流通路内の空気の流通方向と前記第 2流通路の流体の流通方向とが 互いに逆方向となることを特徴とする請求項 1、 2、 3、 4又は 5記載の冷却装 置。  6. The cooling according to claim 1, wherein the flow direction of the air in the first flow passage and the flow direction of the fluid in the second flow passage are opposite to each other. Equipment.
7 . 前記余水排水口から回収した水の不純物濃度を検出する濃度検出手段を備 え、 前記不純物濃度が一定値以上になったときに、 前記余水排水口から回収した 水を捨て、 一定値より小さいときには回収した水を再利用することを特徴とする 請求項 3記載の冷却装置。 7. Concentration detecting means for detecting the impurity concentration of the water recovered from the sewage drain, and when the impurity concentration exceeds a certain value, discarding the water collected from the sewage drain, constant When the value is smaller than the value, the collected water is reused. The cooling device according to claim 3.
8 . 前記流体は空気であり、 前記第 2流通路の底部には、 結露した水を外部に排 出する排水口が形成されていることを特徴とする請求項 1、 2、 3、 4、 5、 6 又は 7記載の冷却装置。  8. The fluid is air, and a drain port is formed at the bottom of the second flow passage to discharge dew condensation water to the outside. 5. The cooling device according to 5, 6, or 7.
9 . 前記第 1流通路に送り込まれる空気の温度及び湿度のうち少なくとも、 一方 を下げる処理を行う前処理手段を備えることを特徴とする請求項 1、 2、 3、 9. Pre-processing means for performing a process of lowering at least one of the temperature and the humidity of the air sent into the first flow passage, wherein the pre-processing means is provided.
4、 5、 6、 7又は 8記載の冷却装置。 4. The cooling device according to 4, 5, 6, 7, or 8.
1 0 . 前記前処理手段は、 冷房装置であることを特徴とする請求項 9記載の冷却 1 1 . 前記前処理手段は、 吸湿剤を用いて空気を乾燥させ、 熱源を用いて吸湿し た前記吸湿剤を加熱することにより前記吸湿剤を再利用するものであることを特 徴とする請求項 9記載の冷却装置。  10. The cooling according to claim 9, wherein the pretreatment means is a cooling device. 11. The pretreatment means dries air using a desiccant and absorbs moisture using a heat source. 10. The cooling device according to claim 9, wherein the moisture absorbent is reused by heating the moisture absorbent.
1 2 . 前記熱源として太陽熱を用いたことを特徴とする請求項 1 1記載の冷却装 置。  12. The cooling device according to claim 11, wherein solar heat is used as the heat source.
1 3 . 前記熱源として自動車のエンジンの熱を用いたことを特徴とする請求項 1 1記載の冷却装置。  13. The cooling device according to claim 11, wherein heat of an automobile engine is used as the heat source.
1 4 . 前記前処理手段は、 前記第 1流通路から排出された空気を用いて、 前記第 1流通路に送り込む空気を冷却する熱交換手段であることを特徴とする請求項 9 記載の冷却装置。  14. The cooling device according to claim 9, wherein the pretreatment means is a heat exchange means for cooling air sent into the first flow passage by using air discharged from the first flow passage. apparatus.
1 5 . 前記第 1流通路に送り込まれる空気の温度及び湿度うち少なくとも一方を 検出する温湿度検出手段と、 冷却対象の冷却目標温度を設定する設定手段と、 冷 却対象の温度を検出する対象温度検出手段と、 前記温湿度検出手段、 前記設定手 段及び前記対象温度検出手段からのデータに基づいて、 前記前処理手段の稼働率 を決定する制御手段と、 を備えることを特徴とする請求項 9、 1 0、  15. Temperature / humidity detecting means for detecting at least one of temperature and humidity of the air sent into the first flow passage, setting means for setting a cooling target temperature of a cooling target, and a target for detecting a temperature of a cooling target A temperature detecting unit, and a control unit that determines an operation rate of the preprocessing unit based on data from the temperature and humidity detecting unit, the setting unit, and data from the target temperature detecting unit. Terms 9, 10 and
1 1、 1 1,
1 2、 1 3又は 1 4記載の冷却装置。 12. The cooling device according to 12, 13, or 14.
PCT/JP2000/005823 2000-08-29 2000-08-29 Cooling device WO2001020236A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2000267336A AU2000267336A1 (en) 2000-08-29 2000-08-29 Cooling device
PCT/JP2000/005823 WO2001020236A1 (en) 2000-08-29 2000-08-29 Cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/005823 WO2001020236A1 (en) 2000-08-29 2000-08-29 Cooling device

Publications (1)

Publication Number Publication Date
WO2001020236A1 true WO2001020236A1 (en) 2001-03-22

Family

ID=11736404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/005823 WO2001020236A1 (en) 2000-08-29 2000-08-29 Cooling device

Country Status (2)

Country Link
AU (1) AU2000267336A1 (en)
WO (1) WO2001020236A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004048859A1 (en) * 2002-11-27 2004-06-10 Hovalwerk Ag Method and device for cooling circulating air
EP2372262A3 (en) * 2010-03-16 2018-02-21 Kampmann GmbH Method for air conditioning, preferably cooling, a room

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4747136B1 (en) * 1970-10-08 1972-11-28
JPS5216041A (en) * 1975-07-28 1977-02-07 Mutsuto Iwakura Reducing process of liquid temperature and its apparatus
JPS5645756U (en) * 1979-09-19 1981-04-24
JPH0429783U (en) * 1990-07-05 1992-03-10

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4747136B1 (en) * 1970-10-08 1972-11-28
JPS5216041A (en) * 1975-07-28 1977-02-07 Mutsuto Iwakura Reducing process of liquid temperature and its apparatus
JPS5645756U (en) * 1979-09-19 1981-04-24
JPH0429783U (en) * 1990-07-05 1992-03-10

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004048859A1 (en) * 2002-11-27 2004-06-10 Hovalwerk Ag Method and device for cooling circulating air
CN1333214C (en) * 2002-11-27 2007-08-22 皓欧股份公司 Method and device for cooling circulating air
US8038129B2 (en) 2002-11-27 2011-10-18 Hovalwerk Ag Method and device for cooling circulating air
EP2372262A3 (en) * 2010-03-16 2018-02-21 Kampmann GmbH Method for air conditioning, preferably cooling, a room

Also Published As

Publication number Publication date
AU2000267336A1 (en) 2001-04-17

Similar Documents

Publication Publication Date Title
US11624517B2 (en) Liquid desiccant air conditioning systems and methods
KR102099693B1 (en) Methods and systems for mini-split liquid desiccant air conditioning
US4222244A (en) Air conditioning apparatus utilizing solar energy and method
US8499576B2 (en) Dewpoint cooling device
CA3019410A1 (en) Air conditioning via multi-phase plate heat exchanger
US20130340449A1 (en) Indirect evaporative cooler using membrane-contained liquid desiccant for dehumidification and flocked surfaces to provide coolant flow
JP4954018B2 (en) Air conditioner
JP4651163B2 (en) Wet film coil type air conditioner
WO2015158186A1 (en) Composite-structure wet-film surface air cooler
JPS62172119A (en) Method and device for purifying, humidifying, dehumidifying,cooling or heating gas or indoor air
JP2007255780A (en) Desiccant air conditioning system utilizing solar energy
KR20010098148A (en) Absorption humidifying simultaneous heating using waste heat of adsorptive rotary air conditioner
JP2008175525A (en) Wet film coil, and wet film forming device for coil
WO2001020236A1 (en) Cooling device
WO2001029492A1 (en) Cooling device
JP2008256255A (en) Air conditioning device
WO2004081462A1 (en) Air conditioning method using liquid desiccant
JP2002061902A (en) Wet film coil and wet film forming apparatus for coil
GB1583201A (en) Air conditioning apparatus utilizing solar energy and method
JP2001330273A (en) Cooling system using solid absorbent
KR102532056B1 (en) Liquid type all-in-one cooling·heating air purifing and conditioning system
CN217653993U (en) Wet film air conditioning equipment
Shah et al. Comparative study and analysis of HVAC systems using solid and liquid desiccant dehumidification technology
JP2008241212A (en) Air conditioner
CA1055701A (en) Air conditioning apparatus utilizing solar energy and method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP