WO2001017130A1 - Terminal de communication et methode d'estimation de canal - Google Patents

Terminal de communication et methode d'estimation de canal Download PDF

Info

Publication number
WO2001017130A1
WO2001017130A1 PCT/JP2000/005622 JP0005622W WO0117130A1 WO 2001017130 A1 WO2001017130 A1 WO 2001017130A1 JP 0005622 W JP0005622 W JP 0005622W WO 0117130 A1 WO0117130 A1 WO 0117130A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
phase rotation
channel
estimated value
rotation amount
Prior art date
Application number
PCT/JP2000/005622
Other languages
English (en)
French (fr)
Inventor
Katsuhiko Hiramatsu
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to AU67256/00A priority Critical patent/AU6725600A/en
Priority to EP20000954909 priority patent/EP1133072A1/en
Priority to US09/807,287 priority patent/US7002939B1/en
Priority to BR0007040A priority patent/BR0007040A/pt
Publication of WO2001017130A1 publication Critical patent/WO2001017130A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0212Channel estimation of impulse response
    • H04L25/0214Channel estimation of impulse response of a single coefficient
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0018Arrangements at the transmitter end
    • H04L2027/0022Arrangements at the transmitter end using the carrier of the associated receiver of a transceiver

Definitions

  • the present invention relates to a CDMA communication terminal device and a channel estimation method used in a wireless communication system such as a mobile phone or a mobile phone.
  • a dedicated channel transmission signal (hereinafter, referred to as a “dedicated channel signal”) at a communication terminal at a base station side
  • a plurality of diversity antennas can transmit a dedicated channel signal to one communication terminal.
  • transmission diversity for transmitting data is used.
  • Figure 1 shows an example of a wireless communication system that uses transmission diversity.
  • FIG. 1 shows an example of a wireless communication system that uses transmission diversity.
  • base station 1 transmits a common pilot channel transmission signal (hereinafter, referred to as “common pilot channel signal”) A from antenna A, and transmits a common pilot channel signal B from antenna B.
  • base station 1 transmits dedicated channel signal A for communication terminal 2 from antenna A to communication terminal 2 and transmits dedicated channel signal B for communication terminal 2 from antenna B.
  • dedicated channel signal A and dedicated channel signal B are multiplied by the same spreading code, so that communication terminal 2 separates dedicated channel signal A and dedicated channel signal B from one that cannot be separated. Received as a signal.
  • common pilot channel signal A and common pilot Channel signal B is multiplied by a different spreading code.
  • some method that can be separated even when multiplied by the same spreading code is adopted. Therefore, communication terminal 2 can separate common pilot channel signal A and common pilot channel signal B.
  • the dedicated channel signal A and the common pilot channel signal A and the dedicated channel signal ⁇ and the common pilot channel signal ⁇ are received through the same propagation path, respectively, the common pilot channel signal ⁇ and the common pilot channel signal are received.
  • the phase rotation angle of the individual channel signal B with respect to the individual channel signal A can be known.
  • FIG. 2 is a block diagram showing a configuration of a conventional communication terminal.
  • antenna 11 receives a signal transmitted from a base station and transmits a signal to the base station.
  • the duplexer 12 switches the time zone of transmission and reception.
  • the reception RF section 13 amplifies the reception signal passed through the duplexer 12 and converts the frequency to a baseband signal.
  • the despreading unit 14 despreads the output signal of the reception RF unit 13 with the spreading code of the dedicated channel signal and extracts a modulated signal of the dedicated channel signal.
  • despreading section 15 despreads the output signal of received RF section 13 with the spread code of common pilot channel signal A to extract the modulated signal of common pilot channel signal A.
  • despreading section 16 despreads the output signal of received RF section 13 with the spreading code of common pilot channel signal B and extracts a modulated signal of common pilot channel signal B.
  • Channel estimating section 17 estimates the phase and amplitude of the propagation path (so-called “channel estimation”) using pilot symbols in the modulated signal of the individual channel signal output from despreading section 14.
  • channel estimation the estimated phase and amplitude of the propagation path are referred to as channel estimation values.
  • channel estimation section 18 performs channel estimation using pilot symbols in the modulated signal of common pilot channel signal A output from despreading section 15. Then, channel estimating section 19 performs channel estimation using pilot symbols in the modulated signal of common pilot channel signal B output from despreading section 16.
  • Demodulation section 20 demodulates the modulated signal of the individual channel signal output from despreading section 14 based on the channel estimation value output from channel estimation section 17 and extracts a received signal.
  • the phase rotation control section 21 sends a signal to the base station based on the phase difference between the common pilot channel signal A output from the channel estimation section 18 and the common pilot channel signal B output from the channel estimation section 19. To generate a phase rotation control signal indicating the amount of phase rotation.
  • the multiplexing unit 22 multiplexes the transmission signal with the phase rotation control signal output from the phase rotation control unit 21.
  • Modulating section 23 performs primary modulation processing such as QP SK on the output signal of multiplexing section 22.
  • the spreading unit 24 spreads the output signal of the modulation unit 23 by multiplying the output signal by a unique spreading code.
  • the transmission RF section 25 converts the output signal of the spreading section 24 into a radio frequency, amplifies the signal, and transmits the signal from the antenna 11 via the duplexer 12 by radio.
  • Figure 3A shows the estimated values of each channel when the phase difference ⁇ between the dedicated channel signal A and the dedicated channel signal B is 90 ° ⁇ ⁇ 5 ⁇ 90 °
  • Figure 3B shows the individual Each channel estimation value when the phase difference ⁇ between the channel signal A and the individual channel signal B is 90 ° ⁇ ⁇ 5 and 270 ° is shown.
  • the channel estimate 3 ( ⁇ ) is the combined vector of the channel estimate ⁇ a (n) of the dedicated channel signal A and the channel estimate 3 b (n) of the dedicated channel signal ⁇ . It is expressed as Further, a channel estimation value obtained by combining i3b (n) and i3a (n) obtained by rotating i3b (n) by 180 ° is represented by 3 ′ ( ⁇ ).
  • the reception power at the communication terminal can be increased by rotating the dedicated channel signal 180 by 180 ° for transmission.
  • the communication terminal performs channel estimation on the common pilot channel signal ⁇ and the common pilot channel signal B to control the amount of phase rotation, and the base station side controls the amount of phase rotation.
  • the base station side controls the amount of phase rotation.
  • An object of the present invention is to provide a communication terminal apparatus and a channel estimation method capable of improving the reliability of a channel estimation value in a wireless communication system in which transmission diversity is introduced.
  • FIG. 1 is a system configuration diagram of a wireless communication system using transmission diversity.
  • FIG. 2 is a block diagram showing a configuration of a conventional communication terminal.
  • FIG. 3A is a diagram showing the relationship between the amount of phase rotation and the channel estimation value
  • FIG. 3B is a diagram showing the relationship between the amount of phase rotation and the channel estimation value.
  • FIG. 4 is a block diagram showing a configuration on the transmitting side of a base station that performs wireless communication with the communication terminal of the present invention
  • FIG. 5 is a block diagram illustrating a configuration of a communication terminal according to Embodiment 1 of the present invention
  • FIG. 6A is a diagram illustrating a relationship between channel estimation values according to Embodiment 1 of the present invention
  • FIG. 7 is a diagram illustrating a relationship between channel estimation values according to Embodiment 1 of the present invention
  • FIG. 7 is a diagram illustrating a relationship between channel estimation values according to Embodiment 2 of the present invention
  • FIG. 8 is a diagram illustrating an embodiment of the present invention.
  • FIG. 9 is a block diagram illustrating a configuration of a communication terminal according to Embodiment 3 of the present invention.
  • FIG. 10 is a block diagram showing an internal configuration of the multi-channel estimated value combining section of the communication terminal according to Embodiment 3 of the present invention.
  • FIG. 4 is a block diagram showing a configuration on the transmitting side of a base station that performs wireless communication with the communication terminal of the present invention.
  • modulation section 101 performs primary modulation processing such as QPSK on a transmission signal.
  • Modulating section 102 performs primary modulation processing such as QPSK on common pilot channel signal A.
  • the modulation section 103 is a common pilot chain.
  • Primary modulation processing such as QPSK is performed on the channel signal B.
  • Spreading section 104 multiplies the output signal of modulating section 101 by a unique spreading code and spreads.
  • Spreading section 105 multiplies the output signal of modulating section 102 by a unique spreading code to spread.
  • Spreading section 106 multiplies the output signal of modulating section 103 by a unique spreading code and spreads.
  • the phase rotation unit 107 rotates the phase of the output signal of the spreading unit 104 by a predetermined amount based on the phase rotation control signal indicating the amount of phase rotation included in the signal transmitted from the communication terminal.
  • the multiplexing unit 108 multiplexes the output signal of the spreading unit 104 and the output signal of the spreading unit 105.
  • the multiplexing unit 109 multiplexes the output signal of the phase rotation unit 107 and the output signal of the spreading unit 106.
  • the transmission RF section 110 converts the output signal of the multiplexing section 108 into a radio frequency, amplifies the signal, and transmits the signal from the antenna 112 by radio.
  • the transmission RF section 111 converts the output signal of the multiplexing section 109 into a radio frequency, amplifies the signal, and transmits the signal from the antenna 113 wirelessly.
  • phase rotation amount in phase rotation section 107 of the base station is assumed to be two types, “0 °” and “180 °”.
  • Embodiment 1 describes a case where a base station transmits individual channel signal A and individual channel signal B without changing the amplitude.
  • FIG. 5 is a block diagram showing a configuration of the communication terminal according to Embodiment 1 of the present invention.
  • antenna 201 receives a signal transmitted from a base station and transmits a signal to the base station.
  • Duplexer 202 switches the transmission and reception time zones.
  • the reception RF section 203 amplifies the reception signal that has passed through the duplexer 202 and converts the frequency to a baseband signal.
  • the despreading section 204 despreads the output signal of the reception RF section 203 with the spreading code of the dedicated channel signal, and extracts a modulated signal of the dedicated channel signal.
  • despreading section 205 despreads the output signal of received RF section 203 with the spreading code of common pilot channel signal A to extract a modulated signal of common pilot channel signal A.
  • despreading section 206 despreads the output signal of received RF section 203 with the spreading code of common pilot channel signal B to extract the modulated signal of common pilot channel signal B.
  • the channel estimator 207 estimates the phase and amplitude of the propagation path using a pilot symbol in the modulated signal of the individual channel signal output from the despreader 204 (so-called “channel estimation”). .
  • channel estimation section 208 performs channel estimation using pilot symbols in the modulated signal of common pilot channel signal A output from despreading section 205
  • channel estimation section 209 performs channel estimation.
  • channel estimation is performed using pilot symbols in the modulated signal of common pilot channel signal B output from despreading section 206.
  • the phase rotation amount estimating unit 210 estimates the amount of phase rotation based on the channel estimation values output from the channel estimating units 207, 208, and 209. A specific method of estimating the phase rotation amount in the phase rotation amount estimating unit 210 will be described later.
  • the channel estimation value combining unit 211 combines the channel estimation values of the common pilot channel signal based on the phase rotation amount estimated by the phase rotation amount estimating unit 210 and outputs the final channel estimation value. I do. A specific method of combining the channel estimation values in channel estimation value combining section 211 will be described later.
  • the demodulation unit 212 demodulates the modulation signal of the individual channel signal output from the despreading unit 204 based on the channel estimation value output from the channel estimation value synthesis unit 211 and extracts the received signal. .
  • the phase rotation control unit 2 13 uses the common pipe output from the channel estimation unit 208.
  • a phase rotation control signal for instructing the base station of a phase rotation amount is generated based on a phase difference between the channel signal A and the common pilot channel signal B output from the channel estimation section 209.
  • the amount of phase rotation in phase rotation section 107 of the base station is two types, “0 °” and “180 °”.
  • Phase difference between common pilot channel signal A and common pilot channel signal B ⁇ force If 90 ° ⁇ ⁇ 90 °, set the phase rotation to “0 °”; otherwise, set the phase rotation to “1”.
  • a phase rotation control signal to the effect of “80 °” is output.
  • the multiplexing section 214 multiplexes the transmission signal with the phase rotation control signal output from the phase rotation control section 21 3.
  • Modulating section 215 performs primary modulation processing such as QP SK on the output signal of multiplexing section 214.
  • Spreading section 216 multiplies the output signal of modulating section 2 15 by a unique spreading code and spreads.
  • the transmission RF section 217 converts the output signal of the spreading section 216 into a radio frequency, amplifies the signal, and wirelessly transmits the signal from the antenna 201 via the duplexer 202.
  • FIG. 6A shows the relationship between the channel estimation values when the phase rotation amount is “0 °”
  • FIG. 6B shows the relationship between the channel estimation values when the phase rotation amount is “180 °”.
  • the channel estimation value of dedicated channel signal A is 3a (n)
  • the channel estimation value of dedicated channel signal B is iSb (n).
  • the channel estimate 3 (n) of the individual channel signal is expressed as a composite vector of 3a (n) and 3b (n).
  • phase rotation amount is “0 °” as shown in Fig. 6A, it is shared with the individual channel signal A. Since the phase and propagation path of the pilot channel signal A are the same, the vector of i3a (n) and the vector of (ia (n) are in the same direction. Similarly, the vector of 3b (n) is The vector of b (n) faces in the same direction.
  • the base station does not change the amplitude of dedicated channel signal A and dedicated channel signal B, the amplitude ratio of aa (n) to / 3a (n) and the amplitude ratio of ab (n) to 3b (n) Are equal.
  • the channel estimation value 3 (n) of the dedicated channel signal points in the same direction as the combined result ⁇ ( ⁇ ) of aa (n) and ab (n).
  • channel estimation can be performed by combining the channel estimation value of common pilot channel signal ⁇ and the channel estimation value of common pilot channel signal B.
  • channel estimation is performed by combining the channel estimation value of the common pilot channel signal ⁇ and the value obtained by rotating the channel estimation value of the common pilot channel signal B by 180 °. It can be performed.
  • the amount of phase rotation can be estimated, channel estimation can be performed based on the channel estimation value of the common pilot channel signal. Since the transmission power of the common pilot channel signal is larger than that of the dedicated channel signal, the reliability of the channel estimation value is higher than that of using the dedicated channel signal.
  • a method of estimating the amount of phase rotation in phase rotation amount estimating section 210 will be described.
  • the complex conjugate of one channel estimate and the other channel estimate is orthogonal. Then, the amplitudes of the two channel estimation values are minimum when they are orthogonal to each other.
  • the channel estimation value 3 (n) of the dedicated channel signal is the same as the combined result (n) of the channel estimation values of the common pilot channel signal. Since it is directed in the direction, jS (n) is orthogonal to the complex conjugate * (n) of ⁇ ( ⁇ ).
  • phase rotation amount estimating section 210 first rotates the phase of the channel estimate aa (n) of the common pilot channel signal A and the channel estimate ab (n) of the common pilot channel signal B by ⁇ . Then, a composite value (n) with the calculated value is calculated by the following equation (1).
  • the phase rotation amount estimating section 210 first evaluates X (using the phase rotation control signal, and X ( If (0) is smaller than the threshold value, the phase rotation amount may be estimated to be 0. Accordingly, there is a high possibility that the phase rotation amount can be estimated by one operation. Can be shortened. Next, a method of calculating a channel estimation value in channel estimation value combining section 211 will be described.
  • Channel estimation value synthesis section 2 1 1, the channel estimation value of individual channel No. signal from the channel estimation unit 207/3 ( ⁇ ) of the common from the channel estimation unit 208 pilot Bok channel estimate Channel signal A Q! A ( n), the channel estimation value ab (n) of the common pilot channel signal B from the channel estimation unit 209, and the phase rotation amount ⁇ from the phase rotation amount estimation unit 210.
  • a final channel estimation value ⁇ ( ⁇ ) is calculated by the following equation (3) and output to demodulation section 212.
  • the common pilot channel signal has higher transmission power than the dedicated channel signal.
  • the amount of phase rotation, and the channel estimation based on the channel estimation value of the common pilot channel signal it is possible to improve the reliability of the channel estimation value.
  • Embodiment 2 describes a case in which the base station transmits the dedicated channel signal ⁇ and the dedicated channel signal B with different amplitudes.
  • the amplitude of the dedicated channel signal B at the base station is a times that of the dedicated channel signal A (hereinafter, a is referred to as “amplitude coefficient”)
  • the amplitude ratio of aa (n) to / 3a (n) is k and Then, the amplitude ratio of ab (n) to 3b (n) is (k X a).
  • the channel estimation value 3 (n) of the dedicated channel signal and the combined value ⁇ ( ⁇ ) of the channel estimation values of the common pilot channel signal A and the common pilot channel signal B point in the same direction.
  • the amplitudes of the dedicated channel signal ⁇ and the dedicated channel signal ⁇ are If the transmission is changed, ⁇ ( ⁇ ) cannot be used as it is for channel estimation, and the amplitude coefficient a must be considered.
  • FIG. 8 is a block diagram showing a configuration of a communication terminal according to Embodiment 2 of the present invention. Note that, in the communication terminal shown in FIG. 8, the same components as those of the communication terminal shown in FIG. 5 are denoted by the same reference numerals as in FIG. 5, and description thereof will be omitted.
  • the communication terminal shown in FIG. 8 employs a configuration in which an amplitude / phase rotation amount estimation unit 301 is added to the communication terminal shown in FIG. 5 instead of phase rotation amount estimation unit 210.
  • the amplitude ⁇ phase rotation amount estimator 301 1 phase-rotates the channel estimation value a (n) of the common pilot channel signal ⁇ and the channel estimation value ⁇ b (n) of the common pilot channel signal B by S.
  • the combined value ⁇ ′ ( ⁇ ) is calculated by the following equation (4).
  • the amplitude Z-phase rotation amount estimating unit 301 calculates the following equation (5) in advance.
  • estimate the combination of candidate values that minimize X (as the amplitude coefficient a and the phase rotation amount 0, and use the amplitude coefficient a and the phase rotation amount 0 as the channel.
  • Output to the estimation value synthesis unit 2 1 1.
  • X (a, 0) Re [a '* (n)] XRe [i3 (n)] + Im [a' * (n)] XIm [/ 3 (n)] --- (5)
  • Channel estimation value The combining section 2 1 1 outputs the channel estimation value j3 (n) of the dedicated channel signal from the channel estimation section 207, the channel estimation value aa (n) of the common pilot channel signal A from the channel estimation section 208, 209, the channel estimation value ab (n) of the common pilot channel signal B, and the amplitude coefficient a and the phase rotation amount 0 from the amplitude Z phase rotation amount estimating unit 301 are input.
  • ⁇ ( ⁇ ) a final channel estimation value ⁇ ( ⁇ ) is calculated by the following equation (6) and output to demodulation section 212.
  • ⁇ (n) aa (n) + a Xexp (j0) X ab (n) + 3 (n)... (6)
  • the amplitude coefficient, the phase rotation amount, and the channel estimation value of the common pilot channel signal By estimating the channel based on the channel, it is possible to improve the reliability of the channel estimation value even when the base station transmits the signal while changing the amplitude of the individual channel signal.
  • the reliability of the channel estimation value can be improved by averaging the fading estimation value over a plurality of reception slots.
  • reception slots become discontinuous, so that channel estimation values cannot be averaged over a plurality of slots.
  • Embodiment 3 is intended to solve this problem. A case will be described in which transmission diversity is introduced and channel estimation values are combined over a plurality of slots.
  • FIG. 9 is a block diagram showing a configuration of a communication terminal according to Embodiment 3 of the present invention. Note that, in the communication terminal shown in FIG. 9, the same components as those of the communication terminal shown in FIG.
  • the communication terminal shown in FIG. 9 employs a configuration in which a multi-channel estimated value combining section 401 is added to the communication terminal shown in FIG.
  • FIG. 10 is a block diagram showing the internal sound configuration of the multiple-channel estimated value combining unit 401.
  • the delay circuit 501 stores the channel estimation value at the current time (n), and the delay circuit 502 stores the channel estimation value at the time (n ⁇ 1) one slot before. Is done.
  • the delay circuit 503 stores the amount of phase rotation at the current time (n)
  • the path 504 stores the phase rotation amount at the time (n_1) one slot before. Then, the difference between the phase rotation amount at time (n) and the phase rotation amount at time (n ⁇ 1) is calculated by the adding circuit 505.
  • the phase rotation circuit 506 compares the channel estimation value at the time (n ⁇ 1) output from the delay circuit 502 with the time ( ⁇ 1) based on the calculation result of the addition circuit 505. Then, the phase rotation amount over the time ( ⁇ ) is corrected.
  • the channel estimation value at the corrected time ( ⁇ -1) output from the phase rotation circuit 506 and the time ( ⁇ ) output from the delay circuit 502 are checked. And the channel estimate.
  • the present invention is not limited to one slot before, Similar correction processing can be performed on the previous reception slot, and the result can be combined with the channel estimation value at the current time.
  • Embodiment 3 can be combined with Embodiment 2, and channel estimation values can be combined across multiple slots even when the base station transmits the individual channel signal with different amplitudes. .
  • a channel estimation value of a common pilot channel signal is used, and a channel estimation value of a channel is estimated in a wireless communication system using transmission diversity. Reliability can be improved.
  • the present invention is suitable for use in a CDMA wireless communication system.

Description

明 細 書 通信端末装置及びチャネル推定方法 技術分野
本発明は、 自動車電話や携帯電話等の無線通信システムに用いられる C D M A方式の通信端末装置及びチャネル推定方法に関する。 背景技術
無線通信システムにおいては、 基地局側で個別チャネルの送信信号 (以下、 「個別チャネル信号」 という) の通信端末における受信電力を高めるため、 1 つの通信端末に対して複数のダイバーシチアンテナから個別チャネル信号を送 信する送信ダイバーシチを用いる場合がある。
図 1は、 送信ダイバーシチを用いた無線通信システムの一例として、 3GPP WG1 TSG-RAN WG1 Rl-99832 ( Physical channels and mapping of transport channels onto physical channels (FDD)) に 不されているンスァ ムのシステム構成図である。
図 1に示すように、 基地局 1は、 アンテナ Aから共通パイロットチャネルの 送信信号 (以下、 「共通パイロットチャネル信号」 という) Aを送信し、 アン テナ Bから共通パイロットチャネル信号 Bを送信する。 同時に、 基地局 1は、 通信端末 2に対して、 アンテナ Aから通信端末 2に対する個別チャネル信号 A を送信し、アンテナ Bから通信端末 2に対する個別チャネル信号 Bを送信する。 基地局 1において、 個別チャネル信号 Aと個別チャネル信号 Bには同一の拡 散符号が乗算されるので、 通信端末 2には、 個別チャネル信号 Aと個別チヤネ ル信号 Bとが、 分離できない 1つの信号として受信される。
一方、 基地局 1において、 共通パイロットチャネル信号 Aと共通パイロット チャネル信号 Bには、 異なる拡散符号を乗算される。 あるいは、 同一の拡散符 号を乗算されるても分離可能な何らかの方法が採られる。 従って、 通信端末 2 は、 共通パイロットチャネル信号 Aと共通パイロットチャネル信号 Bを分離す ることができる。 また、個別チャネル信号 Aと共通パイロットチャネル信号 A、 及び、 個別チャネル信号 Βと共通パイロットチャネル信号 Βは、 それぞれ同一 の伝播路を通って受信されるので、 共通パイロットチャネル信号 Αと共通パイ ロットチャネル信号 Bのチャネル推定を行えば、 個別チャネル信号 Aに対する 個別チャネル信号 Bの位相回転角を知ることができる。
図 2は、 従来の通信端末の構成を示すブロック図である。 図 2に示す通信端 末において、 アンテナ 1 1は基地局から送信された信号を受信し、 基地局に対 して信号を送信する。 共用器 1 2は送信と受信の時間帯を切り替える。 受信 R F部 1 3は、 共用器 1 2を通過した受信信号を増幅し、 ベースバンド信号に周 波数変換する。
逆拡散部 1 4は、 受信 R F部 1 3の出力信号に対し個別チャネル信号の拡散 符号で逆拡散して個別チャネル信号の変調信号を取り出す。 同様に、 逆拡散部 1 5は、 受信 R F部 1 3の出力信号に対し共通パイロットチャネル信号 Aの拡 散符号で逆拡散して共通パイロットチャネル信号 Aの変調信号を取り出す。 同 様に、 逆拡散部 1 6は、 受信 R F部 1 3の出力信号に対し共通パイロットチヤ ネル信号 Bの拡散符号で逆拡散して共通パイロットチヤネル信号 Bの変調信号 を取り出す。
チャネル推定部 1 7は、 逆拡散部 1 4から出力された個別チャネル信号の変 調信号中のパイロットシンボルを用いて伝播路の位相と振幅の推定 (いわゆる 「チャネル推定」 ) を行う。 なお、 以下の説明において、 推定された伝播路の 位相と振幅をチヤネル推定値という。
同様に、 チャネル推定部 1 8は、 逆拡散部 1 5から出力された共通パイロッ トチャネル信号 Aの変調信号中のパイロットシンボルを用いてチャネル推定を 行い、 チャネル推定部 1 9は、 逆拡散部 1 6から出力された共通パイロットチ ャネル信号 Bの変調信号中のパイロットシンボルを用いてチャネル推定を行う。 復調部 2 0は、 チャネル推定部 1 7から出力されたチャネル推定値に基づい て、 逆拡散部 1 4から出力された個別チャネル信号の変調信号を復調して受信 信号を取り出す。
位相回転制御部 2 1は、 チャネル推定部 1 8から出力された共通パイロット チャネル信号 Aとチャネル推定部 1 9から出力された共通パイロッ卜チャネル 信号 Bとの位相差に基づいて、 基地局に対して位相回転量を指示する位相回転 制御信号を生成する。
多重部 2 2は、 送信信号に位相回転制御部 2 1から出力された位相回転制御 信号を多重する。 変調部 2 3は、 多重部 2 2の出力信号に対して QP SK等の 一次変調処理を行う。 拡散部 24は、 変調部 2 3の出力信号に対して固有の拡 散符号を乗算して拡散する。 送信 RF部 2 5は、 拡散部 24の出力信号を無線 周波数に周波数変換して増幅し、 共用器 1 2を経由してアンテナ 1 1から無線 送信する。
次に、 個別チャネル信号の位相差 (5とチャネル推定部 1 7にて推定されるチ ャネル推定値との関係について、 図 3 A及び図 3 Bを用いて説明する。
図 3 Aは、 個別チャネル信号 Aと個別チャネル信号 Bとの位相差 δが、 一 9 0° ≤ <5<9 0° である場合における各チャネル推定値を示し、 図 3 Bは、 個 別チャネル信号 Aと個別チャネル信号 Bとの位相差 δが、 9 0 ° ≤ <5く2 7 0° である場合における各チャネル推定値を示す。
図 3 Α及び図 3 Βにおいて、 チャネル推定値 3(η)は、 個別チャネル信号 A のチャネル推定値 β a(n)と個別チャネル信号 Βのチャネル推定値 3 b(n)の合 成べクトルとして表される。 また、 i3b(n)を 1 8 0° 回転した値一 i3b(n)と i3 a(n)とを合成したチャネル推定値を ;3 '(η)で表す。
チャネル推定値 3(n)、 i3'(n)のべクトルが長いほど通信端末の受信電力が 高く、 受信品質が向上する。
図 3 Aに示すように、 個別チャネル信号 Aと個別チャネル信号 Bとの位相差 <5が、 一 90° ≤δ<90° である場合には、 3(η)が i3'(n)より大きくなる。 一方、 図 3 Bに示すように、 個別チャネル信号 Aと個別チャネル信号 Bとの位 相差 δ力 90° ≤ <5く 270 ° である場合には、 iS'(n)が 3(η)より大きく なる。
すなわち、 90° ≤δ<270° である場合、個別チャネル信号 Βを 180° 回転して送信することにより、 通信端末における受信電力が高めることができ る。
このように、 送信ダイバーシチを導入した無線通信システムにおいて、 通信 端末で共通パイロットチャネル信号 Αと共通パイロットチャネル信号 Bのチヤ ネル推定を行って位相回転量を制御し、 基地局側で位相回転制御量に基づいて 個別チヤネル信号 Bを適宜位相回転して送信することにより、 通信端末におけ る個別チャネル信号の受信電力を高めて受信品質の向上を図ることができる。 しかしながら、 基地局側において個別チャネル信号をスロットごとに適宜位 相回転すると通信端末における受信スロットが不連続になるため、 上記従来の 通信端末は、 チャネル推定値を複数のスロッ卜に渡って平均化することができ ず、 送信ダイバーシチを用いない場合に比べてチャネル推定値の信頼性が低く なるという問題を有する。 発明の開示
本発明の目的は、 送信ダイバ一シチを導入した無線通信システムにおいて、 チャネル推定値の信頼性を向上させることができる通信端末装置及びチャネル 推定方法を提供することである。
この目的は、 個別チャネル信号に対する共通パイロットチャネル信号の位相 回転量を推定し、 個別チャネル信号より送信電力が大きい共通パイロットチヤ ネル信号を用いてチャネル推定を行うことにより達成される。 図面の簡単な説明
図 1は、 送信ダイバーシチを用いた無線通信システムのシステム構成図、 図 2は、 従来の通信端末の構成を示すブロック図、
図 3 Aは、 位相回転量とチャネル推定値との関係を示す図、
図 3 Bは、 位相回転量とチャネル推定値との関係を示す図、
図 4は、 本発明の通信端末と無線通信を行う基地局の送信側の構成を示すブ ロック図、
図 5は、 本発明の実施の形態 1に係る通信端末の構成を示すプロック図、 図 6 Aは、 本発明の実施の形態 1に係るチャネル推定値の関係を示す図、 図 6 Bは、 本発明の実施の形態 1に係るチャネル推定値の関係を示す図、 図 7は、 本発明の実施の形態 2に係るチャネル推定値の関係を示す図、 図 8は、 本発明の実施の形態 2に係る通信端末の構成を示すプロック図、 図 9は、 本発明の実施の形態 3に係る通信端末の構成を示すブロック図、 及 び、
図 1 0は、 本発明の実施の形態 3に係る通信端末の複数チャネル推定値合成 部の内部構成を示すブロック図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態について、 添付図面を参照して詳細に説明する。 図 4は、 本発明の通信端末と無線通信を行う基地局の送信側の構成を示すブ 口ック図である。
図 4に示す基地局において、 変調部 1 0 1は、 送信信号に対して Q P S K等 の一次変調処理を行う。 変調部 1 0 2は、 共通パイロットチャネル信号 Aに対 して Q P S K等の一次変調処理を行う。 変調部 1 0 3は、 共通パイロットチヤ ネル信号 Bに対して Q P S K等の一次変調処理を行う。
拡散部 1 0 4は、 変調部 1 0 1の出力信号に対して固有の拡散符号を乗算し て拡散する。 拡散部 1 0 5は、 変調部 1 0 2の出力信号に対して固有の拡散符 号を乗算して拡散する。 拡散部 1 0 6は、 変調部 1 0 3の出力信号に対して固 有の拡散符号を乗算して拡散する。
位相回転部 1 0 7は、 通信端末から送信された信号に含まれる位相回転量を 指示する位相回転制御信号に基づいて、 拡散部 1 0 4の出力信号の位相を所定 量だけ回転させる。
多重部 1 0 8は、 拡散部 1 0 4の出力信号と拡散部 1 0 5の出力信号を多重 する。 多重部 1 0 9は、 位相回転部 1 0 7の出力信号と拡散部 1 0 6の出力信 号を多重する。
送信 R F部 1 1 0は、 多重部 1 0 8の出力信号を無線周波数に周波数変換し て増幅し、 アンテナ 1 1 2から無線送信する。 送信 R F部 1 1 1は、 多重部 1 0 9の出力信号を無線周波数に周波数変換して増幅し、 アンテナ 1 1 3から無 線送信する。
なお、 以下の説明において、 基地局の位相回転部 1 0 7における位相回転量 は、 「0 ° 」 と 「1 8 0 ° 」 との 2種類とする。
(実施の形態 1 )
実施の形態 1では、 基地局において個別チャネル信号 Aと個別チャネル信号 Bの振幅を変えずに送信する場合について説明する。
図 5は、 本発明の実施の形態 1に係る通信端末の構成を示すプロック図であ る。
図 5に示す通信端末において、 アンテナ 2 0 1は基地局から送信された信号 を受信し、 基地局に対する信号を送信する。 共用器 2 0 2は送信と受信の時間 帯を切り替える。 受信 R F部 2 0 3は、 共用器 2 0 2を通過した受信信号を増 幅し、 ベースバンド信号に周波数変換する。 逆拡散部 2 0 4は、 受信 R F部 2 0 3の出力信号に対し個別チャネル信号の 拡散符号で逆拡散して個別チャネル信号の変調信号を取り出す。 同様に、 逆拡 散部 2 0 5は、 受信 R F部 2 0 3の出力信号に対し共通パイロットチャネル信 号 Aの拡散符号で逆拡散して共通パイロットチャネル信号 Aの変調信号を取り 出す。 同様に、 逆拡散部 2 0 6は、 受信 R F部 2 0 3の出力信号に対し共通パ イロットチャネル信号 Bの拡散符号で逆拡散して共通パイロッ卜チャネル信号 Bの変調信号を取り出す。
チャネル推定部 2 0 7は、 逆拡散部 2 0 4から出力された個別チャネル信号 の変調信号中のパイロッ卜シンボルを用いて伝播路の位相と振幅の推定 (いわ ゆる 「チャネル推定」 ) を行う。
同様に、 チャネル推定部 2 0 8は、 逆拡散部 2 0 5から出力された共通パイ ロットチャネル信号 Aの変調信号中のパイロットシンボルを用いてチャネル推 定を行い、 チャネル推定部 2 0 9は、 逆拡散部 2 0 6から出力された共通パイ ロットチャネル信号 Bの変調信号中のパイロットシンボルを用いてチャネル推 定を行う。
位相回転量推定部 2 1 0は、 チャネル推定部 2 0 7、 2 0 8、 2 0 9から出 力されたチャネル推定値に基づいて位相回転量を推定する。 なお、 位相回転量 推定部 2 1 0における位相回転量の具体的な推定方法については後述する。 チャネル推定値合成部 2 1 1は、 位相回転量推定部 2 1 0にて推定された位 相回転量に基づいて共通パイロットチャネル信号のチャネル推定値を合成し、 最終的なチャネル推定値を出力する。 なお、 チャネル推定値合成部 2 1 1にお けるチャネル推定値の具体的な合成方法については後述する。
復調部 2 1 2は、 チャネル推定値合成部 2 1 1から出力されたチャネル推定 値に基づいて、 逆拡散部 2 0 4から出力された個別チャネル信号の変調信号を 復調して受信信号を取り出す。
位相回転制御部 2 1 3は、 チャネル推定部 2 0 8から出力された共通パイ口 ットチャネル信号 Aとチャネル推定部 209から出力された共通パイロットチ ャネル信号 Bとの位相差に基づいて、 基地局に対して位相回転量を指示する位 相回転制御信号を生成する。
本実施の形態の場合、 基地局の位相回転部 1 0 7における位相回転量は、 「0° 」 と 「1 80° 」 との 2種類であるから、 位相回転制御部 2 1 3は、 共 通パイロットチャネル信号 Aと共通パイロットチャネル信号 Bとの位相差 δ力 — 90° ≤δ<90° である場合、 位相回転量を 「0° 」 とし、 他の場合、 位 相回転量を 「1 80° 」 とする旨の位相回転制御信号を出力する。
多重部 2 14は、 送信信号に位相回転制御部 2 1 3から出力された位相回転 制御信号を多重する。 変調部 2 1 5は、 多重部 2 14の出力信号に対して QP SK等の一次変調処理を行う。 拡散部 216は、 変調部 2 1 5の出力信号に対 して固有の拡散符号を乗算して拡散する。 送信 RF部 2 1 7は、 拡散部 2 1 6 の出力信号を無線周波数に周波数変換して増幅し、 共用器 202を経由してァ ンテナ 20 1から無線送信する。
次に、 チャネル推定部 207、 208、 209にて推定されるチャネル推定 値の関係について、 図 6 Α及び図 6 Bを用いて説明する。
図 6 Aは、 位相回転量が 「0° 」 の場合における各チャネル推定値の関係を 示し、 図 6 Bは、 位相回転量が 「180° 」 の場合における各チャネル推定値 の関係を示す。
なお、 以下の説明において、 個別チャネル信号 Aのチャネル推定値を 3a(n) とし、 個別チャネル信号 Bのチャネル推定値を iSb(n)とする。 この場合、 個別 チャネル信号のチャネル推定値 3(n)は、 3a(n)と 3b(n)の合成べクトルとし て表される
また、 共通パイロットチャネル信号 Aのチャネル推定値を aa(n)とし、 共通 パイロットチャネル信号 Bのチャネル推定値を ab(n)とする。
図 6 Aに示すように位相回転量が 「0° 」 の場合、 個別チャネル信号 Aと共 通パイロットチャネル信号 Aの位相及び伝播路は等しいため、 i3a(n)のべクト ルと(ia(n)のべクトルとは同一の方向を向く。 同様に、 3b(n)のべクトルとひ b(n)のべクトルとは同一の方向を向く。
また、 基地局にて個別チャネル信号 Aと個別チャネル信号 Bの振幅を変えな い場合、 /3a(n)に対する aa(n)の振幅比と、 3b(n)に対する ab(n)の振幅比 は等しくなる。
よって、 個別チャネル信号のチャネル推定値 3(n)は、 aa(n)と ab(n)の合 成結果 α(η)と同一の方向を向く。
すなわち、 位相回転量が 「0° 」 の場合、 共通パイロットチャネル信号 Αの チャネル推定値と、 共通パイロットチャネル信号 Bのチャネル推定値を合成す ることによりチャネル推定することができる。
一方、 図 6 Bに示すように位相回転量が 「180° 」 の場合、 個別チャネル 信号 Bの位相は共通パイロットチャネル信号 Bに対して 1 80° 回転している ため、 3b(n)のベクトルと ab(n)のベクトルとは異なる方向を向く。 よって、 位相回転量が 「0° 」 の場合と異なり、 共通パイロットチャネル信号のチヤネ ル推定値の合成結果を用いてチャネル推定することはできない。
ところ力 ab(n)を 180 ° 回転させた値一 ab(n)のベクトルは、 i3b(n) のベクトルと同一の方向を向く。 よって、 3(η)は、 aa(n)と一 ab(n)の合成 結果 α'(η)と同一の方向を向く。
すなわち、 位相回転量が 「1 80° 」 の場合、 共通パイロットチャネル信号 Αのチャネル推定値と、 共通パイロットチャネル信号 Bのチャネル推定値を 1 80° 回転させた値とを合成することによりチャネル推定を行うことができる。 このように、 位相回転量を推定することができれば、 共通パイロットチヤネ ル信号のチャネル推定値に基づいてチャネル推定を行うことができる。そして、 共通パイロットチャネル信号は個別チャネル信号より送信電力が大きいので、 個別チャネル信号を用いるよりもチヤネル推定値の信頼性が高くなる。 以下、 位相回転量推定部 2 10における位相回転量の推定方法について説明 する。
2つのチャネル推定値が平行の場合、 一方のチャネル推定値と他方のチヤネ ル推定値の複素共役とは直交する。 そして、 2つのチャネル推定値の振幅は、 互いに直交するときに最小となる。
例えば、 位相回転量が 「0° 」 の場合、 上述のように、 個別チャネル信号の チャネル推定値 3(n)は、 共通パイロットチャネル信号のチャネル推定値の合 成結果ひ(n)と同一の方向を向くので、 jS(n)と α(η)の複素共役ひ *(n)とは直 交する。
この関係から、 位相回転量推定部 2 1 0は、 まず、 共通パイロットチャネル 信号 Aのチャネル推定値 aa(n)と、共通パイロットチャネル信号 Bのチャネル 推定値 ab(n)を Θだけ位相回転させた値との合成値ひ '(n)を以下に示す式 (1) により算出する。
a'(n)= aa(n) + expO'0)X ab(n) "- (1) そして、 位相回転量推定部 2 10は、 以下に示す式 (2) により、 予め定め られている各 Θの候補値(本実施形態の場合は、 0 = 0° 、 180° の 2種類) について振幅 X (のを算出し、 X ( が最小となつた候補値を位相回転量 0とし て推定し、 位相回転量 Θをチャネル推定値合成部 2 1 1に出力する。
X(の =Re[o;'*(n)]XRe[i3(n)]+Im[a'*(n)]XIni[3(n)] ··· (2) ここで、 ( · ) *は複素共役を、 Re[']は実部を、 Im[']は虚部をそれぞれ示 す。
なお、 通信端末は、 基地局に送信した位相回転制御信号を知っているので、 位相回転量推定部 2 10は、 まず、 最初に位相回転制御信号を用いて X(のを 評価し、 X(0)が閾値よりも小さい場合に、 当該 0を位相回転量 0と推定して もよい。 これにより、 1度の演算で位相回転量を推定することができる可能性 が高いので、 位相回転量の推定時間を短縮することができる。 次に、 チャネル推定値合成部 2 1 1におけるチャネル推定値の算出方法につ いて説明する。
チャネル推定値合成部 2 1 1は、 チャネル推定部 207から個別チャネル信 号のチャネル推定値 /3(η)を、 チャネル推定部 208から共通パイロッ卜チヤ ネル信号 Aのチャネル推定値 Q!a(n)を、 チャネル推定部 209から共通パイ口 ットチャネル信号 Bのチャネル推定値 ab(n)を、位相回転量推定部 2 1 0から 位相回転量 Θをそれぞれ入力する。
そして、 以下に示す式 (3) により、 最終的なチャネル推定値 ξ(η)を算出 して復調部 2 12に出力する。
(n)= o;a(n)十 exp(j0)x ab(n)+ 3(η) ·'· (3) このように、 共通パイロットチャネル信号は個別チャネル信号より送信電力 が大きいことから、 位相回転量、 及び、 共通パイロットチャネル信号のチヤネ ル推定値に基づいてチャネル推定を行うことにより、 チャネル推定値の信頼性 を向上させることができる。
(実施の形態 2)
実施の形態 2では、 基地局において個別チャネル信号 Αと個別チャネル信号 Bの振幅を変えて送信する場合について説明する。
以下、 本実施の形態におけるチャネル推定値の関係について、 図 7を用いて 説明する。
基地局にて個別チャネル信号 Bの振幅を個別チャネル信号 Aの a倍 (以下、 この aを 「振幅係数」 という) とした場合、 /3a(n)に対する aa(n)の振幅比を kとすると、 3b(n)に対する ab(n)の振幅比は (k X a) となる。
この場合、 図 7に示すように、 個別チャネル信号のチャネル推定値 3(n)と、 共通パイロットチャネル信号 Aと共通パイロットチャネル信号 Bのチャネル推 定値の合成値 α(η)は同一方向を向かない。
よって、 基地局において個別チャネル信号 Αと個別チャネル信号 Βの振幅を 変えて送信する場合、 チャネル推定のために α(η)をそのまま用いることはで きず、 振幅係数 aを考慮する必要がある。
図 8は、 本発明の実施の形態 2に係る通信端末の構成を示すブロック図であ る。 なお、 図 8に示す通信端末において、 図 5に示した通信端末と共通する構 成部分に関しては、 図 5と同一符号を付して説明を省略する。
図 8に示す通信端末は、 図 5に示した通信端末に対して、 位相回転量推定部 2 1 0の代りに、 振幅 Ζ位相回転量推定部 301を追加した構成を採る。
振幅 Ζ位相回転量推定部 30 1は、 まず、 共通パイロットチャネル信号 Αの チャネル推定値ひ a(n)と、 共通パイロットチャネル信号 Bのチャネル推定値 α b(n)を Sだけ位相回転させた値との合成値 α'(η)を以下に示す式 (4) により 算出する。
α'(η)=ひ a(n)+ a Xexp(j0)xひ b(n) … (4) そして、 振幅 Z位相回転量推定部 301は、 以下に示す式 (5) により、 予 め定められている各 Sの候補値 (本実施形態の場合は、 0 = 0° 、 180° の 2種類) 、 及び、 予め定められている各振幅係数 aの候補値 (例えば、 a =0.5、 1.0、 2.0等) について振幅 X(a, を算出し、 X( が最小となった候補値の組 合せを振幅係数 a及び位相回転量 0として推定し、 振幅係数 a及び位相回転量 0をチャネル推定値合成部 2 1 1に出力する。
X(a, 0) = Re[a'*(n)]XRe[i3(n)] + Im[a'*(n)]XIm[/3(n)]--- (5) チャネル推定値合成部 2 1 1は、 チャネル推定部 207から個別チャネル信 号のチャネル推定値 j3(n)を、 チャネル推定部 208から共通パイロットチヤ ネル信号 Aのチャネル推定値 aa(n)を、 チャネル推定部 209から共通パイ口 ットチャネル信号 Bのチャネル推定値 ab(n)を、振幅 Z位相回転量推定部 30 1から振幅係数 a及び位相回転量 0をそれぞれ入力する。
そして、 以下に示す式 (6) により、 最終的なチャネル推定値 ξ(η)を算出 して復調部 2 1 2に出力する。 ς (n)= aa(n)+ a Xexp(j0)X ab(n)+ 3(n) … (6) このように、 振幅係数、 位相回転量、 及び、 共通パイロットチャネル信号の チャネル推定値に基づいてチャネル推定を行うことにより、 基地局側で個別チ ャネル信号の振幅を変えて送信する場合でもチヤネル推定値の信頼性を向上さ せることができる。
(実施の形態 3)
フエ一ジングの最大ドッブラ周波数が低く、 フェージング変動が緩やかな場 合、フェージング推定値を複数の受信スロッ卜に渡って平均化することにより、 チャネル推定値の信頼度を向上させることができる。
しかしながら、 上述したように、 無線通信システムに送信ダイバーシチを導 入した場合、 受信スロットが不連続になるため、 チャネル推定値を複数のスロ ッ卜に渡って平均化することができない。
実施の形態 3は、 この問題の解決を図るためのものであり、 送信ダイバーシ チを導入し、 複数スロッ卜に渡ってチャネル推定値を合成する場合について説 明する。
図 9は、 本発明の実施の形態 3に係る通信端末の構成を示すプロック図であ る。 なお、 図 9に示す通信端末において、 図 5に示した通信端末と共通する構 成部分に関しては、 図 5と同一符号を付して説明を省略する。
図 9に示す通信端末は、 図 5に示した通信端末に対して、 複数チャネル推定 値合成部 40 1を追加した構成を採る。
そして、 図 1 0は、 複数チャネル推定値合成部 40 1の内音構成を示すプロ ック図である。
図 1 0において、 遅延回路 5 0 1には現在の時刻(n)のチャネル推定値が格 納され、 遅延回路 5 0 2には 1スロット前の時刻(n— 1)のチャネル推定値が 格納される。
また、 遅延回路 5 0 3には現在の時刻(n)の位相回転量が格納され、 遅延回 路 5 0 4には 1スロッ卜前の時刻(n _ 1 )の位相回転量が格納される。 そして、 加算回路 5 0 5にて、時刻(n)の位相回転量と時刻(n - 1 )の位相回転量の差分 が算出される。
位相回転回路 5 0 6では、 遅延回路 5 0 2から出力された時刻(n— 1 )のチ ャネル推定値に対して、 加算回路 5 0 5の算出結果に基づいて時刻(η— 1 )か ら時刻(η )に渡る位相回転量を補正する。
そして、 合成回路 5 0 7にて、 位相回転回路 5 0 6から出力された補正後の 時刻(η— 1 )のチャネル推定値と、遅延回路 5 0 2から出力された時刻(η)のチ ャネル推定値とを合成する。
このように、 1スロット前の時刻のチャネル推定値を補正し、 この補正結果 と現在の時刻のチャネル推定値とを合成することにより、 複数スロッ卜に渡つ てチヤネル推定値を合成することができ、 チヤネル推定値の信頼性を向上させ ることができる。
なお、 本実施の形態では、 1スロット前の時刻のチャネル推定値を補正して 現在の時刻のチャネル推定値とを合成する場合について説明したが、本発明は、 1スロット前に限られず、 どの前受信スロットであっても同様の補正処理を行 つて、 現在の時刻のチャネル推定値と合成することができる。
なお、 実施の形態 3は実施の形態 2と組み合わせることができ、 基地局側で 個別チャネル信号の振幅を変えて送信する場合でも、 複数スロッ卜に渡ってチ ャネル推定値を合成することができる。
以上説明したように、本発明の通信端末装置及びチャネル推定方法によれば、 共通パイロットチャネル信号のチャネル推定値等を利用することにより、 送信 ダイバ一シチを用いる無線通信システムにおいて、 チヤネル推定値の信頼性を 向上させることができる。
本明細書は、 1 9 9 9年 8月 2 7日出願の特願平 1 1— 2 4 1 6 2 1に基づ くものである。 この内容をここに含めておく。 産業上の利用可能性
本発明は、 C D M A方式の無線通信システムに用いるのに好適である。

Claims

請 求 の 範 囲
1 . 基地局装置の第 1アンテナにおける共通パイロットチャネルを推定して第 1推定値を出力する第 1チャネル推定手段と、 基地局装置の第 2アンテナにお ける共通パイロッ卜チャネルを推定して第 2推定値を出力する第 2チャネル推 定手段と、 個別チャネルを推定して第 3推定値を出力する第 3チャネル推定手 段と、 前記第 1推定値、 前記第 2推定値及び前記第 3推定値の関係に基づいて 第 2アンテナにおける個別チャネルの位相回転量を推定する位相回転量推定手 段と、 前記位相回転量だけ前記第 2推定値を回転した値と前記第 1推定値とを 合成して合成推定値を出力するチャネル推定値合成手段とを具備する通信端末
2 . 位相回転量推定手段は、 候補位相回転量だけ第 2推定値を回転した値と第 1推定値とを合成して第 1合成値を算出し、 前記候補位相回転量の中で、 前記 第 1合成値と第 3推定値の直交性が最も高いものを第 2アンテナにおける個別 チャネルの位相回転量と推定し、 チャネル推定値合成手段は、 前記位相回転量 だけ前記第 2推定値を回転した値と前記第 1推定値とを合成して合成推定値を 出力する請求の範囲 1記載の通信端末装置。
3 . 位相回転量推定手段は、 候補位相回転量だけ第 2推定値を回転して候補振 幅係数を乗算した値と第 1推定値とを合成して第 1合成値を算出し、 前記候補 位相回転量及び候補振幅係数の組み合わせの中で、 前記第 1合成値と第 3推定 値の直交性が最も高いものを第 2アンテナにおける個別チャネルの位相回転量 及び振幅係数と推定し、 チャネル推定値合成手段は、 前記位相回転量だけ前記 第 2推定値を回転した値に前記振幅係数を乗算した値と前記第 1推定値とを合 成して合成推定値を出力する請求の範囲 1記載の通信端末装置。
4 . 前受信スロッ卜の合成推定値に対して位相回転量を補正した値と現在の合 成推定値とを合成する複数チャネル推定値合成手段を具備する請求の範囲 1記 載の通信端末装置。
5 . 請求の範囲 1記載の通信端末装置と送信ダイバーシチにより無線通信を行 う基地局装置。
6 . 基地局装置の第 1アンテナにおける共通パイロットチャネルを推定して第 1推定値を算出し、 第 2アンテナにおける共通パイロットチャネルを推定して 第 2推定値を算出し、 個別チャネルを推定して第 3推定値を算出し、 候補位相 回転量だけ第 2推定値を回転した値と第 1推定値とを合成して第 1合成値を算 出し、 前記候補位相回転量の中で、 前記第 1合成値と第 3推定値の直交性が最 も高いものを第 2アンテナにおける個別チャネルの位相回転量と推定し、 この 位相回転量だけ前記第 2推定値を回転した値と前記第 1推定値とを合成して合 成推定値を出力するチャネル推定方法。
7 . 基地局装置の第 1アンテナにおける共通パイロットチャネルを推定して第 1推定値を算出し、 第 2アンテナにおける共通パイロットチャネルを推定して 第 2推定値を算出し、 個別チャネルを推定して第 3推定値を算出し、 候補位相 回転量だけ第 2推定値を回転して候補振幅係数を乗算した値と第 1推定値とを 合成して第 1合成値を算出し、 前記候補位相回転量及び候補振幅係数の組み合 わせの中で、 前記第 1合成値と第 3推定値の直交性が最も高いものを第 2アン テナにおける個別チャネルの位相回転量及び振幅係数と推定し、 前記位相回転 量だけ前記第 2推定値を回転した値に前記振幅係数を乗算した値と前記第 1推 定値とを合成して合成推定値を出力するチャネル推定方法。
8 . 前受信スロットの合成推定値に対して位相回転量を補正した値と現在の合 成推定値とを合成する請求の範囲 6記載のチャネル推定方法。
PCT/JP2000/005622 1999-08-27 2000-08-23 Terminal de communication et methode d'estimation de canal WO2001017130A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU67256/00A AU6725600A (en) 1999-08-27 2000-08-23 Communication terminal device and channel estimating method
EP20000954909 EP1133072A1 (en) 1999-08-27 2000-08-23 Communication terminal device and channel estimating method
US09/807,287 US7002939B1 (en) 1999-08-27 2000-08-23 Communication terminal device and channel estimating method
BR0007040A BR0007040A (pt) 1999-08-27 2000-08-23 Aparelho terminal de comunicação e método de estimativa de canal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/241621 1999-08-27
JP24162199A JP3732364B2 (ja) 1999-08-27 1999-08-27 通信端末装置及びチャネル推定方法

Publications (1)

Publication Number Publication Date
WO2001017130A1 true WO2001017130A1 (fr) 2001-03-08

Family

ID=17077054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/005622 WO2001017130A1 (fr) 1999-08-27 2000-08-23 Terminal de communication et methode d'estimation de canal

Country Status (8)

Country Link
US (1) US7002939B1 (ja)
EP (1) EP1133072A1 (ja)
JP (1) JP3732364B2 (ja)
KR (1) KR100383782B1 (ja)
CN (1) CN1131607C (ja)
AU (1) AU6725600A (ja)
BR (1) BR0007040A (ja)
WO (1) WO2001017130A1 (ja)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001168777A (ja) * 1999-12-06 2001-06-22 Matsushita Electric Ind Co Ltd 通信端末装置及び無線通信方法
JP2001326586A (ja) 2000-05-17 2001-11-22 Nec Corp Cdma通信システム及びそれに用いるチャネル推定方法
US6839326B1 (en) * 2000-09-26 2005-01-04 Nokia Corporation Antenna phase estimation algorithm for WCDMA closed loop transmitter antenna diversity system
FR2825551B1 (fr) * 2001-05-30 2003-09-19 Wavecom Sa Procede d'estimation de la fonction de transfert d'un canal de transmission d'un signal multiporteuse, procede de reception d'un signal numerique, et recepteur d'un signal multiporteuse correspondants
US7149258B2 (en) * 2001-11-28 2006-12-12 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for estimation of phase offset between communication channels
FI20021554A (fi) * 2001-12-28 2003-06-29 Nokia Corp Menetelmä kanavan estimoimiseksi ja radiojärjestelmä
JP3642483B2 (ja) 2002-01-09 2005-04-27 日本電気株式会社 無線移動局及びそれを備える無線通信システム
JP3987738B2 (ja) * 2002-03-05 2007-10-10 株式会社エヌ・ティ・ティ・ドコモ 移動通信システムにおけるチャネル構成方法、無線基地局、移動局及び移動通信システム
DE10250861B4 (de) * 2002-10-31 2007-01-04 Infineon Technologies Ag Verfahren und Vorrichtungen zur Detektion des TX-Diversity-Modes für Mobilfunkempfänger
FR2849970A1 (fr) * 2003-01-10 2004-07-16 Thomson Licensing Sa Systeme de mesure de qualite de reception en diversite
US7236540B2 (en) * 2003-06-10 2007-06-26 Telefonaktiebolaget Lm Ericsson (Publ) Channel estimation in a transmission diversity system
WO2005027353A2 (en) * 2003-09-12 2005-03-24 Ems Technologies Canada, Ltd. Hybrid frequency offset estimator
US7649952B1 (en) * 2004-07-01 2010-01-19 Regents Of The University Of Minnesota Low complexity soft demapping
US7319868B2 (en) 2004-09-27 2008-01-15 Telefonktiebolaget Lm Ericsson (Publ) Derivation of optimal antenna weights during soft handover
KR100672572B1 (ko) * 2004-10-14 2007-01-24 엘지전자 주식회사 전자 레인지 및 그 제어 방법
KR100672455B1 (ko) * 2004-10-14 2007-01-24 엘지전자 주식회사 전자 레인지
KR100672456B1 (ko) * 2004-10-14 2007-01-24 엘지전자 주식회사 전자 레인지
US20060140289A1 (en) * 2004-12-27 2006-06-29 Mandyam Giridhar D Method and apparatus for providing an efficient pilot scheme for channel estimation
ATE545214T1 (de) 2005-09-01 2012-02-15 Sharp Kk Übertragungssteuerungsverfahren
CN101346919B (zh) 2005-10-31 2013-01-30 夏普株式会社 无线发射机、无线通信系统及无线发送方法
EA018436B1 (ru) 2005-10-31 2013-08-30 Шарп Кабусики Кайся Беспроводное передающее устройство
JP4737532B2 (ja) * 2005-12-14 2011-08-03 株式会社豊田中央研究所 受信装置
PL2120365T3 (pl) 2005-12-20 2012-09-28 Huawei Tech Co Ltd Sposób sterowania transmisją, stacja bazowa, jednostka mobilna oraz system komunikacyjny do dywersyfikacji opóźnienia
JP4658146B2 (ja) * 2005-12-26 2011-03-23 シャープ株式会社 無線送信機及び無線送信方法
KR20070090800A (ko) * 2006-03-03 2007-09-06 삼성전자주식회사 무선통신시스템에서 채널 추정 장치 및 방법
GB0615068D0 (en) * 2006-07-28 2006-09-06 Ttp Communications Ltd Digital radio systems
US20100311343A1 (en) * 2009-06-07 2010-12-09 Arvind Vijay Keerthi Hierarchical modulation for accurate channel sounding
JP5657513B2 (ja) * 2011-12-26 2015-01-21 日本電信電話株式会社 無線通信システム
JP5657514B2 (ja) * 2011-12-26 2015-01-21 日本電信電話株式会社 無線通信システム
JP2014204305A (ja) * 2013-04-05 2014-10-27 株式会社Nttドコモ 無線通信システム、無線基地局装置、およびユーザ装置
EP3195544A1 (en) * 2014-09-18 2017-07-26 Telefonaktiebolaget LM Ericsson (publ) Frequency estimation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650641A (en) * 1979-10-01 1981-05-07 Nippon Telegr & Teleph Corp <Ntt> Mobile communication system
JPS5887928A (ja) * 1981-11-20 1983-05-25 Nippon Telegr & Teleph Corp <Ntt> スペ−スダイバ−シチ方式
JPH01305729A (ja) * 1988-06-03 1989-12-11 Nec Corp 無線通信装置
JPH04100327A (ja) * 1990-07-06 1992-04-02 Nippon Telegr & Teleph Corp <Ntt> 複局同時送信方式
JPH10190537A (ja) * 1998-02-02 1998-07-21 Nec Corp Fdd/cdma送受信システム
JPH11220778A (ja) * 1997-11-03 1999-08-10 Nokia Mobile Phones Ltd チャネル推定方法及び信号受信回路
JP2000151465A (ja) * 1998-11-11 2000-05-30 Matsushita Electric Ind Co Ltd 無線通信装置及び無線通信方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5619503A (en) * 1994-01-11 1997-04-08 Ericsson Inc. Cellular/satellite communications system with improved frequency re-use
JP2876517B2 (ja) * 1994-02-16 1999-03-31 松下電器産業株式会社 Cdma/tdd方式基地局装置およびcdma/tdd方式移動局装置およびcdma/tdd方式無線通信システムおよびcdma/tdd方式無線通信方法
CN1092431C (zh) * 1995-11-29 2002-10-09 Ntt移动通信网株式会社 分集接收机及其控制方法
US5809020A (en) * 1996-03-18 1998-09-15 Motorola, Inc. Method for adaptively adjusting weighting coefficients in a cDMA radio receiver
JP3377389B2 (ja) * 1997-01-10 2003-02-17 株式会社鷹山 スペクトラム拡散無線通信方式における信号受信方法および装置
US6456647B1 (en) * 1998-12-16 2002-09-24 Lsi Logic Corporation Two step signal recovery scheme for a receiver
US6201843B1 (en) * 1999-02-25 2001-03-13 L-3 Communications, Inc. Rapid acquisition dispersive channel receiver integrated circuit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650641A (en) * 1979-10-01 1981-05-07 Nippon Telegr & Teleph Corp <Ntt> Mobile communication system
JPS5887928A (ja) * 1981-11-20 1983-05-25 Nippon Telegr & Teleph Corp <Ntt> スペ−スダイバ−シチ方式
JPH01305729A (ja) * 1988-06-03 1989-12-11 Nec Corp 無線通信装置
JPH04100327A (ja) * 1990-07-06 1992-04-02 Nippon Telegr & Teleph Corp <Ntt> 複局同時送信方式
JPH11220778A (ja) * 1997-11-03 1999-08-10 Nokia Mobile Phones Ltd チャネル推定方法及び信号受信回路
JPH10190537A (ja) * 1998-02-02 1998-07-21 Nec Corp Fdd/cdma送受信システム
JP2000151465A (ja) * 1998-11-11 2000-05-30 Matsushita Electric Ind Co Ltd 無線通信装置及び無線通信方法

Also Published As

Publication number Publication date
AU6725600A (en) 2001-03-26
CN1131607C (zh) 2003-12-17
CN1320308A (zh) 2001-10-31
KR20010099752A (ko) 2001-11-09
JP3732364B2 (ja) 2006-01-05
JP2001069050A (ja) 2001-03-16
KR100383782B1 (ko) 2003-05-16
US7002939B1 (en) 2006-02-21
BR0007040A (pt) 2001-07-17
EP1133072A1 (en) 2001-09-12

Similar Documents

Publication Publication Date Title
WO2001017130A1 (fr) Terminal de communication et methode d&#39;estimation de canal
JP4472190B2 (ja) ダイバーシチ手法を利用する方法およびシステム
US8559402B2 (en) Method and system for channel estimation in a spatial multiplexing MIMO system
US7046978B2 (en) Method and apparatus for transmit pre-correction in wireless communications
JP5203240B2 (ja) 受信局及び送信局、無線通信システム、並びに無線通信方法
US7340248B2 (en) Calibration apparatus
US7158579B2 (en) Diversity transmitter and diversity transmission method
US20050136980A1 (en) Transceiver for a base station with smart antenna and a switched beamforming method in downlink
JPH11266228A (ja) 無線基地局のマルチビームアンテナシステム
JP2001044900A (ja) 複数の送信アンテナを有し開ループおよび閉ループ送信ダイバーシチを結合する無線システム
JP2006287757A (ja) 下りリンクチャネル用の送信装置及び送信方法
WO2008041677A1 (fr) Dispositif de station de base
KR20020015668A (ko) 공간-시간 전송 다이버시티를 사용하여 이동 cdma통신을 향상시키기 위한 방법
JP2004517547A (ja) 適応アンテナシステムのパラメータ推定
JP4625017B2 (ja) 基地局、無線回線制御局及び無線通信方法
US9197302B2 (en) MIMO communication method
JP2003018081A (ja) 移動無線端末
US7418067B1 (en) Processing diversity signals at a mobile device using phase adjustments
WO2007037151A1 (ja) 移動機、移動通信システム及びアンテナベリフィケーション方法
JP3628247B2 (ja) 信号復調方法および受信装置
JP2003283462A (ja) マルチキャリアcdma受信装置
US7289470B2 (en) Method and apparatus of performing handoff
CN101151767A (zh) 天线自适应方法、通信终端、设备、模块和计算机程序产品
JPH0243385B2 (ja)
JP2004208200A (ja) 無線受信装置およびアンテナベリフィケーション方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00801638.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 09807287

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000954909

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020017005208

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2000954909

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017005208

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 1020017005208

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 2000954909

Country of ref document: EP