WO2001016968A1 - Sheet capable of absorbing heat and electromagnetic radiation - Google Patents

Sheet capable of absorbing heat and electromagnetic radiation Download PDF

Info

Publication number
WO2001016968A1
WO2001016968A1 PCT/JP2000/005641 JP0005641W WO0116968A1 WO 2001016968 A1 WO2001016968 A1 WO 2001016968A1 JP 0005641 W JP0005641 W JP 0005641W WO 0116968 A1 WO0116968 A1 WO 0116968A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive sheet
sheet
radio wave
soft magnetic
absorbing heat
Prior art date
Application number
PCT/JP2000/005641
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuji Nakayama
Makoto Ishikura
Junji Konda
Hiroaki Ono
Manabu Teranishi
Original Assignee
Fdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fdk Corporation filed Critical Fdk Corporation
Publication of WO2001016968A1 publication Critical patent/WO2001016968A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0083Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive non-fibrous particles embedded in an electrically insulating supporting structure, e.g. powder, flakes, whiskers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a radio wave absorbing heat conductive sheet, and more specifically, to an improvement in a structure for removing heat and noise in an electronic circuit.
  • an insulating soft magnetic layer is laminated on the surface of a conductive support as shown in Japanese Patent Application Laid-Open No.
  • a radio wave absorber having a structure in which a dielectric layer is formed on the surface of a conductive magnetic layer.
  • the insulating soft magnetic layer is obtained by hardening the soft magnetic powder with an organic binder. This radio wave absorber is placed on a semiconductor device or the like that is subject to noise suppression.
  • a silica fine powder of 10 to 90% by weight having an average particle diameter of 0.1 to 50% is used. Containing 40 to 90% by weight of a thermally conductive filler composed of 90 to 10% by weight of alumina fine powder having an average particle size of 0.1 to 5m (excluding 5m).
  • a thermally conductive silicone rubber composition formed by the heat treatment. Then, the silicone rubber obtained by curing the composition by an addition reaction curing type or condensation reaction curing type curing mechanism is attached to a semiconductor element or the like to be subjected to a heat radiation measure.
  • the inventions disclosed in Japanese Patent Application Laid-Open No. Hei 7-212 979 and Japanese Patent Application Laid-Open No. Hei 9-111 1124 are applicable to both measures against radiated noise and in-machine failure and measures against heat radiation of semiconductor elements. It was not an invention that would take optimal measures.
  • the invention of Japanese Patent Application Laid-Open No. Hei 7-212,799 can reduce noise, but does not have sufficient heat conductivity, and can be mounted on a semiconductor device that requires heat radiation measures such as CPU. Have difficulty.
  • the filler in the silicone is not a substance contributing to radio wave absorption, and it is not expected to reduce radiation noise due to radio wave absorption.
  • the present invention has been made in view of the above background, and has as its object to solve the above-described problems, to provide a radio wave absorbing property required as a noise countermeasure for a semiconductor device, and to generate a semiconductor device such as a semiconductor device.
  • An object of the present invention is to provide a radio wave absorbing heat conductive sheet having both properties of high heat conductivity that absorbs heat and guides the heat to the outside.
  • the radio wave absorbing heat conductive sheet according to the present invention is constituted by a soft sheet formed by mixing a soft magnetic powder with a silicone resin.
  • the soft magnetic powder filled in the silicone resin allows a high complex magnetic permeability ('-j ⁇ ') to be obtained in a wide frequency band from DC to 20 GHz.
  • the imaginary part (;) of the complex permeability becomes large.
  • the imaginary term " of the complex permeability is proportional to the resistance component (R) of the high-frequency impedance, and electromagnetic energy is easily converted to heat as the imaginary term ( ⁇ ) increases. The conversion absorbs radio noise.
  • silicone-based resins have higher thermal conductivity and heat resistance than other resins, but by mixing with soft magnetic powders having higher thermal conductivity than organic substances, This sheet has a higher thermal conductivity than the silicone resin alone.
  • the radio wave absorbing heat conductive sheet of the present invention when the radio wave absorbing heat conductive sheet of the present invention is brought into contact with the surface of a target article such as a semiconductor device, the heat generated from the target article is absorbed by the radio wave absorbing heat conductive sheet, heat is conducted inside the sheet, and the heat is transferred. Released outside. And, if the radio wave absorbing heat conductive sheet of the present invention is interposed between the heat radiating component such as a heat sink and the target article, the heat generated from the target article can be efficiently transmitted to the heat radiating component, and the heat radiating effect is improved. improves.
  • radio wave noise emitted from the target article is absorbed in the radio wave absorption and heat conduction sheet, it does not leak out and does not reflect internally.
  • radio wave noise from the outside is also absorbed by the radio wave absorbing heat conductive sheet, so that the noise is suppressed from entering the target article.
  • the radio wave absorbing heat conductive sheet of the present invention is made to be a soft sheet, when the radio wave absorbing heat conductive sheet of the present invention is brought into contact with the surface of the object by being pressed relatively, the surface of the soft sheet (adhesion) Surface) is also deformed and adheres without gaps. Therefore, the heat resistance at the contact surface is small, and the above-described measures for heat dissipation accompanying heat absorption are more remarkably exhibited. The same can be said for the absorption of radio noise.
  • the soft magnetic powder at least one of a ferrite soft magnetic powder and a metal soft magnetic powder can be used. With this configuration, the thermal conductivity is improved.
  • the volume resistivity is as high as 10 ⁇ ⁇ cm or more, which is effective when insulating properties are required. Become smaller.
  • the volume resistivity is lower than that of ferrite-based soft magnetic powder, and the reflection of radio waves increases. Therefore, an appropriate material is selected according to the required specifications and the like.
  • the metal-based soft magnetic powder is at least one of permalloy, sendust, gay steel, permendur, pure iron, and magnetic stainless steel. Is composed of a spherical or flat particle shape.
  • the radio wave absorbing heat conductive sheet is further improved in a predetermined frequency band.
  • the imaginary term ( ⁇ ⁇ ) of the complex magnetic permeability can be shown.
  • the flattened metal soft magnetic powder is oriented in the surface direction of the sheet to suppress the effect of the demagnetizing field in the surface direction, and the imaginary number of high complex permeability at a given frequency The term ( ⁇ ) is obtained.
  • the surface of the flexible sheet has tackiness.
  • the silicone resin itself can be mounted on the surface of the target article without using an adhesive due to its own adhesiveness.
  • the radio wave absorbing heat conductive sheet can be brought into direct contact with the target article on the circuit board, which is a noise transmission source, so that noise absorption is improved.
  • the flexible sheet may be provided on both sides or one side of the conductive sheet.
  • the conductive sheet enhances the shielding effect of radio waves, and is effective when shielding radiated noise to prevent leakage to the outside.
  • the shielding effect can be obtained by using only the conductive sheet, there are problems such as the reflection of radio waves becoming large and the reflected wave adversely affecting the target article, and radiation noise from the target article being re-emitted by the conductive sheet. cause.
  • the conductive sheet is made of, for example, a metal foil, a metal mesh, a metal-coated resin mesh, a conductive nonwoven fabric, a conductive woven fabric, a resin mixed with a conductive powder (carbon powder, metal powder, or the like).
  • the conductive sheet is made of a soft magnetic metal. With this configuration, the shielding property in a low frequency band (1 MHz or less) is improved by the conductive sheet in the above-described radio wave absorbing heat conductive sheet.
  • the soft sheet may be mixed with a non-magnetic inorganic powder. It is good to configure.
  • a non-magnetic inorganic powder for example, A l 2 ⁇ 3, Z N_ ⁇ , there are M n O, etc., since the non-magnetic inorganic powder is provided with a high heat transfer electrical resistance as compared with a silicone resin, these When mixed with the electromagnetic wave absorbing heat conductive sheet, the thermal conductivity of the electromagnetic wave absorbing heat conductive sheet is improved.
  • a “soft sheet” is a sheet that is elastically deformed when pressed against the surface of a target article, and has such a softness that the sheet surface is deformed into a shape along the surface shape of the target article. Then, it is not always necessary to have an elastic restoring force to return to the original sheet shape when separated from the target article. And, as an example, when evaluated in terms of rubber hardness, those having a hardness of 50 or less correspond. Of course, the rubber hardness is a standard, and any rubber having a higher hardness may have the above-mentioned properties.
  • FIG. 1 is a perspective view showing a first embodiment of a radio wave absorbing heat conductive sheet according to the present invention
  • FIG. 2 (a) is a second embodiment of a radio wave absorbing heat conductive sheet according to the present invention.
  • FIG. 2 (b) is a front view showing a second embodiment of the radio wave absorbing heat conductive sheet according to the present invention
  • FIG. 3 is an implementation view of the radio wave absorbing heat conductive sheet according to the present invention.
  • FIG. 4 is a front view showing a state in which the form is mounted on an electronic circuit
  • FIG. 4 is a cross-sectional view showing a state in which the embodiment of the radio wave absorbing heat conductive sheet according to the present invention is mounted on another electronic circuit
  • FIG. 6 is a view showing a part of the results of an experiment conducted to determine an optimum component for the embodiment of the radio wave absorbing heat conducting sheet according to the present invention.
  • FIG. 10 is a diagram illustrating a part of results of another experiment performed in order to obtain an optimal component.
  • FIG. 1 shows a first embodiment of a radio wave absorbing heat conductive sheet according to the present invention.
  • the radio wave absorbing heat conductive sheet 1 of the present embodiment has It is composed of a flexible sheet 1a composed of a flat sheet piece.
  • the soft sheet 1a is formed by mixing a soft magnetic powder with a liquid silicone resin.
  • the soft magnetic powder either a ferrite soft magnetic powder or a metal soft magnetic powder may be used, or a mixture of both may be used.
  • Various types such as Zn-based ferrite, Ni-based ferrite, and Mg- ⁇ -based ferrite can be used. It is preferable to use Ni-based ferrite because heat conduction is best.
  • the mixing ratio of the soft magnetic powder to 100 parts by weight of the liquid silicone resin may be adjusted in the range of 100 parts by weight to 900 parts by weight.
  • the mixing amount of the soft magnetic powder is from 200 parts by weight to 400 parts by weight.
  • it may be mixed with non-magnetic inorganic powders such high A 1 2 ⁇ 3 thermal conductivity for the purpose of improving the thermal conductivity.
  • the non-magnetic inorganic powder is not limited to A 1 2 0 3, high zinc oxide thermal conductivity may be used oxide powder and gold Shokukotai such copper oxide.
  • the surface of the flexible sheet 1a is made to have a sticky tackiness.
  • it can be formed by selecting a silicone resin having viscosity after curing, or by adjusting the amount of a curing agent (vulcanizing agent) added.
  • the radio wave absorbing heat conductive sheet 1 having such components has a rubber hardness of 50 or less, a heat conductivity of 0.5 wZm 'k or more, and a heat resistant temperature of 150 or more. Can be.
  • FIG. 2 shows a second embodiment of the present invention.
  • the soft sheet 1a is attached so as to sandwich the conductive sheet 1b such as a metal foil or a metal mesh from both sides.
  • the conductive sheet 1b such as a metal foil or a metal mesh from both sides.
  • conductive sheet lb in addition to the above, conductive non-woven fabric, conductive woven fabric, resin mixed with conductive powder, or the like may be applied, and carbon powder, metal powder, or the like may be used as the conductive powder. .
  • a soft magnetic metal or resin mixed with a soft magnetic powder is used as the conductive sheet, the effect is improved at a low frequency (1 MHz or less).
  • the surface of the semiconductor component such as the CPU 2 and the both surfaces of the radio wave absorbing heat conductive sheet 1 that is in contact with the connection surface of the heat sink 3 are in close contact with the connection surfaces without any gap. Therefore, the thermal resistance at the connection portion is small, and the heat generated in CPU 2 is efficiently transmitted to heat sink 3 and radiated.
  • the high frequency noise generated from the CPU 2 is also absorbed by the radio wave absorbing heat conductive sheet 1 which is in close contact with the high frequency noise, scattering to the outside as radiation noise can be suppressed as much as possible.
  • FIG. 4 shows a state where the radio wave absorbing heat conductive sheet 1 is mounted on an electronic component in which a substrate 5 on which a semiconductor chip 4 is mounted is housed in a case 6.
  • the radio wave absorbing heat conductive sheet 1 is a soft flat sheet and its surface is sticky, so that it can be fixed simply by placing it between the upper surface 4 a of the semiconductor chip 4 or the like and the case 6. Is determined. That is, the configuration does not require a connection member such as an adhesive tape.
  • by closing the gap between the semiconductor chip 4 and the case 6 for packing the electronic circuit in this manner it is possible to suppress the occurrence of an in-flight failure due to the electromagnetic waves generated from one semiconductor chip being routed to another semiconductor chip. It will be easier.
  • the radio wave absorbing heat conductive sheet and the semiconductor chip 4 etc. are in close contact with each other, the gap formed between them is Noise is not propagated through, and the propagation of noise can be reliably suppressed.
  • the case 6 when the case 6 is made of metal, the case 6 also functions as a heat sink, and a heat dissipation effect can be expected. Even if the case 6 does not have the function of a heat sink, the heat generated from the semiconductor chip 4 and the like proceeds in the thickness direction of the radio wave absorbing heat conductive sheet 1, so that the heat generated in the adjacent element Can be suppressed as much as possible (compared to those that propagate in the air).
  • the liquid silicone resin and the soft magnetic powder are uniformly mixed by a mixer. At this time, it may be mixed with a high thermal conductivity A 1 2 0 3 or the like in order to improve the thermal conductivity.
  • the mixer performs mixing by rotating mixing wings in a closed stainless steel chamber.
  • the pressure in the mixer should be lower than the atmospheric pressure, and care should be taken to prevent air bubbles from entering the liquid silicone resin.
  • the soft magnetic powder is ferrite, it is preferable to control the temperature of the mixture from 40 to 100 in order to adjust the viscosity of the mixture of the liquid silicone resin and the ferrite. .
  • twin-screw extruder allows continuous mixing and improves productivity, but the dispersibility of the liquid silicone resin and ferrite powder is not sufficient, and simple kneading must be performed in advance.
  • the kneaded mixture is applied to the PET film at a thickness of 1 band by the doctor blade method. After coating, heat and cure to complete.
  • a conductive sheet material prepared in advance is sandwiched between the coated sheets during or after the application by the doctor blade method.
  • the thickness of one coating is 0.1 mm. Laminate while chopping below. That is, the metal-based soft magnetic powder is coated while being oriented in the plane direction to have a predetermined thickness. By orienting in the plane direction in this manner, a large projection area of the metal-based magnetic powder in the thickness direction of the sheet can be secured, and the electromagnetic wave absorbing function is improved.
  • the thermal conductivity of the radio wave absorbing heat conductive sheet manufactured as described above may be 0.5 w / m ⁇ k or more when used in a place having a relatively small calorific value.
  • it is more than 1.0 w / m * k, and preferably more than 1.5 w / m ⁇ k.
  • Fig. 5 shows the rubber hardness and thermal conductivity of Samples A to D with different constituent components and their mixing amounts
  • Fig. 6 shows the radio wave absorption characteristics of those samples for the coupling attenuation between the small antennas at each frequency. Shown as level (dB).
  • the amount of silicone resin in all samples is 100 parts by weight, sample A contains 400 parts by weight of Mn-Zn ferrite powder, and sample B contains Mn-Zn system. It contains 600 parts by weight of ferrite powder. Sample C contains 1 0 0 parts by weight of A 1 2 0 3 powder in addition to 3 0 0 parts by weight of M n _ Z n ferrite powder. Sample D contains 400 parts by weight of Ni_Zn ferrite powder. However, none of the above samples used a conductive sheet. As shown in FIG. 5, the rubber hardness is particularly low when the content of the ferrite powder used as the soft magnetic powder is from 300 to 400 parts by weight. From the experimental results other than the sample shown in the figure, it was found that when the amount of the soft magnetic powder was 900 parts by weight or more, it was difficult to mix the powder with a resin matrix such as a liquid silicone resin.
  • the manufacturing method of the embodiment As described in the description, the mixing amount of the soft magnetic powder with respect to 100 parts by weight of the liquid silicone resin was in the range of 100 to 900 parts by weight.
  • the thermal conductivity of the sample C with the children in the A 1 2 0 3 powder is non-magnetic inorganic powder
  • other samples It can be seen that the thermal conductivity is higher. From various experiments, it was confirmed that the thermal conductivity can be easily increased to about 1.5 w / m ⁇ k by adding non-magnetic inorganic powder without deteriorating the rubber hardness or the bond attenuation level. ing.
  • the thermal conductivity required by the user who needs the radio wave absorbing heat conductive sheet as in the present embodiment is about 0.5 to 1.5 w / m'k, depending on the member.
  • this characteristic exhibits good noise absorption characteristics especially as a countermeasure against noise of an electronic circuit including a semiconductor chip such as CPU over a range of 100 MHz to several GHz.
  • the electromagnetic energy of the absorbed electromagnetic waves is converted to heat, but the sample has a higher thermal conductivity and heat resistance than the radio-absorbing heat conductive sheet using other resins because the sample is based on silicone resin. .
  • the larger the amount of the soft magnetic powder the higher the coupling attenuation level.
  • mixing the metallic soft magnetic powder with the ferrite powder, etc. By changing the particle shape in a timely manner, a better coupling attenuation level can be obtained at a specific frequency.
  • the silicone resin As described above, in the radio wave absorbing heat conductive sheet according to the present invention, the silicone resin The structure consists of a soft sheet formed by mixing soft magnetic powder into the surface of a semiconductor chip. It can have good heat conductivity. In addition to having a high complex magnetic permeability, it has electromagnetic wave absorption that can absorb electromagnetic waves in an electronic circuit on which semiconductor elements are mounted over a wide band, and directly absorbs electromagnetic noise generated from such chips. Since heat can be efficiently converted to heat, good noise countermeasures can be taken.
  • a radio wave absorbing heat conductive sheet having high thermal conductivity and insulation properties can be obtained.
  • a radio wave absorbing heat conductive sheet having high heat conductivity and high radio wave absorption can be obtained.
  • the metal-based soft magnetic powder is at least one of permalloy, sendust, gay steel, permendur, pure iron, and magnetic stainless steel, and has a spherical or flat particle shape. If this is the case, a radio wave absorbing heat conductive sheet having high electromagnetic wave absorption in a desired frequency band can be obtained.
  • the adhesiveness between the semiconductor chip in the electronic equipment to be mounted and the electromagnetic wave absorbing heat conductive sheet is improved, so that the heat generated from those chips can be transmitted to the outside.
  • a radio wave absorbing heat conductive sheet that easily absorbs electromagnetic waves can be obtained.
  • the shielding effect in a low frequency band is further improved. Further, when a nonmagnetic inorganic powder is mixed with the soft sheet, a radio wave absorbing heat conductive sheet with further improved heat conductivity can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

The invention provides a wave-absorbing sheet that absorbs electromagnetic noise and has high thermal conductivity to dissipate heat. A sheet (1) is a soft sheet of 50 on a scale of rubber hardness and resistant to 150°C, whose surfaces are adhesive so that it can be directly attached between a semiconductor device such as a CPU (2) and a heat sink (3) with no adhesive material. Since the sheet is soft, its adhesion to the electric device improves, allowing heat and electromagnetic radiation from a semiconductor device to be absorbed efficiently. The sheet (1) preferably includes 100 parts by weight of liquid silicon resin, 300 parts by weight of magnetically soft powder, and 100 parts by weight of nonmagnetic inorganic powder in order to improve the electromagnetic absorption at 100 megahertz to several gigahertz as well as heat absorption.

Description

明 細 書  Specification
電波吸収熱伝導シート  Radio wave absorption heat conduction sheet
技術分野  Technical field
本発明は、 電波吸収熱伝導シートに関するもので、 より具体的には電子回路 内の熱やノイズを除去するための構造の改良に関する。  The present invention relates to a radio wave absorbing heat conductive sheet, and more specifically, to an improvement in a structure for removing heat and noise in an electronic circuit.
背景技術  Background art
コンピュータ、 家電製品、 自動車、 産業用機器等の各種機器は、 その機器の 各機能の制御に半導体素子を用いた電子回路が組み込まれている。そして、電 子回路をデジタル化することでより一層の高速な処理能力を備えた回路が考 案されている。 この高速処理化にともない、 周囲に対する放射ノイズ対策や、 自己が発生する電磁波の干渉を受ける機内電波干渉によるノイズ対策が必要 となる。 また、 C P Uを代表とする半導体素子は、 高温度となるので、 その放 熱対策の重要性も今まで以上に増してきた。  Various devices such as computers, home appliances, automobiles, and industrial devices incorporate electronic circuits using semiconductor elements for controlling the functions of the devices. By digitizing electronic circuits, circuits with even higher processing speed have been devised. With this high-speed processing, measures against radiated noise to the surroundings and noise countermeasures due to in-flight radio interference caused by the electromagnetic waves generated by itself will be required. In addition, the temperature of semiconductor devices such as CPU becomes high, so the importance of heat dissipation measures has increased more than ever.
そこで従来のノイズ対策としては、 例えば、 特開平 7— 2 1 2 0 7 9号に示 されるように、 導電性支持体の表面に絶縁性軟磁性体層を積層し、 さらに、 そ の絶縁性磁性体層の表面に誘電体層を形成した構造の電波吸収体がある。絶縁 性軟磁性体層は、 有機結合剤で軟磁性体粉末を固めたものである。 この電波吸 収体を、 ノイズ対策の対象となる半導体素子等の上に置くことになる。  Therefore, as a conventional noise countermeasure, for example, an insulating soft magnetic layer is laminated on the surface of a conductive support as shown in Japanese Patent Application Laid-Open No. There is a radio wave absorber having a structure in which a dielectric layer is formed on the surface of a conductive magnetic layer. The insulating soft magnetic layer is obtained by hardening the soft magnetic powder with an organic binder. This radio wave absorber is placed on a semiconductor device or the like that is subject to noise suppression.
また、 放熱対策としては、 例えば特開平 9— 1 1 1 1 2 4号に示されるよう 〖こ、平均粒子径が 0 . 1〜5 0 である 1 0〜9 0重量%のシリカ微粉末と、 平均粒子径が、 0 . 1〜5 m (但し、 5 mを除く)である 9 0〜 1 0重量% のアルミナ微粉末からなる熱伝導性充填材を、 4 0〜9 0重量%含有して形成 する熱伝導性シリコーンゴム組成物がある。そして、 付加反応硬化型または縮 合反応硬化型の硬化機構により組成物を硬化させたシリコーンゴムを、放熱対 策の対象となる半導体素子等に取り付けるようになつている。 しかし、特開平 7— 2 1 2 0 7 9号ゃ特開平 9— 1 1 1 1 2 4号に示される 発明は、 放射ノイズや機内障害に対する対策と、 半導体素子の放熱対策のどち らにも最適な対策を行うような発明ではなかった。 As a measure for heat radiation, for example, as shown in JP-A-9-11-1124, a silica fine powder of 10 to 90% by weight having an average particle diameter of 0.1 to 50% is used. Containing 40 to 90% by weight of a thermally conductive filler composed of 90 to 10% by weight of alumina fine powder having an average particle size of 0.1 to 5m (excluding 5m). There is a thermally conductive silicone rubber composition formed by the heat treatment. Then, the silicone rubber obtained by curing the composition by an addition reaction curing type or condensation reaction curing type curing mechanism is attached to a semiconductor element or the like to be subjected to a heat radiation measure. However, the inventions disclosed in Japanese Patent Application Laid-Open No. Hei 7-212 979 and Japanese Patent Application Laid-Open No. Hei 9-111 1124 are applicable to both measures against radiated noise and in-machine failure and measures against heat radiation of semiconductor elements. It was not an invention that would take optimal measures.
すなわち、 特開平 7— 2 1 2 0 7 9号の発明は、 ノイズ対策は一応できるも のの、 熱伝導性が十分でなく、 C P U等の放熱対策が必要とされる半導体素子 への装着は困難である。 一方、 特開平 9— 1 1 1 1 2 4号の発明では、 シリコ ーン中の充填材が電波吸収に寄与する物質ではなく電波吸収による放射ノィ ズの低減は見込めない。  In other words, the invention of Japanese Patent Application Laid-Open No. Hei 7-212,799 can reduce noise, but does not have sufficient heat conductivity, and can be mounted on a semiconductor device that requires heat radiation measures such as CPU. Have difficulty. On the other hand, in the invention of Japanese Patent Application Laid-Open No. 9-111124, the filler in the silicone is not a substance contributing to radio wave absorption, and it is not expected to reduce radiation noise due to radio wave absorption.
本発明は、上記した背景に鑑みてなされたもので、その目的とするところは、 上記した問題を解決し、半導体素子のノイズ対策として必要とされる電波吸収 性と、半導体等素子で発生した熱を吸収し外部へ導く高い熱伝導性の両方の性 質を備えた電波吸収熱伝導シートを提供することにある。  SUMMARY OF THE INVENTION The present invention has been made in view of the above background, and has as its object to solve the above-described problems, to provide a radio wave absorbing property required as a noise countermeasure for a semiconductor device, and to generate a semiconductor device such as a semiconductor device. An object of the present invention is to provide a radio wave absorbing heat conductive sheet having both properties of high heat conductivity that absorbs heat and guides the heat to the outside.
発明の開示  Disclosure of the invention
上記した目的を達成するために、 本発明に係る電波吸収熱伝導シートでは、 シリコーン系樹脂に軟磁性粉体を混合して成形された軟質性シートから構成 するようにした。 この構成では、 シリコーン系樹脂中に充填された軟磁性粉体 によって、 D C〜 2 0 GH zまでの広い周波数帯域で高い複素透磁率( ' - j μ ' ) が得られるようになる。 特に、 1 0 0 MH z〜数 GH zにおいては複 素透磁率の虚数項 (; ) が大きくなる。  In order to achieve the above-mentioned object, the radio wave absorbing heat conductive sheet according to the present invention is constituted by a soft sheet formed by mixing a soft magnetic powder with a silicone resin. In this configuration, the soft magnetic powder filled in the silicone resin allows a high complex magnetic permeability ('-jμ') to be obtained in a wide frequency band from DC to 20 GHz. In particular, from 100 MHz to several GHz, the imaginary part (;) of the complex permeability becomes large.
この複素透磁率の虚数項 " ) は、高周波インピーダンスの抵抗成分(R) と比例関係にあり、 虚数項 ( 〃 ) が増加するにつれ電磁エネルギーは熱に変 換されやすくなる。 このように熱に変換することにより、 電波ノイズが吸収さ れる。  The imaginary term ") of the complex permeability is proportional to the resistance component (R) of the high-frequency impedance, and electromagnetic energy is easily converted to heat as the imaginary term (〃) increases. The conversion absorbs radio noise.
また、シリコーン系樹脂は他の樹脂と比較して高い熱伝導性と耐熱性を持つ が、 有機物に比べ高い熱伝導性を有する軟磁性粉体と混合することで、 本発明 のシートは、 シリコーン樹脂単体の熱伝導率より高くなる。 In addition, silicone-based resins have higher thermal conductivity and heat resistance than other resins, but by mixing with soft magnetic powders having higher thermal conductivity than organic substances, This sheet has a higher thermal conductivity than the silicone resin alone.
従って、本発明の電波吸収熱伝導シートを半導体素子等の対象物品の表面に 接触させると、 対象物品から発生する熱は、 電波吸収熱伝導シートにより吸熱 され、 シート内を熱伝導し、 熱が外部に放出される。 そして、 例えばヒートシ ンク等の放熱部品と対象物品の間に本発明の電波吸収熱伝導シートを介在さ せると、対象物品から発生する熱を効率よく放熱部品に伝達させることができ、 放熱効果が向上する。  Therefore, when the radio wave absorbing heat conductive sheet of the present invention is brought into contact with the surface of a target article such as a semiconductor device, the heat generated from the target article is absorbed by the radio wave absorbing heat conductive sheet, heat is conducted inside the sheet, and the heat is transferred. Released outside. And, if the radio wave absorbing heat conductive sheet of the present invention is interposed between the heat radiating component such as a heat sink and the target article, the heat generated from the target article can be efficiently transmitted to the heat radiating component, and the heat radiating effect is improved. improves.
また、 対象物品から放出される電波ノイズは、 電波吸収熱伝導シート内で吸 収されるため、 外部に漏れ出ないし、 内部反射もしない。 もちろん、 外部から の電波ノイズも電波吸収熱伝導シートで吸収されるので、対象物品にノイズが 混入することも抑制される。  In addition, since radio wave noise emitted from the target article is absorbed in the radio wave absorption and heat conduction sheet, it does not leak out and does not reflect internally. Of course, radio wave noise from the outside is also absorbed by the radio wave absorbing heat conductive sheet, so that the noise is suppressed from entering the target article.
さらに、 軟質性シートとしたため、 本発明の電波吸収熱伝導シートを対象物 品の表面に対し、 相対的に押しつけるようにして接触させた場合、 その表面形 状に沿って軟質シートの表面(接着面)も変形し、隙間なく密着する。従って、 接触面での熱抵抗が少なく上記した熱吸収にともなう放熱対策がより顕著に 発揮される。 このことは、 電波ノイズの吸収においても同様のことが言える。 前記軟磁性粉体は、 フェライト系軟磁性粉体、 金属系軟磁性粉体の少なくと も一方を用いることができる。 このように構成すると、 熱伝導率が向上する。 そして、 フェライト系軟磁性粉体を用いた場合には、 体積抵抗率が 1 0 Ω · c m以上と高く、 絶縁特性を必要とする場合有効であり、 また、 誘電率が小さ いため電波の反射が小さくなる。 金属系軟磁性粉体の場合は、 フェライト系軟 磁性粉体と比べ体積抵抗率が低く、 電波の反射は大きくなる。 よって、 要求さ れる仕様等に応じて適宜の材質を選択することになる。  Further, since the radio wave absorbing heat conductive sheet of the present invention is made to be a soft sheet, when the radio wave absorbing heat conductive sheet of the present invention is brought into contact with the surface of the object by being pressed relatively, the surface of the soft sheet (adhesion) Surface) is also deformed and adheres without gaps. Therefore, the heat resistance at the contact surface is small, and the above-described measures for heat dissipation accompanying heat absorption are more remarkably exhibited. The same can be said for the absorption of radio noise. As the soft magnetic powder, at least one of a ferrite soft magnetic powder and a metal soft magnetic powder can be used. With this configuration, the thermal conductivity is improved. When ferrite-based soft magnetic powder is used, the volume resistivity is as high as 10 Ω · cm or more, which is effective when insulating properties are required. Become smaller. In the case of metal-based soft magnetic powder, the volume resistivity is lower than that of ferrite-based soft magnetic powder, and the reflection of radio waves increases. Therefore, an appropriate material is selected according to the required specifications and the like.
好ましくは、前記金属系軟磁性粉体が、パーマロイ、センダスト、ゲイ素鋼、 パーメンジュール、 純鉄、 磁性ステンレス鋼のいずれか 1つ以上であって、 そ の形状が、 球形または偏平状粒子形状から構成することである。 Preferably, the metal-based soft magnetic powder is at least one of permalloy, sendust, gay steel, permendur, pure iron, and magnetic stainless steel. Is composed of a spherical or flat particle shape.
金属系軟磁性粉体はフェライト系軟磁性粉体に比べて、高い透磁率を有し且 つその粉体粒子形状を調節しやすいので、電波吸収熱伝導シートは所定の周波 数帯域においてより一層の高い複素透磁率の虚数項 ( 〃 ) を示すことができ る。 特に偏平状粒子形状の場合、 偏平状にした金属系軟磁性粉体をシートの面 方向に配向させる事により、 面方向の反磁場の影響を抑制し、 所定の周波数で 高い複素透磁率の虚数項 ( 〃 ) が得られる。  Since the metal-based soft magnetic powder has a higher magnetic permeability than the ferrite-based soft magnetic powder and the shape of the powder particles can be easily adjusted, the radio wave absorbing heat conductive sheet is further improved in a predetermined frequency band. The imaginary term (複 素) of the complex magnetic permeability can be shown. In particular, in the case of a flat particle shape, the flattened metal soft magnetic powder is oriented in the surface direction of the sheet to suppress the effect of the demagnetizing field in the surface direction, and the imaginary number of high complex permeability at a given frequency The term (〃) is obtained.
さらに、 前記軟質性シートの表面が、 粘着性を有するとよい。 このように構 成すると、 シリコーン樹脂自身の粘着性により粘着材を使わずに対象物品の表 面へ実装できるようになる。 また、 粘着材を使う必要がなくなると、 回路基板 上のノイズ発信源となる対象物品に電波吸収熱伝導シートを直に接触させる ことができるので、 ノイズの吸収性が向上する。  Furthermore, it is preferable that the surface of the flexible sheet has tackiness. With this configuration, the silicone resin itself can be mounted on the surface of the target article without using an adhesive due to its own adhesiveness. Further, when the use of the adhesive material is not required, the radio wave absorbing heat conductive sheet can be brought into direct contact with the target article on the circuit board, which is a noise transmission source, so that noise absorption is improved.
さらに、 導電性シートの両面或いは片面に、 前記軟質性シートを設けるよう に構成するとよい。 このように構成すると、 導電性シートにより電波のシール ド効果が向上し、放射ノイズを遮蔽して外部に漏らさないようにする場合に有 効となる。 導電性シートのみでもシールド効果は得られるが、 電波の反射が大 きくなり対象物品に反射波が悪影響を与えたり、対象物品からの放射ノィズが 導電性シートにて再放射される等の問題を引き起こす。  Further, the flexible sheet may be provided on both sides or one side of the conductive sheet. With this configuration, the conductive sheet enhances the shielding effect of radio waves, and is effective when shielding radiated noise to prevent leakage to the outside. Although the shielding effect can be obtained by using only the conductive sheet, there are problems such as the reflection of radio waves becoming large and the reflected wave adversely affecting the target article, and radiation noise from the target article being re-emitted by the conductive sheet. cause.
ここで、 導電性シートは、 例えば金属箔、 金属メッシュ、 金属メツキされた 樹脂メッシュ、 導電性不織布、 導電性織布、導電性粉(カーボン粉や金属粉等) を混入した樹脂等からなる。  Here, the conductive sheet is made of, for example, a metal foil, a metal mesh, a metal-coated resin mesh, a conductive nonwoven fabric, a conductive woven fabric, a resin mixed with a conductive powder (carbon powder, metal powder, or the like).
また、 前記導電性シートが、 軟磁性金属からなるように構成するとよい。 こ のように構成すると、上記した電波吸収熱伝導シート内の導電性シートにより 低周波帯域 (1 MH z以下) でのシールド特性が向上する。  Further, it is preferable that the conductive sheet is made of a soft magnetic metal. With this configuration, the shielding property in a low frequency band (1 MHz or less) is improved by the conductive sheet in the above-described radio wave absorbing heat conductive sheet.
さらにまた、 前記軟質性シートに、 非磁性無機物粉体を混合してなるように 構成するとよい。 この非磁性無機物粉体としては、 例えば A l 23、 Z n〇、 M n O等があり、 この非磁性無機物粉体は、 シリコーン樹脂に比べて高い熱伝 導性を備えるので、 これらを電波吸収熱伝導シート内に混ぜると電波吸収熱伝 導シートの熱伝導率が向上する。 Furthermore, the soft sheet may be mixed with a non-magnetic inorganic powder. It is good to configure. As the non-magnetic inorganic powder, for example, A l 23, Z N_〇, there are M n O, etc., since the non-magnetic inorganic powder is provided with a high heat transfer electrical resistance as compared with a silicone resin, these When mixed with the electromagnetic wave absorbing heat conductive sheet, the thermal conductivity of the electromagnetic wave absorbing heat conductive sheet is improved.
*用語の定義  *Definition of terms
「軟質性シート」 とは、 対象物品の表面に押し付けた際に弾性変形し、 シー ト表面が対象物品の表面形状に沿った形状に変形するような軟らかさを持つ シートである。 そして、 対象物品から離した場合に、 元のシート形状に戻るよ うな弾性復元力は必ずしも有している必要はない。 そして、 一例としては、 ゴ ム硬度で評価すると 5 0以下のものが該当する。 もちろん、 このゴム硬度は目 安であり、 それ以上のものでも上記の特性を有していればよい。  A “soft sheet” is a sheet that is elastically deformed when pressed against the surface of a target article, and has such a softness that the sheet surface is deformed into a shape along the surface shape of the target article. Then, it is not always necessary to have an elastic restoring force to return to the original sheet shape when separated from the target article. And, as an example, when evaluated in terms of rubber hardness, those having a hardness of 50 or less correspond. Of course, the rubber hardness is a standard, and any rubber having a higher hardness may have the above-mentioned properties.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
第 1図は本発明に係る電波吸収熱伝導シートの第 1の実施の形態を示す斜 視図、 第 2図 (a ) は本発明に係る電波吸収熱伝導シートの第 2の実施の形態 を示す分解斜視図、 第 2図 (b ) は本発明に係る電波吸収熱伝導シートの第 2 の実施の形態を示す正面図、第 3図は本発明に係る電波吸収熱伝導シートの実 施の形態を電子回路に実装した状態を示す正面図、第 4図は本発明に係る電波 吸収熱伝導シートの実施の形態を別の電子回路に実装した状態を示す断面図、 第 5図は本発明に係る電波吸収熱伝導シートの実施の形態にとって最適な構 成成分を求めるために行った実験結果の一部を示す図、第 6図は本発明に係る 電波吸収熱伝導シートの実施の形態にとって最適な構成成分を求めるために 行った別の実験結果の一部を示す図である。  FIG. 1 is a perspective view showing a first embodiment of a radio wave absorbing heat conductive sheet according to the present invention, and FIG. 2 (a) is a second embodiment of a radio wave absorbing heat conductive sheet according to the present invention. FIG. 2 (b) is a front view showing a second embodiment of the radio wave absorbing heat conductive sheet according to the present invention, and FIG. 3 is an implementation view of the radio wave absorbing heat conductive sheet according to the present invention. FIG. 4 is a front view showing a state in which the form is mounted on an electronic circuit, FIG. 4 is a cross-sectional view showing a state in which the embodiment of the radio wave absorbing heat conductive sheet according to the present invention is mounted on another electronic circuit, and FIG. Fig. 6 is a view showing a part of the results of an experiment conducted to determine an optimum component for the embodiment of the radio wave absorbing heat conducting sheet according to the present invention. FIG. 10 is a diagram illustrating a part of results of another experiment performed in order to obtain an optimal component.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
第 1図は、本発明に係る電波吸収熱伝導シートの第 1の実施の形態を示して いる。 同図に示すように、 本形態の電波吸収熱伝導シート 1は、 外観形状は、 平板状のシート片からなる軟質性シート 1 aから構成されている。 そして、 こ の軟質性シート 1 aは、液状シリコーン樹脂に軟磁性粉体を混合して形成する。 軟磁性粉体としては、 フェライト系軟磁性粉体や金属系軟磁性粉体のいずれで もよいし、両者を混合してもよレ^そして、フェライト系軟磁性粉体としては、 M n— Z n系フェライト、 N i系フェライト、 M g— Ζ η系フェライトなど各 種のものを用いることができる。 そして、 N i系フェライトを用いると熱伝導 が最もよくなるので、 好ましい。 FIG. 1 shows a first embodiment of a radio wave absorbing heat conductive sheet according to the present invention. As shown in the figure, the radio wave absorbing heat conductive sheet 1 of the present embodiment has It is composed of a flexible sheet 1a composed of a flat sheet piece. The soft sheet 1a is formed by mixing a soft magnetic powder with a liquid silicone resin. As the soft magnetic powder, either a ferrite soft magnetic powder or a metal soft magnetic powder may be used, or a mixture of both may be used. Various types such as Zn-based ferrite, Ni-based ferrite, and Mg-Ζη-based ferrite can be used. It is preferable to use Ni-based ferrite because heat conduction is best.
また、 混合する比率としては、 液状シリコーン樹脂 1 0 0重量部に対し、 軟 磁性粉体の混合量は 1 0 0重量部〜 9 0 0重量部の範囲で調節してよく、好ま しくは、軟磁性粉体の混合量は 2 0 0重量部〜 4 0 0重量部とすることである。 さらに、熱伝導率を向上させることを目的に熱伝導性の高い A 1 23等の非 磁性無機物粉体を混合してもよい。 なお、 この非磁性無機物粉体は、 A 1 203 に限られることはなく、 熱伝導性の高い酸化亜鉛、 酸化銅等の酸化物粉体や金 属粉体を用いてもよい。 The mixing ratio of the soft magnetic powder to 100 parts by weight of the liquid silicone resin may be adjusted in the range of 100 parts by weight to 900 parts by weight. The mixing amount of the soft magnetic powder is from 200 parts by weight to 400 parts by weight. Furthermore, it may be mixed with non-magnetic inorganic powders such high A 1 23 thermal conductivity for the purpose of improving the thermal conductivity. Incidentally, the non-magnetic inorganic powder is not limited to A 1 2 0 3, high zinc oxide thermal conductivity may be used oxide powder and gold Shokukotai such copper oxide.
さらにまた、 軟質性シート 1 aの表面は、 べとべととした粘着性を有するよ うにしている。 このように粘着性を持たせるには、 例えば硬化後、 粘性を有す るようなシリコーン樹脂を選定するか、 硬化剤 (加硫剤) の添加量を調節する ことにより形成できる。  Furthermore, the surface of the flexible sheet 1a is made to have a sticky tackiness. In order to impart such tackiness, for example, it can be formed by selecting a silicone resin having viscosity after curing, or by adjusting the amount of a curing agent (vulcanizing agent) added.
このような構成成分を持つ電波吸収熱伝導シート 1は、 ゴム硬度を 5 0以下 で熱伝導率を 0 . 5 wZm ' k以上とし、 耐熱温度が 1 5 0で以上となる電波 吸収熱伝導シートにできる。  The radio wave absorbing heat conductive sheet 1 having such components has a rubber hardness of 50 or less, a heat conductivity of 0.5 wZm 'k or more, and a heat resistant temperature of 150 or more. Can be.
第 2図は、 本発明の第 2の実施の形態を示している。 本実施の形態では、 金 属箔、金属メッシュ等の導電性シート 1 bをその両側から挟み込むように軟質 性シート 1 aを装着している。 このように電波吸収熱伝導シートを構成すると、 ノイズ吸収性や熱伝導率が向上するうえ、電子回路内の一部のチップから発生 した電磁波が他のチップへ回り込んで機器内電磁干渉 (機内障害) を起こしに くくなることが確かめられている。 FIG. 2 shows a second embodiment of the present invention. In the present embodiment, the soft sheet 1a is attached so as to sandwich the conductive sheet 1b such as a metal foil or a metal mesh from both sides. When the radio wave absorbing heat conductive sheet is configured in this way, noise absorption and thermal conductivity are improved, and the chip is generated from some chips in the electronic circuit. It has been confirmed that such electromagnetic waves are less likely to cause electromagnetic interference (in-machine interference) in equipment by wrapping around to other chips.
導電性シート l bは、 上記以外にも、 導電性不織布、 導電性織布、 導電性粉 を混入した樹脂等を適用してよく、導電性粉にはカーボン粉や金属粉等を用い ると良い。 また、 これらの導電性シートとして軟磁性金属や樹脂に軟磁性粉体 を混合したものを用いると、 低周波 (1 MH z以下) でその効果が向上する。 次に、 上記した各電波吸収熱伝導シート 1の実際の使用状態を説明する。一 例としては、 第 3図に示すように、 電波吸収熱伝導シート 1を、 C P U 2の表 面に配し、 C P U 2とヒートシンク 3の隙間に介在させている。  For the conductive sheet lb, in addition to the above, conductive non-woven fabric, conductive woven fabric, resin mixed with conductive powder, or the like may be applied, and carbon powder, metal powder, or the like may be used as the conductive powder. . When a soft magnetic metal or resin mixed with a soft magnetic powder is used as the conductive sheet, the effect is improved at a low frequency (1 MHz or less). Next, an actual use state of each of the above-described radio wave absorbing heat conductive sheets 1 will be described. As an example, as shown in FIG. 3, the radio wave absorbing heat conductive sheet 1 is disposed on the surface of the CPU 2 and is interposed between the CPU 2 and the heat sink 3.
このように構成すると、 C P U 2等の半導体部品の表面や、 ヒートシンク 3 の接続面に接触する電波吸収熱伝導シ一ト 1の両面は、それぞれ接続する面に 隙間なく密着する。 よって、 接続部分での熱抵抗が小さく、 C P U 2で発生す る熱は、 効率よくヒートシンク 3に伝達され、 放熱される。  With this configuration, the surface of the semiconductor component such as the CPU 2 and the both surfaces of the radio wave absorbing heat conductive sheet 1 that is in contact with the connection surface of the heat sink 3 are in close contact with the connection surfaces without any gap. Therefore, the thermal resistance at the connection portion is small, and the heat generated in CPU 2 is efficiently transmitted to heat sink 3 and radiated.
また、 C P U 2から発生する高周波ノイズも、 このように密着する電波吸収 熱伝導シート 1で吸収されるため、放射ノイズとして外部に飛散することを可 及的に抑制できる。  In addition, since the high frequency noise generated from the CPU 2 is also absorbed by the radio wave absorbing heat conductive sheet 1 which is in close contact with the high frequency noise, scattering to the outside as radiation noise can be suppressed as much as possible.
第 4図は、半導体チップ 4を載せた基板 5をケース 6中に収納した電子部品 に電波吸収熱伝導シート 1を実装したときの様子を示している。電波吸収熱伝 導シート 1は軟質性の平板状シートであり、その表面は粘着性を示すようにな つているので、 半導体チップ 4等の上面 4 aとケース 6の間に置くだけで、 固 定される。つまり、粘着テープ等の接続部材を必要としない構成になっている。 また、 このように半導体チップ 4と電子回路を梱包するケース 6の隙間を封 鎖することで、ある半導体チップから発生した電磁波が他の半導体チップへ回 り込むことによる機内障害の発生を抑制しやすくなる。 特に、 電波吸収熱伝導 シートと、 半導体チップ 4等が密着しているので、 両者間に形成される間隙を 介してノィズが伝播することもなく、 確実にノィズの伝播を抑制できる。 FIG. 4 shows a state where the radio wave absorbing heat conductive sheet 1 is mounted on an electronic component in which a substrate 5 on which a semiconductor chip 4 is mounted is housed in a case 6. The radio wave absorbing heat conductive sheet 1 is a soft flat sheet and its surface is sticky, so that it can be fixed simply by placing it between the upper surface 4 a of the semiconductor chip 4 or the like and the case 6. Is determined. That is, the configuration does not require a connection member such as an adhesive tape. In addition, by closing the gap between the semiconductor chip 4 and the case 6 for packing the electronic circuit in this manner, it is possible to suppress the occurrence of an in-flight failure due to the electromagnetic waves generated from one semiconductor chip being routed to another semiconductor chip. It will be easier. In particular, since the radio wave absorbing heat conductive sheet and the semiconductor chip 4 etc. are in close contact with each other, the gap formed between them is Noise is not propagated through, and the propagation of noise can be reliably suppressed.
さらにまた、 ケース 6を金属で構成すると、 そのケース 6がヒートシンクの 機能も発揮し、 放熱効果も期待できる。 なお、 仮に、 ケース 6がヒートシンク の機能を有しない場合であっても、 半導体チップ 4等から発生した熱は、 電波 吸収熱伝導シート 1の厚み方向に進むため、隣接する素子に上記発生した熱が 伝播することを可及的に抑制できる (空気中を伝播するものに比べて) 。  Furthermore, when the case 6 is made of metal, the case 6 also functions as a heat sink, and a heat dissipation effect can be expected. Even if the case 6 does not have the function of a heat sink, the heat generated from the semiconductor chip 4 and the like proceeds in the thickness direction of the radio wave absorbing heat conductive sheet 1, so that the heat generated in the adjacent element Can be suppressed as much as possible (compared to those that propagate in the air).
以下に、本実施の形態の電波吸収熱伝導シートの製造工程を簡単に説明する。 液状シリコーン樹脂と軟磁性粉体を混合機により均一混合する。 このとき、 熱 伝導率を向上させることを目的に熱伝導性の高い A 1 2 0 3等を混合するよう にしてもよい。 Hereinafter, the manufacturing process of the radio wave absorbing heat conductive sheet of the present embodiment will be briefly described. The liquid silicone resin and the soft magnetic powder are uniformly mixed by a mixer. At this time, it may be mixed with a high thermal conductivity A 1 2 0 3 or the like in order to improve the thermal conductivity.
混合機は密閉されたステンレス製チャンバ一内で、 ミキシング用の羽を回転 させて混合を行う。混合時には混合機内を大気圧よりも低圧にして液状シリコ ーン樹脂内に気泡が入らないように注意して行う。 また、 軟磁性粉体がフェラ ィトの場合には、液状シリコーン樹脂とフェライ卜からなる混合物の混合粘度 調節のため、混合物の温度を 4 0〜 1 0 0ででコントロールすることが好まし い。  The mixer performs mixing by rotating mixing wings in a closed stainless steel chamber. At the time of mixing, the pressure in the mixer should be lower than the atmospheric pressure, and care should be taken to prevent air bubbles from entering the liquid silicone resin. When the soft magnetic powder is ferrite, it is preferable to control the temperature of the mixture from 40 to 100 in order to adjust the viscosity of the mixture of the liquid silicone resin and the ferrite. .
混合機としては、 3本ロールミルや加圧二一ダ、 二軸式混練機等を用いるこ とが可能である。 但し、 二軸押し出し混練機は連続混合が可能となり生産性は 向上するが、 液状シリコーン樹脂とフェライト粉体との分散性が十分でなく、 前もって簡易混練を行う必要がある。  As a mixing machine, a three-roll mill, a pressure roller, a twin-screw kneader, or the like can be used. However, the twin-screw extruder allows continuous mixing and improves productivity, but the dispersibility of the liquid silicone resin and ferrite powder is not sufficient, and simple kneading must be performed in advance.
混練の終わった混合物をドクターブレード法により P E Tフィルム上に 1 匪 厚で塗工する。 塗工後は、 加熱硬化させて完成させる。 また、 第 2の実施 の形態を製造するには、 ドクターブレード法で塗工する途中または塗工後に、 予め用意しておいた導電性シート材を塗工されたシートの間に挟み込む。  The kneaded mixture is applied to the PET film at a thickness of 1 band by the doctor blade method. After coating, heat and cure to complete. In order to manufacture the second embodiment, a conductive sheet material prepared in advance is sandwiched between the coated sheets during or after the application by the doctor blade method.
尚、偏平形状の金属系軟磁性粉体を用いる場合、 1回の塗工の厚みを 0 . 1mm 以下に刻みながら積層する。 つまり、 金属系軟磁性粉体を面方向に配向させな がら塗工して所定の厚さにする。 このように面方向に配向することにより、 シ ートの厚み方向における金属系磁性粉体の投影面積を大きく確保でき、電波吸 収機能を向上させる。 When a flat metal-based soft magnetic powder is used, the thickness of one coating is 0.1 mm. Laminate while chopping below. That is, the metal-based soft magnetic powder is coated while being oriented in the plane direction to have a predetermined thickness. By orienting in the plane direction in this manner, a large projection area of the metal-based magnetic powder in the thickness direction of the sheet can be secured, and the electromagnetic wave absorbing function is improved.
ところで、 このように製造された電波吸収熱伝導シートの熱伝導率は、 比較 的発熱量が小さな箇所に用いる場合、 0 . 5 w/m · k以上あるように形成で きれば良く、 発熱量が大きい実装箇所への適用に際しては、 1 . 0 w/m * k 以上とし、 好ましくは、 1 . 5 w/m · k以上にするのが良い。  By the way, the thermal conductivity of the radio wave absorbing heat conductive sheet manufactured as described above may be 0.5 w / m · k or more when used in a place having a relatively small calorific value. When it is applied to a mounting part where is large, it is more than 1.0 w / m * k, and preferably more than 1.5 w / m · k.
*実験結果  *Experimental result
第 5図は、構成成分やその混合量が異なるサンプル A〜Dのゴム硬度と熱伝 導率を示し、第 6図はそれらのサンプルの電波吸収特性を各周波数ごとの微小 アンテナ間の結合減衰レベル (d B ) として示した。  Fig. 5 shows the rubber hardness and thermal conductivity of Samples A to D with different constituent components and their mixing amounts, and Fig. 6 shows the radio wave absorption characteristics of those samples for the coupling attenuation between the small antennas at each frequency. Shown as level (dB).
全てのサンプル中のシリコーン樹脂量は 1 0 0重量部で統一してあり、サン プル Aは M n— Z n系フェライト粉体を 4 0 0重量部含み、サンプル Bは M n 一 Z n系フェライト粉体を 6 0 0重量部含んでいる。サンプル Cは M n _ Z n 系フェライト粉体を 3 0 0重量部以外に A 1 2 03粉体を 1 0 0重量部含んで いる。 また、 サンプル Dは、 N i _ Z n系フェライト粉体を 4 0 0重量部含ん でいる。 但し、 上記のサンプルにはいずれも導電性シートは用いていない。 第 5図に示すように、軟磁性粉体として用いたフェライト粉体の含有量が 3 0 0〜4 0 0重量部において特にゴム硬度が低くなつている。 なお、 同図に示 すサンプル以外の実験結果から、 軟磁性粉体の量が 9 0 0重量部以上の場合、 液状シリコーン樹脂等の樹脂マトリクスに混合することが困難となることが わかった。 The amount of silicone resin in all samples is 100 parts by weight, sample A contains 400 parts by weight of Mn-Zn ferrite powder, and sample B contains Mn-Zn system. It contains 600 parts by weight of ferrite powder. Sample C contains 1 0 0 parts by weight of A 1 2 0 3 powder in addition to 3 0 0 parts by weight of M n _ Z n ferrite powder. Sample D contains 400 parts by weight of Ni_Zn ferrite powder. However, none of the above samples used a conductive sheet. As shown in FIG. 5, the rubber hardness is particularly low when the content of the ferrite powder used as the soft magnetic powder is from 300 to 400 parts by weight. From the experimental results other than the sample shown in the figure, it was found that when the amount of the soft magnetic powder was 900 parts by weight or more, it was difficult to mix the powder with a resin matrix such as a liquid silicone resin.
一方、 軟磁性粉体が 1 0 0重量部以下の場合、 複素透磁率が低下しすぎて必 要な電波吸収性能が得られないことがわかった。 そこで、 実施の形態の製造ェ 程を示す説明に記したように、液状シリコーン樹脂 1 0 0重量部に対する軟磁 性粉体の混合量を 1 0 0〜9 0 0重量部の範囲とした。 On the other hand, when the soft magnetic powder was less than 100 parts by weight, it was found that the required magnetic wave absorption performance could not be obtained because the complex magnetic permeability was too low. Therefore, the manufacturing method of the embodiment As described in the description, the mixing amount of the soft magnetic powder with respect to 100 parts by weight of the liquid silicone resin was in the range of 100 to 900 parts by weight.
また、サンプル Aやサンプル Dとゴム硬度は殆ど変わらないにもかかわらず、 サンプル Cの熱伝導率は非磁性無機物粉体である A 1 203粉体が含まれるこ とで、 他のサンプルより熱伝導率が高まっていることがわかる。 各種の実験に より、 非磁性無機物粉体を加えることで、 ゴム硬度や結合減衰レベルを悪くす ることなく熱伝導率を 1 . 5 w/m · k程度まで簡単に上げられることが確認 されている。 なお、 本実施の形態のような電波吸収熱伝導シートを必要とする ユーザーが求める熱伝導率は、 部材にもよるが、 0 . 5〜1 . 5 w/m ' k程 度である。 Also, even though Sample A and Sample D and the rubber hardness hardly changes, the thermal conductivity of the sample C with the children in the A 1 2 0 3 powder is non-magnetic inorganic powder, other samples It can be seen that the thermal conductivity is higher. From various experiments, it was confirmed that the thermal conductivity can be easily increased to about 1.5 w / m · k by adding non-magnetic inorganic powder without deteriorating the rubber hardness or the bond attenuation level. ing. The thermal conductivity required by the user who needs the radio wave absorbing heat conductive sheet as in the present embodiment is about 0.5 to 1.5 w / m'k, depending on the member.
第 4図に示すように、各サンプルに軟磁性粉体としてフェライト粉体を混ぜ ると電子機器の機内障害に対して良好な磁気特性を示すようになる。同図に示 すように、 0〜1 0 0 0 (MH z ) のいずれの帯域でも C P U等の半導体チッ プのノイズ対策に十分なレベルの電磁波ノイズを吸収している。  As shown in Fig. 4, when ferrite powder is mixed into each sample as a soft magnetic powder, good magnetic properties can be obtained with respect to in-machine failure of electronic equipment. As shown in the figure, in any band from 0 to 100 (MHz), a sufficient level of electromagnetic wave noise is absorbed for noise suppression of semiconductor chips such as CPU.
この特性は、 特に 1 0 0 MH z〜数 GH zにわたつて、 C P U等の半導体チ ップ等からなる電子回路のノイズ対策として良好なノイズ吸収特性を示すこ とがわかっている。 しかも、 吸収した電磁波の持つ電磁エネルギーは熱に変換 されるが、上記サンプルはシリコーン樹脂を母体としているため他の樹脂を用 いた電波吸収熱伝導シートに比べて高い熱伝導性と耐熱性を有する。  It has been found that this characteristic exhibits good noise absorption characteristics especially as a countermeasure against noise of an electronic circuit including a semiconductor chip such as CPU over a range of 100 MHz to several GHz. In addition, the electromagnetic energy of the absorbed electromagnetic waves is converted to heat, but the sample has a higher thermal conductivity and heat resistance than the radio-absorbing heat conductive sheet using other resins because the sample is based on silicone resin. .
なお、 同図に示すように、 軟磁性粉体の量が多いほど、 結合減衰レベルは大 きくなつているが、 前述したように、 金属系軟磁性粉体とフェライト粉体等を 混ぜあわせたり、 粒子形を適時変更することで、 特定の周波数においてさらに 良好な結合減衰レベルを得られるようになる。  As shown in the figure, the larger the amount of the soft magnetic powder, the higher the coupling attenuation level. However, as described above, mixing the metallic soft magnetic powder with the ferrite powder, etc. By changing the particle shape in a timely manner, a better coupling attenuation level can be obtained at a specific frequency.
産業上の利用可能性  Industrial applicability
以上のように、 本発明に係る電波吸収熱伝導シートでは、 シリコーン系樹脂 に軟磁性粉体を混合して成形された軟質性シートからなる構成により、 C P U 等の発熱量の多い半導体チップ表面への実装において、密着性を向上させつつ、 そこから伝わる熱を外部へ効率よく伝える熱伝導性を持つことができる。また、 高い複素透磁率によって、半導体素子を実装する電子回路内の電磁波を広帯域 にわたつて吸収できる電波吸収性を備えた上に、 このようなチップから発生す る電磁波ノィズを直に吸収して効率よく熱に変えることができるので良好な ノイズ対策を行える。 As described above, in the radio wave absorbing heat conductive sheet according to the present invention, the silicone resin The structure consists of a soft sheet formed by mixing soft magnetic powder into the surface of a semiconductor chip. It can have good heat conductivity. In addition to having a high complex magnetic permeability, it has electromagnetic wave absorption that can absorb electromagnetic waves in an electronic circuit on which semiconductor elements are mounted over a wide band, and directly absorbs electromagnetic noise generated from such chips. Since heat can be efficiently converted to heat, good noise countermeasures can be taken.
前記軟磁性粉体として、 フェライト系軟磁性粉体、 金属系軟磁性粉体の少な くとも一方を用いると、 フェライト系の場合、 熱伝導性と絶縁特性の高い電波 吸収熱伝導シートが得られる。 金属系の場合は、 高い熱伝導性と高い電波吸収 性を備えた電波吸収熱伝導シートが得られる。 前記金属系軟磁性粉体を、 パー マロイ、 センダスト、 ゲイ素鋼、 パーメンジュール、 純鉄、 磁性ステンレス鋼 のいずれか 1つ以上であって、 その形状が、 球形または偏平状粒子形状からな るものとすれば、所望の周波数帯域の電磁波吸収性の高い電波吸収熱伝導シ一 卜が得られる。  When at least one of a ferrite soft magnetic powder and a metal soft magnetic powder is used as the soft magnetic powder, in the case of a ferrite, a radio wave absorbing heat conductive sheet having high thermal conductivity and insulation properties can be obtained. . In the case of a metal material, a radio wave absorbing heat conductive sheet having high heat conductivity and high radio wave absorption can be obtained. The metal-based soft magnetic powder is at least one of permalloy, sendust, gay steel, permendur, pure iron, and magnetic stainless steel, and has a spherical or flat particle shape. If this is the case, a radio wave absorbing heat conductive sheet having high electromagnetic wave absorption in a desired frequency band can be obtained.
軟質性シートの表面を粘着性にすると、実装される電子機器内の半導体チッ プ等と電波吸収熱伝導シートの密着性が向上することから、それらのチップか ら発生する熱を外部に伝えたり電磁波を吸収しやすい電波吸収熱伝導シート が得られる。導電性シートの両面或いは片面に、前記軟質性シートを設けると、 ノイズのシールド特性が向上する。  If the surface of the flexible sheet is made sticky, the adhesiveness between the semiconductor chip in the electronic equipment to be mounted and the electromagnetic wave absorbing heat conductive sheet is improved, so that the heat generated from those chips can be transmitted to the outside. A radio wave absorbing heat conductive sheet that easily absorbs electromagnetic waves can be obtained. When the soft sheet is provided on both sides or one side of the conductive sheet, noise shielding characteristics are improved.
前記導電性シートを軟磁性金属から構成すれば、低周波帯でのシールド効果 が更に向上する。 また、 前記軟質性シートに非磁性無機物粉体を混合すると、 熱伝導性がさらに向上した電波吸収熱伝導シー卜が得られる。  If the conductive sheet is made of a soft magnetic metal, the shielding effect in a low frequency band is further improved. Further, when a nonmagnetic inorganic powder is mixed with the soft sheet, a radio wave absorbing heat conductive sheet with further improved heat conductivity can be obtained.

Claims

請 求 の 範 囲 The scope of the claims
1 . シリコーン系樹脂に軟磁性粉体を混合して成形された軟質性シートからな ることを特徴とする電波吸収熱伝導シート。  1. A radio-wave-absorbing heat-conductive sheet, which is made of a soft sheet formed by mixing a soft magnetic powder with a silicone resin.
2 . 前記軟磁性粉体は、 フェライト系軟磁性粉体、 金属系軟磁性粉体の少なく とも一方であることを特徴とする請求の範囲第 1項に記載の電波吸収熱伝導 シ一卜。  2. The radio wave absorption heat conduction sheet according to claim 1, wherein the soft magnetic powder is at least one of a ferrite soft magnetic powder and a metal soft magnetic powder.
3 . 前記金属系軟磁性粉体が、 パーマロイ、 センダスト、 ケィ素鋼、 パーメン ジュール、 純鉄、 磁性ステンレス鋼のいずれか 1つ以上であって、  3. The metal-based soft magnetic powder is at least one of Permalloy, Sendust, Ca steel, Permendur, Pure iron, Magnetic stainless steel,
その形状が、球形または偏平状粒子形状からなることを特徴とする請求の範 囲第 2項に記載の電波吸収熱伝導シート。  3. The radio wave absorbing heat conductive sheet according to claim 2, wherein the shape is a spherical or flat particle shape.
4 . 前記軟質性シートの表面が、 粘着性を有することを特徴とする請求の範囲 第 1項から第 3項のいずれか 1項に記載の電波吸収熱伝導シ一ト。  4. The radio wave absorption heat conductive sheet according to any one of claims 1 to 3, wherein a surface of the flexible sheet has an adhesive property.
5 . 導電性シートの両面或いは片面に、 前記軟質性シートを設けたことを特徴 とする請求の範囲第 1項〜第 4項のいずれか 1項に記載の電波吸収熱伝導シ 一卜。  5. The radio wave absorbing heat conductive sheet according to any one of claims 1 to 4, wherein the soft sheet is provided on both sides or one side of the conductive sheet.
6 . 前記導電性シートが、 軟磁性金属からなることを特徴とする請求の範囲第 5項に記載の電波吸収熱伝導シート。  6. The radio wave absorbing heat conductive sheet according to claim 5, wherein the conductive sheet is made of a soft magnetic metal.
7 . 前記軟質性シートに、 非磁性無機物粉体を混合してなることを特徴とする 請求の範囲第 1項〜第 6項のいずれか 1項に記載の電波吸収熱伝導シート。  7. The radio wave absorption heat conductive sheet according to any one of claims 1 to 6, wherein a non-magnetic inorganic powder is mixed with the soft sheet.
PCT/JP2000/005641 1999-08-26 2000-08-23 Sheet capable of absorbing heat and electromagnetic radiation WO2001016968A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP24058099A JP2001068312A (en) 1999-08-26 1999-08-26 Radio wave absorbing heat conduction sheet
JP11/240580 1999-08-26

Publications (1)

Publication Number Publication Date
WO2001016968A1 true WO2001016968A1 (en) 2001-03-08

Family

ID=17061642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/005641 WO2001016968A1 (en) 1999-08-26 2000-08-23 Sheet capable of absorbing heat and electromagnetic radiation

Country Status (2)

Country Link
JP (1) JP2001068312A (en)
WO (1) WO2001016968A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1372162A1 (en) * 2001-03-21 2003-12-17 Shin-Etsu Chemical Company, Ltd. Electromagnetic wave absorbing thermally conductive composition and thermosoftening electromagnetic wave absorbing heat dissipation sheet and method of heat dissipation work
WO2009105411A2 (en) * 2008-02-21 2009-08-27 Alcatel-Lucent Usa Inc. Thermally conductive periodically structured gap fillers and method for utilizing same
CN103620335A (en) * 2011-05-31 2014-03-05 阿威德热合金有限公司 Heat sink mount with positionable heat sinks
CN112300501A (en) * 2020-10-19 2021-02-02 深圳市鸿富诚屏蔽材料有限公司 Preparation method of heat-conducting wave-absorbing phase-change composite material and composite material
CN113995298A (en) * 2020-07-28 2022-02-01 武汉苏泊尔炊具有限公司 Magnetic conductive material, magnetic conductive plate and appliance
CN113995298B (en) * 2020-07-28 2024-06-04 武汉苏泊尔炊具有限公司 Magnetic conductive material, magnetic conductive plate and appliance

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4623244B2 (en) * 2000-04-11 2011-02-02 信越化学工業株式会社 Electromagnetic wave absorbing heat conductive silicone rubber composition
JP2002374092A (en) * 2001-06-15 2002-12-26 Polymatech Co Ltd Heat dissipating radio wave absorber
JP2002371138A (en) * 2001-06-15 2002-12-26 Polymatech Co Ltd Heat-radiating electric wave absorbing material
JP2003017888A (en) * 2001-07-04 2003-01-17 Polymatech Co Ltd Radio wave absorbing sheet
JP2003023287A (en) * 2001-07-05 2003-01-24 Polymatech Co Ltd Radio wave absorbing sheet
EP1750421B1 (en) 2005-08-04 2017-11-08 Lenovo Innovations Limited (Hong Kong) Execution of an application in a mobile communication terminal when plugging on cradle for charging
KR100734236B1 (en) 2005-08-05 2007-07-02 치앙 천-리앙 판 Soft magnet structure
JP5083558B2 (en) * 2008-05-30 2012-11-28 戸田工業株式会社 Noise suppression sheet
WO2010004996A1 (en) 2008-07-10 2010-01-14 アルプス電気株式会社 Heat-conductive noise suppression sheet
JP2010165868A (en) * 2009-01-15 2010-07-29 Three M Innovative Properties Co Gel-like composition
US9929475B2 (en) 2010-05-10 2018-03-27 Korea Institute Of Machinery & Materials Waveband electromagnetic wave absorber and method for manufacturing same
JP6366627B2 (en) * 2016-03-25 2018-08-01 デクセリアルズ株式会社 Electromagnetic wave absorbing heat conducting sheet, method for producing electromagnetic wave absorbing heat conducting sheet, and semiconductor device
JP7145413B2 (en) 2018-10-25 2022-10-03 セイコーエプソン株式会社 Printed circuit boards, electronics, and thermal sheets

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6089902A (en) * 1983-10-24 1985-05-20 Tdk Corp Material for radio wave absorber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6089902A (en) * 1983-10-24 1985-05-20 Tdk Corp Material for radio wave absorber

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1372162A1 (en) * 2001-03-21 2003-12-17 Shin-Etsu Chemical Company, Ltd. Electromagnetic wave absorbing thermally conductive composition and thermosoftening electromagnetic wave absorbing heat dissipation sheet and method of heat dissipation work
EP1372162A4 (en) * 2001-03-21 2008-12-31 Shinetsu Chemical Co Electromagnetic wave absorbing thermally conductive composition and thermosoftening electromagnetic wave absorbing heat dissipation sheet and method of heat dissipation work
WO2009105411A2 (en) * 2008-02-21 2009-08-27 Alcatel-Lucent Usa Inc. Thermally conductive periodically structured gap fillers and method for utilizing same
WO2009105411A3 (en) * 2008-02-21 2009-12-17 Alcatel-Lucent Usa Inc. Thermally conductive periodically structured gap fillers and method for utilizing same
CN103620335A (en) * 2011-05-31 2014-03-05 阿威德热合金有限公司 Heat sink mount with positionable heat sinks
CN103620335B (en) * 2011-05-31 2016-01-13 阿威德热合金有限公司 Make the orientable radiator pedestal of radiator
CN113995298A (en) * 2020-07-28 2022-02-01 武汉苏泊尔炊具有限公司 Magnetic conductive material, magnetic conductive plate and appliance
CN113995298B (en) * 2020-07-28 2024-06-04 武汉苏泊尔炊具有限公司 Magnetic conductive material, magnetic conductive plate and appliance
CN112300501A (en) * 2020-10-19 2021-02-02 深圳市鸿富诚屏蔽材料有限公司 Preparation method of heat-conducting wave-absorbing phase-change composite material and composite material

Also Published As

Publication number Publication date
JP2001068312A (en) 2001-03-16

Similar Documents

Publication Publication Date Title
WO2001016968A1 (en) Sheet capable of absorbing heat and electromagnetic radiation
TWI278278B (en) Electromagnetic waves absorber
JP4764220B2 (en) Thermally conductive sheet
US11322425B2 (en) Semiconductor device
JP4849220B2 (en) Electromagnetic interference suppression sheet and manufacturing method thereof, flat cable for high-frequency signal, and flexible printed circuit board
CN107207950B (en) Thermally conductive electromagnetic interference (EMI) absorbers with silicon carbide
TWI330400B (en)
TW200414463A (en) Heat conductive sheet with magnetic wave absorption
KR100849496B1 (en) Composition for complex sheet with thermal dissipation, emi shielding and absorption in target frequency range, and products manufactured therefrom
JP4311653B2 (en) Electromagnetic wave absorber
KR20200130406A (en) Electronics
JP2006135118A (en) Electromagnetic wave absorbing heat radiation sheet
WO2016126449A1 (en) Thermally-conductive electromagnetic interference (emi) absorbers with silicon carbide
EP4133918A1 (en) Electromagnetic interference (emi) mitigation materials and emi absorbing compositions including carbon nanotubes
WO2013024809A1 (en) Electromagnetically absorbing, thermally conductive sheet and electronic instrument
TW200800606A (en) Multi-layered composite capable of conducting heat and absorbing electromagnetic wave and manufacturing method thereof
US20230032553A1 (en) Electromagnetic interference (emi) mitigation materials and emi absorbing compositions including carbon nanotubes
JP4447155B2 (en) Electromagnetic wave suppression heat conduction sheet
JP4311654B2 (en) Laminated electromagnetic wave absorber
JP2002076683A (en) Electromagnetic wave absorbing radiating sheet
JP2003198173A (en) Electromagnetic wave shielding sheet which functions as thermal radiator and electromagnetic wave suppressing sheet which functions as thermal radiator
JP5894612B2 (en) Thermally conductive EMI suppression structure
KR101511417B1 (en) Thermally conductive sheet
JP5438337B2 (en) Thermally conductive sheet and manufacturing method thereof
JP2003283181A (en) Heat dissipating noise suppression sheet and its fixing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 09937408

Country of ref document: US

122 Ep: pct application non-entry in european phase