WO2001015481A1 - Method and apparatus using a multi-carrier forward link in a wireless communication system - Google Patents
Method and apparatus using a multi-carrier forward link in a wireless communication system Download PDFInfo
- Publication number
- WO2001015481A1 WO2001015481A1 PCT/US2000/023420 US0023420W WO0115481A1 WO 2001015481 A1 WO2001015481 A1 WO 2001015481A1 US 0023420 W US0023420 W US 0023420W WO 0115481 A1 WO0115481 A1 WO 0115481A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- channel
- accordance
- reverse link
- data
- forward link
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/707—Spread spectrum techniques using direct sequence modulation
- H04B1/7097—Interference-related aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/16—Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
- H04W28/18—Negotiating wireless communication parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/707—Spread spectrum techniques using direct sequence modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/24—Radio transmission systems, i.e. using radiation field for communication between two or more posts
- H04B7/26—Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
- H04B7/2628—Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using code-division multiple access [CDMA] or spread spectrum multiple access [SSMA]
- H04B7/2634—Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using code-division multiple access [CDMA] or spread spectrum multiple access [SSMA] for channel frequency control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0453—Resources in frequency domain, e.g. a carrier in FDMA
Definitions
- the present invention relates to communications. More particularly, the
- invention concerns a method and apparatus for transmitting information in a
- Figure 1 illustrates a portion of the radio frequency spectrum used in a
- MHz has historically been known as the cellular frequency range and frequency range 102 centered about 1900 MHz is a newer defined frequency range associated with personal communication services (PCS).
- PCS personal communication services
- Portion 106 of cellular frequency range 100 is used for
- forward link communications that is, communications from a cellular base
- PCS frequency range 102 is used for reverse link communications, that is,
- PCS frequency range 102 is used for reverse link communications, i.e.,
- Each of the frequency ranges is broken into bands that are typically
- band "A" for reverse
- a reverse link is the band
- a forward link is the band connecting a base station with a mobile station.
- a cellular service provider is assigned frequency band "A" in order to carry out
- frequency range is broken into several bands where a different service provider
- the PCS bands are referred to as A, B, C, D, E and F.
- the 3 band includes reverse link band 120 and forward link band 122.
- the B band includes reverse link band 120 and forward link band 122.
- Band C includes reverse link band 124 and forward link band 126.
- Band C includes
- forward link band of A, B and C bands are each 15 MHz wide.
- the E band includes reverse link band 132 and forward link band 134.
- the E band includes
- band F includes
- link bands of D, E and F are each 5 MHz wide.
- CDMA Code Division Multiple Access
- Telecommunications Industry Association Telecommunications Industry Association (TIA) and was called cdma2000,
- the proposed cdma2000 system includes three modes of operation:
- FDD frequency division duplex
- TDD time-division duplex
- the IX FDDmode operates within a 1.25 MHz bandwidth on both the
- FDDmode operates within a 3.75 MHZ band on both forward and reverse links.
- the 3X mode forward link employs either a direct spread or a multi-carrier
- forward link consists of three carriers that are each spread at a spreading rate of 01/15481
- the IX TDD mode operates within a single 1.25 MHz bandwidth
- TDD modes operates within a single 3.75 MHz for both the forward and reverse
- the cdma2000 forward link structure may be "over-laid" on existing PCS systems.
- the reverse link is not
- time-division-duplex (TDD) mode of operation allows both the
- TDD forward link is transmitted in a first time interval and the TDD reverse
- mobile station user may send a simple message requesting that a page from
- a request for a page may be in the order of a few hundred bytes, but the response from the web server
- bandwidth allocated to reverse link transmissions is the same as the bandwidth
- bandwidth allocated to the forward link to be different than the bandwidth
- the present invention relates to wireless communications. More
- the invention concerns forward link and reverse link designs utilized in a wireless telecommunications system.
- the invention concerns forward link and reverse link designs utilized in a wireless telecommunications system.
- the invention concerns forward link and reverse link designs utilized in a wireless telecommunications system.
- the invention provides a 3X mode of cdma2000. In other embodiments, the invention provides
- the present invention provides a method that
- 3X FL has three 1.2288 Mcps carriers and the IX RL uses one 1.2288 Mcps
- the 3X FL carriers may occupy adjacent "frequency bins" as described
- the IX carrier bin may be located in the center
- frequency bin range In other embodiments, it may be located at anyone of the
- the 3X FL carrier uses one or more carriers with a chip rate that is
- the invention provides an article of manufacture
- the invention yields an apparatus used to practice the
- the apparatus may comprise a remote station and at least one base station that has, amongst other things, a transceiver used to
- the remote station also includes a transceiver which transmits and
- the base station receives from the base station, and possibly satellites where applicable.
- apparatus will also include at least one digital processing apparatus, such as a
- microprocessor that is communicatively coupled to the network or one of its
- the invention provides its users with numerous advantages.
- Another advantage is that it provides better spectrum management to a service provider. Another advantage is that a cdma2000 IX system can be upgraded to cdma2000
- the invention also provides a number of other
- FIGURE 1 illustrates the frequency spectrum used for wireless
- FIGURE 2 shows a cdma2000 3X multi-carrier forward link and a single cdma2000 IX reverse link used in accordance with the invention
- FIGURE 3 shows a grouping in a band of CDMA reverse links that
- FIGURE 4a is a block diagram of a general configuration for a mobile
- FIGURE 4b is a block diagram of a general channel structure used in
- FIGURE 5a is a block diagram of a portion of the hardware components
- FIGURE 5b shows an exemplary arrangement for a demultiplexer 511
- FIGURE 5c shows another arrangement for a demultiplexer 511 shown
- FIGURE 5d is a block diagram of the hardware components
- FIGURE 5e is a block diagram of the hardware components
- FIGURE 6a is a block diagram of a portion of the hardware components
- FIGURE 6b is a block diagram of the hardware components
- FIGURE 7 is a diagram showing the spectrum of a IX and a 3X reverse link spectrums.
- FIGS 2- 6b illustrate examples of various method and apparatus
- CDMA system CDMA systems are disclosed in TIA/EIA/IS-2000, prepared by
- MC forward link
- RL reverse link
- This single carrier provides a direct spread chip rate of 3.6864 Mcps.
- the present invention improves upon
- the invention uses a cdma2000 MC FL and a single
- each MC FL carrier is separated by 1.25 MHz.
- the figure the figure, the
- IX RL carrier is shown in a center "frequency bin,” wherein the term frequency
- the IX RL carrier could be located in any one of the three possible frequency bins corresponding to each of the three MC FL frequencies.
- the IX RL carrier may be in any
- a mobile station can transmit the IX RL on any frequency within a provider's band.
- a power control signal for RL power control can be sent on the
- the RLs can be grouped in one part of the
- TDD usage is on the RL where interference issues will be less problematic than the other way around, particularly if FDD service is considered the more important service.
- TDD service is sufficient to provide little interference between the FDD and
- the TDD mobile station transmitter may be using
- Figure 7 shows the emissions for both IX and 3X reverse links from a mobile
- the transmitted spectrums would be exactly the bandwidth of
- the bandwidth of the IX reverse link including the
- 3 rd order pedestal is approximately three times the chip rate, or 3.6864 MHz.
- the intermodulation distortion can be reduced (and thus the unwanted
- a more linear power amplifier in the mobile station requires more battery power for the same power output. Since a design goal of a mobile station is to
- guardband to TDD and other systems. While emissions from the base station are also a concern, base stations usually don't use batteries as their main power source. Thus, having a more linear power amplifier is significantly less difficult than in a mobile station.
- each of the channels of information is evenly distributed
- fundamental channel data For example, fundamental channel data
- Such as speech data may be transmitted on a first carrier while supplemental
- channel data such as high-speed digital data is transmitted on a second carrier.
- a provider when a provider has a three-carrier FL system, he may elect initially to provide speech services on a IX band. Later, in response to the needs of his customers, a second band can be deployed to carry additional
- multiple FL code channels are assigned to a mobile
- a 307.2 kbps FL code channel can be
- one of the forward link channels coveys power control information for the RL and a fundamental channel.
- a fundamental channel is generally a channel that
- fast forward link power control is not always the best technique for controlling power if the goal is to maximize system capacity.
- a slower form of power control such as one widely known in the
- a digital data processing apparatus used to execute a sequence of
- machine-readable instructions as mentioned above may be embodied by
- FIG. 4a shows a simple block representation of a mobile station (MS) 401 configured for use in accordance with the present invention.
- MS 401 receives a signal from a base station (not shown) using a cdma2000 3X MC
- MS 401 uses a
- Figure 4b shows a more detailed block representation of a channel
- a signal hereafter referred to as a signal, is transmitted in bits organized into blocks of
- a CRC and tail bit generator (generator) 403 receives the signal.
- generator 403 uses a cyclic redundancy code to generate parity check bits to assist in determining the quality of the signal when received by a receiver.
- a tail bit - a fixed sequence of bits - may
- the encoder 405 receives the signal and builds a redundancy into the
- the repetition generator 407 repeats the symbols it receives
- Block interleaver 409 takes the symbols and jumbles
- the long code generator 411 receives the jumbled symbols and scrambles
- Each symbol is XOR-ed with one of the pseudorandom chips of the scrambling sequence.
- the information may be transmitted using more than one carrier
- demultiplexer (DEMUX) 511 shown in Figure 5a, takes the input signal “a” and splits it into multiple output signals in such a way that the input signal may be recovered. As shown in Figure 5b, in one embodiment the signal "a" is split
- each signal representing a selected data-type, and is
- DEMUX 511 as shown in Figure 5c splits signal "a" into two components per
- the present invention contemplates that distinct signals generated from a parent signal can be transmitted using one or more channels.
- this technique can be applied to multiple users whose signals
- each of these signals is "channelized" by
- the demultiplexed signal is then encoded by Walsh encoder 513 and spread into
- Figure 5d illustrates a functional block diagram of an exemplary computing environment
- wireless communication device 500 One skilled in the art will understand that
- WCDMA Wideband CDMA
- the first supplemental data channel 532 and second supplemental data channel 538 carry digital data which exceeds the capacity of the fundamental channel 540
- symbols 534 carries pilots symbols to allow for coherent demodulation of the
- Control channel 536 carries control
- Fundamental channel 540 is the
- channel 540 carries the speech data.
- Supplemental data channels 532 and 538 are encoded and processed for
- control bits are provided to repetition generator 522, which provides repetition
- the redundant power control bits are time multiplexed with pilot symbols and provided on line 534 to modulator 526.
- Message generator 512 generates necessary control information messages
- tail bit generator 504 appends a set of cyclic redundancy check bits which are
- parity bits used to check the accuracy of the decoding at the base station
- the message is
- encoder 516 which provide forward error correction coding
- variable rate data source 502 generates variable rate data. In the
- variable rate data source 502 is a variable rate speech
- Variable rate vocoders are popular in
- variable rate speech encoders encode the speech
- the rate indicates the
- Full rate uses a predetermined maximum number of bits to encode the
- half rate uses half the predetermined maximum number of bits to encode the frame
- quarter rate uses one quarter the predetermined maximum number
- eighth rate uses one eighth the predetermined maximum number of bits to encode the frame.
- Variable rate date source 502 provides the encoded speech frame to CRC
- CRC and tail bit generator 504 appends a set of cyclic
- redundancy check bits which are parity bits used to check the accuracy of the
- the encoded symbols are provided to repetition generator 508, which provides repetition of the encoded symbol.
- modulator 526 modulates the data channels in accordance with a code division multiple access modulation format
- TMTR transmitter
- duplexer 528 amplifies and filters the signal and provides the signal through duplexer 528 for
- the base station receiving the frame issues a power control command in response to a determination of the sufficiency of the received reverse link signal at the base station.
- Figure 5e illustrates a functional block diagram of an exemplary computing environment
- channel data is provided on line 532 to spreading element 542 which covers the
- spreading element 542 spreads the
- supplemental channel data with a short Walsh sequence (++-).
- the spread data is provided to relative gain element 544, which adjusts the gain of the
- the gain adjusted supplemental channel data is provided to a
- multiplexed symbols are provided on line 534 to a second summing input of
- Control channel data is provided on line 536 to spreading element 548
- spreading is a predetermined spreading sequence.
- spreading is a predetermined spreading sequence.
- element 548 spreads the supplemental channel data with a short Walsh
- the gain adjusted control data is provided to a third summing input of summing element 546.
- Summing element 546 sums the gain adjusted control data symbols, the gain adjusted
- control symbols and provides the sum to a first input of multiplier 562 and a first input of multiplier 568.
- the second supplemental channel is provided on line 538 to spreading
- spreading is a predetermined spreading sequence.
- spreading is a predetermined spreading sequence.
- element 552 spreads the supplemental channel data with a short Walsh sequence (++--)• The spread data is provided to relative gain element 554,
- the fundamental channel data is provided on line 540 to spreading
- spreading element 558 spreads the fundamental channel data with a short Walsh sequence
- fundamental channel data is provided to a second summing input of summing
- Summing element 556 sums the gain adjusted second supplemental channel data symbols and the fundamental channel data symbols and provides the sum to a first input of multiplier 564 and a first input of
- the short PN sequences, PN, and PN Q are multiplied by
- the resulting PN sequence from multiplier 570 is provided to respective
- multiplier 572 is provided to respective second inputs of multipliers 566 and 568.
- the product sequence from multiplier 562 is provided to the summing
- multiplier 566 is provided to the subtracting input of subtractor 574.
- product sequence from multiplier 568 is provided to a second summing input of summing element 576.
- the difference sequence from subtractor 574 is provided to baseband
- Baseband filter 578 performs necessary filtering on the difference
- Gain element 582 provides the filtered sequence to gain element 582.
- 582 adjusts the gain of the signal and provides the gain-adjusted signal to
- Upconverter 586 upconverts the gain adjusted signal in
- the sum sequence from summing element 576 is provided to baseband
- Baseband filter 580 performs necessary filtering on difference
- Gain element 584 provides the filtered sequence to gain element 584.
- 584 adjusts the gain of the signal and provides the gain-adjusted signal to
- Upconverter 588 upconverts the gain adjusted signal in
- FIG. 6a a functional block diagram of selected portions of a base station 600 in accordance with the present invention.
- receiver (RCVR) 602 which downconverts the received reverse link
- Demodulator 604 then demodulates the baseband signal.
- Demodulator 604 is further described with reference to Figure 6b below.
- the demodulated signal is provided to accumulator 606. Accumulator
- interleaver 608 and reordered in accordance with a predetermined de-
- the reordered symbols are provided to decoder 610 and 01/15481
- base station 600 performs a blind
- blind decoding describes a method of
- base station 600 decoding variable rate data in which the receiver does not know a priori the rate of the transmission.
- base station 600
- the frame selected as the best estimate is based on quality metrics such as the symbol error rate, the CRC check and the Yamamoto metric.
- processor ⁇ >16_]and a set of quality metrics for each of the decoded estimates is
- Quality metrics that may include the symbol error rate, the
- Control processor selectively provides
- demodulation chain of demodulator 604 is shown in Figure 6b.
- Figure 6b In the preferred embodiment
- demodulator 604 has one demodulation chain for each information channel.
- the exemplary demodulator 604 of Figure 6b performs
- receiver (RCVR) 602 downconverts the RCVR
- despreaders 614 and 616 respectively despread the I and Q
- despreaders 622 and 624 respectively despread the I and Q signals using the PN, sequence of Figure 5e.
- despreaders 626 and 628 respectively despread the Q and I signals using the PN Q sequence of Figure 5e.
- despreader 628 is subtracted from the output of despreader 624 in combiner
- pilot filters 646 and 648 are then applied to pilot filters 646 and 648. Pilot
- filters 646 and 648 generate an estimation of the channel conditions by
- pilot filter 648 is complex multiplied by the
- complex multiplier 650 in combiner 658.
- Figure 7 compares the spectrum of a IX reverse link spectrum to a 3X reverse link spectrum.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
- Transceivers (AREA)
- Time-Division Multiplex Systems (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU69391/00A AU6939100A (en) | 1999-08-25 | 2000-08-25 | Method and apparatus using a multi-carrier forward link in wireless communication system |
DE60042420T DE60042420D1 (en) | 1999-08-25 | 2000-08-25 | METHOD AND DEVICE USING A MULTI-PRIORITY CONNECTION IN A WIRELESS COMMUNICATION SYSTEM |
EP00957822A EP1236369B1 (en) | 1999-08-25 | 2000-08-25 | Method and apparatus using a multi-carrier forward link in a wireless communication system |
BRPI0013505A BRPI0013505B1 (en) | 1999-08-25 | 2000-08-25 | bandwidth allocation method for forward and reverse link transmissions, as well as method and equipment for allowing a telecommunications system to migrate from one cdma standard to another |
AT00957822T ATE434356T1 (en) | 1999-08-25 | 2000-08-25 | METHOD AND APPARATUS USING A MULTI CARRIER FORWARD LINK IN A WIRELESS COMMUNICATIONS SYSTEM |
KR1020027002461A KR20020085870A (en) | 1999-08-25 | 2000-08-25 | Method and apparatus using a multi-carrier forward link in a wireless communication system |
JP2001519073A JP2003522446A (en) | 1999-08-25 | 2000-08-25 | Method and apparatus for using a multi-carrier forward link in a wireless communication system |
HK03105798.0A HK1053568A1 (en) | 1999-08-25 | 2003-08-13 | Method and apparatus using a multi-carrier forward link in a wireless communication system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/382,438 US8064409B1 (en) | 1999-08-25 | 1999-08-25 | Method and apparatus using a multi-carrier forward link in a wireless communication system |
US09/382,438 | 1999-08-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001015481A1 true WO2001015481A1 (en) | 2001-03-01 |
Family
ID=23508949
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2000/023420 WO2001015481A1 (en) | 1999-08-25 | 2000-08-25 | Method and apparatus using a multi-carrier forward link in a wireless communication system |
Country Status (13)
Country | Link |
---|---|
US (1) | US8064409B1 (en) |
EP (2) | EP1236369B1 (en) |
JP (2) | JP2003522446A (en) |
KR (3) | KR100831190B1 (en) |
CN (2) | CN101616455B (en) |
AT (1) | ATE434356T1 (en) |
AU (1) | AU6939100A (en) |
BR (1) | BRPI0013505B1 (en) |
DE (1) | DE60042420D1 (en) |
ES (1) | ES2328101T3 (en) |
HK (2) | HK1053568A1 (en) |
TW (1) | TW501375B (en) |
WO (1) | WO2001015481A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005109687A1 (en) * | 2004-05-10 | 2005-11-17 | Samsung Electronics Co., Ltd. | Method and apparatus for measurement and reception of preferred layer for mbms in mobile communication system |
WO2006096765A1 (en) * | 2005-03-08 | 2006-09-14 | Qualcomm Incorporated | De-coupling forward and reverse link assignment for multi-carrier wireless communication systems |
WO2006105308A2 (en) * | 2005-03-29 | 2006-10-05 | Qualcomm Incorporated | Method and apparatus for high rate data transmission in wireless communication |
WO2006110874A2 (en) * | 2005-04-08 | 2006-10-19 | Qualcomm Incorporated | Multiplexing on the reverse link feedbacks for multiple forward link frequencies |
JP2007129752A (en) * | 2006-12-18 | 2007-05-24 | Kyocera Corp | Wireless communication system |
WO2007035044A3 (en) * | 2005-09-21 | 2008-04-10 | Lg Electronics Inc | Method and appratus for multiplexing multiple reverse feedback channels in multicarrier wireless networks |
EP2146545A1 (en) * | 2005-04-28 | 2010-01-20 | Qualcom Incorporated | Multi-carrier operation in data transmission systems |
US8194703B2 (en) | 2002-08-07 | 2012-06-05 | Kyocera Corporation | Wireless communication system |
US8983480B2 (en) | 2005-04-08 | 2015-03-17 | Qualcomm Incorporated | Multiplexing on the reverse link feedbacks for multiple forward link frequencies |
US9706460B2 (en) | 2013-05-29 | 2017-07-11 | Nec Platforms, Ltd. | Wireless communication terminal and roaming method for wireless communication terminal |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7184426B2 (en) | 2002-12-12 | 2007-02-27 | Qualcomm, Incorporated | Method and apparatus for burst pilot for a time division multiplex system |
US9118387B2 (en) | 1997-11-03 | 2015-08-25 | Qualcomm Incorporated | Pilot reference transmission for a wireless communication system |
US6973098B1 (en) | 2000-10-25 | 2005-12-06 | Qualcomm, Incorporated | Method and apparatus for determining a data rate in a high rate packet data wireless communications system |
US7068683B1 (en) | 2000-10-25 | 2006-06-27 | Qualcomm, Incorporated | Method and apparatus for high rate packet data and low delay data transmissions |
US20060268720A1 (en) * | 2005-05-26 | 2006-11-30 | Zhigang Rong | Method and apparatus for providing acknowledgement signaling in a multi-carrier communication system |
US8160596B2 (en) * | 2005-07-20 | 2012-04-17 | Qualcomm Incorporated | Asymmetric mode of operation in multi-carrier communication systems |
ES2578736T3 (en) * | 2005-09-21 | 2016-07-29 | Lg Electronics Inc. | Procedure and apparatus for controlling the transmission power of reverse link carriers in multi-carrier wireless system |
CN100355233C (en) * | 2005-10-27 | 2007-12-12 | 华为技术有限公司 | Method for realizing multi-carrier EV-DO system reverse traffic channel control information |
JP4703393B2 (en) * | 2005-12-22 | 2011-06-15 | 京セラ株式会社 | Wireless communication terminal and communication method |
JP4658198B2 (en) * | 2006-07-28 | 2011-03-23 | 京セラ株式会社 | Wireless communication method and wireless base station |
US8825066B2 (en) * | 2009-06-16 | 2014-09-02 | Nokia Corporation | Apparatus and method for interworking between multiple frequency band modes |
US8811200B2 (en) | 2009-09-22 | 2014-08-19 | Qualcomm Incorporated | Physical layer metrics to support adaptive station-dependent channel state information feedback rate in multi-user communication systems |
US20130114571A1 (en) * | 2011-11-07 | 2013-05-09 | Qualcomm Incorporated | Coordinated forward link blanking and power boosting for flexible bandwidth systems |
TWI448132B (en) * | 2012-06-22 | 2014-08-01 | Univ Nat Taiwan Science Tech | Time division duplexing control and protective device and method thereof |
JP6373043B2 (en) * | 2014-04-08 | 2018-08-15 | 三菱電機株式会社 | Receiver |
CN105871984A (en) * | 2015-12-11 | 2016-08-17 | 乐视网信息技术(北京)股份有限公司 | Information pushing and display method and corresponding apparatus |
KR102149630B1 (en) | 2016-11-05 | 2020-08-28 | 애플 인크. | Asymmetric bandwidth support and dynamic bandwidth adjustment |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998035514A2 (en) * | 1997-02-11 | 1998-08-13 | Qualcomm Incorporated | Method and apparatus for forward link rate scheduling |
WO1999018684A1 (en) * | 1997-10-03 | 1999-04-15 | Anglin Richard Jr | Interactive digital data broadcasting system |
US5914950A (en) * | 1997-04-08 | 1999-06-22 | Qualcomm Incorporated | Method and apparatus for reverse link rate scheduling |
Family Cites Families (309)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE513414A (en) | 1951-09-12 | |||
US3018663A (en) | 1956-09-13 | 1962-01-30 | United States Steel Corp | Furnace lining temperature-thickness measuring apparatus |
US3534264A (en) | 1966-04-15 | 1970-10-13 | Ibm | Adaptive digital communication system |
SU462292A1 (en) | 1971-10-15 | 1975-02-28 | Предприятие П/Я А-7306 | Multichannel radio mode |
US4047151A (en) | 1974-12-24 | 1977-09-06 | Rydbeck Nils R C | Adaptive error correcting transmission system |
US4261054A (en) | 1977-12-15 | 1981-04-07 | Harris Corporation | Real-time adaptive power control in satellite communications systems |
US4256925A (en) | 1978-12-12 | 1981-03-17 | Satellite Business Systems | Capacity reallocation method and apparatus for a TDMA satellite communication network with demand assignment of channels |
US4309764A (en) | 1979-06-22 | 1982-01-05 | Bell Telephone Laboratories, Incorporated | Technique for increasing the rain margin of a satellite communication system |
US4383315A (en) | 1981-07-20 | 1983-05-10 | Bell Telephone Laboratories, Incorporated | Idle time slot seizure and transmission facilities for loop communication system |
US4495619A (en) | 1981-10-23 | 1985-01-22 | At&T Bell Laboratories | Transmitter and receivers using resource sharing and coding for increased capacity |
US4495648A (en) | 1982-12-27 | 1985-01-22 | At&T Bell Laboratories | Transmitter power control circuit |
US4547880A (en) | 1983-05-13 | 1985-10-15 | Able Computer | Communication control apparatus for digital devices |
US4491947A (en) | 1983-05-31 | 1985-01-01 | At&T Bell Laboratories | Technique for dynamic scheduling of integrated circuit- and packet-switching in a multi-beam SS/TDMA system |
US4756007A (en) | 1984-03-08 | 1988-07-05 | Codex Corporation | Adaptive communication rate modem |
US4675863A (en) | 1985-03-20 | 1987-06-23 | International Mobile Machines Corp. | Subscriber RF telephone system for providing multiple speech and/or data signals simultaneously over either a single or a plurality of RF channels |
JPH0618358B2 (en) | 1985-04-09 | 1994-03-09 | 沖電気工業株式会社 | Error control coding system |
EP0261112B1 (en) | 1986-03-25 | 1994-07-20 | Motorola, Inc. | Method and apparatus for controlling a tdm communication device |
US4901307A (en) | 1986-10-17 | 1990-02-13 | Qualcomm, Inc. | Spread spectrum multiple access communication system using satellite or terrestrial repeaters |
GB8628821D0 (en) | 1986-12-02 | 1987-01-07 | Plessey Co Plc | Data transmission systems |
US4789983A (en) | 1987-03-05 | 1988-12-06 | American Telephone And Telegraph Company, At&T Bell Laboratories | Wireless network for wideband indoor communications |
US4785450B1 (en) | 1987-08-06 | 1999-10-12 | Interdigital Tech Corp | Apparatus and method for obtaining frequency agility in digital communication system |
US4901319A (en) | 1988-03-18 | 1990-02-13 | General Electric Company | Transmission system with adaptive interleaving |
SU1585902A1 (en) | 1988-05-11 | 1990-08-15 | Серпуховское высшее военное командно-инженерное училище ракетных войск им.Ленинского комсомола | Multiple-parameter adaptive system of radio communication for transmission of discrete information |
US4931250A (en) | 1988-05-12 | 1990-06-05 | Codex Corporation | Multimode modem |
US5425051A (en) | 1992-11-09 | 1995-06-13 | Norand Corporation | Radio frequency communication network having adaptive parameters |
US4910794A (en) | 1988-08-04 | 1990-03-20 | Norand Corporation | Mobile radio data communication system and method |
US5003534A (en) | 1988-08-26 | 1991-03-26 | Scientific Atlanta | Link utilization control mechanism for demand assignment satellite communications network |
US4914651A (en) | 1988-09-20 | 1990-04-03 | Cellular Data, Inc. | Cellular data system |
JPH0626343B2 (en) | 1988-12-16 | 1994-04-06 | 日本電気株式会社 | Modulator / demodulator data transmission rate automatic switching system |
US5022046A (en) | 1989-04-14 | 1991-06-04 | The United States Of America As Represented By The Secretary Of The Air Force | Narrowband/wideband packet data communication system |
JP2733110B2 (en) | 1989-09-19 | 1998-03-30 | 日本電信電話株式会社 | Wireless signal transmission method |
JP2854346B2 (en) | 1989-09-19 | 1999-02-03 | 日本電信電話株式会社 | Channel assignment method |
US5191583A (en) | 1989-11-03 | 1993-03-02 | Microcom Systems, Inc. | Method and apparatus for effecting efficient transmission of data |
US5056109A (en) * | 1989-11-07 | 1991-10-08 | Qualcomm, Inc. | Method and apparatus for controlling transmission power in a cdma cellular mobile telephone system |
US5101501A (en) | 1989-11-07 | 1992-03-31 | Qualcomm Incorporated | Method and system for providing a soft handoff in communications in a cdma cellular telephone system |
US5267262A (en) | 1989-11-07 | 1993-11-30 | Qualcomm Incorporated | Transmitter power control system |
US5485486A (en) | 1989-11-07 | 1996-01-16 | Qualcomm Incorporated | Method and apparatus for controlling transmission power in a CDMA cellular mobile telephone system |
US5038399A (en) | 1990-05-21 | 1991-08-06 | Motorola, Inc. | Method for assigning channel reuse levels in a multi-level cellular system |
US5659569A (en) | 1990-06-25 | 1997-08-19 | Qualcomm Incorporated | Data burst randomizer |
US5511073A (en) | 1990-06-25 | 1996-04-23 | Qualcomm Incorporated | Method and apparatus for the formatting of data for transmission |
US5568483A (en) | 1990-06-25 | 1996-10-22 | Qualcomm Incorporated | Method and apparatus for the formatting of data for transmission |
US5103459B1 (en) | 1990-06-25 | 1999-07-06 | Qualcomm Inc | System and method for generating signal waveforms in a cdma cellular telephone system |
US5115429A (en) | 1990-08-02 | 1992-05-19 | Codex Corporation | Dynamic encoding rate control minimizes traffic congestion in a packet network |
US5297192A (en) | 1990-09-28 | 1994-03-22 | At&T Bell Laboratories | Method and apparatus for remotely programming a mobile data telephone set |
US5204876A (en) | 1991-03-13 | 1993-04-20 | Motorola, Inc. | Method and apparatus for providing high data rate traffic channels in a spread spectrum communication system |
US5235614A (en) | 1991-03-13 | 1993-08-10 | Motorola, Inc. | Method and apparatus for accommodating a variable number of communication channels in a spread spectrum communication system |
US5400328A (en) | 1991-05-28 | 1995-03-21 | British Technology Group Ltd. | Variable data rate channels for digital networks |
DE69232202T2 (en) | 1991-06-11 | 2002-07-25 | Qualcomm, Inc. | VOCODER WITH VARIABLE BITRATE |
US5195090A (en) | 1991-07-09 | 1993-03-16 | At&T Bell Laboratories | Wireless access telephone-to-telephone network interface architecture |
US5289527A (en) | 1991-09-20 | 1994-02-22 | Qualcomm Incorporated | Mobile communications device registration method |
JP2776094B2 (en) | 1991-10-31 | 1998-07-16 | 日本電気株式会社 | Variable modulation communication method |
JP2554219B2 (en) | 1991-11-26 | 1996-11-13 | 日本電信電話株式会社 | Digital signal superposition transmission method |
DE4139665A1 (en) | 1991-12-02 | 1993-06-03 | Hoechst Ag | METHOD FOR PRODUCING POLYMERISATES OF TETRAFLUORETHYLENE |
DE69231437T2 (en) | 1991-12-26 | 2001-03-01 | Nec Corp., Tokio/Tokyo | System for controlling the transmission power with a constant signal quality in a mobile communication network |
US5267261A (en) | 1992-03-05 | 1993-11-30 | Qualcomm Incorporated | Mobile station assisted soft handoff in a CDMA cellular communications system |
DE4210305A1 (en) | 1992-03-30 | 1993-10-07 | Sel Alcatel Ag | Method, transmitter and receiver for information data transmission with variable traffic volume and control station for coordinating several such transmitters and receivers |
US5896561A (en) | 1992-04-06 | 1999-04-20 | Intermec Ip Corp. | Communication network having a dormant polling protocol |
GB2268372B (en) | 1992-06-11 | 1995-11-01 | Roke Manor Research | Improvements in or relating to data transmission systems |
JP2726756B2 (en) | 1992-06-26 | 1998-03-11 | シュナイダー・(ユーエスエイ)・インコーポレーテッド | Catheter with inflatable wire mesh tip |
JP2596517Y2 (en) | 1992-07-17 | 1999-06-14 | ポップリベット・ファスナー株式会社 | Stud welding machine control device |
US5918184A (en) | 1992-09-21 | 1999-06-29 | Lucent Technologies Inc. | Method and apparatus for detecting a supervisory audio tone |
US5604744A (en) | 1992-10-05 | 1997-02-18 | Telefonaktiebolaget Lm Ericsson | Digital control channels having logical channels for multiple access radiocommunication |
FI925472A (en) | 1992-12-01 | 1994-06-02 | Nokia Mobile Phones Ltd | Data transfer procedure and system |
US5375123A (en) | 1993-02-05 | 1994-12-20 | Telefonakitebolaget L. M. Ericsson | Allocation of channels using interference estimation |
SE516173C2 (en) | 1993-02-16 | 2001-11-26 | Ericsson Telefon Ab L M | Device for telecommunications |
US5465388A (en) | 1993-02-19 | 1995-11-07 | Zicker; Robert G. | Emergency cellular radiotelephone and method therefor |
US5396516A (en) | 1993-02-22 | 1995-03-07 | Qualcomm Incorporated | Method and system for the dynamic modification of control paremeters in a transmitter power control system |
EP0631382B1 (en) | 1993-06-25 | 2001-05-09 | Siemens Aktiengesellschaft | Method for optimising the automatic adjustment of an amplifier in an rf-receiver |
MY112371A (en) | 1993-07-20 | 2001-05-31 | Qualcomm Inc | System and method for orthogonal spread spectrum sequence generation in variable data rate systems |
US5870393A (en) | 1995-01-20 | 1999-02-09 | Hitachi, Ltd. | Spread spectrum communication system and transmission power control method therefor |
ZA946674B (en) | 1993-09-08 | 1995-05-02 | Qualcomm Inc | Method and apparatus for determining the transmission data rate in a multi-user communication system |
US5404376A (en) | 1993-09-09 | 1995-04-04 | Ericsson-Ge Mobile Communications Inc. | Navigation assistance for call handling in mobile telephone systems |
US5412687A (en) | 1993-10-15 | 1995-05-02 | Proxim Incorporated | Digital communications equipment using differential quaternary frequency shift keying |
US6005856A (en) | 1993-11-01 | 1999-12-21 | Omnipoint Corporation | Communication protocol for spread spectrum wireless communication system |
US5471497A (en) | 1993-11-01 | 1995-11-28 | Zehavi; Ephraim | Method and apparatus for variable rate signal transmission in a spread spectrum communication system using coset coding |
US6088590A (en) * | 1993-11-01 | 2000-07-11 | Omnipoint Corporation | Method and system for mobile controlled handoff and link maintenance in spread spectrum communication |
US5383219A (en) | 1993-11-22 | 1995-01-17 | Qualcomm Incorporated | Fast forward link power control in a code division multiple access system |
US5594720A (en) | 1993-11-24 | 1997-01-14 | Lucent Technologies Inc. | Multiple access cellular communication with dynamic slot allocation and reduced co-channel interferences |
IT1261365B (en) | 1993-12-02 | 1996-05-20 | Cselt Centro Studi Lab Telecom | PROCEDURE AND DEVICE FOR THE POWER CONTROL IN THE MOBILE BASE-HALF STATION ROUTE OF A RADIO-MOBILE SYSTEM WITH ACCESS TO CODE DIVISION |
US5469471A (en) | 1994-02-01 | 1995-11-21 | Qualcomm Incorporated | Method and apparatus for providing a communication link quality indication |
US5491837A (en) | 1994-03-07 | 1996-02-13 | Ericsson Inc. | Method and system for channel allocation using power control and mobile-assisted handover measurements |
US5666378A (en) | 1994-03-18 | 1997-09-09 | Glenayre Electronics, Inc. | High performance modem using pilot symbols for equalization and frame synchronization |
US5764699A (en) | 1994-03-31 | 1998-06-09 | Motorola, Inc. | Method and apparatus for providing adaptive modulation in a radio communication system |
FR2718306B1 (en) | 1994-03-31 | 1996-04-26 | Alcatel Mobile Comm France | Method for adapting the air interface in a radiocommunication system to mobiles. |
US5497395A (en) | 1994-04-04 | 1996-03-05 | Qualcomm Incorporated | Method and apparatus for modulating signal waveforms in a CDMA communication system |
JP3302168B2 (en) | 1994-04-05 | 2002-07-15 | 株式会社東芝 | Mobile radio communication system |
FR2718906B1 (en) | 1994-04-13 | 1996-05-24 | Alcatel Mobile Comm France | Method for adapting the air interface in a radiocommunication system with mobiles, base station, mobile station and corresponding transmission mode. |
US5434860A (en) | 1994-04-20 | 1995-07-18 | Apple Computer, Inc. | Flow control for real-time data streams |
FI96468C (en) | 1994-05-11 | 1996-06-25 | Nokia Mobile Phones Ltd | Controlling the handover of a mobile radio station and adjusting the transmission power in the radio communication system |
US5442625A (en) * | 1994-05-13 | 1995-08-15 | At&T Ipm Corp | Code division multiple access system providing variable data rate access to a user |
US5638412A (en) | 1994-06-15 | 1997-06-10 | Qualcomm Incorporated | Method for providing service and rate negotiation in a mobile communication system |
US5553075A (en) | 1994-06-22 | 1996-09-03 | Ericsson Ge Mobile Communications Inc. | Packet data protocol for wireless communication |
US5621752A (en) | 1994-06-23 | 1997-04-15 | Qualcomm Incorporated | Adaptive sectorization in a spread spectrum communication system |
EP0716520B1 (en) | 1994-06-23 | 2004-05-12 | NTT DoCoMo, Inc. | Cdma demodulation circuit and demodulating method |
US5603096A (en) | 1994-07-11 | 1997-02-11 | Qualcomm Incorporated | Reverse link, closed loop power control in a code division multiple access system |
SE503893C2 (en) | 1994-07-15 | 1996-09-30 | Ericsson Telefon Ab L M | Method and apparatus for frequency hopping in a radio communication system |
US5604730A (en) * | 1994-07-25 | 1997-02-18 | Qualcomm Incorporated | Remote transmitter power control in a contention based multiple access system |
US5697053A (en) | 1994-07-28 | 1997-12-09 | Lucent Technologies Inc. | Method of power control and cell site selection |
US5530700A (en) | 1994-07-29 | 1996-06-25 | Motorola, Inc. | Method and device for controlling time slot contention to provide fairness between a plurality of types of subscriber units in a communication system |
US5822318A (en) | 1994-07-29 | 1998-10-13 | Qualcomm Incorporated | Method and apparatus for controlling power in a variable rate communication system |
US5579306A (en) | 1994-09-01 | 1996-11-26 | Ericsson Inc. | Time and frequency slot allocation system and method |
US5666649A (en) | 1994-09-01 | 1997-09-09 | Ericsson Inc. | Communications system having variable system performance capability |
US5614914A (en) | 1994-09-06 | 1997-03-25 | Interdigital Technology Corporation | Wireless telephone distribution system with time and space diversity transmission for determining receiver location |
JP3215018B2 (en) | 1994-09-09 | 2001-10-02 | 三菱電機株式会社 | Mobile communication system |
US5537410A (en) | 1994-09-15 | 1996-07-16 | Oki Telecom | Subsequent frame variable data rate indication method |
US5621723A (en) * | 1994-09-27 | 1997-04-15 | Gte Laboratories Incorporated | Power control in a CDMA network |
FI96557C (en) | 1994-09-27 | 1996-07-10 | Nokia Telecommunications Oy | Method for data transmission in a TDMA mobile radio system and a mobile radio system for carrying out the method |
US5710768A (en) | 1994-09-30 | 1998-01-20 | Qualcomm Incorporated | Method of searching for a bursty signal |
US5678213A (en) * | 1994-09-30 | 1997-10-14 | Lucent Technologies Inc. | Radio receiver for processing a multi-carrier signal with a large dynamic range |
US5528593A (en) | 1994-09-30 | 1996-06-18 | Qualcomm Incorporated | Method and apparatus for controlling power in a variable rate communication system |
US5822359A (en) | 1994-10-17 | 1998-10-13 | Motorola, Inc. | Coherent random access channel in a spread-spectrum communication system and method |
US5533004A (en) | 1994-11-07 | 1996-07-02 | Motorola, Inc. | Method for providing and selecting amongst multiple data rates in a time division multiplexed system |
US5682605A (en) | 1994-11-14 | 1997-10-28 | 989008 Ontario Inc. | Wireless communication system |
JP2596392B2 (en) | 1994-11-16 | 1997-04-02 | 日本電気株式会社 | Data rate detector |
US5612948A (en) | 1994-11-18 | 1997-03-18 | Motorola, Inc. | High bandwidth communication network and method |
JP2655108B2 (en) | 1994-12-12 | 1997-09-17 | 日本電気株式会社 | CDMA transceiver |
US5649290A (en) | 1994-12-14 | 1997-07-15 | Lucent Technologies Inc. | Handover method based upon channel quality |
US5603093A (en) | 1994-12-28 | 1997-02-11 | Ntt Mobile Communications Network, Inc. | Method for monitoring the state of interference by a base station of a mobile radio communication system |
FI100077B (en) | 1995-01-04 | 1997-09-15 | Nokia Telecommunications Oy | Radio system for wireless subscriber connection |
US5654979A (en) | 1995-01-13 | 1997-08-05 | Qualcomm Incorporated | Cell site demodulation architecture for a spread spectrum multiple access communication systems |
JPH08256102A (en) | 1995-01-19 | 1996-10-01 | Sony Corp | Cellular system |
JPH08223624A (en) | 1995-02-15 | 1996-08-30 | Nec Corp | Radio selective call receiver and radio data transmitting system |
EP0729240B1 (en) | 1995-02-24 | 2001-10-24 | Roke Manor Research Limited | Code division multiple access cellular mobile radio systems |
NO301257B1 (en) | 1995-03-02 | 1997-09-29 | Elkem Materials | Method and apparatus for producing self-baking carbon electrode |
US5933787A (en) | 1995-03-13 | 1999-08-03 | Qualcomm Incorporated | Method and apparatus for performing handoff between sectors of a common base station |
AU5424696A (en) | 1995-03-16 | 1996-10-02 | Bell Atlantic Network Services, Inc. | Simulcasting digital video programs for broadcast and interactive services |
US5634195A (en) | 1995-03-27 | 1997-05-27 | Telefonaktiebolaget Lm Ericsson | System and method for setting of output power parameters in a cellular mobile telecommunication system |
FI100575B (en) | 1995-05-17 | 1997-12-31 | Nokia Mobile Phones Ltd | Method for improving handover and connection reliability and cellular radio system |
US5781539A (en) | 1995-05-17 | 1998-07-14 | Nec Corporation | Paging system capable of calling pagers of different bit rates without deterioration of an efficient use of radio channels |
US5802046A (en) | 1995-06-05 | 1998-09-01 | Omnipoint Corporation | Efficient time division duplex communication system with interleaved format and timing adjustment control |
US5530693A (en) | 1995-06-06 | 1996-06-25 | Averbuch; Rod | Method and apparatus for performing handoff in a packet data communication system |
US5764687A (en) | 1995-06-20 | 1998-06-09 | Qualcomm Incorporated | Mobile demodulator architecture for a spread spectrum multiple access communication system |
US6131015A (en) | 1995-06-21 | 2000-10-10 | Motorola, Inc. | Two-way communication system for performing dynamic channel control |
JP2863993B2 (en) | 1995-06-22 | 1999-03-03 | 松下電器産業株式会社 | CDMA wireless multiplex transmitting apparatus, CDMA wireless multiplex transmitting apparatus, CDMA wireless receiving apparatus, and CDMA wireless multiplex transmitting method |
US5726978A (en) | 1995-06-22 | 1998-03-10 | Telefonaktiebolaget L M Ericsson Publ. | Adaptive channel allocation in a frequency division multiplexed system |
KR0142497B1 (en) | 1995-06-23 | 1998-08-01 | 양승택 | Pilot channel |
JP2968706B2 (en) | 1995-07-26 | 1999-11-02 | 日本電気エンジニアリング株式会社 | Mobile radio |
US5680395A (en) | 1995-08-15 | 1997-10-21 | Qualcomm Incorporated | Method and apparatus for time division duplex pilot signal generation |
FR2738094B1 (en) | 1995-08-21 | 1997-09-26 | France Telecom | METHOD AND DEVICE FOR MODIFYING THE CONSISTENT DEMODULATION OF A MULTI-CARRIER SYSTEM FOR REDUCING THE BIAS INTRODUCED BY A WHITE FREQUENCY DISTORTION |
US6356555B1 (en) | 1995-08-25 | 2002-03-12 | Terayon Communications Systems, Inc. | Apparatus and method for digital data transmission using orthogonal codes |
US5793759A (en) * | 1995-08-25 | 1998-08-11 | Terayon Corporation | Apparatus and method for digital data transmission over video cable using orthogonal cyclic codes |
US5974106A (en) | 1995-09-01 | 1999-10-26 | Motorola, Inc. | Method and apparatus for multirate data communications |
JP2762965B2 (en) | 1995-09-04 | 1998-06-11 | 日本電気株式会社 | Base station transmission power control method |
US5950124A (en) | 1995-09-06 | 1999-09-07 | Telxon Corporation | Cellular communication system with dynamically modified data transmission parameters |
JP3200547B2 (en) | 1995-09-11 | 2001-08-20 | 株式会社日立製作所 | CDMA mobile communication system |
US5729557A (en) | 1995-10-12 | 1998-03-17 | Pacific Communication Systems, Inc. | Cellular communication system with multiple code rates |
US5701294A (en) | 1995-10-02 | 1997-12-23 | Telefonaktiebolaget Lm Ericsson | System and method for flexible coding, modulation, and time slot allocation in a radio telecommunications network |
US5734646A (en) | 1995-10-05 | 1998-03-31 | Lucent Technologies Inc. | Code division multiple access system providing load and interference based demand assignment service to users |
JP2739850B2 (en) | 1995-10-11 | 1998-04-15 | 日本電気株式会社 | Mobile communication system |
US6577618B2 (en) | 1995-10-18 | 2003-06-10 | Telefonaktiebolaget L.M. Ericsson (Publ) | Packet control channel feedback support for contention and reservation based access |
ATE313917T1 (en) | 1995-10-23 | 2006-01-15 | Siemens Ag | METHOD AND ARRANGEMENT FOR TRANSMITTING DATA BETWEEN A CELLULAR MOBILE RADIO NETWORK AND A RADIO SUBSCRIBER STATION |
JP2910990B2 (en) | 1995-11-09 | 1999-06-23 | エヌ・ティ・ティ移動通信網株式会社 | Transceiver for mobile communication system |
US5764899A (en) | 1995-11-13 | 1998-06-09 | Motorola, Inc. | Method and apparatus for communicating an optimized reply |
US5757810A (en) | 1995-11-24 | 1998-05-26 | Telefonaktiebolaget Lm Ericsson | Transmission link supervision in radiocommunication systems |
JP3078216B2 (en) | 1995-12-13 | 2000-08-21 | 株式会社エヌ・ティ・ティ・ドコモ | Base station selection method |
US5748677A (en) | 1996-01-16 | 1998-05-05 | Kumar; Derek D. | Reference signal communication method and system |
JP3425284B2 (en) | 1996-01-23 | 2003-07-14 | 株式会社東芝 | Wireless communication system and wireless terminal thereof |
US6999438B2 (en) * | 1996-01-18 | 2006-02-14 | Kabushiki Kaisha Toshiba | Radio communication system |
US5781583A (en) | 1996-01-19 | 1998-07-14 | Motorola, Inc. | Method and system for communication over multiple channels in a spread spectrum communication system |
US5774809A (en) | 1996-02-12 | 1998-06-30 | Nokia Mobile Phones Limited | Simplified mobile assisted handoff of signal between cells |
JP2934185B2 (en) | 1996-03-15 | 1999-08-16 | 松下電器産業株式会社 | CDMA cellular radio base station apparatus, mobile station apparatus, and transmission method |
US5699365A (en) | 1996-03-27 | 1997-12-16 | Motorola, Inc. | Apparatus and method for adaptive forward error correction in data communications |
US5737327A (en) | 1996-03-29 | 1998-04-07 | Motorola, Inc. | Method and apparatus for demodulation and power control bit detection in a spread spectrum communication system |
US5745480A (en) | 1996-04-03 | 1998-04-28 | Adicom Wireless, Inc. | Multi-rate wireless communications system |
US5842113A (en) | 1996-04-10 | 1998-11-24 | Lucent Technologies Inc. | Method and apparatus for controlling power in a forward link of a CDMA telecommunications system |
US5862132A (en) | 1996-04-22 | 1999-01-19 | Motorola, Inc. | System and method for multiple access short message communications |
DE19616829C1 (en) * | 1996-04-26 | 1997-04-24 | Siemens Ag | Radio transfer system for digital signals between several subscriber terminals and base station |
CN1189939A (en) * | 1996-04-26 | 1998-08-05 | 摩托罗拉公司 | Multiple user communication system, device and method with overlapping uplink carrier spectra |
US6308072B1 (en) | 1996-04-26 | 2001-10-23 | Motorola, Inc. | Method and apparatus for controlling a wireless communication system |
US5799005A (en) | 1996-04-30 | 1998-08-25 | Qualcomm Incorporated | System and method for determining received pilot power and path loss in a CDMA communication system |
US5930288A (en) | 1996-05-06 | 1999-07-27 | Motorola, Inc. | Time-shared lock indicator circuit and method for power control and traffic channel decoding in a radio receiver |
US6137839A (en) | 1996-05-09 | 2000-10-24 | Texas Instruments Incorporated | Variable scaling of 16-bit fixed point fast fourier forward and inverse transforms to improve precision for implementation of discrete multitone for asymmetric digital subscriber loops |
US5937357A (en) | 1996-05-15 | 1999-08-10 | Nec Corporation | Network comprising base stations for selectivity calling mobile units by call radio signals of different bit rates in phase coincidence |
JP2785804B2 (en) | 1996-05-30 | 1998-08-13 | 日本電気株式会社 | Mobile communication system |
US5771461A (en) | 1996-06-28 | 1998-06-23 | Motorola, Inc. | Method and apparatus for power control of a first channel based on a signal quality of a second channel |
US6097704A (en) | 1996-06-28 | 2000-08-01 | Harris Corporation | System for communicating digital information between a base unit and plural mobile units |
US5805585A (en) | 1996-08-22 | 1998-09-08 | At&T Corp. | Method for providing high speed packet data services for a wireless system |
US5940765A (en) | 1996-08-30 | 1999-08-17 | Telefonaktiebolaget Lm Ericsson | Radio communications systems and methods for jittered beacon transmission |
US6236365B1 (en) | 1996-09-09 | 2001-05-22 | Tracbeam, Llc | Location of a mobile station using a plurality of commercial wireless infrastructures |
US5901142A (en) | 1996-09-18 | 1999-05-04 | Motorola, Inc. | Method and apparatus for providing packet data communications to a communication unit in a radio communication system |
US5903554A (en) | 1996-09-27 | 1999-05-11 | Qualcomm Incorporation | Method and apparatus for measuring link quality in a spread spectrum communication system |
JP3720141B2 (en) | 1996-10-01 | 2005-11-24 | 松下電器産業株式会社 | Mobile communication method and apparatus |
US5751725A (en) | 1996-10-18 | 1998-05-12 | Qualcomm Incorporated | Method and apparatus for determining the rate of received data in a variable rate communication system |
US5946621A (en) | 1996-10-28 | 1999-08-31 | Northern Telecom Limited | Method of optimizing neighbor set during soft handoff of a mobile unit in a CDMA cellular environment |
US6496543B1 (en) | 1996-10-29 | 2002-12-17 | Qualcomm Incorporated | Method and apparatus for providing high speed data communications in a cellular environment |
US5872775A (en) | 1996-10-30 | 1999-02-16 | Qualcomm Incorporated | Method and apparatus for performing rate determination |
US5914959A (en) | 1996-10-31 | 1999-06-22 | Glenayre Electronics, Inc. | Digital communications system having an automatically selectable transmission rate |
US5850605A (en) | 1996-11-05 | 1998-12-15 | Motorola, Inc. | Method and apparatus for dynamically grouping transmitters for message transmission in a communication system |
US5933462A (en) | 1996-11-06 | 1999-08-03 | Qualcomm Incorporated | Soft decision output decoder for decoding convolutionally encoded codewords |
US6101180A (en) | 1996-11-12 | 2000-08-08 | Starguide Digital Networks, Inc. | High bandwidth broadcast system having localized multicast access to broadcast content |
US6091737A (en) | 1996-11-15 | 2000-07-18 | Multi-Tech Systems, Inc. | Remote communications server system |
JP3444114B2 (en) | 1996-11-22 | 2003-09-08 | ソニー株式会社 | Communication method, base station and terminal device |
US5956642A (en) | 1996-11-25 | 1999-09-21 | Telefonaktiebolaget L M Ericsson | Adaptive channel allocation method and apparatus for multi-slot, multi-carrier communication system |
US5960350A (en) | 1996-12-05 | 1999-09-28 | Motorola, Inc. | Method and system for optimizing a traffic channel in a wireless communications system |
JPH10173594A (en) | 1996-12-06 | 1998-06-26 | Hitachi Ltd | Code division multiple access communication system and sending power control method |
US6137991A (en) | 1996-12-19 | 2000-10-24 | Ericsson Telefon Ab L M | Estimating downlink interference in a cellular communications system |
WO1998029191A1 (en) | 1996-12-28 | 1998-07-09 | Aerostar Coatings, S.L. | Self sustained detonation apparatus |
US5953325A (en) | 1997-01-02 | 1999-09-14 | Telefonaktiebolaget L M Ericsson (Publ) | Forward link transmission mode for CDMA cellular communications system using steerable and distributed antennas |
US6173007B1 (en) * | 1997-01-15 | 2001-01-09 | Qualcomm Inc. | High-data-rate supplemental channel for CDMA telecommunications system |
US5963548A (en) * | 1997-01-21 | 1999-10-05 | Nokia Mobile Phones Limited | Apparatus and method for configuring a data channel for symmetric/asymmetric data transmission |
US6151502A (en) | 1997-01-29 | 2000-11-21 | Qualcomm Incorporated | Method and apparatus for performing soft hand-off in a wireless communication system |
US5933421A (en) | 1997-02-06 | 1999-08-03 | At&T Wireless Services Inc. | Method for frequency division duplex communications |
US5878038A (en) | 1997-02-28 | 1999-03-02 | Motorola, Inc. | Method in a wireless code division multiple access communication system for delivering a message to a mobile communication unit |
US6073025A (en) | 1997-03-26 | 2000-06-06 | Nortel Networks Corporation | Base station power control during a soft hand-off |
US5848357A (en) | 1997-03-31 | 1998-12-08 | Motorola, Inc. | Method and apparatus in a radio communication system for implementing a frequency reuse plan |
US6175550B1 (en) * | 1997-04-01 | 2001-01-16 | Lucent Technologies, Inc. | Orthogonal frequency division multiplexing system with dynamically scalable operating parameters and method thereof |
US5923650A (en) | 1997-04-08 | 1999-07-13 | Qualcomm Incorporated | Method and apparatus for reverse link rate scheduling |
US6052594A (en) | 1997-04-30 | 2000-04-18 | At&T Corp. | System and method for dynamically assigning channels for wireless packet communications |
FI972039A (en) | 1997-05-13 | 1998-11-14 | Nokia Telecommunications Oy | Procedure for packet-shaped data transfer |
US5974305A (en) | 1997-05-15 | 1999-10-26 | Nokia Mobile Phones Limited | Dual band architectures for mobile stations |
US6347217B1 (en) | 1997-05-22 | 2002-02-12 | Telefonaktiebolaget Lm Ericsson (Publ) | Link quality reporting using frame erasure rates |
US6178448B1 (en) | 1997-06-18 | 2001-01-23 | International Business Machines Corporation | Optimal link scheduling for multiple links by obtaining and utilizing link quality information |
SE518224C2 (en) | 1997-06-24 | 2002-09-10 | Ericsson Telefon Ab L M | Ways and systems in a cell-based network |
US6137789A (en) | 1997-06-26 | 2000-10-24 | Nokia Mobile Phones Limited | Mobile station employing selective discontinuous transmission for high speed data services in CDMA multi-channel reverse link configuration |
US6320851B1 (en) * | 1997-06-26 | 2001-11-20 | Samsung Electronics Co., Ltd. | Asymmetric channel allocation for a mobile station in a CDMA communication network |
US6393005B1 (en) | 1997-06-27 | 2002-05-21 | Nec Corporation | Method of controlling transmitting power of a base station in a CDMA mobile communication system |
US6222875B1 (en) | 1997-07-11 | 2001-04-24 | Telefonaktiebolaget Lm Ericsson (Publ) | Low-delay rate detection for variable rate communication systems |
US5946356A (en) | 1997-07-16 | 1999-08-31 | Motorola, Inc. | Method and apparatus for data transmission within a broad-band communications system |
CA2239524C (en) | 1997-07-25 | 2002-08-13 | Samsung Electronics Co., Ltd. | Complemental service providing device and method in communications system |
US6219343B1 (en) | 1997-07-29 | 2001-04-17 | Nokia Mobile Phones Ltd. | Rate control techniques for efficient high speed data services |
ATE320683T1 (en) | 1997-08-01 | 2006-04-15 | Iwics Inc | PERFORMANCE ADJUSTMENT IN A MULTI-STATION NETWORK |
US6175590B1 (en) | 1997-08-08 | 2001-01-16 | Qualcomm Inc. | Method and apparatus for determining the rate of received data in a variable rate communication system |
US6108374A (en) | 1997-08-25 | 2000-08-22 | Lucent Technologies, Inc. | System and method for measuring channel quality information |
US6167031A (en) | 1997-08-29 | 2000-12-26 | Telefonaktiebolaget Lm Ericsson (Publ) | Method for selecting a combination of modulation and channel coding schemes in a digital communication system |
US6173005B1 (en) | 1997-09-04 | 2001-01-09 | Motorola, Inc. | Apparatus and method for transmitting signals in a communication system |
US6285655B1 (en) | 1997-09-08 | 2001-09-04 | Qualcomm Inc. | Method and apparatus for providing orthogonal spot beams, sectors, and picocells |
US6377809B1 (en) | 1997-09-16 | 2002-04-23 | Qualcomm Incorporated | Channel structure for communication systems |
US6389066B1 (en) | 1997-09-21 | 2002-05-14 | Lucent Technologies Inc. | System and method for adaptive modification of modulated and coded schemes in a communication system |
US6711415B1 (en) | 1997-10-03 | 2004-03-23 | Nortel Networks Limited | Method and system for minimizing transmitter power levels within a cellular telephone communications network |
US5946346A (en) | 1997-10-07 | 1999-08-31 | Motorola, Inc. | Method and system for generating a power control command in a wireless communication system |
US6810030B1 (en) * | 1997-10-17 | 2004-10-26 | Lucent Technology | Dynamic and smart spreading for wideband CDMA |
US6894994B1 (en) | 1997-11-03 | 2005-05-17 | Qualcomm Incorporated | High data rate wireless packet data communications system |
US7289473B1 (en) | 1997-11-03 | 2007-10-30 | Qualcomm Incorporated | Pilot reference transmission for a wireless communication system |
US6574211B2 (en) | 1997-11-03 | 2003-06-03 | Qualcomm Incorporated | Method and apparatus for high rate packet data transmission |
US6222832B1 (en) * | 1998-06-01 | 2001-04-24 | Tantivy Communications, Inc. | Fast Acquisition of traffic channels for a highly variable data rate reverse link of a CDMA wireless communication system |
DE19757367C2 (en) | 1997-12-22 | 2003-03-13 | Siemens Ag | Arrangement for synchronizing radio base stations |
US6101394A (en) * | 1997-12-24 | 2000-08-08 | Nortel Networks Corporation | CDMA multiple carrier paging channel optimization |
KR100295437B1 (en) | 1997-12-30 | 2001-07-12 | 윤종용 | Method for optimizing coverage in a multi frequency assignment system |
US6545986B1 (en) | 1997-12-31 | 2003-04-08 | Verizon Laboratories Inc. | CDMA forward link power control |
FI108181B (en) | 1998-02-13 | 2001-11-30 | Nokia Mobile Phones Ltd | A power control method |
EP0939527B1 (en) | 1998-02-18 | 2007-12-05 | Sony Deutschland GmbH | Mapping of multicarrier signals into GSM time slots |
CN1242564C (en) | 1998-02-19 | 2006-02-15 | 高通股份有限公司 | Forward link power control in cellular system using NT/IO values |
US6076181A (en) | 1998-03-03 | 2000-06-13 | Nokia Mobile Phones Limited | Method and apparatus for controlling a retransmission/abort timer in a telecommunications system |
US6163707A (en) | 1998-03-04 | 2000-12-19 | Northern Telecom Limited | CDMA power control error reduction via predictive filtering |
KR100278019B1 (en) | 1998-03-28 | 2001-01-15 | 윤종용 | A method for optimizing forward link coverage in cdma network |
JP3956479B2 (en) | 1998-04-27 | 2007-08-08 | ソニー株式会社 | Mobile communication system, mobile station and base station |
FI106331B (en) | 1998-04-30 | 2001-01-15 | Nokia Mobile Phones Ltd | Method and apparatus for controlling the use of idle frames |
KR100413417B1 (en) | 1998-05-04 | 2004-02-14 | 엘지전자 주식회사 | Call Access Control Method for Mobile Terminal in Mobile Communication System |
US5966384A (en) | 1998-05-08 | 1999-10-12 | Motorola, Inc. | Method and apparatus for data transmission within a broad-band communication system |
US6317413B1 (en) * | 1998-05-18 | 2001-11-13 | Nokia Mobile Phones Ltd. | Method and apparatus for assigning variable length walsh codes in a spread spectrum system |
US6400695B1 (en) | 1998-05-22 | 2002-06-04 | Lucent Technologies Inc. | Methods and apparatus for retransmission based access priority in a communications system |
KR100322024B1 (en) | 1998-06-13 | 2002-06-24 | 윤종용 | Power control apparatus and method for code division multiple access communication system |
US6067324A (en) | 1998-06-30 | 2000-05-23 | Motorola, Inc. | Method and system for transmitting and demodulating a communications signal using an adaptive antenna array in a wireless communication system |
JP4267092B2 (en) | 1998-07-07 | 2009-05-27 | 富士通株式会社 | Time synchronization method |
US6278701B1 (en) | 1998-07-10 | 2001-08-21 | Verizon Laboratories Inc. | Capacity enhancement for multi-code CDMA with integrated services through quality of services and admission control |
JP3449985B2 (en) | 1998-07-16 | 2003-09-22 | サムスン エレクトロニクス カンパニー リミテッド | Packet data processing system and method for mobile communication system |
KR100342525B1 (en) | 1998-07-16 | 2002-06-28 | 윤종용 | Method and system form processing packet data in mobile communication system |
KR100285310B1 (en) | 1998-07-29 | 2001-04-02 | 윤종용 | Method for controlling forward power control parameter using erasure indicator bit in cdma communication system |
KR20000013025A (en) | 1998-08-01 | 2000-03-06 | 윤종용 | Forward initial transmitting power control device of telecommunication system and method therefor |
US6175448B1 (en) | 1998-08-17 | 2001-01-16 | New Focus, Inc. | Optical circulators using beam angle turners |
KR100429540B1 (en) | 1998-08-26 | 2004-08-09 | 삼성전자주식회사 | Packet data communication apparatus and method of mobile communication system |
KR100401190B1 (en) | 1998-09-17 | 2003-12-31 | 삼성전자주식회사 | Frame Synchronization Apparatus and Method Using Synchronous Channel of Code Division Multiple Access Communication System |
JP2000165927A (en) | 1998-11-24 | 2000-06-16 | Toshiba Corp | Radio communication system, communication controller, radio base station and radio communicating method |
US6668159B1 (en) | 1998-11-30 | 2003-12-23 | Telefonaktiebolaget Lm Ericsson (Publ) | Terminal bitrate indicator |
US6931050B1 (en) | 1998-12-03 | 2005-08-16 | Ericsson Inc. | Digital receivers and receiving methods that scale for relative strengths of traffic and pilot channels during soft handoff |
US6233231B1 (en) | 1998-12-03 | 2001-05-15 | Motorola, Inc. | Data transmission within a spread-spectrum communication system |
US6091757A (en) | 1998-12-03 | 2000-07-18 | Motorola, Inc. | Data transmission within a spread-spectrum communication system |
US6512925B1 (en) | 1998-12-03 | 2003-01-28 | Qualcomm, Incorporated | Method and apparatus for controlling transmission power while in soft handoff |
US6615052B1 (en) | 1998-12-08 | 2003-09-02 | Honeywell International Inc. | Radio frequency power control algorithm |
US6434637B1 (en) | 1998-12-31 | 2002-08-13 | Emc Corporation | Method and apparatus for balancing workloads among paths in a multi-path computer system based on the state of previous I/O operations |
US6470044B1 (en) | 1999-01-15 | 2002-10-22 | Sharp Laboratories Of America, Inc. | Computationally parsimonious forward link receiver for DS-CDMA systems and method for same |
US6590873B1 (en) | 1999-02-05 | 2003-07-08 | Lucent Technologies Inc. | Channel structure for forward link power control |
US6317435B1 (en) | 1999-03-08 | 2001-11-13 | Qualcomm Incorporated | Method and apparatus for maximizing the use of available capacity in a communication system |
US6438115B1 (en) | 1999-03-08 | 2002-08-20 | Telefonaktiebolaget L M Ericsson (Publ) | High speed data communication system and method |
US6174558B1 (en) | 1999-03-17 | 2001-01-16 | Kemin Industries, Inc. | Method for increasing breast meat yields in poultry |
US6574267B1 (en) | 1999-03-22 | 2003-06-03 | Golden Bridge Technology, Inc. | Rach ramp-up acknowledgement |
DE19913086A1 (en) | 1999-03-23 | 2000-10-19 | Siemens Ag | Method and device for channel allocation for broadband radio transmission |
US6804214B1 (en) * | 1999-04-19 | 2004-10-12 | Telefonaktiebolaget Lm Ericsson (Publ) | System and method for implementing multiple carriers in cellular networks |
US6606311B1 (en) * | 1999-04-20 | 2003-08-12 | Nortel Networks Limited | QoS framework for CDMA 2000 |
US6563809B1 (en) | 1999-04-28 | 2003-05-13 | Tantivy Communications, Inc. | Subscriber-controlled registration technique in a CDMA system |
US6757270B1 (en) | 1999-06-11 | 2004-06-29 | Lucent Technologies Inc. | Low back haul reactivation delay for high-speed packet data services in CDMA systems |
US6434367B1 (en) | 1999-06-11 | 2002-08-13 | Lucent Technologies Inc. | Using decoupled power control sub-channel to control reverse-link channel power |
US6574266B1 (en) | 1999-06-25 | 2003-06-03 | Telefonaktiebolaget Lm Ericsson (Publ) | Base-station-assisted terminal-to-terminal connection setup |
US6285886B1 (en) | 1999-07-08 | 2001-09-04 | Lucent Technologies Inc. | Method for controlling power for a communications system having multiple traffic channels per subscriber |
US6717926B1 (en) | 1999-09-13 | 2004-04-06 | Nokia Corporation | Apparatus and associated method, by which to transmit beacon signals in a radio communication system |
US6621804B1 (en) | 1999-10-07 | 2003-09-16 | Qualcomm Incorporated | Method and apparatus for predicting favored supplemental channel transmission slots using transmission power measurements of a fundamental channel |
US6445908B1 (en) | 1999-10-18 | 2002-09-03 | Qualcomm Incorporated | Dynamic temperature compensation and stage selection in pilot signal acquisition |
KR100375145B1 (en) | 1999-11-10 | 2003-03-19 | 삼성전자주식회사 | Device and method for communicating data using multicarrier in cdma communication system |
US6434380B1 (en) | 1999-12-13 | 2002-08-13 | Telefonaktiebolaget Lm Ericsson (Publ) | Dynamic negotiation of resources for user equipment in wireless communications system |
US6179007B1 (en) | 2000-02-07 | 2001-01-30 | The Goodyear Tire & Rubber Company | Reinforced, flexible hose with built-in handle |
CN1173492C (en) | 2000-03-10 | 2004-10-27 | 三星电子株式会社 | Power control apparatus and method in wireless communication system using scheduled packet dats ervice channel |
US7016649B1 (en) | 2000-03-17 | 2006-03-21 | Kathrein-Werke Kg | Space-time and space-frequency hopping for capacity enhancement of mobile data systems |
US6711150B1 (en) | 2000-04-07 | 2004-03-23 | Telefonktiebolaget L.M. Ericsson | System and method for data burst communications in a CDMA network |
US6912228B1 (en) | 2000-04-14 | 2005-06-28 | Telefonaktiebolaget L M Ericsson (Publ) | Power control in a radio data communication system adapted using transmission load |
JP3414357B2 (en) | 2000-04-25 | 2003-06-09 | 日本電気株式会社 | Transmission power control method in CDMA mobile communication system |
US6917808B1 (en) | 2000-04-28 | 2005-07-12 | Lucent Technologies Inc. | Inter-frequency handoff evaluation method |
US6337983B1 (en) | 2000-06-21 | 2002-01-08 | Motorola, Inc. | Method for autonomous handoff in a wireless communication system |
US7194006B2 (en) | 2000-07-18 | 2007-03-20 | Kathrein-Werke Kg | Directed maximum ratio combining methods and systems for high data rate traffic |
US6580899B1 (en) | 2000-09-07 | 2003-06-17 | Nortel Networks Limited | Adaptive forward power management algorithm for traffic hotspots |
US6859446B1 (en) | 2000-09-11 | 2005-02-22 | Lucent Technologies Inc. | Integrating power-controlled and rate-controlled transmissions on a same frequency carrier |
US6625433B1 (en) | 2000-09-29 | 2003-09-23 | Agere Systems Inc. | Constant compression automatic gain control circuit |
WO2002033856A1 (en) | 2000-10-20 | 2002-04-25 | Samsung Electronics Co., Ltd | Apparatus and method for determining a data rate of packet data in a mobile communication system |
US7154846B2 (en) | 2000-10-24 | 2006-12-26 | Nortel Networks Limited | Shared channel structure, ARQ systems and methods |
US7068683B1 (en) | 2000-10-25 | 2006-06-27 | Qualcomm, Incorporated | Method and apparatus for high rate packet data and low delay data transmissions |
US6973098B1 (en) | 2000-10-25 | 2005-12-06 | Qualcomm, Incorporated | Method and apparatus for determining a data rate in a high rate packet data wireless communications system |
US20020160781A1 (en) | 2001-02-23 | 2002-10-31 | Gunnar Bark | System, method and apparatus for facilitating resource allocation in a communication system |
US6971098B2 (en) | 2001-06-27 | 2005-11-29 | Intel Corporation | Method and apparatus for managing transaction requests in a multi-node architecture |
US7181171B2 (en) | 2001-07-20 | 2007-02-20 | Kyocera Wireless Corp. | System and method for providing auxiliary reception in a wireless communications system |
US7764950B2 (en) | 2002-05-24 | 2010-07-27 | Kodiak Networks, Inc. | Advanced voice services architecture framework |
-
1999
- 1999-08-25 US US09/382,438 patent/US8064409B1/en not_active Expired - Fee Related
-
2000
- 2000-08-25 DE DE60042420T patent/DE60042420D1/en not_active Expired - Lifetime
- 2000-08-25 CN CN2008101454580A patent/CN101616455B/en not_active Expired - Lifetime
- 2000-08-25 AT AT00957822T patent/ATE434356T1/en not_active IP Right Cessation
- 2000-08-25 KR KR1020077011431A patent/KR100831190B1/en active IP Right Grant
- 2000-08-25 KR KR1020077026802A patent/KR100870843B1/en active IP Right Grant
- 2000-08-25 EP EP00957822A patent/EP1236369B1/en not_active Expired - Lifetime
- 2000-08-25 JP JP2001519073A patent/JP2003522446A/en not_active Withdrawn
- 2000-08-25 KR KR1020027002461A patent/KR20020085870A/en not_active Application Discontinuation
- 2000-08-25 EP EP09158507A patent/EP2096891A1/en not_active Withdrawn
- 2000-08-25 BR BRPI0013505A patent/BRPI0013505B1/en active IP Right Grant
- 2000-08-25 AU AU69391/00A patent/AU6939100A/en not_active Abandoned
- 2000-08-25 WO PCT/US2000/023420 patent/WO2001015481A1/en active Search and Examination
- 2000-08-25 CN CNB008182671A patent/CN100420330C/en not_active Expired - Lifetime
- 2000-08-25 ES ES00957822T patent/ES2328101T3/en not_active Expired - Lifetime
-
2001
- 2001-01-15 TW TW089117215A patent/TW501375B/en not_active IP Right Cessation
-
2003
- 2003-08-13 HK HK03105798.0A patent/HK1053568A1/en not_active IP Right Cessation
-
2010
- 2010-06-11 HK HK10105848.1A patent/HK1141385A1/en not_active IP Right Cessation
- 2010-10-01 JP JP2010224003A patent/JP4927980B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998035514A2 (en) * | 1997-02-11 | 1998-08-13 | Qualcomm Incorporated | Method and apparatus for forward link rate scheduling |
US5914950A (en) * | 1997-04-08 | 1999-06-22 | Qualcomm Incorporated | Method and apparatus for reverse link rate scheduling |
WO1999018684A1 (en) * | 1997-10-03 | 1999-04-15 | Anglin Richard Jr | Interactive digital data broadcasting system |
Non-Patent Citations (1)
Title |
---|
KNISELY D N ET AL: "CDMA2000: A THIRD-GENERATION RADIO TRANSMISSION TECHNOLOGY", BELL LABS TECHNICAL JOURNAL,BELL LABORATORIES,US, vol. 3, no. 3, 1 July 1998 (1998-07-01), pages 63 - 78, XP000782374, ISSN: 1089-7089 * |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9036597B2 (en) | 2002-08-07 | 2015-05-19 | Kyocera Corporation | Wireless communication system |
US8194703B2 (en) | 2002-08-07 | 2012-06-05 | Kyocera Corporation | Wireless communication system |
WO2005109687A1 (en) * | 2004-05-10 | 2005-11-17 | Samsung Electronics Co., Ltd. | Method and apparatus for measurement and reception of preferred layer for mbms in mobile communication system |
TWI382697B (en) * | 2005-03-08 | 2013-01-11 | Qualcomm Inc | De-coupling forward and reverse link assignment for multi-carrier wireless communication systems |
WO2006096765A1 (en) * | 2005-03-08 | 2006-09-14 | Qualcomm Incorporated | De-coupling forward and reverse link assignment for multi-carrier wireless communication systems |
CN101171864B (en) * | 2005-03-08 | 2013-11-27 | 高通股份有限公司 | De-coupling forward and reverse link assignment for multi-carrier wireless communication systems |
US7848298B2 (en) | 2005-03-08 | 2010-12-07 | Qualcomm Incorporated | De-coupling forward and reverse link assignment for multi-carrier wireless communication systems |
KR100944926B1 (en) * | 2005-03-08 | 2010-03-03 | 퀄컴 인코포레이티드 | De-coupling forward and reverse link assignment for multi-carrier wireless communication systems |
US10313086B2 (en) | 2005-03-29 | 2019-06-04 | Qualcomm Incorporated | Sending full channel quality indication reports on TDM channel in wireless communication |
US10944533B2 (en) | 2005-03-29 | 2021-03-09 | Qualcomm Incorporated | Method and apparatus for high rate data transmission in wireless communication |
US9319201B2 (en) | 2005-03-29 | 2016-04-19 | Qualcomm Incorporated | Reverse link pilot with selective gating in wireless communication |
US8693383B2 (en) | 2005-03-29 | 2014-04-08 | Qualcomm Incorporated | Method and apparatus for high rate data transmission in wireless communication |
US11251926B2 (en) | 2005-03-29 | 2022-02-15 | Qualcomm Incorporated | Sending full channel quality indication reports on TDM channel in wireless communication |
US9973293B2 (en) | 2005-03-29 | 2018-05-15 | Qualcomm Incorporated | Sending full channel quality indication reports on TDM channel in wireless communication |
WO2006105308A3 (en) * | 2005-03-29 | 2007-02-01 | Qualcomm Inc | Method and apparatus for high rate data transmission in wireless communication |
US9407418B2 (en) | 2005-03-29 | 2016-08-02 | Qualcomm Incorporated | Channelizing packet acknowledgments for multiple data channels in wireless communication |
US9350514B2 (en) | 2005-03-29 | 2016-05-24 | Qualcomm Incorporated | Sending full channel quality indication reports on TDM channel in wireless communication |
WO2006105308A2 (en) * | 2005-03-29 | 2006-10-05 | Qualcomm Incorporated | Method and apparatus for high rate data transmission in wireless communication |
KR101019546B1 (en) | 2005-04-08 | 2011-03-09 | 콸콤 인코포레이티드 | Multiplexing on the reverse link feedbacks for multiple forward link frequencies |
TWI405430B (en) * | 2005-04-08 | 2013-08-11 | Qualcomm Inc | Multiplexing on the reverse link feedbacks for multiple forward link frequencies |
WO2006110874A3 (en) * | 2005-04-08 | 2007-01-04 | Qualcomm Inc | Multiplexing on the reverse link feedbacks for multiple forward link frequencies |
EP2254258A1 (en) * | 2005-04-08 | 2010-11-24 | Qualcomm Incorporated | Multiplexing on the reverse link feedbacks for multiple forward link frequencies. |
US8868118B2 (en) | 2005-04-08 | 2014-10-21 | Qualcomm Incorporated | Multiplexing on the reverse link feedbacks for multiple forward link frequencies |
US8983480B2 (en) | 2005-04-08 | 2015-03-17 | Qualcomm Incorporated | Multiplexing on the reverse link feedbacks for multiple forward link frequencies |
WO2006110874A2 (en) * | 2005-04-08 | 2006-10-19 | Qualcomm Incorporated | Multiplexing on the reverse link feedbacks for multiple forward link frequencies |
EP2146545A1 (en) * | 2005-04-28 | 2010-01-20 | Qualcom Incorporated | Multi-carrier operation in data transmission systems |
US7961700B2 (en) | 2005-04-28 | 2011-06-14 | Qualcomm Incorporated | Multi-carrier operation in data transmission systems |
US7940737B2 (en) | 2005-09-21 | 2011-05-10 | Lg Electronics Inc. | Method and apparatus for multiplexing multiple reverse feedback channels in multi-carrier wireless networks |
KR100983285B1 (en) * | 2005-09-21 | 2010-09-24 | 엘지전자 주식회사 | Method and Apparatus for multiplexing multiple reverse feedback channels in multi-carrier wireless networks |
WO2007035044A3 (en) * | 2005-09-21 | 2008-04-10 | Lg Electronics Inc | Method and appratus for multiplexing multiple reverse feedback channels in multicarrier wireless networks |
JP4606405B2 (en) * | 2006-12-18 | 2011-01-05 | 京セラ株式会社 | Wireless communication system control method, base station control method, and wireless communication terminal control method |
JP2007129752A (en) * | 2006-12-18 | 2007-05-24 | Kyocera Corp | Wireless communication system |
US9706460B2 (en) | 2013-05-29 | 2017-07-11 | Nec Platforms, Ltd. | Wireless communication terminal and roaming method for wireless communication terminal |
Also Published As
Publication number | Publication date |
---|---|
KR100870843B1 (en) | 2008-11-27 |
EP1236369B1 (en) | 2009-06-17 |
BR0013505A (en) | 2003-11-11 |
HK1141385A1 (en) | 2010-11-05 |
CN101616455B (en) | 2012-11-28 |
EP2096891A1 (en) | 2009-09-02 |
US8064409B1 (en) | 2011-11-22 |
JP4927980B2 (en) | 2012-05-09 |
KR20070122561A (en) | 2007-12-31 |
CN101616455A (en) | 2009-12-30 |
CN1421111A (en) | 2003-05-28 |
CN100420330C (en) | 2008-09-17 |
AU6939100A (en) | 2001-03-19 |
JP2003522446A (en) | 2003-07-22 |
DE60042420D1 (en) | 2009-07-30 |
BRPI0013505B1 (en) | 2016-05-10 |
KR20020085870A (en) | 2002-11-16 |
KR100831190B1 (en) | 2008-05-22 |
ATE434356T1 (en) | 2009-07-15 |
EP1236369A1 (en) | 2002-09-04 |
ES2328101T3 (en) | 2009-11-10 |
HK1053568A1 (en) | 2003-10-24 |
KR20070057287A (en) | 2007-06-04 |
TW501375B (en) | 2002-09-01 |
JP2011030264A (en) | 2011-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1236369B1 (en) | Method and apparatus using a multi-carrier forward link in a wireless communication system | |
RU2255424C2 (en) | Method and device for predicting preferable transmission time intervals of additional channel using main-channel transmission power measurements | |
EP1802016B1 (en) | A subscriber unit and method for use in a wireless communication system | |
US5930230A (en) | High data rate CDMA wireless communication system | |
JP4695109B2 (en) | Method for transmitting frame, device for transmitting frame, and mobile station | |
EP1596519B1 (en) | A subscriber unit and method for use in a wireless communication system | |
KR20090018229A (en) | Method and apparatus for high rate data transmission in wireless communication | |
EP1405542A1 (en) | Method and apparatus for time-sharing channelization code in a cdma communication system | |
AU5165499A (en) | Data transmission method, radio network subsystem, and user equipment | |
KR100472692B1 (en) | Subscriber unit for CDMA wireless communication system | |
GB2351632A (en) | CDMA radio systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2000957822 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 008182671 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020027002461 Country of ref document: KR |
|
122 | Ep: pct application non-entry in european phase | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWP | Wipo information: published in national office |
Ref document number: 2000957822 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1020027002461 Country of ref document: KR |