WO2001014837A1 - Michelson interferometer with a calibration device - Google Patents
Michelson interferometer with a calibration device Download PDFInfo
- Publication number
- WO2001014837A1 WO2001014837A1 PCT/DE2000/002772 DE0002772W WO0114837A1 WO 2001014837 A1 WO2001014837 A1 WO 2001014837A1 DE 0002772 W DE0002772 W DE 0002772W WO 0114837 A1 WO0114837 A1 WO 0114837A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- retroreflector
- mirror
- mirrors
- opening
- michelson interferometer
- Prior art date
Links
- 230000005855 radiation Effects 0.000 claims abstract description 31
- 238000010276 construction Methods 0.000 abstract description 7
- 238000005516 engineering process Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J3/45—Interferometric spectrometry
- G01J3/453—Interferometric spectrometry by correlation of the amplitudes
- G01J3/4535—Devices with moving mirror
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J2003/2866—Markers; Calibrating of scan
Definitions
- the invention relates to a Michelson interferometer with a beam plate, which divides a beam coming from a radiation source into two partial beams and combines them again after passing through two radiation paths for further processing, with two deflecting mirrors which separate the partial beams coming from the beam splitter into different ones
- optical path differences in the radiation paths of the partial bundle are generated by the rotating retroreflector whose axis of rotation is offset with respect to its triple point.
- the partial bundles are deflected by the deflecting mirrors through bores in the plane mirrors and in the retroreflector, from where they are reflected on the plane mirrors.
- the plane mirrors reflect the partial bundles vertically back into the retroreflector, from where they reach the beam splitter again through the holes in the plane mirrors via the deflecting mirrors.
- a laser is used to calibrate the known interferometer, the laser beam of which passes through the radiation paths of the interferometer laterally next to the beam and parallel to this m and is subsequently detected by a laser detector. Since the laser in addition to the beam and the laser Detector are arranged next to the combined sub-bundles, either the laser and the laser detector including their holder must be particularly small in design or the other optical components of the interferometer must be particularly large so that the laser beam and
- Beams or partial bundles are guided together through the interferometer.
- a comparable interferometer is known from DE 197 56 936 C1 which does not require any or only a deflecting mirror and in which the partial bundles between the two plane mirrors are guided past these into the retroreflector, so that the holes in the plane mirrors are also eliminated .
- the bundle of rays falls on the beam splitter at an unfavorably flat angle due to the design.
- an optimum angle of incidence of 45 ° can be achieved, but there are path differences in the two radiation paths, which must be compensated for by further design measures; overall, the construction of the known interferometer is asymmetrical, which is disadvantageous both in terms of construction / production technology and in terms of the accuracy of the interferometer
- the object of the invention is to simplify the construction of a Michelson interferometer both in terms of construction and in terms of production technology.
- the object is achieved in that, in the Michelson interferometer of the type specified at the outset, the beam of rays coming from the radiation source reaches the beam splitter via a mirror, that the mirror contains an opening and that the laser is arranged behind the mirror , whose laser beam is directed through the opening parallel to the bundle of rays reflected by the mirror.
- the coupling of the laser beam into the Radiation paths of the interferometer thus take place without disturbing the beam of rays, the arrangement of the laser behind the mirror also promoting a structurally simple construction of the interferometer.
- the combined partial bundle coming from the beam splitter is further processed via a further mirror, that the further mirror contains an opening and that the laser detector is arranged behind the opening of the further mirror. Since the laser beam is decoupled from the radiation paths of the interferometer in the same way as its decoupling, the result is an almost completely symmetrical structure of the interferometer according to the invention, which also increases its accuracy.
- the laser beam can easily be guided within the bundle of rays or the sub-bundle.
- the laser beam is preferably guided in the edge region of the radiation bundle or the partial bundle, inside or outside of it, for which purpose the openings in the mirrors are arranged accordingly; the central region of the radiation beam or the partial beam, in which the radiation intensity is the highest and which is accordingly preferably used for measurement purposes, then remains completely undisturbed.
- the mirrors are transparent to the laser beam, the openings preferably being designed as bores.
- the invention is further explained on the basis of an exemplary embodiment shown in the figure.
- the radiation 2 emanating from a radiation source 1 is shaped by means of optics 3 and a plurality of mirrors 4, 5 and 6 to form a parallel beam 7, which falls on a beam splitter 8 at a predetermined angle, here 45 °.
- the beam splitter 8 divides the beam bundle 7 into two halves of the same amplitude, one half being transmitted in the form of a partial bundle 9 to a first deflecting mirror 10 and the other half being reflected in the form of a second partial bundle 11 to a further deflecting mirror 12.
- the two deflecting mirrors 10 and 12 are arranged on both sides of a plane of symmetry 13 running through the beam splitter 8 and deflect the two partial bundles 9 and 11 into a retroreflector 14 which is set in rotation by means of a motor 15.
- the axis of rotation 16 lies in the plane of symmetry 13 and is laterally offset from the triple point 17 of the retro reflector 14, so that the retroreflector 14 executes an eccentric rotary movement.
- Two extreme rotational positions of the retroreflector 14 are shown here with solid or dashed lines.
- Each of the two sub-bundles 9 and 11 falling into the retroreflector 14 is reflected by the latter on a respective plane mirror 18, 19 which reflects the sub-bundle 9 or 11 in question vertically m the retroreflector 14, ie m itself.
- the two sub-beams 9 and 11 therefore run in each case on the same radiation path back to the beam splitter 8, where they are combined again to form a new beam 20, which is then arranged on a detector 23 or the radiation by means of an arrangement with two mirrors 21 and 22 is focused on a light guide leading to further processing.
- the eccentric rotary movement of the retroreflector 14 leads to an opposite change in the distances of the two partial bundles 9 and 11 from the beam splitter 8 to the plane mirrors 18 and 19 and back, so that when the two partial bundles 9 and 11 m the beam splitter 8 an interferogram arises, which represents the Fourier transform of the radiation 2 coming from the radiation source 1.
- the GE- showed interferometer can therefore be used for Fourier transform (FT) spectroscopy.
- the deflecting mirrors 10 and 12 are arranged in such a way that they reflect the partial bundles 9 and 11 between the two plane mirrors 18 and 19 past them into the retroreflector 14.
- the two sub-bundles 9 and 11 change on their way between the deflecting mirrors 10 and 12 and the retroreflector 14 each from one side of the plane of symmetry 13 to the other side, so that the deflecting mirrors 10 and 12 and the partial areas of the retroreflector 14, in which the partial bundles 9, 11 are reflected by the deflecting mirrors 10, 12 with respect to the axis of rotation 16 of the retroreflector
- the plane mirrors 18 and 19 are therefore outside the radiation paths of the sub-bundles 9 and 11, so that the structural design of the plane mirrors 18 and 19 and their holder (not shown here) in the interferometer is particularly simple. This is particularly important because the plane mirrors 18 and 19 form the reference for the distances of the sub-bundles 9 and 11 and therefore have to be aligned with high precision and stability.
- the interferometer shown is calibrated by means of a laser 24, the laser beam 25 of which passes through the interferometer in the same way as the radiation 2 and is subsequently detected by a laser detector 26.
- the two mirrors 5 and 22 each contain an opening 27 and 28 m in the form of a shape in the edge region of the beam 7 and 22 impinging on them Bore, with the laser 24 arranged behind the mirror 5 and the laser detector 26 behind the mirror 22 and the laser beam 25 extending through the respective opening 27 and 28, respectively.
- the laser beam 25 runs parallel within the interferometer the beams 7 and 20 or the partial beams 9 and 11 in the edge region thereof, wherein the laser beam 25, as shown here, can lie outside the beams and partial beams 7, 9, 11, 20 or within these beams.
- the optics 3, the mirror 4 and the detector 23 all of the components of the interferometer shown are arranged strictly symmetrically with respect to the plane of symmetry 13, thereby ensuring high accuracy of the interferometer.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Instruments For Measurement Of Length By Optical Means (AREA)
Abstract
A Michelson interferometer has a beam-splitter which splits a beam provided by a radiation source into two partial beams before reuniting said partial beams once they have completed two radiation paths, for receiving in a detector. Two deviation mirrors reflect the partial beams coming from the beam-splitter into the different partial areas of a rotating retroreflector whose axis of rotation is laterally offset from its triple point. Two plane mirrors reflect back the partial beams reflected by the retroreflector perpendicularly to said retroreflector. A laser beam is guided through the paths of radiation of the interferometer for calibration purposes. According to the invention, said laser beam (25) passes into the paths of radiation of the interferometer through openings (27, 28) in the mirrors (5, 22), and the deviation mirrors (10, 12) are positioned in such a way that they reflect the partial beams (9, 11) through between the two plane mirrors (18, 19), past said plane mirrors and into the retroreflector (14). As a result, the inventive Michelson interferometer has a simple construction.
Description
Beschreibungdescription
MICHELSON-INTERFEROMETER MIT KALIBRATIONSVORRICHTUNGMICHELSON INTERFEROMETER WITH CALIBRATION DEVICE
Die Erfindung betrifft ein Michelson-Interferometer mit einem Strahlteller, der ein von einer Strahlungsquelle kommendes Strahlenbundel in zwei Teilbundel aufteilt und diese nach Durchlaufen von zwei Strahlungswegen zur weiteren Verarbeitung wieder vereinigt, mit zwei Umlenkspiegeln, die die von dem Strahlteiler kommenden Teilbundel in unterschiedlicheThe invention relates to a Michelson interferometer with a beam plate, which divides a beam coming from a radiation source into two partial beams and combines them again after passing through two radiation paths for further processing, with two deflecting mirrors which separate the partial beams coming from the beam splitter into different ones
Teilbereiche eines rotierenden Retroreflektors reflektieren, wobei die Rotationsachse des Retroreflektors gegenüber seinem Tripelpunkt seitlich versetzt ist und die beiden Teilbereiche, bezogen auf die Rotationsachse, einander gegenuberlie- gen, mit zwei Planspiegeln, die die von dem Retroreflektor reflektierten Teilbundel senkrecht zu diesem wieder zurückspiegeln, und mit einem Laser, dessen Laserstrahl parallel zu dem Strahlenbundel die Strahlungswege des Interferometers durchlauft und anschließend von einem Laserdetek- tor erfaßt wird.Reflect partial areas of a rotating retroreflector, the axis of rotation of the retroreflector being laterally offset with respect to its triple point and the two partial areas, with respect to the axis of rotation, lying opposite one another, with two plane mirrors which reflect the partial bundle reflected by the retroreflector perpendicularly to the latter again, and with a laser, the laser beam of which runs parallel to the bundle of rays through the radiation paths of the interferometer and is subsequently detected by a laser detector.
Bei einem derartigen aus der US-A-5 341 207 bekannten Interferometer werden optische Wegdifferenzen m den Strahlungswegen der Teilbundel durch den rotierenden Retroreflektor erzeugt, dessen Rotationsachse gegenüber seinem Tripelpunkt versetzt ist. Dazu werden die Teilbundel von den Umlenkspiegeln durch Bohrungen m den Planspiegeln hindurch m den Retroreflektor umgelenkt, von wo aus sie auf die Planspiegel reflektiert werden. Die Planspiegel reflektieren die Teil- bundel senkrecht m den Retroreflektor zurück, von wo aus sie wieder durch die Bohrungen m den Planspiegeln hindurch über die Umlenkspiegel zu dem Strahlteiler gelangen. Zur Kalibrierung des bekannten Interferometers dient ein Laser, dessen Laserstrahl seitlich neben dem Strahlenbundel und parallel zu diesem m die Strahlungswege des Interferometers durchlauft und anschließend mit einem Laserdetektor erfaßt wird. Da der Laser neben dem Strahlenbundel und der Laser-
detektor neben den vereinigten Teilbundeln angeordnet sind, müssen entweder der Laser und der Laserdetektor einschließlich ihrer Halterung konstruktiv besonders klein oder die übrigen optischen Komponenten des Interferometers besonders groß ausgebildet sein, damit der Laserstrahl und dieIn such an interferometer known from US Pat. No. 5,341,207, optical path differences in the radiation paths of the partial bundle are generated by the rotating retroreflector whose axis of rotation is offset with respect to its triple point. For this purpose, the partial bundles are deflected by the deflecting mirrors through bores in the plane mirrors and in the retroreflector, from where they are reflected on the plane mirrors. The plane mirrors reflect the partial bundles vertically back into the retroreflector, from where they reach the beam splitter again through the holes in the plane mirrors via the deflecting mirrors. A laser is used to calibrate the known interferometer, the laser beam of which passes through the radiation paths of the interferometer laterally next to the beam and parallel to this m and is subsequently detected by a laser detector. Since the laser in addition to the beam and the laser Detector are arranged next to the combined sub-bundles, either the laser and the laser detector including their holder must be particularly small in design or the other optical components of the interferometer must be particularly large so that the laser beam and
Strahlen- bzw. Teilbundel gemeinsam durch das Interferometer gefuhrt werden.Beams or partial bundles are guided together through the interferometer.
Aus der DE 197 56 936 Cl ist ein vergleichbares Interfero- meter bekannt, das keinen oder nur einen Umlenkspiegel benotigt und bei dem die Teilbundel zwischen den beiden Planspiegeln hindurch an diesen vorbei in den Retroreflektor gefuhrt werden, so daß auch die Bohrungen in den Planspiegeln entfallen. Bei der Ausfuhrungsform ohne Umlenkspiegel fallt das Strahlenbundel konstruktionsbedingt unter einem ungunstig flachen Winkel auf den Strahlteiler. Bei der Ausfuhrungsform mit einem Umlenkspiegel ist zwar ein optimaler Einfallswinkel von 45° erreichbar, jedoch ergeben sich dabei Wegdifferenzen bei den beiden Strahlungswegen, die durch weitere konstruk- tive Maßnahmen kompensiert werden müssen; insgesamt ist dabei der Aufbau des bekannten Interferometers unsymmetrisch, was sowohl in konstruktiv/fertigungstechnischer Sicht als auch im Hinblick auf die Genauigkeit des Interferometers ungunstigA comparable interferometer is known from DE 197 56 936 C1 which does not require any or only a deflecting mirror and in which the partial bundles between the two plane mirrors are guided past these into the retroreflector, so that the holes in the plane mirrors are also eliminated , In the embodiment without a deflecting mirror, the bundle of rays falls on the beam splitter at an unfavorably flat angle due to the design. In the embodiment with a deflecting mirror, an optimum angle of incidence of 45 ° can be achieved, but there are path differences in the two radiation paths, which must be compensated for by further design measures; overall, the construction of the known interferometer is asymmetrical, which is disadvantageous both in terms of construction / production technology and in terms of the accuracy of the interferometer
Der Erfindung liegt die Aufgabe zugrunde, den Aufbau eines Michelson-Interferometers sowohl in konstruktiver als auch in fertigungstechnischer Sicht zu vereinfachen.The object of the invention is to simplify the construction of a Michelson interferometer both in terms of construction and in terms of production technology.
Gemäß der Erfindung wird die Aufgabe dadurch gelost, daß bei dem Michelson-Interferometer der eingangs angegebenen Art das von der Strahlungsquelle kommende Strahlenbundel über einen Spiegel zu dem Strahlteiler gelangt, daß der Spiegel eine Öffnung enthalt und daß hinter dem Spiegel der Laser angeord- net ist, dessen Laserstrahl durch die Öffnung hindurch parallel zu dem von dem Spiegel reflektierten Strahlenbundel gerichtet ist. Die Emkopplung des Laserstrahls in die
Strahlungswege des Interferometers erfolgt somit ohne Störung des Strahlenbundels, wobei die Anordnung des Lasers hinter dem Spiegel außerdem einen konstruktiv einfachen Aufbau des Interferometers begünstigt.According to the invention, the object is achieved in that, in the Michelson interferometer of the type specified at the outset, the beam of rays coming from the radiation source reaches the beam splitter via a mirror, that the mirror contains an opening and that the laser is arranged behind the mirror , whose laser beam is directed through the opening parallel to the bundle of rays reflected by the mirror. The coupling of the laser beam into the Radiation paths of the interferometer thus take place without disturbing the beam of rays, the arrangement of the laser behind the mirror also promoting a structurally simple construction of the interferometer.
In entsprechender Weise ist bezuglich der Detektion des Laserstrahls vorgesehen, daß die von dem Strahlteiler kommenden vereinigten Teilbundel über einen weiteren Spiegel zur Weiterverarbeitung gelangen, daß der weitere Spiegel eine Öffnung enthalt und daß hinter der Öffnung des weiteren Spiegels der Laserdetektor angeordnet ist. Da die Auskopplung des Laserstrahls aus den Strahlungswegen des Interferometers auf dieselbe Weise erfolgt wie seine Emkopplung, ergibt sich insgesamt ein nahezu vollkommen symmetrischer Aufbau des er- fmdungsgemaßen Interferometers, wodurch auch seine Genauigkeit erhöht wird.In a corresponding manner, with respect to the detection of the laser beam, it is provided that the combined partial bundle coming from the beam splitter is further processed via a further mirror, that the further mirror contains an opening and that the laser detector is arranged behind the opening of the further mirror. Since the laser beam is decoupled from the radiation paths of the interferometer in the same way as its decoupling, the result is an almost completely symmetrical structure of the interferometer according to the invention, which also increases its accuracy.
Wenn sich die Wellenlangen des Laserstrahls und des Strahlenbundels deutlich unterscheiden, so daß beide meßtechnisch sicher voneinander getrennt werden können, kann der Laserstrahl ohne weiteres innerhalb des Strahlenbundels bzw. der Teilbundel gefuhrt werden. Vorzugsweise wird der Laserstrahl im Randbereich des Strahlenbundels bzw. der Teilbundel, innerhalb oder außerhalb dieser, gefuhrt, wozu die Offnungen in den Spiegeln entsprechend angeordnet sind; der mittlere Bereich des Strahlenbundels bzw. der Teilbundel, m dem die Strahlungsintensität am höchsten ist und der dementsprechend zu Meßzwecken bevorzugt herangezogen wird, bleibt dann völlig ungestört .If the wavelengths of the laser beam and the bundle of rays differ significantly, so that both can be safely separated from one another in terms of measurement technology, the laser beam can easily be guided within the bundle of rays or the sub-bundle. The laser beam is preferably guided in the edge region of the radiation bundle or the partial bundle, inside or outside of it, for which purpose the openings in the mirrors are arranged accordingly; the central region of the radiation beam or the partial beam, in which the radiation intensity is the highest and which is accordingly preferably used for measurement purposes, then remains completely undisturbed.
In den Bereichen der Offnungen sind die Spiegeln für den Laserstrahl transparent, wobei die Offnungen vorzugsweise als Bohrungen ausgebildet s nd.In the areas of the openings, the mirrors are transparent to the laser beam, the openings preferably being designed as bores.
Im weiteren wird die Erfindung anhand eines m der Figur dargestellten Ausfuhrungsbeispiels erläutert.
Die von einer Strahlungsquelle 1 ausgehende Strahlung 2 wird mittels einer Optik 3 und mehreren Spiegeln 4, 5 und 6 zu einem parallelen Strahlenbundel 7 geformt, das unter einem vorgegebenen Winkel, hier 45°, auf einen Strahlteiler 8 fallt. Der Strahlteiler 8 teilt das Strahlenbundel 7 in zwei ampli- tudengleiche Hälften, wobei die eine Hälfte in Form eines Teilbundels 9 zu einem ersten Umlenkspiegel 10 durchgelassen wird und die andere Hälfte m Form eines zweiten Teilbundels 11 zu einem weiteren Umlenkspiegel 12 reflektiert wird. Die beiden Umlenkspiegel 10 und 12 sind beiderseits einer durch den Strahlteiler 8 verlaufenden Symmetrieebene 13 angeordnet und lenken die beiden Teilbundel 9 und 11 in einen Retroreflektor 14 um, der mittels eines Motors 15 in Rotation versetzt wird. Die Rotationsachse 16 liegt dabei m der Symme- trieebene 13 und ist gegenüber dem Tripelpunkt 17 des Retro- reflektors 14 seitlich versetzt, so daß der Retroreflektor 14 eine exzentrische Drehbewegung ausfuhrt. Zwei extreme Drehstellungen des Retroreflektors 14 sind hier mit ausgezogenen bzw. gestrichelten Linien wiedergegeben. Jedes der beiden m den Retroreflektor 14 fallenden Teilbundel 9 und 11 wird von diesem auf jeweils einen Planspiegel 18, 19 reflektiert, der das betreffende Teilbundel 9 bzw. 11 senkrecht m den Retroreflektor 14, also m sich selbst zurückspiegelt. Die beiden Teilbundel 9 und 11 laufen daher auf jeweils demselben Strah- lungsweg zurück zu dem Strahlteiler 8, wo sie zu einem neuen Strahlenbundel 20 wieder vereinigt werden, das anschließend mittels einer Anordnung mit zwei Spiegeln 21 und 22 auf einen Detektor 23 oder einen die Strahlung an einen Ort zur Weiterverarbeitung fuhrenden Lichtleiter fokussiert wird.The invention is further explained on the basis of an exemplary embodiment shown in the figure. The radiation 2 emanating from a radiation source 1 is shaped by means of optics 3 and a plurality of mirrors 4, 5 and 6 to form a parallel beam 7, which falls on a beam splitter 8 at a predetermined angle, here 45 °. The beam splitter 8 divides the beam bundle 7 into two halves of the same amplitude, one half being transmitted in the form of a partial bundle 9 to a first deflecting mirror 10 and the other half being reflected in the form of a second partial bundle 11 to a further deflecting mirror 12. The two deflecting mirrors 10 and 12 are arranged on both sides of a plane of symmetry 13 running through the beam splitter 8 and deflect the two partial bundles 9 and 11 into a retroreflector 14 which is set in rotation by means of a motor 15. The axis of rotation 16 lies in the plane of symmetry 13 and is laterally offset from the triple point 17 of the retro reflector 14, so that the retroreflector 14 executes an eccentric rotary movement. Two extreme rotational positions of the retroreflector 14 are shown here with solid or dashed lines. Each of the two sub-bundles 9 and 11 falling into the retroreflector 14 is reflected by the latter on a respective plane mirror 18, 19 which reflects the sub-bundle 9 or 11 in question vertically m the retroreflector 14, ie m itself. The two sub-beams 9 and 11 therefore run in each case on the same radiation path back to the beam splitter 8, where they are combined again to form a new beam 20, which is then arranged on a detector 23 or the radiation by means of an arrangement with two mirrors 21 and 22 is focused on a light guide leading to further processing.
Die exzentrische Drehbewegung des Retroreflektors 14 fuhrt zu einer gegensinnigen Änderung der Weglangen der beiden Teilbundel 9 und 11 von dem Strahlteiler 8 zu den Planspiegeln 18 bzw. 19 und zurück, so daß bei der Vereinigung der beiden Teilbundel 9 und 11 m dem Strahlteiler 8 ein Interferogramm entsteht, welches die Fourier-Transformierte der von der Strahlungsquelle 1 kommenden Strahlung 2 darstellt. Das ge-
zeigte Interferometer ist daher für die Fourier-Transform- (FT-) Spektroskopie verwendbar.The eccentric rotary movement of the retroreflector 14 leads to an opposite change in the distances of the two partial bundles 9 and 11 from the beam splitter 8 to the plane mirrors 18 and 19 and back, so that when the two partial bundles 9 and 11 m the beam splitter 8 an interferogram arises, which represents the Fourier transform of the radiation 2 coming from the radiation source 1. The GE- showed interferometer can therefore be used for Fourier transform (FT) spectroscopy.
Bei dem gezeigten Interferometer ergibt sich ein kompakter und konstruktiv einfacher Aufbau dadurch, daß die Umlenkspiegel 10 und 12 derart angeordnet sind, daß sie die Teilbundel 9 und 11 zwischen den beiden Planspiegeln 18 und 19 hindurch an diesen vorbei in den Retroreflektor 14 reflektieren. Dabei wechseln die beiden Teilbundel 9 und 11 auf ihrem Weg zwischen den Umlenkspiegeln 10 bzw. 12 und dem Retroreflektor 14 jeweils von einer Seite der Symmetrieebene 13 auf die andere Seite, so daß die Umlenkspiegel 10 bzw. 12 und die Teilbereiche des Retroreflektors 14, in die die Teilbundel 9, 11 von den Umlenkspiegeln 10, 12 hineinreflektiert werden, bezuglich der Rotationsachse 16 des RetroreflektorsIn the interferometer shown, a compact and structurally simple construction results from the fact that the deflecting mirrors 10 and 12 are arranged in such a way that they reflect the partial bundles 9 and 11 between the two plane mirrors 18 and 19 past them into the retroreflector 14. The two sub-bundles 9 and 11 change on their way between the deflecting mirrors 10 and 12 and the retroreflector 14 each from one side of the plane of symmetry 13 to the other side, so that the deflecting mirrors 10 and 12 and the partial areas of the retroreflector 14, in which the partial bundles 9, 11 are reflected by the deflecting mirrors 10, 12 with respect to the axis of rotation 16 of the retroreflector
14 einander gegenüberliegen. Die Planspiegel 18 und 19 liegen daher außerhalb der Strahlungswege der Teilbundel 9 und 11, so daß die konstruktive Ausführung der Planspiegel 18 und 19 und ihre hier nicht gezeigte Halterung in dem Interferometer besonders einfach ist. Dies ist insbesondere deswegen wichtig, weil die Planspiegel 18 und 19 den Bezug für die Weglangen der Teilbundel 9 und 11 bilden und daher hochgenau und stabil ausgerichtet sein müssen.14 face each other. The plane mirrors 18 and 19 are therefore outside the radiation paths of the sub-bundles 9 and 11, so that the structural design of the plane mirrors 18 and 19 and their holder (not shown here) in the interferometer is particularly simple. This is particularly important because the plane mirrors 18 and 19 form the reference for the distances of the sub-bundles 9 and 11 and therefore have to be aligned with high precision and stability.
Die Kalibrierung des gezeigten Interferometers erfolgt mittels eines Lasers 24, dessen Laserstrahl 25 das Interferometer auf demselben Weg wie die Strahlung 2 durchlauft und anschließend von einem Laserdetektor 26 erfaßt wird. Zur Em- kopplung bzw. Auskopplung des Laserstrahls 25 in die Strah- lungswege bzw. aus den Strahlungswegen des Interferometers enthalten die beiden Spiegel 5 und 22 jeweils im Randbereich des auf sie auftreffenden Strahlenbundels 7 bzw. 22 eine Öffnung 27 bzw. 28 m Form einer Bohrung, wobei hinter dem Spiegel 5 der Laser 24 und hinter dem Spiegel 22 der Laser- detektor 26 angeordnet ist und der Laserstrahl 25 durch die jeweilige Öffnung 27 bzw. 28 hindurch verlauft. Der Laserstrahl 25 verlauft innerhalb des Interferometers parallel zu
den Strahlenbündeln 7 und 20 bzw. den Teilbündeln 9 und 11 in deren Randbereich, wobei der Laserstrahl 25, wie hier gezeigt, außerhalb der Strahlen- und Teilbündel 7, 9, 11, 20 oder innerhalb dieser Bündel liegen kann.The interferometer shown is calibrated by means of a laser 24, the laser beam 25 of which passes through the interferometer in the same way as the radiation 2 and is subsequently detected by a laser detector 26. For coupling or decoupling the laser beam 25 into the radiation paths or out of the radiation paths of the interferometer, the two mirrors 5 and 22 each contain an opening 27 and 28 m in the form of a shape in the edge region of the beam 7 and 22 impinging on them Bore, with the laser 24 arranged behind the mirror 5 and the laser detector 26 behind the mirror 22 and the laser beam 25 extending through the respective opening 27 and 28, respectively. The laser beam 25 runs parallel within the interferometer the beams 7 and 20 or the partial beams 9 and 11 in the edge region thereof, wherein the laser beam 25, as shown here, can lie outside the beams and partial beams 7, 9, 11, 20 or within these beams.
Mit Ausnahme der Strahlungsquelle 1, der Optik 3, des Spiegels 4 und des Detektors 23 sind alle gezeigten Komponenten des Interferometers streng symmetrisch zur Symmetrieebene 13 angeordnet, wodurch eine hohe Genauigkeit des Interferometers gewährleistet wird.
With the exception of the radiation source 1, the optics 3, the mirror 4 and the detector 23, all of the components of the interferometer shown are arranged strictly symmetrically with respect to the plane of symmetry 13, thereby ensuring high accuracy of the interferometer.
Claims
1. Michelson-Interferometer1. Michelson interferometer
- mit einem Strahlteiler (8), der ein von einer Strahlungs- quelle (1) kommendes Strahlenbündel (7) in zwei Teilbündel- With a beam splitter (8), which comes from a radiation source (1) beam (7) in two sub-beams
(9, 11) aufteilt und diese nach Durchlaufen von zwei Strahlungswegen zur weiteren Verarbeitung wieder vereinigt,(9, 11) divided and reunited for further processing after passing through two radiation paths,
- mit zwei Umlenkspiegeln (10, 12), die die von dem Strahl- teiler (8) kommenden Teilbündel (9, 11) in unterschiedliche Teilbereiche eines rotierenden Retroreflektors (14) reflektieren, wobei die Rotationsachse (16) des Retroreflektors gegenüber seinem Tripelpunkt (17) seitlich versetzt ist und die beiden Teilbereiche, bezogen auf die Rotationsachse (16) , einander gegenüberliegen,- With two deflecting mirrors (10, 12) which reflect the partial bundles (9, 11) coming from the beam splitter (8) into different partial areas of a rotating retroreflector (14), the axis of rotation (16) of the retroreflector relative to its triple point ( 17) is laterally offset and the two partial areas, with respect to the axis of rotation (16), lie opposite one another,
- mit zwei Planspiegeln (18, 19), die die von dem Retroreflektor (14) reflektierten Teilbündel (9, 11) in diesen wieder zurückspiegeln, und- With two plane mirrors (18, 19) which reflect the partial bundles (9, 11) reflected by the retroreflector (14) back into them, and
- mit einem Laser (24) , dessen Laserstrahl (25) parallel zu dem Strahlenbündel (7) die Strahlungswege des Interferometers durchläuft und anschließend von einem Laserdetektor (26) erfaßt wird, dadurch gekennzeichnet,- With a laser (24), the laser beam (25) of which runs parallel to the beam (7) through the radiation paths of the interferometer and is subsequently detected by a laser detector (26), characterized in that
- daß das von der Strahlungsquelle (1) kommende Strahlen- bündel (7) über einen Spiegel (5) zu dem Strahlteiler (8) gelangt,- That the beam (7) coming from the radiation source (1) reaches the beam splitter (8) via a mirror (5),
- daß der Spiegel (5) eine Öffnung (27) enthält und- That the mirror (5) contains an opening (27) and
- daß hinter dem Spiegel (5) der Laser (24) angeordnet ist, dessen Laserstrahl (25) durch die Öffnung (27) hindurch parallel__zu dem von dem Spiegel (5) reflektierten Strahlenbündel (7) gerichtet ist.- That behind the mirror (5) of the laser (24) is arranged, the laser beam (25) through the opening (27) parallel____ to the reflected by the mirror (5) beam (7) is directed.
2. Michelson-Interferometer nach Anspruch 1, dadurch gekennzeichnet, - daß der Spiegel (5) die Öffnung (27) im Randbereich des auf ihn treffenden Strahlenbündels (7) enthält. 2. Michelson interferometer according to claim 1, characterized in that - the mirror (5) contains the opening (27) in the edge region of the beam (7) striking it.
3. Michelson-Interferometer nach Anspruch 1 oder 2, dadurch gekennzeichnet,3. Michelson interferometer according to claim 1 or 2, characterized in
- daß die Öffnung (27) als Bohrung ausgebildet ist.- That the opening (27) is designed as a bore.
4. Michelson-Interferometer nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet,4. Michelson interferometer according to one of the preceding claims, characterized in that
- daß die von dem Strahlteiler (8) kommenden vereinigten Teilbundel (neues Strahlenbundel 20) über einen weiteren Spiegel (22) zur Weiterverarbeitung gelangen, - daß der weitere Spiegel (22) eine Öffnung (28) enthalt und- That from the beam splitter (8) coming sub-bundle (new beam 20) through another mirror (22) for further processing, - that the other mirror (22) contains an opening (28) and
- daß hinter der Öffnung (28) des weiteren Spiegels (22) der Laserdetektor (26) angeordnet ist.- That behind the opening (28) of the further mirror (22) the laser detector (26) is arranged.
5. Michelson-Interferometer nach Anspruch 4, dadurch ge- kennzeichnet,5. Michelson interferometer according to claim 4, characterized in
- daß der weitere Spiegel (22) die Öffnung (28) im Randbereich der vereinigten Teilbundel (Strahlenbundel 20) enthalt .- That the further mirror (22) contains the opening (28) in the edge region of the combined sub-bundle (beam 20).
6. Michelson-Interferometer nach Anspruch 4 oder 5, dadurch gekennzeichnet,6. Michelson interferometer according to claim 4 or 5, characterized in
- daß die Öffnung (28) m dem weiteren Spiegel (22) als Bohrung ausgebildet ist.- That the opening (28) m the further mirror (22) is designed as a bore.
7. Michelson-Interferometer nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet,7. Michelson interferometer according to one of the preceding claims, characterized in
- daß die Umlenkspiegel (10, 12) derart angeordnet sind, daß sie die Teilbundel (9, 11) zwischen den beiden Planspiegeln (18, 19) hindurch an diesen vorbei m den Retrore- flektor (14) reflektieren, wobei die Umlenkspiegel (10,- That the deflecting mirrors (10, 12) are arranged such that they reflect the partial bundles (9, 11) between the two plane mirrors (18, 19) past them and the retroreflector (14), the deflecting mirrors (10 .
12) und die Teilbereiche des Retroreflektors (14), m die die Teilbundel (9, 11) von den Umlenkspiegeln (10, 12) reflektiert werden, bezüglich der Rotationsachse (16) des Retroreflektors (14) einander gegenüberliegen. 12) and the partial areas of the retroreflector (14), m the partial bundles (9, 11) are reflected by the deflecting mirrors (10, 12), lie opposite one another with respect to the axis of rotation (16) of the retroreflector (14).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19939343 | 1999-08-19 | ||
DE19939343.5 | 1999-08-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001014837A1 true WO2001014837A1 (en) | 2001-03-01 |
Family
ID=7918906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2000/002772 WO2001014837A1 (en) | 1999-08-19 | 2000-08-16 | Michelson interferometer with a calibration device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2001014837A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004076998A1 (en) * | 2003-02-25 | 2004-09-10 | Siemens Aktiengesellschaft | Michelson interferometer |
DE102006037967B3 (en) * | 2006-08-14 | 2007-08-23 | Siemens Ag | Michelson interferometer has beam splitter divides ray of light, coming from radiation source in two partial beam, which are guided mirror-symmetrical to straight line parallel to rotation axis |
CZ302520B6 (en) * | 2008-05-06 | 2011-06-29 | Ústav prístrojové techniky AV CR, v.v.i. | Interferometric system with compensation for fluctuations in medium index of refraction |
CN109696245A (en) * | 2018-12-28 | 2019-04-30 | 北京北分瑞利分析仪器(集团)有限责任公司 | A kind of angle mirror type Michelson's interferometer |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1985004713A1 (en) * | 1984-04-13 | 1985-10-24 | Beckman Instruments, Inc. | Sample signal for interferogram generation and method for obtaining same |
US5341207A (en) * | 1991-08-30 | 1994-08-23 | Deutsche Forschungsanstalt Fur Luft - Und Raumfahrt E.V. | Michelson interferometer |
-
2000
- 2000-08-16 WO PCT/DE2000/002772 patent/WO2001014837A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1985004713A1 (en) * | 1984-04-13 | 1985-10-24 | Beckman Instruments, Inc. | Sample signal for interferogram generation and method for obtaining same |
US5341207A (en) * | 1991-08-30 | 1994-08-23 | Deutsche Forschungsanstalt Fur Luft - Und Raumfahrt E.V. | Michelson interferometer |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004076998A1 (en) * | 2003-02-25 | 2004-09-10 | Siemens Aktiengesellschaft | Michelson interferometer |
DE102006037967B3 (en) * | 2006-08-14 | 2007-08-23 | Siemens Ag | Michelson interferometer has beam splitter divides ray of light, coming from radiation source in two partial beam, which are guided mirror-symmetrical to straight line parallel to rotation axis |
CZ302520B6 (en) * | 2008-05-06 | 2011-06-29 | Ústav prístrojové techniky AV CR, v.v.i. | Interferometric system with compensation for fluctuations in medium index of refraction |
CN109696245A (en) * | 2018-12-28 | 2019-04-30 | 北京北分瑞利分析仪器(集团)有限责任公司 | A kind of angle mirror type Michelson's interferometer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0146768B1 (en) | Interferometer | |
EP0529603B1 (en) | Michelson interferometer | |
DE1572713B2 (en) | LASER INTERFEROMETER | |
DE2814006A1 (en) | SCANNING INTERFEROMETER | |
DE19522263C2 (en) | Reference interferometer (RI) with variable wavelength | |
DE102018208684B4 (en) | MONOLITHICALLY DESIGNED SPECTRAL APPARATUS | |
DE3147689C2 (en) | Additional device for performing reflection measurements with an IR spectrometer | |
DE2323593C3 (en) | Laser Doppler anemometer | |
EP2980525A1 (en) | Interferometer mit dreifachem durchgang | |
DE3431040C2 (en) | Interferometer | |
DE69103741T2 (en) | Analyzer for interferometric micro-displacement sensors. | |
DE2906015A1 (en) | INTERFEROMETER | |
WO2001014837A1 (en) | Michelson interferometer with a calibration device | |
DE4013399C1 (en) | ||
DE69000564T2 (en) | OPTICAL SYSTEM FOR MEASURING LINEAR OR ANGLE CHANGES. | |
DE19756936C1 (en) | Michelson interferometer has rotating reflector and retro-reflectors | |
DE4016731C2 (en) | Fourier spectrometer | |
DE10392396B4 (en) | interferometer | |
DE102008050867B4 (en) | Method for measuring a spectrum of a narrow-band light source and spectrometer arrangement | |
EP1434977A1 (en) | Scatterometric measuring array and measuring method | |
WO2008019937A1 (en) | Michelson interferometer | |
DE2922163A1 (en) | OPTICAL DEVICE FOR DETERMINING THE GUETE OF A SURFACE | |
DE10308006A1 (en) | Michelson interferometer | |
DE3400389A1 (en) | Two-beam interferometer arrangement, in particular for Fourier transform spectrometers | |
DE4322687C1 (en) | Interferometer, after Michelson |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
122 | Ep: pct application non-entry in european phase |