WO2001014279A1 - Fireproof ceramic shaped body - Google Patents

Fireproof ceramic shaped body Download PDF

Info

Publication number
WO2001014279A1
WO2001014279A1 PCT/EP2000/006834 EP0006834W WO0114279A1 WO 2001014279 A1 WO2001014279 A1 WO 2001014279A1 EP 0006834 W EP0006834 W EP 0006834W WO 0114279 A1 WO0114279 A1 WO 0114279A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaped body
body according
matrix material
refractory
offset
Prior art date
Application number
PCT/EP2000/006834
Other languages
German (de)
French (fr)
Inventor
Roland Nilica
Original Assignee
Weitsch-Radex Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Weitsch-Radex Gmbh filed Critical Weitsch-Radex Gmbh
Priority to AU65647/00A priority Critical patent/AU6564700A/en
Publication of WO2001014279A1 publication Critical patent/WO2001014279A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/013Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics containing carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/053Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • C04B35/443Magnesium aluminate spinel

Definitions

  • the invention relates to a refractory ceramic molded body.
  • the invention is directed to a refractory ceramic molded body having a high density and correspondingly low open porosity, which has a good thermal shock resistance and good Bruchzähig ⁇ ness.
  • the molded part should have good ductility in order to be able to use the products advantageously where mechanical and / or thermal stresses occur.
  • DE 44 03 869 C2 discloses a refractory ceramic mixture which, in addition to MgO sinter, contains a spinel of the Herzynite type as the refractory oxidic matrix material. When molded parts made from it fire, there is no complete, dense sintering, so that the molded body retains a certain "elasticity".
  • WO 84/00030 proposes a material based on Zr0 2 in different grain fractions.
  • One grain fraction has an average particle size of less than 4 ⁇ m, the other grain fraction has an average particle size between 4 and 25 ⁇ m.
  • EP 0 318 489 B1 proposes a refractory composite material with a porosity ⁇ 12%, which contains a matrix based on aluminum oxide and particles of zirconium dioxide dispersed in the matrix.
  • the porosity in the specified range is too high for numerous applications.
  • PCT / AU98 / 00793 describes a dense ceramic material consisting of a spinel matrix and a phase which forms microcracks, the latter being said to consist of zirconium dioxide.
  • the invention takes a completely different way of providing a refractory ceramic molded body which, in particular, has good resistance to temperature changes and good fracture toughness, and thus good ductility.
  • the basic idea of the invention is to produce the refractory ceramic molded body from a batch which, in addition to a finely divided refractory oxidic matrix material, contains a limited proportion of finely divided, platelet-shaped graphite.
  • the shaped body is fired redu ⁇ ornamental.
  • the special effect here is that the platelet-shaped graphite causes the formation of fine and evenly distributed defects in the "structure" of the fired stone.
  • the platelet-shaped graphite has the result that the sintered, finely divided matrix material is regularly interrupted by defects in angular geometry, the defects Even after the fire, they are completely or partially filled with the graphite flakes. At these edges, stress peaks and micro-cracks are initiated during loading (due to thermal or mechanical stresses). These stress peaks and micro-cracks dissipate energy and crack propagation inhibited or prevented.
  • the reducing sintering fire stimulates cation diffusion as a result of the increased formation of oxygen defect sites in the lattice.
  • the cation In the case of a refractory oxidic matrix material based on aluminum oxide or MA spinel, for example, diffusion is the rate-determining step during the sintering.
  • the defects mentioned are Wesent ⁇ Lich for nucleation, so that it is also favored.
  • ⁇ Lich for nucleation
  • a sufficient number of contact points between the primary particles of the matrix material is important for good sintering, which is why this should be used in a small grain size ⁇ 50 ⁇ m.
  • the most general embodiment of the invention then relates to a reductively fired, refractory ceramic molded body from a mixture which, in addition to a refractory oxidic matrix material with a grain size of ⁇ 50 ⁇ m, contains 1 to 7% by volume of platelet-shaped graphite with a size of ⁇ 50 ⁇ m.
  • the shaped body is adjusted so that it can have a total porosity ⁇ 5.0% by volume after firing, the total porosity according to embodiments being ⁇ 4.5% by volume or ⁇ 4% by volume.
  • the matrix material of the offset can be used in a grain size ⁇ 30 ⁇ m, according to a further embodiment ⁇ 20 ⁇ m.
  • the size of the graphite can also be reduced to values ⁇ 30 ⁇ m or ⁇ 10 ⁇ m. Due to the plate-like structure of the graphite, the “size” described describes the dimension along the main surfaces of the respective plate (D 50 value), the thickness of which is significantly smaller, for example ⁇ 10 ⁇ m or ⁇ 5 ⁇ m.
  • the fire which is typically carried out at about 1,600 up to 1,700 ° C should be conducted so that the matrix material is not reduced and a sintering ⁇ density of the molding adjusts> 95% of the pure substance density of the refractory matrix material, wherein the sintered ⁇ dense also Can be> 97%.
  • the refractory matrix material of offset can fundamentally ⁇ additionally consist of any materials, for example from one or more of the following components: MgO, A1 2 0 3, MgO-Al 2 0 3 (MA), MgO-Al 2 0 3 spinel (MA - spinel).
  • the molded parts can be burned, for example, in a coke bed.
  • the graphite can at least temporarily and locally (at the defects) protect the matrix component from the absorption of foreign oxides, since, for example, the oxides of iron, manganese, chromium or copper are reduced.
  • Another advantage of the shaped body according to the invention is its reduced wettability compared to slags and an excellent resistance to temperature changes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

The invention relates to a reductively fired fireproof ceramic shaped body comprised of a batch which, in addition to a fireproof oxidic matrix material having a particle size < 50 νm, contains 1 to 7 vol. % of flaky graphite having a particle size < 50 νm.

Description

Feuerfester keramischer Formkörper Refractory ceramic molded body
B e s c h r e i b u n gDescription
Die Erfindung betrifft einen feuerfesten keramischen Formkörper. Im besonderen ist die Erfindung auf einen feuerfesten keramischen Formkörper mit hoher Dichte und entsprechend geringer offener Porosität gerichtet, der eine gute Temperaturwechselbeständigkeit und gute Bruchzähig¬ keit aufweist. Vor allem soll das Formteil eine gute Duktilität aufweisen, um die Produkte vorteilhaft dort einsetzen zu können, wo mechanische und/oder thermische Spannungen auftreten.The invention relates to a refractory ceramic molded body. In particular, the invention is directed to a refractory ceramic molded body having a high density and correspondingly low open porosity, which has a good thermal shock resistance and good Bruchzähig ¬ ness. Above all, the molded part should have good ductility in order to be able to use the products advantageously where mechanical and / or thermal stresses occur.
In der Literatur sind verschiedene Vorschläge für derartige Formkörper gemacht worden. Die DE 44 03 869 C2 offenbart einen feuerfesten keramischen Versatz, der neben MgO-Sinter als feuerfestes oxidisches Matrixmaterial einen Spinell vom Herzynit-Typ enthält. Beim Brand daraus hergestellter Formteile erfolgt keine vollständige, dichte Versinterung, so daß der Formkörper eine gewisse „Elastizität" behält. Various proposals for such shaped articles have been made in the literature. DE 44 03 869 C2 discloses a refractory ceramic mixture which, in addition to MgO sinter, contains a spinel of the Herzynite type as the refractory oxidic matrix material. When molded parts made from it fire, there is no complete, dense sintering, so that the molded body retains a certain "elasticity".
In der WO 84/00030 wird ein Werkstoff auf Basis Zr02 in unterschiedlichen Kornfraktionen vorgeschlagen. Die eine Kornfraktion weist eine mittlere Teilchengröße von weniger als 4 μm, die andere Kornfraktion eine mittlere Teilchengröße zwischen 4 und 25 μm auf.WO 84/00030 proposes a material based on Zr0 2 in different grain fractions. One grain fraction has an average particle size of less than 4 μm, the other grain fraction has an average particle size between 4 and 25 μm.
In der EP 0 318 489 Bl wird ein feuerfestes Verbundmaterial mit einer Porosität < 12 % vorgeschlagen, das eine Matrix auf Basis Aluminiumoxid und in der Matrix dispergierte Teilchen aus Zirkoniumdioxid enthält. Die Porosität im angegebenen Bereich ist für zahlreiche Anwendungen jedoch zu hoch.EP 0 318 489 B1 proposes a refractory composite material with a porosity <12%, which contains a matrix based on aluminum oxide and particles of zirconium dioxide dispersed in the matrix. However, the porosity in the specified range is too high for numerous applications.
In der PCT/AU98/00793 wird ein dichtes keramisches Material aus einer Spinell-Matrix und einer Mikrorisse ausbildenden Phase beschrieben, wobei letztere aus Zirkoniu dioxid bestehen soll.PCT / AU98 / 00793 describes a dense ceramic material consisting of a spinel matrix and a phase which forms microcracks, the latter being said to consist of zirconium dioxide.
Ausgehend von dem vorgenannten Stand der Technik geht die Erfindung einen völlig anderen Weg, um einen feuerfesten keramischen Formkörper zur Verfügung zu stellen, der insbesondere eine gute Temperaturwechselbeständigkeit und eine gute Bruchzähigkeit sowie damit eine gute Duktilität besitzt.Starting from the above-mentioned prior art, the invention takes a completely different way of providing a refractory ceramic molded body which, in particular, has good resistance to temperature changes and good fracture toughness, and thus good ductility.
Grundgedanke der Erfindung ist es, den feuerfesten keramischen Formkörper aus einem Versatz herzustellen, der neben einem feinteiligen feuerfesten oxidischen Matrixmaterial einen begrenzten Anteil an feinteiligem, plätt- chenförmigem Graphit enthält. Nach Vermischung der Komponenten, gegebenenfalls Granulation sowie anschließender Formgebung, zum Beispiel in einer hydraulischen Presse, wird der Formkörper redu¬ zierend gebrannt. Der besondere Effekt dabei ist, daß der plättchenförmige Graphit die Ausbildung von feinen und gleichmäßig verteilten Fehlstellen im „Gefüge" des gebrannten Steins verursacht. Der plättchenförmige Graphit führt dazu, daß das versinterte feinteilige Matrixmaterial regelmäßig durch Fehlstellen von kantiger Geometrie unterbrochen wird, wobei die Fehlstellen auch nach dem Brand noch vollständig oder teilweise mit den Graphitplättchen gefüllt sind. An diesen Kanten kommt es während der Belastung (durch thermische oder mechanische Spannungen) zur Ausbildung von Spannungsspitzen sowie zur Initiierung von Mikrorissen. Über diese Spannungsspitzen und Mikrorisse wird Energie abgebaut und der Rißfortschritt gehemmt oder unterbunden.The basic idea of the invention is to produce the refractory ceramic molded body from a batch which, in addition to a finely divided refractory oxidic matrix material, contains a limited proportion of finely divided, platelet-shaped graphite. After mixing the components, if appropriate granulation and subsequent shaping, for example in a hydraulic press, the shaped body is fired redu ¬ ornamental. The special effect here is that the platelet-shaped graphite causes the formation of fine and evenly distributed defects in the "structure" of the fired stone. The platelet-shaped graphite has the result that the sintered, finely divided matrix material is regularly interrupted by defects in angular geometry, the defects Even after the fire, they are completely or partially filled with the graphite flakes. At these edges, stress peaks and micro-cracks are initiated during loading (due to thermal or mechanical stresses). These stress peaks and micro-cracks dissipate energy and crack propagation inhibited or prevented.
Diese definierten „Fehlstellen", deren Form im wesentlichen der Form des jeweiligen Graphitteilchens entspricht, sind mit einem relativ weichen (elastischen) Material, nämlich dem Graphit gefüllt. Der in den Poren einliegende Graphit sorgt dafür, daß auch bei fortschreitender Versinterung (im Einsatz) die Poren sich nicht abrunden, so daß der beschriebene Effekt auf Dauer erhalten bleibt.These defined "imperfections", the shape of which essentially corresponds to the shape of the respective graphite particle, are filled with a relatively soft (elastic) material, namely graphite. The graphite lying in the pores ensures that even with progressive sintering (in use) the pores do not round off, so that the described effect is retained in the long run.
Durch den reduzierenden Sinterbrand kommt es infolge einer vermehrten Bildung von Sauerstoffdefektstellen im Gitter zu einer Anregung der Kationendiffusion. Die Kationen- diffusion ist beispielsweise bei einem feuerfesten oxidischen Matrixmaterial auf Basis Aluminiumoxid oder MA- Spinell der geschwindigkeitsbestimmende Schritt während der Versinterung. Die genannten Defekte sind auch wesent¬ lich für die Keimbildung, so daß diese ebenfalls begünstigt wird. Als Folge der hohen Keimbildungsrate kommt es zur Ausbildung eines sehr gleichmäßigen Gefüges, bei welchem die Kristallgrößen gegenüber dem Ausgangsmaterial kaum anwachsen.The reducing sintering fire stimulates cation diffusion as a result of the increased formation of oxygen defect sites in the lattice. The cation In the case of a refractory oxidic matrix material based on aluminum oxide or MA spinel, for example, diffusion is the rate-determining step during the sintering. The defects mentioned are Wesent ¬ Lich for nucleation, so that it is also favored. As a result of the high nucleation rate, a very uniform structure is formed, in which the crystal sizes hardly increase compared to the starting material.
Wichtig für eine gute Versinterung ist eine ausreichende Anzahl an Kontaktstellen zwischen den Primärteilchen des Matrixmaterials, weshalb dieses in einer geringen Korngröße < 50 μm eingesetzt werden soll.A sufficient number of contact points between the primary particles of the matrix material is important for good sintering, which is why this should be used in a small grain size <50 μm.
Die Erfindung betrifft danach in ihrer allgemeinsten Ausführungsform einen reduzierend gebrannten, feuerfesten keramischen Formkörper aus einem Versatz, der neben einem feuerfesten oxidischen Matrixmaterial der Korngröße < 50 μm 1 bis 7 Vol.% plättchenförmigen Graphit der Größe < 50 μm enthält.The most general embodiment of the invention then relates to a reductively fired, refractory ceramic molded body from a mixture which, in addition to a refractory oxidic matrix material with a grain size of <50 μm, contains 1 to 7% by volume of platelet-shaped graphite with a size of <50 μm.
Durch Mischen der Komponenten, gegebenenfalls anschließende Granulierung sowie Formgebung (Pressen) wird der Formkörper so eingestellt, daß er nach dem Brand eine Gesamtporosität < 5, 0 Vol.% aufweisen kann, wobei die Gesamtporosität nach Ausführungsformen < 4,5 Vol.% beziehungsweise < 4 Vol.% betragen kann.By mixing the components, optionally subsequent granulation and shaping (pressing), the shaped body is adjusted so that it can have a total porosity <5.0% by volume after firing, the total porosity according to embodiments being <4.5% by volume or < 4% by volume.
In diesem Sinne kann das Matrixmaterial des Versatzes in einer Korngröße < 30 μm, nach einer weiteren Ausführungs¬ form < 20 μm eingesetzt werden. Auch die Größe des Graphits läßt sich nach einer Ausführungsform auf Werte < 30 μm bzw. < 10 μm verringern. Aufgrund der plattchenförmigen Struktur des Graphits beschreibt die angegebene „Größe" die Abmessung entlang der Hauptoberflächen des jeweiligen Plättchens (D50-Wert) , dessen Dicke deutlich geringer ist, beispielsweise < 10 μm bzw. < 5 μm.In this sense, the matrix material of the offset can be used in a grain size <30 μm, according to a further embodiment ¬ 20 μm. According to one embodiment, the size of the graphite can also be reduced to values <30 μm or <10 μm. Due to the plate-like structure of the graphite, the “size” described describes the dimension along the main surfaces of the respective plate (D 50 value), the thickness of which is significantly smaller, for example <10 μm or <5 μm.
Der Brand, der typischerweise bei etwa 1.600 bis 1.700° C durchgeführt wird, sollte so geführt werden, daß das Matrixmaterial nicht reduziert wird und sich eine Sinter¬ dichte des Formkörpers > 95 % der Reinstoffdichte des feuerfesten Matrixmaterials einstellt, wobei die Sinter¬ dichte auch > 97 % betragen kann.The fire, which is typically carried out at about 1,600 up to 1,700 ° C should be conducted so that the matrix material is not reduced and a sintering ¬ density of the molding adjusts> 95% of the pure substance density of the refractory matrix material, wherein the sintered ¬ dense also Can be> 97%.
Das feuerfeste Matrixmaterial des Versatzes kann grund¬ sätzlich aus beliebigen Werkstoffen bestehen, beispielsweise aus einem oder mehreren der nachfolgenden Komponenten: MgO, A1203, MgO-Al203 (MA) , MgO-Al203-Spinell (MA- Spinell) .The refractory matrix material of offset can fundamentally ¬ additionally consist of any materials, for example from one or more of the following components: MgO, A1 2 0 3, MgO-Al 2 0 3 (MA), MgO-Al 2 0 3 spinel (MA - spinel).
Um den Brand in der gewünschten Weise reduzierend zu führen, können die Formteile beispielsweise in einer Koks- grießschüttung gebrannt werden.In order to reduce the fire in the desired manner, the molded parts can be burned, for example, in a coke bed.
Während des Einsatzes des Formkörpers kann der Graphit die Matrixkomponente zumindest zeitlich begrenzt und lokal (an den Fehlstellen) vor der Aufnahme von Fremdoxiden schützen, da beispielsweise die Oxide des Eisens, Mangans, Chroms oder Kupfers reduziert werden. Ein weiterer Vorteil des erfindungsgemäßen Formkörpers ist seine verminderte Benetzbarkeit gegenüber Schlacken und eine hervorragende Temperaturwechselbeständigkeit.During the use of the shaped body, the graphite can at least temporarily and locally (at the defects) protect the matrix component from the absorption of foreign oxides, since, for example, the oxides of iron, manganese, chromium or copper are reduced. Another advantage of the shaped body according to the invention is its reduced wettability compared to slags and an excellent resistance to temperature changes.
Weitere Merkmale der Erfindung ergeben sich aus den Merkmalen der Unteransprüche sowie den sonstigen Anmeldungsunterlagen. Further features of the invention result from the features of the subclaims and the other application documents.

Claims

P a t e n t a n s p r ü c h e Patent claims
1. Reduzierend gebrannter, feuerfester keramischer Form- korper aus einem Versatz, der neben einem feuerfesten oxidischen Matrixmaterial der Korngroße < 50 μm 1 bis 7 Vol.% plattchenforangen Graphit der Große < 50 μm enthalt .1. Reducing fired, fireproof ceramic molded body from a mixture that contains 1 to 7 vol.% Platelet-orange graphite size <50 μm in addition to a refractory oxidic matrix material with a grain size of <50 μm.
2. Formkorper nach Anspruch 1, bei dem das Matrixmaterial des Versatzes m einer Korngroße < 30 μm vorliegt.2. Shaped body according to claim 1, wherein the matrix material of the offset m is a grain size <30 microns.
3. Formkorper nach Anspruch 1, bei dem das Matrixmaterial des Versatzes m einer Korngroße < 20 μm vorliegt.3. molded article according to claim 1, wherein the matrix material of the offset m is a grain size <20 microns.
4. Formkorper nach Anspruch 1, bei dem der Graphit des Versatzes m einer Große < 30 μm vorliegt.4. Shaped body according to claim 1, wherein the graphite of the offset m is a size <30 microns.
5. Formkorper nach Anspruch 1 mit einer Gesamtporositat < 5,0 Vol.%. 5. Shaped body according to claim 1 with a total porosity <5.0 vol.%.
6. Formkörper nach Anspruch 1 mit einer Gesamtporosität6. Shaped body according to claim 1 with a total porosity
< 4,5 Vol.%.<4.5% by volume.
7. Formkörper nach Anspruch 1 mit einer Gesamtporosität7. Shaped body according to claim 1 with a total porosity
< 4, 0 Vol.%.<4.0% by volume.
8. Formkörper nach Anspruch 1 mit einer Sinterdichte > 95 % der Reinstoffdichte des feuerfesten Matrixmaterials .8. Shaped body according to claim 1 with a sintered density> 95% of the pure density of the refractory matrix material.
9. Formkörper nach Anspruch 1 mit einer Sinterdichte > 97 % der Reinstoffdichte des feuerfesten Matrixmaterials .9. Shaped body according to claim 1 with a sintered density> 97% of the pure density of the refractory matrix material.
10. Formkörper nach Anspruch 1, bei dem das feuerfeste Matrixmaterial des Versatzes aus Aluminiumoxid be¬ steht .10. Shaped body according to claim 1, wherein the refractory matrix material of the offset consists of aluminum oxide be ¬ .
11. Formkörper nach Anspruch 1, bei dem das feuerfeste Matrixmaterial des Versatzes aus Magnesiumoxid besteht.11. Shaped body according to claim 1, wherein the refractory matrix material of the offset consists of magnesium oxide.
12. Formkörper nach Anspruch 1, bei dem das feuerfeste Matrixmaterial des Versatzes aus mindestens einem MgO-Al203-Spinell besteht.12. Shaped body according to claim 1, wherein the refractory matrix material of the batch consists of at least one MgO-Al 2 0 3 spinel.
13. Formkörper nach Anspruch 1, bei dem das Matrixmaterial nicht reduziert ist.13. Shaped body according to claim 1, in which the matrix material is not reduced.
14. Formkörper nach Anspruch 1, der in einem Koksgrießbett bei einer Temperatur zwischen 1.600 und 1.700° C gebrannt wurde . 14. Shaped body according to claim 1, which was fired in a coke bed at a temperature between 1,600 and 1,700 ° C.
PCT/EP2000/006834 1999-08-19 2000-07-18 Fireproof ceramic shaped body WO2001014279A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU65647/00A AU6564700A (en) 1999-08-19 2000-07-18 Fireproof ceramic shaped body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19938817.2 1999-08-19
DE1999138817 DE19938817C2 (en) 1999-08-19 1999-08-19 Refractory ceramic molded body

Publications (1)

Publication Number Publication Date
WO2001014279A1 true WO2001014279A1 (en) 2001-03-01

Family

ID=7918566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/006834 WO2001014279A1 (en) 1999-08-19 2000-07-18 Fireproof ceramic shaped body

Country Status (3)

Country Link
AU (1) AU6564700A (en)
DE (1) DE19938817C2 (en)
WO (1) WO2001014279A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62148076A (en) * 1985-12-23 1987-07-02 Akechi Ceramics Kk Nozzle for continuous casting
JPH0437452A (en) * 1990-05-31 1992-02-07 Nippon Steel Corp Nozzle for casting wide and thin slab
GB2286184A (en) * 1994-02-08 1995-08-09 Veitsch Radex Ag Refractory ceramic mass comprising magnesia

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4130452A1 (en) * 1991-09-13 1993-03-18 Radex Heraklith BURNED FIRE-RESISTANT CERAMIC KOERPER

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62148076A (en) * 1985-12-23 1987-07-02 Akechi Ceramics Kk Nozzle for continuous casting
JPH0437452A (en) * 1990-05-31 1992-02-07 Nippon Steel Corp Nozzle for casting wide and thin slab
GB2286184A (en) * 1994-02-08 1995-08-09 Veitsch Radex Ag Refractory ceramic mass comprising magnesia

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 011, no. 377 (M - 649) 9 December 1987 (1987-12-09) *
PATENT ABSTRACTS OF JAPAN vol. 016, no. 212 (M - 1250) 19 May 1992 (1992-05-19) *

Also Published As

Publication number Publication date
AU6564700A (en) 2001-03-19
DE19938817A1 (en) 2001-02-22
DE19938817C2 (en) 2001-07-05

Similar Documents

Publication Publication Date Title
DE2744700C2 (en) Sintered material based on dense, non-metallic hard materials such as high-melting metal carbides, metal nitrides, metal borides and metal oxides with embedded zirconium and / or hafnium oxide
EP0996601B1 (en) Refractory, chrome-alumina-based material, chrome-alumina brick and use of the brick
DE3428252C2 (en)
DE112007000923B4 (en) Composite material of metal and ceramic, process for its production, its use and energy absorption component
DE2703159C2 (en)
WO2019068380A1 (en) Batch composition for producing a refractory product, method for producing a refractory product, refractory product, and use of a synthetic raw material
DE2308100A1 (en) HIGH TEMPERATURE-RESISTANT, WEAR-RESISTANT SLIDING MATERIAL, LOW THERMAL EXPANSION
WO2007014562A1 (en) Ceramic material resistant to thermal shocks and corrosion, process for producing the same and its use
DE1646583B1 (en) CERAMICALLY BONDED FIREPROOF MOLDED BODY OF HIGH TONER CONTENT
DE1571364B1 (en) METHOD FOR PRODUCING A HIGH ALUMINUM OXYDE CONTAINING CERAMIC BODY
EP2057106B1 (en) Baked refractory product
AT400329B (en) USE OF A FIREPROOF, CERAMIC STONE FOR LINING CEMENT TURNTUBES
EP2119684B1 (en) Method of manufacturing refractory articles and refractory articles
EP2726437B1 (en) Method for creating a refractory material, a refractory material and a process for the production of a refractory material
DE4140417C1 (en)
DE3842403C1 (en)
WO2001014279A1 (en) Fireproof ceramic shaped body
AT394038B (en) METHOD FOR PRODUCING A BURNED, FIREPROOF MAGNESIA STONE BASED ON SINTERMAGNESIA AND FINE DISTRIBUTED CIRCONIZED SILICONE
WO2001066489A1 (en) Batch composition for producing a refractory ceramic shaped body, shaped body produced therefrom and the use thereof
AT202506B (en) Process for the production of highly refractory magnesite-chrome molded bodies
EP0479253B1 (en) Process for the production of large sized bodies serving as lining, especially for a soda-lime-silica melting plant
DE102004010740C5 (en) Refractory ceramic offset and its use
DE2701599B2 (en) Process for the production of porous reaction-sintered molded bodies based on silicon nitride
DE19737519C2 (en) Process for producing a coarse-ceramic shaped body based on magnesia and / or fired dolomite and its use
DE1471013C (en) Process for the production of a molded body which is resistant to molten glass

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP