WO2001010920A1 - Process for producing (meth)acrylic acid polymer - Google Patents

Process for producing (meth)acrylic acid polymer Download PDF

Info

Publication number
WO2001010920A1
WO2001010920A1 PCT/JP1999/004277 JP9904277W WO0110920A1 WO 2001010920 A1 WO2001010920 A1 WO 2001010920A1 JP 9904277 W JP9904277 W JP 9904277W WO 0110920 A1 WO0110920 A1 WO 0110920A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylic acid
acid
weight
parts
Prior art date
Application number
PCT/JP1999/004277
Other languages
French (fr)
Japanese (ja)
Inventor
Kengo Shibata
Haruya Minou
Haruyuki Sato
Toshinao Ukena
Yoshinao Kono
Original Assignee
Kao Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corporation filed Critical Kao Corporation
Priority to PCT/JP1999/004277 priority Critical patent/WO2001010920A1/en
Publication of WO2001010920A1 publication Critical patent/WO2001010920A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/062Polyethers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2641Polyacrylates; Polymethacrylates
    • C04B24/2647Polyacrylates; Polymethacrylates containing polyether side chains
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/40Surface-active agents, dispersants
    • C04B2103/408Dispersants

Definitions

  • the present invention relates to a method for producing a (meth) acrylic acid-based polymer useful as a dispersant for cement for improving the dispersibility of cement particles in a hydraulic composition such as cement paste, mortar, and concrete.
  • Polycarboxylic acid polymers are useful as dispersants for cement, and various techniques have been proposed.
  • Japanese Patent Publication No. 59-183338 discloses polyalkylene glycol mono (meth) acrylate monomer and (meth) acrylic monomer, Further, a polymer containing a copolymer produced by reacting these monomers with a copolymerizable monomer at a specific ratio is disclosed, and Japanese Patent Application Laid-Open No. Hei 5-238795 discloses.
  • Japanese Patent Application Laid-Open Publication No. H11-163,086 discloses a polymer containing a copolymer of a polyalkylene glycol ester monomer having an unsaturated bond and a specific monomer.
  • these prior arts do not describe specific polymerization conditions.
  • the polymer of the present invention is known. It can be manufactured by the method described in Disclosure of the invention
  • This invention can obtain the (meth) acrylic-acid type polymer suitable as a dispersing agent for cement with a stable quality by setting polymerization conditions concretely. It is intended to provide a method.
  • the inventors of the present invention deactivated the acid catalyst by adding an alcohol catalyst to the esterification reaction product containing the acid catalyst and the polymerization inhibitor, and further caused the polymerization reaction in a specific range of pH.
  • the inventors have found that the object can be achieved, and have completed the present invention.
  • (meth) acrylic acid and polyalkylene glycol monoalkyl ether are added in a molar ratio of 3 ::! To 50: 1, and an esterification reaction is performed in the presence of an acid catalyst and a polymerization inhibitor.
  • a step (2) of copolymerizing (meth) acrylic acid ester with (meth) acrylic acid A monomer copolymerizable with these monomers may be included.
  • the monomer of step 2 may include the reactants of step 1, residues, and newly added monomers.
  • the monomer (meth) acrylate of Step 2 includes the reactant of Step 1. Further, it may contain a newly added monomer.
  • the (meth) acrylic acid may include the residue of step 1 and further newly added monomers.
  • the reaction product of step 1 may be polymerized as it is, or (meth) acrylic acid may be removed by distillation. Polymerization may be carried out by adding a monomer. These may be combined and polymerized. It polymerizes in the range of pH 3.5 to 3.5. Polymerization may be performed without adding an acid.
  • step 1 Either all or part of the unreacted (meth) acrylic acid is distilled off in step 1, and Z or (meth) acrylic acid ester and (meth) acrylic acid can be copolymerized with (meth) acrylic acid in step 2.
  • a copolymer having a desired monomer ratio can be obtained. That is, the polymer monomer includes the reactant in step 1 and the monomer added in step 2.
  • an acid may be added to the esterification reaction product to adjust the pH to a range of from 5 to 3.5.
  • the monomer copolymerizable with the (meth) acrylic ester added in step 2 may be (meth) acrylic acid, methyl (meth) acrylate or methoxypolyethylene glycol mono (meth) acrylate. preferable.
  • (meth) acrylic acid means both acrylic acid and methacrylic acid.
  • step 1 first, (meth) acrylic acid and polyalkylene glycol monoalkyl ether are subjected to an esterification reaction in the presence of an acid catalyst and a polymerization inhibitor.
  • the (meth) acrylic acid used in the esterification reaction is not particularly limited, and a commercially available one containing a polymerization inhibitor in advance can be used.
  • polyalkylene glycol monoalkyl ether used in the esterification reaction examples include those in which the polyalkylene moiety consists of an alkylene oxide adduct such as an adduct of ethylene oxide alone or a mixed adduct of ethylene oxide and propylene oxide.
  • the total number of moles of the alkylene oxide is from 1 to 300.
  • the alkyl group constituting the monoalkyl ether moiety is preferably an alkyl group having 1 to 3 carbon atoms.
  • the mixing ratio of the (meth) acrylic acid and the polyalkylene glycol monoalkyl ether in the reaction system is in a molar ratio of 3: 1 to 50: 1, preferably 10: 5, in order to further increase the esterification reaction rate.
  • Examples of the acid catalyst used in the esterification reaction include sulfonic acids such as p-toluenesulfonic acid, methanesulfonic acid and benzenesulfonic acid, and mineral acids such as sulfuric acid and phosphoric acid.
  • the acid catalyst is preferably used in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the polyalkylene glycol monoalkyl ether.
  • the amount is 0.1 part by weight or more, the reaction speed can be maintained at an appropriate level, and when the amount is 10 parts by weight or less, it is economical, without cleaving the alkylene oxide chain of the polyalkylene glycol monoalkyl ether. This is preferable because the reaction can smoothly proceed.
  • Examples of the polymerization inhibitor used in the esterification reaction include a combination of one or more selected from hydroquinone, benzoquinone, methoquinone, BHT, and the like in an arbitrary ratio. Further, by passing a gas containing oxygen through the reaction system, the polymerization inhibiting effect can be further enhanced.
  • the polymerization inhibitor is preferably used in an amount of 0.001-1 part by weight based on 100 parts by weight of the polyalkylene glycol monoalkyl ether.
  • the reaction temperature in the esterification reaction is preferably from 80 to 130 ° C. If the temperature is 80 ° C or higher, an appropriate reaction rate can be maintained. If the temperature is 130 ° C or lower, deterioration of the quality of the polyalkylene glycol monoalkyl ether can be prevented, and the viscosity of the reaction system is maintained at an appropriate level. It is preferable because it can be performed.
  • the pressure of the reaction system in the esterification reaction is not particularly limited, but is preferably a reduced pressure from the viewpoint of distilling water generated by the reaction out of the system.
  • step 1 after the esterification reaction, an alkali agent is added to deactivate the acid catalyst.
  • the alkaline agent include alkaline metal hydroxides such as sodium hydroxide and potassium hydroxide, and alkaline earth metal hydroxides such as calcium hydroxide.
  • the amount of the alkali agent to be used is preferably 0.9 to 1.5 equivalent times, more preferably 1.0 to 1.3 equivalent times, based on the acid catalyst used.
  • step 1 after deactivating the acid catalyst, unreacted (meth) acrylic acid is distilled off, and mainly contains (meth) acrylic acid ester represented by the following general formula (I). Further, an esterification reaction product containing a (meth) acrylic acid residue represented by the following general formula (II) is obtained.
  • R represents a hydrogen atom or a methyl group
  • R 2 represents an alkyl group having 1 to 3 carbon atoms
  • AO represents an oxyalkylene group having 2 to 3 carbon atoms
  • n represents 1 to 30.
  • R 3 represents a hydrogen atom or a methyl group
  • M represents a hydrogen atom, an alkali metal atom, an alkaline earth metal atom or the like].
  • step 1 a large excess amount of (meth) acrylic acid is used to make the reaction proceed smoothly. Therefore, if an excess amount of (meth) acrylic acid is present in excess of the desired amount of (meth) acrylic acid in step 2, unreacted (meth) acrylic acid is distilled off in step 1. is there.
  • the degree of distillation of the unreacted (meth) acrylic acid is appropriately set according to the molar ratio of copolymerization of (meth) acrylate and (meth) acrylic acid in the next step 2.
  • Methods for removing unreacted (meth) acrylic acid include vacuum distillation and steam evaporation. A distillation method or a method of distilling together with the carrier gas at normal pressure can be applied.
  • step 2 the (meth) acrylic ester and the (meth) acrylic acid residue contained in the esterification reaction product obtained in step 1 are combined with each other in a pH range of 5 to 3.5.
  • the copolymerization reaction is performed.
  • a monomer copolymerizable with (meth) acrylic acid ester and Z or (meth) acrylic acid represented by the general formula (I) can be further added.
  • this monomer include acrylic acid, methacrylic acid, crotonic acid, and (meth) acrylic monomers such as alkali metal salts, alkaline earth metal salts, ammonium salts and amine salts thereof; maleic anhydride, Unsaturated dicarboxylic acid monomers such as maleic acid, itaconic anhydride, itaconic acid, citraconic anhydride, citraconic acid, fumaric acid and their alkali metal salts, alkaline earth metal salts, ammonium salts or amine salts; (Meth) alkyl acrylate, (meth) hydroxy phenol acrylate, methoxypolyethylene glycol (meth) acrylate, methoxypolyethylene polypropylene glycol (meth) acrylate, styrene
  • the monomer copolymerizable with the (meth) acrylic ester must be (meth) acrylic acid, methyl (meth) acrylate or methoxypolyethylene glycol mono (meth) acrylate. Is preferred.
  • the amount of such a monomer copolymerizable with the (meth) acrylic ester is 0.3 to 100 parts by weight of the (meth) acrylic ester represented by the general formula (I). It is preferably 170 parts by weight, particularly preferably 0.3 to 100 parts by weight.
  • the pH of the reaction system is in the range of 1.5 to 3.5, preferably pH 2.0 to 3.0. It is possible to suppress the occurrence of a hydrolysis reaction of the (meth) acrylate during the polymerization reaction in which 13 ⁇ 4 is 1.5 or more. When the pH is 3.5 or less, the copolymerization rate can be kept high, and the structure of each monomer in the copolymer can be appropriately controlled. As a result, stable quality can be obtained.
  • a (meth) acrylic acid polymer useful as a dispersant for cement can be obtained.
  • the pH in step 2 is the pH of a 5% by weight aqueous solution of the polymerization reaction mixture.
  • the pH of the esterification reaction product is outside or within the range of 1.5 to 3.5, it is preferable to add an acid or a base for preparing the pH, if desired.
  • Examples of the acid used for adjusting the pH include phosphoric acid, sulfuric acid, nitric acid, alkylphosphoric acid, alkylsulfuric acid, alkylsulfonic acid, alkylbenzenesulfonic acid, and benzenesulfonic acid.
  • phosphoric acid is preferred because it has a pH buffering action, easily adjusts pH to a predetermined range, and can suppress foaming of the polymerization reaction system.
  • Examples of the base include sodium hydroxide and a hydroxylating rhine.
  • the reaction can be performed in the presence of a solvent to reduce the viscosity of the polymerization reaction system.
  • a solvent include water, lower alcohols such as methanol, ethanol, isopropanol and butanol; aromatic hydrocarbons such as benzene, toluene and xylene; alicyclic hydrocarbons such as cyclohexane; and fats such as n-hexane.
  • a polymerization initiator can be added.
  • the polymerization initiator include organic peroxides, inorganic peroxides, nitrile compounds, azo compounds, diazo compounds, and sulfinic acid compounds.
  • the amount of the polymerization initiator The molar ratio is preferably 1 to 50 times the total of the general formula (1), the general formula (II) and other monomers.
  • a chain transfer agent can be added.
  • the chain transfer agent include lower alkali mercaptan, lower mercapto fatty acid, thioglycerin, thiolingoic acid, 2-mercaptoethanol and the like. Particularly when water is used as the solvent, the molecular weight can be adjusted more stably by adding these chain transfer agents.
  • the reaction temperature of the copolymerization reaction in step 2 is preferably from 0 to 120 ° C.
  • the (meth) acrylic acid-based polymer obtained through the above-mentioned processes 1 and 2 can be further subjected to a deodorizing treatment, if necessary.
  • a deodorizing treatment if necessary.
  • a thiol such as mercaptoethanol
  • an unpleasant odor remains in the polymer.
  • a method of converting thiol to disulfide with an oxidizing agent can be exemplified.
  • the oxidizing agent used in this method include hydrogen peroxide, air, oxygen and the like, but hydrogen peroxide is preferred because of its high deodorizing effect by oxidation.
  • the amount of hydrogen peroxide added is preferably from 100 to 2000 ppm, particularly preferably from 100 to 1000 ppm, based on the polymer.
  • the deodorizing temperature is preferably from 70 to 100 ° C, particularly preferably from 80 to 90 ° C. When the temperature is 70 ° C or more, the deodorizing effect is enhanced, and when the temperature is 100 ° C or less, generation of by-products due to thermal decomposition of the polymer can be prevented.
  • the (meth) acrylic acid-based polymer obtained by the production method of the present invention is an acid Can also be used as a dispersant for cement, but from the viewpoint of suppressing the hydrolysis of the ester by an acid, it is preferable to form a salt by neutralization with an alkali.
  • the alkali include a hydroxide of an alkali metal or an alkaline earth metal, ammonium, alkylammonium, alkanolamine, N-alkyl-substituted polyamine, ethylenediamine, polyethylenepolyamine and the like.
  • the pH is preferably adjusted to 5 to 7 by neutralization.
  • the (meth) acrylic acid-based polymer obtained by the production method of the present invention may be used as a dispersant for hydraulic cement other than cement, such as portland cement, alumina cement, various mixed cements, and gypsum. it can. Industrial applicability
  • Ethylene oxide melted at 80 ° C
  • 3 parts by weight of hydroquinone and 32 parts by weight of p-toluenesulfonic acid were added.
  • air was introduced into the reaction solution at a flow rate of 6 ml / min per 1 kg of the total weight of polyethylene glycol monomethyl ether and methacrylic acid, and nitrogen was further introduced into the gas phase of the reaction vessel at a flow rate of 12 ml min.
  • This (A) -1 has a methacrylate concentration of 91.2%, an unreacted polyethylene glycol monomethyl ether concentration of 2.8%, a polymerization inhibitor concentration of 0.3%, and a catalyst salt (sodium p-toluenesulfonate) concentration. The concentration was 3.4% and the methacrylic acid concentration was 2.3%.
  • step 1 In the same glass reaction vessel as in step 1 in which the cooling condenser was replaced with a reflux condenser, 485 parts by weight of water was charged, and while stirring, the gas phase of the reaction vessel was replaced with nitrogen. The temperature was raised to 80 ° C.
  • esterification reaction product (A) -1 600 parts by weight of esterification reaction product (A) -1; 21 parts by weight of methacrylic acid; Dequest (phosphonic acid chelating agent; manufactured by Nippon Monsanto Co.) 0.7 parts by weight, 85% A solution prepared by mixing and dissolving 5 parts by weight of phosphoric acid and 400 parts by weight of water and 3 parts by weight of 3 parts by weight of 2-mercaptoethanol and 39 parts by weight of a 15% aqueous solution of ammonium persulfate were simultaneously added dropwise. The dropping was completed over 0 minutes. Next, 15 parts by weight of a 15% aqueous solution of ammonium persulfate was added dropwise over 30 minutes, and the mixture was aged at 80 ° C. for about 1 hour.
  • the pH at the time of dropping and aging was 2.5. Further, after neutralizing by adding 30 parts by weight of a 48% aqueous sodium hydroxide solution, 0.7 parts by weight of 35% hydrogen peroxide was added dropwise, and the mixture was aged at 90 ° C for 1 hour. A (meth) ataryl acid polymer was obtained.
  • the viscosity of the (meth) acrylic acid polymer was measured (B-type viscometer manufactured by Tokyo Keiki Seisakusho, rotor No. 2, 30 rpm) and found to be 420 mPa's.
  • Step 2 of Example 1 a (meth) acrylic acid-based polymer was obtained in the same manner as in Example 1, except that 5 parts by weight of phosphoric acid was used instead of 5 parts by weight of phosphoric acid.
  • the pH during the polymerization reaction in Step 2 was 2.2 to 2.8.
  • the viscosity of the obtained (meth) atalylic acid polymer was 450 mPa's.
  • the paste flow value of this (meth) acrylic acid-based polymer was determined in the same manner as in Example 1. Table 1 shows the results.
  • step 2 of Example 1 485 parts by weight of water was charged into the same glass reaction vessel as in step 1, and the gas phase of the reaction vessel was replaced with nitrogen while stirring, and the temperature was raised to 80 ° C under a nitrogen atmosphere. The temperature rose.
  • 269 parts by weight of the esterification reaction product (A) -1 was added, 76 parts by weight of metadallylic acid, methoxypolyethylene glycol monomethacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., average number of moles of ethylene oxide 9 1) 3 parts by weight of a mixture of 18 parts by weight, 2 parts by weight of 85% phosphoric acid and 200 parts by weight of water, 3 parts by weight of 2-mercaptoethanol and 19 parts by weight of a 15% aqueous solution of ammonium persulfate Was simultaneously dropped, and the dropping of all three solutions was completed in 90 minutes.
  • step 2 of Example 1 water 485 weight was added to the same glass reaction vessel as in step 1.
  • the gas phase of the reaction vessel was replaced with nitrogen while stirring, and the temperature was raised to 80 ° C under a nitrogen atmosphere.
  • the mixed solution, 3 parts by weight of 2-mercaptoethanol, and 46 parts by weight of a 15% aqueous solution of ammonium persulfate were simultaneously dropped at a time, and the dropping was completed over 90 minutes.
  • step 1 of Example 1 the same procedures as in Example 1 were carried out except that 1,000 parts by weight of polyethylene glycol monomethyl ether (average number of moles of added ethylene 200, weight average molecular weight 8864) and 291 parts by weight of methacrylic acid were used.
  • an esterification reaction product (A) -2 was obtained.
  • This (A) -2 is the concentration of methacrylic acid ester 90.5%, unreacted polyethylene glycol monomethyl ether 2.7%, polymerization inhibitor concentration 0.3%, catalyst salt (sodium p-toluenesulfonate) concentration 3.0% and methacrylic acid concentration was 3.5%.
  • (Meth) acrylic acid polymer was obtained in the same manner as in Example 1 except that 21 parts by weight of methacrylic acid was not used in Step 2 of Example 1 using the esterification reaction product (A) -2. Was.
  • the pH during the polymerization reaction in step 2 was 3.1. Profit
  • the viscosity of the obtained (meth) acrylic acid polymer was 455 mPa's.
  • the paste flow value of this (meth) acrylic acid polymer was determined in the same manner as in Example 1. Table 1 shows the results.
  • Step 1 of Example 1 polyethylene glycol monomethyl ether (average number of moles added of ethylene: 9, weight average molecular weight: 429) 1000 parts by weight, methacrylic acid 1200 parts by weight and p-toluenesulfonic acid 40 parts by weight were used.
  • esterification reaction product (A) -3 was obtained.
  • This (A) -3 has a methacrylate concentration of 91.5%, an unreacted polyethylene glycol monomethyl ether concentration of 2.4%, a polymerization inhibitor concentration of 0.2%, and a catalyst salt (sodium p-toluenesulfonate). The concentration was 3.4% and the methacrylic acid concentration was 2.5%.
  • step 2 of Example 1 except that 16 parts by weight of 48% sodium hydroxide was used instead of 5 parts by weight of 85% phosphoric acid, a (meth) acrylic acid-based polymer was prepared in the same manner as in Example 1. A coalescence was obtained. The pH during the polymerization reaction in step 2 was 4.4. The viscosity of the obtained (meth) acrylic acid polymer was 480 mPa's. The paste flow value of this (meth) acrylic acid-based polymer was determined in the same manner as in Example 1. Table 1 shows the results.
  • Step 2 of Example 5 a (meth) acrylic acid-based polymer was obtained in the same manner as in Example 5, except that 5 parts by weight of phosphoric acid was not used.
  • the pH during the polymerization reaction in step 2 was 4.1.
  • the viscosity of the obtained (meth) acrylic acid-based polymer was 500 mPa's.
  • the paste flow value of this (meth) acrylic acid polymer was determined in the same manner as in Example 1. Table 1 shows the results.
  • the (meth) acrylic acid-based polymers obtained by the production methods of Comparative Examples 1 and 2 had a lower pace because the pH of the polymerization reaction system in Step 2 was outside the range specified in the present invention.
  • the flow rate value was significantly inferior. Therefore, it was confirmed that when the production method of the present invention was not applied, a (meth) acrylic acid-based polymer having a low paste flow value was obtained, and a high-quality cement dispersant could not be provided.

Abstract

A process for producing a (meth)acrylic acid polymer suitable for use as a cement dispersant of stable quality. The process comprises: a step (1) in which (meth)acrylic acid and a polyalkylene glycol monoalkyl ether are subjected to esterification in a molar ratio of 5/1 to 50/1 in the presence of an acid catalyst and a polymerization inhibitor, the acid catalyst is subsequently deactivated with an alkali, and unreacted (meth)acrylic acid is then distilled off to obtain an esterification product containing a (meth)acrylic ester and the residual unreacted (meth)acrylic acid; and a step (2) in which the (meth)acrylic ester and the residual unreacted (meth)acrylic acid in the esterification product are copolymerized in the pH range of 1.5 to 3.5.

Description

明細書  Specification
(メタ) アクリル酸系重合体の製造方法 技術分野 Method for producing (meth) acrylic acid polymer
本発明は、 セメントペースト、 モルタル、 コンクリート等の水硬性組成物にお いて、セメント粒子の分散性を向上させるセメント用分散剤として有用な(メタ) アクリル酸系重合体の製造方法に関する。 背景技術  The present invention relates to a method for producing a (meth) acrylic acid-based polymer useful as a dispersant for cement for improving the dispersibility of cement particles in a hydraulic composition such as cement paste, mortar, and concrete. Background art
ポリカルボン酸系重合体はセメント用分散剤として有用であり、 それに関する 種々の技術が提案されている。 このようなセメント用分散剤として、 特公昭 5 9 — 1 8 3 3 8号公報には、 ポリアルキレングリコールモノ (メタ) アクリル酸ェ ステル系単量体及び (メタ) アクリル酸系単量体、 さらにこれらの単量体と共重 合可能な単量体を特定の比率で反応させることによって製造された共重合体を含 むものが開示され、 特開平 5— 2 3 8 7 9 5号公報には、 不飽和結合を有するポ リアルキレンダリコールジエステル系単量体と解離基を有する単量体を重合して 得られる共重合体を含むものが開示され、 特開平 8— 1 2 3 9 6号公報には、 不 飽和結合を有するポリアルキレングリコ一ルエステル単量体と特定の単量体との 共重合体を含むものが開示されている。 し力 し、 これらの従来技術においては、 具体的な重合条件については記載されておらず、 例えば、 特開平 8— 1 2 3 9 6 号公報第 4欄においては、 本発明における重合体は公知の方法で製造することが できる、 と記載されている。 発明の開示 Polycarboxylic acid polymers are useful as dispersants for cement, and various techniques have been proposed. As such a dispersant for cement, Japanese Patent Publication No. 59-183338 discloses polyalkylene glycol mono (meth) acrylate monomer and (meth) acrylic monomer, Further, a polymer containing a copolymer produced by reacting these monomers with a copolymerizable monomer at a specific ratio is disclosed, and Japanese Patent Application Laid-Open No. Hei 5-238795 discloses. Discloses a copolymer containing a copolymer obtained by polymerizing a polyalkylene dalicol diester monomer having an unsaturated bond and a monomer having a dissociation group. Japanese Patent Application Laid-Open Publication No. H11-163,086 discloses a polymer containing a copolymer of a polyalkylene glycol ester monomer having an unsaturated bond and a specific monomer. However, these prior arts do not describe specific polymerization conditions. For example, in the fourth column of JP-A-8-123966, the polymer of the present invention is known. It can be manufactured by the method described in Disclosure of the invention
本発明は、 重合条件を具体的に設定することにより、 セメント用分散剤として 好適な (メタ) アクリル酸系重合体を、安定した品質で得ることができる (メタ) アタリル酸系重合体の製造方法を提供することを目的とするものである。  ADVANTAGE OF THE INVENTION This invention can obtain the (meth) acrylic-acid type polymer suitable as a dispersing agent for cement with a stable quality by setting polymerization conditions concretely. It is intended to provide a method.
本発明者らは、 酸触媒及び重合禁止剤を含有するエステル化反応物にアル力リ 剤を添加して酸触媒を失活させ、 さらに特定範囲の p Hで重合反応をさせること により、 上記目的を達成できることを見出し、 本発明を完成したものである。 本発明は、 (メタ) アクリル酸とポリアルキレングリコールモノアルキルエー テルをモル比 3 : :!〜 5 0 : 1の範囲で添加し、 酸触媒及び重合禁止剤の存在下 でエステル化反応させたのち、 アルカリ剤で酸触媒を失活させ、 (メタ) アタリ ル酸エステル及び (メタ) アクリル酸残留物を含むエステル化反応物を得る工程 1と、 p H l . 5〜3 . 5の範囲で、 (メタ) アクリル酸エステルと (メタ) ァ クリル酸とを共重合させる工程 2とを含む (メタ) アクリル酸系重合体の製造方 法である。 これらの単量体と共重合し得る単量体も含んでよい。  The inventors of the present invention deactivated the acid catalyst by adding an alcohol catalyst to the esterification reaction product containing the acid catalyst and the polymerization inhibitor, and further caused the polymerization reaction in a specific range of pH. The inventors have found that the object can be achieved, and have completed the present invention. In the present invention, (meth) acrylic acid and polyalkylene glycol monoalkyl ether are added in a molar ratio of 3 ::! To 50: 1, and an esterification reaction is performed in the presence of an acid catalyst and a polymerization inhibitor. Then, a step 1 of deactivating the acid catalyst with an alkali agent to obtain an esterification reactant containing (meth) acrylate ester and (meth) acrylic acid residue, and a pH in the range of pH 3.5 to 3.5. And a step (2) of copolymerizing (meth) acrylic acid ester with (meth) acrylic acid. A monomer copolymerizable with these monomers may be included.
工程 2の単量体は、 工程 1の反応物、 残留物、 新たに添加した単量体を含んで よい。 工程 2の単量体の (メタ) アクリル酸エステルは工程 1の反応物を含む。 更に新たに添加した単量体を含んでよい。 (メタ) アクリル酸は、 工程 1の残留 物及び、 更に新たに添加した単量体を含んでよい。  The monomer of step 2 may include the reactants of step 1, residues, and newly added monomers. The monomer (meth) acrylate of Step 2 includes the reactant of Step 1. Further, it may contain a newly added monomer. The (meth) acrylic acid may include the residue of step 1 and further newly added monomers.
工程 1の反応物をそのまま重合してもよいし、 (メタ) アクリル酸を留去して 重合してもよい。 単量体を添加して重合してもよい。 これらを組み合わせて重合 してもよレ、。 p H l . 5〜3 . 5の範囲で重合する。 酸を加えないで重合しても もよい。  The reaction product of step 1 may be polymerized as it is, or (meth) acrylic acid may be removed by distillation. Polymerization may be carried out by adding a monomer. These may be combined and polymerized. It polymerizes in the range of pH 3.5 to 3.5. Polymerization may be performed without adding an acid.
工程 1で未反応の (メタ) アクリル酸を全部又は一部留去すること及び Z又は 工程 2で (メタ) アクリル酸エステル及びノ又は (メタ) アクリル酸と共重合可 能な単量体を添加することによって所望の単量体比を有する共重合体を得ること ができる。 即ち、 重合体の単量体は工程 1の反応物や工程 2で添加した単量体を 含む。 Either all or part of the unreacted (meth) acrylic acid is distilled off in step 1, and Z or (meth) acrylic acid ester and (meth) acrylic acid can be copolymerized with (meth) acrylic acid in step 2. By adding a functional monomer, a copolymer having a desired monomer ratio can be obtained. That is, the polymer monomer includes the reactant in step 1 and the monomer added in step 2.
工程 2においてエステル化反応物に酸を加え p H l . 5〜3 . 5の範囲に調製 してもよレ、。  In step 2, an acid may be added to the esterification reaction product to adjust the pH to a range of from 5 to 3.5.
工程 2において添加する(メタ)ァクリル酸エステルと共重合可能な単量体が、 (メタ) アクリル酸、 (メタ) アクリル酸メチルまたはメ トキシポリエチレング リコ一ルモノ (メタ) アタリレートであることが好ましい。  The monomer copolymerizable with the (meth) acrylic ester added in step 2 may be (meth) acrylic acid, methyl (meth) acrylate or methoxypolyethylene glycol mono (meth) acrylate. preferable.
なお、 本発明における 「(メタ) アクリル酸」 は、 アクリル酸とメタクリル酸 の両方を意味するものである。 発明を実施するための形態  In the present invention, “(meth) acrylic acid” means both acrylic acid and methacrylic acid. BEST MODE FOR CARRYING OUT THE INVENTION
工程 1においては、 まず、 (メタ) アクリル酸とポリアルキレングリコールモ ノアルキルエーテルを、酸触媒及び重合禁止剤の存在下でエステル化反応させる。 エステル化反応で用いる (メタ) アクリル酸としては特に限定されるものでは なく、 市販されている予め重合禁止剤を含むもの等を用いることができる。  In step 1, first, (meth) acrylic acid and polyalkylene glycol monoalkyl ether are subjected to an esterification reaction in the presence of an acid catalyst and a polymerization inhibitor. The (meth) acrylic acid used in the esterification reaction is not particularly limited, and a commercially available one containing a polymerization inhibitor in advance can be used.
エステル化反応で用いるポリアルキレングリコールモノアルキルエーテルとし ては、 ポリアルキレン部分が、 エチレンォキシド単独の付加物又はエチレンォキ シドとプロピレンォキシドの混合付加物等のアルキレンォキシド付加物からなる ものを挙げることができ、 アルキレンォキシドの総付加モル数は 1〜3 0 0のも のが好ましレ、。また、モノアルキルエーテル部分を構成するアルキル基としては、 炭素数 1〜 3のものが好ましく、 一種又はアルキレンォキシドの付加モル数及び ノ又はアルキル基の炭素数の異なる二種以上のポリアルキレンダリコールモノア ルキルエーテルの混合物を用いることができる。 (メタ) ァクリル酸とポリアルキレングリコールモノアルキルエーテルの反応 系における配合比率は、 エステル化反応速度をより高めるため、 モル比で 3 : 1 〜5 0 : 1の範囲であり、 好ましくは 1 0 : 1〜4 0 : 1の範囲である。 Examples of the polyalkylene glycol monoalkyl ether used in the esterification reaction include those in which the polyalkylene moiety consists of an alkylene oxide adduct such as an adduct of ethylene oxide alone or a mixed adduct of ethylene oxide and propylene oxide. Preferably, the total number of moles of the alkylene oxide is from 1 to 300. The alkyl group constituting the monoalkyl ether moiety is preferably an alkyl group having 1 to 3 carbon atoms.One or more kinds of polyalkylene alkylenes having different addition mole numbers of alkylene oxides and different carbon numbers of no or alkyl groups. Mixtures of recall monoalkyl ethers can be used. The mixing ratio of the (meth) acrylic acid and the polyalkylene glycol monoalkyl ether in the reaction system is in a molar ratio of 3: 1 to 50: 1, preferably 10: 5, in order to further increase the esterification reaction rate. 1 to 40: 1
エステル化反応で用いる酸触媒としては、 p—トルエンスルホン酸、 メタンス ルホン酸、 ベンゼンスルホン酸等のスルホン酸類、 硫酸、 リン酸等の鉱酸類等を 挙げることができる。  Examples of the acid catalyst used in the esterification reaction include sulfonic acids such as p-toluenesulfonic acid, methanesulfonic acid and benzenesulfonic acid, and mineral acids such as sulfuric acid and phosphoric acid.
酸触媒の使用量は、 ポリアルキレングリコールモノアルキルエーテル 1 0 0重 量部に対して 0 . 1〜 1 0重量部が好ましい。 0 . 1重量部以上であると反応速 度を適度に保つことができ、 1 0重量部以下であると経済的であり、 ポリアルキ レングリコールモノアルキルエーテルのアルキレンォキシド鎖を開裂させること なく、 円滑に反応を進行させることができるため好ましい。  The acid catalyst is preferably used in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of the polyalkylene glycol monoalkyl ether. When the amount is 0.1 part by weight or more, the reaction speed can be maintained at an appropriate level, and when the amount is 10 parts by weight or less, it is economical, without cleaving the alkylene oxide chain of the polyalkylene glycol monoalkyl ether. This is preferable because the reaction can smoothly proceed.
エステル化反応で用いる重合禁止剤としては、ハイ ドロキノン、ベンゾキノン、 メ トキノン、 B H T等から選ばれる 1種以上のものの任意比率の組み合わせを挙 げることができる。 また、 反応系に酸素を含む気体を通気することにより、 さら に重合禁止効果を高めることができる。  Examples of the polymerization inhibitor used in the esterification reaction include a combination of one or more selected from hydroquinone, benzoquinone, methoquinone, BHT, and the like in an arbitrary ratio. Further, by passing a gas containing oxygen through the reaction system, the polymerization inhibiting effect can be further enhanced.
重合禁止剤の使用量は、 ポリアルキレングリコールモノアルキルエーテル 1 0 0重量部に対して 0 . 0 0 1〜1重量部が好ましい。  The polymerization inhibitor is preferably used in an amount of 0.001-1 part by weight based on 100 parts by weight of the polyalkylene glycol monoalkyl ether.
エステル化反応における反応温度は、 8 0〜1 3 0 °Cが好ましい。 8 0 °C以上 であると適度な反応速度を保つことができ、 1 3 0 °C以下であるとポリアルキレ ングリコールモノアルキルエーテルの品質の劣化を防止でき、 反応系の粘度を適 度に保つことができるため好ましい。  The reaction temperature in the esterification reaction is preferably from 80 to 130 ° C. If the temperature is 80 ° C or higher, an appropriate reaction rate can be maintained.If the temperature is 130 ° C or lower, deterioration of the quality of the polyalkylene glycol monoalkyl ether can be prevented, and the viscosity of the reaction system is maintained at an appropriate level. It is preferable because it can be performed.
エステル化反応における反応系の圧力は特に限定されるものではないが、 反応 により生成した水を系外に留去する観点から減圧であることが好ましい。  The pressure of the reaction system in the esterification reaction is not particularly limited, but is preferably a reduced pressure from the viewpoint of distilling water generated by the reaction out of the system.
工程 1においては、 エステル化反応後、 アルカリ剤を添加して酸触媒を失活さ せる。 このアルカリ剤としては、 水酸化ナトリウム、 水酸化カリウム等のアル力 リ金属水酸化物、 水酸化カルシウム等のアル力リ土類金属水酸化物を挙げること ができる。 アルカリ剤の使用量は、 使用した酸触媒に対して 0 . 9〜1 . 5当量 倍が好ましく、 1 . 0〜1 . 3当量倍が特に好ましい。 工程 1においては、 酸触媒を失活させたのち、 未反応の (メタ) アクリル酸を 留去して、 下記の一般式 (I ) で表される (メタ) アクリル酸エステルを主とし て含み、 それとともに下記の一般式 (Π) で表される (メタ) アクリル酸残留物 を含むエステル化反応物を得る。 In step 1, after the esterification reaction, an alkali agent is added to deactivate the acid catalyst. Let Examples of the alkaline agent include alkaline metal hydroxides such as sodium hydroxide and potassium hydroxide, and alkaline earth metal hydroxides such as calcium hydroxide. The amount of the alkali agent to be used is preferably 0.9 to 1.5 equivalent times, more preferably 1.0 to 1.3 equivalent times, based on the acid catalyst used. In step 1, after deactivating the acid catalyst, unreacted (meth) acrylic acid is distilled off, and mainly contains (meth) acrylic acid ester represented by the following general formula (I). Further, an esterification reaction product containing a (meth) acrylic acid residue represented by the following general formula (II) is obtained.
R,R,
rl 2 = C (り rl 2 = C (R
C 00 (A0 )nR2 C 00 (A0) nR 2
CH2 = C ( II ) CH 2 = C (II)
C 0 0 M  C 0 0 M
[式中、 R iは水素原子又はメチル基を示し、 R 2は炭素数 1 ~ 3のアルキル基を 示し、 A Oは炭素数 2〜3のォキシアルキレン基を示し、 nは 1〜3 0 0の数を 示し; R 3は水素原子又はメチル基を示し、 Mは水素原子、 アルカリ金属原子又 はアル力リ土類金属原子等を示す]。 Wherein R represents a hydrogen atom or a methyl group, R 2 represents an alkyl group having 1 to 3 carbon atoms, AO represents an oxyalkylene group having 2 to 3 carbon atoms, and n represents 1 to 30. R 3 represents a hydrogen atom or a methyl group, M represents a hydrogen atom, an alkali metal atom, an alkaline earth metal atom or the like].
工程 1のエステル化反応においては、 反応を円滑に進行させるために大過剰量 の (メタ) アクリル酸を用いる。 従って、 工程 2における所望量の (メタ) ァク リル酸よりも過剰量の(メタ)ァクリル酸が存在する場合には、工程 1において、 未反応の (メタ) アクリル酸を留去するものである。 この未反応の (メタ) ァク リル酸の留去の程度は、 次の工程 2における (メタ) アクリル酸エステルと (メ タ) アクリル酸との共重合モル比により、 適宜設定する。 未反応の (メタ) アクリル酸を留去する方法としては、 真空蒸留法、 水蒸気蒸 留法又は常圧でキヤリアガスとともに留去させる方法等を適用することができ る。 In the esterification reaction in step 1, a large excess amount of (meth) acrylic acid is used to make the reaction proceed smoothly. Therefore, if an excess amount of (meth) acrylic acid is present in excess of the desired amount of (meth) acrylic acid in step 2, unreacted (meth) acrylic acid is distilled off in step 1. is there. The degree of distillation of the unreacted (meth) acrylic acid is appropriately set according to the molar ratio of copolymerization of (meth) acrylate and (meth) acrylic acid in the next step 2. Methods for removing unreacted (meth) acrylic acid include vacuum distillation and steam evaporation. A distillation method or a method of distilling together with the carrier gas at normal pressure can be applied.
工程 2においては、 工程 1で得られたエステル化反応物中に含まれる上記した (メタ) アクリル酸エステルと (メタ) アクリル酸残留物とを、 p H l . 5〜3 . 5の範囲で共重合反応させる。  In step 2, the (meth) acrylic ester and the (meth) acrylic acid residue contained in the esterification reaction product obtained in step 1 are combined with each other in a pH range of 5 to 3.5. The copolymerization reaction is performed.
共重合反応においては、 さらに一般式 (I ) で表される (メタ) アクリル酸ェ ステル及び Z又は (メタ) アクリル酸と共重合可能な単量体を添加することがで きる。 この単量体としては、 アクリル酸、 メタクリル酸、 クロトン酸及びこれら のアルカリ金属塩、 アルカリ土類金属塩、 アンモニゥム塩又はアミン塩等の (メ タ) アクリル酸系単量体;無水マレイン酸、 マレイン酸、 無水ィタコン酸、 イタ コン酸、 無水シトラコン酸、 シトラコン酸、 フマル酸及びこれらのアルカリ金属 塩、 アルカリ土類金属塩、 アンモニゥム塩又はアミン塩等の不飽和ジカルボン酸 系単量体; (メタ) アクリル酸アルキルエステル、 (メタ) アクリル酸ヒ ドロキ シァノレキルエステル、 メ トキシポリエチレングリコール (メタ) アタリレート、 メ トキシポリエチレンポリプロピレングリコール (メタ) アタリ レ一ト、 スチレ ン、 (メタ) アタリアミ ド、 アタリロニトリル、 スチレンスルホン酸及ぴその塩、 スルホアルキル (メタ) アタリ レート及びその塩、 2—アクリルアミ ド一 2—メ チルプロパンスルホン酸及びその塩等を挙げることができる。  In the copolymerization reaction, a monomer copolymerizable with (meth) acrylic acid ester and Z or (meth) acrylic acid represented by the general formula (I) can be further added. Examples of this monomer include acrylic acid, methacrylic acid, crotonic acid, and (meth) acrylic monomers such as alkali metal salts, alkaline earth metal salts, ammonium salts and amine salts thereof; maleic anhydride, Unsaturated dicarboxylic acid monomers such as maleic acid, itaconic anhydride, itaconic acid, citraconic anhydride, citraconic acid, fumaric acid and their alkali metal salts, alkaline earth metal salts, ammonium salts or amine salts; (Meth) alkyl acrylate, (meth) hydroxy phenol acrylate, methoxypolyethylene glycol (meth) acrylate, methoxypolyethylene polypropylene glycol (meth) acrylate, styrene, (meth) atalide , Atarilonitrile, Styrenesulfonic acid and Salts, sulfoalkyl (meth) Atari rate and its salts, and 2-acrylamide one 2- methylation propanesulfonic acid and its salts.
工程 2において添加するには、 (メタ) アクリル酸エステルと共重合可能な単 量体が、 (メタ) アクリル酸、 (メタ) アクリル酸メチルまたはメ トキシポリエ チレングリコ一ルモノ (メタ) アタリレートであることが好ましい。  In order to add in step 2, the monomer copolymerizable with the (meth) acrylic ester must be (meth) acrylic acid, methyl (meth) acrylate or methoxypolyethylene glycol mono (meth) acrylate. Is preferred.
このような (メタ) アクリル酸エステルと共重合可能な単量体の使用量は、 一 般式 ( I ) で表される (メタ) アクリル酸エステル 1 0 0重量部に対して 0 . 3 〜 1 7 0重量部が好ましく、 0 . 3〜 1 0 0重量部が特に好ましい。 反応系の p Hがは 1 . 5〜3 . 5の範囲であるが、 p H 2 . 0〜3 . 0が好ま しい。 1¾が1 . 5以上である重合反応時における (メタ) アクリル酸エステル の加水分解反応が生じることを抑制することができる。 p Hが 3 . 5以下である と共重合速度を高く保つことができるとともに、 共重合体中の各単量体の組織を 適切に制御することができ、 これらの結果として、 安定した品質のセメント用分 散剤として有用な (メタ) アクリル酸系重合体を得ることができる。 なお、 工程 2における p Hは、 重合反応系混合物の 5重量%水溶液の p Hである。 The amount of such a monomer copolymerizable with the (meth) acrylic ester is 0.3 to 100 parts by weight of the (meth) acrylic ester represented by the general formula (I). It is preferably 170 parts by weight, particularly preferably 0.3 to 100 parts by weight. The pH of the reaction system is in the range of 1.5 to 3.5, preferably pH 2.0 to 3.0. It is possible to suppress the occurrence of a hydrolysis reaction of the (meth) acrylate during the polymerization reaction in which 1¾ is 1.5 or more. When the pH is 3.5 or less, the copolymerization rate can be kept high, and the structure of each monomer in the copolymer can be appropriately controlled. As a result, stable quality can be obtained. A (meth) acrylic acid polymer useful as a dispersant for cement can be obtained. Here, the pH in step 2 is the pH of a 5% by weight aqueous solution of the polymerization reaction mixture.
エステル化反応物の p Hが 1 . 5〜3 . 5の範囲外の場合又は範囲内でも、 所 望により、 p H調製のため酸又は塩基を添加するのが好ましい。  If the pH of the esterification reaction product is outside or within the range of 1.5 to 3.5, it is preferable to add an acid or a base for preparing the pH, if desired.
p Hの調整に用いる酸としては、 リン酸、 硫酸、 硝酸、 アルキルリン酸、 アル キル硫酸、 アルキルスルホン酸、 アルキルベンゼンスルホン酸、 ベンゼンスルホ ン酸等を挙げることができる。 これらの中でも、 p H緩衝作用があり、 p Hの所 定範囲への調整が容易で、 重合反応系の泡立ちを抑制できるため、 リン酸が好ま しい。 塩基としては水酸化ナトリゥム、 水酸化力リゥム等が挙げられる。  Examples of the acid used for adjusting the pH include phosphoric acid, sulfuric acid, nitric acid, alkylphosphoric acid, alkylsulfuric acid, alkylsulfonic acid, alkylbenzenesulfonic acid, and benzenesulfonic acid. Among these, phosphoric acid is preferred because it has a pH buffering action, easily adjusts pH to a predetermined range, and can suppress foaming of the polymerization reaction system. Examples of the base include sodium hydroxide and a hydroxylating rhine.
工程 2においては、 重合反応系の粘度を低下させるため、 溶媒の存在下で反応 を行うことができる。 この溶媒としては、 水、 メタノール、 エタノール、 イソプ ロパノール、 ブタノール等の低級アルコール;ベンゼン、 トルエン、 キシレン等 の芳香族炭化水素;シクロへキサン等の脂環式炭化水素; n—へキサン等の脂肪 族炭化水素;酢酸ェチル等のエステル類; アセトン、 メチルェチルケトン等のケ トン類等を挙げることができる。 これらの中でも、 取り扱いが容易で、 留去も容 易であることから、 水、 低級アルコールが好ましい。  In step 2, the reaction can be performed in the presence of a solvent to reduce the viscosity of the polymerization reaction system. Examples of the solvent include water, lower alcohols such as methanol, ethanol, isopropanol and butanol; aromatic hydrocarbons such as benzene, toluene and xylene; alicyclic hydrocarbons such as cyclohexane; and fats such as n-hexane. Group hydrocarbons; esters such as ethyl acetate; ketones such as acetone and methyl ethyl ketone; Of these, water and lower alcohols are preferred because they are easy to handle and easy to evaporate.
工程 2においては、重合開始剤を添加することができる。重合開始剤としては、 有機過酸化物、 無機過酸化物、 二トリル系化合物、 ァゾ系化合物、 ジァゾ系化合 物、 スルフィン酸系化合物等を挙げることができる。 重合開始剤の添加量は、 一 般式 ( 1 )、 一般式 (Π) 及び他の単量体の合計に対して 1〜50モル倍が好ま しい。 In step 2, a polymerization initiator can be added. Examples of the polymerization initiator include organic peroxides, inorganic peroxides, nitrile compounds, azo compounds, diazo compounds, and sulfinic acid compounds. The amount of the polymerization initiator The molar ratio is preferably 1 to 50 times the total of the general formula (1), the general formula (II) and other monomers.
工程 2においては、連鎖移動剤を添加することができる。連鎖移動剤としては、 低級アルカリメルカプタン、 低級メルカプト脂肪酸、 チォグリセリン、 チォリン ゴ酸、 2—メルカプトエタノール等を挙げることができる。 特に水を溶媒として 用いる場合には、 これらの連鎖移動剤を添加することで、 分子量調整をより安定 に行うことができる。  In step 2, a chain transfer agent can be added. Examples of the chain transfer agent include lower alkali mercaptan, lower mercapto fatty acid, thioglycerin, thiolingoic acid, 2-mercaptoethanol and the like. Particularly when water is used as the solvent, the molecular weight can be adjusted more stably by adding these chain transfer agents.
工程 2における共重合反応の反応温度は、 0〜 120°Cが好ましい。  The reaction temperature of the copolymerization reaction in step 2 is preferably from 0 to 120 ° C.
上記した工程 1及び工程 2の処理を経て得られた (メタ) アクリル酸系重合体 は、 必要に応じて、 さらに脱臭処理をすることができる。 特に連鎖移動剤として メルカプトエタノール等のチオールを用いた場合には、 不快臭が重合体中に残存 するため、 脱臭処理をすることが望ましい。  The (meth) acrylic acid-based polymer obtained through the above-mentioned processes 1 and 2 can be further subjected to a deodorizing treatment, if necessary. In particular, when a thiol such as mercaptoethanol is used as the chain transfer agent, an unpleasant odor remains in the polymer.
連鎖移動剤としてチオールを用いた場合の脱臭処理法としては、 酸化剤により チオールをジスルフィ ドにする方法を挙げることができる。 この方法で用いる酸 化剤としては、 過酸化水素、 空気、 酸素等を挙げることができるが、 酸化による 脱臭効果が高い点から過酸化水素が好ましい。 過酸化水素の添加量は、 重合体に 対して 100~2000 ppmが好ましく、 100〜 1000 ppmが特に好まし い。 100 ppm以上であると充分な脱臭処理をすることができ、 2000 ppm 以下であると過剰の過酸化水素が残存し、 それが重合開始剤として作用して重合 を進行させたり、 過酸化水素が分解して酸素を発生させたり、 金属容器中におけ る重合体溶液のゲル化等の問題が生じない。 脱臭温度は 70〜100°Cが好まし く、 80〜90°Cが特に好ましい。 70°C以上であると脱臭効果が高まり、 10 0°C以下であると重合物の熱分解による副生物の生成を防止できる。  As a deodorizing treatment method when thiol is used as a chain transfer agent, a method of converting thiol to disulfide with an oxidizing agent can be exemplified. Examples of the oxidizing agent used in this method include hydrogen peroxide, air, oxygen and the like, but hydrogen peroxide is preferred because of its high deodorizing effect by oxidation. The amount of hydrogen peroxide added is preferably from 100 to 2000 ppm, particularly preferably from 100 to 1000 ppm, based on the polymer. If it is 100 ppm or more, sufficient deodorizing treatment can be performed, and if it is 2000 ppm or less, excess hydrogen peroxide remains, which acts as a polymerization initiator to promote polymerization, or hydrogen peroxide is generated. It does not decompose to generate oxygen or cause problems such as gelation of the polymer solution in the metal container. The deodorizing temperature is preferably from 70 to 100 ° C, particularly preferably from 80 to 90 ° C. When the temperature is 70 ° C or more, the deodorizing effect is enhanced, and when the temperature is 100 ° C or less, generation of by-products due to thermal decomposition of the polymer can be prevented.
本発明の製造方法により得られる (メタ) アクリル酸系重合体は、 酸のままで もセメント用分散剤として適用することができるが、 酸によるエステルの加水分 解を抑制する観点から、 アル力リによる中和によって塩の形にすることが好まし い。 このアルカリとしては、 アルカリ金属又はアルカリ土類金属の水酸化物、 ァ ンモニゥム、 アルキルアンモニゥム、 アルカノールァミン、 N—アルキル置換ポ リアミン、エチレンジァミン、ポリエチレンポリアミン等を挙げることができる。 (メタ) アクリル酸系重合体をセメント用分散剤として使用する場合は、 中和に より p Hを 5〜7にすることが好ましい。 The (meth) acrylic acid-based polymer obtained by the production method of the present invention is an acid Can also be used as a dispersant for cement, but from the viewpoint of suppressing the hydrolysis of the ester by an acid, it is preferable to form a salt by neutralization with an alkali. Examples of the alkali include a hydroxide of an alkali metal or an alkaline earth metal, ammonium, alkylammonium, alkanolamine, N-alkyl-substituted polyamine, ethylenediamine, polyethylenepolyamine and the like. When a (meth) acrylic acid polymer is used as a dispersant for cement, the pH is preferably adjusted to 5 to 7 by neutralization.
本発明の製造方法により得られる (メタ) アクリル酸系重合体の重量平均分子 量 (ゲルパーミエ一シヨンクロマトグラフィー法。 溶離液: 0 . 2 Mリン酸バッ ファ一ノアセトニトニル = 7 3。 ポリエチレンォキシド換算) は、 セメント用 分散剤として充分な分散性を得るため、 1 0 , 0 0 0〜 2 0 0, 0 0 0が好まし く、 2 0 , 0 0 0〜: 1 0 0, 0 0 0が特に好ましレヽ。  Weight average molecular weight of (meth) acrylic acid-based polymer obtained by the production method of the present invention (gel permeation chromatography. Eluent: 0.2 M buffer monoacetonitonyl phosphate = 73. Polyethylene oxide equivalent) ) Is preferably 100,000 to 200,000 in order to obtain sufficient dispersibility as a dispersant for cement, and 200,000 to: 100,000. But especially preferred.
本発明の製造方法により得られる (メタ) アクリル酸系重合体は、 ポルトラン ドセメント、 アルミナセメント、 各種混合セメント等の水硬セメント、 石膏等の セメント以外の水硬材料等の分散剤として用いることができる。 産業上の利用可能性  The (meth) acrylic acid-based polymer obtained by the production method of the present invention may be used as a dispersant for hydraulic cement other than cement, such as portland cement, alumina cement, various mixed cements, and gypsum. it can. Industrial applicability
本発明の製造方法によれば、 品質が安定した、 しかも高いセメント分散性を有 する、 セメント用分散剤として好適な (メタ) アクリル酸系重合体を得ることが できる。 実施例  According to the production method of the present invention, it is possible to obtain a (meth) acrylic acid-based polymer that is stable in quality and has high cement dispersibility and is suitable as a dispersant for cement. Example
以下の例において 「%」 は 「重量%」 を表す。  In the following examples, “%” represents “% by weight”.
実施例 1 (工程 1 ) Example 1 (Process 1)
8 0 °Cで溶融したエチレンォキシド付加モル数 1 2 0のポリエチレンダリコー ルモノメチルェ一テル (重量平均分子量 5 3 4 4 ) 1 0 0 0重量部を、 温度計、 攪拌機、 滴下ロート、 窒素導入管及び冷却凝縮器を備えたガラス製反応容器に仕 込んだ。 次に、 ハイ ドロキノン 3重量部、 p—トルエンスルホン酸 3 2重量部を 投入した。 ここでポリエチレングリコールモノメチルエーテルとメタクリル酸の 合計重量 1 kg 当たり 6 ml / min となる流量で空気を反応液中に導入し、 さら に反応容器の気相部に 1 2 ml minの流量で窒素を導入しながら、 メタクリル 酸 4 8 3重量部 (ポリエチレンダリコールモノメチルエーテルに対して 3 0モル 倍となる量) を投入し、 加熱及び反応容器内の減圧を開始した。 圧力は 2 6 . . 7 kPa に制御し、 反応液温度が 1 0 5 °Cに到達した時点を反応開始時刻とし、 引き 続き加熱して反応液温度を 1 1 o °cに維持して反応水とメタクリル酸を留出させ ながら反応を行った。 圧力は、 反応開始 1時間後に 1 2〜 1 3 . 3 kPaに減圧し たのち、 そのまま維持した。 反応開始から 6時間後に圧力を常圧に戻し、 p—ト ルエンスルホン酸に対して 1 . 0 5倍当量の 4 8 %水酸化ナトリゥム水溶液を添 加して中和し、 反応を終了させた。  Ethylene oxide melted at 80 ° C Addition of 120 moles of polyethylene daricol monomethyl ether (weight average molecular weight: 5344) 100 parts by weight of a thermometer, stirrer, dropping funnel, and introduction of nitrogen It was charged into a glass reactor equipped with a tube and a cooling condenser. Next, 3 parts by weight of hydroquinone and 32 parts by weight of p-toluenesulfonic acid were added. Here, air was introduced into the reaction solution at a flow rate of 6 ml / min per 1 kg of the total weight of polyethylene glycol monomethyl ether and methacrylic acid, and nitrogen was further introduced into the gas phase of the reaction vessel at a flow rate of 12 ml min. During the introduction, 483 parts by weight of methacrylic acid (an amount that was 30 mol times the amount of polyethylene dalicol monomethyl ether) was charged, and heating and depressurization in the reaction vessel were started. The pressure was controlled at 26.7 kPa, the reaction start time was when the reaction solution temperature reached 105 ° C, and the reaction was continued while heating to maintain the reaction solution temperature at 11 ° C. The reaction was performed while distilling off water and methacrylic acid. The pressure was reduced to 12 to 13.3 kPa one hour after the start of the reaction, and was maintained as it was. Six hours after the start of the reaction, the pressure was returned to normal pressure, neutralized by adding 1.05 times equivalent of a 48% aqueous sodium hydroxide solution to p-toluenesulfonic acid, and the reaction was terminated. .
反応終了後、 反応液温度を 1 3 0 °C以下に維持し、 真空蒸留法により、 未反応 のメタクリル酸を回収し、 エステル化反応物 (A) — 1を得た。 この (A) — 1 はメタクリル酸エステル濃度 9 1 . 2 %、 未反応ポリエチレングリコ一ルモノメ チルエーテル濃度 2 . 8 %、 重合禁止剤濃度 0 . 3 %、 触媒塩 ( p—トルエンス ルホン酸ナトリウム) 濃度 3 . 4 %、 メタクリル酸濃度 2 . 3 %であった。  After completion of the reaction, the temperature of the reaction solution was maintained at 130 ° C. or lower, and unreacted methacrylic acid was recovered by a vacuum distillation method to obtain an esterification reaction product (A) -1. This (A) -1 has a methacrylate concentration of 91.2%, an unreacted polyethylene glycol monomethyl ether concentration of 2.8%, a polymerization inhibitor concentration of 0.3%, and a catalyst salt (sodium p-toluenesulfonate) concentration. The concentration was 3.4% and the methacrylic acid concentration was 2.3%.
(工程 2 )  (Process 2)
冷却凝縮器を還流冷却器に代えた工程 1と同様のガラス製反応容器に水 4 8 5 重量部を仕込み、 攪拌しながら反応容器の気相部を窒素置換し、 窒素雰囲気下で 8 0 °Cまで昇温した。 次に、 エステル化反応物 (A) — 1を 6 0 0重量部、 メタ クリル酸 2 1重量部、 デイクエスト (ホスホン酸系キレート剤; 日本モンサント 社製) 0 . 7重量部、 8 5 %リン酸 5重量部及び水 4 0 0重量部を混合溶解した 液と、 2—メルカプトエタノール 3重量部、 1 5 %過硫酸アンモニゥム水溶液 3 9重量部の 3液を同時に滴下し、 3液とも 9 0分かけて滴下を終了させた。次に、 1 5 %過硫酸アンモニゥム水溶液 1 5重量部を 3 0分かけて滴下し、 1時間程度 8 0 °Cで熟成させた。 重合反応中、 滴下及び熟成時の p Hは 2 . 5であった。 さ らに、 4 8 %水酸化ナトリゥム水溶液 3 0重量部を加えて中和したのち、 3 5 % 過酸化水素 0 . 7重量部を滴下し、 1時間 9 0 °Cで熟成させて、 (メタ) アタリ ル酸系重合体を得た。 この (メタ) アクリル酸系重合体の粘度を測定 (東京計器 製造所社製 B型粘度計,ローター N o . 2 , 3 0 rpm) したところ、 4 2 0 mPa' s であった。 In the same glass reaction vessel as in step 1 in which the cooling condenser was replaced with a reflux condenser, 485 parts by weight of water was charged, and while stirring, the gas phase of the reaction vessel was replaced with nitrogen. The temperature was raised to 80 ° C. Next, 600 parts by weight of esterification reaction product (A) -1; 21 parts by weight of methacrylic acid; Dequest (phosphonic acid chelating agent; manufactured by Nippon Monsanto Co.) 0.7 parts by weight, 85% A solution prepared by mixing and dissolving 5 parts by weight of phosphoric acid and 400 parts by weight of water and 3 parts by weight of 3 parts by weight of 2-mercaptoethanol and 39 parts by weight of a 15% aqueous solution of ammonium persulfate were simultaneously added dropwise. The dropping was completed over 0 minutes. Next, 15 parts by weight of a 15% aqueous solution of ammonium persulfate was added dropwise over 30 minutes, and the mixture was aged at 80 ° C. for about 1 hour. During the polymerization reaction, the pH at the time of dropping and aging was 2.5. Further, after neutralizing by adding 30 parts by weight of a 48% aqueous sodium hydroxide solution, 0.7 parts by weight of 35% hydrogen peroxide was added dropwise, and the mixture was aged at 90 ° C for 1 hour. A (meth) ataryl acid polymer was obtained. The viscosity of the (meth) acrylic acid polymer was measured (B-type viscometer manufactured by Tokyo Keiki Seisakusho, rotor No. 2, 30 rpm) and found to be 420 mPa's.
このようにして得られた (メタ) アクリル酸系重合体を用い、 セメント分散剤 としての評価試験を下記の方法により行った。 結果を表 1に示す。  Using the (meth) acrylic acid-based polymer thus obtained, an evaluation test as a cement dispersant was performed by the following method. Table 1 shows the results.
(ペース トフロー値の測定)  (Measurement of past flow value)
普通ポルトランドセメント 7 0 0 g及び水 2 1 0 gに、 (メタ) アクリル酸系 重合体の 4 0 %水溶液 0 . 9 gを添加し、 モルタルミキサー (三英製作所製) に て 6 3 rpmで 1分間混合し、 さらに 1 2 6 rpmで 2分間混合した。 混合終了後、 平面上に下部開口部を押しつけた状態のペース トフロー測定用コーン (上部直径 7 6 mm, 下部直径 8 6 mm, 高さ 4 0 mm) の上部開口部から前記混合物を流 し込み、 測定用コーンを平面に垂直方向に引き上げて取り外した後の平面上に円 形に広がったセメントペーストの直径を 2点において測定し、 その平均値をもつ てペース トフロー値 (mm) とした。 このペース トフロー値が 2 4 0〜2 6 0で あると、 分散性が優れていることを示している。 実施例 2 To 700 g of ordinary Portland cement and 210 g of water, add 0.9 g of a 40% aqueous solution of a (meth) acrylic acid polymer, and use a mortar mixer (manufactured by Sanei Seisakusho) at 63 rpm. The mixture was mixed for 1 minute, and further mixed at 126 rpm for 2 minutes. After mixing, the mixture is poured from the upper opening of the paste flow measurement cone (top diameter 76 mm, lower diameter 86 mm, height 40 mm) with the lower opening pressed against a flat surface. After the cone for measurement was pulled up in the direction perpendicular to the plane and removed, the diameter of the cement paste spread in a circle on the plane was measured at two points, and the average value was used as the paste flow value (mm). When the paste flow value is 240 to 260, it indicates that the dispersibility is excellent. Example 2
実施例 1の工程 2において、 リン酸 5重量部に代えて硫酸 5重量部を用いたほ かは実施例 1と同様にして、 (メタ) アクリル酸系重合体を得た。 なお、 工程 2 における重合反応中の p Hは 2 . 2〜2 . 8であった。 得られた (メタ) アタリ ル酸系重合体の粘度は 4 5 0 mPa' s であった。 この (メタ) アクリル酸系重合 体について、 実施例 1と同様の方法によりペース トフロー値を求めた。 結果を表 1に示す。  In Step 2 of Example 1, a (meth) acrylic acid-based polymer was obtained in the same manner as in Example 1, except that 5 parts by weight of phosphoric acid was used instead of 5 parts by weight of phosphoric acid. The pH during the polymerization reaction in Step 2 was 2.2 to 2.8. The viscosity of the obtained (meth) atalylic acid polymer was 450 mPa's. The paste flow value of this (meth) acrylic acid-based polymer was determined in the same manner as in Example 1. Table 1 shows the results.
実施例 3 Example 3
実施例 1の工程 2において、 工程 1と同様のガラス製反応容器に水 4 8 5重量 部を仕込み、 攪拌しながら反応容器の気相部を窒素置換し、 窒素雰囲気下で 8 0 °Cまで昇温した。 次に、 エステル化反応物 (A) — 1を 2 6 9重量部、 メタダリ ル酸 7 6重量部、 メ トキシポリエチレングリコールモノメタタリ レート (新中村 化学社製、 エチレンォキシド平均付加モル数 9 ) 1 1 8重量部、 8 5 %リン酸 2 重量部及び水 2 0 0重量部を混合溶解した液と 2—メルカプトエタノール 3重量 部と 1 5 %過硫酸アンモニゥム水溶液 1 9重量部の 3液を同時に滴下し、 3液と も 9 0分かけて滴下を終了させた。 次に 1 5 %過硫酸アンモニゥム水溶液 9重量 部を 3 0分かけて滴下し、 1時間 8 0 °Cで熟成させた。 重合反応中の p Hは 2 . 6であった。 更に、 4 8 %水酸化ナトリウム水溶液 3 4重量部を加えて中和した 後、 3 5 %過酸化水素 0 . 7重量部を滴下し、 1時間 9 0 °Cで熟成させて (メタ) アクリル酸系重合体を得た。 この (メタ) アクリル酸系重合体の粘度は 3 8 0 mPa' sであった。 この (メタ) アクリル酸系重合体について、 実施例 1と同様の 方法によりペーストフ口一値を求めた。 結果を表 1に示す。  In step 2 of Example 1, 485 parts by weight of water was charged into the same glass reaction vessel as in step 1, and the gas phase of the reaction vessel was replaced with nitrogen while stirring, and the temperature was raised to 80 ° C under a nitrogen atmosphere. The temperature rose. Next, 269 parts by weight of the esterification reaction product (A) -1 was added, 76 parts by weight of metadallylic acid, methoxypolyethylene glycol monomethacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., average number of moles of ethylene oxide 9 1) 3 parts by weight of a mixture of 18 parts by weight, 2 parts by weight of 85% phosphoric acid and 200 parts by weight of water, 3 parts by weight of 2-mercaptoethanol and 19 parts by weight of a 15% aqueous solution of ammonium persulfate Was simultaneously dropped, and the dropping of all three solutions was completed in 90 minutes. Next, 9 parts by weight of a 15% aqueous solution of ammonium persulfate was added dropwise over 30 minutes, and the mixture was aged at 80 ° C. for 1 hour. The pH during the polymerization reaction was 2.6. Further, after neutralizing by adding 34 parts by weight of a 48% aqueous sodium hydroxide solution, 0.7 parts by weight of 35% hydrogen peroxide was added dropwise, and the mixture was aged at 90 ° C for 1 hour to give (meth) acrylic acid. An acid polymer was obtained. The viscosity of this (meth) acrylic acid polymer was 380 mPa's. For this (meth) acrylic acid-based polymer, a paste mouth opening peak value was determined in the same manner as in Example 1. Table 1 shows the results.
実施例 4 Example 4
実施例 1の工程 2において、 工程 1と同様のガラス製反応容器に水 4 8 5重量 部を仕込み、 攪拌しながら反応容器の気相部を窒素置換し、 窒素雰囲気下で 80 °Cまで昇温した。 次に、 エステル化反応物 (A) — 1を 600重量部、 メタクリ ル酸 3. 6重量部、 アクリル酸メチル 6 1重量部、 85%リン酸 2. 5重量部及 び水 400重量部を混合溶解した液と 2—メルカプトエタノール 3重量部と 1 5 %過硫酸アンモニゥム水溶液 46重量部の 3液を同時に滴下し、 3液とも 90分 かけて滴下を終了させた。 次に 1 5%過硫酸アンモニゥム水溶液 1 5重量部を 3 0分かけて滴下し、 1時間程度 80°Cで熟成させた。 重合反応中の pHは 3. 0 であった。 更に、 48%水酸化ナトリゥム水溶液 1 5重量部を加えて中和し、 (メ タ) アクリル酸系重合体を得た。 この (メタ) アクリル酸系重合体の粘度は 45 0 mPa-s であった。 この (メタ) アクリル酸系重合体について、 実施例 1と同 様の方法によりペース トフ口一値を求めた。 結果を表 1に示す。 In step 2 of Example 1, water 485 weight was added to the same glass reaction vessel as in step 1. The gas phase of the reaction vessel was replaced with nitrogen while stirring, and the temperature was raised to 80 ° C under a nitrogen atmosphere. Next, 600 parts by weight of the esterification reaction product (A) -1, 3.6 parts by weight of methacrylic acid, 61 parts by weight of methyl acrylate, 2.5 parts by weight of 85% phosphoric acid, and 400 parts by weight of water The mixed solution, 3 parts by weight of 2-mercaptoethanol, and 46 parts by weight of a 15% aqueous solution of ammonium persulfate were simultaneously dropped at a time, and the dropping was completed over 90 minutes. Next, 15 parts by weight of a 15% aqueous solution of ammonium persulfate was added dropwise over 30 minutes, and the mixture was aged at 80 ° C. for about 1 hour. The pH during the polymerization reaction was 3.0. Further, 15 parts by weight of a 48% aqueous sodium hydroxide solution was added for neutralization to obtain a (meth) acrylic acid polymer. The viscosity of this (meth) acrylic acid polymer was 4500 mPa-s. With respect to this (meth) acrylic acid-based polymer, a peak value was determined in the same manner as in Example 1. Table 1 shows the results.
実施例 5 Example 5
(工程 1 )  (Process 1)
実施例 1の工程 1において、 ポリエチレングリコ一ルモノメチルエーテル (ェ チレンォキシド平均付加モル数 200, 重量平均分子量 8864) 1000重量 部とメタクリル酸 29 1重量部とを用いたほかは実施例 1と同様にして、 エステ ル化反応物 (A) —2を得た。 この (A) — 2は、 メタクリル酸エステル濃度 9 0. 5%、 未反応ポリエチレングリコールモノメチルエーテル 2. 7%、 重合禁 止剤濃度 0. 3 %、 触媒塩 (p—トルエンスルホン酸ナトリウム)濃度 3. 0%、 メタクリル酸濃度 3. 5%であった。  In step 1 of Example 1, the same procedures as in Example 1 were carried out except that 1,000 parts by weight of polyethylene glycol monomethyl ether (average number of moles of added ethylene 200, weight average molecular weight 8864) and 291 parts by weight of methacrylic acid were used. As a result, an esterification reaction product (A) -2 was obtained. This (A) -2 is the concentration of methacrylic acid ester 90.5%, unreacted polyethylene glycol monomethyl ether 2.7%, polymerization inhibitor concentration 0.3%, catalyst salt (sodium p-toluenesulfonate) concentration 3.0% and methacrylic acid concentration was 3.5%.
(工程 2)  (Process 2)
エステル化反応物 (A) —2を用い、 実施例 1の工程 2においてメタクリル酸 2 1重量部を添加しなかったほかは実施例 1と同様にして、 (メタ) アクリル酸 系重合体を得た。 なお、 工程 2における重合反応中の pHは 3. 1であった。 得 られた (メタ) アクリル酸系重合体の粘度は 455 mPa's であった。 この (メ タ) アクリル酸系重合体について、 実施例 1と同様の方法によりペース トフロー 値を求めた。 結果を表 1に示す。 (Meth) acrylic acid polymer was obtained in the same manner as in Example 1 except that 21 parts by weight of methacrylic acid was not used in Step 2 of Example 1 using the esterification reaction product (A) -2. Was. The pH during the polymerization reaction in step 2 was 3.1. Profit The viscosity of the obtained (meth) acrylic acid polymer was 455 mPa's. The paste flow value of this (meth) acrylic acid polymer was determined in the same manner as in Example 1. Table 1 shows the results.
実施例 6 Example 6
(工程 1)  (Process 1)
実施例 1の工程 1において、 ポリエチレングリコールモノメチルエーテル (ェ チレンォキシド平均付加モル数 9、 重量平均分子量 429) 1000重量部、 メ タクリル酸 1200重量部と p—トルエンスルホン酸 40重量部とを用いた他は 実施例 1と同様にして、 エステル化反応物 (A) — 3を得た。 この (A) — 3は、 メタクリル酸エステル濃度 91. 5%、 未反応ポリエチレングリコールモノメチ ルエーテル濃度 2. 4%、 重合禁止剤濃度 0. 2 %、 触媒塩 (p—トルエンスル ホン酸ナトリウム) 濃度 3. 4%、 メタクリル酸濃度 2. 5%であった。  In Step 1 of Example 1, polyethylene glycol monomethyl ether (average number of moles added of ethylene: 9, weight average molecular weight: 429) 1000 parts by weight, methacrylic acid 1200 parts by weight and p-toluenesulfonic acid 40 parts by weight were used. In the same manner as in Example 1, esterification reaction product (A) -3 was obtained. This (A) -3 has a methacrylate concentration of 91.5%, an unreacted polyethylene glycol monomethyl ether concentration of 2.4%, a polymerization inhibitor concentration of 0.2%, and a catalyst salt (sodium p-toluenesulfonate). The concentration was 3.4% and the methacrylic acid concentration was 2.5%.
(工程 2)  (Process 2)
工程 1と同様のガラス製反応容器に水 546重量部を仕込み、 攪拌しながら反 応容器の気相部を窒素置換し、 窒素雰囲気下で 80°Cまで昇温した。 次に、 エス テル化反応物 (A) — 3を 585重量部、 メタクリル酸 158重量部及び水 55 0重量部を混合した液と 2—メルカプトエタノール 4重量部と 15%過硫酸アン モニゥム水溶液 19重量部の 3液を同時に滴下し、 3液とも 90分かけて滴下を 終了させた。 次に' 15%過硫酸アンモニゥム水溶液 5重量部を 30分かけて滴下 し、 1時間 80°Cで熟成させた。 重合反応中の pHは 2. 8であった。 更に、 4 8%水酸化ナトリウム水溶液 1 16重量部を加えて中和し、 (メタ) アク リル酸 系重合体を得た。 この (メタ) アクリル酸系重合体の粘度は 320 mPa's であ つた。 この (メタ) アクリル酸系重合体について、 実施例 1と同様の方法により ペース トフロー値を求めた。 結果を表 1に示す。 比較例 1 546 parts by weight of water was charged into the same glass reaction vessel as in Step 1, and the gas phase of the reaction vessel was replaced with nitrogen while stirring, and the temperature was raised to 80 ° C under a nitrogen atmosphere. Next, a liquid obtained by mixing 585 parts by weight of the esterification reaction product (A) -3, 158 parts by weight of methacrylic acid and 550 parts by weight of water, 4 parts by weight of 2-mercaptoethanol and a 15% aqueous solution of ammonium persulfate 19 Parts by weight of the three liquids were simultaneously dropped, and the dripping of all three liquids was completed in 90 minutes. Next, 5 parts by weight of a 15% aqueous solution of ammonium persulfate was added dropwise over 30 minutes and aged at 80 ° C for 1 hour. The pH during the polymerization reaction was 2.8. The mixture was neutralized by adding 116 parts by weight of a 48% aqueous sodium hydroxide solution to obtain a (meth) acrylic acid-based polymer. The viscosity of this (meth) acrylic acid polymer was 320 mPa's. The paste flow value of this (meth) acrylic acid polymer was determined in the same manner as in Example 1. Table 1 shows the results. Comparative Example 1
実施例 1の工程 2において、 8 5 %リン酸 5重量部の代わりに 4 8 %水酸化ナ トリウム 1 6重量部を用いた他は、 実施例 1と同様にして (メタ) アクリル酸系 重合体を得た。 尚、 工程 2における重合反応中の p Hは 4 . 4であった。 得られ た (メタ) アクリル酸系重合体の粘度は 4 8 0 mPa' s であった。 この (メタ) ァクリル酸系重合体について、 実施例 1と同様の方法によりペース トフロー値を 求めた。 結果を表 1に示す。  In step 2 of Example 1, except that 16 parts by weight of 48% sodium hydroxide was used instead of 5 parts by weight of 85% phosphoric acid, a (meth) acrylic acid-based polymer was prepared in the same manner as in Example 1. A coalescence was obtained. The pH during the polymerization reaction in step 2 was 4.4. The viscosity of the obtained (meth) acrylic acid polymer was 480 mPa's. The paste flow value of this (meth) acrylic acid-based polymer was determined in the same manner as in Example 1. Table 1 shows the results.
比較例 2 Comparative Example 2
実施例 5の工程 2において、 リン酸 5重量部を用いなかったほかは実施例 5と 同様にして、 (メタ) アクリル酸系重合体を得た。 なお、 工程 2における重合反 応中の p Hは 4 . 1であった。 得られた (メタ) アクリル酸系重合体の粘度は 5 0 0 mPa' s であった。 この (メタ) アクリル酸系重合体について、 実施例 1と 同様の方法によりペース トフロー値を求めた。 結果を表 1に示す。 In Step 2 of Example 5, a (meth) acrylic acid-based polymer was obtained in the same manner as in Example 5, except that 5 parts by weight of phosphoric acid was not used. The pH during the polymerization reaction in step 2 was 4.1. The viscosity of the obtained (meth) acrylic acid-based polymer was 500 mPa's. The paste flow value of this (meth) acrylic acid polymer was determined in the same manner as in Example 1. Table 1 shows the results.
表 1 table 1
Figure imgf000018_0001
Figure imgf000018_0001
*1:重量部を示す。 * 1: Indicates parts by weight.
実施例 1〜5の製造方法により.得られた (メタ) アクリル酸系重合体は、 いず れもペース トフロー値が高く、 その結果、 高品質のセメント用分散剤が提供でき ることが確認された。 The (meth) acrylic acid-based polymers obtained by the production methods of Examples 1 to 5 all had high paste flow values, and as a result, it was confirmed that a high-quality cement dispersant could be provided. Was done.
これに対して、 比較例 1、 2の製造方法により得られた (メタ) アクリル酸系 重合体は、 工程 2における重合反応系の p Hが本発明で規定する範囲外であるた め、 ペース トフロー値が大きく劣っていた。 よって、 本発明の製造方法を適用し ない場合は、 ペース トフロー値の低い (メタ) アクリル酸系重合体が得られ、 高 品質のセメント用分散剤を提供できないことが確認された。  On the other hand, the (meth) acrylic acid-based polymers obtained by the production methods of Comparative Examples 1 and 2 had a lower pace because the pH of the polymerization reaction system in Step 2 was outside the range specified in the present invention. The flow rate value was significantly inferior. Therefore, it was confirmed that when the production method of the present invention was not applied, a (meth) acrylic acid-based polymer having a low paste flow value was obtained, and a high-quality cement dispersant could not be provided.

Claims

請求の範囲 The scope of the claims
1、 (メタ) アクリル酸とポリアルキレングリコールモノアルキルエーテルを モル比 3 : 1〜5 0 : 1の範囲で添加し、 酸触媒及び重合禁止剤の存在下でエス テル化反応させたのち、 アルカリ剤で酸触媒を失活させ、 (メタ) アクリル酸ェ ステル及び (メタ) アクリル酸残留物を含むエステル化反応物を得る工程 1と、 p H 1 . 5〜3 . 5の範囲で、 (メタ) アクリル酸エステルと (メタ) アタリ ル酸とを共重合させる工程 2とを含む (メタ) アクリル酸系重合体の製造方法。1. (Meth) acrylic acid and polyalkylene glycol monoalkyl ether are added in a molar ratio of 3: 1 to 50: 1, and the esterification reaction is carried out in the presence of an acid catalyst and a polymerization inhibitor. Deactivating the acid catalyst with an agent to obtain an esterification reactant containing (meth) acrylic acid ester and (meth) acrylic acid residue, and in the range of pH 1.5 to 3.5, A process for producing a (meth) acrylic acid-based polymer, comprising a step 2 of copolymerizing a (meth) acrylic acid ester with (meth) atalylic acid.
2、 工程 1で未反応の (メタ) アクリル酸を留去すること及び/又は工程 2で (メタ) アクリル酸エステル及びノ又は (メタ) アクリル酸と共重合可能な単量 体を添加することによって所望の単量体比を有する共重合体を得る請求項 1記載 の製造方法。 2. Evaporating unreacted (meth) acrylic acid in step 1 and / or adding a monomer copolymerizable with (meth) acrylic acid ester and di- or (meth) acrylic acid in step 2 The method according to claim 1, wherein a copolymer having a desired monomer ratio is obtained by the above method.
3、 工程 2においてエステル化反応物に酸を加え p H l . 5〜3 . 5の範囲に 調製する請求項 1又は 2記載の製造方法。  3. The production method according to claim 1, wherein in step 2, an acid is added to the esterification reaction product to adjust the esterification reaction product to a pH in the range of 5 to 3.5.
4、 酸がリン酸である請求項 3記載の製造方法。  4. The method according to claim 3, wherein the acid is phosphoric acid.
5、 工程 2において添加する (メタ) アクリル酸エステル及び Z又は (メタ) アクリル酸と共重合可能な単量体が、 (メタ) アクリル酸、 (メタ) アクリル酸 メチルまたはメ トキシポリエチレングリコールモノ (メタ) アタリレートである 請求項 2〜 4の何れかに記載の製造方法。  5. The monomer that can be copolymerized with (meth) acrylate and Z or (meth) acrylic acid added in step 2 is (meth) acrylic acid, methyl (meth) acrylate or methoxypolyethylene glycol mono ( The production method according to any one of claims 2 to 4, wherein the (meth) is acrylate.
PCT/JP1999/004277 1999-08-06 1999-08-06 Process for producing (meth)acrylic acid polymer WO2001010920A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/004277 WO2001010920A1 (en) 1999-08-06 1999-08-06 Process for producing (meth)acrylic acid polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/004277 WO2001010920A1 (en) 1999-08-06 1999-08-06 Process for producing (meth)acrylic acid polymer

Publications (1)

Publication Number Publication Date
WO2001010920A1 true WO2001010920A1 (en) 2001-02-15

Family

ID=14236409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/004277 WO2001010920A1 (en) 1999-08-06 1999-08-06 Process for producing (meth)acrylic acid polymer

Country Status (1)

Country Link
WO (1) WO2001010920A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6454850B2 (en) 2000-04-28 2002-09-24 Nippon Shokubai Co., Ltd. Cement admixture and cement composition comprising this
WO2004087635A2 (en) 2003-04-03 2004-10-14 Basf Aktiengesellschaft Mixtures of compounds comprising at least two double bonds and use thereof
WO2007029837A1 (en) * 2005-09-05 2007-03-15 Kao Corporation Method for producing phosphate polymer
US7199211B2 (en) 2002-06-11 2007-04-03 Basf Aktiengesellschaft (Meth)acrylic esters of polyalkoxylated trimethylolpropane
JP2007186635A (en) * 2006-01-16 2007-07-26 Kao Corp Method for producing phosphoric ester polymer
US7250481B2 (en) 2002-06-11 2007-07-31 Basf Aktiengesellschaft Method for the production of esters of polyalcohols
US7259212B2 (en) 2002-06-11 2007-08-21 Basf Aktiengesellschaft (Meth)acrylic esters of polyalkoxylated trimethylolpropane
US7405321B2 (en) 2003-06-06 2008-07-29 Basf Aktiengesellschaft (Meth)acrylic ester of alkenylene glycols and the use thereof
JP4137445B2 (en) * 1999-08-23 2008-08-20 花王株式会社 Method for producing (meth) acrylic acid polymer
JP2008543997A (en) * 2005-06-15 2008-12-04 花王株式会社 Concrete and mortar admixture
CN109485806A (en) * 2018-10-29 2019-03-19 广东科之杰新材料有限公司 A kind of super sustained-release polycarboxylic slump retaining agent of esters and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3620385B1 (en) * 1960-08-01 1961-10-25
JPS4842473B1 (en) * 1970-11-19 1973-12-12
JPS5092985A (en) * 1973-12-24 1975-07-24
JPS53126093A (en) * 1977-04-12 1978-11-02 Japan Exlan Co Ltd Preparation of aqueous polymer emulsion having modified stability
JPH01123813A (en) * 1987-11-09 1989-05-16 Dai Ichi Kogyo Seiyaku Co Ltd Diluent for radiation-curable resin
WO1996010594A1 (en) * 1994-09-30 1996-04-11 Zeon Rize Co., Ltd. Gasket material composition and process for producing gasket therefrom
JPH09267034A (en) * 1996-04-01 1997-10-14 Toyo Ink Mfg Co Ltd Defoamable nonionic high polymer surfactant and its application

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3620385B1 (en) * 1960-08-01 1961-10-25
JPS4842473B1 (en) * 1970-11-19 1973-12-12
JPS5092985A (en) * 1973-12-24 1975-07-24
JPS53126093A (en) * 1977-04-12 1978-11-02 Japan Exlan Co Ltd Preparation of aqueous polymer emulsion having modified stability
JPH01123813A (en) * 1987-11-09 1989-05-16 Dai Ichi Kogyo Seiyaku Co Ltd Diluent for radiation-curable resin
WO1996010594A1 (en) * 1994-09-30 1996-04-11 Zeon Rize Co., Ltd. Gasket material composition and process for producing gasket therefrom
JPH09267034A (en) * 1996-04-01 1997-10-14 Toyo Ink Mfg Co Ltd Defoamable nonionic high polymer surfactant and its application

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4137445B2 (en) * 1999-08-23 2008-08-20 花王株式会社 Method for producing (meth) acrylic acid polymer
US6454850B2 (en) 2000-04-28 2002-09-24 Nippon Shokubai Co., Ltd. Cement admixture and cement composition comprising this
EP2345432A2 (en) 2002-06-11 2011-07-20 Basf Se Method for producing esters from polyalcohols
US7199211B2 (en) 2002-06-11 2007-04-03 Basf Aktiengesellschaft (Meth)acrylic esters of polyalkoxylated trimethylolpropane
EP2345431A2 (en) 2002-06-11 2011-07-20 Basf Se Method for producing esters from polyalcohols
US7250481B2 (en) 2002-06-11 2007-07-31 Basf Aktiengesellschaft Method for the production of esters of polyalcohols
US7259212B2 (en) 2002-06-11 2007-08-21 Basf Aktiengesellschaft (Meth)acrylic esters of polyalkoxylated trimethylolpropane
WO2004087635A2 (en) 2003-04-03 2004-10-14 Basf Aktiengesellschaft Mixtures of compounds comprising at least two double bonds and use thereof
US7420013B2 (en) 2003-04-03 2008-09-02 Basf Aktiengesellschaft Mixtures of compounds comprising at least two double bonds and use thereof
US7405321B2 (en) 2003-06-06 2008-07-29 Basf Aktiengesellschaft (Meth)acrylic ester of alkenylene glycols and the use thereof
JP2008543997A (en) * 2005-06-15 2008-12-04 花王株式会社 Concrete and mortar admixture
US7964682B2 (en) 2005-09-05 2011-06-21 Kao Corporation Method for producing phosphoric acid ester-based polymer
CN101277986B (en) * 2005-09-05 2010-09-15 花王株式会社 Method for producing phosphate polymer
WO2007029837A1 (en) * 2005-09-05 2007-03-15 Kao Corporation Method for producing phosphate polymer
JP2007186635A (en) * 2006-01-16 2007-07-26 Kao Corp Method for producing phosphoric ester polymer
CN109485806A (en) * 2018-10-29 2019-03-19 广东科之杰新材料有限公司 A kind of super sustained-release polycarboxylic slump retaining agent of esters and preparation method thereof
CN109485806B (en) * 2018-10-29 2021-02-26 科之杰新材料集团(广东)有限公司 Ester type super-slow-release polycarboxylic slump retaining agent and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4137445B2 (en) Method for producing (meth) acrylic acid polymer
JP6096115B2 (en) Production method of polycarboxylic acid water reducing agent
EP0850963B1 (en) Hydrophilic graft polymer, production process therefor, composition containing the polymer, and use thereof
WO2001010920A1 (en) Process for producing (meth)acrylic acid polymer
JP5215663B2 (en) Copolymers and dispersants
JP3874917B2 (en) Method for producing (meth) acrylic acid polymer
JP3327809B2 (en) Cement dispersant, method for dispersing cement and cement composition
EP1258502A2 (en) Method for production of alkoxylated compound
TW201213437A (en) Monomer composition containing unsaturated polyalkyl glycol ether monomer, manufacturing method of the composition, polymer manufactured by the composition, and manufacturing method of the polymer
WO2000012577A1 (en) Process for producing (meth)acrylic acid polymer
JP2004502792A (en) Method for producing water-soluble polymer containing polyalkylene glycol ether side chain
JP6157134B2 (en) Method for producing polycarboxylic acid polymer
JP2001220440A (en) Method for producing polyalkylene glycol ether
JPH1160652A (en) Hydrophilic graft polymer, its preparation and use thereof
JP4542235B2 (en) Method for producing cement additive
JP4996342B2 (en) Method for producing graft polymer
JP3518795B2 (en) Method for producing polyalkylene glycol (meth) acrylate
EP1916266B1 (en) Process for the production of grafted and cross-linked polymers
JP5261069B2 (en) Method for producing styrenated bisphenol compound
JP3537687B2 (en) Method for producing esterified product and method for producing polymer using esterified product
JP2001146450A (en) Production method of cement-dispersing agent
JP2001233955A (en) Method for producing polyalkylene glycol ester
JP6401218B2 (en) Method for producing aqueous solution of vinyl polymer
TW201014874A (en) Process for preparing polyalkylene glycol di(meth) acrylates
JP2003300931A (en) Method for producing unsaturated carboxylic acid ester

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP