WO2001009251A1 - Flame-retardant polymer composite material, composition for producing, formed article of flame-retardant polymer composite material, masterbatch for producing formed article of flame-retardant polymer composite material and method for producing flame-retardant polymer composite material - Google Patents

Flame-retardant polymer composite material, composition for producing, formed article of flame-retardant polymer composite material, masterbatch for producing formed article of flame-retardant polymer composite material and method for producing flame-retardant polymer composite material Download PDF

Info

Publication number
WO2001009251A1
WO2001009251A1 PCT/JP2000/005191 JP0005191W WO0109251A1 WO 2001009251 A1 WO2001009251 A1 WO 2001009251A1 JP 0005191 W JP0005191 W JP 0005191W WO 0109251 A1 WO0109251 A1 WO 0109251A1
Authority
WO
WIPO (PCT)
Prior art keywords
flame
composite material
polymer composite
retardant
retardant polymer
Prior art date
Application number
PCT/JP2000/005191
Other languages
French (fr)
Japanese (ja)
Inventor
Tatsuaki Oda
Makio Nomura
Toshikuni Ito
Original Assignee
Ishizuka Garasu Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishizuka Garasu Kabushiki Kaisha filed Critical Ishizuka Garasu Kabushiki Kaisha
Priority to AU64710/00A priority Critical patent/AU6471000A/en
Publication of WO2001009251A1 publication Critical patent/WO2001009251A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/14Macromolecular materials

Definitions

  • Flame retardant polymer composite material composition for producing flame retardant polymer composite material, flame retardant polymer composite material molded article, master batch for producing flame retardant polymer composite material molded article, and flame retardant Method for manufacturing polymer composites
  • the present invention relates to a flame-retardant polymer composite material, a composition for producing a flame-retardant polymer composite material, a flame-retardant polymer composite material molded article, a master batch for producing a flame-retardant polymer composite material molded article, and And a method for producing a flame-retardant polymer composite material.
  • Resin materials are used in a wide range of fields due to their excellent chemical and physical properties and excellent moldability and additivity, and demand is growing.
  • the major drawback of most resin materials is that they are flammable, so their use is restricted, and flame retardancy of resin materials is desired.
  • Halogen-based flame retardants are the mainstream flame retardants used to make resin materials flame-retardant, but they are not environmentally friendly due to dioxins and furans generated from halogen-based flame retardants. The development and commercialization of this is desired.
  • Non-halogen phosphorus-based flame retardants are not preferred because phosphine, which is a hydride of phosphorus, is generated.
  • inorganic flame retardants such as aluminum hydroxide and magnesium hydroxide.
  • Al hydroxide has low toxicity, low smoke emission, good electrical insulation, and low cost.
  • Magnesium hydroxide has the same flame-retardant effect as aluminum hydroxide, and there is no dehydration and foaming at the processing temperature of resin, which is a drawback of aluminum hydroxide.However, it is weak against acids and under high humidity conditions. It reacts with carbon dioxide in the air to produce magnesium carbonate and whitens, and has the disadvantages of higher cost than aluminum hydroxide. Since these inorganic flame retardants alone have a small flame-retardant effect, it is necessary to use them together with other flame retardants.
  • the present invention solves the above-mentioned conventional problems, and provides a flame-retardant polymer composite material which is inexpensive and exhibits high flame retardancy, a composition for producing a flame-retardant polymer composite material for producing the same, A molded article composed of the flame-retardant polymer composite material, a master batch for producing a flame-retardant polymer composite material molded article, and a method for producing a flame-retardant polymer composite material are provided. Yes ⁇ Disclosure of the Invention
  • a first configuration of the flame-retardant polymer composite material of the present invention is mainly composed of a compound containing a silicon component and Z or a metal component and oxygen, and is heated by heating to silicon and / or
  • the present invention is characterized in that the particles for imparting flame retardancy to produce glassy ceramics mainly composed of metal oxides are dispersed in a matrix made of a polymer material (hereinafter also referred to as a polymer matrix).
  • the second configuration of the flame-retardant polymer composite material of the present invention is mainly composed of a compound containing a silicon component and / or a metal component and oxygen, and mainly composed of silicon and a metal oxide by heating.
  • the present invention is characterized in that the particles for imparting flame retardancy to produce glassy ceramics are fixed on the surface of a substrate made of a polymer material. This configuration can be combined with the first configuration described above.
  • the particles for imparting flame retardancy which produce vitreous ceramics mainly composed of silicon and / or metal oxides by heating, are formed on a substrate made of a polymer material such as resin.
  • a polymer material such as resin.
  • the compound of the particles for imparting flame retardancy forms a protective film that inhibits combustion.
  • the material to which the flame retardancy is to be imparted has high flame retardancy, for example, UL94 flammability test (In this specification, the one based on the 5th edition: October 26, 1996, was adopted. It is possible to provide flame-retardant performance that satisfies the range of V-0 to V-2. In addition, due to the effect of forming the protective film, it is possible to impart sufficient flame retardancy even if the compounding amount to the material to which flame retardancy is to be added is small, and as a result, the compounding amount of the flame retardant including the above particles is reduced.
  • the conventional flame retardant can be used for the strength and durability of the final material, as well as its moldability and fluidity (for example, in the case of a material that can be injection molded, its flowability in the mold).
  • An effect that can be improved as compared with the case where it is provided, that is, an effect of suppressing a decrease in strength, durability, moldability, fluidity, and the like can also be achieved.
  • the silicon component and / or the metal component contained in the compound constituting the particles for imparting flame retardancy as described above is liable to produce glassy ceramics in combination with the oxidation and the like caused by heating. Since vitreous ceramics mainly composed of Z or metal oxides have high heat resistance, they become an extremely strong protective film when high heat is applied, and provide even higher flame retardancy for the material to which flame retardancy is to be imparted. Property can be imparted.
  • the vitreous ceramic as described above may exist as a part of the compound from the beginning, or may be converted to a vitreous ceramic when a part or all of the compound is heated. Good.
  • the metal component for example, one or more of Ti, Cu, Al, Zn, Ni, and Zr, or other transition metal elements can be used.
  • the silicon-converted weight content WSi of the silicon component in the combustion residue was the same as the metal component. It is preferable that the total WSi + WM with the acid content in terms of acid content of WM be 0.5 to 60% by weight.
  • each metal component is converted to an oxide having a composition corresponding to the valence of the contained metal ion (which can be specified by X-ray photoelectron spectroscopy). For example, if Z n 2 + is detected, the corresponding oxide is Z n O, and if Cu + is detected, the corresponding oxide is Cu 20 .
  • the particles for imparting flame retardancy may be configured so as to contain no halogen component such as chlorine or fluorine, except for particles that are inevitably mixed in the form of, for example, impurity components. This makes it possible to realize ecological flame-retardant materials because no harmful gas is generated as in the past when high heat is applied.
  • the above compounds can be formed as containing a carbon component.
  • the compatibility (affinity) when the particles for imparting flame retardancy are combined with the material for imparting flame retardancy is improved, and the particles for imparting flame retardancy are made uniform with respect to the material for imparting flame retardancy.
  • the particles for imparting flame retardancy can decompose and generate a combustion inhibiting gas by heating.
  • a combustion-inhibiting gas is generated, and the combustion-inhibiting gas further enhances the flame-retardant effect on the flame-retardant material.
  • This improvement in flame retardancy is presumed to be due to the relative decrease in oxygen for combustion by the combustion inhibiting gas in the vicinity of the material to which flame retardancy is to be imparted.
  • a gas containing one or more of nitrogen, sulfur and carbon can be generated.
  • C 0 2 gas or the like occurs, for example nitrogen-containing N 2 gas and N 0 2 gas was used as gas, NO gas, S 0 2 gas as the sulfur-containing gas, as the carbon-containing gas, they are flame retardant Further enhance the flame retardant effect on the material to which the property is to be imparted.
  • the average particle diameter of the particles for imparting flame retardancy is preferably 0.05 to 500 / zm.
  • the average particle size is less than 0.05 / im, it may be difficult to manufacture the particles for imparting flame retardancy, and uneven distribution may occur when compounded (added) to the material to be imparted with flame retardancy. Since the composite (addition) may not be uniform, the effect of imparting flame retardancy may decrease, or the performance of the material to which flame retardancy is imparted may decrease, particularly in the uneven distribution region. If it exceeds 500 / im, the distribution of the compounded (added) particles may be non-uniform, and the properties of the material to which flame retardancy is to be imparted, such as the flowability of a resin, may be reduced. In some cases, the material to which the flame retardant is to be imparted has poor appearance.
  • the average particle size can be measured by using, for example, a laser diffraction type particle size analyzer.
  • the measured particle size is It cannot be distinguished from each other whether the particle size exists as a single particle or the particle size of the aggregated secondary particles. Therefore, the average particle size measured by this method is a value reflecting the average particle size of the secondary particles, which broadly includes isolated primary particles that do not cause aggregation.
  • the average particle size of the particles for imparting flame retardancy is desirably 0.1 to 300 ⁇ .
  • the polymer material forming the substrate is, for example, a general-purpose resin such as polyethylene ( ⁇ ), polypropylene ( ⁇ ), polystyrene (PS), acrylonitrile 'butadiene' styrene (ABS), acrylic resin, and modified polyphenylene.
  • a general-purpose resin such as polyethylene ( ⁇ ), polypropylene ( ⁇ ), polystyrene (PS), acrylonitrile 'butadiene' styrene (ABS), acrylic resin, and modified polyphenylene.
  • inorganic or organic flame retardant particles or flame retardant auxiliary particles together with the flame retardant imparting particles comprising the above compound when these are collectively referred to, the flame retardant material (Also referred to as particles).
  • the flame retardant material Also referred to as particles.
  • the effect of imparting the flame retardancy of the flame retardant material particles is also synergistically added, so that a higher flame retardant effect can be achieved.
  • flame-retardant material particles include ecological non-halogen flame-retardant hydrated metal compounds, mica such as muscovite, phlogopite, biotite, sericite, kaolin, talc, zeolite, borax, and diaspore.
  • Flame-retardant material particles inorganic material particles
  • phosphorus-based, silicone-based, nitrogen-based organic flame-retardant material particles, and metal powder particles can be used. It is preferable to use, for example, such flame-retardant material particles having an average particle size of 0.05 to 10 O jum.
  • the production may be difficult, and if the composite (addition) is made to a polymer substrate, uneven distribution may occur, and the composite (addition) may not be uniform.
  • the effect of imparting flammability may be reduced, or the performance of the polymer substrate may be reduced particularly in the unevenly distributed region.
  • the upper limit is exceeded, the distribution of the compounded (added) particles may become non-uniform, and the properties of the polymer substrate, for example, properties such as fluidity may be reduced, or the resulting flame-retardant polymer may be obtained.
  • the appearance of the composite material may be poor.
  • the inorganic material-based particles are mainly composed of at least one of aluminum hydroxide and magnesium hydroxide
  • the average particle size can be measured using, for example, a laser diffraction type particle size measuring device.
  • metal particles for example, a metal mainly composed of Al, Ni, and Mg
  • the composite material of the present invention is used for, for example, a housing of an electronic device, in addition to improving the effect of imparting flame retardancy. If you do, harmful electricity An electromagnetic shielding effect of shielding leakage of magnetic waves can also be achieved.
  • a flame-retardant polymer composite material molded article suitable for various uses can be obtained.
  • the molding method is not particularly limited, and any molding method such as press molding, blow molding, extrusion molding, injection molding or calendaring can be used. It is also possible to form the composite particles for molding by coating the above compound on a core material of a polymer material, and to perform the above molding while softening the core material of the composite particles. In this case, the core portion of the composite particles forms a matrix after molding, and the coated compound portion is dispersed in the matrix to form the structure of the flame-retardant polymer composite material of the present invention. It will be.
  • the above-mentioned flame-retardant polymer composite material molded article can be constituted as a final molded article (final molded product corresponds to this), for example, without assuming remolding accompanied by softening of the polymer matrix.
  • the applicable object is any molded product that requires flame retardancy and is not particularly limited, but examples are as follows.
  • Automotive parts Interior parts such as instrument panels, exterior parts such as bumpers, plastic parts in engines, etc.
  • ' Generally weak electrical appliances: Housing and other parts for home appliances such as TVs, videos, personal computers, audio players, microwave ovens, etc.
  • Rubber or elastomer material flooring, sealing material, seismic material, etc. (The polymer material used as the substrate must be rubber or elastomer)
  • the molded article can be a temporary molded article for softening the polymer matrix and re-forming it into the desired secondary shape.
  • the final molding The production efficiency of body products can be greatly increased.
  • the material of the polymer substrate used lacks fluidity, local irregularities in material flow can be achieved by using a preform having an intermediate shape that individually corresponds to the final secondary shape as a temporary molded body. And products with few defects can be manufactured efficiently.
  • the temporary molded body is a granular molded article in which the particles for imparting flame retardancy are dispersed in a polymer matrix, and is used as a master bar for reshaping into a secondary shape having a larger volume than each granular molded article. It can be made as a stick.
  • the master-batch for manufacturing a molded body of a flame-retardant polymer composite material mainly includes a compound containing a silicon component and / or a metal component and oxygen, Particles for imparting flame retardancy, which produce glassy ceramics mainly composed of silicon and Z or metal oxides by heating, are composed as granular molded products dispersed in a matrix made of a polymer material, and each granular molded It is characterized by being used for reshaping into a secondary shape that has a larger volume than an object.
  • Such a masterbatch can be used as a molding base having high fluidity in various molding machines such as an injection molding machine, and greatly contributes to simplification of a molding process and higher efficiency.
  • the masterbatch is remolded together with a dilute polymer material consisting of a polymer material of the same or different nature as the polymer substrate, so that the secondary batch has a smaller content of particles for imparting flame retardancy than itself.
  • the polymer matrix and the particles for imparting flame retardancy are kneaded, and during molding, the masterbatch is mixed with the diluted high-molecular material so that the polymer matrix is difficult to mix into the polymer substrate. Dispersion of the particles for imparting flammability is achieved in two stages, so to say, the dispersion state of the particles in the finally obtained secondary molded article can be made more uniform.
  • the flame-retardant polymer composite material of the present invention is produced by the following production method.
  • Can be manufactured In the production method, a sol composition in which a metal element and a compound of Z or si (for example, an inorganic compound) are dispersed and Z or dissolved in a solvent is dried to form a gel composition, and the gel composition is formed.
  • the composition is dispersed in a matrix composed of a polymer material to obtain a flame-retardant polymer composite material.
  • the particles for imparting flame retardancy can be easily produced by the so-called sol-gel method, in which the sol composition is dried to obtain gel composition particles.
  • the sol-gel method as described above is simple and does not require special equipment, so it is possible to significantly reduce the production cost and generate harmful substances as in the past.
  • no t flame retardant particles obtained by such a production method is configured by a compound of gel-like metal element and Z or S i. If this is mixed (coated) with a material such as a resin by adding or coating the flame-retardant material, for example, when a high heat is applied to the material to which the flame-retardant material is applied, the high heat makes the flame-retardant.
  • the above compound in the particles for imparting property becomes glass or ceramic, and the compound obtained by vitrification or ceramic becomes a protective film, thereby imparting high flame retardancy to the material to be imparted with flame retardancy. It becomes possible, and a material obtained by compounding such particles for imparting flame retardancy does not generate a harmful gas as in the prior art when a high heat is applied, so that it becomes an ecological flame retardant material.
  • the above gel composition is pulverized into gel composition particles to form the gel composition particles.
  • the resin is cured to disperse the gel-like composition particles in a matrix composed of thermoplastic resin or thermosetting resin.
  • the sol composition can be easily and uniformly dispersed and mixed in the substrate.
  • the sol composition may be spray-dried to form gel-like yarn particles.
  • the above-mentioned composite particles for molding can be produced by coating the surface of a core material of a polymer material with a sol composition.
  • the average particle size of the gel composition particles is preferably adjusted to 0.5 to 500 ⁇ .
  • Gel composition particles having a particle size of less than 0.5 / m are difficult to produce, and when blended in a substrate, uneven distribution may occur and dispersion may not be uniform, resulting in gel composition particles. In some cases, the effect of imparting flame retardancy to the polymer substrate is reduced, and the performance of the manufactured flame retardant polymer composite material is reduced particularly in the unevenly distributed region.
  • the dispersion distribution of the gel-like composition becomes non-uniform, and the flame retardancy of the flame-retardant polymer composite material may decrease, and the fluidity of the flame-retardant polymer composite material And the like, and the flame-retardant polymer composite material may cause poor appearance.
  • the mixing ratio of the gel composition to the above-mentioned substrate is preferably from 0.0 :! to 100 parts by weight per 100 parts by weight of the substrate.
  • high flame retardancy can be imparted to the polymer substrate even when the amount of the gel composition having the effect of imparting flame retardancy is as small as described above. . If the mixing ratio is less than 0.1 part by weight, the effect of imparting flame retardancy by the gel-like composition particles may be reduced. If it exceeds 100 parts by weight, the flame-retardant polymer composite material may be used. In some cases, problems such as drastically changing the properties such as fluidity and physical properties of the material may occur.
  • the sol composition can be produced by hydrolyzing a metal element and / or an alkoxide of Si.
  • the sol-like composition produced by hydrolyzing such an alkoxide contains a metal element and / or an oxide of Si, and an organic substance (carbon component) derived from the alkoxide remains. Therefore, the gel composition obtained by drying the sol composition also contains oxides and organic substances. As described above, this oxide is vitrified or ceramicized by high heat and has high flame retardancy to the polymer substrate. Can be granted.
  • the residual organic matter improves the affinity (affinity) when, for example, dispersing the gel composition (particles) in a polymer substrate, and makes the gel composition (particles) uniform with the polymer substrate.
  • Alcohol can be used as a solvent for preparing the sol composition. Since alcohol has a relatively low boiling point, it has the advantage that the drying process can be performed in a short time.
  • an alcohol for example, methanol, ethanol, propanol, butanol and the like can be used.
  • Other solvents include ketone solvents such as acetone and acetyl acetone, aromatic hydrocarbon solvents such as toluene and xylene, cyclic hydrocarbon solvents such as cyclohexane, other chain hydrocarbon solvents, and These mixed solvents (a mixed solvent with alcohol is also possible) can be used.
  • a ketone-based solvent can disperse or dissolve alkoxide in a stabilized state, and the drying step can be performed in a short time because of its relatively low boiling point. Further, since the hydrocarbon solvent has a low water content, the alkoxide can be dispersed or dissolved in a stabilized state.
  • the compounding quantity of the solvent for making a sol-like composition is 25-98 weight. / 0
  • the amount of the alkoxide is preferably about 0.5 to 40% by weight. If the amount of the solvent is less than 25% by weight, the alkoxide may be difficult to uniformly disperse and / or dissolve, so that the hydrolysis reaction of the alkoxide may be difficult to occur, and the gel composition may be unsatisfactory. May be stable. If the amount of the solvent exceeds 98% by weight, the drying step for evaporating the solvent may take a long time.
  • the compounding amount of the alkoxide when the compounding amount of the alkoxide is less than 0.5% by weight, the effect of imparting flame retardancy due to vitrification or ceramicization of the metal element and / or Si of the alkoxide may be reduced, and the alkoxide organic compound may not be used.
  • the compatibility of the components with the polymer substrate may also be reduced. If the amount of the alkoxide exceeds 40% by weight, the dispersibility and solubility of the alkoxide in the solvent may decrease, and the gel composition may become unstable.
  • the alkoxide preferably contains Si and no or Ti as essential components.
  • S i and Z or T i as a component of alkoxide, oxide hydrolyzed by such for example S i 0 2 and T i 0 2 produced was easily vitrified or ceramic by high fever Therefore, the effect of imparting flame retardancy is particularly high.
  • alkoxides containing si and Z or ⁇ i are hard to gel, it is possible to obtain a sol composition in a stable state. Above all, s ⁇ is most excellent as an alkoxide component in consideration of the stability of the generated oxide, the stability of the sol-like composition, and the like.
  • alkoxide using Si for example, tetraethoxysilane (S i (OC 2 H 5 ) J) or the like can be used.
  • Ti for example, titanium isopropoxide (T i ( iso-OC 3 H 7 ) 4 ) etc.
  • other components include, for example, one or more of Cu, Al, Zn, Ni and Zr Or an element containing another transition element, for example, aluminum isopropoxide (A 1 (OC 3 H 7 ) 3 ), etc. can be used.
  • the constituents can be changed according to the purpose, and in this case, the properties of the gel composition compound formed are different from each other.
  • a metal salt of an inorganic acid or an organic acid can be added to the sol composition.
  • the cationic metal element of the metal salt preferably contains one or more of Cu, Al, Zn, Ni, Fe, Ti, and Zr.
  • an acidic gas-based inorganic acid an acid obtained by dissolving an acidic gas in water (hereinafter referred to as an acidic gas-based inorganic acid) is preferably used.
  • an acidic gas-based inorganic acid an acid obtained by dissolving an acidic gas in water
  • transition elements other than those described above can be used as the cation metal element.
  • the above-mentioned acidic gas refers to a gas that shows acidity when dissolved in water.
  • the acidic gas-based inorganic acid for example, one or more of nitric acid, nitrous acid, sulfuric acid, sulfurous acid, and carbonic acid can be used.
  • a metal salt is contained in the sol-like composition, when high heat is applied to the flame-retardant material to which the flame-retardant particles are added, the metal salt is derived from the acidic gas-based inorganic acid.
  • gas for example, N 2 gas or N0 2 gas and NO gas as the N-containing gas, S_ ⁇ 2 gas as a S-containing gas, the combustion inhibition gases such C_ ⁇ 2 gas as C-containing gas generated that , That
  • the metal salt is copper nitrate (C u (N 0 3) 2 - 3 H 2 0), zinc nitrate (Z n (N0 3) 2 ⁇ 6 ⁇ 2 0) to illustrate the like Can be.
  • inorganic acids for example, oxalic acid, acetic acid and the like can be used as organic acids.
  • the content of the metal salt in the sol composition is preferably 95% by weight or less. If the content of the metal salt exceeds 95% by weight, the effect of imparting flame retardancy due to vitrification or ceramicization of the metal element of alkoxide and ⁇ or Si, which is the main factor of the effect of imparting flame retardancy, is reduced There is.
  • WA weight ratio of the alkoxide
  • WB weight ratio of the metal salt
  • WAZWB When WAZWB is less than 0.01, the effect of imparting flame retardancy due to vitrification or ceramicization derived from the alkoxide component may not be sufficiently obtained, and when WAZWB exceeds 30, it is derived from metal salts. In some cases, the effect of imparting flame retardancy due to the generated gas may not be sufficiently obtained, and as a result, the effect of imparting flame retardancy to the substrate may be reduced.
  • the sol-like composition contains 25 to 98% by weight of an alcohol as a solvent, 0.5 to 40% by weight of a silicon alkoxide as an alkoxide, and 5 to 95% by weight of a metal nitrate as a metal salt. It is preferable to use a mixture of 0.1% by weight and 0.1 to 20% by weight of water.
  • the sol composition is formed in such an amount, the hydrolysis reaction of the sol composition proceeds efficiently, and the gel composition produced by the sol-gel method can be stabilized. . As a result, the effect of imparting flame retardancy to the polymer substrate derived from the alkoxides and metal salts described above can be more effectively exerted.
  • a step of dispersing and / or dissolving the metal salt in alcohol to form a first solution a step of dispersing and / or dissolving alkoxide in the first solution to form a second solution
  • a step of adding water to the second solution to form a sol-like composition metal salt for alcohol
  • metal salt for alcohol By sequentially dispersing and dissolving or dissolving the alkoxide and then adding water to the second solution in a stepwise manner, it is possible to efficiently produce the sol composition.
  • the sol composition is preferably dried at a temperature in the range of 40 to 250 ° C. If the temperature is lower than 40 ° C, it may take a long time to dry the sol composition.If the temperature exceeds 250 ° C, the metal element of the alkoxide and the silicon or Si do not vitrify. It may become ceramic. When performing drying under reduced pressure, it is necessary to adjust the temperature and the pressure so that the gel composition is generated in a stable state.
  • a flow-suppressing aid that suppresses the flow and dripping of the polymer substrate may be added to the polymer substrate. it can.
  • the melt flow of the polymer substrate is suppressed by the flow suppression auxiliary agent, and so-called drip prevention during combustion can be improved.
  • the flow suppression adjuvant include boric acid-based inorganic compounds such as boric anhydride and zinc borate, and red phosphorus (for example, Suzuhiro Chemical: Novaled (trade name); ) Etc. or inorganic materials such as carbon (for example, expandable carbon represented by GREP-EG (trade name) manufactured by Tosoh, GRAF Guard (trade name) manufactured by UCAR Carbon), etc. System or silicone or the like can be used.
  • the content ratio of the particles for imparting flame retardancy in the polymer substrate is 0.1 to 100 parts by weight with respect to 100 parts by weight of the polymer substrate. It is better to If the content is less than 0.1 part by weight, the effect of imparting flame retardancy may be reduced.If the content is more than 100 parts by weight, the properties of the polymer substrate may be greatly changed. May occur.
  • the content ratio is preferably 1 to 50 parts by weight. JP 51 1
  • FIG. 1 is a schematic view showing a form in which particles for imparting flame retardancy are dispersed in a polymer material matrix.
  • FIG. 2 is a schematic diagram showing an example in which another flame-retardant material particle is blended and used with particles for imparting flame retardancy.
  • FIG. 3 is a schematic diagram showing an example of a method for producing a masterbatch made of the flame-retardant polymer composite material of the present invention, together with various forms of master-batch particles.
  • FIG. 4 is a schematic cross-sectional view showing an example of an injection molding machine.
  • FIG. 5 is a process explanatory view showing an example of manufacturing a molded body by injection molding.
  • Figure 6 is an explanatory diagram showing some usage patterns of the master batch.
  • FIG. 7 is an explanatory diagram illustrating a method for obtaining a flame-retardant polymer composite material of the present invention using a two-component mixed resin, and some application forms thereof.
  • FIG. 8 is a process explanatory view showing some examples of a method of fixing particles for imparting flame retardancy to the surface of a polymer material substrate.
  • FIG. 9 is a schematic diagram inferring the molecular level structure of a compound. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a view conceptually showing one embodiment of the flame-retardant polymer composite material of the present invention.
  • This material has a structure in which particles 10 for imparting flame retardancy are dispersed in a polymer material substrate 50.
  • the particles 10 for imparting flame retardancy contain a silicon component and a metal component or a metal component and oxygen, and are composed of, for example, a compound that generates a vitreous ceramic by heating. Specifically, the particles are produced by the sol-gel method described above. can do.
  • the particle 10 is schematically drawn in a spherical shape, the shape varies in various ways depending on the manufacturing method, and the particle 10 is not always necessarily spherical.
  • the amount of the flame retardancy-imparting particles 10 with respect to the polymer material substrate 50 is, for example, 0.1 to 100 parts by weight based on the former as 100 parts by weight, and is preferably as small as about 1 to 50 parts by weight.
  • Sufficient flame retardancy can be imparted by addition. Since it is added in a small amount, there is little change in the physical properties of the material to which flame retardancy is to be imparted, such as a resin, and the cost can be significantly reduced.
  • the flame-retardant particles 10 can be added to the flame-retardant material (polymer substrate) 50 together with the conventional flame-retardant material particles 11. Noh. In this case, in addition to the effect of imparting the flame retardancy of the particles 10 for imparting flame retardancy, the effect of imparting the flame retardancy of the flame retardant material particles 11 is also synergistically added. Will be shown.
  • the compound constituting the particles for imparting flame retardancy has, for example, a structure schematically shown in FIG. 9 (the molecular formula is schematically shown in FIG. 9). Does not mean that it has a limited specific structure shown by.).
  • silicon and Z or a metal (these are indicated by M in the figure) contain oxides or alkoxides 52 (for example, Si).
  • the particles 10 for imparting flame retardancy as described above may be used alone or, if necessary, in a flame retardant or a flame retardant different from the particles for imparting flame retardancy. It is blended and kneaded in a polymer material to be used as a substrate (a thermoplastic resin is used in this embodiment) along with a fuel aid, filler, coloring agent such as pigment and dye, dispersant, etc.
  • Compound 5 3 1 The compound 5331 can be formed into master batch particles 32 by, for example, forming into a granular form such as a pellet.
  • the master batch particles 32 have a size of, for example, about 0.1 to 10 mm (for example, about 1 to 4 mm) in terms of a sphere-converted diameter.
  • the shape of the master batch particles 32 is particularly limited. However, as shown in FIG. 3 (b), for example, as shown in FIG. 3 (b), a softened compound is extruded into a strand and cut into a predetermined length to obtain columnar (eg, columnar) particles. .
  • FIGS. 3 (c) and 3 (d) show another example of the shape of the masterbatch particles 32.
  • the former is spherical (for example, it can be manufactured by molding) and the latter is flake. (For example, it can be produced by crushing and sizing a sheet-like material), but the present invention is not limited to this.
  • the injection molding apparatus 501 includes a molding section 502, an injection apparatus 503 such as a screw-type injection apparatus for supplying a molten resin to the molding section 502, and the like.
  • the molding section 502 is a mold 505, a mechanical drive mechanism such as a cam or a crank mechanism for clamping and opening the mold 505, and a fluid pressure mechanism such as an hydraulic cylinder.
  • a runner 521 for supplying molten resin to the mold 505 is provided with an injection nozzle 503 of an injection device 503 via a sprue 503a. b is connected.
  • the injection device 503 includes a heating cylinder 507 0 heated by a heat source such as a band heater 508, and a supply screw 503 driven by a hydraulic motor 513 via a shaft 511. 9 is accommodated therein, and a hopper 510 for supplying a master batch P is provided therein. Master #batch P is supplied from the hopper 5110 by rotating the screw 509, and the polymer material substrate is melted by heating in the heating cylinder 507 to become a molten compound. It is stored in. Thereafter, when the screw 509 is advanced by a predetermined distance by the hydraulic cylinder 511, a predetermined amount of the molten compound is injected into the mold 505 from the nozzle 503b through the runner 521. .
  • a heat source such as a band heater 508
  • the molten compound C injected into the cavity 505a of the mold 505 becomes the polymer composite material of the present invention by solidifying the polymer material substrate, and this is opened. By doing so, it is possible to obtain a polymer composite material Thus, a secondary molded body 36 is obtained.
  • the molded body may be obtained by using the master batch particles 32 alone, but as shown in FIG. 6 (b), the height of the master batch particles 32 may be reduced.
  • the secondary molded body having a particle content smaller than the content in the master batch particles 32 Can also be manufactured.
  • the content of the particles in the secondary compact is determined by the content of the particles in the master batch particles 32 and the mixing ratio of the diluted polymer material particles 40 to the master batch particles 32.
  • the master batch particles to be used in such a diluted state have a high particle content i, for example, 20 to 67% by weight, but the particles are contained in the substrate at such a high content. It is desirable to add a dispersing agent for uniform dispersion.
  • a dispersing agent for example, metal soap can be suitably used.
  • Metallic soap components include, for example, organic acid components such as naphthenic acid (naphthate), lauric acid (laurate), stearic acid (stearate), oleic acid (oleate), 2-ethylhexanic acid (octate), Flax oil or soybean oil fatty acid (linoleate), tall oil (tolate), rosin, etc. (resinate) can be exemplified.
  • examples of the type of metal include the following.
  • Trate type ( Ca , Co, Fe, Pb, Mn, Zn, etc.)
  • Ca stearate and Zn stearate can be mentioned as specific examples of metal segens that are particularly excellent in dispersing effect. It should be noted that in the composite material of metal Seggen If the amount is too large, problems may occur in the strength and homogeneity of the material. If the amount is too small, the dispersing effect becomes insufficient. For example, 0.01 to 3 wt. It is better to select within the range of / 0 (for example, 0.3% by weight).
  • a main agent containing an uncured resin component such as epoxy resin, urethane resin (including urethane rubber) or silicone resin, and a curing agent containing a component for curing the uncured resin component. It is also possible to constitute a two-component mixed type cast resin material, adhesive or paint composed of the flame-retardant polymer composite material of the present invention. More specifically, for this purpose, a main agent containing an uncured resin component and a curing agent for curing the uncured resin component are used.
  • a flame-retardant polymer composite obtained by mixing a base resin and a curing agent with a thermosetting resin as a substrate and dispersing particles for imparting flame retardancy thereto.
  • a composition for producing a flame-retardant polymer composite material from which a material can be obtained can be used.
  • ⁇ FIG. 7 illustrates a specific example using an epoxy resin as an example. That is, the main agent 550 is contained in, for example, a bisphenol-based uncured epoxy resin component, and contains a flame retardant or a flame retardant different from the flame retardant imparting particles, if necessary. It contains a combustion aid, a filler, a colorant such as a pigment or a dye, or a dispersant, and the viscosity is adjusted by an appropriate solvent.
  • the curing agent 551 is obtained by dissolving or dispersing a curing component such as an amine-isocyanate and an acid anhydride in a solvent.
  • a curing component such as an amine-isocyanate and an acid anhydride
  • the two agents 550 and 551 are mixed at a predetermined ratio as shown in (a), and a treatment according to the purpose is performed within the pot life time of the mixed composition 552.
  • the mixed composition 552 is used as a resin material for casting, it is cast into a mold 553 and cured as shown in FIG. To obtain a molded article of a conductive polymer composite material.
  • the mixed composition 552 When the mixed composition 552 is used as a paint, as shown in (c), it is applied to the painted surface of the object 554 and cured to obtain a flame-retardant polymer composite material. Coating film 5 5 5 is obtained. Further, the mixed composition 552 is used as an adhesive. In this case, as shown in (d), this is applied to the bonding surfaces of the adherends 556a and 556b and bonded together, so that the adherends 556a and A bonded bonded structure is obtained.
  • FIG. 8A shows an example in which the flame-retardant particles 10 are fixed in an adhesive form via an adhesive resin layer 560 formed on the surface of the polymer substrate 50.
  • the particles 10 for imparting flame retardancy may be further dispersed in the polymer substrate 50 (the same applies to the following).
  • the surface side of the fixed particles 10 may be further covered with an overcoat 561 made of resin or the like.
  • the flame retardancy-imparting particles 10 are applied to the inner surface of the cavity of the mold 505, and then the cavity is filled with a molten resin 570 and solidified, so that the applied particles 10 are formed into a substrate 50 for forming a molded body 536.
  • FIG. 8 (d) shows that the surface of the particles 10 is previously covered with the fixing resin layer 562, and the fixing resin layer 562 is softened by heating, adhered to the surface of the substrate 50 while being softened, and then the resin is cured.
  • the substrate 50 is preheated at a temperature at which unnecessary deformation does not occur, the fixing resin layer 562 can be easily softened and adhered.
  • FIG. 8 (d) shows that the surface of the particles 10 is previously covered with the fixing resin layer 562, and the fixing resin layer 562 is softened by heating, adhered to the surface of the substrate 50 while being softened, and then the resin is cured.
  • the fixing resin layer 562 can be easily softened and adhered.
  • Example 8 (e) shows a method of embedding the particles 10 in the surface layer of the substrate 50 by projecting or pressing the particles 10 onto the surface of the substrate 50.
  • embedding can be performed easily by softening at least the surface layer of the substrate 50 by heating or the like.
  • the sol composition is placed in a dryer at 150 ° C., and the solvent is volatilized to form a gel composition, which is pulverized to obtain fine powdery gel composition particles (to impart flame retardancy). Particles).
  • the gel composition was analyzed, it was found that the gel composition was a compound containing each element of Si, Zn, 0, N and C.
  • the mixture was put into an injection molding machine and injection molded at 180 ° C into a sample shape for a flame retardancy test.
  • Flame retardant test sample shape based on the UL 94 flammability test, the length 1 25 mm, width 1 3 mm, the flame retardance test sample c prepared above was the thickness 1. 6 mm using, UL 94 flammability As a result of the test, it passed the V-0 standard of the test. Further, it was found that the formed glass ceramic you think that you containing S i 0 2 during combustion residue. In addition, it was confirmed that gas containing nitrogen or nitrogen oxides was generated during combustion.
  • Zinc nitrate hexahydrate as the metal salt (Zn (NO 3) 2 ⁇ 6 ⁇ 2 0) 8.
  • the sol composition was placed in a dryer at 150 ° C., and the solvent was evaporated to form a gel composition, which was pulverized to produce fine powder gel composition particles.
  • Example 1 6.0 g of the gel-like composition particles, 30 g of aluminum hydroxide as in Example 1 as flame-retardant material particles, and 100 g of powdery or pelletized polypropylene as a polymer material substrate were mixed. The mixture was put into an injection molding machine and injection-molded at 180 ° C into a sample shape for a flame-retardant test. Example 1 for sample shape for flame retardancy test And the same.
  • Example 1 7.5 g of the gel composition particles, 20 g of the same aluminum hydroxide as in Example 1 as flame-retardant material particles, and 100 g of powdery or pelletized polypropylene as a polymer material substrate were mixed. The mixture was put into an injection molding machine and injection-molded at 180 ° C into a sample shape for a flame-retardant test. The sample shape for the flame retardancy test was the same as in Example 1.
  • Nickel nitrate hexahydrate as the metal salt (N i (N0 3) 2 - 6H 2 0) 1 1.
  • Ni (N0 3) 2 - 6H 2 0) 1 Put 68 g in ethanol 10 Om 1, were dissolved. 3.47 g of tetraethoxysilane (Si (OC 2 H 5 ) 4 ) was added to the solution, 2.lg of pure water was added dropwise, and the solution was stirred to prepare a sol composition.
  • This sol-like composition was placed in a dryer at 150 ° C., and the solvent was evaporated to form a gel-like composition, which was pulverized to prepare fine powdery gel-like composition particles.
  • the gel composition was analyzed, it was found to be a compound containing each of the elements Si, Ni, 0, N and C.
  • Example 7 7.7 g of the gel composition particles, 20 g of aluminum hydroxide as in Example 1 as the flame-retardant material particles, and 100 g of powdery or pelletized polypropylene as the polymer material substrate. After mixing, the mixture was put into an injection molding machine and injection molded at 180 ° C. into a sample shape for a flame retardancy test. The sample shape for the flame retardancy test was the same as in Example 1.
  • Example 2 75 g of aluminum hydroxide and 100 g of polypropylene as in Example 1 were mixed, then placed in an injection molding machine, and injection molded at 180 ° C into a sample shape for a flame retardancy test.
  • the sample shape for the flame retardancy test is the same as in Example 1.
  • Example 2 30 g of aluminum hydroxide and 100 g of polypropylene as in Example 1 were mixed, then placed in an injection molding machine, and injection molded at 180 ° C. into a sample shape for a flame retardancy test.
  • the sample shape for the flame-retardant test is the same as in Example 1.
  • Example 2 20 g of aluminum hydroxide and 100 g of polypropylene as in Example 1 were mixed, then placed in an injection molding machine, and injection molded at 180 ° C. into a sample shape for a flame retardancy test.
  • the sample shape for the flame retardancy test is the same as in Example 1. This flame retardant test As a result of the test using the test sample in the UL 94 flammability test, the sample ignited immediately after the start of the test.
  • Table 1 summarizes the results of Examples 1 to 4 and Comparative Examples 1 to 3.
  • the amount of each component is shown in parts by weight based on 100 parts by weight of polypropylene (PP resin).
  • PP resin polypropylene
  • SiO 2 a hydrolyzate of tetraethoxysilane
  • zinc nitrate hexahydrate and Ni nitrate hexahydrate contained in the gel composition they are combined in terms of oxide. Indicates the amount.
  • the comparative example in which the gel composition was not blended had almost no flame retardancy, whereas the gel composition was blended in polypropylene as shown in the examples. It was found that even a small amount of the flame-retardant polymer composite material (for example, about 5 to 15 parts by weight) has the effect of imparting flame retardancy.
  • Zinc nitrate hexahydrate ( ⁇ ( ⁇ ,) 2 ⁇ 6 ⁇ 20 ) 93.43 g as metal salt And dissolved in 8 ml of ethanol.
  • 76 g to prepare a sol-like composition in Rukoto to stir the liquid .
  • This sol-like composition was placed in a dryer at 150 ° C., and the solvent was evaporated to form a gel-like composition, which was pulverized to produce fine powdery gel-like composition particles.
  • a sample with a length of 12 Omm, a width of 6.5 mm, and a thickness of 3 mm was prepared for the combustion test using the oxygen index method (JI SK7201). 31% was obtained. Furthermore, a No. 1 test piece was prepared based on the tensile test method (JI SK7113) and tested in the same test, and as a result, a tensile strength of 21.1 X 10 6 [Pa] was obtained.
  • Zinc nitrate hexahydrate (Zn (N_ ⁇ 3) 2 ⁇ 6 ⁇ 2 0) 93. 43 g were placed in ethanol 80 m l as a metal salt were dissolved. The liquid tetraethoxysilane in (S i (OC 2 H 5 ) 4) and 27. 74 g was added and then dropwise pure water 16. 76 g, to prepare a sol-like composition in Rukoto to stir the liquid . This sol-like composition was placed in a dryer at 150 ° C., and the solvent was evaporated to form a gel-like composition, which was pulverized to produce fine powdery gel-like composition particles.
  • Example 5 A mixture of 50 g of aluminum hydroxide having an average particle diameter of 1 ⁇ and 100 g of polypropylene as in Example 5 was then placed in an injection molding machine and injection molded at 180 ° C., and an oxygen index similar to that of Example 5 was obtained. Samples for measurement and tensile test measurement were obtained.
  • Table 2 summarizes the results of Examples 5 and 6 and Comparative Examples 4 and 5 above. The amount of each component is shown in parts by weight based on 100 parts by weight of polypropylene (PP resin). Further, S i 0 2 (hydrolyzate of tetraethoxysilane) contained in the gel composition, and shows the amount in value of the terms of oxide for zinc nitrate hexahydrate. Table 2
  • the polypropylene added with the gel composition has a high oxygen index value, that is, a high flame retardancy.
  • a high oxygen index value that is, a high flame retardancy.
  • aluminum hydroxide having a large average particle size (Example 6) is used, resin properties (tensile strength) are reduced, while aluminum hydroxide (Example 5) having a small average particle size is used. It can be seen that flame retardancy can be improved while maintaining resin properties (tensile strength) (Example 7).
  • Cupric nitrate trihydrate as a metal salt (Cu (N0 3) 2 ' 3H 2 0) 9. llg was placed in ethanol 3 Om 1, were dissolved. 3,47 g of tetraethoxysilane (Si (OC 2 H 5 ) 4 ) was added to the solution, and then 2.07 g of pure water was added dropwise, and the solution was stirred to prepare a sol-like composition. . 100 g of a polypropylene resin powder having an average particle diameter of 650 ⁇ was added to the sol composition as carrier material particles, and mixed with stirring.
  • sol-gel coating a coating film of a gel-like composition (compound layer) on the resin surface
  • coating using the sol-gel method was referred to as sol-gel coating).
  • the components of the coating film are estimated. For this reason, when the gel composition obtained by drying only the sol composition was analyzed, it was found that it was a compound containing each element of Si, Cu, 0, N and C.
  • the weight ratio in the combustion residue is 1 part by weight of SiO 2 and 100 parts by weight of the resin as carrier material particles in terms of oxide conversion. u O was 3 parts by weight.
  • the sol-gel coated powder was put into an injection molding machine and injection-molded at 200 ° C into a sample shape for a flame-retardant test.
  • the sample shape for the flame retardancy test was 125 mm long, 13 mm wide and 1.6 mm thick based on the UL 94 flammability test.
  • the support material particles polypropylene
  • the coated compound portion is dispersed in the matrix and has the same structure as that of the flame-retardant polymer composite material described above. Form.
  • Zinc nitrate hexahydrate (Zn (NO 3) 2 ⁇ 6 ⁇ 2 0) 10. 97 g were placed in ethanol 3 Om l as a metal salt were dissolved. 3.47 g of tetraethoxysilane (Si (OC 2 H 5 ) 4 ) was added to the solution, and then 2.07 g of pure water was added dropwise, and the solution was stirred to prepare a sol-like composition. . 100 g of propylene resin powder as support material particles was put into the sol composition, and mixed with stirring. Thereafter, the mixture was placed in a dryer at 90 ° C., and the solvent was evaporated to form a coating film of the gel composition (compound layer) on the resin surface.
  • tetraethoxysilane Si (OC 2 H 5 ) 4
  • the gel composition obtained by drying only the sol composition was analyzed, it was found to be a compound containing each element of Si, Zn, 0, N and C. I understand.
  • the weight ratio in the combustion residue was calculated as oxide 2 l parts by weight and Zn 03 parts by weight with respect to 100 parts by weight of resin as carrier material particles in terms of oxide. Met.
  • the sol-gel coated powder was injection-molded in the same manner as in Example 7 into a sample shape for a flame-retardant test.
  • the carrier material particles (polypropylene) form a matrix after molding, and the coated compound portion is dispersed in the matrix, and has the same morphology as the flame-retardant polymer composite material described above. Become. Using the prepared sample for flame retardancy test, it was tested in UL 94 flammability test. As a result, it passed the V-2 standard of the test.
  • Ferric nitrate nonahydrate as metal salt (F e ( ⁇ 3) 2 ⁇ 9 ⁇ 2 0) 16. Put 87 g in E methanol 3 Om 1, were dissolved. 3.47 g of tetraethoxysilane (Si (OC 2 H 5 ) 4 ) was added to the solution, and then 2.07 g of pure water was added dropwise, and the solution was stirred to produce a sol composition. 100 g of polypropylene resin powder as carrier material particles was put into this sol composition, and mixed with stirring. Thereafter, the mixture was placed in a dryer at 90 ° C., and the solvent was evaporated to form a coating film of the gel composition (compound layer) on the resin surface.
  • tetraethoxysilane Si (OC 2 H 5 ) 4
  • the gel composition obtained by drying only the sol composition was analyzed, a compound containing each element of Si, Fe, 0, N and C was obtained. I understood that.
  • the weight ratio in the combustion residue was calculated as oxide 2 l parts by weight, 100 parts by weight of resin as carrier material particles, and Fe 2 parts by weight. ⁇ 3 parts by weight.
  • the sol-gel coated powder was injection-molded in the same manner as in Example 7 into a sample shape for a flame-retardant test.
  • the support material particles (polypropylene) force S form a matrix after molding, and the coated compound portion is dispersed in the matrix, and has the same morphology as the flame-retardant polymer composite material described above. Becomes Using the prepared sample for flame retardancy test in the UL 94 flammability test, it passed the V-2 standard of the test.
  • the powder on which the deposits were formed was mixed with a polypropylene powder or pellet as a substrate similar to that in Example 7, and injection-molded into a sample shape for flame retardancy test in the same manner as in Example 7. .
  • Zn05 parts by weight was used for 100 parts of the resin in terms of an acid substance.
  • main component or “mainly” is used to mean a component having the highest weight content unless otherwise specified.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

A flame-retardant polymer composite material characterized in that the composite material comprises a substrate (50) comprising a polymer material such as a resin and, dispersed therein or attached to the surface thereof by coating or the like, composite particles (10) for imparting flame retardancy which forms, upon heating, a glass-like ceramic containing oxides of silicon and/or a metal as main components; a composition for producing the flame-retardant polymer composite material; and a formed product of the flame-retardant polymer composite material. When the flame-retarded material is heated to a high temperature, compounds in composite particles (10) for imparting flame retardancy form, due to heat, a protective film hindering the material from burning, and as a result, the flame-retarded material can acquire, at a low cost, a high flame retardancy, for example, a flame retardancy satisfying the level of V-0 to V-2 according to UL94 flammability test. The formation of a protective film also allows the provision of satisfactory flame retardancy to the flame-retarded material by incorporation of a small amount of the compounds in the composite particles.

Description

明 細 書 難燃性高分子複合材料、 難燃性高分子複合材料製造用組成物、 難燃性高分子複合 材料成形体、 難燃性高分子複合材料成形体製造用マスターバッチ、 及び難燃性高分 子複合材料の製造方法 技術分野  Description Flame retardant polymer composite material, composition for producing flame retardant polymer composite material, flame retardant polymer composite material molded article, master batch for producing flame retardant polymer composite material molded article, and flame retardant Method for manufacturing polymer composites
本発明は、 難燃性高分子複合材料、 難燃性高分子複合材料製造用組成物及び難燃 性高分子複合材料成形体、 難燃性高分子複合材料成形体製造用マスタ一バッチ、 及 び難燃性高分子複合材料の製造方法に関する。 背景技術  The present invention relates to a flame-retardant polymer composite material, a composition for producing a flame-retardant polymer composite material, a flame-retardant polymer composite material molded article, a master batch for producing a flame-retardant polymer composite material molded article, and And a method for producing a flame-retardant polymer composite material. Background art
榭脂材料 (高分子材料) は、 化学的、 物理的に優れた性能を有し、 成形性及び加 ェ性にも優れていることにより、 広範囲な分野で使用され、 需要が伸びているが、 殆どの樹脂材料は燃えやすいのが大きな欠点であるため、 その使用が制限されてお り、 樹脂材料の難燃化が望まれている。  Resin materials (polymer materials) are used in a wide range of fields due to their excellent chemical and physical properties and excellent moldability and additivity, and demand is growing. However, the major drawback of most resin materials is that they are flammable, so their use is restricted, and flame retardancy of resin materials is desired.
樹脂材料を難燃化するための難燃剤としては、 ハロゲン系難燃剤が主流であるが, ハロゲン系難燃剤から発生するダイォキシンやフランの問題から環境保護上好まし くなく、 エコロジカルな難燃剤の開発、 実用化が望まれている。 ノンハロゲン系の リン系難燃剤もリンの水素化物であるホスフィンが発生し、 好ましくない。  Halogen-based flame retardants are the mainstream flame retardants used to make resin materials flame-retardant, but they are not environmentally friendly due to dioxins and furans generated from halogen-based flame retardants. The development and commercialization of this is desired. Non-halogen phosphorus-based flame retardants are not preferred because phosphine, which is a hydride of phosphorus, is generated.
また、 水酸化アルミニウムや水酸化マグネシウム等の無機系難燃剤があり、 水酸 化アルミニウムは低有害性、 低発煙性、 電気絶縁性も良好、 しかも低コストである ため難燃剤の中では需要量も多い。 し力 し、 問題点として機械的性質、 耐水性の低 下、 多量 (1 5 0部以上) 配合するためのコンパウンドの粘度上昇、 4 0 0 °C以上 の高温での難燃効果が低いこと、 あるいは成形加工温度が高い樹脂の加工時に脱水 発泡し易い等がある。 In addition, there are inorganic flame retardants such as aluminum hydroxide and magnesium hydroxide.Aluminum hydroxide has low toxicity, low smoke emission, good electrical insulation, and low cost. There are many. However, there are problems with mechanical properties, reduced water resistance, increased viscosity of the compound for compounding a large amount (150 parts or more), and low flame retardancy at high temperatures of 400 ° C or more. Dehydration during processing of resin with high processing temperature It is easy to foam.
また、 水酸化マグネシウムは水酸化アルミニウムと同様の難燃効果があり、 水酸 化アルミニウムの欠点である樹脂の加工温度での脱水発泡がないが、 酸に対して弱 く、 湿度の高い条件では空気中の炭酸ガスと反応して炭酸マグネシゥムが生成して 白化したり、 コストが水酸化アルミニウムに比べ高い等の欠点がある。 なお、 これ らの無機系難燃剤は単独では難燃効果が小さいため、 他の難燃剤との併用が必要で もある。  Magnesium hydroxide has the same flame-retardant effect as aluminum hydroxide, and there is no dehydration and foaming at the processing temperature of resin, which is a drawback of aluminum hydroxide.However, it is weak against acids and under high humidity conditions. It reacts with carbon dioxide in the air to produce magnesium carbonate and whitens, and has the disadvantages of higher cost than aluminum hydroxide. Since these inorganic flame retardants alone have a small flame-retardant effect, it is necessary to use them together with other flame retardants.
本発明は上記した従来の問題点を解決して、 安価で高い難燃性を示す難燃性高分 子複合材料と、 それを製造するための難燃性高分子複合材料製造用組成物、 該難燃 性高分子複合材料にて構成された成形体、 難燃性高分子複合材料成形体製造用マス タ一バッチ、 及び難燃性高分子複合材料の製造方法を提供しょうとするものである < 発明の開示  The present invention solves the above-mentioned conventional problems, and provides a flame-retardant polymer composite material which is inexpensive and exhibits high flame retardancy, a composition for producing a flame-retardant polymer composite material for producing the same, A molded article composed of the flame-retardant polymer composite material, a master batch for producing a flame-retardant polymer composite material molded article, and a method for producing a flame-retardant polymer composite material are provided. Yes <Disclosure of the Invention
上記の課題を解決するために、 本発明の難燃性高分子複合材料の第一の構成は、 珪素成分及び Z又は金属成分と酸素とを含有する化合物を主体とし、 加熱により珪 素及び 又は金属の酸化物を主体とするガラス質セラミックスを生ずる難燃性付与 用粒子が、 高分子材料からなる基質 (以下、 高分子基質ともいう) 中に分散された ことを特徴とする。  In order to solve the above-mentioned problems, a first configuration of the flame-retardant polymer composite material of the present invention is mainly composed of a compound containing a silicon component and Z or a metal component and oxygen, and is heated by heating to silicon and / or The present invention is characterized in that the particles for imparting flame retardancy to produce glassy ceramics mainly composed of metal oxides are dispersed in a matrix made of a polymer material (hereinafter also referred to as a polymer matrix).
また、 本発明の難燃性高分子複合材料の第二の構成は、 珪素成分及び 又は金属 成分と酸素とを含有する化合物を主体とし、 加熱により珪素及びノ又は金属の酸化 物を主体とするガラス質セラミックスを生ずる難燃性付与用粒子が、 高分子材料か らなる基質の表面に定着されたことを特徴とする。 該構成は、 上記した第一の構成 と組み合わせることも可能である。  Further, the second configuration of the flame-retardant polymer composite material of the present invention is mainly composed of a compound containing a silicon component and / or a metal component and oxygen, and mainly composed of silicon and a metal oxide by heating. The present invention is characterized in that the particles for imparting flame retardancy to produce glassy ceramics are fixed on the surface of a substrate made of a polymer material. This configuration can be combined with the first configuration described above.
上記構成によれば、 加熱により珪素及び /又は金属の酸化物を主体としたガラス 質セラミックスを生ずる難燃性付与用粒子を、 樹脂等の高分子材料からなる基質 ( すなわち、 難燃性付与対象材料) 中に分散及び 又はコ一ティング等により表面に 定着することにより、 例えば難燃性付与対象材料に高熱 (例えば 5 0 0 °C以上) が 付与された場合に、 その高熱により難燃性付与用粒子の化合物が燃焼を阻害する保 護膜を形成する。 その結果、 難燃性付与対象材料に対して高い難燃性、 例えば U L 9 4燃焼性試験 (本明細書では、 第 5版: 1 9 9 6年 1 0月 2 6日によるものを採 用する) にてテストしたときに、 V—0〜V— 2の範囲を充足する難燃性能を付与 することが可能となる。 また、 保護膜の形成効果により、 難燃性付与対象材料への 配合量が少量でも十分な難燃性能を付与することが可能となり、 結果として上記粒 子を含めた難燃剤の配合量を削減できるので、 最終的に得られる材料の強度や耐久 性、 さらには成形性や流動性 (例えば射出成形可能な材質の場合には、 金型中での 流れ性) 等も従来の難燃剤を用いた場合よりも向上できる効果、 すなわち強度ゃ耐 久性、 成形性、 流動性等の低下を抑制できる効果も達成できる。 According to the above configuration, the particles for imparting flame retardancy, which produce vitreous ceramics mainly composed of silicon and / or metal oxides by heating, are formed on a substrate made of a polymer material such as resin. In other words, by dispersing in and / or coating on the surface of the material to be imparted with flame retardancy, for example, when high heat (for example, 500 ° C or more) is applied to the material to be imparted with flame retardancy, However, due to the high heat, the compound of the particles for imparting flame retardancy forms a protective film that inhibits combustion. As a result, the material to which the flame retardancy is to be imparted has high flame retardancy, for example, UL94 flammability test (In this specification, the one based on the 5th edition: October 26, 1996, was adopted. It is possible to provide flame-retardant performance that satisfies the range of V-0 to V-2. In addition, due to the effect of forming the protective film, it is possible to impart sufficient flame retardancy even if the compounding amount to the material to which flame retardancy is to be added is small, and as a result, the compounding amount of the flame retardant including the above particles is reduced. The conventional flame retardant can be used for the strength and durability of the final material, as well as its moldability and fluidity (for example, in the case of a material that can be injection molded, its flowability in the mold). An effect that can be improved as compared with the case where it is provided, that is, an effect of suppressing a decrease in strength, durability, moldability, fluidity, and the like can also be achieved.
上記のような難燃性付与用粒子を構成する化合物に含まれる珪素成分及び 又は 金属成分は、 加熱による酸化等も相俟ってガラス質セラミックスを生じやすく、 ま た、 その生成される珪素及び Z又は金属の酸化物を主体とするガラス質セラミック スは耐熱性が高いため、 高熱が付加されたときに極めて強力な保護膜となって、 難 燃性付与対象材料に対して一層高い難燃性を付与することが可能となる。 なお、 上 記のようなガラス質セラミックは、 初めから化合物の一部をなすものとして存在し ていてもよいし、 化合物の一部又は全部が加熱されたときにガラス質セラミックに 転化する形態でもよい。 また、 金属成分としては、 例えば T i、 C u、 A l、 Z n , N i及び Z r、 あるいはその他の遷移金属元素の 1種又は 2種以上を採用すること ができる。 なお、 本発明の難燃性高分子複合材料においては、 U L 9 4燃焼性試験 にてテス卜したときに、 その燃焼残留物中の珪素成分の酸化物換算重量含有率 WSi と、 同じく金属成分の酸ィヒ物換算重量含有率 WMとの合計 WSi +WMが、 0 . 5〜6 0重量%となっているのがよい。 WSi +WMが 0 . 5重量%を超えると、 複合材料の 強度 (例えば引張強度等) や伸びといった機械的性質が損なわれやすくなり、 WSi +WMが 6 0重量%未満では難燃性能向上効果への寄与が不十分となる場合がある。 なお、 珪素成分は S i〇2に換算する。 また、 金属成分を含有する場合は、 各金属成 分を、 含有される金属イオンの価数 (X線光電子分光法により特定可能である) に 対応する組成の酸化物に換算する。 例えば Z n 2 +が検出されれば対応する酸化物は Z n Oであり、 C u +が検出されれば対応する酸化物は C u 20である。 The silicon component and / or the metal component contained in the compound constituting the particles for imparting flame retardancy as described above is liable to produce glassy ceramics in combination with the oxidation and the like caused by heating. Since vitreous ceramics mainly composed of Z or metal oxides have high heat resistance, they become an extremely strong protective film when high heat is applied, and provide even higher flame retardancy for the material to which flame retardancy is to be imparted. Property can be imparted. The vitreous ceramic as described above may exist as a part of the compound from the beginning, or may be converted to a vitreous ceramic when a part or all of the compound is heated. Good. As the metal component, for example, one or more of Ti, Cu, Al, Zn, Ni, and Zr, or other transition metal elements can be used. In the flame-retardant polymer composite material of the present invention, when tested in the UL 94 flammability test, the silicon-converted weight content WSi of the silicon component in the combustion residue was the same as the metal component. It is preferable that the total WSi + WM with the acid content in terms of acid content of WM be 0.5 to 60% by weight. When WSi + WM exceeds 0.5% by weight, the composite material Mechanical properties such as strength (eg, tensile strength) and elongation tend to be impaired, and if WSi + WM is less than 60% by weight, contribution to the effect of improving flame retardancy may be insufficient. Incidentally, the silicon component is converted into S I_〇 2. When a metal component is contained, each metal component is converted to an oxide having a composition corresponding to the valence of the contained metal ion (which can be specified by X-ray photoelectron spectroscopy). For example, if Z n 2 + is detected, the corresponding oxide is Z n O, and if Cu + is detected, the corresponding oxide is Cu 20 .
難燃性付与用粒子は、 例えば不純物成分等の形で不可避的に混入するものを除い て、 塩素あるいはフッ素等のハロゲン成分を含有しないものとして構成することも できる。 これにより、 高熱付加時に従来のような有害ガスを発生しないためェコロ ジカルな難燃性材料が実現できる。  The particles for imparting flame retardancy may be configured so as to contain no halogen component such as chlorine or fluorine, except for particles that are inevitably mixed in the form of, for example, impurity components. This makes it possible to realize ecological flame-retardant materials because no harmful gas is generated as in the past when high heat is applied.
次に、 上記化合物は炭素成分を含有するものとして形成できる。 これにより、 当 該難燃性付与用粒子を難燃性付与対象材料に複合させる際のなじみ性 (親和性) を 向上させ、 難燃性付与対象材料に対して難燃性付与用粒子を均一に分散させること が可能となる他、 例えば難燃性付与対象材料を成形する際の成形性等も向上させる ことが可能である。  Next, the above compounds can be formed as containing a carbon component. As a result, the compatibility (affinity) when the particles for imparting flame retardancy are combined with the material for imparting flame retardancy is improved, and the particles for imparting flame retardancy are made uniform with respect to the material for imparting flame retardancy. In addition to being able to be dispersed, it is also possible to improve, for example, the moldability when molding the material to be imparted with flame retardancy.
次に、 当該難燃性付与用粒子は、 加熱により燃焼阻害性気体を分解生成するもの とすることができる。 この場合、 難燃性付与対象材料に高熱が付与された場合に、 燃焼阻害性気体が発生し、 該燃焼阻害性気体が難燃性付与対象材料への難燃効果を さらに向上させる。 この難燃性向上は、 燃焼阻害性気体により燃焼のための酸素が、 難燃性付与対象材料付近において相対的に減少するためであると推測される。  Next, the particles for imparting flame retardancy can decompose and generate a combustion inhibiting gas by heating. In this case, when high heat is applied to the flame-retardant material, a combustion-inhibiting gas is generated, and the combustion-inhibiting gas further enhances the flame-retardant effect on the flame-retardant material. This improvement in flame retardancy is presumed to be due to the relative decrease in oxygen for combustion by the combustion inhibiting gas in the vicinity of the material to which flame retardancy is to be imparted.
具体的に、 燃焼阻害性気体としては、 窒素、 硫黄及び炭素の 1種又は 2種以上を 含有するものが生成されるものとすることができる。 この場合、 例えば窒素含有ガ スとしては N 2ガスや N 02ガス、 N Oガス、 硫黄含有ガスとしては S 0 2ガス、 炭素 含有ガスとしては C 02ガス等が発生し、 それらが難燃性付与対象材料への難燃効果 をさらに向上させる。 一方、 当該難燃性付与用粒子の平均粒径は、 0. 05〜500 /zmとするのがよ レ、。 平均粒径が 0. 05 /im未満の場合、 当該難燃性付与用粒子の製造が困難にな る場合がある他、 難燃性付与対象材料へ複合 (添加) した場合に偏在が生じて複合 (添加) を均一にできない場合があるため、 難燃性付与効果が低下したり、 難燃性 付与対象材料の性能が特にその偏在領域において低下したりする場合がある。 また, 500 /imを超える場合、 複合 (添加) した粒子の分布が不均一になる場合があ 他、 難燃性付与対象材料の特性、 例えば樹脂であれば流動性等の性質が低下したり, 難燃性付与対象材料が外観不良を起こしたりする場合がある。 なお、 平均粒径の測 定は、 例えばレーザー回折式粒度計を用いることができる。 この場合、 レーザー回 折式粒度計による測定では、 入射レーザー光の凝集粒子による回折挙動と、 孤立し た一次粒子による回折挙動とで大きな差異を生じないため、 測定された粒径が、 一 次粒子単体で存在するものの粒径なのか、 あるいはこれが凝集した二次粒子の粒径 なのかが互いに区別されない。 したがって、 該方法で測定した平均粒径は、 凝集を 起こしていない孤立した一次粒子も広義に含めた二次粒子の平均粒径を反映した値 となる。 なお、 難燃性付与用粒子の平均粒径は、 望ましくは 0. 1〜300 μπιと するのがよレ、。 Specifically, as the combustion inhibiting gas, a gas containing one or more of nitrogen, sulfur and carbon can be generated. In this case, C 0 2 gas or the like occurs, for example nitrogen-containing N 2 gas and N 0 2 gas was used as gas, NO gas, S 0 2 gas as the sulfur-containing gas, as the carbon-containing gas, they are flame retardant Further enhance the flame retardant effect on the material to which the property is to be imparted. On the other hand, the average particle diameter of the particles for imparting flame retardancy is preferably 0.05 to 500 / zm. If the average particle size is less than 0.05 / im, it may be difficult to manufacture the particles for imparting flame retardancy, and uneven distribution may occur when compounded (added) to the material to be imparted with flame retardancy. Since the composite (addition) may not be uniform, the effect of imparting flame retardancy may decrease, or the performance of the material to which flame retardancy is imparted may decrease, particularly in the uneven distribution region. If it exceeds 500 / im, the distribution of the compounded (added) particles may be non-uniform, and the properties of the material to which flame retardancy is to be imparted, such as the flowability of a resin, may be reduced. In some cases, the material to which the flame retardant is to be imparted has poor appearance. The average particle size can be measured by using, for example, a laser diffraction type particle size analyzer. In this case, since the diffraction behavior of the incident laser light by the aggregated particles and the diffraction behavior by the isolated primary particles do not greatly differ in the measurement by the laser diffraction type particle sizer, the measured particle size is It cannot be distinguished from each other whether the particle size exists as a single particle or the particle size of the aggregated secondary particles. Therefore, the average particle size measured by this method is a value reflecting the average particle size of the secondary particles, which broadly includes isolated primary particles that do not cause aggregation. The average particle size of the particles for imparting flame retardancy is desirably 0.1 to 300 μπι.
なお、 基質を形成する高分子材料は、 例えば、 ポリエチレン (ΡΕ) 、 ポリプロ ピレン (ΡΡ) 、 ポリスチレン (PS) 、 アクリロニトリル 'ブタジエン 'スチレ ン (ABS) 、 アクリル榭脂等の汎用樹脂、 変性ポリフエ二レンェ一テル (ΡΡΕ ) 、 ポリカーボネート (PC) 、 ポリブチレンテレフタレート (PBT) 、 ポリエ チレンテレフタレート (PET) 、 ポリアミ ド (PA) 等のエンジニアリングプラ スチック及び PCZAB Sァロイ、 PCZPBTァロイ、 PCZPETァロイ、 P C /エラストマ一、 PAZPP、 PAノエラストマー等のポリマ一ァロイ等、 さら には、 イソプレン系、 二トリル系、 エポキシ系等のゴム、 エポキシ榭脂、 不飽和ポ リエステル榭脂、 フヱノール樹脂、 メラミン樹脂等の熱硬化性樹脂を用いることが できるが、 これらに限定されるものではない。 The polymer material forming the substrate is, for example, a general-purpose resin such as polyethylene (ΡΡ), polypropylene (ΡΡ), polystyrene (PS), acrylonitrile 'butadiene' styrene (ABS), acrylic resin, and modified polyphenylene. Engineering plastics such as polyester (ΡΡΕ), polycarbonate (PC), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), and polyamide (PA), and PCZAB Salloy, PCZPBT alloy, PCZPET alloy, PC / elastomer 1.Polymer alloys such as PAZPP, PA elastomer, etc., and heat of isoprene-based, nitrile-based, epoxy-based rubber, epoxy resin, unsaturated polyester resin, phenol resin, melamine resin, etc. Use of curable resin Yes, but not limited to these.
本発明の高分子複合材料においては、 上記の化合物からなる難燃性付与用粒子と ともに、 無機系又は有機系の難燃剤粒子又は難燃助剤粒子 (これらを総称する場合 は、 難燃材料粒子ともいう) を分散配合することもできる。 難燃性付与用粒子の難 燃性付与効果に加えて、 難燃材料粒子の難燃性付与効果も相乗的に加わるため、 さ らに高い難燃効果を達成できる。 難燃材料粒子としては、 例えば、 エコロジカルな ノンハロゲン系難燃材料である水和金属化合物、 白雲母、 金雲母、 黒雲母、 絹雲母 等の雲母類、 カオリン、 滑石、 沸石、 ホウ砂、 ダイァスポア、 石膏等の鉱物類、 酸 化マグネシウム、 酸化アルミニウム、 二酸化珪素等の金属酸化物、 炭酸カルシウム 等の金属化合物、 赤燐、 ポリリン酸アンモニゥム等のリン系化合物、 窒素系化合物 等に代表される無機系難燃材料粒子 (無機材料系粒子) 、 及びリン系、 シリコーン 系、 窒素系の有機系難燃材料粒子、 さらには金属粉末粒子 (金属材料系粒子) 等を 用いることができる。 このような難燃材料粒子は、 例えば平均粒径 0 . 0 5〜1 0 O ju mのものを用いることが好ましい。 平均粒径が上記下限値未満の場合、 製造が 困難になる場合がある他、 高分子基質へ複合 (添加) した場合に偏在が生じ、 複合 (添加) を均一にできない場合があるため、 難燃性付与効果が低下したり、 高分子 基質の性能が特にその偏在領域において低下したりする場合がある。 また、 上限値 を超える場合、 複合 (添加) した粒子の分布が不均一になる場合がある他、 高分子 基質の特性、 例えば流動性等の性質が低下したり、 得られる難燃性高分子複合材料 において外観不良を起こしたりする場合がある。 特に、 無機材料系粒子としては、 水酸化アルミニゥム及び水酸化マグネシゥムの少なくともレ、ずれかを主成分とする ものを使用すると、 基質への難燃性付与効果が一層高まる。 なお、 平均粒径の測定 は、 例えばレーザー回折式の粒度測定装置を用いて行うことができる。 金属粒子 ( 例えば、 A l、 N i、 M gを主成分とする金属) を使用した場合、 難燃性付与効果 の向上に加え、 例えば本発明の複合材料を電子機器の筐体等に使用すれば、 有害電 磁波の漏洩を遮蔽する電磁遮蔽効果も合わせて達成することができる。 In the polymer composite material of the present invention, inorganic or organic flame retardant particles or flame retardant auxiliary particles together with the flame retardant imparting particles comprising the above compound (when these are collectively referred to, the flame retardant material (Also referred to as particles). In addition to the effect of imparting the flame retardancy of the particles for imparting flame retardancy, the effect of imparting the flame retardancy of the flame retardant material particles is also synergistically added, so that a higher flame retardant effect can be achieved. Examples of the flame-retardant material particles include ecological non-halogen flame-retardant hydrated metal compounds, mica such as muscovite, phlogopite, biotite, sericite, kaolin, talc, zeolite, borax, and diaspore. , Gypsum and other minerals, metal oxides such as magnesium oxide, aluminum oxide and silicon dioxide, metal compounds such as calcium carbonate, phosphorus-based compounds such as red phosphorus and ammonium polyphosphate, and inorganics typified by nitrogen-based compounds Flame-retardant material particles (inorganic material particles), phosphorus-based, silicone-based, nitrogen-based organic flame-retardant material particles, and metal powder particles (metal material-based particles) can be used. It is preferable to use, for example, such flame-retardant material particles having an average particle size of 0.05 to 10 O jum. If the average particle size is less than the above lower limit, the production may be difficult, and if the composite (addition) is made to a polymer substrate, uneven distribution may occur, and the composite (addition) may not be uniform. The effect of imparting flammability may be reduced, or the performance of the polymer substrate may be reduced particularly in the unevenly distributed region. If the upper limit is exceeded, the distribution of the compounded (added) particles may become non-uniform, and the properties of the polymer substrate, for example, properties such as fluidity may be reduced, or the resulting flame-retardant polymer may be obtained. The appearance of the composite material may be poor. In particular, when the inorganic material-based particles are mainly composed of at least one of aluminum hydroxide and magnesium hydroxide, the effect of imparting flame retardancy to the substrate is further enhanced. The average particle size can be measured using, for example, a laser diffraction type particle size measuring device. When metal particles (for example, a metal mainly composed of Al, Ni, and Mg) are used, the composite material of the present invention is used for, for example, a housing of an electronic device, in addition to improving the effect of imparting flame retardancy. If you do, harmful electricity An electromagnetic shielding effect of shielding leakage of magnetic waves can also be achieved.
次に、 上記本発明の難燃性高分子複合材料は、 所定の形状に成形することにより 種々の用途に適した難燃性高分子複合材料成形体を得ることができる。 成形方法は 特に限定されるものではなく、 プレス成形、 ブロー成形、 押出し成形、 射出成形あ るいはカレンダ加工など任意な成形方法を用いることができる。 また、 高分子材料 の芯材に、 上記の化合物をコ一ティングして成形用複合粒子を作り、 その複合粒子 の芯材を軟化させつつ上記の成形を行うことも可能である。 この場合、 複合粒子の 芯材部分が成形後には基質を形成することとなり、 コーティングされた化合物部分 はその基質中に分散して、 本発明の難燃性高分子複合材料の組織が形成されること となる。  Next, by molding the flame-retardant polymer composite material of the present invention into a predetermined shape, a flame-retardant polymer composite material molded article suitable for various uses can be obtained. The molding method is not particularly limited, and any molding method such as press molding, blow molding, extrusion molding, injection molding or calendaring can be used. It is also possible to form the composite particles for molding by coating the above compound on a core material of a polymer material, and to perform the above molding while softening the core material of the composite particles. In this case, the core portion of the composite particles forms a matrix after molding, and the coated compound portion is dispersed in the matrix to form the structure of the flame-retardant polymer composite material of the present invention. It will be.
上記難燃性高分子複合材料成形体は、 例えば高分子基質の軟化を伴う再成形を前 提としない、 最終成形体 (最終的な成形製品はこれに当たる) として構成すること ができる。 その適用対象は、 難燃性が要求されるあらゆる成形製品であり、 特に限 定されるものではないが、 一例を挙げれば以下の通りである。  The above-mentioned flame-retardant polymer composite material molded article can be constituted as a final molded article (final molded product corresponds to this), for example, without assuming remolding accompanied by softening of the polymer matrix. The applicable object is any molded product that requires flame retardancy and is not particularly limited, but examples are as follows.
· 自動車部品:インパネ等の内装部品、 バンパー等の外装部品、 エンジン内のブラ スチック部品等。  · Automotive parts: Interior parts such as instrument panels, exterior parts such as bumpers, plastic parts in engines, etc.
'—般弱電製品:テレビ、 ビデオ、 パソコン、 オーディオプレーヤー、 電子レンジ 等の家電製品の筐体その他の部品部材  '—Generally weak electrical appliances: Housing and other parts for home appliances such as TVs, videos, personal computers, audio players, microwave ovens, etc.
•建築用部材 (内装部材、 外装部材)  • Architectural components (interior components, exterior components)
·繊維製品 (衣料、 敷物、 カーテンなど)  · Textile products (clothing, rugs, curtains, etc.)
• ゴムあるいはエラストマ一部材:床材、 シーリング部材、 耐震材など (基質をな す高分子材料をゴムあるいはエラストマ一とする必要がある)  • Rubber or elastomer material: flooring, sealing material, seismic material, etc. (The polymer material used as the substrate must be rubber or elastomer)
• シート状部材、 塗料等。  • Sheet materials, paints, etc.
—方、 成形体は、 高分子基質を軟化させて所期の二次形状に再成形するための仮 成形体とすることもできる。 このような仮成形体を使用することで、 最終的な成形 体製品の製造効率を大幅に高めることができる。 例えば使用する高分子基質の材質 が流動性に欠ける場合には、 最終的な二次形状に個別に対応した中間形状を有する プレフオームを仮成形体として使用することで、 局所的な材料流動のばらつきを抑 制することができ、 欠陥の少ない製品を能率よく製造することができる。 — On the other hand, the molded article can be a temporary molded article for softening the polymer matrix and re-forming it into the desired secondary shape. By using such a temporary molding, the final molding The production efficiency of body products can be greatly increased. For example, when the material of the polymer substrate used lacks fluidity, local irregularities in material flow can be achieved by using a preform having an intermediate shape that individually corresponds to the final secondary shape as a temporary molded body. And products with few defects can be manufactured efficiently.
一方、 仮成形体は、 前記難燃性付与用粒子が高分子基質中に分散された粒状成形 物とし、 個々の粒状成形物よりも大体積の二次形状に再成形するためのマスタ一バ ツチとすることもできる。 具体的に、 難燃性高分子複合材料の成形体製造用マスタ —バッチ (以下、 単にマスタ一バッチとも称する) の構成は、 珪素成分及び 又は 金属成分と酸素とを含有する化合物を主体とし、 加熱により珪素及び Z又は金属の 酸化物を主体とするガラス質セラミックスを生ずる難燃性付与用粒子が、 高分子材 料からなる基質中に分散された粒状成形物として構成され、 個々の粒状成形物より も大体積の二次形状に再成形するために使用されることを特徴とする。 このような マスターバッチは、 射出成形機などの種々の成形機において、 流動性の高い成形用 素地として活用することができ、 ひいては成形工程の簡略化と高能率化に大きく寄 与する。 この場合、 マスターバッチは、 高分子基質とは同質または異質の高分子材 料からなる希釈高分子材料とともに再成形することにより、 自身よりも難燃性付与 用粒子の含有量が小さい二次成形体を製造するために使用することができる。 この ようにすることで、 最終的な二次成形体中の難燃性付与用粒子の含有率を、 希釈高 分子材料に対するマスタ一バッチの配合比率を変更することにより、 自由にしかも 簡単に調整することが可能になる。 また、 マスターバッチの製造時に高分子基質と 難燃性付与用粒子との混練を行い、 さらに成形時に、 そのマスタ一バッチが希釈高 分子材料と混合されることで、 高分子基質中への難燃性付与用粒子の分散がいわば 2段階に図られ、 最終的に得られる二次成形体中の粒子の分散状態をより均一なも のとすることができるようになる。  On the other hand, the temporary molded body is a granular molded article in which the particles for imparting flame retardancy are dispersed in a polymer matrix, and is used as a master bar for reshaping into a secondary shape having a larger volume than each granular molded article. It can be made as a stick. Specifically, the master-batch (hereinafter, also simply referred to as a master batch) for manufacturing a molded body of a flame-retardant polymer composite material mainly includes a compound containing a silicon component and / or a metal component and oxygen, Particles for imparting flame retardancy, which produce glassy ceramics mainly composed of silicon and Z or metal oxides by heating, are composed as granular molded products dispersed in a matrix made of a polymer material, and each granular molded It is characterized by being used for reshaping into a secondary shape that has a larger volume than an object. Such a masterbatch can be used as a molding base having high fluidity in various molding machines such as an injection molding machine, and greatly contributes to simplification of a molding process and higher efficiency. In this case, the masterbatch is remolded together with a dilute polymer material consisting of a polymer material of the same or different nature as the polymer substrate, so that the secondary batch has a smaller content of particles for imparting flame retardancy than itself. Can be used to make body. In this way, the content of the particles for imparting flame retardancy in the final secondary molded body can be freely and easily adjusted by changing the mixing ratio of the master batch to the diluted high molecular weight material. It becomes possible to do. In addition, during the production of the masterbatch, the polymer matrix and the particles for imparting flame retardancy are kneaded, and during molding, the masterbatch is mixed with the diluted high-molecular material so that the polymer matrix is difficult to mix into the polymer substrate. Dispersion of the particles for imparting flammability is achieved in two stages, so to say, the dispersion state of the particles in the finally obtained secondary molded article can be made more uniform.
上記本発明の難燃性高分子複合材料は、 具体的には、 以下のような製造方法によ り製造することができる。 該製造方法においては、 金属元素及び Z又は s iの化合 物 (例えば、 無機化合物) を溶媒中に分散及び Z又は溶解させたゾル状組成物を乾 燥させてゲル状組成物となし、 そのゲル状組成物を高分子材料からなる基質中に分 散させて難燃性高分子複合材料を得るようにする。 Specifically, the flame-retardant polymer composite material of the present invention is produced by the following production method. Can be manufactured. In the production method, a sol composition in which a metal element and a compound of Z or si (for example, an inorganic compound) are dispersed and Z or dissolved in a solvent is dried to form a gel composition, and the gel composition is formed. The composition is dispersed in a matrix composed of a polymer material to obtain a flame-retardant polymer composite material.
このように、 ゾル状組成物を乾燥させてゲル状組成物粒子を得る、 いわゆるゾル ゲル法により難燃性付与用粒子を簡単に製造することができる。 上記のようなゾル ゲル法は簡便な上、 特別な装置を必要とすることもないため、 製造コストを大幅に 低減することが可能であり、 製造時に従来のような有害物質を発生することもない t このような製造方法により得られる難燃性付与用粒子は、 ゲル状の金属元素及び Z 又は S iの化合物にて構成される。 これを樹脂等の難燃性付与対象材料に対して混 入ないしコ一ティング等により複合 (添加) させると、 例えば難燃性付与対象材料 に高熱が付与された場合に、 その高熱により難燃性付与用粒子中の上記化合物がガ ラス化ないしセラミック化し、 そのガラス化ないしセラミック化した化合物が保護 膜となって、 難燃性付与対象材料に对して高い難燃性を付与することが可能となる, また、 このような難燃性付与用粒子を複合化した材料は、 高熱付加時に従来のよう な有害ガスを発生しないためェコロジカルな難燃性材料となる。 Thus, the particles for imparting flame retardancy can be easily produced by the so-called sol-gel method, in which the sol composition is dried to obtain gel composition particles. The sol-gel method as described above is simple and does not require special equipment, so it is possible to significantly reduce the production cost and generate harmful substances as in the past. no t flame retardant particles obtained by such a production method is configured by a compound of gel-like metal element and Z or S i. If this is mixed (coated) with a material such as a resin by adding or coating the flame-retardant material, for example, when a high heat is applied to the material to which the flame-retardant material is applied, the high heat makes the flame-retardant. The above compound in the particles for imparting property becomes glass or ceramic, and the compound obtained by vitrification or ceramic becomes a protective film, thereby imparting high flame retardancy to the material to be imparted with flame retardancy. It becomes possible, and a material obtained by compounding such particles for imparting flame retardancy does not generate a harmful gas as in the prior art when a high heat is applied, so that it becomes an ecological flame retardant material.
また、 高分子材料からなる基質中にゲル状組成物を分散させる方法としては、 例 えば、 上記ゲル状組成物を粉砕してゲル状組成物粒子となし、 そのゲル状組成物粒 子を、 軟化させた熱可塑性樹脂又は未硬化の熱硬化性榭脂に混合分散した後、 その 樹脂を硬化させることにより、 熱可塑性樹脂又は熱硬化性樹脂からなる基質中にゲ ル状組成物粒子を分散配合させることができる。 このような方法により、 簡便かつ 均一にゾル状組成物を基質中に分散配合させることができる。 なお、 ゾル状組成物 を噴霧乾燥させてゲル状糸且成物粒子とすることも可能である。 また、 前記した成形 用複合粒子は、 高分子材料の芯材の表面にゾル状組成物をコーティングして製造す ることができる。 上記ゲル状組成物粒子の平均粒径は 0 . 5〜5 0 0 μ πιに調整されているのがよ い。 0 . 5 / m未満のゲル状組成物粒子は製造が困難である他、 基質中に配合した 場合に偏在が生じ、 分散を均一にできない場合があるため、 ゲル状組成物粒子に由 来する高分子基質への難燃性付与効果が低下したり、 製造される難燃性高分子複合 材料の性能が特にその偏在領域において低下したりする場合がある。 5 0 0 mを 超える場合、 ゲル状組成物の分散分布が不均一になり、 難燃性高分子複合材料の難 燃性が低下する場合がある他、 難燃性高分子複合材料の流動性等の性質が低下した り、 難燃性高分子複合材料が外観不良を起こしたりする場合がある。 In addition, as a method of dispersing the gel composition in a matrix composed of a polymer material, for example, the above gel composition is pulverized into gel composition particles to form the gel composition particles. After mixing and dispersing in a softened thermoplastic resin or uncured thermosetting resin, the resin is cured to disperse the gel-like composition particles in a matrix composed of thermoplastic resin or thermosetting resin. Can be blended. By such a method, the sol composition can be easily and uniformly dispersed and mixed in the substrate. The sol composition may be spray-dried to form gel-like yarn particles. The above-mentioned composite particles for molding can be produced by coating the surface of a core material of a polymer material with a sol composition. The average particle size of the gel composition particles is preferably adjusted to 0.5 to 500 μπι. Gel composition particles having a particle size of less than 0.5 / m are difficult to produce, and when blended in a substrate, uneven distribution may occur and dispersion may not be uniform, resulting in gel composition particles. In some cases, the effect of imparting flame retardancy to the polymer substrate is reduced, and the performance of the manufactured flame retardant polymer composite material is reduced particularly in the unevenly distributed region. If it exceeds 500 m, the dispersion distribution of the gel-like composition becomes non-uniform, and the flame retardancy of the flame-retardant polymer composite material may decrease, and the fluidity of the flame-retardant polymer composite material And the like, and the flame-retardant polymer composite material may cause poor appearance.
また、 上記基質に対するゲル状組成物の配合比率は、 基質 1 0 0重量部に対して 0 . :!〜 1 0 0重量部とするのがよい。 本発明においては、 難燃性付与効果を有す るゲル状組成物の配合量が上記のような少量であっても、 高分子基質に対して高い 難燃性を付与することが可能である。 上記配合比率が 0 . 1重量部未満の場合、 ゲ ル状組成物粒子による難燃性付与効果が低下する場合があり、 また、 1 0 0重量部 を超えると、 難燃性高分子複合材料の流動性や物性等の性質を大きく変化させてし まう等の問題が生じる場合がある。  The mixing ratio of the gel composition to the above-mentioned substrate is preferably from 0.0 :! to 100 parts by weight per 100 parts by weight of the substrate. In the present invention, high flame retardancy can be imparted to the polymer substrate even when the amount of the gel composition having the effect of imparting flame retardancy is as small as described above. . If the mixing ratio is less than 0.1 part by weight, the effect of imparting flame retardancy by the gel-like composition particles may be reduced. If it exceeds 100 parts by weight, the flame-retardant polymer composite material may be used. In some cases, problems such as drastically changing the properties such as fluidity and physical properties of the material may occur.
—方、 上記ゾル状組成物は、 金属元素及び/又は S iのアルコキシドを加水分解 することにより製造することができる。 このようなアルコキシドを加水分解させて 生成したゾル状組成物には、 金属元素及び/又は S iの酸化物が含有され、 さらに アルコキシドに由来する有機物 (炭素成分) が残存することとなる。 したがって、 ゾル状組成物を乾燥したゲル状組成物にも酸化物、 有機物が含有されており、 この 酸化物は、 上記した通り高熱によりガラス化ないしセラミック化して高分子基質に 高い難燃性を付与することができる。 また、 残存有機物により、 例えば当該ゲル状 組成物 (粒子) を高分子基質に分散させる際のなじみ性 (親和性) が向上し、 高分 子基質に対してゲル状組成物 (粒子) を均一に分散させることが可能となる他、 難 燃性高分子複合材料の成形性等も向上させることが可能である。 上記ゾル状組成物を作るための溶媒はアルコ一ルを用いることができる。 アルコ —ルは比較的低沸点であるため、 乾燥工程が短時間で行える利点を備えている。 こ のようなアルコールとしては、 例えば、 メタノール、 エタノール、 プロパノール、 ブタノール等を用いることができる。 その他の溶媒としては、 アセトン、 ァセチル アセトン等のケトン系溶媒、 トルエン、 キシレン等の芳香族炭化水素系溶媒、 シク 口へキサン等の環状炭化水素系溶媒、 その他の鎖状炭化水素系溶媒、 及びこれらの 混合溶媒 (アルコールとの混合溶媒も可) を用いることができる。 例えば、 ケトン 系の溶媒はアルコキシドを安定化した状態で分散ないし溶解させることが可能であ り、 比較的低沸点のため乾燥工程を短時間で行うことができる。 また、 炭化水素系 の溶媒は含水率が低いため、 アルコキシドを安定化した状態で分散ないし溶解させ ることが可能である。 On the other hand, the sol composition can be produced by hydrolyzing a metal element and / or an alkoxide of Si. The sol-like composition produced by hydrolyzing such an alkoxide contains a metal element and / or an oxide of Si, and an organic substance (carbon component) derived from the alkoxide remains. Therefore, the gel composition obtained by drying the sol composition also contains oxides and organic substances. As described above, this oxide is vitrified or ceramicized by high heat and has high flame retardancy to the polymer substrate. Can be granted. In addition, the residual organic matter improves the affinity (affinity) when, for example, dispersing the gel composition (particles) in a polymer substrate, and makes the gel composition (particles) uniform with the polymer substrate. In addition to being able to disperse, the moldability of the flame-retardant polymer composite material can be improved. Alcohol can be used as a solvent for preparing the sol composition. Since alcohol has a relatively low boiling point, it has the advantage that the drying process can be performed in a short time. As such an alcohol, for example, methanol, ethanol, propanol, butanol and the like can be used. Other solvents include ketone solvents such as acetone and acetyl acetone, aromatic hydrocarbon solvents such as toluene and xylene, cyclic hydrocarbon solvents such as cyclohexane, other chain hydrocarbon solvents, and These mixed solvents (a mixed solvent with alcohol is also possible) can be used. For example, a ketone-based solvent can disperse or dissolve alkoxide in a stabilized state, and the drying step can be performed in a short time because of its relatively low boiling point. Further, since the hydrocarbon solvent has a low water content, the alkoxide can be dispersed or dissolved in a stabilized state.
なお、 ゾル状組成物を作るための溶媒の配合量を 2 5〜 9 8重量。 /0、 アルコキシ ドの配合量を 0 . 5〜4 0重量%程度にするのが好ましい。 溶媒の配合量が 2 5重 量%未満の場合は、 アルコキシドが均一に分散及び 又は溶解されにくくなること があるため、 アルコキシドの加水分解反応が起こりにくくなる場合があり、 ゲル状 組成物が不安定となる場合がある。 また、 溶媒の配合量が 9 8重量%を超えると、 溶媒を蒸発させる乾燥工程に長時間を要する場合がる。 一方、 アルコキシドの配合 量が 0 . 5重量%未満の場合、 アルコキシドの金属元素及び/又は S iのガラス化 ないしセラミック化による難燃性付与効果が低下する場合があり、 また、 アルコキ シドの有機成分による高分子基質へのなじみ性も低下する場合がある。 また、 アル コキシドの配合量が 4 0重量%を超えると、 アルコキシドの溶媒への分散性及ぴ 又は溶解性が低下し、 ゲル状組成物が不安定となる場合がある。 In addition, the compounding quantity of the solvent for making a sol-like composition is 25-98 weight. / 0 , the amount of the alkoxide is preferably about 0.5 to 40% by weight. If the amount of the solvent is less than 25% by weight, the alkoxide may be difficult to uniformly disperse and / or dissolve, so that the hydrolysis reaction of the alkoxide may be difficult to occur, and the gel composition may be unsatisfactory. May be stable. If the amount of the solvent exceeds 98% by weight, the drying step for evaporating the solvent may take a long time. On the other hand, when the compounding amount of the alkoxide is less than 0.5% by weight, the effect of imparting flame retardancy due to vitrification or ceramicization of the metal element and / or Si of the alkoxide may be reduced, and the alkoxide organic compound may not be used. The compatibility of the components with the polymer substrate may also be reduced. If the amount of the alkoxide exceeds 40% by weight, the dispersibility and solubility of the alkoxide in the solvent may decrease, and the gel composition may become unstable.
上記アルコキシドは、 S i及びノ又は T iを必須成分とするのがよい。 S i及び Z又は T iをアルコキシドの成分として用いると、 加水分解されて生成する例えば S i 0 2や T i 0 2等の酸化物は、 高熱によりガラス化ないしセラミック化し易いた め、 特に難燃性付与効果が高いものとなる。 また、 これら s i及び Z又は τ iを含 むアルコキシドはゲル化しにくいため、 安定した状態のゾル状組成物を得ること力 s 可能である。 なかでも、 特に s 〖は、 生成する酸化物の安定性、 ゾル状組成物の安 定性等を考慮すると、 アルコキシド成分として最も優れている。 なお、 S iを用い たアルコキシドとしては、 例えばテトラエトキシシラン (S i (OC2H5) J 等を 用いることができ、 T iを用いたアルコキシドとしては、 例えばチタンイソプロボ キシド (T i (iso-OC3H7) 4) 等を用いることができる。 また、 上記以外の成 分としては、 例えば、 Cu、 A l、 Zn、 N i及び Z rの 1種又は 2種以上を含有 するもの、 あるいはその他の遷移元素を含有するもの等を採用することもでき、 こ の場合、 例えば、 アルミニウムイソプロボキシド (A 1 (OC3H7) 3) 等を用いる ことができる。 なお、 アルコキシドの構成成分は目的に応じて変化させることが可 能で、 この場合、 形成されるゲル状組成物化合物の性質がそれぞれ異なるものとな る。 The alkoxide preferably contains Si and no or Ti as essential components. With S i and Z or T i as a component of alkoxide, oxide hydrolyzed by such for example S i 0 2 and T i 0 2 produced was easily vitrified or ceramic by high fever Therefore, the effect of imparting flame retardancy is particularly high. Further, since alkoxides containing si and Z or τ i are hard to gel, it is possible to obtain a sol composition in a stable state. Above all, s 〖is most excellent as an alkoxide component in consideration of the stability of the generated oxide, the stability of the sol-like composition, and the like. As an alkoxide using Si, for example, tetraethoxysilane (S i (OC 2 H 5 ) J) or the like can be used. As an alkoxide using Ti, for example, titanium isopropoxide (T i ( iso-OC 3 H 7 ) 4 ) etc. In addition, other components include, for example, one or more of Cu, Al, Zn, Ni and Zr Or an element containing another transition element, for example, aluminum isopropoxide (A 1 (OC 3 H 7 ) 3 ), etc. can be used. The constituents can be changed according to the purpose, and in this case, the properties of the gel composition compound formed are different from each other.
—方、 上記ゾル状組成物には、 無機酸又は有機酸の金属塩を配合することができ る。 この場合、 金属塩のカチオン金属元素は、 Cu、 A l、 Zn、 N i、 F e、 T i及び Z rの 1種又は 2種以上を含有しているのがよく、 また、 ァニオン成分の特 に無機酸としては、 酸性気体を水に溶解して得られる酸 (以下、 酸性気体ベース無 機酸という) が使用されているのがよい。 なお、 カチオン金属元素としては、 上記 以外のその他の遷移元素を用いることも可能で、 上記酸性気体とは、 水に溶解した ときに酸性を示す気体のことをいう。 酸性気体ベース無機酸としては、 例えば硝酸、 亜硝酸、 硫酸、 亜硫酸、 及び炭酸の 1種又は 2種以上を使用することができる。 こ のような金属塩をゾル状組成物に含有させると、 難燃性付与用粒子が添加された難 燃性付与対象材料に高熱が付与された場合に、 前記酸性気体ベース無機酸に由来す る気体、 例えば N含有ガスとしての N2ガスや N02ガスや NOガス、 S含有ガスと しての S〇2ガス、 C含有ガスとしての C〇2ガス等の燃焼阻害性気体が発生し、 そ れらが難燃性付与対象材料への難燃効果をさらに向上させる。 なお、 上記金属塩の 具体例としては、 硝酸銅 ( C u (N 0 3) 2 - 3 H 2 0) 、 硝酸亜鉛 (Z n (N0 3) 2 · 6 Η 20) 等を例示することができる。 また、 上記の無機酸以外にも、 例えば、 有機酸としてシユウ酸、 酢酸等を用いることも可能である。 On the other hand, a metal salt of an inorganic acid or an organic acid can be added to the sol composition. In this case, the cationic metal element of the metal salt preferably contains one or more of Cu, Al, Zn, Ni, Fe, Ti, and Zr. In particular, as the inorganic acid, an acid obtained by dissolving an acidic gas in water (hereinafter referred to as an acidic gas-based inorganic acid) is preferably used. Note that other transition elements other than those described above can be used as the cation metal element. The above-mentioned acidic gas refers to a gas that shows acidity when dissolved in water. As the acidic gas-based inorganic acid, for example, one or more of nitric acid, nitrous acid, sulfuric acid, sulfurous acid, and carbonic acid can be used. When such a metal salt is contained in the sol-like composition, when high heat is applied to the flame-retardant material to which the flame-retardant particles are added, the metal salt is derived from the acidic gas-based inorganic acid. gas, for example, N 2 gas or N0 2 gas and NO gas as the N-containing gas, S_〇 2 gas as a S-containing gas, the combustion inhibition gases such C_〇 2 gas as C-containing gas generated that , That These further improve the flame-retardant effect on the material to be provided with flame-retardancy. As specific examples of the metal salt is copper nitrate (C u (N 0 3) 2 - 3 H 2 0), zinc nitrate (Z n (N0 3) 2 · 6 Η 2 0) to illustrate the like Can be. In addition to the above-mentioned inorganic acids, for example, oxalic acid, acetic acid and the like can be used as organic acids.
上記ゾル状組成物中の金属塩の配合量は 9 5重量%以下とするのがよい。 金属塩 の配合量が 9 5重量%を超えると、 難燃性付与効果の主要因たる、 アルコキシドの 金属元素及び Ζ又は S iのガラス化ないしセラミック化による難燃性の付与効果が 低下する場合がある。 なお、 ゾル状組成物において、 アルコキシドの重量配合率を WA、 金属塩の重量配合率を WBとしたときに、 WA/WBが 0 . 0 1〜 3 0の範囲に て設定されていることが好ましい。 WAZWBが 0 . 0 1未満の場合、 アルコキシド 成分に由来するガラス化ないしセラミック化による難燃性付与効果が十分に得られ なくなる場合があり、 また、 WAZWBが 3 0を超えると、 金属塩に由来する発生ガ スによる難燃性付与効果が十分に得られなくなる場合があり、 結果として、 基質に 対する難燃性付与効果が低下する場合がある。  The content of the metal salt in the sol composition is preferably 95% by weight or less. If the content of the metal salt exceeds 95% by weight, the effect of imparting flame retardancy due to vitrification or ceramicization of the metal element of alkoxide and Ζ or Si, which is the main factor of the effect of imparting flame retardancy, is reduced There is. In the sol-like composition, when the weight ratio of the alkoxide is WA and the weight ratio of the metal salt is WB, WA / WB may be set in the range of 0.01 to 30. preferable. When WAZWB is less than 0.01, the effect of imparting flame retardancy due to vitrification or ceramicization derived from the alkoxide component may not be sufficiently obtained, and when WAZWB exceeds 30, it is derived from metal salts. In some cases, the effect of imparting flame retardancy due to the generated gas may not be sufficiently obtained, and as a result, the effect of imparting flame retardancy to the substrate may be reduced.
上記ゾル状組成物は、 溶媒としてのアルコールを 2 5〜9 8重量%と、 アルコキ シドとしてのシリコンアルコキシドを 0 . 5〜4 0重量%と、 金属塩としての硝酸 金属塩を 5〜9 5重量%と、 水 0 . 1〜2 0重量%とが配合されたものを使用する のがよい。 このような各配合量にてゾル状組成物を形成すると、 ゾル状組成物の加 水分解反応が効率よく進行し、 上記ゾルゲル法による生成されるゲル状組成物を安 定化させることができる。 その結果、 上述したアルコキシド、 金属塩に由来する、 高分子基質への難燃性付与効果を一層効果的に発揮することができるようになる。 上記の製造方法においては、 例えば、 上記金属塩をアルコールに分散及び 又は 溶解させて第一溶液を作る工程と、 その第一溶液にアルコキシドを分散及び/又は 溶解させて第二溶液となす工程と、 その第二溶液に水を加えてゾル状組成物となす 工程とを含むものとすることができる。 このように、 アルコールに対して金属塩、 アルコキシドを順'に分散及びノ又は溶解し、 その後の第二溶液に水を加える各工程 を段階的に行うことにより、 ゾル状組成物を効率良く製造することが可能となる。 なお、 例えば、 アルコール等の溶媒にアルコキシドを分散及び Z又は溶解しておき、 それに金属塩やアルコール等の溶媒を加えたりすることも可能で、 ゾル状組成物が ゲル化しない条件であれば、 上記各工程の順序は任意に変更することが可能である。 次に、 ゾル状組成物の乾燥は、 4 0〜2 5 0 °Cの範囲にて行うのがよい。 4 0 °C 未満の場合は、 ゾル状組成物の乾燥に長時間を要してしまう場合があり、 2 5 0 °C を超えると、 上記アルコキシドの金属元素及びノ又は S iがガラス化ないしセラミ ック化してしまう場合がある。 なお、 減圧乾燥を行う場合は、 温度及び圧力を、 ゲ ル状組成物が安定な状態で生成されるように調整する必要がある。 The sol-like composition contains 25 to 98% by weight of an alcohol as a solvent, 0.5 to 40% by weight of a silicon alkoxide as an alkoxide, and 5 to 95% by weight of a metal nitrate as a metal salt. It is preferable to use a mixture of 0.1% by weight and 0.1 to 20% by weight of water. When the sol composition is formed in such an amount, the hydrolysis reaction of the sol composition proceeds efficiently, and the gel composition produced by the sol-gel method can be stabilized. . As a result, the effect of imparting flame retardancy to the polymer substrate derived from the alkoxides and metal salts described above can be more effectively exerted. In the above production method, for example, a step of dispersing and / or dissolving the metal salt in alcohol to form a first solution, and a step of dispersing and / or dissolving alkoxide in the first solution to form a second solution And a step of adding water to the second solution to form a sol-like composition. Thus, metal salt for alcohol, By sequentially dispersing and dissolving or dissolving the alkoxide and then adding water to the second solution in a stepwise manner, it is possible to efficiently produce the sol composition. In addition, for example, it is also possible to disperse and disperse Z or dissolve the alkoxide in a solvent such as alcohol, and to add a solvent such as a metal salt or alcohol to the alkoxide. The order of the above steps can be arbitrarily changed. Next, the sol composition is preferably dried at a temperature in the range of 40 to 250 ° C. If the temperature is lower than 40 ° C, it may take a long time to dry the sol composition.If the temperature exceeds 250 ° C, the metal element of the alkoxide and the silicon or Si do not vitrify. It may become ceramic. When performing drying under reduced pressure, it is necessary to adjust the temperature and the pressure so that the gel composition is generated in a stable state.
なお、 上記難燃性付与用粒子とともに、 上記高分子材料からなる高分子基質が昇 温により溶融した場合に、 その流動 ·滴下を抑制する流動抑制補助剤を高分子基質 中に配合することもできる。 この場合、 流動抑制補助剤により高分子基質の溶融流 動が抑制され、 いわゆる燃焼時のドリップ防止性を向上させることができる。 なお、 流動抑制補助剤は、 例えば無水ホウ酸、 ホウ酸亜鉛等のホウ酸系無機化合物、 赤燐 (例えば、 鈴裕化学製:ノーバレッド (商品名) 、 日本化学工業製: ヒシガード (商 品名) 等) 等の燐系無機化合物、 あるいはカーボン (例えば、 東ソー製: GREP-EG ( 商品名) 、 UCAR Carbon社製: GRAF Guard (商品名) に代表される膨張性カーボン等 ) 等の無機材料系のもの、 もしくはシリコーン等を使用することができる。  In addition, when the polymer substrate made of the polymer material is melted by increasing the temperature together with the flame-retardant-imparting particles, a flow-suppressing aid that suppresses the flow and dripping of the polymer substrate may be added to the polymer substrate. it can. In this case, the melt flow of the polymer substrate is suppressed by the flow suppression auxiliary agent, and so-called drip prevention during combustion can be improved. Examples of the flow suppression adjuvant include boric acid-based inorganic compounds such as boric anhydride and zinc borate, and red phosphorus (for example, Suzuhiro Chemical: Novaled (trade name); ) Etc. or inorganic materials such as carbon (for example, expandable carbon represented by GREP-EG (trade name) manufactured by Tosoh, GRAF Guard (trade name) manufactured by UCAR Carbon), etc. System or silicone or the like can be used.
本発明の難燃性高分子複合材料においては、 高分子基質中の難燃性付与用粒子の 含有比率は、 高分子基質 1 0 0重量部に対して、 0 . 1 ~ 1 0 0重量部とするのが よい。 含有比率が 0 . 1重量部未満の場合、 難燃性付与効果が低減する場合があり、 また、 1 0 0重量部を超えると、 高分子基質の性質を大きく変化させてしまう等の 問題が生じる場合がある。 なお、 上記含有比率は好ましくは 1〜5 0重量部とする のがよい。 JP 51 1 In the flame-retardant polymer composite material of the present invention, the content ratio of the particles for imparting flame retardancy in the polymer substrate is 0.1 to 100 parts by weight with respect to 100 parts by weight of the polymer substrate. It is better to If the content is less than 0.1 part by weight, the effect of imparting flame retardancy may be reduced.If the content is more than 100 parts by weight, the properties of the polymer substrate may be greatly changed. May occur. The content ratio is preferably 1 to 50 parts by weight. JP 51 1
15 図面の簡単な説明 15 Brief description of the drawings
図 1は、 難燃性付与用粒子の高分子材料基質中への分散形態を示す模式図。  FIG. 1 is a schematic view showing a form in which particles for imparting flame retardancy are dispersed in a polymer material matrix.
図 2は、 難燃性付与用粒子に別の難燃材料粒子を配合して使用する例を示す模式 図。  FIG. 2 is a schematic diagram showing an example in which another flame-retardant material particle is blended and used with particles for imparting flame retardancy.
図 3は、 本発明の難燃性高分子複合材料からなるマスターバッチの製造方法の一 例を、 マスタ一バッチ粒子の種々の形態とともに示す模式図。  FIG. 3 is a schematic diagram showing an example of a method for producing a masterbatch made of the flame-retardant polymer composite material of the present invention, together with various forms of master-batch particles.
図 4は、 射出成形機の一例を示す断面模式図。  FIG. 4 is a schematic cross-sectional view showing an example of an injection molding machine.
図 5は、 射出成形により成形体を製造する一例を示す工程説明図。  FIG. 5 is a process explanatory view showing an example of manufacturing a molded body by injection molding.
図 6は、 マスターバッチのいくつかの使用形態を示す説明図。  Figure 6 is an explanatory diagram showing some usage patterns of the master batch.
図 7は、 二液混合型樹脂により本発明の難燃性高分子複合材料を得る方法と、 そ の適用形態をいくつか例示して示す説明図。  FIG. 7 is an explanatory diagram illustrating a method for obtaining a flame-retardant polymer composite material of the present invention using a two-component mixed resin, and some application forms thereof.
図 8は、 高分子材料基質の表面に難燃性付与用粒子を定着する方法をいくつか例 示して示す工程説明図。  FIG. 8 is a process explanatory view showing some examples of a method of fixing particles for imparting flame retardancy to the surface of a polymer material substrate.
図 9は、 化合物の分子レベル構造を推測して示す模式図。 発明を実施するための最良の形態  FIG. 9 is a schematic diagram inferring the molecular level structure of a compound. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態を、 図面に示す実施例を参照して説明する。  Hereinafter, embodiments of the present invention will be described with reference to examples shown in the drawings.
図 1は、 本発明の難燃性高分子複合材料の一実施例を概念的に示す図である。 こ の材料は、 高分子材料基質 5 0中に難燃性付与用粒子 1 0が分散された構造を有す る。 難燃性付与用粒子 1 0は珪素成分及びノ又は金属成分と酸素とを含有し、 例え ば加熱によりガラス質セラミックスを生じる化合物にて構成され、 具体的には、 前 述したゾルゲル法により製造することができる。 なお、 粒子 1 0は模式的に球状に 描いているが、 製法により形状は種々に変化し、 必ずしも球状とはならないことも 多い。 高分子材料基質 5 0に対する難燃性付与用粒子 1 0の量は、 例えば前者を 1 0 0 重量部として 0 . 1〜: I 0 0重量部、 好ましくは 1〜 5 0重量部程度の少量添加で 十分な難燃性を付与することが可能である。 少量添加であるため、 樹脂等の難燃性 付与対象材料の物性変化も少なく、 また、 コスト面でも大幅な削減が可能となる。 なお、 図 2に示すように、 難燃性付与用粒子 1 0を、 従来からある難燃材料粒子 1 1とともに難燃性付与対象材料 (高分子材料基質) 5 0に複合添加することも可 能である。 この場合、 難燃性付与用粒子 1 0の難燃性付与効果に加えて、 難燃材料 粒子 1 1の難燃性付与効果も相乗的に加わるため、 難燃性付与対象材料は高い難燃 性を示すこととなる。 FIG. 1 is a view conceptually showing one embodiment of the flame-retardant polymer composite material of the present invention. This material has a structure in which particles 10 for imparting flame retardancy are dispersed in a polymer material substrate 50. The particles 10 for imparting flame retardancy contain a silicon component and a metal component or a metal component and oxygen, and are composed of, for example, a compound that generates a vitreous ceramic by heating. Specifically, the particles are produced by the sol-gel method described above. can do. Although the particle 10 is schematically drawn in a spherical shape, the shape varies in various ways depending on the manufacturing method, and the particle 10 is not always necessarily spherical. The amount of the flame retardancy-imparting particles 10 with respect to the polymer material substrate 50 is, for example, 0.1 to 100 parts by weight based on the former as 100 parts by weight, and is preferably as small as about 1 to 50 parts by weight. Sufficient flame retardancy can be imparted by addition. Since it is added in a small amount, there is little change in the physical properties of the material to which flame retardancy is to be imparted, such as a resin, and the cost can be significantly reduced. As shown in FIG. 2, the flame-retardant particles 10 can be added to the flame-retardant material (polymer substrate) 50 together with the conventional flame-retardant material particles 11. Noh. In this case, in addition to the effect of imparting the flame retardancy of the particles 10 for imparting flame retardancy, the effect of imparting the flame retardancy of the flame retardant material particles 11 is also synergistically added. Will be shown.
難燃性付与用粒子をなす化合物は、 例えば図 9に模式的に示すような構造を有し ているものと推測される (本図において分子式は模式的に示したものであって、 該 分子式が示す特定の構造を限定的に有していることを意味するものではない) 。 難 燃性付与対象材料 5 0の内部又は表面に複合された化合物 2中には、 珪素及び Z又 は金属 (これらを図中 Mで示す) が酸化物又はアルコキシド 5 2の状態 (例えば S i 02、 Z r 02、 S i (O C n Hm) 1 ( n 1、 m≥ 1、 1≥ 1 ) 等) 、 又は単 体状態で含有され、 さらに炭素成分 5 1が例えば C n Hm ( n≥ l、 m≥ 1 ) の状 態で含有されている構造を推定できる。 It is presumed that the compound constituting the particles for imparting flame retardancy has, for example, a structure schematically shown in FIG. 9 (the molecular formula is schematically shown in FIG. 9). Does not mean that it has a limited specific structure shown by.). In the compound 2 compounded inside or on the surface of the flame retardant material 50, silicon and Z or a metal (these are indicated by M in the figure) contain oxides or alkoxides 52 (for example, Si). 0 2 , Zr 0 2 , S i (OC n Hm) 1 (n 1, m ≥ 1, 1 ≥ 1), etc.) or in a single state, and the carbon component 51 is, for example, C n Hm ( The structure contained in the state of n≥l, m≥1) can be estimated.
図 3 ( a ) に示すように、 上記のような難燃性付与用粒子 1 0は、 単独で、 ある いは必要に応じて、 該難燃性付与用粒子とは別の難燃剤や難燃助剤、 充填剤、 顔料 や染料等の着色剤、 分散剤等とともに、 基質となるべき高分子材料 (本実施例では、 熱可塑性樹脂を使用している) 4 1中に配合 ·混練されてコンパウンド 5 3 1とさ れる。 コンパウンド 5 3 1は、 例えばペレット等の粒状に成形することによりマス ターバッチ粒子 3 2とすることができる。 マスタ一バッチ粒子 3 2は、 例えば球換 算した直径による寸法にて 0 . l〜1 0 mm程度 (例えば 1〜 4 mm程度) の大き さを有するものである。 マスタ一バッチ粒子 3 2の形状は、 特に限定されるもので はないが、 例えば図 3 ( b ) に示すように、 軟化させたコンパウンドをストランド 状に押し出して、 これを所定長に切断することにより、 柱状 (例えば円柱状) 形態 の粒子を得ることができる。 なお、 図 3 ( c ) 及び (d ) は、 マスターバッチ粒子 3 2の別の形状例を示しており、 前者は球状のもの (例えば型成形等により製造で きる) 、 後者はフレーク状のもの (例えばシート状物の破砕'整粒により製造でき る) を示すが、 これに限定されるものではない。 As shown in FIG. 3 (a), the particles 10 for imparting flame retardancy as described above may be used alone or, if necessary, in a flame retardant or a flame retardant different from the particles for imparting flame retardancy. It is blended and kneaded in a polymer material to be used as a substrate (a thermoplastic resin is used in this embodiment) along with a fuel aid, filler, coloring agent such as pigment and dye, dispersant, etc. Compound 5 3 1 The compound 5331 can be formed into master batch particles 32 by, for example, forming into a granular form such as a pellet. The master batch particles 32 have a size of, for example, about 0.1 to 10 mm (for example, about 1 to 4 mm) in terms of a sphere-converted diameter. The shape of the master batch particles 32 is particularly limited. However, as shown in FIG. 3 (b), for example, as shown in FIG. 3 (b), a softened compound is extruded into a strand and cut into a predetermined length to obtain columnar (eg, columnar) particles. . FIGS. 3 (c) and 3 (d) show another example of the shape of the masterbatch particles 32. The former is spherical (for example, it can be manufactured by molding) and the latter is flake. (For example, it can be produced by crushing and sizing a sheet-like material), but the present invention is not limited to this.
以下、 上記マスタ一バッチを用いた成形体 (二次成形体) の製造方法を、 図 4に より、 射出成形を採用する場合を例にとって説明する。 射出成形装置 5 0 1は、 成 形部 5 0 2、 その成形部 5 0 2に溶融樹脂を供給するスクリュ式射出装置等の射出 装置 5 0 3等により構成される。 成形部 5 0 2は、 金型 5 0 5、 その金型 5 0 5を 型締め及び型開きするための、 カムもしくはクランク機構等の機械式駆動機構や油 圧シリンダ等の流体圧機構等で構成される駆動機構 5 0 6を備えるとともに、 溶融 榭脂を金型 5 0 5に供給するランナ 5 2 1には、 スプル 5 0 3 aを介して射出装置 5 0 3の射出ノズル 5 0 3 bが接続されている。  Hereinafter, a method of manufacturing a molded body (secondary molded body) using one master batch will be described with reference to FIG. The injection molding apparatus 501 includes a molding section 502, an injection apparatus 503 such as a screw-type injection apparatus for supplying a molten resin to the molding section 502, and the like. The molding section 502 is a mold 505, a mechanical drive mechanism such as a cam or a crank mechanism for clamping and opening the mold 505, and a fluid pressure mechanism such as an hydraulic cylinder. In addition to the drive mechanism 506 constituted, a runner 521 for supplying molten resin to the mold 505 is provided with an injection nozzle 503 of an injection device 503 via a sprue 503a. b is connected.
射出装置 5 0 3は、 バンドヒータ 5 0 8等の熱源で加熱される加熱シリンダ 5 0 7內に、 シャフト 5 1 2を介して油圧モータ 5 1 3により駆動される供給用のスク リュ 5 0 9が収容され、 これにマスタ一バッチ Pを供給するホッパ 5 1 0が備えら れたものである。 スクリュ 5 0 9を回転させることによりホッパ 5 1 0からマスタ —バッチ Pが供給され、 加熱シリンダ 5 0 7内で加熱により高分子材料基質が溶融 されて溶融コンパウンドとなり、 溜まり部 5 0 7 a内に溜められる。 その後、 スク リュ 5 0 9を油圧シリンダ 5 1 1により所定距離前進させると、 ノズル 5 0 3 b力 らランナ 5 2 1を通って金型 5 0 5内に所定量の溶融コンパウンドが射出される。 図 5に示すように、 金型 5 0 5のキヤビティ 5 0 5 a内に射出された溶融コンパ ゥンド Cは、 高分子材料基質が凝固することにより本発明の高分子複合材料となり これを型開きすることにより、 キヤビティ形状に対応した高分子複合材料成形体と しての二次成形体 36が得られる。 The injection device 503 includes a heating cylinder 507 0 heated by a heat source such as a band heater 508, and a supply screw 503 driven by a hydraulic motor 513 via a shaft 511. 9 is accommodated therein, and a hopper 510 for supplying a master batch P is provided therein. Master #batch P is supplied from the hopper 5110 by rotating the screw 509, and the polymer material substrate is melted by heating in the heating cylinder 507 to become a molten compound. It is stored in. Thereafter, when the screw 509 is advanced by a predetermined distance by the hydraulic cylinder 511, a predetermined amount of the molten compound is injected into the mold 505 from the nozzle 503b through the runner 521. . As shown in FIG. 5, the molten compound C injected into the cavity 505a of the mold 505 becomes the polymer composite material of the present invention by solidifying the polymer material substrate, and this is opened. By doing so, it is possible to obtain a polymer composite material Thus, a secondary molded body 36 is obtained.
なお、 図 6 (a) に示すように、 マスターバッチ粒子 32を単独で使用して成形 体を得るようにしてもよいが、 同図 (b) に示すように、 マスタ一バッチ粒子 32 の高分子基質と同材質あるいは異材質の高分子材料からなる希釈高分子材料粒子 4 0を適量配合することにより、 粒子の含有率が、 マスタ一バッチ粒子 32中の含有 率よりも小さい二次成形体を製造することもできる。 この場合、 二次成形体中の粒 子の含有率は、 マスタ一バッチ粒子 32中の粒子の含有率と、 そのマスターバッチ 粒子 32に対する希釈高分子材料粒子 40の配合比率によって定まる。  As shown in FIG. 6 (a), the molded body may be obtained by using the master batch particles 32 alone, but as shown in FIG. 6 (b), the height of the master batch particles 32 may be reduced. By mixing an appropriate amount of diluted polymer material particles 40 composed of the same or different polymer material with the molecular substrate, the secondary molded body having a particle content smaller than the content in the master batch particles 32 Can also be manufactured. In this case, the content of the particles in the secondary compact is determined by the content of the particles in the master batch particles 32 and the mixing ratio of the diluted polymer material particles 40 to the master batch particles 32.
なお、 このような希釈して使用するためのマスタ一バッチ粒子は、 粒子の含有率 i 例えば重量比率にて 20〜67重量%と高いが、 粒子をこのような高い含有率 にて基質中に均一分散させるために、 分散剤を配合することが望ましい。 分散剤と しては、 例えば金属セッケンを好適に使用することができる。 金属セッケン分は、 例えば有機酸成分が、 ナフテン酸 (ナフテート) 、 ラウリン酸 (ラウレート) 、 ス テアリン酸 (ステアレート) 、 ォレイン酸 (ォレエ一ト) 、 2—ェチルへキサニッ ク酸 (ォクテート) 、 あまに油あるいは大豆油脂肪酸 (リノレート) 、 トール油 ( トーレート) 、 ロジン等 (レジネート) からなるものを例示できる。 また、 金属の 種類は下記のようなものを例示できる。  The master batch particles to be used in such a diluted state have a high particle content i, for example, 20 to 67% by weight, but the particles are contained in the substrate at such a high content. It is desirable to add a dispersing agent for uniform dispersion. As the dispersant, for example, metal soap can be suitably used. Metallic soap components include, for example, organic acid components such as naphthenic acid (naphthate), lauric acid (laurate), stearic acid (stearate), oleic acid (oleate), 2-ethylhexanic acid (octate), Flax oil or soybean oil fatty acid (linoleate), tall oil (tolate), rosin, etc. (resinate) can be exemplified. In addition, examples of the type of metal include the following.
'ナフテネート系 (A 1、 C a、 C o、 Cu、 F e、 P b、 Mn、 Zn等) • レジネート系 (A 1、 C a、 Co、 Cu、 F e、 Pb、 Mn、 Zn等)  'Naphthenates (A1, Ca, Co, Cu, Fe, Pb, Mn, Zn, etc.) • Resinates (A1, Ca, Co, Cu, Fe, Pb, Mn, Zn, etc.)
· リノレート系 (Co、 F e、 Pb、 Mn等)  · Linoleate (Co, Fe, Pb, Mn, etc.)
•ステアレート系 (C a、 Z n等)  • Stearate type (Ca, Zn, etc.)
•ォクテート系 (C a、 Co、 F e、 Pb、 Mn、 Zn等)  • Octate (Ca, Co, Fe, Pb, Mn, Zn, etc.)
• ト—レート系 (C a、 Co、 F e、 Pb、 Mn、 Zn等) • Trate type ( Ca , Co, Fe, Pb, Mn, Zn, etc.)
これらのうち、 ステアリン酸 C a、 ステアリン酸 Znを、 分散効果に特に優れる金 属セッゲンの具体例として挙げることができる。 なお、 金属セッゲンの複合材料中 への配合量は、 多すぎると材料強度や均質性に問題が生じ、 少なすぎると分散効果 が不十分となるので、 これらの不具合が生じないよう、 例えば 0 . 0 1〜3重量。 /0 の範囲内 (例えば 0 . 3重量%) にて選定するのがよい。 Among these, Ca stearate and Zn stearate can be mentioned as specific examples of metal segens that are particularly excellent in dispersing effect. It should be noted that in the composite material of metal Seggen If the amount is too large, problems may occur in the strength and homogeneity of the material. If the amount is too small, the dispersing effect becomes insufficient. For example, 0.01 to 3 wt. It is better to select within the range of / 0 (for example, 0.3% by weight).
なお、 エポキシ榭脂、 ウレタン榭脂 (ウレタンゴムを含む) あるいはシリコーン 樹脂など、 未硬化樹脂成分が含有される主剤と、 その未硬化榭脂成分を硬化させる ための成分が含有される硬化剤とからなる 2液混合型の注型樹脂材料、 接着剤ある いは塗料を、 本発明の難燃性高分子複合材料として構成することも可能である。 具 体的には、 この目的のため、 未硬化榭脂成分を含有する主剤と、 その未硬化樹脂成 分を硬化させるための硬化剤とからなり、 難燃性付与用粒子を主剤又は硬化剤の少 なくともいずれかに配合されてなり、 主剤と硬化剤とを混合することにより、 熱硬 ィ匕性樹脂を基質としてこれに難燃性付与用粒子を分散させた難燃性高分子複合材料 が得られるようにした難燃性高分子複合材料製造用組成物を使用することができる < 図 7に、 その具体例についてエポキシ樹脂の場合を例に取って説明する。 すなわ ち、 主剤 5 5 0は、 例えばビスフエノール系の未硬化エポキシ榭脂成分中に、 難燃 性付与用粒子と、 必要に応じて難燃性付与用粒子とは別の難燃剤や難燃助剤、 充填 剤、 顔料や染料等の着色剤あるいは分散剤等を配合したものであり、 適当な溶媒に より粘度調整がなされている。 一方、 硬化剤 5 5 1は、 アミンゃイソシアナ一ト、 酸無水物などの硬化成分を溶媒中に溶解ないしは分散させたものである。 そして、 使用する直前に (a ) に示すように両剤 5 5 0, 5 5 1を所定比率にて混合し、 混 合組成物 5 5 2のポットライフ時間内に目的に応じた処置を行う。 すなわち、 混合 組成物 5 5 2を注型用樹脂材料として使用する場合は、 (b ) に示すようにこれを 型 5 5 3に注型して硬化させることにより、 所期の形状の難燃性高分子複合材料成 形体を得る。 また、 混合組成物 5 5 2を塗料として使用する場合は、 (c ) に示す ようにこれを被塗装物 5 5 4の塗装面に塗布して硬化させることにより、 難燃性高 分子複合材料塗膜 5 5 5を得る。 さらに、 混合組成物 5 5 2を接着剤として使用す る場合は、 (d) に示すようにこれを被接着物 556 a, 556 bの接着面に塗布 して貼り合わせることにより、 難燃性接着層 557により被接着物 556 a, 55 6 bが接着された接着構造が得られる。 A main agent containing an uncured resin component such as epoxy resin, urethane resin (including urethane rubber) or silicone resin, and a curing agent containing a component for curing the uncured resin component. It is also possible to constitute a two-component mixed type cast resin material, adhesive or paint composed of the flame-retardant polymer composite material of the present invention. More specifically, for this purpose, a main agent containing an uncured resin component and a curing agent for curing the uncured resin component are used. A flame-retardant polymer composite obtained by mixing a base resin and a curing agent with a thermosetting resin as a substrate and dispersing particles for imparting flame retardancy thereto. A composition for producing a flame-retardant polymer composite material from which a material can be obtained can be used. <FIG. 7 illustrates a specific example using an epoxy resin as an example. That is, the main agent 550 is contained in, for example, a bisphenol-based uncured epoxy resin component, and contains a flame retardant or a flame retardant different from the flame retardant imparting particles, if necessary. It contains a combustion aid, a filler, a colorant such as a pigment or a dye, or a dispersant, and the viscosity is adjusted by an appropriate solvent. On the other hand, the curing agent 551 is obtained by dissolving or dispersing a curing component such as an amine-isocyanate and an acid anhydride in a solvent. Immediately before use, the two agents 550 and 551 are mixed at a predetermined ratio as shown in (a), and a treatment according to the purpose is performed within the pot life time of the mixed composition 552. In other words, when the mixed composition 552 is used as a resin material for casting, it is cast into a mold 553 and cured as shown in FIG. To obtain a molded article of a conductive polymer composite material. When the mixed composition 552 is used as a paint, as shown in (c), it is applied to the painted surface of the object 554 and cured to obtain a flame-retardant polymer composite material. Coating film 5 5 5 is obtained. Further, the mixed composition 552 is used as an adhesive. In this case, as shown in (d), this is applied to the bonding surfaces of the adherends 556a and 556b and bonded together, so that the adherends 556a and A bonded bonded structure is obtained.
次に、 難燃性付与用粒子は高分子基質の表面に定着することも可能である。 図 8 は、 そのいくつかの例を示している。 図 8 (a) は、 高分子基質 50の表面に形成 された接着樹脂層 560を介して難燃性付与用粒子 10を接着形態により定着する 例を示す。 なお、 高分子基質 50中に、 さらに難燃性付与用粒子 10を分散させて おいてもよい (以下も同様) 。 また、 図 8 (b) に示すように、 定着された粒子 1 0の表面側を、 さらに樹脂等によるオーバーコート 56 1で覆うようにしてもょレ' 図 8 (c) では、 例えば成形金型 505のキヤビティの内面に難燃性付与用粒子 10を塗布しておき、 次いでキヤビティ内を溶融樹脂 570で満たして凝固させる ことにより、 塗布された粒子 10を成形体 536を形成する基質 50の表面に一体 化させる例である。 図 8 (d) は、 粒子 10の表面を定着樹脂層 562で予め覆つ ておき、 加熱により定着榭脂層 562を軟化させつつ基質 50の表面に付着させた 後、 樹脂を硬化させることにより、 粒子 10を定着する例である。 この場合、 基質 50は、 不要な変形が生じない程度の温度にて予熱しておくと、 定着樹脂層 562 の軟化 ·付着を容易に行うことができる。 図 8 (e) は、 粒子 10を基質 50表面 に投射したり、 圧入することにより、 基質 50の表層部に粒子 10を埋め込む方法 である。 この場合、 基質 50の少なくとも表層部を加熱等により軟化させておくと 埋込を容易に行うことができる。 実施例  Next, the particles for imparting flame retardancy can be fixed on the surface of the polymer substrate. Figure 8 shows some examples. FIG. 8A shows an example in which the flame-retardant particles 10 are fixed in an adhesive form via an adhesive resin layer 560 formed on the surface of the polymer substrate 50. The particles 10 for imparting flame retardancy may be further dispersed in the polymer substrate 50 (the same applies to the following). Also, as shown in FIG. 8 (b), the surface side of the fixed particles 10 may be further covered with an overcoat 561 made of resin or the like. The flame retardancy-imparting particles 10 are applied to the inner surface of the cavity of the mold 505, and then the cavity is filled with a molten resin 570 and solidified, so that the applied particles 10 are formed into a substrate 50 for forming a molded body 536. This is an example of integration on the surface. FIG. 8 (d) shows that the surface of the particles 10 is previously covered with the fixing resin layer 562, and the fixing resin layer 562 is softened by heating, adhered to the surface of the substrate 50 while being softened, and then the resin is cured. This is an example of fixing particles 10. In this case, if the substrate 50 is preheated at a temperature at which unnecessary deformation does not occur, the fixing resin layer 562 can be easily softened and adhered. FIG. 8 (e) shows a method of embedding the particles 10 in the surface layer of the substrate 50 by projecting or pressing the particles 10 onto the surface of the substrate 50. In this case, embedding can be performed easily by softening at least the surface layer of the substrate 50 by heating or the like. Example
(実施例 1 )  (Example 1)
金属塩として硝酸亜鉛六水和物 (Zn (NO 3) 2 · 6Η20) 21. 93 gをエタ ノール 100m 1中に入れ、 溶解させた。 その液中にテトラエトキシシラン (S i (OC2H5) 4) を 6. 92 g加え、 次いで純水 4. 18 gを滴下し、 液を撹拌する ことでゾル状組成物を作製した。 このゾル状組成物を 1 50°Cの乾燥器に入れ、 溶 媒分を揮発させてゲル状組成物となし、 これを粉砕して微粉末状のゲル状組成物粒 子 (難燃性付与用粒子) を作成した。 なお、 ゲル状組成物を分析したところ、 S i、 Zn、 0、 N及び Cの各元素を含有した化合物となっていることがわかった。 Zinc nitrate hexahydrate (Zn (NO 3) 2 · 6Η 2 0) 21. 93 g were placed in ethanol 100 m 1 as the metal salt was dissolved. Tetraethoxysilane (S i 6.92 g of (OC 2 H 5 ) 4 ) was added, followed by dropwise addition of 4.18 g of pure water, and the solution was stirred to produce a sol composition. The sol composition is placed in a dryer at 150 ° C., and the solvent is volatilized to form a gel composition, which is pulverized to obtain fine powdery gel composition particles (to impart flame retardancy). Particles). When the gel composition was analyzed, it was found that the gel composition was a compound containing each element of Si, Zn, 0, N and C.
上記ゲル状組成物粒子 15. 0 gと、 難燃材料粒子として平均粒径 55 mの水 酸化アルミニウム 75 gと、 高分子材料基質として粉末状あるいはペレツト状のポ リプロピレン 100 gとを混合し、 その混合物を射出成形機に入れ、 180°Cにて 難燃性テスト用サンプル形状に射出成形した。 難燃性テスト用サンプル形状は、 U L 94燃焼性試験に基づき、 長さ 1 25mm、 幅 1 3mm、 厚み 1. 6 mmとした c 上記作製した難燃性テスト用サンプルを用い、 UL 94燃焼性試験にてテストし た結果、 同試験の V— 0規格をクリアした。 また、 燃焼残滓中には S i 02を含有す ると思われるガラス質セラミックが形成されていることがわかった。 さらに、 燃焼 中に窒素あるいは窒素酸化物を含有したガスが発生していることを確認した。 A mixture of 15.0 g of the above gel composition particles, 75 g of aluminum hydroxide having an average particle size of 55 m as flame-retardant material particles, and 100 g of powdery or pelletized polypropylene as a polymer material substrate. The mixture was put into an injection molding machine and injection molded at 180 ° C into a sample shape for a flame retardancy test. Flame retardant test sample shape, based on the UL 94 flammability test, the length 1 25 mm, width 1 3 mm, the flame retardance test sample c prepared above was the thickness 1. 6 mm using, UL 94 flammability As a result of the test, it passed the V-0 standard of the test. Further, it was found that the formed glass ceramic you think that you containing S i 0 2 during combustion residue. In addition, it was confirmed that gas containing nitrogen or nitrogen oxides was generated during combustion.
(実施例 2)  (Example 2)
金属塩として硝酸亜鉛六水和物 (Zn (NO 3) 2 · 6Η20) 8. 77 gをェタノ —ル 10 Om 1中に入れ、 溶解させた。 その液中にテトラエトキシシラン (S i ( OC2H5) 4) を 2. 77 g加え、 次いで純水 1. 7 gを滴下し、 液を撹拌すること でゾル状組成物を作製した。 このゾル状組成物を 150°Cの乾燥器に入れ、 溶媒分 を揮発させてゲル状組成物となし、 これを粉砕して微粉末状のゲル状組成物粒子を 作成した。 Zinc nitrate hexahydrate as the metal salt (Zn (NO 3) 2 · 6Η 2 0) 8. The 77 g Etano - placed in Le 10 Om 1, were dissolved. 2.77 g of tetraethoxysilane (Si (OC 2 H 5 ) 4 ) was added to the solution, 1.7 g of pure water was added dropwise, and the solution was stirred to prepare a sol composition. The sol composition was placed in a dryer at 150 ° C., and the solvent was evaporated to form a gel composition, which was pulverized to produce fine powder gel composition particles.
上記ゲル状組成物粒子 6. 0 gと、 難燃材料粒子として実施例 1と同様の水酸化 アルミニウム 30 gと、 高分子材料基質として粉末状あるいはペレツト状のポリプ ロピレン 100 gとを混合し、 その混合物を射出成形機に入れ、 180°Cにて難燃 性テスト用サンプル形状に射出成形した。 難燃性テスト用サンプル形状は実施例 1 と同じものとした。 6.0 g of the gel-like composition particles, 30 g of aluminum hydroxide as in Example 1 as flame-retardant material particles, and 100 g of powdery or pelletized polypropylene as a polymer material substrate were mixed. The mixture was put into an injection molding machine and injection-molded at 180 ° C into a sample shape for a flame-retardant test. Example 1 for sample shape for flame retardancy test And the same.
上記作製した難燃性テスト用サンプルを用い、 UL 94燃焼性試験にてテストし た結果、 同試験の V— 2規格をクリアした。  Using the sample for flame retardancy test prepared above, it was tested in the UL 94 flammability test. As a result, it passed the V-2 standard of the test.
(実施例 3)  (Example 3)
金属塩として硝酸亜鉛六水和物 (Ζη (Ν03) 2 · 6Η20) 10. 97 gをエタ ノール 10 Om 1中に入れ、 溶解させた。 その液中にテトラエトキシシラン (S i (OC2H5) 4) を 3. 47 g加え、 次いで純水 2. l gを滴下し、 液を撹拌するこ とでゾル状組成物を作製した。 このゾル状組成物を 150°Cの乾燥器に入れ、 溶媒 分を揮発させてゲル状組成物となし、 これを粉砕して微粉末状のゲル状組成物粒子 を作成した。 10.97 g of zinc nitrate hexahydrate (Ζη (Ν0 3 ) 2 · 6Η 20 ) as a metal salt was placed in ethanol 10 Om 1 and dissolved. 3.47 g of tetraethoxysilane (Si (OC 2 H 5 ) 4 ) was added to the liquid, 2.lg of pure water was added dropwise, and the liquid was stirred to prepare a sol composition. This sol-like composition was placed in a dryer at 150 ° C., and the solvent was evaporated to form a gel-like composition, which was pulverized to produce fine powdery gel-like composition particles.
上記ゲル状組成物粒子 7. 5 gと、 難燃材料粒子として実施例 1と同様の水酸化 アルミニウム 20 gと、 高分子材料基質として粉末状あるいはペレツト状のポリプ ロピレン 100 gとを混合し、 その混合物を射出成形機に入れ、 180°Cにて難燃 性テスト用サンプル形状に射出成形した。 難燃性テスト用サンプル形状は実施例 1 と同じものとした。  7.5 g of the gel composition particles, 20 g of the same aluminum hydroxide as in Example 1 as flame-retardant material particles, and 100 g of powdery or pelletized polypropylene as a polymer material substrate were mixed. The mixture was put into an injection molding machine and injection-molded at 180 ° C into a sample shape for a flame-retardant test. The sample shape for the flame retardancy test was the same as in Example 1.
上記作製した難燃性テスト用サンプルを用い、 UL 94燃焼性試験にてテストし た結果、 同試験の V— 2規格をクリアした。  Using the sample for flame retardancy test prepared above, it was tested in the UL 94 flammability test. As a result, it passed the V-2 standard of the test.
(実施例 4)  (Example 4)
金属塩として硝酸ニッケル六水和物 (N i (N03) 2 - 6H20) 1 1. 68 gを エタノール 10 Om 1中に入れ、 溶解させた。 その液中にテトラエトキシシラン ( S i (OC2H5) 4) を 3. 47 g加え、 次いで純水 2. l gを滴下し、 液を撹拌す ることでゾル状組成物を作製した。 このゾル状組成物を 1 50 °Cの乾燥器に入れ、 溶媒分を揮発させてゲル状組成物となし、 これを粉砕して微粉末状のゲル状組成物 粒子を作成した。 なお、 ゲル状組成物を分析したところ、 S i、 N i、 0、 N及び Cの各元素を含有した化合物となっていることがわかった。 上記ゲル状組成物粒子 7 . 7 gと、 難燃材料粒子として実施例 1と同様の水酸化 アルミニウム 2 0 gと、 高分子材料基質として粉末状あるいはペレツト状のポリプ ロピレン 1 0 0 gとを混合し、 その混合物を射出成形機に入れ、 1 8 0 °Cにて難燃 性テスト用サンプル形状に射出成形した。 難燃性テスト用サンプル形状は実施例 1 と同じものとした。 Nickel nitrate hexahydrate as the metal salt (N i (N0 3) 2 - 6H 2 0) 1 1. Put 68 g in ethanol 10 Om 1, were dissolved. 3.47 g of tetraethoxysilane (Si (OC 2 H 5 ) 4 ) was added to the solution, 2.lg of pure water was added dropwise, and the solution was stirred to prepare a sol composition. This sol-like composition was placed in a dryer at 150 ° C., and the solvent was evaporated to form a gel-like composition, which was pulverized to prepare fine powdery gel-like composition particles. When the gel composition was analyzed, it was found to be a compound containing each of the elements Si, Ni, 0, N and C. 7.7 g of the gel composition particles, 20 g of aluminum hydroxide as in Example 1 as the flame-retardant material particles, and 100 g of powdery or pelletized polypropylene as the polymer material substrate. After mixing, the mixture was put into an injection molding machine and injection molded at 180 ° C. into a sample shape for a flame retardancy test. The sample shape for the flame retardancy test was the same as in Example 1.
上記作製した難燃性テスト用サンプルを用い、 U L 9 4燃焼性試験にてテストし た結果、 同試験の V— 2規格をクリアした。 また、 燃焼残滓中には S i 0 2を含有す ると思われるガラス質セラミックが形成されていることがわかった。 さらに、 燃焼 中に窒素あるいは窒素酸化物を含有したガスが発生していることを確認した。 Using the sample for flame retardancy test prepared above, it was tested in the UL 94 flammability test. As a result, it passed the V-2 standard of the test. Further, it was found that the formed glass ceramic you think that you containing S i 0 2 during combustion residue. In addition, it was confirmed that gas containing nitrogen or nitrogen oxides was generated during combustion.
(比較例 1 )  (Comparative Example 1)
実施例 1と同様の水酸化アルミニウム 7 5 gとポリプロピレン 1 0 0 gとを混合 し、 その後射出成形機に入れ、 1 8 0 °Cにて難燃性テスト用サンプル形状に射出成 形した。 難燃性テスト用サンプル形状は実施例 1と同じである。 この難燃性テスト 用サンプルを用い、 U L 9 4燃焼性試験にてテス トした結果、 サンプルはテスト開 始後直ちに着火した。  75 g of aluminum hydroxide and 100 g of polypropylene as in Example 1 were mixed, then placed in an injection molding machine, and injection molded at 180 ° C into a sample shape for a flame retardancy test. The sample shape for the flame retardancy test is the same as in Example 1. As a result of a UL 94 flammability test using this flame-retardant test sample, the sample ignited immediately after the start of the test.
(比較例 2 )  (Comparative Example 2)
実施例 1と同様の水酸化アルミニウム 3 0 gとポリプロピレン 1 0 0 gとを混合 し、 その後射出成形機に入れ、 1 8 0 °Cにて難燃性テスト用サンプル形状に射出成 形した。 難燃性テス ト用サンプル形状は実施例 1と同じである。 この難燃性テスト 用サンプルを用い、 U L 9 4燃焼性試験にてテストした結果、 サンプルはテスト開 始後直ちに着火した。  30 g of aluminum hydroxide and 100 g of polypropylene as in Example 1 were mixed, then placed in an injection molding machine, and injection molded at 180 ° C. into a sample shape for a flame retardancy test. The sample shape for the flame-retardant test is the same as in Example 1. As a result of a UL 94 flammability test using this sample for a flame retardancy test, the sample ignited immediately after the start of the test.
(比較例 3 )  (Comparative Example 3)
実施例 1と同様の水酸化アルミニウム 2 0 gとポリプロピレン 1 0 0 gとを混合 し、 その後射出成形機に入れ、 1 8 0 °Cにて難燃性テスト用サンプル形状に射出成 形した。 難燃性テスト用サンプル形状は実施例 1と同じである。 この難燃性テスト 用サンプルを用い、 UL 94燃焼性試験にてテストした結果、 サンプルはテスト開 始後直ちに着火した。 20 g of aluminum hydroxide and 100 g of polypropylene as in Example 1 were mixed, then placed in an injection molding machine, and injection molded at 180 ° C. into a sample shape for a flame retardancy test. The sample shape for the flame retardancy test is the same as in Example 1. This flame retardant test As a result of the test using the test sample in the UL 94 flammability test, the sample ignited immediately after the start of the test.
上記実施例 1〜4、 及び比較例 1〜3の結果を表 1にまとめる。 なお、 各成分の 配合量は、 ポリプロピレン (PP樹脂) 100重量部に対する各重量部にて示して いる。 また、 ゲル状組成物中に含まれる S i 02 (テトラエトキシシランの加水分解 物) 、 及び硝酸亜鉛六水和物、 硝酸 N i六水和物については酸化物換算の値にて配 合量を示している。 Table 1 summarizes the results of Examples 1 to 4 and Comparative Examples 1 to 3. The amount of each component is shown in parts by weight based on 100 parts by weight of polypropylene (PP resin). For SiO 2 (a hydrolyzate of tetraethoxysilane), zinc nitrate hexahydrate and Ni nitrate hexahydrate contained in the gel composition, they are combined in terms of oxide. Indicates the amount.
Figure imgf000026_0001
これらの結果より、 ゲル状組成物を配合していない比較例は、 難燃性が殆ど付与さ れていないのに対し、 実施例で示したように、 ポリプロピレンにゲル状組成物を配 合した難燃性高分子複合材料は、 少量 (例えば 5〜15重量部程度) でも難燃性付 与効果があることが分かった。
Figure imgf000026_0001
From these results, the comparative example in which the gel composition was not blended had almost no flame retardancy, whereas the gel composition was blended in polypropylene as shown in the examples. It was found that even a small amount of the flame-retardant polymer composite material (for example, about 5 to 15 parts by weight) has the effect of imparting flame retardancy.
(実施例 5)  (Example 5)
金属塩として硝酸亜鉛六水和物 (Ζη (ΝΟ,) 2 · 6Η20) 93. 43 gをエタ ノール 8 Om l中に入れ、 溶解させた。 その液中にテトラエトキシシラン (S i ( OC2H5) 4) を 27. 74 g加え、 次いで純水 16. 76 gを滴下し、 液を撹拌す ることでゾル状組成物を作製した。 このゾル状組成物を 150 °Cの乾燥器に入れ、 溶媒分を揮発させてゲル状組成物となし、 これを粉砕して微粉末状のゲル状組成物 粒子を作成した。 Zinc nitrate hexahydrate (Ζη (ΝΟ,) 2 · 6Η 20 ) 93.43 g as metal salt And dissolved in 8 ml of ethanol. The liquid tetraethoxysilane in (S i (OC 2 H 5 ) 4) and 27. 74 g was added and then dropwise pure water 16. 76 g, to prepare a sol-like composition in Rukoto to stir the liquid . This sol-like composition was placed in a dryer at 150 ° C., and the solvent was evaporated to form a gel-like composition, which was pulverized to produce fine powdery gel-like composition particles.
上記ゲル状組成物粒子 6 gと、 難燃材料粒子として平均粒径 1 mの水酸化アル ミニゥム 50 gと、 高分子材料基質として粉末状あるいはペレツト状のポリプロピ レン 100 gとを混合し、 その混合物を射出成形機に入れ、 180でにて射出成形 し、 所定の形状のサンプルを得た。  A mixture of 6 g of the gel composition particles, 50 g of aluminum hydroxide having an average particle diameter of 1 m as flame-retardant material particles, and 100 g of powdery or pellet-like polypropylene as a polymer material substrate was mixed. The mixture was put into an injection molding machine and injection-molded at 180 to obtain a sample of a predetermined shape.
まず、 酸素指数法による燃焼試験 (J I SK7201) のために、 長さ 12 Om m、 幅 6. 5 mm, 厚み 3 mmのサンプルを作成し、 同燃焼試験にてテストした結 果、 酸素指数値 31%を得た。 さらに、 引張試験法 (J I SK71 13) に基づい て 1号形試験片を作成し、 同試験にてテス トした結果、 引張強度 21. 1 X 106[ P a ]を得た。 First, a sample with a length of 12 Omm, a width of 6.5 mm, and a thickness of 3 mm was prepared for the combustion test using the oxygen index method (JI SK7201). 31% was obtained. Furthermore, a No. 1 test piece was prepared based on the tensile test method (JI SK7113) and tested in the same test, and as a result, a tensile strength of 21.1 X 10 6 [Pa] was obtained.
(実施例 6)  (Example 6)
金属塩として硝酸亜鉛六水和物 (Zn (N〇3) 2 · 6Η20) 93. 43 gをエタ ノール 80m l中に入れ、 溶解させた。 その液中にテトラエトキシシラン (S i ( OC2H5) 4) を 27. 74 g加え、 次いで純水 16. 76 gを滴下し、 液を撹拌す ることでゾル状組成物を作製した。 このゾル状組成物を 150 °Cの乾燥器に入れ、 溶媒分を揮発させてゲル状組成物となし、 これを粉砕して微粉末状のゲル状組成物 粒子を作成した。 Zinc nitrate hexahydrate (Zn (N_〇 3) 2 · 6Η 2 0) 93. 43 g were placed in ethanol 80 m l as a metal salt were dissolved. The liquid tetraethoxysilane in (S i (OC 2 H 5 ) 4) and 27. 74 g was added and then dropwise pure water 16. 76 g, to prepare a sol-like composition in Rukoto to stir the liquid . This sol-like composition was placed in a dryer at 150 ° C., and the solvent was evaporated to form a gel-like composition, which was pulverized to produce fine powdery gel-like composition particles.
上記ゲル状組成物粒子 6 gと、 難燃材料粒子として平均粒径 55 t mの水酸化ァ ルミニゥム 50 gと、 高分子材料基質として粉末状あるいはペレツト状のポリプロ ピレン 100 gとを混合し、 その混合物を射出成形機に入れ、 180°Cにて射出成 形し、 実施例 5と同様の酸素指数測定用及び引張試験測定用のサンプルを得た。 上記作製したサンプルを用い、 酸素指数法による燃焼試験にてテストした結果、 酸素指数値 29%を得た。 さらに、 引張試験にてテストした結果、 引張強度 16. 5 X 106[P a]を得た。 6 g of the gel composition particles, 50 g of an aluminum hydroxide having an average particle diameter of 55 tm as flame-retardant material particles, and 100 g of powdery or pelletized polypropylene as a polymer material substrate were mixed. The mixture was put into an injection molding machine and injection molded at 180 ° C. to obtain the same samples for oxygen index measurement and tensile test measurement as in Example 5. Using the sample prepared above, a combustion test was conducted by the oxygen index method. As a result, an oxygen index value of 29% was obtained. Further, as a result of a tensile test, a tensile strength of 16.5 × 10 6 [Pa] was obtained.
(比較例 4)  (Comparative Example 4)
実施例 5と同様の平均粒径 1 μπιの水酸化アルミニウム 50 gとポリプロピレン 100 gとを混合し、 その後射出成形機に入れ、 180°Cにて射出成形し、 実施例 5と同様の酸素指数測定用及び引張試験測定用のサンプルを得た。  A mixture of 50 g of aluminum hydroxide having an average particle diameter of 1 μπι and 100 g of polypropylene as in Example 5 was then placed in an injection molding machine and injection molded at 180 ° C., and an oxygen index similar to that of Example 5 was obtained. Samples for measurement and tensile test measurement were obtained.
上記作製したサンプルを用い、 酸素指数法による燃焼試験にてテストした結果、 酸素指数値 19. 7%を得た。 さらに、 引張試験にてテストした結果、 引張強度 1 9. 6 X 106[P a]を得た。 Using the sample prepared above, a combustion test was conducted by the oxygen index method. As a result, an oxygen index value of 19.7% was obtained. Furthermore, as a result of a tensile test, a tensile strength of 19.6 × 10 6 [Pa] was obtained.
(比較例 5)  (Comparative Example 5)
ポリプロピレン 100 gを射出成形機に入れ、 180°Cにて射出成形し、 実施例 5と同様の酸素指数測定用及び引張試験測定用のサンプルを得た。  100 g of polypropylene was put into an injection molding machine and injection-molded at 180 ° C. to obtain the same samples for oxygen index measurement and tensile test measurement as in Example 5.
上記作製したサンプルを用い、 酸素指数法による燃焼試験にてテス卜した結果、 酸素指数値 1 7. 5%を得た。 さらに、 引張試験にてテストした結果、 引張強度 2 2. 3 X 106 [ P a ]を得た。 As a result of a test using the sample prepared above in a combustion test by the oxygen index method, an oxygen index value of 17.5% was obtained. Further, as a result of a tensile test, a tensile strength of 22.3 × 10 6 [Pa] was obtained.
上記実施例 5, 6、 及び比較例 4, 5の結果を表 2にまとめる。 なお、 各成分の 配合量は、 ポリプロピレン (PP樹脂) 100重量部に対する各重量部にて示して いる。 また、 ゲル状組成物中に含まれる S i 02 (テトラエトキシシランの加水分解 物) 、 及び硝酸亜鉛六水和物については酸化物換算の値にて配合量を示している。 表 2 Table 2 summarizes the results of Examples 5 and 6 and Comparative Examples 4 and 5 above. The amount of each component is shown in parts by weight based on 100 parts by weight of polypropylene (PP resin). Further, S i 0 2 (hydrolyzate of tetraethoxysilane) contained in the gel composition, and shows the amount in value of the terms of oxide for zinc nitrate hexahydrate. Table 2
Figure imgf000029_0001
これらの結果より、 ゲル状組成物を添加したポリプロピレンは、 高い酸素指数値、 すなわち高い難燃性を有していることが分かる。 しかしながら、 平均粒径の大きい 水酸化アルミニウム (実施例 6) を用いると、 榭脂特性 (引張強度) が低下してお り、 一方、 平均粒径の小さい水酸化アルミニウム (実施例 5) を用いると、 樹脂特 性 (引張強度) を維持したまま難燃性を向上させることが可能であることが分かる (実施例 7)
Figure imgf000029_0001
From these results, it can be seen that the polypropylene added with the gel composition has a high oxygen index value, that is, a high flame retardancy. However, when aluminum hydroxide having a large average particle size (Example 6) is used, resin properties (tensile strength) are reduced, while aluminum hydroxide (Example 5) having a small average particle size is used. It can be seen that flame retardancy can be improved while maintaining resin properties (tensile strength) (Example 7).
金属塩として硝酸第二銅三水和物 (Cu (N03) 2 ' 3H20) 9. l l gをエタ ノール 3 Om 1中に入れ、 溶解させた。 その液中にテトラエトキシシラン (S i ( OC2H5) 4) を 3, 47 g加え、 次いで純水 2. 07 gを滴下し、 液を撹拌するこ とでゾル状組成物を作製した。 このゾル状組成物中に担持材料粒子として平均粒径 650 μπιのポリプロピレン樹脂粉末 100 gを入れ、 撹拌しながら混合した。 そ の後、 90°Cの乾燥器に入れ、 溶媒分を揮発させて樹脂表面にゲル状組成物 (化合 物層) のコーティング被膜を形成した (以下、 ゾルゲル法を用いたコーティングの ことをゾルゲルコーティングという) 。 なお、 コ一ティング被膜の成分を推定する ために、 ゾル状組成物のみを乾燥したゲル状組成物を分析したところ、 S i、 Cu, 0、 N及び Cの各元素を含有した化合物となっていることがわかった。 また、 コー ティング被膜を施した粒子を燃焼させた場合、 燃焼残留物中の重量比は、 酸化物換 算で担持材料粒子としての樹脂 100重量部に対し、 S i O 21重量部、 C u O 3重 量部であった。 Cupric nitrate trihydrate as a metal salt (Cu (N0 3) 2 ' 3H 2 0) 9. llg was placed in ethanol 3 Om 1, were dissolved. 3,47 g of tetraethoxysilane (Si (OC 2 H 5 ) 4 ) was added to the solution, and then 2.07 g of pure water was added dropwise, and the solution was stirred to prepare a sol-like composition. . 100 g of a polypropylene resin powder having an average particle diameter of 650 μπι was added to the sol composition as carrier material particles, and mixed with stirring. After that, the mixture was placed in a dryer at 90 ° C to evaporate the solvent to form a coating film of a gel-like composition (compound layer) on the resin surface (hereinafter, coating using the sol-gel method was referred to as sol-gel coating). Coating). The components of the coating film are estimated. For this reason, when the gel composition obtained by drying only the sol composition was analyzed, it was found that it was a compound containing each element of Si, Cu, 0, N and C. When the particles coated with the coating film are burned, the weight ratio in the combustion residue is 1 part by weight of SiO 2 and 100 parts by weight of the resin as carrier material particles in terms of oxide conversion. u O was 3 parts by weight.
上記ゾルゲルコ一ティングした粉末を射出成形機に入れ、 200°Cにて難燃性テ スト用サンプル形状に射出成形した。 難燃性テスト用サンプル形状は、 UL 94燃 焼性試験に基づき、 長さ 125mm、 幅 13mm、 厚み 1. 6 mmとした。 この場 合、 担持材料粒子 (ポリプロピレン) が成形後には基質を形成することとなり、 コ 一ティングされた化合物部分はその基質中に分散された、 上述の難燃性高分子複合 材料と同様の組織形態となる。  The sol-gel coated powder was put into an injection molding machine and injection-molded at 200 ° C into a sample shape for a flame-retardant test. The sample shape for the flame retardancy test was 125 mm long, 13 mm wide and 1.6 mm thick based on the UL 94 flammability test. In this case, the support material particles (polypropylene) form a matrix after molding, and the coated compound portion is dispersed in the matrix and has the same structure as that of the flame-retardant polymer composite material described above. Form.
上記作製した難燃性テスト用サンプルを用い、 UL 94燃焼性試験にてテストし た結果、 同試験の V— 2規格をクリアした。  Using the sample for flame retardancy test prepared above, it was tested in the UL 94 flammability test. As a result, it passed the V-2 standard of the test.
(実施例 8)  (Example 8)
金属塩として硝酸亜鉛六水和物 (Zn (NO 3) 2 · 6Η20) 10. 97 gをエタ ノール 3 Om l中に入れ、 溶解させた。 その液中にテトラエトキシシラン (S i ( OC2H5) 4) を 3. 47 g加え、 次いで純水 2. 07 gを滴下し、 液を撹拌するこ とでゾル状組成物を作製した。 このゾル状組成物中に担持材料粒子としてのポリプ ロピレン榭脂粉末 100 gを入れ、 撹拌しながら混合した。 その後、 90°Cの乾燥 器に入れ、 溶媒分を揮発させて榭脂表面にゲル状組成物 (化合物層) のコーティン グ被膜を形成した。 なお、 コーティング被膜の成分を推定するために、 ゾル状組成 物のみを乾燥したゲル状組成物を分析したところ、 S i、 Zn、 0、 N及び Cの各 元素を含有した化合物となっていることがわかった。 また、 コーティング被膜を施 した粒子を燃焼させた場合、 燃焼残留物中の重量比は、 酸化物換算で担持材料粒子 としての樹脂 100重量部に対し、 S i 02 l重量部、 Zn03重量部であった。 上記ゾルゲルコーティングした粉末を、 実施例 7と同様の方法にて難燃性テスト 用サンプル形状に射出成形した。 この場合も、 担持材料粒子 (ポリプロピレン) カ 成形後には基質を形成することとなり、 コーティングされた化合物部分はその基質 中に分散された、 上述の難燃性高分子複合材料と同様の組織形態となる。 作製した 難燃性テスト用サンプルを用レ、、 UL 94燃焼性試験にてテストした結果、 同試験 の V— 2規格をクリアした。 Zinc nitrate hexahydrate (Zn (NO 3) 2 · 6Η 2 0) 10. 97 g were placed in ethanol 3 Om l as a metal salt were dissolved. 3.47 g of tetraethoxysilane (Si (OC 2 H 5 ) 4 ) was added to the solution, and then 2.07 g of pure water was added dropwise, and the solution was stirred to prepare a sol-like composition. . 100 g of propylene resin powder as support material particles was put into the sol composition, and mixed with stirring. Thereafter, the mixture was placed in a dryer at 90 ° C., and the solvent was evaporated to form a coating film of the gel composition (compound layer) on the resin surface. In order to estimate the components of the coating film, when the gel composition obtained by drying only the sol composition was analyzed, it was found to be a compound containing each element of Si, Zn, 0, N and C. I understand. When the particles coated with the coating were burned, the weight ratio in the combustion residue was calculated as oxide 2 l parts by weight and Zn 03 parts by weight with respect to 100 parts by weight of resin as carrier material particles in terms of oxide. Met. The sol-gel coated powder was injection-molded in the same manner as in Example 7 into a sample shape for a flame-retardant test. Also in this case, the carrier material particles (polypropylene) form a matrix after molding, and the coated compound portion is dispersed in the matrix, and has the same morphology as the flame-retardant polymer composite material described above. Become. Using the prepared sample for flame retardancy test, it was tested in UL 94 flammability test. As a result, it passed the V-2 standard of the test.
(実施例 9)  (Example 9)
金属塩として硝酸第二鉄九水和物 (F e (ΝΟ3) 2 · 9Η20) 16. 87 gをェ タノール 3 Om 1中に入れ、 溶解させた。 その液中にテトラエトキシシラン (S i (OC2H5) 4) を 3. 47 g加え、 次いで純水 2. 07 gを滴下し、 液を撹拌する ことでゾル状組成物を作製した。 このゾル状組成物中に担持材料粒子としてのポリ プロピレン榭脂粉末 100 gを入れ、 撹拌しながら混合した。 その後、 90°Cの乾 燥器に入れ、 溶媒分を揮発させて樹脂表面にゲル状組成物 (化合物層) のコーティ ング被膜を形成した。 なお、 コーティング被膜の成分を推定するために、 ゾル状組 成物のみを乾燥したゲル状組成物を分析したところ、 S i、 F e、 0、 N及び Cの 各元素を含有した化合物となっていることがわかった。 また、 コーティング被膜を 施した粒子を燃焼させた場合、 燃焼残留物中の重量比は、 酸化物換算で担持材料粒 子としての樹脂 100重量部に対し、 S i 02l重量部、 F e〇3重量部であった。 上記ゾルゲルコーティングした粉末を、 実施例 7と同様の方法にて難燃性テスト 用サンプル形状に射出成形した。 この場合も、 担持材料粒子 (ポリプロピレン) 力 S 成形後には基質を形成することとなり、 コーティングされた化合物部分はその基質 中に分散された、 上述の難燃性高分子複合材料と同様の組織形態となる。 作製した 難燃性テスト用サンプルを用い、 UL 94燃焼性試験にてテストした結果、 同試験 の V— 2規格をクリアした。 Ferric nitrate nonahydrate as metal salt (F e (ΝΟ 3) 2 · 9Η 2 0) 16. Put 87 g in E methanol 3 Om 1, were dissolved. 3.47 g of tetraethoxysilane (Si (OC 2 H 5 ) 4 ) was added to the solution, and then 2.07 g of pure water was added dropwise, and the solution was stirred to produce a sol composition. 100 g of polypropylene resin powder as carrier material particles was put into this sol composition, and mixed with stirring. Thereafter, the mixture was placed in a dryer at 90 ° C., and the solvent was evaporated to form a coating film of the gel composition (compound layer) on the resin surface. In order to estimate the components of the coating film, when the gel composition obtained by drying only the sol composition was analyzed, a compound containing each element of Si, Fe, 0, N and C was obtained. I understood that. When the particles coated with the coating were burned, the weight ratio in the combustion residue was calculated as oxide 2 l parts by weight, 100 parts by weight of resin as carrier material particles, and Fe 2 parts by weight. 〇3 parts by weight. The sol-gel coated powder was injection-molded in the same manner as in Example 7 into a sample shape for a flame-retardant test. Also in this case, the support material particles (polypropylene) force S form a matrix after molding, and the coated compound portion is dispersed in the matrix, and has the same morphology as the flame-retardant polymer composite material described above. Becomes Using the prepared sample for flame retardancy test in the UL 94 flammability test, it passed the V-2 standard of the test.
(比較例 6 ) 金属塩として硝酸亜鉛六水和物 (Ζη (Ν03) 2 · 6Η2〇) 36. 6 gをェタノ ール 30 m 1中に入れ、 溶解液を撹拌した。 この溶解液に実施例 7と同様の担持材 料粒子としてのポリプロピレン樹脂粉末 100 gを入れ、 撹拌しながら混合した。 その後、 85°Cの乾燥器に入れ、 溶媒分を揮発させて樹脂表面に付着物を形成した。 なお、 付着物の成分を推定するために、 上記溶解液のみを乾燥した組成物を分析し たところ、 Zn元素を含有した化合物となっていることがわかった。 また、 上記付 着物を形成した粒子を燃焼させた場合、 燃焼残留物中の重量比は、 酸化物換算で榭 脂 100重量部に対し、 Z ηθ 10重量部であった。 (Comparative Example 6) 36.6 g of zinc nitrate hexahydrate (Ζη (水 和 0 3 ) 2 · 6 2 2 〇) as a metal salt was placed in 30 ml of ethanol, and the solution was stirred. 100 g of the same polypropylene resin powder as the support material particles as in Example 7 was added to this solution, and mixed with stirring. Thereafter, the mixture was placed in a dryer at 85 ° C., and the solvent was evaporated to form deposits on the resin surface. The composition obtained by drying only the above solution was analyzed to estimate the components of the deposits, and it was found that the composition was a compound containing the Zn element. Further, when the particles formed with the above-mentioned attachment were burned, the weight ratio in the combustion residue was 10 parts by weight of Z ηθ based on 100 parts by weight of resin in terms of oxide.
上記付着物を形成した粉末と、 実施例 7と同様の基質としてのポリプロピレンの 粉末あるいはペレツ卜とを混合し、 実施例 7と同様の方法にて難燃性テスト用サン プル形状に射出成形した。 なお、 成形体としては、 酸ィヒ物換算で樹脂 100部に対 し、 Zn05重量部である。 作製した難燃性テスト用サンプルを用い、 UL 94燃 焼性試験にてテス卜した結果、 サンプルはテスト開始後直ちに着火した。  The powder on which the deposits were formed was mixed with a polypropylene powder or pellet as a substrate similar to that in Example 7, and injection-molded into a sample shape for flame retardancy test in the same manner as in Example 7. . In addition, as a molded body, Zn05 parts by weight was used for 100 parts of the resin in terms of an acid substance. Using the prepared sample for flame retardancy test in a UL 94 flammability test, the sample was ignited immediately after the start of the test.
上記実施例 7〜 9、 及び比較例 6の結果を表 3にまとめる。  Table 3 summarizes the results of Examples 7 to 9 and Comparative Example 6.
表 3  Table 3
Figure imgf000032_0001
Figure imgf000032_0001
これらの結果より、 テトラエトキシシラン (珪素成分) を配合しない比較例のサ ンプルは、 基質樹脂 (難燃性付与対象材料) に対して難燃性付与効果がないことが 分かる。 これに対し、 実施例で示したように、 テトラエトキシシラン (珪素成分) を配合させたゲル状組成物をコーティングしたサンプル (実施例 7〜9 ) は、 少量 配合でも高レ、難燃性付与効果があることが分かる。 From these results, it can be seen that the sample of Comparative Example in which tetraethoxysilane (silicon component) is not blended has no effect of imparting flame retardancy to the base resin (material to which flame retardancy is imparted). I understand. On the other hand, as shown in the examples, the samples coated with the gel-like composition containing tetraethoxysilane (silicon component) (Examples 7 to 9) have high levels of flame retardancy even in a small amount. It turns out that there is an effect.
なお、 本明細書において 「主成分」 あるいは 「主体とする」 とは、 特に断りがな いかぎり、 最も重量含有率の高くなる成分を意味するものとして用いた。  In this specification, the term “main component” or “mainly” is used to mean a component having the highest weight content unless otherwise specified.

Claims

請 求 の 範 囲 The scope of the claims
1 . 珪素成分及びノ又は金属成分と酸素とを含有する化合物を主体とし、 加熱によ り珪素及び 又は金属の酸化物を主体とするガラス質セラミックスを生ずる難燃性 付与用粒子が、 高分子材料からなる基質中に分散されるか、 及び 又は高分子材料 力 >らなる基質の表面に定着されたことを特徴とする難燃性高分子複合材料。 1. The flame-retardant-imparting particles which are mainly composed of a compound containing a silicon component and a metal component or a metal component and oxygen, and which produce a glassy ceramic mainly composed of oxides of silicon and / or metal by heating are made of a polymer. A flame-retardant polymer composite material which is dispersed in a substrate made of a material and / or is fixed on a surface of a polymer material.
2 . U L 9 4燃焼性試験にてテストしたときに、 V— 0〜V— 2の範囲を充足する 難燃性能を有する請求の範囲第 1項記載の難燃性高分子複合材料。  2. The flame-retardant polymer composite material according to claim 1, having a flame-retardant property satisfying a range of V-0 to V-2 when tested in a UL 94 flammability test.
3 . 前記化合物は炭素成分を含有する請求の範囲第 1項又は第 2項に記載の難燃性 高分子複合材料。  3. The flame-retardant polymer composite material according to claim 1, wherein the compound contains a carbon component.
4 . 加熱により燃焼阻害性気体を分解生成する請求の範囲第 1項ないし第 3項のい ずれかに記載の難燃性高分子複合材料。  4. The flame-retardant polymer composite material according to any one of claims 1 to 3, which decomposes and generates a combustion-inhibiting gas by heating.
5 . 前記燃焼阻害性気体として、 窒素、 硫黄及び炭素の 1種又は 2種以上を含有す るものが生成される請求の範囲第 4項記載の難燃性高分子複合材料。  5. The flame-retardant polymer composite material according to claim 4, wherein a substance containing one or more of nitrogen, sulfur and carbon is generated as the combustion inhibiting gas.
6 . 前記難燃性付与用粒子の平均粒径が 0 . 0 5〜5 0 0 μ mである請求の範囲第 1項ないし第 5項のいずれかに記載の難燃性高分子複合材料。 6. The flame-retardant polymer composite material according to any one of claims 1 to 5, wherein the average particle diameter of the particles for imparting flame retardancy is 0.05 to 500 µm.
7 . 前記化合物から成る前記難燃性付与用粒子とともに、 無機系又は有機系の難燃 剤粒子又は難燃助剤粒子を分散配合した請求の範囲第 1項ないし第 6項のいずれか に記載の難燃性高分子複合材料。 7. The method according to any one of claims 1 to 6, wherein inorganic or organic flame retardant particles or flame retardant auxiliary particles are dispersed and compounded together with the flame retardant-imparting particles comprising the compound. Flame retardant polymer composite material.
8 . 請求の範囲第 1項ないし第 7項のいずれかに記載の難燃性高分子複合材料の製 造に使用され、 未硬化の熱硬化性樹脂を含有する主剤と、 該主剤を硬化させるため の硬化剤とからなり、 前記難燃性付与用粒子を前記主剤又は硬化剤の少なくともい ずれかに配合されてなり、 前記主剤と前記硬化剤とを混合することにより、 熱硬化 性樹脂を基質としてこれに前記難燃性付与用粒子を分散させた難燃性高分子複合材 料が得られるようにしたことを特徴とする難燃性高分子複合材料製造用組成物。 8. A main agent containing an uncured thermosetting resin, which is used for producing the flame-retardant polymer composite material according to any one of claims 1 to 7, and curing the main agent. The flame-retardant-imparting particles are compounded with at least one of the main agent and the curing agent, and the thermosetting resin is mixed by mixing the main agent and the curing agent. A composition for producing a flame-retardant polymer composite material, characterized in that a flame-retardant polymer composite material in which the flame-retardant particles are dispersed as a substrate is obtained.
9 . 請求の範囲第 1項ないし第 7項のいずれかに記載の難燃性高分子複合材料を所 定の形状に成形したことを特徴とする難燃性高分子複合材料成形体。 9. A molded article of a flame-retardant polymer composite material, which is formed by molding the flame-retardant polymer composite material according to any one of claims 1 to 7 into a predetermined shape.
1 0 . 前記高分子基質の軟化を伴う再成形を前提としない、 最終成形体として構成 された請求の範囲第 9項記載の難燃性高分子複合材料成形体。 10. The flame-retardant polymer composite material molded article according to claim 9, wherein the molded article is configured as a final molded article without assuming remolding accompanied by softening of the polymer substrate.
1 1 . 前記高分子基質を軟化させて所期の二次形状に再成形するための仮成形体と して使用される請求の範囲第 9項記載の難燃性高分子複合材料成形体。 10. The flame-retardant polymer composite material molded article according to claim 9, wherein the molded article is used as a temporary molded article for softening the polymer substrate to re-mold it into an intended secondary shape.
1 2 . 珪素成分及び Z又は金属成分と酸素とを含有する化合物を主体とし、 加熱に より珪素及び Z又は金属の酸化物を主体とするガラス質セラミックスを生ずる難燃 性付与用粒子が、 高分子材料からなる基質中に分散された粒状成形物として構成さ れ、 個々の粒状成形物よりも大体積の二次形状に再成形するために使用されること を特徴とする難燃性高分子複合材料成形体製造用マスタ一バッチ。  12. The flame-retardant-imparting particles mainly composed of a compound containing a silicon component and Z or a metal component and oxygen, and producing a glassy ceramic mainly composed of silicon, Z or a metal oxide by heating, have a high particle size. Flame-retardant polymer composed as a granular molded product dispersed in a substrate made of a molecular material and used for reshaping into a secondary shape having a larger volume than individual granular molded products Master batch for manufacturing composite material moldings.
1 3 . 金属元素及び 又は S iの化合物を溶媒中に分散及びノ又は溶解させたゾル 状組成物を乾燥させてゲル状組成物となし、 そのゲル状組成物を高分子材料からな る基質中に分散させて難燃性高分子複合材料を得ることを特徴とする難燃性高分子 複合材料の製造方法。  13. A sol-like composition in which a metal element and / or a compound of Si is dispersed and dissolved or dissolved in a solvent is dried to form a gel-like composition, and the gel-like composition is a substrate made of a polymer material. A method for producing a flame-retardant polymer composite material, which comprises dispersing the compound in a flame-retardant polymer composite material.
1 4 . 前記ゲル状組成物を粉砕し、 その粉砕されたゲル状組成物粒子を、 軟化させ た熱可塑性樹脂又は未硬化の熱硬化性榭脂に混合分散した後、 その樹脂を硬化させ ることにより、 前記熱可塑性樹脂又は熱硬化性樹脂からなる基質中にゲル状組成物 粒子が分散した難燃性高分子複合材料を得る請求の範囲第 1 3項記載の難燃性高分 子複合材料の製造方法。  14. The above-mentioned gel composition is pulverized, and the pulverized gel composition particles are mixed and dispersed in a softened thermoplastic resin or an uncured thermosetting resin, and then the resin is cured. The flame-retardant polymer composite according to claim 13, wherein a flame-retardant polymer composite material in which gel-like composition particles are dispersed in a substrate made of the thermoplastic resin or the thermosetting resin is obtained. Material manufacturing method.
1 5 . 前記ゾル状組成物を噴霧乾燥させてゲル状組成物粒子となし、 これを軟化さ せた熱可塑性樹脂又は未硬化の熱硬化性樹脂に混合分散した後、 その樹脂を硬化さ せることにより、 前記熱可塑性樹脂又は熱硬化性樹脂からなる基質中にゲル状組成 物粒子が分散した難燃性高分子複合材料を得る請求の範囲第 1 3項記載の難燃性高 分子複合材料の製造方法。 15. The sol composition is spray-dried to form gel composition particles, mixed and dispersed in a softened thermoplastic resin or an uncured thermosetting resin, and then the resin is cured. The flame-retardant polymer composite material according to claim 13, wherein a flame-retardant polymer composite material in which gel composition particles are dispersed in a substrate made of the thermoplastic resin or the thermosetting resin is obtained. Manufacturing method.
1 6 . 前記ゲル状組成物粒子の平均粒径が 0 . 5〜 5 0 0 μ mに調整される請求の 範囲第 1 4項又は第 1 5項に記載の難燃性高分子複合材料の製造方法。 16. The flame-retardant polymer composite material according to claim 14, wherein the average particle size of the gel composition particles is adjusted to 0.5 to 500 μm. Production method.
1 7 . 前記基質に対する前記ゲル状組成物の配合比率が、 前記基質 1 0 0重量部に 対して、 前記ゲル状組成物が 0 . 1〜1 0 0重量部とされる請求の範囲第 1 3項な いし第 1 6項のいずれかに記載の難燃性高分子複合材料の製造方法。  17. The mixing ratio of the gel composition to the substrate, wherein the gel composition is 0.1 to 100 parts by weight relative to 100 parts by weight of the substrate. 13. The method for producing a flame-retardant polymer composite material according to any one of items 3 to 16.
1 8 . 前記ゾル状組成物は、 金属元素及び 又は S iのアルコキシドを加水分解す ることにより製造される請求の範囲第 1 3項ないし第 1 7項のいずれかに記載の難 燃性高分子複合材料の製造方法。  18. The flame-retardant composition according to any one of claims 13 to 17, wherein the sol composition is produced by hydrolyzing a metal element and / or an alkoxide of Si. A method for producing a molecular composite material.
1 9 . 前記ゾル状組成物を作るための溶媒はアルコールである請求の範囲第 1 3項 ないし第 1 8項のいずれかに記載の難燃性高分子複合材料の製造方法。  19. The method for producing a flame-retardant polymer composite material according to any one of claims 13 to 18, wherein the solvent for producing the sol composition is an alcohol.
2 0 . 前記ゾル状組成物を作るための溶媒配合量が 2 5〜 9 8重量%であり、 前記 アルコキシドの配合量が 0 . 5〜4 0重量%である請求の範囲第 1 8項又は第 1 9 項に記載の難燃性高分子複合材料の製造方法。  20. The compound according to claim 18, wherein the amount of the solvent for preparing the sol composition is 25 to 98% by weight, and the amount of the alkoxide is 0.5 to 40% by weight. Item 19. The method for producing a flame-retardant polymer composite material according to Item 19.
2 1 . 前記アルコキシドは、 S i及びノ又は T iを必須成分とするものである請求 の範囲第 1 8項ないし第 2 0項のいずれかに記載の難燃性高分子複合材料の製造方 法。  21. The method for producing a flame-retardant polymer composite material according to any one of claims 18 to 20, wherein the alkoxide has Si and no or Ti as an essential component. Law.
2 2 . 前記ゾル状組成物に、 無機酸又は有機酸の金属塩が配合される請求の範囲第 1 3項ないし第 2 1項のいずれかに記載の難燃性高分子複合材料の製造方法。  22. The method for producing a flame-retardant polymer composite material according to any one of claims 13 to 21, wherein a metal salt of an inorganic acid or an organic acid is blended with the sol composition. .
2 3 . 前記金属塩のカチオン金属元素は、 C u、 Aし Z n、 N i、 F e、 T i及 び Z rの 1種又は 2種以上を含有する請求の範囲第 2 2項記載の難燃性高分子複合 材料の製造方法。 23. The cation metal element of the metal salt, wherein the cation metal element contains one or more of Cu, A and Zn, Ni, Fe, Ti and Zr. For producing flame-retardant polymer composite materials.
2 4 . 前記無機酸として、 酸性気体を水に溶解して得られる酸 (以下、 酸性気体べ ース無機酸という) が使用される請求の範囲第 2 2項又は第 2 3項に記載の難燃性 高分子複合材料の製造方法。  24. The method according to claim 22, wherein the inorganic acid is an acid obtained by dissolving an acidic gas in water (hereinafter referred to as an acidic gas-based inorganic acid). Flame retardant A method for producing polymer composite materials.
2 5 . 前記酸性気体ベース無機酸は、 硝酸、 亜硝酸、 硫酸、 亜硫酸、 及び炭酸の 1 種又は 2種以上である請求の範囲第 2 4項記載の難燃性高分子複合材料の製造方法。 25. The acidic gas-based inorganic acid is one of nitric acid, nitrous acid, sulfuric acid, sulfurous acid, and carbonic acid. 25. The method for producing a flame-retardant polymer composite material according to claim 24, which is a kind or two or more kinds.
2 6 . 前記ゾル状組成物中の前記金属塩の配合量が 9 5重量%以下とされている請 求の範囲第 2 2項ないし第 2 5項のいずれかに記載の難燃性高分子複合材料の製造 方法。 26. The flame-retardant polymer according to any one of claims 22 to 25, wherein the amount of the metal salt in the sol composition is 95% by weight or less. Manufacturing method of composite material.
2 7 . 前記ゾル状組成物において、 前記アルコキシドの重量配合率を WA、 前記金属 塩の重量配合率を WBとしたときに、 WAZWBが 0 . 0 1〜3 0の範囲にて設定さ れる請求の範囲第 2 2項ないし第 2 6項のいずれかに記載の難燃性高分子複合材料 の製造方法。 27. In the sol composition, WAZWB is set in the range of 0.01 to 30 when the weight ratio of the alkoxide is WA and the weight ratio of the metal salt is WB. Item 30. The method for producing a flame-retardant polymer composite material according to any one of Items 22 to 26.
2 8 . 前記ゾル状組成物は、 前記溶媒としてのアルコールを 2 5〜9 8重量%と、 前記アルコキシドとしてのシリコンアルコキシドを 0 . 5〜4 0重量%と、 前記金 属塩としての硝酸金属塩を 5〜 9 5重量%と、 水 0 . 1〜2 0重量%とが配合され たものが使用される請求の範囲第 2 6項又は第 2 7項に記載の難燃性高分子複合材 料の製造方法。  28. The sol-like composition contains 25 to 98% by weight of an alcohol as the solvent, 0.5 to 40% by weight of a silicon alkoxide as the alkoxide, and metal nitrate as the metal salt. 28. The flame-retardant polymer composite according to claim 26, wherein a mixture of 5 to 95% by weight of a salt and 0.1 to 20% by weight of water is used. The method of manufacturing the material.
2 9 . 前記ゾル状組成物の乾燥を 4 0〜2 5 0での範囲にて行う請求の範囲第 1 3 項ないし第 2 8項のいずれかに記載の難燃性高分子複合材料の製造方法。  29. The production of the flame-retardant polymer composite material according to any one of claims 13 to 28, wherein the sol-like composition is dried in a range of 40 to 250. Method.
3 0 . 前記基質中に、 前記ゲル状組成物とともに、 これとは材質の異なる難燃材料 粒子が分散される請求の範囲第 1 3項ないし第 2 9項のいずれかに記載の難燃性髙 分子複合材料の製造方法。  30. The flame-retardant material according to any one of claims 13 to 29, wherein, in the matrix, a flame-retardant material particle different from the material is dispersed together with the gel composition.方法 Manufacturing method of molecular composite material.
3 1 . 前記難燃材料粒子は、 無機材料系粒子又は金属材料系粒子からなるものが使 用される請求の範囲第 3 0項記載の難燃性高分子複合材料の製造方法。  31. The method for producing a flame-retardant polymer composite material according to claim 30, wherein said flame-retardant material particles are composed of inorganic material particles or metal material particles.
3 2 . 前記無機材料系粒子として、 水酸化アルミニウム及び水酸化マグネシウムの 少なくともいずれかを主成分とするものが使用される請求の範囲第 2 1項記載の難 燃性高分子複合材料の製造方法。  32. The method for producing a flame-retardant polymer composite material according to claim 21, wherein the inorganic material-based particles are mainly composed of at least one of aluminum hydroxide and magnesium hydroxide. .
3 3 . 前記基質中に、 前記ゲル状組成物とともに、 前記高分子基質が昇温により溶 融した場合に、 その流動 ·滴下を抑制する流動抑制補助剤が配合される請求の範囲 第 1 3項ないし第 3 2項のいずれかに記載の難燃性高分子複合材料の製造方法。 33. A flow-suppressing adjuvant, which suppresses the flow and dripping of the polymer substrate when the polymer substrate is melted by raising the temperature, together with the gel-like composition, is added to the substrate. 3. The method for producing a flame-retardant polymer composite material according to any one of Items 13 to 32.
3 4 . 前記流動抑制補助剤は、 無水ホウ酸、 ホウ酸亜鉛等のホウ酸系無機化合物、 赤燐等の燐系無機化合物あるいはカーボン等の無機材料系のもの、 ポリリン酸アン モニゥム等の燐系有機化合物、 もしくはシリコーンが使用される請求の範囲第 3 3 項記載の難燃性高分子複合材料の製造方法。 34. The flow control adjuvant is a boric acid-based inorganic compound such as boric anhydride or zinc borate, a phosphorus-based inorganic compound such as red phosphorus or an inorganic material-based material such as carbon, or a phosphorus-based material such as ammonium polyphosphate. The method for producing a flame-retardant polymer composite material according to claim 33, wherein a system-based organic compound or silicone is used.
PCT/JP2000/005191 1999-08-03 2000-08-03 Flame-retardant polymer composite material, composition for producing, formed article of flame-retardant polymer composite material, masterbatch for producing formed article of flame-retardant polymer composite material and method for producing flame-retardant polymer composite material WO2001009251A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU64710/00A AU6471000A (en) 1999-08-03 2000-08-03 Flame-retardant polymer composite material, composition for producing, formed article of flame-retardant polymer composite material, masterbatch for producing formed article of flame-retardant polymer composite material and method for producing flame-retardant polymer composite

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP21941399 1999-08-03
JP11/219413 1999-08-03
JP11/234703 1999-08-20
JP23470399 1999-08-20
JP11/356844 1999-12-16
JP35684499A JP2001131431A (en) 1999-08-03 1999-12-16 Flame retardant polymeric composite material, composition for making the same and molded product of flame retardant polymeric composite material

Publications (1)

Publication Number Publication Date
WO2001009251A1 true WO2001009251A1 (en) 2001-02-08

Family

ID=27330281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/005191 WO2001009251A1 (en) 1999-08-03 2000-08-03 Flame-retardant polymer composite material, composition for producing, formed article of flame-retardant polymer composite material, masterbatch for producing formed article of flame-retardant polymer composite material and method for producing flame-retardant polymer composite material

Country Status (3)

Country Link
JP (1) JP2001131431A (en)
AU (1) AU6471000A (en)
WO (1) WO2001009251A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101503627B (en) * 2008-02-05 2011-11-30 广东炜林纳功能材料有限公司 Halogen-free flame retardant including metal hydroxides for surface treatment and use thereof
WO2024027000A1 (en) * 2022-08-03 2024-02-08 江苏卡续曼新材料科技有限公司 Method for realizing flame retardation of flame retardant on basis of blending modification of thermoplastic high polymer material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104751951A (en) * 2015-03-30 2015-07-01 安徽省高沟电缆有限公司 Flame retardant insulation material special for cable wrapping

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236897A (en) * 1975-09-18 1977-03-22 Ig Tech Res Inc Filler for fire-proof building material and composition for fire-proof building material
JPS63125594A (en) * 1986-07-25 1988-05-28 エフ・ア−ル・システムズ・インコ−ポレ−テッド Fire retardant agent
JPH02150433A (en) * 1988-08-09 1990-06-08 Firestop Chem Corp Fireproofed foamed polymeric material
DE19629809A1 (en) * 1996-07-24 1998-01-29 Hilti Ag Fireproof silicone sealant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236897A (en) * 1975-09-18 1977-03-22 Ig Tech Res Inc Filler for fire-proof building material and composition for fire-proof building material
JPS63125594A (en) * 1986-07-25 1988-05-28 エフ・ア−ル・システムズ・インコ−ポレ−テッド Fire retardant agent
JPH02150433A (en) * 1988-08-09 1990-06-08 Firestop Chem Corp Fireproofed foamed polymeric material
DE19629809A1 (en) * 1996-07-24 1998-01-29 Hilti Ag Fireproof silicone sealant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101503627B (en) * 2008-02-05 2011-11-30 广东炜林纳功能材料有限公司 Halogen-free flame retardant including metal hydroxides for surface treatment and use thereof
WO2024027000A1 (en) * 2022-08-03 2024-02-08 江苏卡续曼新材料科技有限公司 Method for realizing flame retardation of flame retardant on basis of blending modification of thermoplastic high polymer material

Also Published As

Publication number Publication date
JP2001131431A (en) 2001-05-15
AU6471000A (en) 2001-02-19

Similar Documents

Publication Publication Date Title
CN110951161A (en) Flame-retardant thermoplastic polymer environment-friendly composite material and preparation method thereof
CN110577718A (en) aniline modified phenolic molding compound for low-voltage electrical apparatus and preparation method thereof
JP2001233992A (en) Molding auxiliary, its manufcturing method, and polymeric composite compounded with holding auxiliary
CN102382439B (en) Modified polycarbonate and preparation method thereof
RU2502602C1 (en) Binder for glass-fiber material and pull-extruded section thereof
WO2001009251A1 (en) Flame-retardant polymer composite material, composition for producing, formed article of flame-retardant polymer composite material, masterbatch for producing formed article of flame-retardant polymer composite material and method for producing flame-retardant polymer composite material
JP2001234082A (en) Method for producing flame-retardant polymeric- composite material and molded material of flameretardant polymeric composite material
WO2001009235A1 (en) Flame-retardant polymer composite material, composition for producing flame-retardant polymer composite material, formed article of flame-retardant polymer composite material and masterbatch for producing formed article of flame-retardant polymer composite material
CN110591243A (en) Special flame-retardant synergistic functional master batch for nylon resin modification and preparation method thereof
JP2001131552A (en) Composite particle for imparting flame retardance
CN102218883A (en) Wood plastic plate coated by silicone flame retardant coating
CN110591336B (en) Special flame-retardant synergistic functional master batch for thermoplastic polyurethane modification and preparation method thereof
WO2001009234A1 (en) Composite particle for imparting flame retardancy and method for producing composite composition for imparting flame retardancy
JP2001131293A (en) Flame retardant polymeric composite material, composition for making the same and molded product of flame retardant polymeric composite material
JP2001131294A (en) Master batch for manufacturing molded product of flame retardant polymeric composite material
CN104672811A (en) Environment-friendly flame-retardant antistatic reinforced PBT/PET (polybutylene terephthalate/polyethylene terephthalate) composite material
JP2001234169A (en) Preparation process of flame retardance-imparting composite composition, flame retardance-imparting composite composition, flame-retardant polymer composite material and molded product of flame- retardant polymer material
JP2001131430A (en) Flame retardant polymeric composite material, composition for making the same and molded product of flame retardant polymeric composite material
JP2002302612A (en) Flame retardance-imparting composite material, and flame-retardant polymeric composite material
CN113527805A (en) Self-assembled hybrid filler modified polypropylene flame-retardant film and preparation method thereof
JP2001131336A (en) Master batch for producing molding product of flame- retardant polymer composite material
JP2001233991A (en) Composite particle for imparting flame retardance
JP2002338964A (en) Composite material for imparting flame retardance, method for producing composite material for imparting flame retardance, and flame-retardant polymeric composite material
JP2001131432A (en) Box part for electrical equipment
JP3914023B2 (en) Flame retardant polymer material

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase