WO2001009235A1 - Flame-retardant polymer composite material, composition for producing flame-retardant polymer composite material, formed article of flame-retardant polymer composite material and masterbatch for producing formed article of flame-retardant polymer composite material - Google Patents

Flame-retardant polymer composite material, composition for producing flame-retardant polymer composite material, formed article of flame-retardant polymer composite material and masterbatch for producing formed article of flame-retardant polymer composite material Download PDF

Info

Publication number
WO2001009235A1
WO2001009235A1 PCT/JP2000/005190 JP0005190W WO0109235A1 WO 2001009235 A1 WO2001009235 A1 WO 2001009235A1 JP 0005190 W JP0005190 W JP 0005190W WO 0109235 A1 WO0109235 A1 WO 0109235A1
Authority
WO
WIPO (PCT)
Prior art keywords
flame
retardant
polymer
particles
composite material
Prior art date
Application number
PCT/JP2000/005190
Other languages
French (fr)
Japanese (ja)
Inventor
Tatsuaki Oda
Makio Nomura
Toshikuni Ito
Original Assignee
Ishizuka Garasu Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishizuka Garasu Kabushiki Kaisha filed Critical Ishizuka Garasu Kabushiki Kaisha
Priority to AU64709/00A priority Critical patent/AU6470900A/en
Publication of WO2001009235A1 publication Critical patent/WO2001009235A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/14Macromolecular materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier

Definitions

  • Flame retardant polymer composite material composition for producing flame retardant polymer composite material, flame retardant polymer composite material molded article, master batch for producing flame retardant polymer composite material molded article
  • the present invention relates to a flame-retardant polymer composite material, a composition for producing a flame-retardant polymer composite material, and a flame-retardant polymer
  • Resin materials are used in a wide range of fields due to their excellent chemical and physical properties, and excellent moldability and calorie properties, and demand is growing.
  • a major drawback is that most resin materials are flammable, so their use is restricted, and flame retardancy of resin materials is desired.
  • Halogen-based flame retardants are the mainstream flame retardants used to make resin materials flame-retardant.
  • Ecological flame retardants are not favorable for environmental protection due to dioxins and furans generated from halogen-based flame retardants. The development and commercialization of this is desired.
  • Non-halogen phosphorus-based flame retardants are not preferred because phosphine, which is a hydride of phosphorus, is generated.
  • inorganic flame retardants such as aluminum hydroxide and magnesium hydroxide.
  • Al hydroxide has low toxicity, low smoke emission, good electrical insulation, and low cost.
  • the problems are mechanical properties, low water resistance, large amount (more than 150 parts), increased viscosity of the compound for compounding, and low flame retardancy at high temperatures of 400 ° C or higher.
  • dehydration and foaming are likely to occur during processing of a resin having a high processing temperature.
  • Magnesium hydroxide has the same flame-retardant effect as aluminum hydroxide, and dehydration and foaming at the processing temperature of the resin, which is a drawback of aluminum hydroxide, is weak to acids and humid.
  • the present invention solves the above-mentioned conventional problems, and provides a flame-retardant polymer composite material which is inexpensive and exhibits high flame retardancy, a composition for producing a flame-retardant polymer composite material for producing the same,
  • An object of the present invention is to provide a molded article composed of the flame-retardant polymer composite material and a master batch for producing the flame-retardant polymer composite material molded article. Disclosure of the invention
  • a first configuration of the flame-retardant polymer composite material of the present invention is as follows: a carrier material particle comprising one or more of a polymer material, an inorganic material, and a metal material;
  • the composite particles for imparting flame retardancy having a structure in which a compound layer containing a metal component and / or a metal component and oxygen are compounded in a polymer substrate (hereinafter also referred to as a polymer substrate). It is characterized by being dispersed.
  • the second configuration of the flame-retardant polymer composite material of the present invention is such that a carrier material particle composed of one or more of a polymer material, an inorganic material, and a metal material includes a silicon component and a Z or metal component. Characterized in that the flame-retardant composite particles having a structure in which a compound layer containing oxygen and oxygen are compounded are fixed on the surface of a substrate made of a polymer material. This configuration can be combined with the first configuration described above.
  • the carrier material particles contain a silicon component and Z or a metal component and oxygen.
  • the composite particles for imparting flame retardancy having a structure in which the compound layer is compounded are dispersed in a substrate made of a high molecular material such as a resin (that is, the material to which flame retardancy is to be imparted) and the surface is coated by coating or coating.
  • a resin that is, the material to which flame retardancy is to be imparted
  • the compound layer of the composite particles for imparting flame retardancy is protected by the high heat.
  • the protective film due to the effect of forming the protective film, it is possible to provide sufficient flame retardancy even if the amount of the flame retardant material is small, and as a result, the flame retardant including the composite particles is mixed. The amount can be reduced. As a result, the strength and durability of the material finally obtained, as well as the moldability and fluidity (for example, in the case of injection-moldable materials, the flowability in the mold), etc., can be reduced by using conventional flame retardants. An effect that can be improved as compared with the case where it is used, that is, an effect of suppressing a decrease in strength, durability, moldability, fluidity, and the like can be achieved.
  • a third configuration of the flame-retardant polymer composite material of the present invention is that a carrier material particle composed of one or more of a polymer material, an inorganic material, and a metal material is heated to form a silicon and / or metal material by heating.
  • Composite particles for imparting flame retardancy which have a structure in which a compound layer that forms a vitreous ceramic mainly composed of oxides, are dispersed in a matrix made of a polymer material (hereinafter also referred to as a polymer matrix).
  • UL-94 flammability test in this specification, the fifth edition: adopted on October 26, 1996, October 26), V-0 to V-2 The flame retardant performance that satisfies the range is provided.
  • a fourth configuration of the flame-retardant polymer composite material of the present invention is such that a carrier material particle composed of one or more of a polymer material, an inorganic material, and a metal material is added to silicon or metal by heating.
  • the composite particles for imparting flame retardancy which have a structure in which a compound layer that forms a vitreous ceramic mainly composed of an oxide of iron, is fixed on the surface of a substrate made of a polymer material and has a UL 94 flammability When tested in the test, it is characterized by imparting flame retardancy that satisfies the range of V-0 to V-2.
  • the flame-retardant composite particles having a structure in which the carrier material particles are compounded with a compound layer that generates a vitreous ceramic mainly composed of oxides of silicon and Z or a metal by heating,
  • a substrate made of a polymer material such as (eg, a material to be provided with flame retardancy) and fixing to the surface by Z or coating, for example, the material to be provided with flame retardancy has a high heat (eg, 500 ° C).
  • the high heat forms a glassy ceramic protective film in which the compound layer of the composite particles for imparting flame retardancy inhibits combustion.
  • the strength and durability of the final material, as well as moldability and fluidity are determined using conventional flame retardants. It is also possible to achieve an effect that can be improved as compared with the case where it is provided, that is, an effect of suppressing a decrease in strength, durability, moldability, fluidity and the like.
  • the flame retardant performance satisfies V-0.
  • the fifth configuration of the flame-retardant polymer composite material according to the present invention is such that a carrier material particle composed of one or more of a polymer material, an inorganic material, and a metal material includes a silicon component and / or a metal component.
  • a carrier material particle composed of one or more of a polymer material, an inorganic material, and a metal material includes a silicon component and / or a metal component.
  • a sixth configuration of the flame-retardant polymer composite material of the present invention is such that a carrier material particle composed of one or more of a polymer material, an inorganic material, and a metal material includes a silicon component and a Z or metal component.
  • Flame-retardant composite particles having a structure in which a compound layer containing oxygen and oxygen is compounded The element was fixed on the surface of a substrate made of a polymer material, and when tested in the UL 94 flammability test, it provided flame retardancy that satisfies the range of V-0 to V_2.
  • the metal content is equivalent to the oxide-equivalent weight content WSi of the silicon component in the combustion residue. It is preferable that the total WSi + WM of the component and the oxide equivalent weight content WM be 0.5 to 60% by weight. 60 weight of WSi + WM. /. If WSi + WM is less than 0.5% by weight, the effect of improving the flame-retardant performance is insufficient if the mechanical properties such as the strength (eg, tensile strength) and elongation of the composite material exceed 0.5% by weight. May be. Incidentally, silicofluoride-containing component is converted into sio 2.
  • each metal component is converted into an oxide having a composition corresponding to the valence of the contained metal ion (which can be specified by X-ray photoelectron spectroscopy).
  • Z n 2 + the corresponding oxide when it is detected is Z n O
  • corresponding oxides if C u + is detected is C u 2 ⁇ .
  • the compound layer and the carrier material particles may be configured so as to contain no halogen component such as chlorine or fluorine, except for those that are inevitably mixed in the form of, for example, impurity components. This makes it possible to realize ecologically flame-retardant materials because no harmful gas is generated when a high heat is applied.
  • halogen component such as chlorine or fluorine
  • the above-mentioned compound layer can generate a vitreous ceramic mainly composed of silicon and a metal oxide by heating.
  • the silicon component and / or metal component contained in the above-mentioned compound layer is liable to produce vitreous ceramics in combination with oxidation by heating, etc., and mainly contains the silicon and Z or metal oxides produced. Since glassy ceramics have high heat resistance, they become an extremely strong protective film when high heat is applied, making it possible to impart even higher flame retardancy to the material to which flame retardancy is to be applied. . It should be noted that such a vitreous ceramic forms a part of the compound layer from the beginning.
  • metal component for example, one or more of Ti, Cu, Al, Zn, Ni and Zr, or other transition metal elements can be employed.
  • the compound layer can be formed as containing a carbon component.
  • the composite particles for imparting flame retardancy can decompose and generate a combustion inhibiting gas by heating. In this case, when high heat is applied to the material
  • a combustion-inhibiting gas is generated, and the combustion-inhibiting gas is difficult for the material to be provided with flame retardancy;
  • the flame retardancy improvement is oxygen for combustion by the combustion inhibiting gas, the c specific suspected to be due to relative decrease in the vicinity of the flame retardancy-imparting material of interest, as a combustion inhibition gas Can be produced containing one or more of nitrogen, sulfur and carbon.
  • nitrogen-containing N 2 gas and N 0 2 gas was used as gas
  • NO gas, S_ ⁇ 2 gas as a sulfur-containing gas is C 0 2 gas or the like as a carbon-containing gas occurs, they flame retardant Further enhance the flame retardant effect on the material to which the property is to be imparted.
  • the average particle size of the composite particles for imparting flame retardancy is preferably 0.05 to 500 ⁇ . If the average particle size is less than 0.05 ⁇ , the production of the composite particles for imparting flame retardancy may become difficult, and uneven distribution may occur when the composite particles are added (added) to the material to be imparted with flame retardancy. In some cases, the composite (addition) cannot be made uniform, so that the effect of imparting flame retardancy may decrease or the performance of the material to which flame retardancy is imparted may decrease, particularly in the uneven distribution region.
  • the average particle size can be measured using, for example, a laser diffraction particle size analyzer. In this case, in the measurement using a laser single-diffraction particle sizer, there is no significant difference between the diffraction behavior of the incident laser light due to the aggregated particles and the diffraction behavior due to the isolated primary particles. It cannot be distinguished from each other whether the particle size exists as a simple substance or whether it is the particle size of aggregated secondary particles. Therefore, the average particle size measured by this method is a value reflecting the average particle size of the secondary particles, which broadly includes isolated primary particles that do not cause aggregation.
  • the above-mentioned carrier material particles can be made into flame-retardant material particles.
  • the flame retardant effect of the flame retardant material particles as the support material particles is added.
  • the effect of imparting flame retardancy to the material to which the particles are imparted flame retardancy is further improved.
  • flame-retardant material particles include ecological non-halogen flame retardant materials, hydrated metal compounds, mica such as muscovite, phlogopite, biotite, sericite, kaolin, talc, zeolite, Minerals such as borax, diaspore, and gypsum; metal oxides such as magnesium oxide, aluminum oxide, and silicon dioxide; metal compounds such as calcium carbonate; phosphorus compounds such as red phosphorus and ammonium polyphosphate; and nitrogen compounds Use inorganic flame-retardant material particles (inorganic material-based particles) represented by compounds, etc., phosphorus-based, silicone-based, and nitrogen-based organic flame-retardant material particles, as well as metal powder particles (metal-based particles).
  • ecological non-halogen flame retardant materials such as muscovite, phlogopite, biotite, sericite, kaolin, talc, zeolite, Minerals such as borax, diaspore, and
  • inorganic flame-retardant material particles from the viewpoint of the additive properties to the resin, the flame-retardant effect, the cost, and the like.
  • inorganic material-based particles are mainly composed of at least one of aluminum hydroxide and magnesium hydroxide, the effect of imparting flame retardancy is further enhanced.
  • these hydroxides for example, the above-mentioned alkoxide is composed of Si, and the above-mentioned metal salt is composed of Zn and / or Ni. If so, the effect of imparting flame retardancy is further enhanced.
  • the flame-retardant material particles preferably have, for example, an average particle diameter of 0.05 to 100 ⁇ . If the average particle size is less than the above lower limit, the production may be difficult, and when the compound is added (combined) to the material to which flame retardancy is to be imparted, uneven distribution may occur, and the compound (addition) may not be uniform. Therefore, the effect of imparting flame retardancy may decrease, or the performance of the material to which flame retardancy is imparted may decrease, particularly in the uneven distribution region.
  • the distribution of the compounded (added) particles may be non-uniform, and the properties of the material to which flame retardancy is to be imparted, for example, properties such as fluidity may be reduced or flame retardancy may be imparted.
  • the target material may cause poor appearance.
  • the average particle diameter of the flame-retardant composite particles of the present invention is 0.05 to 0.5 as described above. It is about 500 m.
  • the average particle size can be measured by a laser diffraction type particle size measuring device.
  • polymer material particles can be used as the support material particles.
  • the polymer material particles for example, those made of a thermoplastic polymer material, those made of a thermosetting polymer material, or a mixed material thereof can be used.
  • the polymer material as a carrier material has good affinity (affinity) with the resin, and thus the composite particles for imparting flame retardancy are subjected to the object to be imparted with flame retardancy. It becomes evenly dispersed in the material, and it becomes possible to effectively impart the flame retardancy to the material to which the flame retardancy is to be imparted.
  • the alkoxide is composed of Si and the metal salt is composed of Cu and / or Fe
  • the effect of imparting flame retardancy is further enhanced. be able to.
  • the polymer material particles for example, those having an average particle size of about 0.1 to 10 mm can be used. In this case, the average particle diameter of the composite particles for imparting flame retardancy is also about 0.1 to 10 mm. It will be.
  • the polymer material particles include, for example, polyethylene (PE), polypropylene (PP), polystyrene (PS), acrylonitrile butadiene styrene (General-purpose resins such as ABS), engineering plastics such as modified polyphenylene ether (PPE), polycarbonate (PC), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), and polyamide (PA) Powder particles of polymer alloys such as PC / ABS alloy, PC / PBT alloy, PC / PET alloy, PC / elastomer, PA / PP, PA-noelastomer and the like can be used.
  • PE polyethylene
  • PP polypropylene
  • PS polystyrene
  • PS acrylonitrile butadiene styrene
  • General-purpose resins such as ABS
  • engineering plastics such as modified polyphenylene ether (PPE), polycarbonate (PC), polybutylene terephthalate (PBT), poly
  • a flame-retardant polymer composite material molded article suitable for various uses can be obtained.
  • the molding method is not particularly limited, and any molding method such as press molding, blow molding, extrusion molding, injection molding, or force rendering can be used.
  • the above-mentioned flame-retardant polymer composite material molded article can be constituted as a final molded article (final molded product corresponds to this), for example, without assuming remolding accompanied by softening of the polymer matrix.
  • the applicable object is any molded product that requires flame retardancy and is not particularly limited, but examples are as follows.
  • Automotive parts Interior parts such as instrument panels, exterior parts such as bumpers, plastic parts in engines, etc.
  • Rubber or elastomer material flooring, sealing material, seismic material, etc. (The polymer material used as the substrate must be rubber or elastomer)
  • the molded article can be a temporary molded article for softening the polymer matrix and re-molding into a desired secondary shape.
  • a temporary molding By using such a temporary molding, the final molding The production efficiency of body products can be greatly increased.
  • a preform having an intermediate shape individually corresponding to the final secondary shape can be used as a temporary molded body to reduce local material flow. Variations can be suppressed and products with few defects can be manufactured efficiently.
  • the temporary molded body is a granular molded article in which the composite particles for imparting flame retardancy are dispersed in a polymer matrix, and is used as a master for remolding into a secondary shape having a larger volume than each granular molded article. It can be a batch.
  • a masterbatch (hereinafter, also simply referred to as a masterbatch) for producing a molded article of a flame-retardant polymer composite material is a carrier material composed of one or more of a polymer material, an inorganic material, and a metal material.
  • the composite particles for flame-retardant imparting having a structure in which a compound layer containing a silicon component and a metal component or a metal component and oxygen are composited with the particles are configured as a granular molded product in which the composite particles are dispersed in a polymer matrix, It is characterized by being used for reshaping into a secondary shape having a larger volume than individual granular molded products.
  • a masterbatch can be used as a molding base having high fluidity in various molding machines such as an injection molding machine, and thus greatly contributes to simplification of the molding process and higher efficiency.
  • the masterbatch is remolded together with a dilute polymer material consisting of a polymer material of the same or a different nature as the polymer substrate, so that the secondary batch has a smaller content of flame-retardant composite particles than itself.
  • the mixing ratio of the masterbatch to the diluted polymer material can be used. By changing, it is possible to adjust freely and easily.
  • the polymer matrix and the composite particles for imparting flame retardancy are kneaded, and at the time of molding, the masterbatch is mixed with the diluted polymer material, so that the polymer matrix is mixed into the polymer matrix.
  • the composite particles for imparting flame retardancy used in the flame-retardant polymer composite material of the present invention include: Specifically, those obtained by the following production method can be used.
  • a step of drying the sol composition wherein the gel composition produced by drying the sol composition is combined with the carrier material to obtain a flame-retardant composite composition.
  • a composite composition for imparting flame retardancy can be obtained by a so-called sol-gel method in which the sol composition is dried to composite the gel composition with the support material.
  • the sol-gel method as described above is simple and does not require any special equipment, so that the production cost can be significantly reduced and no harmful substances are generated during the production.
  • the composite composition for imparting flame retardancy obtained by such a production method has a configuration in which a gel-like metal element and a compound of phosphorus or Si (for example, an inorganic compound) are composited on a support material.
  • the flame is imparted by the high heat.
  • the above compound in the composite composition for glass is not vitrified or ceramicized, and the vitrified or ceramicized compound serves as a protective film to impart high flame retardancy to the material to be provided with flame retardancy.
  • a material obtained by compounding such a composite material for imparting flame retardancy does not generate a harmful gas as in the past when a high heat is applied, so that it is an ecological flame retardant material.
  • the step of bringing the sol-like composition into contact with the supporting material employs a method of immersing the supporting material in the sol-like composition, a method of spraying the sol-like composition onto the supporting material, or the like.
  • the above-mentioned carrier material is used as carrier material particles, and the gel composition is compounded on the entire surface or a part of the surface thereof to obtain flame-retardant composite particles as the flame-retardant composite compound.
  • the compound It is possible to obtain composite particles for imparting flame retardancy, in which the gel composition containing is uniformly dispersed and compounded.
  • coated flame retardancy in which the surface of the carrier material particles is covered with a film of the gel composition
  • the coating of the gel composition is thin and uniform, for example, about 0.01 to 1.0 ⁇ m.
  • the gel-like composition is coated uniformly and in a thin film on the carrier material particles.
  • the effect of imparting flame retardancy is great, and the amount of the composite particles for imparting flame retardancy is, for example, about 5 to 150 parts by weight, preferably about 20 to 100 parts by weight, based on the material to be imparted with flame retardancy.
  • Sufficient flame retardancy can be imparted by adding a small amount of. In this case, since a small amount is added, there is little change in the physical properties of the material to which flame retardancy is to be added, such as a resin to be added, and the cost can be significantly reduced.
  • the production method using the sol-gel method specifically includes a mixing step of forming a mixture of the carrier material particles and the sol composition, and a drying step of evaporating the solvent from the mixture to form a dry composition.
  • the dried composition is preferably pulverized or crushed and used as composite particles for imparting flame retardancy.
  • the composite particles for imparting flame retardancy are finely pulverized by pulverization or pulverization, so that they can be easily handled when mixed with the material to be imparted with flame retardancy or combined (added) by coating or the like.
  • the composite particles for imparting flammability can be easily and uniformly dispersed and compounded with the material to be imparted with flame retardancy.
  • the drying step can be performed by heating drying or vacuum drying, or a combination thereof.
  • the drying step can be performed, for example, while applying vibration and / or stirring to the aggregate of the support material particles and bringing the sol-like composition into contact therewith.
  • drying efficiency can be improved by vibration and / or stirring of the aggregate, and drying time can be shortened. It becomes possible.
  • a striking medium having a larger diameter can be mixed with the supporting material particles, and vibration, Z or agitation can be applied to the aggregate of the supporting material particles and the striking medium. The time can be further reduced.
  • the sol-like composition is preferably produced by hydrolyzing a metal element and an alkoxide of silicon or si.
  • the sol-like composition produced by hydrolyzing such an alkoxide contains a metal element and / or an oxide of Si, and further contains an organic substance derived from an alkoxide (the above-mentioned carbon component in the compound layer is not included in the composition). ) Will remain.
  • this oxide is vitrified or turned into ceramics by high heat to impart high flame retardancy to the material to which flame retardancy is to be imparted, and the remaining organic matter is, for example, a case where a resin is used as the material to be imparted with flame retardancy.
  • the composite composition for imparting flame retardancy is improved.
  • the composite composition for imparting flame retardancy to the material to be imparted with flame retardancy is improved.
  • Alcohol can be used as a solvent for preparing the sol composition. Since alcohol has a relatively low boiling point, it has the advantage that the drying process can be performed in a short time. As such an alcohol, for example, methanol, ethanol, propanol, butanol and the like can be used.
  • ketone solvents such as acetone and acetyl acetone
  • aromatic hydrocarbon solvents such as toluene and xylene
  • cyclic hydrocarbon solvents such as cyclohexane, other chain hydrocarbon solvents
  • a ketone-based solvent can disperse or dissolve alkoxide in a stabilized state, and the drying step can be performed in a short time because of its relatively low boiling point.
  • the hydrocarbon-based solvent has a low water content, the alkoxide can be dispersed or dissolved in a stabilized state, and a gel-like composition film having a uniform film thickness can be formed.
  • the compounding amount of the solvent for making the sol composition was 25 to 98% by weight, It is preferred that the compounding amount of the metal be about 0.5 to 40% by weight. If the amount of the solvent is less than 25% by weight, the alkoxide may be difficult to uniformly disperse and / or dissolve, and as a result, the sol-like composition may not be easily compounded with the support material. When a gel is used, the composition of the gel composition may not be uniform.
  • the amount of the solvent exceeds 9 8 wt%, may take a long time enough to dry E evaporation of the solvent, also the cost high to consume useless solvent c
  • the alkoxide If the compounding amount is less than 0.5% by weight, the flame retardant effect due to the vitrification or ceramicization of the metal and / or Si of the alkoxide may be reduced. May also be reduced.
  • the alkoxide content was 40% by weight. If it exceeds / 0 , the dispersibility and Z or solubility of the alkoxide in the solvent may decrease, and the sol-like composition may be difficult to be uniformly composited with the carrier material.
  • the alkoxide preferably contains si and Z or ⁇ i as essential components. s i and
  • oxides such as, for example, S i 0 2 and T I_ ⁇ 2 generates are hydrolysis liable vitrified or ceramic by high fever, especially flame retardant effect Will be higher.
  • the alkoxide containing Si and T or Ti is hard to gel, a sol composition in a stable state can be obtained.
  • Si is most excellent as an alkoxide component in consideration of the stability of the generated oxide, the stability of the sol composition, and the like.
  • tetraethoxysilane S i (OC 2 H 5 ) 4
  • S i (OC 2 H 5 ) 4 can be used as the alkoxide using Si.
  • titanium isopropoxide T i ( iso-OC 3 H 7 ) J, etc.
  • components other than the above include, for example, those containing one or more of Cu, A, Zn, Ni, and Zr , Or those containing other transition elements can be employed.
  • aluminum isopropoxide A 1 (OC 3 H 7 ) 3
  • the constituent components of the alkoxide can be changed according to the purpose. In this case, the properties of the formed gel composition film (compound layer) are different from each other.
  • a metal salt of an inorganic acid or an organic acid can be added to the sol composition.
  • the cationic metal element of the metal salt preferably contains one or more of Cu, Al, Zn, Ni, Fe, Ti, and Zr.
  • an acidic gas-based inorganic acid an acid obtained by dissolving an acidic gas in water (hereinafter referred to as an acidic gas-based inorganic acid) is preferably used.
  • an acidic gas-based inorganic acid an acid obtained by dissolving an acidic gas in water
  • transition elements other than those described above can be used as the cation metal element.
  • the above-mentioned acidic gas refers to a gas that shows acidity when dissolved in water.
  • the acidic gas-based inorganic acid for example, one or more of nitric acid, nitrous acid, sulfuric acid, sulfurous acid, and carbonic acid can be used.
  • the acidic gas-based inorganic acid is used. from the gas, for example, N 2 gas and N 0 2 gas and NO gas as the N-containing gas, S 0 2 gas as S-containing gas, the combustion inhibition gases such C_ ⁇ 2 gas as C-containing gas generation
  • they further improve the flame-retardant effect on the material to be provided with flame-retardant properties.
  • the gold Shokushio is copper nitrate (C u (N_ ⁇ 3) 2 ⁇ 3 ⁇ 2 ⁇ ), zinc nitrate ( ⁇ ⁇ ( ⁇ 0 3) 2 - 6 ⁇ 2 0) illustrate like can do.
  • inorganic acids for example, oxalic acid, acetic acid and the like can be used as organic acids.
  • the content of the metal salt in the sol composition is preferably 95% by weight or less.
  • the metal salt content is 95 weight. If it exceeds / 0 , the effect of imparting flame retardancy due to vitrification or ceramicization of the metal and / or Si of the alkoxide, which is the main factor of the effect of imparting flame retardancy, may be reduced.
  • WAZWB may be set in the range of 0.01 to 30 when the weight ratio of the alkoxide is WA and the weight ratio of the metal salt is WB. preferable.
  • WAZWB is less than 0.01, alkoxide component
  • the effect of imparting flame retardancy due to vitrification or ceramic formation derived from water may not be sufficiently obtained.
  • WAZWB exceeds 30, the effect of imparting flame retardancy due to gas generated from metal salts may not be obtained.
  • the composition may not be sufficiently obtained, and as a result, the effect of imparting flame retardancy of the composite composition for imparting flame retardancy may decrease.
  • the sol-like composition contains 25 to 98% by weight of an alcohol as a solvent, 0.5 to 40% by weight of a silicon alkoxide as an alkoxide, and 5 to 95% by weight of a metal nitrate as a metal salt. It is preferable to use a mixture of 0.1% by weight and 0.1 to 20% by weight of water.
  • the gel composition can be uniformly compounded with the carrier material by the above-mentioned sol-gel method, and a uniform coating can be formed particularly on the carrier material particles. It is possible to do. As a result, the effect of imparting flame retardancy derived from the alkoxide and metal salt described above can be more effectively exerted.
  • a step of dispersing and / or dissolving the metal salt in alcohol to form a first solution for example, a step of dispersing and / or dissolving the metal salt in alcohol to form a first solution, and a step of dispersing and Z or dissolving the alkoxide in the first solution to form a second solution. And a step of adding water to the second solution to form a sol-like composition.
  • the metal salt and the alkoxide are sequentially dispersed and / or dissolved in the alcohol, and the subsequent steps of adding water to the second solution are performed in a stepwise manner, whereby the sol composition can be efficiently produced. It becomes possible.
  • the sol composition is preferably dried at a temperature in the range of 40 to 250 ° C.
  • the temperature is lower than 40 ° C, it may take a long time to dry the sol composition, and when the temperature exceeds 250 ° C, the sol composition may be decomposed.
  • the temperature and the pressure should be adjusted so that the sol-like yarn stably remains (adheres) to the supporting material. Need to adjust.
  • the mixing amount is preferably about 1 g to 20 kg. If the amount is less than 1 g, the production efficiency of the composite composition for imparting flame retardancy decreases, and if it exceeds 20 kg, the amount of the composite of the sol composition per unit support material particle decreases, and the flame retardancy increases. The effect of imparting properties may be reduced.
  • the mixing amount is preferably about lkg to 10 kg.
  • the total content of the alkoxide and the metal salt in the sol composition is Ws (unit: g)
  • the specific surface area of the support material particles is Sg (unit: g / m 2 )
  • the sol composition mixing amount Wg (unit: g) of the carrier material particles to.. when the Ws / in (S g X Wg) 0 0 0 2 to 2 mixture of 0 g Zm 2 become as carrier material particles It is better to adjust.
  • the usable materials of the above-mentioned carrier material particles are exactly the same as those exemplified in the description of the configuration of the composite particles for imparting flame retardancy, and thus detailed description thereof will be omitted.
  • the composite particles for imparting flame retardancy as the composite composition for imparting flame retardancy can be dispersed in a substrate made of the above-mentioned polymer material as a material to be imparted with flame retardancy, or can be fixed on the surface of the substrate.
  • the flame-retardant polymer composite material obtained by compounding the flame-retardant composite particles as described above has a high flame retardancy due to the effect of imparting flame retardancy caused by the above-mentioned alkoxide, metal salt, flame-retardant material particles and the like. Is shown.
  • a flow-suppression auxiliary agent that suppresses the flow and dripping of the polymer substrate is contained in the polymer substrate. Can also be blended. In this case, the flow suppression auxiliary agent suppresses the melt flow of the polymer substrate, so that the so-called drip prevention during combustion can be improved.
  • the flow suppression adjuvant examples include boric acid-based inorganic compounds such as boric anhydride and zinc borate, red phosphorus (for example, Suzuhiro Chemical: Nova Red (trade name), Nippon Chemical Industrial Co., Ltd.) : Phosphorous inorganic compounds such as Hishigard (trade name) or carbon (eg, expandable carbon represented by Tosoh: GREP-EG (trade name), UCAR Carbon: GRAF Guard (trade name)) Etc.), or inorganic materials, or silicone.
  • boric acid-based inorganic compounds such as boric anhydride and zinc borate
  • red phosphorus for example, Suzuhiro Chemical: Nova Red (trade name), Nippon Chemical Industrial Co., Ltd.
  • Phosphorous inorganic compounds such as Hishigard (trade name) or carbon (eg, expandable carbon represented by Tosoh: GREP-EG (trade name), UCAR Carbon: GRAF Guard (trade name)) Etc.
  • inorganic materials or silicone.
  • the content ratio of the composite particles for imparting flame retardancy in the polymer substrate is preferably 5 to 150 parts by weight based on 100 parts by weight of the polymer substrate. If the content ratio is less than 5 parts by weight, the effect of imparting flame retardancy may be reduced.If the content ratio exceeds 150 parts by weight, problems such as a significant change in the properties of the polymer substrate may occur. There are cases.
  • the content ratio is preferably 20 to 100 parts by weight. However, in the case where the above-mentioned flow suppressing aid is used, the content ratio of the composite composition (particles) for imparting flame retardancy is desirably, for example, about 1 to 150 parts by weight.
  • the content ratio of the composite composition (particles) for imparting flame retardancy in the polymer substrate is represented by a volume fraction, it is preferable that the content be 0.5 to 75% by volume.
  • the average particle size is preferably 0.05 to 500 m. If the average particle size is less than 0.05 ⁇ m, it may cause problems such as trouble in compounding the particles, and if the average particle size exceeds 500, the uniformity with the polymer substrate may occur. This may cause problems such as dispersal or inability to fix.
  • the average particle size of the composite particles for imparting flame retardancy is desirably 0.1 to 300 ⁇ m.
  • FIG. 1 is a schematic diagram illustrating some forms of composite particles for imparting flame retardancy.
  • FIG. 2 is a schematic diagram showing an example in which another flame retardant particle is blended and used in the composite particles for imparting flame retardancy.
  • FIG. 3 shows one example of a method for producing a masterbatch comprising the flame-retardant polymer composite material of the present invention.
  • FIG. 3 is a schematic diagram showing examples together with various forms of master batch particles.
  • FIG. 4 is a schematic cross-sectional view showing an example of an injection molding machine.
  • FIG. 5 is a process explanatory view showing an example of manufacturing a molded body by injection molding.
  • Fig. 6 is an explanatory diagram showing some usage patterns of the master patch.
  • FIG. 7 is an explanatory diagram illustrating a method for obtaining a flame-retardant polymer composite material of the present invention using a two-component mixed resin, and some application forms thereof.
  • FIG. 8 is a process explanatory view showing some examples of a method of fixing the composite particles for imparting flame retardancy to the surface of a polymer material substrate.
  • FIG. 9 is an observation diagram of the support material particles before coating and the composite particles for imparting flame retardancy obtained by coating the support material particles with an electron microscope.
  • FIG. 10 is a schematic diagram inferring the molecular level structure of the compound layer.
  • FIG. 1 is a schematic view conceptually showing one embodiment of the composite particles for imparting flame retardancy of the present invention.
  • the composite particles 10 for imparting flame retardancy include a silicon component and / or a metal component and oxygen.
  • the composite particles 10 for imparting flame retardancy include a silicon component and / or a metal component and oxygen.
  • it has a configuration in which a compound layer 2 that produces a vitreous ceramic by heating is compounded with the carrier material particles 1 and can be manufactured by the sol-gel method described above.
  • the shape of the composite of the compound layer 2 and the support material particles 1 is, for example, as shown in Fig. 1 (a).
  • Fig. 5 it is most desirable that the state in which the compound layer 2 is uniformly coated on almost the entire surface of the carrier material particles 1 in terms of exhibiting the flame retardant effect.
  • Fig. 5 it is most desirable that the state in which the compound layer 2 is uniformly coated on almost the entire surface of the carrier material particles 1 in terms of exhibiting the flame retardant effect.
  • the compound layer 2 may be partially adhered to the surface of the carrier material particles 1 and a part of the surface may be uncovered and exposed.
  • Replacement paper for imparting properties Kaikai IJ26
  • the composite particles 10 for imparting indefinite flame retardancy having the structure as shown in FIG. 1 (c), for example, may be obtained.
  • the composite particles 10 described above are complexed (dispersed in the substrate and fixed on the surface or fixed on the surface) made of, for example, a material to which flame retardancy is to be imparted, such as a polymer material. It becomes possible to impart flame retardancy to the material to which flammability is to be applied.
  • the thickness of the compound layer 2 coated or adhered to the carrier material particles 1 is, for example, about 0.01 to 1.0.
  • the composite particles 10 for imparting flame retardancy are composited (added) to the material to be imparted with flame retardancy, the compound layer 2 is uniformly or thinly coated or adhered to the carrier material particles 1.
  • the effect of imparting flame retardancy is great, and the amount of the composite particles 10 for imparting flame retardancy is, for example, 5 to 150 parts by weight, preferably 20 to 100 parts by weight, based on the material to be imparted with flame retardancy.
  • Sufficient flame retardancy can be imparted by the addition of a small amount of about parts by weight.
  • the compound layer 2 has, for example, a structure schematically shown in FIG. 10 (in this figure, the molecular formula is schematically shown, and a specific structure represented by the molecular formula is shown). Is not meant to have limited).
  • silicon and / or metal (these are indicated by M in the figure) contain oxides or alkoxides 52 (for example, Si S).
  • the composite particles 10 for imparting flame retardancy as described above may be used alone or, if necessary, in a different flame retardant or flame retardant from the composite particles for imparting flame retardancy.
  • the compound 531 can be formed into masterbatch particles 32 by, for example, forming the compound into granules such as pellets.
  • the masterbatch particles 32 have a size of, for example, about 0.1 to 10 mm (for example, about 1 to 4 mm) in terms of a sphere-converted diameter.
  • the shape of the masterbatch particles 32 is not particularly limited.
  • the softened compound is extruded into a strand and cut into a predetermined length.
  • Columnar (for example, columnar) particles can be obtained.
  • FIGS. 3 (c) and 3 (d) show another example of the shape of the master batch particles 32, the former being spherical (for example, it can be produced by molding), and the latter being flake-like. (For example, it can be manufactured by crushing a sheet-like material and sizing), but is not limited thereto.
  • the injection molding apparatus 501 includes a molding section 502, an ejection apparatus 503 such as a screw-type injection apparatus for supplying a molten resin to the molding section 502, and the like.
  • the molding section 502 includes a mold 505, a mechanical drive mechanism such as a cam or a crank mechanism, and a fluid pressure mechanism such as a hydraulic cylinder for clamping and opening the mold 505.
  • the driving mechanism 506 that is driven, the runner 521 that supplies the molten resin to the mold 505 is connected to the injection nozzle 503 of the injection device 503 via the sprue 503 a. b is connected.
  • the injection device 503 includes a supply cylinder driven by a hydraulic motor 513 via a shaft 511 in a heating cylinder 507 heated by a heat source such as a cylinder heater 508.
  • a hopper 510 that accommodates a screw 509 and supplies a master batch P thereto is provided.
  • a master batch P is supplied from the hopper 510, and the polymer material substrate is melted by heating in the heating cylinder 507 to become a molten compound, and the pool 507a is formed. It is stored in. Thereafter, when the screw 509 is advanced by a predetermined distance by the hydraulic cylinder 511, a predetermined amount of the molten compound is injected into the mold 505 from the nozzle 503b through the runner 521.
  • the molten compound C injected into the cavity 505a of the mold 505 becomes the polymer composite material of the present invention by solidifying the polymer material substrate, and this is opened. By doing so, a secondary molded body 36 as a polymer composite material molded body corresponding to the cavity shape is obtained.
  • the master-batch particles 32 may be used alone to obtain a compact, but as shown in FIG. 6 (b), the master-batch particles 32 may be obtained.
  • the content of the composite particles can be made higher than the content in the masterbatch particles 32 It is also possible to produce a secondary compact having a small size.
  • the content of the composite particles in the secondary molded body is determined by the content of the composite particles in the master batch particles 32 and the mixing ratio of the diluted polymer material particles 40 to the master batch particles 32.
  • a dispersing agent in order to uniformly disperse in the substrate at a high content, for example, a metal soap can be suitably used as the dispersing agent.
  • naphthenic acid naphthenic acid
  • lauric acid lauric acid
  • stearic acid stearate
  • oleic acid oleate
  • 2-ethylhexanic acid octate
  • linseed oil Rui soybean oil fatty acids bets -.
  • the following types of metals can be exemplified.
  • Naphthenates A1, Ca, Co, Cu, Fe, Pb, Mn, Zn, etc.
  • Resinates A1, Ca, Co, Cu, Fe, Pb, Mn, Z n, etc.
  • Linoleate type Co, Fe, Pb, Mn, etc.
  • Torate system (Ca, Co, Fe, Pb, Mn, Zn, etc.)
  • Ca stearate and Zn stearate can be mentioned as specific examples of metal soaps that are particularly excellent in dispersing effect. If the amount of the metal soap in the composite material is too large, there is a problem in the material strength and homogeneity, and if the amount is too small, the dispersing effect becomes insufficient. It is better to select within the range of 01 to 3% by weight (for example, 0.3% by weight).
  • a main agent containing an uncured resin component such as epoxy resin, urethane resin (including urethane rubber) or silicone resin, and a curing agent containing a curing agent for curing the uncured resin component are used.
  • a two-component mixed type casting resin material, adhesive or paint as the flame-retardant polymer composite material of the present invention.
  • it is composed of a main agent containing an uncured resin component and a curing agent for curing the uncured resin component.
  • a flame-retardant polymer composite material comprising a thermosetting resin as a substrate and composite particles for imparting flame retardancy dispersed therein by mixing the main agent and the curing agent.
  • the composition for producing a flame-retardant polymer composite material prepared as described above can be used.
  • FIG. 7 illustrates a specific example using an epoxy resin as an example.
  • the main agent 550 is, for example, a bisphenol-based uncured epoxy resin component containing a flame retardant or a flame retardant different from the composite particles for imparting flame retardancy and, if necessary, the composite particles for imparting flame retardancy. Assistance It is a mixture of an agent, a filler, a colorant such as a pigment or a dye, or a dispersant, and the viscosity is adjusted by an appropriate solvent.
  • the curing agent 551 is obtained by dissolving or dispersing a curing component such as amine diisocyanate and acid anhydride in a solvent.
  • the two agents 550 and 551 are mixed at a predetermined ratio as shown in (a), and a treatment according to the purpose is performed within the pot life time of the mixed composition 552.
  • the mixed composition 552 is used as a resin material for casting, it is cast into a mold 553 and cured as shown in (b) to obtain the desired shape.
  • a flame-retardant polymer composite material molded article is obtained.
  • the mixed composition 552 is used as a paint, as shown in (c)
  • this is applied to the painted surface of the workpiece 554 and cured to obtain a flame-retardant polymer composite material.
  • Coating film 5 5 5 is obtained.
  • the mixed composition 552 is used as an adhesive, as shown in (d), the mixed composition 552 is applied to the adhered surfaces of the adherends 5556a and 5556b, and then bonded. However, an adhesive structure in which the adherends 556-1a and 5556b are adhered by the flame-retardant adhesive layer 557-1 is obtained.
  • FIG. 8 shows some examples.
  • FIG. 8 (a) shows an example in which the composite particles 10 for imparting flame retardancy are fixed in an adhesive form via an adhesive resin layer 560 formed on the surface of the polymer substrate 50.
  • the composite particles 10 for imparting flame retardancy may be further dispersed in the polymer substrate 50 (the same applies hereinafter).
  • the surface side of the fixed particles 10 may be further covered with an overcoat 561 made of a resin or the like.
  • the composite particles 10 for imparting flame retardancy are applied to the inner surface of the cavity of the molding die 505, and then the cavity ⁇ ⁇ is filled with the molten resin 570 and solidified.
  • the applied particles 10 are formed on the surface of the substrate 50 forming the molded body 536.
  • FIG. 8 (d) shows that the surface of the composite particles 10 is covered in advance with a fixing resin layer 562, and is applied to the surface of the substrate 50 while heating to soften the fixing resin layer 562. This is an example in which the composite particles 10 are fixed by curing the resin after being attached.
  • FIG. 8 (e) shows a method of embedding the composite particles 10 in the surface layer of the substrate 50 by projecting or pressing the composite particles 10 onto the surface of the substrate 50. In this case, embedding can be performed easily if at least the surface layer of the substrate 50 is softened by heating or the like.
  • zinc nitrate hexahydrate ( ⁇ ⁇ ( ⁇ 0 3 ) 2 ⁇ 6 ⁇ 20 ) 2 1.93 g was put in 20 ml of ethanol and dissolved. 6.92 g of tetraethoxysilane (Si (OC 2 H 5 ) 4 ) was added to the solution, and then 4.18 g of pure water was added dropwise, and the solution was stirred to prepare a sol-like composition. . 75 g of aluminum hydroxide having an average particle diameter of 55 Aim was added to the sol composition as carrier material particles, and mixed with stirring.
  • the mixture was placed in a dryer at 120 ° C., and the solvent was evaporated to form a coating film of a gel composition (glass precursor composition) on the surface of the aluminum hydroxide.
  • a gel composition glass precursor composition
  • the aluminum hydroxide coated by the above sol-gel method is mixed with polypropylene (Grand Polymer: J708) powder or pellets (75 parts of aluminum hydroxide per 100 parts of polypropylene) and then put into an injection molding machine. Injection molding was performed at 180 ° C into a sample shape for flame retardancy test.
  • the sample shape for the flame retardancy test was 125 mm in length, 13 mm in width, and 1.6 mm in thickness based on the UL 94 flammability test.
  • Using the sample for flame retardancy test prepared above it was tested in the UL 94 flammability test. As a result, it passed the V-0 standard of the test.
  • the aluminum hydroxide coated by the sol-gel method and 250 g of the same polypropylene powder or pellet as in Example 1 were mixed (100 parts of polypropylene and 30 parts of aluminum hydroxide), and then placed in an injection molding machine. It was injection molded at 80 ° C into a sample shape for flame retardancy testing.
  • the sample shape for the flame retardancy test was the same as in Example 1. Using the prepared sample for flame retardancy test, it was tested in the UL 94 flammability test, and it passed the V-2 standard of the test.
  • a sol-like composition was prepared with the same composition as in Example 1 except that the amount of ethanol was changed to 80 m 1. 50 g of magnesium hydroxide having an average particle size of 0.85 ⁇ m was added to the sol composition, and mixed with stirring. Then put in a dryer at 120 ° C, The mixture was volatilized to form a coating film of a gel composition (glass precursor composition) on the surface of the magnesium hydroxide.
  • the aluminum hydroxide coated by the above sol-gel method was mixed with 250 g of the same polypropylene powder or pellet as in Example 1 (100 parts of polypropylene and 50 parts of magnesium hydroxide). It was placed in a molding machine and injection molded at 180 ° C into a sample shape for flame retardant testing. The sample shape for the flame retardancy test was the same as in Example 1. Using the prepared sample for flame retardancy test, it was tested in UL94 flammability test, and as a result, it passed the V-2 standard of the test.
  • a sol composition was prepared with the same composition as in Example 1 above. 20 g of aluminum hydroxide as in Example 1 and 10 g of magnesium hydroxide as in Example 3 were added to this sol-like composition, and mixed with stirring. Thereafter, the mixture was placed in a dryer at 120 ° C., and the solvent was evaporated to form a coating film of a gel composition (glass precursor composition) on the surfaces of aluminum hydroxide and magnesium hydroxide.
  • a gel composition glass precursor composition
  • a flame-retardant test sample of the same shape was prepared in the same manner as in Example 1, and tested in a UL94 flammability test. As a result, the test passed the V-2 standard. When the oxygen index of this sample was measured in the same manner as in Example 2, an oxygen index value of 31% was obtained.
  • Example 2 A mixture of 75 g of aluminum hydroxide and 100 g of polypropylene as in Example 1 was then placed in an injection molding machine, and injection molded at 180 ° C into a sample shape for a flame-retardant test. .
  • the sample shape for the flame retardancy test is the same as in Example 1.
  • an oxygen index value of 20% was obtained.
  • Example 3 The same 150 g of magnesium hydroxide and 100 g of polypropylene as in Example 3 were mixed, then placed in an injection molding machine, and injection molded at 180 ° C into a sample shape for a flame retardancy test.
  • the sample shape for the flame retardancy test is the same as in Example 1. Using this flame retardant test sample in the UL 94 flammability test, it passed the V-0 standard of the test.
  • Table 1 summarizes the results of Examples 1 to 4 and Comparative Examples 1 and 2.
  • the comparative sample without the sol-gel coating did not have the effect of imparting flame retardancy in a small amount of about 75 parts with respect to 100 parts of polypropylene, and was added in a large amount (for example, 150 parts). It turns out that it is necessary.
  • a small amount (for example, 30 to 75 parts) of the sample obtained by coating the carrier material particles by the sol-gel method has the effect of imparting flame retardancy.
  • a gel composition glass precursor composition
  • the aluminum hydroxide coated by the above sol-gel method is mixed with a powder or pellet of polypropylene (made by Grand Polymer: J708) (100 parts of polypropylene and 50 parts of aluminum hydroxide).
  • a mixed pellet was prepared and injection molded at 180 ° C into a sample shape for flame retardancy test using an injection molding machine.
  • the sample shape for the flame-retardant test was 125 mm long, 13 mm wide and 1.6 mm thick based on the UL 94 flammability test. Using this test sample, it was tested in the UL 94 flammability test. As a result, the test passed the V-2 standard.
  • the aluminum hydroxide coated by the above sol-gel method was mixed with the same polypropylene powder or pellet as in Example 5 (100 parts of polypropylene and 50 parts of aluminum hydroxide), and then placed in an injection molding machine. Injection molded into sample shape for flame retardancy test in C. The sample shape for the flame retardancy test was the same as in Example 5, and a UL 94 flammability test was performed. Further, a sample for measuring an oxygen index and a sample for measuring a tensile test were prepared in the same manner as in Example 5, and a combustion test by an oxygen index method and a tensile strength test by a tensile test were also performed.
  • Zinc nitrate hexahydrate (Z n (N_ ⁇ 3) 2 ⁇ 6 ⁇ 2 0) 93. 43 g were placed in ethanol 40 Om 1 as a metal salt were dissolved. Tetraethoxysilane (S i )
  • the aluminum hydroxide coated by the sol-gel method was mixed with the same polypropylene powder or pellet as in Example 5 (100 parts of polypropylene and 50 parts of aluminum hydroxide), and then placed in an injection molding machine at 180 ° C. Flame retardant at It was injection molded into a sample shape for the test.
  • the sample shape for the flame retardancy test was the same as in Example 5, and a UL 94 flammability test was performed. Further, a sample for measuring an oxygen index and a sample for measuring a tensile test were prepared in the same manner as in Example 5, and a combustion test by an oxygen index method and a tensile strength test by a tensile test were also performed.
  • Example 7 aluminum hydroxide having an average particle size of 1 zm and polypropylene were mixed (50 parts by weight of aluminum hydroxide with respect to 100 parts by weight of polypropylene), and then placed in an injection molding machine.
  • the sample shape for the flame retardancy test which was injection-molded in C into the sample shape for the flame retardancy test, is the same as that of Example 5.
  • the sample was ignited immediately after the start of the test as a result of a UL 94 flammability test.
  • a sample for measuring an oxygen index similar to that of Example 5 was prepared, and a combustion test was performed by an oxygen index method. As a result, an oxygen index value of 19.7% was obtained.
  • Example 5 100 g of polypropylene was placed in an injection molding machine and injection molded at 180 ° C into a sample shape for flame retardancy test.
  • the sample shape for the flame retardancy test is the same as in Example 5.
  • the sample was ignited immediately after the start of the test as a result of a UL 94 flammability test using this flame retardant test sample.
  • a sample for oxygen index measurement similar to that of Example 5 was prepared, and a combustion test was performed by the oxygen index method. As a result, an oxygen index value of 17.5% was obtained.
  • a sample for tensile test measurement similar to that of Example 5 was prepared, and a tensile strength test was performed by a tensile test method. As a result, a tensile strength of 22.3 ⁇ 10 6 [Pa] was obtained.
  • C Table 2 summarizes the results of Example 5-7, and Comparative Example 3, 4 in Table 2
  • Cupric nitrate trihydrate as a metal salt (Cu ( ⁇ 0 3) 2 ⁇ 3 ⁇ 2 0) 18. Put 22 g in E methanol 3 Om 1, were dissolved. Tetraethoxysilane (S i )
  • the powder coated with the sol-gel method (composite particles for imparting flame retardancy) is mixed with a powder or pellet of polypropylene (made by Grand Polymer: J708) as a substrate.
  • the composite particles for application (100 parts) were then placed in an injection molding machine and injection molded at 200 ° C into a sample shape for a flame retardancy test.
  • the sample shape for the flame retardancy test was 125 mm in length, 13 mm in width and 1.6 mm in thickness based on the UL 94 flammability test.
  • As the moldings to tree fat 100 parts in terms of oxide, S I_ ⁇ 2 l parts by weight and Cu_rei_3 parts.
  • the mixture was placed in a dryer at 90 ° C., and the solvent was evaporated to form a coating film of the gel composition (compound layer) on the resin surface.
  • Si, Zn It turned out to be a compound containing each element of 0, N and C.
  • the weight ratio in the combustion residue is 100 parts by weight of resin as carrier material particles in terms of oxides. i 0 2 2 parts by weight, was Z n06 parts.
  • the powder coated with the sol-gel method (composite particles for imparting flame retardancy) was mixed with a polypropylene powder or pellet as a substrate similar to that in Example 8, and the flame retardancy was determined in the same manner as in Example 8. It was injection molded into a test sample shape. As the moldings, per 100 parts of resin in terms of oxide, S I_ ⁇ 2 l parts by weight and Z n03 parts. Using the prepared flame-retardant test sample in the UL 94 flammability test, it passed the V-2 standard of the test.
  • the mixture was placed in a dryer at 90 ° C., and the solvent was evaporated to form a coating film of the gel composition (compound layer) on the resin surface.
  • the gel composition obtained by drying only the sol composition was analyzed, it became a compound containing each element of Si, Fe, 0, N and C. I knew it was there.
  • the weight ratio in the combustion residue is 100 parts by weight of resin as carrier material particles in terms of oxides. I_ ⁇ 2 2 parts by weight, was F E_rei_6 parts.
  • the powder coated with the sol-gel method (composite particles for imparting flame retardancy) was mixed with a polypropylene powder or pellet as the same substrate as in Example 8, and In the same manner as in Example 8, injection molding was performed into a sample shape for a flame retardancy test.
  • As the moldings per 100 parts of resin in terms of oxide, S I_ ⁇ 2 l parts by weight, F E_rei_3 parts.
  • F E_rei_3 parts per 100 parts of resin in terms of oxide, S I_ ⁇ 2 l parts by weight, F E_rei_3 parts.
  • the powder on which the deposits were formed was mixed with a polypropylene powder or a pellet as a substrate as in Example 8, and injection-molded into a sample shape for a flame retardancy test in the same manner as in Example 8.
  • Zn05 parts by weight was calculated based on 100 parts of resin in terms of oxide.
  • Table 3 summarizes the results of Examples 8 to 10 and Comparative Example 5 described above.
  • FIG. 9 shows an observation diagram of the support material particles in this example when observed before and after coating the gel composition with an electron microscope.
  • Fig. 9 (a) shows the carrier particles before coating
  • Fig. 9 (b) shows the carrier particles (composite particles for imparting flame retardancy) after coating. You can see that it is coated.
  • main component or “mainly” is used to mean a component having the highest weight content unless otherwise specified.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

A flame-retardant polymer composite material characterized in that the composite material comprises a substrate comprising a polymer material such as a resin (i.e., a material to be flame-retarded) and, dispersed therein or attached to the surface thereof by coating or the like, composite particles (10) for imparting flame retardancy having a structure wherein a carrier particle (1) is combined with a layer (2) of compounds containing a silicon component and/or a metal component and oxygen; a composition for producing the flame-retardant polymer composite material; and a formed product of the flame-retardant polymer composite material. The flame-retardant polymer composite material can impart high flame retardancy to a material to be flame-retarded at a low cost, since, when the flame-retarded material is heated to a high temperature, the layer (2) forms a protective film hindering the material from burning, and the formation of a protective film allows the provision of satisfactory flame retardancy to the flame-retarded material by incorporation of a small amount of the compounds of the layer (2), which results in reducing the amount of a retardant including the above composite particles.

Description

難燃性高分子複合材料、 難燃性高分子複合材料製造用組成物、 難燃性高分子複合 材料成形体、 難燃性高分子複合材料成形体製造用マスターバツチ  Flame retardant polymer composite material, composition for producing flame retardant polymer composite material, flame retardant polymer composite material molded article, master batch for producing flame retardant polymer composite material molded article
技術分野 本発明は、 難燃性高分子複合材料、 難燃性高分子複合材料製造用組成物及び難燃 明 TECHNICAL FIELD The present invention relates to a flame-retardant polymer composite material, a composition for producing a flame-retardant polymer composite material, and a flame-retardant polymer
性高分子複合材料成形体、 難燃性高分子複合材料成形体製造用マスターバツチに関 田 Sekida, masterbatch for the production of fire-retardant polymer composite material and flame-retardant polymer composite material
する。 I do.
背景技術 樹脂材料 (高分子材料) は、 化学的、 物理的に優れた性能を有し、 成形性及びカロ ェ性にも優れていることにより、 広範囲な分野で使用され、 需要が伸びているが、 殆どの樹脂材料は燃えやすいのが大きな欠点であるため、 その使用が制限されてお り、 樹脂材料の難燃化が望まれている。 樹脂材料を難燃化するための難燃剤としては、 ハロゲン系難燃剤が主流であるが. ハロゲン系難燃剤から発生するダイォキシンやフランの問題から環境保護上好まし くなく、 エコロジカルな難燃剤の開発、 実用化が望まれている。 ノンハロゲン系の リン系難燃剤もリンの水素化物であるホスフィンが発生し、 好ましくない。 また、 水酸化アルミニウムや水酸化マグネシウム等の無機系難燃剤があり、 水酸 化アルミニウムは低有害性、 低発煙性、 電気絶縁性も良好、 しかも低コストである ため難燃剤の中では需要量も多い。 しカゝし、 問題点として機械的性質、 耐水性の低 下、 多量 (1 5 0部以上) 配合するためのコンパウンドの粘度上昇、 4 0 0 °C以上 の高温での難燃効果が低いこと、 あるいは成形加工温度が高い樹脂の加工時に脱水 発泡し易い等がある。 また、 水酸化マグネシウムは水酸化アルミニウムと同様の難燃効果があり、 水酸 化アルミニウムの欠点である樹脂の加工温度での脱水発泡がなレ、が、 酸に対して弱 く、 湿度の高い条件では空気中の炭酸ガスと反応して炭酸マグネシゥムが生成して 白ィ匕したり、 コストが水酸化アルミニウムに比べ高い等の欠点がある。 なお、 これ らの無機系難燃剤は単独では難燃効果が小さいため、 他の難燃剤との併用が必要で もある。 この他、 ガラス系難燃剤として低融点ガラスを用いたものがあるが、 製造 工程が複雑で、 樹脂への添加量も多く必要であり、 製造コストも高く、 また耐水性 にも問題がある。 BACKGROUND ART Resin materials (polymer materials) are used in a wide range of fields due to their excellent chemical and physical properties, and excellent moldability and calorie properties, and demand is growing. However, a major drawback is that most resin materials are flammable, so their use is restricted, and flame retardancy of resin materials is desired. Halogen-based flame retardants are the mainstream flame retardants used to make resin materials flame-retardant. Ecological flame retardants are not favorable for environmental protection due to dioxins and furans generated from halogen-based flame retardants. The development and commercialization of this is desired. Non-halogen phosphorus-based flame retardants are not preferred because phosphine, which is a hydride of phosphorus, is generated. In addition, there are inorganic flame retardants such as aluminum hydroxide and magnesium hydroxide.Aluminum hydroxide has low toxicity, low smoke emission, good electrical insulation, and low cost. There are many. However, the problems are mechanical properties, low water resistance, large amount (more than 150 parts), increased viscosity of the compound for compounding, and low flame retardancy at high temperatures of 400 ° C or higher. In addition, dehydration and foaming are likely to occur during processing of a resin having a high processing temperature. Magnesium hydroxide has the same flame-retardant effect as aluminum hydroxide, and dehydration and foaming at the processing temperature of the resin, which is a drawback of aluminum hydroxide, is weak to acids and humid. Under the conditions, there are drawbacks such as reaction with carbon dioxide in the air to form magnesium carbonate and whitening, and the cost is higher than aluminum hydroxide. Since these inorganic flame retardants alone have a small flame-retardant effect, it is necessary to use them together with other flame retardants. In addition, although low melting point glass is used as a glass-based flame retardant, the manufacturing process is complicated and requires a large amount of addition to the resin, resulting in high manufacturing cost and water resistance.
本発明は上記した従来の問題点を解決して、 安価で高い難燃性を示す難燃性高分 子複合材料と、 それを製造するための難燃性高分子複合材料製造用組成物、 該難燃 性高分子複合材料にて構成された成形体、 及び難燃性高分子複合材料成形体製造用 マスターバッチを提供しようとするものである。 発明の開示  The present invention solves the above-mentioned conventional problems, and provides a flame-retardant polymer composite material which is inexpensive and exhibits high flame retardancy, a composition for producing a flame-retardant polymer composite material for producing the same, An object of the present invention is to provide a molded article composed of the flame-retardant polymer composite material and a master batch for producing the flame-retardant polymer composite material molded article. Disclosure of the invention
上記の課題を解決するために、 本発明の難燃性高分子複合材料の第一の構成は、 高分子材料、 無機材料及び金属材料の 1種又は 2種以上からなる担持材料粒子に、 珪素成分及び/又は金属成分と酸素とを含有する化合物層を複合化させた構造を有 する難燃性付与用複合粒子を、 高分子材料からなる基質 (以下、 高分子基質とも言 う) 中に分散させたことを特徴とする。  In order to solve the above-described problems, a first configuration of the flame-retardant polymer composite material of the present invention is as follows: a carrier material particle comprising one or more of a polymer material, an inorganic material, and a metal material; The composite particles for imparting flame retardancy having a structure in which a compound layer containing a metal component and / or a metal component and oxygen are compounded in a polymer substrate (hereinafter also referred to as a polymer substrate). It is characterized by being dispersed.
また、 本発明の難燃性高分子複合材料の第二の構成は、 高分子材料、 無機材料及 び金属材料の 1種又は 2種以上からなる担持材料粒子に、 珪素成分及び Z又は金属 成分と酸素とを含有する化合物層を複合化させた構造を有する難燃性付与用複合粒 子を、 高分子材料からなる基質の表面に定着したことを特徴とする。 該構成は、 上 記した第一の構成と組み合わせることも可能である。  Further, the second configuration of the flame-retardant polymer composite material of the present invention is such that a carrier material particle composed of one or more of a polymer material, an inorganic material, and a metal material includes a silicon component and a Z or metal component. Characterized in that the flame-retardant composite particles having a structure in which a compound layer containing oxygen and oxygen are compounded are fixed on the surface of a substrate made of a polymer material. This configuration can be combined with the first configuration described above.
上記構成によれば、 担持材料粒子に、 珪素成分及び Z又は金属成分と酸素とを含 有する化合物層を複合化させた構造を有する難燃性付与用複合粒子を、 樹脂等の高 分子材料からなる基質 (すなわち、 難燃性付与対象材料) 中に分散及びノ又はコー ティング等により表面に定着することにより、 例えば難燃性付与対象材料に高熱 ( 例えば 5 0 0 °C以上) が付与された場合に、 その高熱により難燃性付与用複合粒子 の化合物層が燃焼を阻害する保護膜を形成し、 難燃性付与対象材料に対して高い難 燃性を付与することが可能となる。 また、 保護膜の形成効果により、 難燃性付与対 象材料への配合量が少量でも十分な難燃性能を付与することが可能となり、 結果と して上記複合粒子を含めた難燃剤の配合量を削減できる。 その結果、 最終的に得ら れる材料の強度や耐久性、 さらには成形性や流動性 (例えば射出成形可能な材質の 場合には、 金型中での流れ性) などを従来の難燃剤を用いた場合よりも向上できる 効果、 すなわち強度や耐久性、 成形性、 流動性等の低下を抑制できる効果も達成で さる。 According to the above configuration, the carrier material particles contain a silicon component and Z or a metal component and oxygen. The composite particles for imparting flame retardancy having a structure in which the compound layer is compounded are dispersed in a substrate made of a high molecular material such as a resin (that is, the material to which flame retardancy is to be imparted) and the surface is coated by coating or coating. For example, when high heat (for example, 500 ° C. or more) is applied to the material to which the flame retardancy is to be applied, the compound layer of the composite particles for imparting flame retardancy is protected by the high heat. By forming a film, it becomes possible to impart high flame retardancy to the material to be imparted with flame retardancy. In addition, due to the effect of forming the protective film, it is possible to provide sufficient flame retardancy even if the amount of the flame retardant material is small, and as a result, the flame retardant including the composite particles is mixed. The amount can be reduced. As a result, the strength and durability of the material finally obtained, as well as the moldability and fluidity (for example, in the case of injection-moldable materials, the flowability in the mold), etc., can be reduced by using conventional flame retardants. An effect that can be improved as compared with the case where it is used, that is, an effect of suppressing a decrease in strength, durability, moldability, fluidity, and the like can be achieved.
さらに、 本発明の難燃性高分子複合材料の第三の構成は、 高分子材料、 無機材料 及び金属材料の 1種又は 2種以上からなる担持材料粒子に、 加熱により珪素及び/ 又は金属の酸化物を主体とするガラス質セラミックスを生ずる化合物層を複合化さ せた構造を有する難燃性付与用複合粒子が、 高分子材料からなる基質 (以下、 高分 子基質とも言う) 中に分散され、 かつ U L 9 4燃焼性試験 (本明細書では、 第 5版 : 1 9 9 6年 1 0月 2 6日によるものを採用する) にてテストしたときに、 V— 0 〜V— 2の範囲を充足する難燃性能を付与したことを特徴とする。  Further, a third configuration of the flame-retardant polymer composite material of the present invention is that a carrier material particle composed of one or more of a polymer material, an inorganic material, and a metal material is heated to form a silicon and / or metal material by heating. Composite particles for imparting flame retardancy, which have a structure in which a compound layer that forms a vitreous ceramic mainly composed of oxides, are dispersed in a matrix made of a polymer material (hereinafter also referred to as a polymer matrix). And UL-94 flammability test (in this specification, the fifth edition: adopted on October 26, 1996, October 26), V-0 to V-2 The flame retardant performance that satisfies the range is provided.
また、 本発明の難燃性高分子複合材料の第四の構成は、 高分子材料、 無機材料及 び金属材料の 1種又は 2種以上からなる担持材料粒子に、 加熱により珪素及び 又 は金属の酸化物を主体とするガラス質セラミックスを生ずる化合物層を複合化させ た構造を有する難燃性付与用複合粒子が、 高分子材料からなる基質の表面に定着さ れ、 かつ U L 9 4燃焼性試験にてテストしたときに、 V— 0〜V— 2の範囲を充足 する難燃性能を付与したことを特徴とする。 上記構成によれば、 担持材料粒子に、 加熱により珪素及び Z又は金属の酸化物を 主体とするガラス質セラミックスを生ずる化合物層を複合化させた構造を有する難 燃性付与用複合粒子を、 樹脂等の高分子材料からなる基質 (すなわち、 難燃性付与 対象材料) 中に分散及び Z又はコーティング等により表面に定着することにより、 例えば難燃性付与対象材料に高熱 (例えば 5 0 0 °C以上) が付与された場合に、 そ の高熱により難燃性付与用複合粒子の化合物層が燃焼を阻害するガラス質セラミッ タスの保護膜が形成される。 これにより、 難燃性付与対象材料に対して高い難燃性 能、 具体的には U L 9 4燃焼性試験にてテストしたときに、 V _ 0〜V— 2の範囲 を充足する難燃性能を付与することが可能となる。 また、 該保護膜の形成効果によ り、 難燃性付与対象材料への配合量が少量でも十分な難燃性能を付与することが可 能となり、 結果として上記複合粒子を含めた難燃剤の配合量が比較的少量であって も、 上記の難燃性能を達成できる。 その結果、 最終的に得られる材料の強度や耐久 性、 さらには成形性や流動性 (例えば射出成形可能な材質の場合には、 金型中での 流れ性) などを従来の難燃剤を用いた場合よりも向上できる効果、 すなわち強度や 耐久性、 成形性、 流動性等の低下を抑制できる効果も達成できる。 難燃性能は、 望 ましくは V— 0を充足するのがよい。 Further, a fourth configuration of the flame-retardant polymer composite material of the present invention is such that a carrier material particle composed of one or more of a polymer material, an inorganic material, and a metal material is added to silicon or metal by heating. The composite particles for imparting flame retardancy, which have a structure in which a compound layer that forms a vitreous ceramic mainly composed of an oxide of iron, is fixed on the surface of a substrate made of a polymer material and has a UL 94 flammability When tested in the test, it is characterized by imparting flame retardancy that satisfies the range of V-0 to V-2. According to the above configuration, the flame-retardant composite particles having a structure in which the carrier material particles are compounded with a compound layer that generates a vitreous ceramic mainly composed of oxides of silicon and Z or a metal by heating, By dispersing in a substrate made of a polymer material such as (eg, a material to be provided with flame retardancy) and fixing to the surface by Z or coating, for example, the material to be provided with flame retardancy has a high heat (eg, 500 ° C). When the above is applied, the high heat forms a glassy ceramic protective film in which the compound layer of the composite particles for imparting flame retardancy inhibits combustion. This makes it possible to achieve high flame retardancy for the material to which flame retardancy is to be imparted, specifically, the flame retardancy that satisfies the range of V_0 to V-2 when tested in the UL94 flammability test. Can be provided. Further, due to the effect of forming the protective film, it is possible to impart sufficient flame retardancy even if the compounding amount to the flame retardancy imparting material is small, and as a result, the flame retardant including the composite particles can be provided. The above-mentioned flame retardancy can be achieved even if the blending amount is relatively small. As a result, the strength and durability of the final material, as well as moldability and fluidity (for example, in the case of a material that can be injection-molded, the flow in the mold) are determined using conventional flame retardants. It is also possible to achieve an effect that can be improved as compared with the case where it is provided, that is, an effect of suppressing a decrease in strength, durability, moldability, fluidity and the like. Preferably, the flame retardant performance satisfies V-0.
一方、 本発明の難燃性高分子複合材料の第五の構成は、 高分子材料、 無機材料及 び金属材料の 1種又は 2種以上からなる担持材料粒子に、 珪素成分及び/又は金属 成分と酸素とを含有する化合物層を複合化させた構造を有する難燃性付与用複合粒 子が、 高分子材料からなる基質中に分散され、 かつ U L 9 4燃焼性試験にてテスト したときに、 V—0〜V— 2の範囲を充足する難燃性能を付与したことを特徴とす る。  On the other hand, the fifth configuration of the flame-retardant polymer composite material according to the present invention is such that a carrier material particle composed of one or more of a polymer material, an inorganic material, and a metal material includes a silicon component and / or a metal component. When flame-retardant composite particles having a structure in which a compound layer containing oxygen and oxygen are compounded are dispersed in a matrix composed of a polymer material and tested in a UL 94 flammability test The flame retardant performance that satisfies the range of V-0 to V-2 is provided.
また、 本発明の難燃性高分子複合材料の第六の構成は、 高分子材料、 無機材料及 び金属材料の 1種又は 2種以上からなる担持材料粒子に、 珪素成分及び Z又は金属 成分と酸素とを含有する化合物層を複合化させた構造を有する難燃性付与用複合粒 子が、 高分子材料からなる基質の表面に定着され、 かつ U L 9 4燃焼性試験にてテ ストしたときに、 V—0〜V _ 2の範囲を充足する難燃性能を付与したことを特徴 とする。 Further, a sixth configuration of the flame-retardant polymer composite material of the present invention is such that a carrier material particle composed of one or more of a polymer material, an inorganic material, and a metal material includes a silicon component and a Z or metal component. Flame-retardant composite particles having a structure in which a compound layer containing oxygen and oxygen is compounded The element was fixed on the surface of a substrate made of a polymer material, and when tested in the UL 94 flammability test, it provided flame retardancy that satisfies the range of V-0 to V_2. Features.
なお、 本発明の難燃性高分子複合材料においては、 U L 9 4燃焼性試験にてテス トしたときに、 その燃焼残留物中の珪素成分の酸化物換算重量含有率 WSi と、 同じ く金属成分の酸化物換算重量含有率 WMとの合計 WSi +WMが、 0 . 5〜 6 0重量% となっているのがよい。 WSi +WMが 6 0重量。 /。を超えると、 複合材料の強度 (例え ば引張強度等) や伸びといった機械的性質が損なわれやすくなり、 WSi + WMが 0 . 5重量%未満では難燃性能向上効果への寄与が不十分となる場合がある。 なお、 珪 素成分は s i o 2に換算する。 また、 金属成分を含有する場合は、 各金属成分を、 含 有される金属イオンの価数 (X線光電子分光法により特定可能である) に対応する 組成の酸化物に換算する。 例えば Z n 2 +が検出されれば対応する酸化物は Z n Oで あり、 C u +が検出されれば対応する酸化物は C u 2〇である。 In the flame-retardant polymer composite material of the present invention, when tested in a UL 94 flammability test, the metal content is equivalent to the oxide-equivalent weight content WSi of the silicon component in the combustion residue. It is preferable that the total WSi + WM of the component and the oxide equivalent weight content WM be 0.5 to 60% by weight. 60 weight of WSi + WM. /. If WSi + WM is less than 0.5% by weight, the effect of improving the flame-retardant performance is insufficient if the mechanical properties such as the strength (eg, tensile strength) and elongation of the composite material exceed 0.5% by weight. May be. Incidentally, silicofluoride-containing component is converted into sio 2. When a metal component is contained, each metal component is converted into an oxide having a composition corresponding to the valence of the contained metal ion (which can be specified by X-ray photoelectron spectroscopy). For example Z n 2 + the corresponding oxide when it is detected is Z n O, corresponding oxides if C u + is detected is C u 2 〇.
以下、 第一から第六の構成に共通に付加可能な要件について説明する。  Hereinafter, requirements that can be added in common to the first to sixth configurations will be described.
上記化合物層や担持材料粒子は、 例えば不純物成分等の形で不可避的に混入する ものを除いて、 塩素あるいはフッ素等のハロゲン成分を含有しないものとして構成 することもできる。 これにより、 高熱付加時に従来のような有害ガスを発生しない ためェコロジカルな難燃性材料が実現できる。  The compound layer and the carrier material particles may be configured so as to contain no halogen component such as chlorine or fluorine, except for those that are inevitably mixed in the form of, for example, impurity components. This makes it possible to realize ecologically flame-retardant materials because no harmful gas is generated when a high heat is applied.
上記化合物層は、 加熱により珪素及びノ又は金属の酸化物を主体とするガラス質 セラミックスを生ずるものとすることができる。 上記の化合物層に含まれる珪素成 分及び 又は金属成分は、 加熱による酸化等も相俟ってガラス質セラミックスを生 じやすく、 また、 その生成される珪素及び Z又は金属の酸化物を主体とするガラス 質セラミックスは耐熱性が高いため、 高熱が付加されたときに極めて強力な保護膜 となって、 難燃性付与対象材料に対して一層高い難燃性を付与することが可能とな る。 なお、 上記のようなガラス質セラミックスは、 初めから化合物層の一部をなす ものとして存在していてもよいし、 化合物層の一部又は全部が加熱されたときにガ ラス質セラミックスに転化する形態でもよレ、。 また、 金属成分としては、 例えば T i、 C u、 A l、 Z n、 N i及びZ r、 あるいはその他の遷移金属元素の 1種又は 2種以上を採用することができる。 The above-mentioned compound layer can generate a vitreous ceramic mainly composed of silicon and a metal oxide by heating. The silicon component and / or metal component contained in the above-mentioned compound layer is liable to produce vitreous ceramics in combination with oxidation by heating, etc., and mainly contains the silicon and Z or metal oxides produced. Since glassy ceramics have high heat resistance, they become an extremely strong protective film when high heat is applied, making it possible to impart even higher flame retardancy to the material to which flame retardancy is to be applied. . It should be noted that such a vitreous ceramic forms a part of the compound layer from the beginning. It may be present as such, or it may be in the form of being converted into a glassy ceramic when a part or all of the compound layer is heated. As the metal component, for example, one or more of Ti, Cu, Al, Zn, Ni and Zr, or other transition metal elements can be employed.
次に、 上記化合物層は炭素成分を含有するものとして形成できる。 当該難燃性付 与用複合粒子を難燃性付与対象材料に複合させる際のなじみ性 (親和性) を向上さ せ、 難燃性付与対象材料に対して難燃性付与用複合粒子を均一に分散させることが 可能となる他、 例えば難燃性付与対象材料を成形する際の成形性等も向上させるこ とが可能である。  Next, the compound layer can be formed as containing a carbon component. Improves the familiarity (affinity) when the composite particles for imparting flame retardancy are combined with the material to which flame retardancy is to be applied, and makes the composite particles for imparting flame retardancy uniform with the material to which flame retardancy is to be imparted. In addition to being able to be dispersed, it is also possible to improve, for example, the moldability when molding the material to be imparted with flame retardancy.
次に、 当該難燃性付与用複合粒子は、 加熱により燃焼阻害性気体を分解生成する ものとすることができる。 この場合、 難燃性付与対象材料に高熱が付与された場合 Next, the composite particles for imparting flame retardancy can decompose and generate a combustion inhibiting gas by heating. In this case, when high heat is applied to the material
:、 燃焼阻害性気体が発生し、 該燃焼阻害性気体が難燃性付与対象材料への難 ;効メス 果をさらに向上させる。 この難燃性向上は、 燃焼阻害性気体により燃焼のための酸 素が、 難燃性付与対象材料付近において相対的に減少するためであると推測される c 具体的に、 燃焼阻害性気体としては、 窒素、 硫黄及び炭素の 1種又は 2種以上を 含有するものが生成されるものとすることができる。 この場合、 例えば窒素含有ガ スとしては N 2ガスや N 0 2ガス、 N Oガス、 硫黄含有ガスとしては S〇2ガス、 炭素 含有ガスとしては C 0 2ガス等が発生し、 それらが難燃性付与対象材料への難燃効果 をさらに向上させる。 : A combustion-inhibiting gas is generated, and the combustion-inhibiting gas is difficult for the material to be provided with flame retardancy; The flame retardancy improvement is oxygen for combustion by the combustion inhibiting gas, the c specific suspected to be due to relative decrease in the vicinity of the flame retardancy-imparting material of interest, as a combustion inhibition gas Can be produced containing one or more of nitrogen, sulfur and carbon. In this case, for example, nitrogen-containing N 2 gas and N 0 2 gas was used as gas, NO gas, S_〇 2 gas as a sulfur-containing gas, is C 0 2 gas or the like as a carbon-containing gas occurs, they flame retardant Further enhance the flame retardant effect on the material to which the property is to be imparted.
一方、 当該難燃性付与用複合粒子の平均粒径は、 0 . 0 5〜5 0 0 μ πιとするの がよい。 平均粒径が 0 . 0 5 μ πι未満の場合、 当該難燃性付与用複合粒子の製造が 困難になる場合がある他、 難燃性付与対象材料へ複合 (添加) した場合に偏在が生 じて複合 (添加) を均一にできない場合があるため、 難燃性付与効果が低下したり、 難燃性付与対象材料の性能が特にその偏在領域において低下したりする場合がある また、 5 0 0 mを超える場合、 複合 (添加) した粒子の分布が不均一になる場合 がある他、 難燃性付与対象材料の特性、 例えば樹脂であれば流動性等の性質が低下 したり、 難燃性付与対象材料が外観不良を起こしたりする場合がある。 なお、 平均 粒径の測定は、 例えばレーザー回折式粒度計を用いることができる。 この場合、 レ —ザ一回折式粒度計による測定では、 入射レーザー光の凝集粒子による回折挙動と, 孤立した一次粒子による回折挙動とで大きな差異を生じないため、 測定された粒径 力 一次粒子単体で存在するものの粒径なのか、 あるいはこれが凝集した二次粒子 の粒径なのかが互いに区別されない。 したがって、 該方法で測定した平均粒径は、 凝集を起こしていない孤立した一次粒子も広義に含めた二次粒子の平均粒径を反映 した値となる。 On the other hand, the average particle size of the composite particles for imparting flame retardancy is preferably 0.05 to 500 μπι. If the average particle size is less than 0.05 μπι, the production of the composite particles for imparting flame retardancy may become difficult, and uneven distribution may occur when the composite particles are added (added) to the material to be imparted with flame retardancy. In some cases, the composite (addition) cannot be made uniform, so that the effect of imparting flame retardancy may decrease or the performance of the material to which flame retardancy is imparted may decrease, particularly in the uneven distribution region. If it exceeds 0 m, the distribution of composite (added) particles becomes uneven In addition, the properties of the material to which flame retardancy is to be imparted, such as the properties of a resin, such as fluidity, may be reduced, or the material to be imparted with flame retardancy may have poor appearance. The average particle size can be measured using, for example, a laser diffraction particle size analyzer. In this case, in the measurement using a laser single-diffraction particle sizer, there is no significant difference between the diffraction behavior of the incident laser light due to the aggregated particles and the diffraction behavior due to the isolated primary particles. It cannot be distinguished from each other whether the particle size exists as a simple substance or whether it is the particle size of aggregated secondary particles. Therefore, the average particle size measured by this method is a value reflecting the average particle size of the secondary particles, which broadly includes isolated primary particles that do not cause aggregation.
次に、 上記担持材料粒子は、 難燃材料粒子とすることができる。 この場合、 上述 した化合物が加熱により、 例えばガラス質セラミックスを生じることによる難燃性 付与効果に加えて、 担持材料粒子としての難燃材料粒子の難燃効果も加わるため、 難燃性付与用複合粒子の難燃性付与対象材料への難燃性付与効果が一層向上する。 このような難燃材料粒子としては、 例えば、 エコロジカルなノンハロゲン系難燃材 料である水和金属化合物、 白雲母、 金雲母、 黒雲母、 絹雲母等の雲母類、 カオリン, 滑石、 沸石、 ホウ砂、 ダイァスポア、 石膏等の鉱物類、 酸化マグネシウム、 酸化ァ ルミ二ゥム、 二酸化珪素等の金属酸化物、 炭酸カルシウム等の金属化合物、 赤燐、 ポリリン酸アンモニゥム等のリン系化合物、 窒素系化合物等に代表される無機系難 燃材料粒子 (無機材料系粒子) 、 及びリン系、 シリコーン系、 窒素系の有機系難燃 材料粒子、 さらには金属粉末粒子 (金属材料系粒子) 等を用いることができる。 な お、 樹脂への添加性、 難燃効果、 コス ト等の面において、 無機系難燃材料粒子を用 いることが最も好ましい。 特に、 無機材料系粒子としては、 水酸化アルミニウム及 び水酸化マグネシウムの少なくともいずれかを主成分とするものを使用すると、 難 燃性付与効果が一層高まる。 これら水酸化物を用いた場合、 例えば、 上記アルコキ シドを S iから構成されるものとし、 上記金属塩を Z n及び 又は N iから構成さ れるものとすれば、 難燃性付与効果がさらに高まる。 Next, the above-mentioned carrier material particles can be made into flame-retardant material particles. In this case, in addition to the effect of imparting flame retardancy by heating the above-mentioned compound to produce, for example, a vitreous ceramic, the flame retardant effect of the flame retardant material particles as the support material particles is added. The effect of imparting flame retardancy to the material to which the particles are imparted flame retardancy is further improved. Examples of such flame-retardant material particles include ecological non-halogen flame retardant materials, hydrated metal compounds, mica such as muscovite, phlogopite, biotite, sericite, kaolin, talc, zeolite, Minerals such as borax, diaspore, and gypsum; metal oxides such as magnesium oxide, aluminum oxide, and silicon dioxide; metal compounds such as calcium carbonate; phosphorus compounds such as red phosphorus and ammonium polyphosphate; and nitrogen compounds Use inorganic flame-retardant material particles (inorganic material-based particles) represented by compounds, etc., phosphorus-based, silicone-based, and nitrogen-based organic flame-retardant material particles, as well as metal powder particles (metal-based particles). be able to. It is most preferable to use inorganic flame-retardant material particles from the viewpoint of the additive properties to the resin, the flame-retardant effect, the cost, and the like. In particular, when the inorganic material-based particles are mainly composed of at least one of aluminum hydroxide and magnesium hydroxide, the effect of imparting flame retardancy is further enhanced. When these hydroxides are used, for example, the above-mentioned alkoxide is composed of Si, and the above-mentioned metal salt is composed of Zn and / or Ni. If so, the effect of imparting flame retardancy is further enhanced.
上記難燃材料粒子は、 例えば平均粒径 0 . 0 5〜1 0 0 μ πιのものを用いること が好ましい。 平均粒径が上記下限値未満の場合、 製造が困難になる場合がある他、 難燃性付与対象材料へ複合 (添加) した場合に偏在が生じ、 複合 (添加) を均一に できない場合があるため、 難燃性付与効果が低下したり、 難燃性付与対象材料の性 能が特にその偏在領域において低下したりする場合がある。 また、 上限値を超える 場合、 複合 (添加) した粒子の分布が不均一になる場合がある他、 難燃性付与対象 材料の特性、 例えば流動性等の性質が低下したり、 難燃性付与対象材料が外観不良 を起こしたりする場合がある。 このような無機材料系及びノ又は金属材料系の難燃 材料粒子を担持材料粒子として用いた場合、 本発明の難燃性付与用複合粒子の平均 粒径は、 上述の通り 0 . 0 5〜 5 0 0 m程度となる。 なお、 平均粒径の測定は、 レーザー回折式の粒度測定装置により行うことができる。 一方、 担持材料粒子として高分子材料粒子を用いることもできる。 高分子材料粒 子としては、 例えば熱可塑性高分子材料からなるものや、 熱硬化性高分子材料から なるもの、 あるいはそれらの混合材料等を使用することができる。 この場合、 難燃 性付与対象材料として樹脂を用いた場合に、 担持材料としての高分子材料が樹脂と なじみ (親和性) がよいため、 当該難燃性付与用複合粒子が難燃性付与対象材料に 対して均一に分散されることとなり、 難燃性付与対象材料に効果的に難燃性を付与 することが可能となる。 高分子材料粒子を用いた場合、 例えば、 上記アルコキシド を S iから構成されるものとし、 上記金属塩を C u及び 又は F eから構成される ものとすれば、 難燃性付与効果をさらに高めることができる。 高分子材料粒子は、 例えば平均粒径 0 . 1〜1 0 mm程度のものを用いることができ、 その場合、 当該 難燃性付与用複合粒子の平均粒径も 0 . 1〜1 0 mm程度のものとなる。  The flame-retardant material particles preferably have, for example, an average particle diameter of 0.05 to 100 μπι. If the average particle size is less than the above lower limit, the production may be difficult, and when the compound is added (combined) to the material to which flame retardancy is to be imparted, uneven distribution may occur, and the compound (addition) may not be uniform. Therefore, the effect of imparting flame retardancy may decrease, or the performance of the material to which flame retardancy is imparted may decrease, particularly in the uneven distribution region. If the value exceeds the upper limit, the distribution of the compounded (added) particles may be non-uniform, and the properties of the material to which flame retardancy is to be imparted, for example, properties such as fluidity may be reduced or flame retardancy may be imparted. The target material may cause poor appearance. When such inorganic material-based and metal or metal-based flame-retardant material particles are used as carrier material particles, the average particle diameter of the flame-retardant composite particles of the present invention is 0.05 to 0.5 as described above. It is about 500 m. The average particle size can be measured by a laser diffraction type particle size measuring device. On the other hand, polymer material particles can be used as the support material particles. As the polymer material particles, for example, those made of a thermoplastic polymer material, those made of a thermosetting polymer material, or a mixed material thereof can be used. In this case, when a resin is used as the material to be imparted with flame retardancy, the polymer material as a carrier material has good affinity (affinity) with the resin, and thus the composite particles for imparting flame retardancy are subjected to the object to be imparted with flame retardancy. It becomes evenly dispersed in the material, and it becomes possible to effectively impart the flame retardancy to the material to which the flame retardancy is to be imparted. When polymer particles are used, for example, if the alkoxide is composed of Si and the metal salt is composed of Cu and / or Fe, the effect of imparting flame retardancy is further enhanced. be able to. As the polymer material particles, for example, those having an average particle size of about 0.1 to 10 mm can be used. In this case, the average particle diameter of the composite particles for imparting flame retardancy is also about 0.1 to 10 mm. It will be.
なお、 高分子材料粒子としては、 例えば、 ポリエチレン (P E ) 、 ポリプロピレ ン (P P ) 、 ポリスチレン (P S ) 、 アクリロニトリル ·ブタジエン 'スチレン ( ABS) 等の汎用樹脂、 変性ポリフエ二レンエーテル (PPE) 、 ポリカーボネー ト (PC) 、 ポリブチレンテレフタレ一ト (PBT) 、 ポリエチレンテレフタレー ト (PET) 、 ポリアミ ド (PA) 等のエンジニアリングプラスチック及び PC/ ABSァロイ、 PC/PBTァロイ、 PC/PETァロイ、 PC/エラストマ一、 PA/PP, PAノエラス トマ一等のポリマーァロイ等の粉末粒子を用いることが できる。 The polymer material particles include, for example, polyethylene (PE), polypropylene (PP), polystyrene (PS), acrylonitrile butadiene styrene ( General-purpose resins such as ABS), engineering plastics such as modified polyphenylene ether (PPE), polycarbonate (PC), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), and polyamide (PA) Powder particles of polymer alloys such as PC / ABS alloy, PC / PBT alloy, PC / PET alloy, PC / elastomer, PA / PP, PA-noelastomer and the like can be used.
次に、 上記本発明の難燃性高分子複合材料は、 所定の形状に成形することにより 種々の用途に適した難燃性高分子複合材料成形体を得ることができる。 成形方法は 特に限定されるものではなく、 プレス成形、 ブロー成形、 押出し成形、 射出成形あ るいは力レンダ加工など任意な成形方法を用いることができる。  Next, by molding the flame-retardant polymer composite material of the present invention into a predetermined shape, a flame-retardant polymer composite material molded article suitable for various uses can be obtained. The molding method is not particularly limited, and any molding method such as press molding, blow molding, extrusion molding, injection molding, or force rendering can be used.
上記難燃性高分子複合材料成形体は、 例えば高分子基質の軟化を伴う再成形を前 提としない、 最終成形体 (最終的な成形製品はこれに当たる) として構成すること ができる。 その適用対象は、 難燃性が要求されるあらゆる成形製品であり、 特に限 定されるものではないが、 一例を挙げれば以下の通りである。  The above-mentioned flame-retardant polymer composite material molded article can be constituted as a final molded article (final molded product corresponds to this), for example, without assuming remolding accompanied by softening of the polymer matrix. The applicable object is any molded product that requires flame retardancy and is not particularly limited, but examples are as follows.
· 自動車部品:インパネ等の内装部品、 バンパー等の外装部品、 エンジン内のブラ スチック部品等。  · Automotive parts: Interior parts such as instrument panels, exterior parts such as bumpers, plastic parts in engines, etc.
'一般弱電製品:テレビ、 ビデオ、 パソコン、 オーディオプレーヤー、 電子レンジ 等の家電製品の筐体その他の部品部材  '' General electric appliances: Housings and other parts for home appliances such as TVs, videos, personal computers, audio players, microwave ovens, etc.
•建築用部材 (内装部材、 外装部材)  • Architectural components (interior components, exterior components)
·繊維製品 (衣料、 敷物、 カーテンなど)  · Textile products (clothing, rugs, curtains, etc.)
• ゴムあるいはエラストマ一部材:床材、 シーリング部材、 耐震材など (基質をな す高分子材料をゴムあるいはエラストマ一とする必要がある)  • Rubber or elastomer material: flooring, sealing material, seismic material, etc. (The polymer material used as the substrate must be rubber or elastomer)
• シート状部材、 塗料等。  • Sheet materials, paints, etc.
一方、 成形体は、 高分子基質を軟化させて所期の二次形状に再成形するための仮 成形体とすることもできる。 このような仮成形体を使用することで、 最終的な成形 体製品の製造効率を大幅に高めることができる。 例えば使用する高分子基質の材質 が流動性に欠ける場合には、 最終的な二次形状に個別に対応した中間形状を有する プレフォームを仮成形体として使用することで、 局所的な材料流動のばらつきを抑 制することができ、 欠陥の少ない製品を能率よく製造することができる。 On the other hand, the molded article can be a temporary molded article for softening the polymer matrix and re-molding into a desired secondary shape. By using such a temporary molding, the final molding The production efficiency of body products can be greatly increased. For example, if the material of the polymer matrix used lacks fluidity, a preform having an intermediate shape individually corresponding to the final secondary shape can be used as a temporary molded body to reduce local material flow. Variations can be suppressed and products with few defects can be manufactured efficiently.
一方、 仮成形体は、 前記難燃性付与用複合粒子が高分子基質中に分散された粒状 成形物とし、 個々の粒状成形物よりも大体積の二次形状に再成形するためのマスタ 一バッチとすることもできる。 具体的に、 難燃性高分子複合材料の成形体製造用マ スターバッチ (以下、 単にマスターバッチとも称する) は、 高分子材料、 無機材料 及び金属材料の 1種又は 2種以上からなる担持材料粒子に、 珪素成分及びノ又は金 属成分と酸素とを含有する化合物層を複合化させた構造を有する難燃性付与用複合 粒子が高分子基質中に分散された粒状成形物として構成され、 個々の粒状成形物よ りも大体積の二次形状に再成形するために使用されることを特徴とする。 このよう なマスターバッチは、 射出成形機などの種々の成形機において、 流動性の高い成形 用素地として活用することができ、 ひいては成形工程の簡略化と高能率化に大きく 寄与する。 この場合、 マスターバッチは、 高分子基質とは同質または異質の高分子 材料からなる希釈高分子材料とともに再成形することにより、 自身よりも難燃性付 与用複合粒子の含有量が小さい二次成形体を製造するために使用することができる このようにすることで、 最終的な二次成形体中の難燃性付与用複合粒子の含有率を. 希釈高分子材料に対するマスターバッチの配合比率を変更することにより、 自由に しかも簡単に調整することが可能になる。 また、 マスターバッチの製造時に高分子 基質と難燃性付与用複合粒子との混練を行い、 さらに成形時に、 そのマスターバッ チが希釈高分子材料と混合されることで、 高分子基質中への難燃性付与用複合粒子 の分散がいわば 2段階に図られることで、 最終的に得られる二次成形体中の複合粒 子の分散状態をより均一なものとすることができるようになる。  On the other hand, the temporary molded body is a granular molded article in which the composite particles for imparting flame retardancy are dispersed in a polymer matrix, and is used as a master for remolding into a secondary shape having a larger volume than each granular molded article. It can be a batch. Specifically, a masterbatch (hereinafter, also simply referred to as a masterbatch) for producing a molded article of a flame-retardant polymer composite material is a carrier material composed of one or more of a polymer material, an inorganic material, and a metal material. The composite particles for flame-retardant imparting having a structure in which a compound layer containing a silicon component and a metal component or a metal component and oxygen are composited with the particles are configured as a granular molded product in which the composite particles are dispersed in a polymer matrix, It is characterized by being used for reshaping into a secondary shape having a larger volume than individual granular molded products. Such a masterbatch can be used as a molding base having high fluidity in various molding machines such as an injection molding machine, and thus greatly contributes to simplification of the molding process and higher efficiency. In this case, the masterbatch is remolded together with a dilute polymer material consisting of a polymer material of the same or a different nature as the polymer substrate, so that the secondary batch has a smaller content of flame-retardant composite particles than itself. In this way, the content of the composite particles for imparting flame retardancy in the final secondary molded product can be used. The mixing ratio of the masterbatch to the diluted polymer material can be used. By changing, it is possible to adjust freely and easily. In addition, during the production of the masterbatch, the polymer matrix and the composite particles for imparting flame retardancy are kneaded, and at the time of molding, the masterbatch is mixed with the diluted polymer material, so that the polymer matrix is mixed into the polymer matrix. By dispersing the composite particles for imparting flame retardancy in two stages, the dispersion state of the composite particles in the finally obtained secondary molded body can be made more uniform.
上記本発明の難燃性高分子複合材料に使用される難燃性付与用複合粒子は、 具体 的には、 以下のような製造方法により得られたものを使用することができる。 該製 造方法においては、 金属元素及び 又は S iの化合物を溶媒中に分散及び/又は溶 解させた溶液 (例えば、 アルコキシド溶液) 力 ら発生するゾル状組成物を担持材料 と接触させる工程と、 前記ゾル状組成物を乾燥させる工程とを少なくとも含み、 前 記ゾル状組成物の乾燥により生成するゲル状組成物を前記担持材料と複合化させて 難燃性付与用複合組成物を得るようにする。 The composite particles for imparting flame retardancy used in the flame-retardant polymer composite material of the present invention include: Specifically, those obtained by the following production method can be used. In the production method, a step of contacting a sol-like composition generated from the force of a solution (for example, an alkoxide solution) obtained by dispersing and / or dissolving a metal element and / or a compound of Si in a solvent with a supporting material; A step of drying the sol composition, wherein the gel composition produced by drying the sol composition is combined with the carrier material to obtain a flame-retardant composite composition. To
このように、 ゾル状組成物を乾燥させてゲル状組成物を担持材料に複合化させる、 いわゆるゾルゲル法により難燃性付与用複合組成物を得ることができる。 上記のよ うなゾルゲル法は簡便な上、 特別な装置を必要とすることもないため、 製造コスト を大幅に低減することが可能であり、 製造時に従来のような有害物質を発生するこ ともない。 このような製造方法により得られる難燃性付与用複合組成物は、 担持材 料にゲル状の金属元素及びノ又は S iの化合物 (例えば、 無機化合物) が複合化さ れた構成となる。 これを樹脂等の難燃性付与対象材料に対して混入ないしコーティ ング等により複合 (添加) させると、 例えば難燃性付与対象材料に高熱が付与され た場合に、 その高熱により難燃性付与用複合組成物中の上記化合物がガラス化ない しセラミックスィ匕し、 そのガラス化ないしセラミックス化した化合物が保護膜とな つて、 難燃性付与対象材料に対して高い難燃性を付与することが可能となる。 また- このような難燃性付与用複合組成物を複合化した材料は、 高熱付加時に従来のよう な有害ガスを発生しないためエコロジカルな難燃性材料となる。 なお、 上記製造方 法において、 ゾル状組成物を担持材料と接触させる工程は、 担持材料をゾル状組成 物に浸漬する方法や、 担持材料に対してゾル状組成物を吹き付ける方法等を採用す ることができる。  As described above, a composite composition for imparting flame retardancy can be obtained by a so-called sol-gel method in which the sol composition is dried to composite the gel composition with the support material. The sol-gel method as described above is simple and does not require any special equipment, so that the production cost can be significantly reduced and no harmful substances are generated during the production. The composite composition for imparting flame retardancy obtained by such a production method has a configuration in which a gel-like metal element and a compound of phosphorus or Si (for example, an inorganic compound) are composited on a support material. If this is mixed or coated (added) to the material to be imparted with flame retardancy such as resin, for example, if the material to be imparted with flame retardancy is given high heat, then the flame is imparted by the high heat. The above compound in the composite composition for glass is not vitrified or ceramicized, and the vitrified or ceramicized compound serves as a protective film to impart high flame retardancy to the material to be provided with flame retardancy. Becomes possible. In addition, a material obtained by compounding such a composite material for imparting flame retardancy does not generate a harmful gas as in the past when a high heat is applied, so that it is an ecological flame retardant material. In the above manufacturing method, the step of bringing the sol-like composition into contact with the supporting material employs a method of immersing the supporting material in the sol-like composition, a method of spraying the sol-like composition onto the supporting material, or the like. Can be
上記担持材料を担持材料粒子とし、 その表面の全面又は一部に前記ゲル状組成物 を複合化させて難燃性付与用複合組成物としての難燃性付与用複合粒子を得ること ができる。 この場合、 上記ゾルゲル法によると、 担持材料粒子に対して上記化合物 を含むゲル状組成物が均一に分散複合化された難燃性付与用複合粒子を得ることが 可能で、 例えば、 担持材料粒子の表面を前記ゲル状組成物の被膜で覆った被覆難燃 性付与用複合粒子とする場合、 そのゲル状組成物の被膜は、 例えば 0 . 0 1〜1 . 0 μ m程度の薄くて均一なものとなる。 このような難燃性付与用複合粒子を難燃性 付与対象材料に複合 (添加) した場合、 担持材料粒子に対して均一かつ薄膜状でゲ ル状組成物が被膜されているため、 その難燃性付与効果は大きく、 その難燃性付与 用複合粒子の量が、 例えば難燃性付与対象材料に対して 5〜1 5 0重量部、 好まし くは 2 0〜 1 0 0重量部程度の少量添加で十分な難燃性を付与することが可能であ る。 この場合、 少量添加であるため、 添加する樹脂等の難燃性付与対象材料の物性 変化も少なく、 また、 コスト面でも大幅な削減が可能となる。 The above-mentioned carrier material is used as carrier material particles, and the gel composition is compounded on the entire surface or a part of the surface thereof to obtain flame-retardant composite particles as the flame-retardant composite compound. In this case, according to the sol-gel method, the compound It is possible to obtain composite particles for imparting flame retardancy, in which the gel composition containing is uniformly dispersed and compounded. For example, coated flame retardancy in which the surface of the carrier material particles is covered with a film of the gel composition In the case of providing composite particles for application, the coating of the gel composition is thin and uniform, for example, about 0.01 to 1.0 μm. When such composite particles for imparting flame retardancy are combined (added) to a material to which flame retardancy is to be imparted, the gel-like composition is coated uniformly and in a thin film on the carrier material particles. The effect of imparting flame retardancy is great, and the amount of the composite particles for imparting flame retardancy is, for example, about 5 to 150 parts by weight, preferably about 20 to 100 parts by weight, based on the material to be imparted with flame retardancy. Sufficient flame retardancy can be imparted by adding a small amount of. In this case, since a small amount is added, there is little change in the physical properties of the material to which flame retardancy is to be added, such as a resin to be added, and the cost can be significantly reduced.
上記ゾルゲル法を用いた製造方法は、 具体的には担持材料粒子とゾル状組成物と の混合物を作る混合工程と、 その混合物から前記溶媒を蒸発させて乾燥組成物とな す乾燥工程とを含むものとすることができる。 これは、 例えば所定の容器にゾル状 組成物を入れ、 これに担持材料粒子を浸漬して混合物とした後に、 その混合物から 溶媒を蒸発させるものであり、 その混合物を液切りすることなく溶媒を蒸発,乾燥 させることができるため非常に簡便な方法である。 なお、 上記乾燥組成物は粉砕又 は解砕して、 難燃性付与用複合粒子として用いるのがよい。 この場合、 粉砕又は解 砕により難燃性付与用複合粒子は微粉末化するため、 難燃性付与対象材料への混入 ないしコーティング等による複合 (添加) の際、 その扱いが容易となり、 当該難燃 性付与用複合粒子を難燃性付与対象材料に対して簡便かつ均一に分散複合化させる ことが可能となる。 上記乾燥工程としては、 加熱乾燥又は真空乾燥、 及びそれらの 併用により行うことができる。  The production method using the sol-gel method specifically includes a mixing step of forming a mixture of the carrier material particles and the sol composition, and a drying step of evaporating the solvent from the mixture to form a dry composition. Can be included. This involves, for example, placing a sol-like composition in a predetermined container, immersing the carrier material particles in the sol-like composition to form a mixture, and evaporating the solvent from the mixture, and removing the solvent without draining the mixture. This is a very simple method because it can be evaporated and dried. The dried composition is preferably pulverized or crushed and used as composite particles for imparting flame retardancy. In this case, the composite particles for imparting flame retardancy are finely pulverized by pulverization or pulverization, so that they can be easily handled when mixed with the material to be imparted with flame retardancy or combined (added) by coating or the like. The composite particles for imparting flammability can be easily and uniformly dispersed and compounded with the material to be imparted with flame retardancy. The drying step can be performed by heating drying or vacuum drying, or a combination thereof.
なお、 乾燥工程としては、 例えば、 担持材料粒子の集積体に振動及び/又は撹拌 を加えながら、 これにゾル状組成物を接触させつつ行うこともできる。 この場合、 集積体の振動及び 又は攪拌により乾燥効率が向上し、 乾燥時間を短縮することが 可能となる。 一方、 担持材料粒子にこれよりも大径の打撃メディアを混在させ、 そ れら担持材料粒子と打撃メディアとの集積体に振動及び Z又は撹拌を加えるものと することもでき、 この場合、 乾燥時間を一層短縮することが可能である。 The drying step can be performed, for example, while applying vibration and / or stirring to the aggregate of the support material particles and bringing the sol-like composition into contact therewith. In this case, drying efficiency can be improved by vibration and / or stirring of the aggregate, and drying time can be shortened. It becomes possible. On the other hand, a striking medium having a larger diameter can be mixed with the supporting material particles, and vibration, Z or agitation can be applied to the aggregate of the supporting material particles and the striking medium. The time can be further reduced.
次に、 上記ゾル状組成物は、 金属元素及びノ又は s iのアルコキシドを加水分解 することにより製造するのがよい。 このようなアルコキシドを加水分解させて生成 したゾル状組成物には、 金属元素及び 又は S iの酸化物が含有され、 さらにアル コキシドに由来する有機物 (化合物層中の前記した炭素成分はこれに由来するもの となる) が残存することとなる。 この酸化物は、 上記した通り高熱によりガラス化 ないしセラミックス化して難燃性付与対象材料に高い難燃性を付与し、 また、 残存 有機物は、 例えば難燃性付与対象材料として樹脂を用いた場合に、 当該難燃性付与 用複合組成物を難燃性付与対象材料に複合させる際のなじみ性 (親和性) を向上さ せ、 難燃性付与対象材料に対して難燃性付与用複合組成物を均一に分散させること が可能である他、 難燃性付与対象材料の成形性等も向上させることが可能である。 上記ゾル状組成物を作るための溶媒はアルコールを用いることができる。 アルコ ールは比較的低沸点であるため、 乾燥工程が短時間で行える利点を備えている。 こ のようなアルコールとしては、 例えば、 メタノール、 エタノール、 プロパノール、 ブタノール等を用いることができる。 その他の溶媒としては、 アセトン、 ァセチル アセトン等のケトン系溶媒、 トルエン、 キシレン等の芳香族炭化水素系溶媒、 シク 口へキサン等の環状炭化水素系溶媒、 その他の鎖状炭化水素系溶媒、 及びこれらの 混合溶媒 (アルコールとの混合溶媒も可) を用いることができる。 例えば、 ケトン 系の溶媒はアルコキシドを安定化した状態で分散ないし溶解させることが可能であ り、 比較的低沸点のため乾燥工程を短時間で行うことができる。 また、 炭化水素系 の溶媒は含水率が低いため、 アルコキシドを安定化した状態で分散ないし溶解させ ることが可能であり、 均一な膜厚のゲル状組成物被膜を形成することができる。 なお、 ゾル状組成物を作るための溶媒の配合量を 2 5〜 9 8重量%、 アルコキシ ドの配合量を 0 . 5〜4 0重量%程度にするのが好ましい。 溶媒の配合量が 2 5重 量%未満の場合は、 アルコキシドが均一に分散及び 又は溶解されにくくなること があり、 結果としてゾル状組成物が担持材料に複合化されにくくなり、 例えば担持 材料粒子を用いた場合には、 そのゲル状組成物の複合化が不均一になったりする場 合がある。 また、 溶媒の配合量が 9 8重量%を超えると、 溶媒を蒸発させる乾燥ェ 程に長時間を要する場合があり、 また、 無駄な溶媒を消費するためコス ト高となる c 一方、 アルコキシドの配合量が 0 . 5重量%未満の場合、 アルコキシドの金属及び 又は S iのガラス化ないしセラミックス化による難燃効果が低下する場合があり. また、 アルコキシドの有機成分による難燃性付与対象材料へのなじみ性も低下する 場合がある。 また、 アルコキシドの配合量が 4 0重量。 /0を超えると、 アルコキシド の溶媒への分散性及び Z又は溶解性が低下し、 ゾル状組成物が担持材料に対して均 一に複合化しにくくなる場合がある。 Next, the sol-like composition is preferably produced by hydrolyzing a metal element and an alkoxide of silicon or si. The sol-like composition produced by hydrolyzing such an alkoxide contains a metal element and / or an oxide of Si, and further contains an organic substance derived from an alkoxide (the above-mentioned carbon component in the compound layer is not included in the composition). ) Will remain. As described above, this oxide is vitrified or turned into ceramics by high heat to impart high flame retardancy to the material to which flame retardancy is to be imparted, and the remaining organic matter is, for example, a case where a resin is used as the material to be imparted with flame retardancy. In addition, by improving the compatibility (affinity) when the composite composition for imparting flame retardancy is combined with the material to which flame retardancy is to be added, the composite composition for imparting flame retardancy to the material to be imparted with flame retardancy is improved. In addition to being able to uniformly disperse the material, it is also possible to improve the moldability of the material to which flame retardancy is to be imparted. Alcohol can be used as a solvent for preparing the sol composition. Since alcohol has a relatively low boiling point, it has the advantage that the drying process can be performed in a short time. As such an alcohol, for example, methanol, ethanol, propanol, butanol and the like can be used. Other solvents include ketone solvents such as acetone and acetyl acetone, aromatic hydrocarbon solvents such as toluene and xylene, cyclic hydrocarbon solvents such as cyclohexane, other chain hydrocarbon solvents, and These mixed solvents (a mixed solvent with alcohol is also possible) can be used. For example, a ketone-based solvent can disperse or dissolve alkoxide in a stabilized state, and the drying step can be performed in a short time because of its relatively low boiling point. Further, since the hydrocarbon-based solvent has a low water content, the alkoxide can be dispersed or dissolved in a stabilized state, and a gel-like composition film having a uniform film thickness can be formed. In addition, the compounding amount of the solvent for making the sol composition was 25 to 98% by weight, It is preferred that the compounding amount of the metal be about 0.5 to 40% by weight. If the amount of the solvent is less than 25% by weight, the alkoxide may be difficult to uniformly disperse and / or dissolve, and as a result, the sol-like composition may not be easily compounded with the support material. When a gel is used, the composition of the gel composition may not be uniform. Further, the amount of the solvent exceeds 9 8 wt%, may take a long time enough to dry E evaporation of the solvent, also the cost high to consume useless solvent c Meanwhile, the alkoxide If the compounding amount is less than 0.5% by weight, the flame retardant effect due to the vitrification or ceramicization of the metal and / or Si of the alkoxide may be reduced. May also be reduced. The alkoxide content was 40% by weight. If it exceeds / 0 , the dispersibility and Z or solubility of the alkoxide in the solvent may decrease, and the sol-like composition may be difficult to be uniformly composited with the carrier material.
上記アルコキシドは、 s i及び Z又は τ iを必須成分とするのがよい。 s i及び The alkoxide preferably contains si and Z or τi as essential components. s i and
Z又は τ iをアルコキシドの成分として用いると、 加水分解されて生成する例えば S i 0 2や T i〇2等の酸化物は、 高熱によりガラス化ないしセラミックス化し易い ため、 特に難燃性付与効果が高いものとなる。 また、 これら S i及びノ又は T iを 含むアルコキシドはゲル化しにくいため、 安定した状態のゾル状組成物を得ること が可能である。 なかでも、 特に S iは、 生成する酸化物の安定性、 ゾル状組成物の 安定性等を考慮すると、 アルコキシド成分として最も優れている。 なお、 S iを用 いたアルコキシドとしては、 例えばテトラエトキシシラン (S i (O C 2 H 5) 4) 等 を用いることができ、 T iを用いたアルコキシドとしては、 例えばチタンイソプロ ポキシド (T i (iso- O C 3 H 7) J 等を用いることができる。 また、 上記以外の 成分としては、 例えば、 C u、 Aし Z n、 N i及び Z rの 1種又は 2種以上を含 有するもの、 あるいはその他の遷移元素を含有するもの等を採用することもでき、 この場合、 例えば、 アルミニウムイソプロポキシド (A 1 (O C 3 H 7) 3) 等を用い ることができる。 なお、 アルコキシドの構成成分は目的に応じて変化させることが 可能で、 この場合、 形成されるゲル状組成物被膜 (化合物層) の性質がそれぞれ異 なるものとなる。 When Z or tau i used as a component of alkoxide, oxides such as, for example, S i 0 2 and T I_〇 2 generates are hydrolysis liable vitrified or ceramic by high fever, especially flame retardant effect Will be higher. Moreover, since the alkoxide containing Si and T or Ti is hard to gel, a sol composition in a stable state can be obtained. Above all, Si is most excellent as an alkoxide component in consideration of the stability of the generated oxide, the stability of the sol composition, and the like. As the alkoxide using Si, for example, tetraethoxysilane (S i (OC 2 H 5 ) 4 ) can be used. As the alkoxide using Ti, for example, titanium isopropoxide (T i ( iso-OC 3 H 7 ) J, etc. In addition, components other than the above include, for example, those containing one or more of Cu, A, Zn, Ni, and Zr , Or those containing other transition elements can be employed. In this case, for example, aluminum isopropoxide (A 1 (OC 3 H 7 ) 3 ) Can be The constituent components of the alkoxide can be changed according to the purpose. In this case, the properties of the formed gel composition film (compound layer) are different from each other.
一方、 上記ゾル状組成物には、 無機酸又は有機酸の金属塩を配合することができ る。 この場合、 金属塩のカチオン金属元素は、 C u、 A l 、 Z n、 N i 、 F e、 T i及び Z rの 1種又は 2種以上を含有しているのがよく、 また、 ァニオン成分の特 に無機酸としては、 酸性気体を水に溶解して得られる酸 (以下、 酸性気体ベース無 機酸という) が使用されているのがよい。 なお、 カチオン金属元素としては、 上記 以外のその他の遷移元素を用いることも可能で、 上記酸性気体とは、 水に溶解した ときに酸性を示す気体のことをいう。 酸性気体ベース無機酸としては、 例えば硝酸、 亜硝酸、 硫酸、 亜硫酸、 及び炭酸の 1種又は 2種以上を使用することができる。 こ のような金属塩をゾル状組成物に含有させると、 難燃性付与用複合組成物が添加さ れた難燃性付与対象材料に高熱が付与された場合に、 前記酸性気体ベース無機酸に 由来する気体、 例えば N含有ガスとしての N 2ガスや N 0 2ガスや N Oガス、 S含有 ガスとしての S 0 2ガス、 C含有ガスとしての C〇2ガス等の燃焼阻害性気体が発生 し、 それらが難燃性付与対象材料への難燃効果をさらに向上させる。 なお、 上記金 属塩の具体例としては、 硝酸銅 ( C u (N〇3) 2 · 3 Η 2〇) 、 硝酸亜鉛 (Ζ η (Ν 0 3) 2 - 6 Η 2 0) 等を例示することができる。 また、 上記の無機酸以外にも、 例え ば、 有機酸としてシユウ酸、 酢酸等を用いることも可能である。 On the other hand, a metal salt of an inorganic acid or an organic acid can be added to the sol composition. In this case, the cationic metal element of the metal salt preferably contains one or more of Cu, Al, Zn, Ni, Fe, Ti, and Zr. Particularly, as the inorganic acid of the component, an acid obtained by dissolving an acidic gas in water (hereinafter referred to as an acidic gas-based inorganic acid) is preferably used. Note that other transition elements other than those described above can be used as the cation metal element. The above-mentioned acidic gas refers to a gas that shows acidity when dissolved in water. As the acidic gas-based inorganic acid, for example, one or more of nitric acid, nitrous acid, sulfuric acid, sulfurous acid, and carbonic acid can be used. When such a metal salt is contained in the sol-like composition, when high heat is applied to the flame-retardant material to which the flame-retardant composite material is added, the acidic gas-based inorganic acid is used. from the gas, for example, N 2 gas and N 0 2 gas and NO gas as the N-containing gas, S 0 2 gas as S-containing gas, the combustion inhibition gases such C_〇 2 gas as C-containing gas generation However, they further improve the flame-retardant effect on the material to be provided with flame-retardant properties. As specific examples of the gold Shokushio is copper nitrate (C u (N_〇 3) 2 · 3 Η 2 〇), zinc nitrate (Ζ η (Ν 0 3) 2 - 6 Η 2 0) illustrate like can do. In addition to the above-mentioned inorganic acids, for example, oxalic acid, acetic acid and the like can be used as organic acids.
上記ゾル状組成物中の金属塩の配合量は 9 5重量%以下とするのがよい。 金属塩 の配合量が 9 5重量。 /0を超えると、 難燃性付与効果の主要因たる、 アルコキシドの 金属及び 又は S iのガラス化ないしセラミックス化による難燃性の付与効果が低 下する場合がある。 なお、 ゾル状,組成物において、 アルコキシドの重量配合率を WA、 金属塩の重量配合率を WBとしたときに、 WAZWBが 0 . 0 1〜 3 0の範囲にて設 定されていることが好ましい。 WAZWBが 0 . 0 1未満の場合、 アルコキシド成分 に由来するガラス化ないしセラミックス化による難燃性付与効果が十分に得られな くなる場合があり、 また、 WAZWBが 3 0を超えると、 金属塩に由来する発生ガス による難燃性付与効果が十分に得られなくなる場合があり、 結果として、 難燃性付 与用複合組成物の難燃性付与効果が低下する場合がある。 The content of the metal salt in the sol composition is preferably 95% by weight or less. The metal salt content is 95 weight. If it exceeds / 0 , the effect of imparting flame retardancy due to vitrification or ceramicization of the metal and / or Si of the alkoxide, which is the main factor of the effect of imparting flame retardancy, may be reduced. In the sol or composition, WAZWB may be set in the range of 0.01 to 30 when the weight ratio of the alkoxide is WA and the weight ratio of the metal salt is WB. preferable. If WAZWB is less than 0.01, alkoxide component In some cases, the effect of imparting flame retardancy due to vitrification or ceramic formation derived from water may not be sufficiently obtained.When WAZWB exceeds 30, the effect of imparting flame retardancy due to gas generated from metal salts may not be obtained. In some cases, the composition may not be sufficiently obtained, and as a result, the effect of imparting flame retardancy of the composite composition for imparting flame retardancy may decrease.
上記ゾル状組成物は、 溶媒としてのアルコールを 2 5〜9 8重量%と、 アルコキ シドとしてのシリコンアルコキシドを 0 . 5〜4 0重量%と、 金属塩としての硝酸 金属塩を 5〜9 5重量%と、 水 0 . 1〜2 0重量%とが配合されたものを使用する のがよい。 このような各配合量にてゾル状組成物を形成すると、 上記ゾルゲル法に よる担持材料へのゲル状組成物の複合化が均一にでき、 特に担持材料粒子に対して は均一な被膜を形成することが可能となる。 その結果、 上述したアルコキシド、 金 属塩に由来する難燃性付与効果を一層効果的に発揮することができるようになる。 上記の製造方法においては、 例えば、 上記金属塩をアルコールに分散及び 又は 溶解させて第一溶液を作る工程と、 その第一溶液にアルコキシドを分散及び Z又は 溶解させて第二溶液となす工程と、 その第二溶液に水を加えてゾル状組成物となす 工程とを含むものとすることができる。 このように、 アルコールに対して金属塩、 アルコキシドを順に分散及び 又は溶解し、 その後の第二溶液に水を加える各工程 を段階的に行うことにより、 ゾル状組成物を効率良く製造することが可能となる。 なお、 例えば、 水又はアルコール等の溶媒にアルコキシドを分散及び 又は溶解し ておき、 それに金属塩及びアルコール又は水等の溶媒を加えたりすることも可能で. ゾル状組成物がゲル化しない条件であれば、 上記各工程の順序は任意に変更するこ とが可能である。  The sol-like composition contains 25 to 98% by weight of an alcohol as a solvent, 0.5 to 40% by weight of a silicon alkoxide as an alkoxide, and 5 to 95% by weight of a metal nitrate as a metal salt. It is preferable to use a mixture of 0.1% by weight and 0.1 to 20% by weight of water. When a sol composition is formed with each of the above amounts, the gel composition can be uniformly compounded with the carrier material by the above-mentioned sol-gel method, and a uniform coating can be formed particularly on the carrier material particles. It is possible to do. As a result, the effect of imparting flame retardancy derived from the alkoxide and metal salt described above can be more effectively exerted. In the above production method, for example, a step of dispersing and / or dissolving the metal salt in alcohol to form a first solution, and a step of dispersing and Z or dissolving the alkoxide in the first solution to form a second solution. And a step of adding water to the second solution to form a sol-like composition. As described above, the metal salt and the alkoxide are sequentially dispersed and / or dissolved in the alcohol, and the subsequent steps of adding water to the second solution are performed in a stepwise manner, whereby the sol composition can be efficiently produced. It becomes possible. In addition, for example, it is also possible to disperse and / or dissolve the alkoxide in a solvent such as water or alcohol, and to add a metal salt and a solvent such as alcohol or water to the alkoxide. If so, the order of the above steps can be arbitrarily changed.
次に、 ゾル状組成物の乾燥は、 4 0〜2 5 0 °Cの範囲にて行うのがよい。 4 0 °C 未満の場合は、 ゾル状組成物の乾燥に長時間を要してしまう場合があり、 2 5 0 °C を超えると、 ゾル状組成物が分解してしまう場合がある。 なお、 減圧乾燥を行う場 合は、 温度及び圧力を、 ゾル状糸且成物が安定に担持材料に残存 (付着) するように 調整する必要がある。 Next, the sol composition is preferably dried at a temperature in the range of 40 to 250 ° C. When the temperature is lower than 40 ° C, it may take a long time to dry the sol composition, and when the temperature exceeds 250 ° C, the sol composition may be decomposed. When drying under reduced pressure, the temperature and the pressure should be adjusted so that the sol-like yarn stably remains (adheres) to the supporting material. Need to adjust.
次に、 ゾル状組成物中に担持材料粒子を浸漬することにより混合物を作り、 その 混合物を液切りすることなく乾燥させる工程を行う場合、 例えば、 ゾル状組成物 1 リットル当りの担持材料粒子の混合量は、 1 g〜2 0 k g程度とするのがよい。 1 g未満の場合、 難燃性付与用複合組成物の製造効率が低下し、 また、 2 0 k gを超 えると、 単位担持材料粒子当たりに対するゾル状組成物の複合量が少なくなり、 難 燃性付与効果が低減する場合がある。 なお、 上記混合量は、 好ましくは l k g〜l 0 k g程度にするのがよい。 また、 例えば、 ゾル状組成物中のアルコキシド及び金 属塩の合計含有量を Ws (単位: g ) 、 担持材料粒子の比表面積値を S g (単位: g /m 2 ) 、 ゾル状組成物への担持材料粒子の混合量を Wg (単位: g ) としたときに Ws/ ( S g X Wg) が 0 . 0 0 2〜2 . 0 g Zm 2となるように担持材料粒子の混合 量を調整するのがよい。 Next, in the case where a mixture is formed by immersing the carrier material particles in the sol composition and the mixture is dried without draining, for example, the carrier material particles per liter of the sol composition The mixing amount is preferably about 1 g to 20 kg. If the amount is less than 1 g, the production efficiency of the composite composition for imparting flame retardancy decreases, and if it exceeds 20 kg, the amount of the composite of the sol composition per unit support material particle decreases, and the flame retardancy increases. The effect of imparting properties may be reduced. The mixing amount is preferably about lkg to 10 kg. Further, for example, the total content of the alkoxide and the metal salt in the sol composition is Ws (unit: g), the specific surface area of the support material particles is Sg (unit: g / m 2 ), and the sol composition mixing amount Wg (unit: g) of the carrier material particles to.. when the Ws / in (S g X Wg) 0 0 0 2 to 2 mixture of 0 g Zm 2 become as carrier material particles It is better to adjust.
上記担持材料粒子の使用可能な材質については、 難燃性付与用複合粒子の構成説 明の際に例示したものと全く同様であるので、 詳細な説明は省略する。  The usable materials of the above-mentioned carrier material particles are exactly the same as those exemplified in the description of the configuration of the composite particles for imparting flame retardancy, and thus detailed description thereof will be omitted.
難燃性付与用複合組成物としての難燃性付与用複合粒子は、 難燃性付与対象材料 としての上記高分子材料からなる基質中に分散させたり、 基質表面に定着させたり することができる。 このように難燃性付与用複合粒子を複合化した難燃性高分子複 合材料は、 上述のアルコキシド、 金属塩、 難燃材料粒子等に起因する難燃性付与効 果により高い難燃性を示す。  The composite particles for imparting flame retardancy as the composite composition for imparting flame retardancy can be dispersed in a substrate made of the above-mentioned polymer material as a material to be imparted with flame retardancy, or can be fixed on the surface of the substrate. . The flame-retardant polymer composite material obtained by compounding the flame-retardant composite particles as described above has a high flame retardancy due to the effect of imparting flame retardancy caused by the above-mentioned alkoxide, metal salt, flame-retardant material particles and the like. Is shown.
なお、 上記難燃性付与用複合組成物 (粒子) とともに、 上記高分子材料からなる 高分子基質が昇温により溶融した場合に、 その流動 ·滴下を抑制する流動抑制補助 剤を高分子基質中に配合することもできる。 この場合、 流動抑制補助剤により高分 子基質の溶融流動が抑制され、 いわゆる燃焼時のドリップ防止性を向上させること ができる。 なお、 流動抑制補助剤は、 例えば無水ホウ酸、 ホウ酸亜鉛等のホウ酸系 無機化合物、 赤燐 (例えば、 鈴裕化学製:ノーバレッド (商品名) 、 日本化学工業製 : ヒシガード (商品名) 等) 等の燐系無機化合物、 あるいはカーボン (例えば、 東 ソー製: GREP- EG (商品名) 、 UCAR Carbon社製: GRAF Guard (商品名) に代表され る膨張性カーボン等) 等の無機材料系のもの、 もしくはシリコーン等を使用するこ とができる。 In addition, when the polymer substrate composed of the polymer material is melted by raising the temperature together with the flame-retardancy-imparting composite composition (particles), a flow-suppression auxiliary agent that suppresses the flow and dripping of the polymer substrate is contained in the polymer substrate. Can also be blended. In this case, the flow suppression auxiliary agent suppresses the melt flow of the polymer substrate, so that the so-called drip prevention during combustion can be improved. Examples of the flow suppression adjuvant include boric acid-based inorganic compounds such as boric anhydride and zinc borate, red phosphorus (for example, Suzuhiro Chemical: Nova Red (trade name), Nippon Chemical Industrial Co., Ltd.) : Phosphorous inorganic compounds such as Hishigard (trade name) or carbon (eg, expandable carbon represented by Tosoh: GREP-EG (trade name), UCAR Carbon: GRAF Guard (trade name)) Etc.), or inorganic materials, or silicone.
上記高分子基質中の難燃性付与用複合粒子の含有比率は、 高分子基質 1 0 0重量 部に対して、 5〜1 5 0重量部とするのがよい。 含有比率が 5重量部未満の場合、 難燃性付与効果が低減する場合があり、 また、 1 5 0重量部を超えると、 高分子基 質の性質を大きく変化させてしまう等の問題が生じる場合がある。 なお、 上記含有 比率は好ましくは 2 0〜1 0 0重量部とするのがよい。 但し、 上記流動抑制補助剤 を用いる場合は、 難燃性付与用複合組成物 (粒子) の含有比率は、 例えば 1〜1 5 0重量部程度とすることが望ましい。 なお、 高分子基質中の難燃性付与用複合組成 物 (粒子) の含有比率を体積分率で表した場合、 0 . 5〜7 5体積%とするのがよ レ、。  The content ratio of the composite particles for imparting flame retardancy in the polymer substrate is preferably 5 to 150 parts by weight based on 100 parts by weight of the polymer substrate. If the content ratio is less than 5 parts by weight, the effect of imparting flame retardancy may be reduced.If the content ratio exceeds 150 parts by weight, problems such as a significant change in the properties of the polymer substrate may occur. There are cases. The content ratio is preferably 20 to 100 parts by weight. However, in the case where the above-mentioned flow suppressing aid is used, the content ratio of the composite composition (particles) for imparting flame retardancy is desirably, for example, about 1 to 150 parts by weight. In addition, when the content ratio of the composite composition (particles) for imparting flame retardancy in the polymer substrate is represented by a volume fraction, it is preferable that the content be 0.5 to 75% by volume.
一方、 難燃性付与用複合粒子を高分子基質中に複合化する場合、 その平均粒径は 0 . 0 5〜5 0 0 mとするのがよレ、。 平均粒径が 0 . 0 5 μ m未満の場合、 粒子 の複合化の際に手間がかかる等の問題が生じる場合があり、 また、 5 0 0 を超 えると、 高分子基質に対して均一に分散ないし定着できない等の問題が生じる場合 がある。 なお、 難燃性付与用複合粒子の平均粒径は、 望ましくは 0 . 1〜3 0 0 μ mとするのがよい。 図面の簡単な説明  On the other hand, when the composite particles for imparting flame retardancy are compounded in a polymer matrix, the average particle size is preferably 0.05 to 500 m. If the average particle size is less than 0.05 μm, it may cause problems such as trouble in compounding the particles, and if the average particle size exceeds 500, the uniformity with the polymer substrate may occur. This may cause problems such as dispersal or inability to fix. The average particle size of the composite particles for imparting flame retardancy is desirably 0.1 to 300 μm. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 難燃性付与用複合粒子の形態をいくつか例示して示す模式図。  FIG. 1 is a schematic diagram illustrating some forms of composite particles for imparting flame retardancy.
図 2は、 難燃性付与用複合粒子に別の難燃剤粒子を配合して使用する例を示す模 式図。  FIG. 2 is a schematic diagram showing an example in which another flame retardant particle is blended and used in the composite particles for imparting flame retardancy.
図 3は、 本発明の難燃性高分子複合材料からなるマスターバッチの製造方法の一 例を、 マスタ一バッチ粒子の種々の形態とともに示す模式図。 FIG. 3 shows one example of a method for producing a masterbatch comprising the flame-retardant polymer composite material of the present invention. FIG. 3 is a schematic diagram showing examples together with various forms of master batch particles.
図 4は、 射出成形機の一例を示す断面模式図。  FIG. 4 is a schematic cross-sectional view showing an example of an injection molding machine.
図 5は、 射出成形により成形体を製造する一例を示す工程説明図。  FIG. 5 is a process explanatory view showing an example of manufacturing a molded body by injection molding.
図 6は、 マスターパッチのいくつかの使用形態を示す説明図。  Fig. 6 is an explanatory diagram showing some usage patterns of the master patch.
図 7は、 二液混合型樹脂により本発明の難燃性高分子複合材料を得る方法と、 そ の適用形態をいくつか例示して示す説明図。  FIG. 7 is an explanatory diagram illustrating a method for obtaining a flame-retardant polymer composite material of the present invention using a two-component mixed resin, and some application forms thereof.
図 8は、 高分子材料基質の表面に難燃性付与用複合粒子を定着する方法をいくつ か例示して示す工程説明図。  FIG. 8 is a process explanatory view showing some examples of a method of fixing the composite particles for imparting flame retardancy to the surface of a polymer material substrate.
図 9は、 コ一ティング前の担持材料粒子、 及び担持材料粒子にコーティングを施 した難燃性付与用複合粒子を電子顕微鏡で観察した時の観察図。  FIG. 9 is an observation diagram of the support material particles before coating and the composite particles for imparting flame retardancy obtained by coating the support material particles with an electron microscope.
図 1 0は、 化合物層の分子レベル構造を推測して示す模式図。 発明を実施するための最良の形態  FIG. 10 is a schematic diagram inferring the molecular level structure of the compound layer. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態を、 図面に示す実施例を参照して説明する。  Hereinafter, embodiments of the present invention will be described with reference to examples shown in the drawings.
図 1は、 本発明の難燃性付与用複合粒子の一実施例を概念的に示す模式図である ( 難燃性付与用複合粒子 1 0は、 珪素成分及び/又は金属成分と酸素とを含有し、 例 えば加熱によりガラス質セラミックスを生じる化合物層 2が担持材料粒子 1に複合 化された構成を有し、 前述したゾルゲル法により製造することができる。 なお、 粒 子 1 0は模式的に球状に描いている力 S、 製法により形状は種々に変化し、 必ずしも 球状とはならないことも多い。 化合物層 2と担持材料粒子 1との複合化の形態は、 例えば、 図 1 ( a ) に示すように、 化合物層 2が担持材料粒子 1の表面をほぼ全体 にわたつて均一に被覆された状態が、 難燃効果の発揮という点に関して最も望まし いといえる。 ただし、 良好な難燃効果が維持できる範囲内にて、 図 1 ( b ) に示す ように、 担持材料粒子 1の表面に化合物層 2が部分的に付着し、 一部の表面が未被 覆となって露出している形態であってもよい。 また、 化合物バルク中に難燃性付与 差替え用紙 (規貝 IJ26) 用複合粒子 1 0を分散させた塊状物を、 粉砕又は解砕すれば、 例えば図 1 ( c ) の ような構成の不定形の難燃性付与用複合粒子 1 0となることもある。 いずれにしろ、 上記のような複合粒子 1 0を例えば高分子材料等からなる難燃性付与対象材料から なる基質に複合化 (基質中への分散及びノ又は表面定着) することで、 該難燃性付 与対象材料に難燃性を付与することが可能となる。 FIG. 1 is a schematic view conceptually showing one embodiment of the composite particles for imparting flame retardancy of the present invention. (The composite particles 10 for imparting flame retardancy include a silicon component and / or a metal component and oxygen. For example, it has a configuration in which a compound layer 2 that produces a vitreous ceramic by heating is compounded with the carrier material particles 1 and can be manufactured by the sol-gel method described above. The shape of the composite of the compound layer 2 and the support material particles 1 is, for example, as shown in Fig. 1 (a). As shown in Fig. 5, it is most desirable that the state in which the compound layer 2 is uniformly coated on almost the entire surface of the carrier material particles 1 in terms of exhibiting the flame retardant effect. As shown in Fig. 1 (b), As described above, the compound layer 2 may be partially adhered to the surface of the carrier material particles 1 and a part of the surface may be uncovered and exposed. Replacement paper for imparting properties (Kaikai IJ26) If the aggregate in which the composite particles 10 for use are dispersed is crushed or crushed, the composite particles 10 for imparting indefinite flame retardancy having the structure as shown in FIG. 1 (c), for example, may be obtained. In any case, the composite particles 10 described above are complexed (dispersed in the substrate and fixed on the surface or fixed on the surface) made of, for example, a material to which flame retardancy is to be imparted, such as a polymer material. It becomes possible to impart flame retardancy to the material to which flammability is to be applied.
図 1 ( a ) において、 担持材料粒子 1に被膜ないし付着された化合物層 2の厚さ は、 例えば 0 . 0 1〜1 . 程度とされる。 このような難燃性付与用複合粒子 1 0を難燃性付与対象材料に複合 (添加) した場合、 担持材料粒子 1に対して均一 かつ薄膜状で化合物層 2が被膜ないし付着されているため、 その難燃性付与効果は 大きく、 その難燃性付与用複合粒子 1 0の量が、 例えば難燃性付与対象材料に対し て 5〜 1 5 0重量部、 好ましくは 2 0〜 1 0 0重量部程度の少量添加で十分な難燃 性を付与することが可能である。 この場合、 少量添加であるため、 樹脂等の難燃性 付与対象材料の物性変化も少なく、 また、 コスト面でも大幅な削減が可能となる。 一方、 図 2に示すように、 難燃性付与用複合粒子 1 0とともに従来からある難燃 材料粒子 1 1を混合して、 これを難燃性付与対象材料に複合 (添加) することも可 能である。 この場合、 難燃性付与用複合粒子 1 0の難燃性付与効果に加えて、 難燃 材料粒子 1 1の難燃性付与効果も相乗的に加わるため、 難燃性付与対象材料は高い 難燃性を示すこととなる。  In FIG. 1A, the thickness of the compound layer 2 coated or adhered to the carrier material particles 1 is, for example, about 0.01 to 1.0. When the composite particles 10 for imparting flame retardancy are composited (added) to the material to be imparted with flame retardancy, the compound layer 2 is uniformly or thinly coated or adhered to the carrier material particles 1. The effect of imparting flame retardancy is great, and the amount of the composite particles 10 for imparting flame retardancy is, for example, 5 to 150 parts by weight, preferably 20 to 100 parts by weight, based on the material to be imparted with flame retardancy. Sufficient flame retardancy can be imparted by the addition of a small amount of about parts by weight. In this case, since a small amount is added, there is little change in the physical properties of the material to which flame retardancy is to be imparted, such as a resin, and the cost can be significantly reduced. On the other hand, as shown in FIG. 2, it is also possible to mix the conventional flame-retardant material particles 11 together with the flame-retardant composite particles 10 and to combine (add) them to the flame-retardant material. Noh. In this case, in addition to the effect of imparting the flame retardancy of the composite particles 10 for imparting the flame retardancy, the effect of imparting the flame retardancy of the particle 11 of the flame retardant material is also synergistically added, so that the material to be imparted with the flame retardancy is high It will show flammability.
化合物層 2は、 例えば図 1 0に模式的に示すような構造を有しているものと推測 される (本図において分子式は模式的に示したものであって、 該分子式が示す特定 の構造を限定的に有していることを意味するものではない) 。 難燃性付与対象材料 5 0の内部又は表面に複合された化合物層 2中には、 珪素及び 又は金属 (これら を図中 Mで示す) が酸化物又はアルコキシド 5 2の状態 (例えば S i〇2、 Z r 0 2、 S i ( O C n H m) 1 ( n≥ 1 , m≥ 1 , 1≥ 1 ) 等) 、 又は単体状態で含有され、 さらに炭素成分 5 1が例えば C n Hm ( n≥ l、 m≥ 1 ) の状態で含有されている 構造を推定できる。 It is presumed that the compound layer 2 has, for example, a structure schematically shown in FIG. 10 (in this figure, the molecular formula is schematically shown, and a specific structure represented by the molecular formula is shown). Is not meant to have limited). In the compound layer 2 compounded inside or on the surface of the material 50 to be imparted with flame retardancy, silicon and / or metal (these are indicated by M in the figure) contain oxides or alkoxides 52 (for example, Si S). 2, Z r 0 2, S i (OC n H m) 1 (n≥ 1, m≥ 1, 1≥ 1) , etc.), or is contained in a single state, further carbon component 5 1 is, for example C n Hm ( n≥l, m≥1) Structure can be estimated.
図 3 ( a ) に示すように、 上記のような難燃性付与用複合粒子 1 0は、 単独で、 あるいは必要に応じて、 難燃性付与用複合粒子とは別の難燃剤や難燃助剤、 充填剤、 顔料や染料等の着色剤、 分散剤等とともに、 基質となるべき高分子材料 (本実施例 では、 熱可塑性樹脂を使用している) 4 1中に配合 '混練されてコンパウンド 5 3 1とされる。 コンパウンド 5 3 1は、 例えばペレッ ト等の粒状に成形することによ りマスターバッチ粒子 3 2とすることができる。 マスターバッチ粒子 3 2は、 例え ば球換算した直径による寸法にて 0 . l〜 1 0 mm程度 (例えば l〜4 mm程度) の大きさを有するものである。 マスターバッチ粒子 3 2の形状は、 特に限定される ものではないが、 例えば図 3 ( b ) に示すように、 軟化させたコンパウンドをスト ランド状に押し出して、 これを所定長に切断することにより、 柱状 (例えば円柱状 ) 形態の粒子を得ることができる。 なお、 図 3 ( c ) 及び (d ) は、 マスターバッ チ粒子 3 2の別の形状例を示しており、 前者は球状のもの (例えば型成形等により 製造できる) 、 後者はフレーク状のもの (例えばシート状物の破砕 '整粒により製 造できる) を示すが、 これに限定されるものではない。  As shown in FIG. 3 (a), the composite particles 10 for imparting flame retardancy as described above may be used alone or, if necessary, in a different flame retardant or flame retardant from the composite particles for imparting flame retardancy. Along with auxiliaries, fillers, coloring agents such as pigments and dyes, dispersants, etc., polymer materials to be used as substrates (in this embodiment, a thermoplastic resin is used) 41 Compound 5 3 1 The compound 531 can be formed into masterbatch particles 32 by, for example, forming the compound into granules such as pellets. The masterbatch particles 32 have a size of, for example, about 0.1 to 10 mm (for example, about 1 to 4 mm) in terms of a sphere-converted diameter. The shape of the masterbatch particles 32 is not particularly limited. For example, as shown in FIG. 3 (b), the softened compound is extruded into a strand and cut into a predetermined length. Columnar (for example, columnar) particles can be obtained. FIGS. 3 (c) and 3 (d) show another example of the shape of the master batch particles 32, the former being spherical (for example, it can be produced by molding), and the latter being flake-like. (For example, it can be manufactured by crushing a sheet-like material and sizing), but is not limited thereto.
以下、 上記マスターバッチを用いた成形体 (二次成形体) の製造方法を、 図 4に 示すような射出成形を採用する場合を例にとって説明する。 射出成形装置 5 0 1は、 成形部 5 0 2、 その成形部 5 0 2に溶融樹脂を供給するスクリュ式射出装置等の射 出装置 5 0 3等により構成される。 成形部 5 0 2は、 金型 5 0 5、 その金型 5 0 5 を型締め及び型開きするための、 カムもしくはクランク機構等の機械式駆動機構や 油圧シリンダ等の流体圧機構等で構成される駆動機構 5 0 6を備えるとともに、 溶 融樹脂を金型 5 0 5に供給するランナ 5 2 1には、 スプル 5 0 3 aを介して射出装 置 5 0 3の射出ノズル 5 0 3 bが接続されている。  Hereinafter, a method of manufacturing a molded article (secondary molded article) using the above-described master batch will be described with reference to an example in which injection molding as shown in FIG. 4 is employed. The injection molding apparatus 501 includes a molding section 502, an ejection apparatus 503 such as a screw-type injection apparatus for supplying a molten resin to the molding section 502, and the like. The molding section 502 includes a mold 505, a mechanical drive mechanism such as a cam or a crank mechanism, and a fluid pressure mechanism such as a hydraulic cylinder for clamping and opening the mold 505. In addition to the driving mechanism 506 that is driven, the runner 521 that supplies the molten resin to the mold 505 is connected to the injection nozzle 503 of the injection device 503 via the sprue 503 a. b is connected.
射出装置 5 0 3は、 ノくンドヒータ 5 0 8等の熱源で加熱される加熱シリンダ 5 0 7内に、 シャフト 5 1 2を介して油圧モータ 5 1 3により駆動される供給用のスク リュ 5 0 9が収容され、 これにマスターバッチ Pを供給するホッパ 5 1 0が備えら れたものである。 スクリュ 5 0 9を回転させることによりホッパ 5 1 0からマスタ 一バッチ Pが供給され、 加熱シリンダ 5 0 7内で加熱により高分子材料基質が溶融 されて溶融コンパウンドとなり、 溜まり部 5 0 7 a内に溜められる。 その後、 スク リュ 5 0 9を油圧シリンダ 5 1 1により所定距離前進させると、 ノズル 5 0 3 b力 らランナ 5 2 1を通って金型 5 0 5内に所定量の溶融コンパウンドが射出される。 図 5に示すように、 金型 5 0 5のキヤビティ 5 0 5 a内に射出された溶融コンパ ゥンド Cは、 高分子材料基質が凝固することにより本発明の高分子複合材料となり これを型開きすることにより、 キヤビティ形状に対応した高分子複合材料成形体と しての二次成形体 3 6が得られる。 The injection device 503 includes a supply cylinder driven by a hydraulic motor 513 via a shaft 511 in a heating cylinder 507 heated by a heat source such as a cylinder heater 508. A hopper 510 that accommodates a screw 509 and supplies a master batch P thereto is provided. By rotating the screw 509, a master batch P is supplied from the hopper 510, and the polymer material substrate is melted by heating in the heating cylinder 507 to become a molten compound, and the pool 507a is formed. It is stored in. Thereafter, when the screw 509 is advanced by a predetermined distance by the hydraulic cylinder 511, a predetermined amount of the molten compound is injected into the mold 505 from the nozzle 503b through the runner 521. . As shown in FIG. 5, the molten compound C injected into the cavity 505a of the mold 505 becomes the polymer composite material of the present invention by solidifying the polymer material substrate, and this is opened. By doing so, a secondary molded body 36 as a polymer composite material molded body corresponding to the cavity shape is obtained.
なお、 図 6 ( a ) に示すように、 マスタ一バッチ粒子 3 2を単独で使用して成形 体を得るようにしてもよいが、 同図 (b ) に示すように、 マスターバッチ粒子 3 2 の高分子基質と同材質あるレ、は異材質の高分子材料からなる希釈高分子材料粒子 4 0を適量配合することにより、 複合粒子の含有率が、 マスターバッチ粒子 3 2中の 含有率よりも小さい二次成形体を製造することもできる。 この場合、 二次成形体中 の複合粒子の含有率は、 マスターバッチ粒子 3 2中の複合粒子の含有率と、 そのマ スターバッチ粒子 3 2に対する希釈高分子材料粒子 4 0の配合比率によって定まる ( なお、 このような希釈して使用するためのマスターバッチ粒子は、 複合粒子の含 有率が、 例えば重量比率にて 2 0〜6 7重量。 /0と高いが、 複合粒子をこのような高 い含有率にて基質中に均一分散させるために、 分散剤を配合することが望ましい。 分散剤としては、 例えば金属セッケンを好適に使用することができる。 金属セッケ ン分は、 例えば有機酸成分が、 ナフテン酸 (ナフテート) 、 ラウリン酸 (ラウレー ト) 、 ステアリン酸 (ステアレート) 、 ォレイン酸 (ォレエート) 、 2—ェチルへ キサニック酸 (ォクテート) 、 あまに油あるいは大豆油脂肪酸 (リノレート) 、 ト —ル油 (トーレート) 、 ロジン等 (レジネート) からなるものを例示できる。 また. 金属の種類は下記のようなものを例示できる。 As shown in FIG. 6 (a), the master-batch particles 32 may be used alone to obtain a compact, but as shown in FIG. 6 (b), the master-batch particles 32 may be obtained. By mixing an appropriate amount of diluted polymer material particles 40 composed of different polymer materials, the content of the composite particles can be made higher than the content in the masterbatch particles 32 It is also possible to produce a secondary compact having a small size. In this case, the content of the composite particles in the secondary molded body is determined by the content of the composite particles in the master batch particles 32 and the mixing ratio of the diluted polymer material particles 40 to the master batch particles 32. (Note that the master batch particles for use such dilution to the containing chromatic ratio of composite particles, for example, as high as 2 0-6 7 wt. / 0 by weight, of such composite particles It is desirable to incorporate a dispersing agent in order to uniformly disperse in the substrate at a high content, for example, a metal soap can be suitably used as the dispersing agent. Ingredients: naphthenic acid (naphthate), lauric acid (laurate), stearic acid (stearate), oleic acid (oleate), 2-ethylhexanic acid (octate), linseed oil Rui soybean oil fatty acids (linoleate), bets -. Can be exemplified those composed of Le oil (Toreto), rosin (resinate) also. The following types of metals can be exemplified.
•ナフテネート系 (A 1、 C a、 C o、 Cu、 F e、 P b、 Mn、 Zn等) • レジネート系 (A l、 C a、 C o、 Cu、 F e、 P b、 Mn、 Z n等) • リノレート系 (C o、 F e、 Pb、 Mn等)  • Naphthenates (A1, Ca, Co, Cu, Fe, Pb, Mn, Zn, etc.) • Resinates (A1, Ca, Co, Cu, Fe, Pb, Mn, Z n, etc.) • Linoleate type (Co, Fe, Pb, Mn, etc.)
.ステアレート系 (C a、 Zn等)  .Stearate (Ca, Zn, etc.)
•オタテート系 (Ca、 C o、 F e、 Pb、 Mn、 Z n等)  • Otatates (Ca, Co, Fe, Pb, Mn, Zn, etc.)
. トーレート系 (C a、 C o、 F e、 Pb、 Mn、 Z n等)  . Torate system (Ca, Co, Fe, Pb, Mn, Zn, etc.)
これらのうち、 ステアリン酸 C a、 ステアリン酸 Znを、 分散効果に特に優れる金 属セッケンの具体例として挙げることができる。 なお、 金属セッケンの複合材料中 への配合量は、 多すぎると材料強度や均質性に問題が生じ、 少なすぎると分散効果 が不十分となるので、 これらの不具合が生じないよう、 例えば 0. 01〜3重量% (例えば、 0. 3重量。ん) の範囲内にて選定するのがよい。 Among these, Ca stearate and Zn stearate can be mentioned as specific examples of metal soaps that are particularly excellent in dispersing effect. If the amount of the metal soap in the composite material is too large, there is a problem in the material strength and homogeneity, and if the amount is too small, the dispersing effect becomes insufficient. It is better to select within the range of 01 to 3% by weight (for example, 0.3% by weight).
なお、 エポキシ樹脂、 ウレタン樹脂 (ウレタンゴムを含む) あるいはシリコーン 樹脂など、 未硬化樹脂成分が含有される主剤と、 その未硬化樹脂成分を硬化させる ための硬化剤が含有される硬化剤とからなる 2液混合型の注型樹脂材料、 接着剤あ るいは塗料を、 本発明の難燃性高分子複合材料として構成することも可能である。 具体的には、 この目的のため、 未硬化樹脂成分を含有する主剤と、 その未硬化樹脂 成分を硬化させるための硬化剤とから構成され、 難燃性付与用複合粒子を主剤又は 硬化剤の少なくともいずれかに配合されてなり、 主剤と硬化剤とを混合することに より、 熱硬化性樹脂を基質としてこれに難燃性付与用複合粒子を分散させた難燃性 高分子複合材料が得られるようにした難燃性高分子複合材料製造用組成物を使用す ることができる。  In addition, a main agent containing an uncured resin component such as epoxy resin, urethane resin (including urethane rubber) or silicone resin, and a curing agent containing a curing agent for curing the uncured resin component are used. It is also possible to configure a two-component mixed type casting resin material, adhesive or paint as the flame-retardant polymer composite material of the present invention. Specifically, for this purpose, it is composed of a main agent containing an uncured resin component and a curing agent for curing the uncured resin component. A flame-retardant polymer composite material comprising a thermosetting resin as a substrate and composite particles for imparting flame retardancy dispersed therein by mixing the main agent and the curing agent. The composition for producing a flame-retardant polymer composite material prepared as described above can be used.
図 7に、 その具体例についてエポキシ樹脂の場合を例に取って説明する。 すなわ ち、 主剤 550は、 例えばビスフエノール系の未硬化エポキシ樹脂成分中に、 難燃 性付与用複合粒子と、 必要に応じて難燃性付与用複合粒子とは別の難燃剤や難燃助 剤、 充填剤、 顔料や染料等の着色剤あるいは分散剤等を配合したものであり、 適当 な溶媒により粘度調整がなされている。 一方、 硬化剤 5 5 1は、 アミンゃイソシァ ナート、 酸無水物などの硬化成分を溶媒中に溶解ないしは分散させたものである。 そして、 使用する直前に (a ) に示すように両剤 5 5 0 , 5 5 1を所定比率にて混 合し、 混合組成物 5 5 2のポットライフ時間内に目的に応じた処置を行う。 すなわ ち、 混合組成物 5 5 2を注型用樹脂材料として使用する場合は、 ( b ) に示すよう にこれを型 5 5 3に注型して硬化させることにより、 所期の形状の難燃性高分子複 合材料成形体を得る。 また、 混合組成物 5 5 2を塗料として使用する場合は、 ( c ) に示すようにこれを被塗装物 5 5 4の塗装面に塗布して硬化させることにより、 難燃性高分子複合材料塗膜 5 5 5を得る。 さらに、 混合組成物 5 5 2を接着剤とし て使用する場合は、 (d ) に示すようにこれを被接着物 5 5 6 a , 5 5 6 bの接着 面に塗布して貼り合わせることにより、 難燃性接着層 5 5 7により被接着物 5 5 6 a , 5 5 6 bが接着された接着構造が得られる。 FIG. 7 illustrates a specific example using an epoxy resin as an example. That is, the main agent 550 is, for example, a bisphenol-based uncured epoxy resin component containing a flame retardant or a flame retardant different from the composite particles for imparting flame retardancy and, if necessary, the composite particles for imparting flame retardancy. Assistance It is a mixture of an agent, a filler, a colorant such as a pigment or a dye, or a dispersant, and the viscosity is adjusted by an appropriate solvent. On the other hand, the curing agent 551 is obtained by dissolving or dispersing a curing component such as amine diisocyanate and acid anhydride in a solvent. Immediately before use, the two agents 550 and 551 are mixed at a predetermined ratio as shown in (a), and a treatment according to the purpose is performed within the pot life time of the mixed composition 552. In other words, when the mixed composition 552 is used as a resin material for casting, it is cast into a mold 553 and cured as shown in (b) to obtain the desired shape. A flame-retardant polymer composite material molded article is obtained. When the mixed composition 552 is used as a paint, as shown in (c), this is applied to the painted surface of the workpiece 554 and cured to obtain a flame-retardant polymer composite material. Coating film 5 5 5 is obtained. Further, when the mixed composition 552 is used as an adhesive, as shown in (d), the mixed composition 552 is applied to the adhered surfaces of the adherends 5556a and 5556b, and then bonded. However, an adhesive structure in which the adherends 556-1a and 5556b are adhered by the flame-retardant adhesive layer 557-1 is obtained.
次に、 難燃性付与用複合粒子は高分子基質の表面に定着することも可能である。 図 8は、 そのいくつかの例を示している。 図 8 ( a ) は、 高分子基質 5 0の表面に 形成された接着樹脂層 5 6 0を介して難燃性付与用複合粒子 1 0を接着形態により 定着する例を示す。 なお、 高分子基質 5 0中に、 さらに難燃性付与用複合粒子 1 0 を分散させておいてもよい (以下も同様) 。 また、 図 8 ( b ) に示すように、 定着 された粒子 1 0の表面側を、 さらに樹脂等によるオーバーコート 5 6 1で覆うよう にしてもよレヽ。  Next, the composite particles for imparting flame retardancy can be fixed on the surface of the polymer substrate. Figure 8 shows some examples. FIG. 8 (a) shows an example in which the composite particles 10 for imparting flame retardancy are fixed in an adhesive form via an adhesive resin layer 560 formed on the surface of the polymer substrate 50. The composite particles 10 for imparting flame retardancy may be further dispersed in the polymer substrate 50 (the same applies hereinafter). Further, as shown in FIG. 8 (b), the surface side of the fixed particles 10 may be further covered with an overcoat 561 made of a resin or the like.
図 8 ( c ) では、 例えば成形金型 5 0 5のキヤビティの内面に難燃性付与用複合 粒子 1 0を塗布しておき、 次いでキヤビティ內を溶融樹脂 5 7 0で満たして凝固さ せることにより、 塗布された粒子 1 0を成形体 5 3 6を形成する基質 5 0の表面に —体化させる例である。 図 8 ( d ) は、 複合粒子 1 0の表面を定着樹脂層 5 6 2で 予め覆っておき、 加熱により定着樹脂層 5 6 2を軟化させつつ基質 5 0の表面に付 着させた後、 樹脂を硬化させることにより、 複合粒子 1 0を定着する例である。 こ の場合、 基質 50は、 不要な変形が生じない程度の温度にて予熱しておくと、 定着 樹脂層 562の軟化 ·付着を容易に行うことができる。 図 8 (e) は、 複合粒子 1 0を基質 50表面に投射したり、 圧入することにより、 基質 50の表層部に複合粒 子 10を埋め込む方法である。 この場合、 基質 50の少なくとも表層部を加熱等に より軟化させておくと埋込を容易に行うことができる。 実施例 In FIG. 8 (c), for example, the composite particles 10 for imparting flame retardancy are applied to the inner surface of the cavity of the molding die 505, and then the cavity 満 た is filled with the molten resin 570 and solidified. Thus, this is an example in which the applied particles 10 are formed on the surface of the substrate 50 forming the molded body 536. FIG. 8 (d) shows that the surface of the composite particles 10 is covered in advance with a fixing resin layer 562, and is applied to the surface of the substrate 50 while heating to soften the fixing resin layer 562. This is an example in which the composite particles 10 are fixed by curing the resin after being attached. In this case, if the substrate 50 is preheated at a temperature that does not cause unnecessary deformation, the fixing resin layer 562 can be easily softened and adhered. FIG. 8 (e) shows a method of embedding the composite particles 10 in the surface layer of the substrate 50 by projecting or pressing the composite particles 10 onto the surface of the substrate 50. In this case, embedding can be performed easily if at least the surface layer of the substrate 50 is softened by heating or the like. Example
(実施例 1 )  (Example 1)
金属塩として硝酸亜鉛六水和物 (Ζ η (Ν03) 2 · 6Η20) 2 1. 93 gをエタ ノール 20m l中に入れ、 溶解させた。 その液中にテトラエトキシシラン (S i ( OC2H5) 4) を 6. 92 g加え、 次いで純水 4. 18 gを滴下し、 液を撹拌するこ とでゾル状組成物を作製した。 このゾル状組成物中に担持材料粒子として平均粒径 55 Ai mの水酸化アルミニウム 75 gを入れ、 撹拌しながら混合した。 その後、 1 20°Cの乾燥器に入れ、 溶媒分を揮発させて水酸化アルミニウム表面にゲル状組成 物 (ガラス前駆体組成物) のコーティング被膜を形成した。 なお、 コーティング被 膜の成分を推定するために、 ゾル状組成物のみを乾燥したゲル状組成物を分析した ところ、 S i、 Zn、 0、 N及び Cの各元素を含有した化合物となっていることが わかった。 As a metal salt, zinc nitrate hexahydrate (Ζ η (Ν0 3 ) 2 · 6Η 20 ) 2 1.93 g was put in 20 ml of ethanol and dissolved. 6.92 g of tetraethoxysilane (Si (OC 2 H 5 ) 4 ) was added to the solution, and then 4.18 g of pure water was added dropwise, and the solution was stirred to prepare a sol-like composition. . 75 g of aluminum hydroxide having an average particle diameter of 55 Aim was added to the sol composition as carrier material particles, and mixed with stirring. Thereafter, the mixture was placed in a dryer at 120 ° C., and the solvent was evaporated to form a coating film of a gel composition (glass precursor composition) on the surface of the aluminum hydroxide. In order to estimate the components of the coating film, when the gel composition obtained by drying only the sol composition was analyzed, it became a compound containing each element of Si, Zn, 0, N and C. I knew it was there.
上記ゾルゲル法によりコ一ティングした水酸化アルミニウムとポリプロピレン ( グランドポリマー製: J 708) の粉末あるいはペレットとを混合し (ポリプロピ レン 100部に対し、 水酸化アルミニウム 75部) 、 その後射出成形機に入れ、 1 80°Cにて難燃性テスト用サンプル形状に射出成形した。 難燃性テスト用サンプル 形状は、 UL 94燃焼性試験に基づき、 長さ 1 25mm、 幅 1 3mm、 厚み 1. 6 mmとした。 上記作製した難燃性テスト用サンプルを用い、 UL 94燃焼性試験にてテストし た結果、 同試験の V—0規格をクリアした。 The aluminum hydroxide coated by the above sol-gel method is mixed with polypropylene (Grand Polymer: J708) powder or pellets (75 parts of aluminum hydroxide per 100 parts of polypropylene) and then put into an injection molding machine. Injection molding was performed at 180 ° C into a sample shape for flame retardancy test. The sample shape for the flame retardancy test was 125 mm in length, 13 mm in width, and 1.6 mm in thickness based on the UL 94 flammability test. Using the sample for flame retardancy test prepared above, it was tested in the UL 94 flammability test. As a result, it passed the V-0 standard of the test.
(実施例 2)  (Example 2)
金属塩として硝酸ニッケル六水和物 (N i (Ν03) 2 · 6Η2〇) 23. 36 gを エタノール 2 Om 1中に入れ、 溶解させた。 その液中にテトラエトキシシラン (S i (OC2H5) 4) を 6. 92 g加え、 次いで純水 4. 18 gを滴下し、 液を撹拌す ることでゾル状組成物を作製した。 このゾル状組成物中に実施例 1と同様の水酸化 アルミニウム 75 gを入れ、 撹拌しながら混合した。 その後、 1 20°Cの乾燥器に 入れ、 溶媒分を揮発させて水酸化アルミニウム表面にゲル状組成物 (ガラス前駆体 組成物) のコーティング被膜を形成した。 なお、 コーティング被膜の成分を推定す るために、 ゾル状組成物のみを乾燥したゲル状組成物を分析したところ、 S i、 N i、 0、 N及び Cの各元素を含有した化合物となっていることがわかった。 23.36 g of nickel nitrate hexahydrate (N i ({0 3 ) 2 .6} 2 〇) as a metal salt was placed in ethanol 2 Om 1 and dissolved. 6.92 g of tetraethoxysilane (Si (OC 2 H 5 ) 4 ) was added to the solution, and then 4.18 g of pure water was added dropwise, and the solution was stirred to prepare a sol-like composition. . 75 g of aluminum hydroxide as in Example 1 was put into this sol composition, and mixed with stirring. Thereafter, the mixture was placed in a dryer at 120 ° C., and the solvent was evaporated to form a coating film of a gel composition (glass precursor composition) on the surface of the aluminum hydroxide. In order to estimate the components of the coating film, when a gel composition obtained by drying only the sol composition was analyzed, a compound containing each element of Si, Ni, 0, N and C was obtained. I understood that.
上記ゾルゲル法によりコーティングした水酸化アルミニゥムと実施例 1と同様の ポリプロピレンの粉末あるいはペレツト 250 gとを混合し (ポリプロピレン 10 0部に対し、 水酸化アルミニウム 30部) 、 その後射出成形機に入れ、 1 80°Cに て難燃性テスト用サンプル形状に射出成形した。 難燃性テスト用サンプル形状は実 施例 1と同じものとした。 作製した難燃性テス ト用サンプルを用い、 UL 94燃焼 性試験にてテストした結果、 同試験の V— 2規格をクリアした。  The aluminum hydroxide coated by the sol-gel method and 250 g of the same polypropylene powder or pellet as in Example 1 were mixed (100 parts of polypropylene and 30 parts of aluminum hydroxide), and then placed in an injection molding machine. It was injection molded at 80 ° C into a sample shape for flame retardancy testing. The sample shape for the flame retardancy test was the same as in Example 1. Using the prepared sample for flame retardancy test, it was tested in the UL 94 flammability test, and it passed the V-2 standard of the test.
また、 酸素指数法による燃焼試験 ( J I SK 7201) のために、 長さ 1 2 Om m、 幅 6. 5mm、 厚み 3 mmのサンプルを作成し、 同燃焼試験にてテストした結 果、 酸素指数値 32%を得た。  In addition, a sample with a length of 12 Omm, a width of 6.5 mm, and a thickness of 3 mm was prepared for a combustion test using the oxygen index method (JI SK 7201). A value of 32% was obtained.
(実施例 3 )  (Example 3)
ェタノール配合量を 80 m 1 とした以外は、 上記実施例 1と同じ配合でゾル状組 成物を作成した。 このゾル状組成物中に平均粒径 0. 85 μ mの水酸化マグネシゥ ム 50 gを入れ、 撹拌しながら混合した。 その後、 120°Cの乾燥器に入れ、 溶媒 分を揮発させて水酸化マグネシウム表面にゲル状組成物 (ガラス前駆体組成物) の コーティング被膜を形成した。 上記ゾルゲル法によりコーティングした水酸化アル ミニゥムと実施例 1と同様のポリプロピレンの粉末あるいはペレツト 2 5 0 gとを 混合し (ポリプロピレン 1 0 0部に対し、 水酸化マグネシウム 5 0部) 、 その後射 出成形機に入れ、 1 8 0 °Cにて難燃性テス ト用サンプル形状に射出成形した。 難燃 性テスト用サンプル形状は実施例 1と同じものとした。 作製した難燃性テスト用サ ンプルを用い、 U L 9 4燃焼性試験にてテストした結果、 同試験の V— 2規格をク リアした。 A sol-like composition was prepared with the same composition as in Example 1 except that the amount of ethanol was changed to 80 m 1. 50 g of magnesium hydroxide having an average particle size of 0.85 μm was added to the sol composition, and mixed with stirring. Then put in a dryer at 120 ° C, The mixture was volatilized to form a coating film of a gel composition (glass precursor composition) on the surface of the magnesium hydroxide. The aluminum hydroxide coated by the above sol-gel method was mixed with 250 g of the same polypropylene powder or pellet as in Example 1 (100 parts of polypropylene and 50 parts of magnesium hydroxide). It was placed in a molding machine and injection molded at 180 ° C into a sample shape for flame retardant testing. The sample shape for the flame retardancy test was the same as in Example 1. Using the prepared sample for flame retardancy test, it was tested in UL94 flammability test, and as a result, it passed the V-2 standard of the test.
(実施例 4 )  (Example 4)
上記実施例 1と同じ配合でゾル状組成物を作成した。 このゾル状組成物中に実施 例 1と同様の水酸化アルミニゥム 2 0 g、 及び実施例 3と同様の水酸化マグネシゥ ム 1 0 gを入れ、 撹拌しながら混合した。 その後、 1 2 0 °Cの乾燥器に入れ、 溶媒 分を揮発させて水酸化アルミニゥム及び水酸化マグネシゥムの表面にゲル状組成物 (ガラス前駆体組成物) のコーティング被膜を形成した。  A sol composition was prepared with the same composition as in Example 1 above. 20 g of aluminum hydroxide as in Example 1 and 10 g of magnesium hydroxide as in Example 3 were added to this sol-like composition, and mixed with stirring. Thereafter, the mixture was placed in a dryer at 120 ° C., and the solvent was evaporated to form a coating film of a gel composition (glass precursor composition) on the surfaces of aluminum hydroxide and magnesium hydroxide.
実施例 1と同じ方法にて、 同形状の難燃性テスト用サンプルを作製し、 U L 9 4 燃焼性試験にてテストした結果、 同試験の V— 2規格をクリアした。 また、 このサ ンプルについて、 実施例 2と同様に酸素指数を測定したところ、 酸素指数値 3 1 % を得た。  A flame-retardant test sample of the same shape was prepared in the same manner as in Example 1, and tested in a UL94 flammability test. As a result, the test passed the V-2 standard. When the oxygen index of this sample was measured in the same manner as in Example 2, an oxygen index value of 31% was obtained.
(比較例 1 )  (Comparative Example 1)
実施例 1と同様の水酸化アルミニウム 7 5 gとポリプロピレン 1 0 0 gとを混合 し、 その後射出成形機に入れ、 1 8 0 °Cにて難燃性テス ト用サンプル形状に射出成 形した。 難燃性テスト用サンプル形状は実施例 1と同じである。 この難燃性テス ト 用サンプルを用い、 U L 9 4燃焼性試験にてテス トした結果、 サンプルはテスト開 始後直ちに着火した。 また、 このサンプルについて、 実施例 2と同様に酸素指数を 測定したところ、 酸素指数値 2 0 %を得た。 (比較例 2) A mixture of 75 g of aluminum hydroxide and 100 g of polypropylene as in Example 1 was then placed in an injection molding machine, and injection molded at 180 ° C into a sample shape for a flame-retardant test. . The sample shape for the flame retardancy test is the same as in Example 1. Using this flame-retardant test sample in a UL 94 flammability test, the sample ignited immediately after the test started. When the oxygen index of this sample was measured in the same manner as in Example 2, an oxygen index value of 20% was obtained. (Comparative Example 2)
実施例 3と同様の水酸化マグネシウム 1 50 gとポリプロピレン 100 gとを混 合し、 その後射出成形機に入れ、 1 80°Cにて難燃性テスト用サンプル形状に射出 成形した。 難燃性テスト用サンプル形状は実施例 1と同じである。 この難燃性テス ト用サンプルを用い、 UL 94燃焼性試験にてテストした結果、 同試験の V— 0規 格をクリアした。  The same 150 g of magnesium hydroxide and 100 g of polypropylene as in Example 3 were mixed, then placed in an injection molding machine, and injection molded at 180 ° C into a sample shape for a flame retardancy test. The sample shape for the flame retardancy test is the same as in Example 1. Using this flame retardant test sample in the UL 94 flammability test, it passed the V-0 standard of the test.
上記実施例 1〜4、 及び比較例 1, 2の結果を表 1にまとめる。  Table 1 summarizes the results of Examples 1 to 4 and Comparative Examples 1 and 2.
Figure imgf000030_0001
Figure imgf000030_0001
*PP…ポリプロピレン  * PP… Polypropylene
これらの結果より、 ゾルゲル法によるコーティングを施していない比較例のサン プルは、 ポリプロピレン 1 00部に対して 75部程度の少量では難燃性付与効果が なく、 大量 (例えば 150部) に添加する必要があることが分かる。 これに対し、 実施例で示したように、 担持材料粒子にゾルゲル法によりコーティングしたサンプ ルは少量 (例えば 30〜75部) でも難燃性付与効果があることが分かる。 Based on these results, the comparative sample without the sol-gel coating did not have the effect of imparting flame retardancy in a small amount of about 75 parts with respect to 100 parts of polypropylene, and was added in a large amount (for example, 150 parts). It turns out that it is necessary. On the other hand, as shown in the examples, it can be seen that even a small amount (for example, 30 to 75 parts) of the sample obtained by coating the carrier material particles by the sol-gel method has the effect of imparting flame retardancy.
(実施例 5) 金属塩として硝酸ニッケル六水和物 (N i (N03) 2 · 6Η2〇) 93. 43 gを エタノール 8 Om 1中に入れ、 溶解させた。 その液中にテトラエトキシシラン (S i (OC2H5) 4) を 27. 74 g加え、 次いで純水 16. 76 gを滴下し、 液を撹 拌することでゾル状組成物を作製した。 このゾル状組成物中に担持材料粒子として 平均粒径 55 πιの水酸化アルミニウム 500 gを入れ、 撹拌しながら混合した。 その後、 120°Cの乾燥器に入れ、 溶媒分を揮発させて水酸化アルミニウム表面に ゲル状組成物 (ガラス前駆体組成物) のコーティング被膜を形成した。 (Example 5) Nickel nitrate hexahydrate (N i (N0 3) 2 · 6Η 2 〇) 93. 43 g were placed in ethanol 8 Om 1 as a metal salt were dissolved. 27.74 g of tetraethoxysilane (Si (OC 2 H 5 ) 4 ) was added to the solution, and 16.76 g of pure water was added dropwise. The solution was stirred to prepare a sol-like composition. . 500 g of aluminum hydroxide having an average particle size of 55 πι was added to the sol composition as support material particles and mixed with stirring. Thereafter, the mixture was placed in a dryer at 120 ° C., and the solvent was evaporated to form a coating film of a gel composition (glass precursor composition) on the surface of the aluminum hydroxide.
上記ゾルゲル法によりコーティングした水酸化アルミニゥムとポリプロピレン ( グランドポリマー製: J 708) の粉末あるいはペレットとを混合し (ポリプロピ レン 100部に対し、 水酸化アルミニウム 50部) 、 その後、 押出し成形機により 上記の混合ペレツトを作成し、 射出成形機により 1 80°Cにて難燃性テスト用サン プル形状に射出成形した。 難燃性テス ト用サンプル形状は、 UL 94燃焼性試験に 基づき、 長さ 1 25 mm, 幅 1 3mm、 厚み 1. 6 mmとした。 このテスト用サン プルを用い、 UL 94燃焼性試験にてテストした結果、 同試験の V— 2規格をタリ 了した。  The aluminum hydroxide coated by the above sol-gel method is mixed with a powder or pellet of polypropylene (made by Grand Polymer: J708) (100 parts of polypropylene and 50 parts of aluminum hydroxide). A mixed pellet was prepared and injection molded at 180 ° C into a sample shape for flame retardancy test using an injection molding machine. The sample shape for the flame-retardant test was 125 mm long, 13 mm wide and 1.6 mm thick based on the UL 94 flammability test. Using this test sample, it was tested in the UL 94 flammability test. As a result, the test passed the V-2 standard.
また、 酸素指数法による燃焼試験 (J I SK 7201) のために、 上記組成につ いて、 長さ 1 20mm、 幅 6. 5mm、 厚み 3 mmのサンプルを作成し、 同燃焼試 験にてテストした結果、 酸素指数値 33%を得た。  In addition, for the combustion test by the oxygen index method (JI SK 7201), a sample of the above composition with a length of 120 mm, a width of 6.5 mm and a thickness of 3 mm was prepared and tested in the same combustion test. As a result, an oxygen index value of 33% was obtained.
さらに、 上記組成について、 引張試験法 (J I SK71 1 3) に基づいて 1号形 試験片を作成し、 同試験にてテス トした結果、 引張強度 1 5. 5 X 106[P a]を得 た。 Further, the above composition, the tensile based on the test method (JI SK71 1 3) Create a No. 1 form specimen, a result of the test at the same test, tensile strength 1 5. 5 X 10 6 [P a] a Obtained.
(実施例 6 )  (Example 6)
金属塩として硝酸亜鉛六水和物 (Ζ η (Ν03) 2 · 6Η2〇) 93. 43 gをエタ ノール 8 Om l中に入れ、 溶解させた。 その液中にテトラエトキシシラン (S i ( OC2H5) 4) を 27. 74 g加え、 次いで純水 1 6 · 76 gを滴下し、 液を撹拌す ることでゾル状組成物を作製した。 このゾル状組成物中に実施例 5と同様の水酸化 アルミニウム 500 gを入れ、 撹拌しながら混合した。 その後、 1 20°Cの乾燥器 に入れ、 溶媒分を揮発させて水酸化アルミニウム表面にゲル状組成物 (ガラス前駆 体組成物) のコーティング被膜を形成した。 93.43 g of zinc nitrate hexahydrate (Ζ η (Ν0 3 ) 2 · 6Η 2 〇) as a metal salt was put in 8 Oml of ethanol and dissolved. 27.74 g of tetraethoxysilane (Si (OC 2 H 5 ) 4 ) was added to the solution, and then 16.76 g of pure water was added dropwise, and the solution was stirred. Thus, a sol composition was prepared. 500 g of aluminum hydroxide as in Example 5 was put into this sol-like composition, and mixed with stirring. Thereafter, the mixture was placed in a dryer at 120 ° C., and the solvent was evaporated to form a coating film of a gel composition (glass precursor composition) on the aluminum hydroxide surface.
上記ゾルゲル法によりコーティングした水酸化アルミニウムと、 実施例 5と同様 のポリプロピレンの粉末あるいはペレツトとを混合し (ポリプロピレン 100部に 対し、 水酸化アルミニウム 50部) 、 その後射出成形機に入れ、 1 80°Cにて難燃 性テスト用サンプル形状に射出成形した。 難燃性テスト用サンプル形状は実施例 5 と同じものとし、 UL 94燃焼性試験を行った。 また、 実施例 5と同様の酸素指数 測定用サンプル、 及び引張試験測定用サンプルを作成し、 酸素指数法による燃焼試 験、 引張試験法による引張強度試験も行った。  The aluminum hydroxide coated by the above sol-gel method was mixed with the same polypropylene powder or pellet as in Example 5 (100 parts of polypropylene and 50 parts of aluminum hydroxide), and then placed in an injection molding machine. Injection molded into sample shape for flame retardancy test in C. The sample shape for the flame retardancy test was the same as in Example 5, and a UL 94 flammability test was performed. Further, a sample for measuring an oxygen index and a sample for measuring a tensile test were prepared in the same manner as in Example 5, and a combustion test by an oxygen index method and a tensile strength test by a tensile test were also performed.
UL 94燃焼性試験にてテストした結果、 同試験の V— 2規格をクリアした。 ま た、 酸素指数法による燃焼試験の結果、 酸素指数値 29%を得た。 さらに、 引張試 験法による引張試験の結果、 引張強度 16. 1 X 106[P a]を得た。 As a result of testing in the UL 94 flammability test, it passed the V-2 standard of the test. As a result of a combustion test using the oxygen index method, an oxygen index value of 29% was obtained. Further, as a result of a tensile test by a tensile test method, a tensile strength of 16.1 × 10 6 [Pa] was obtained.
(実施例 7)  (Example 7)
金属塩として硝酸亜鉛六水和物 (Z n (N〇3) 2 · 6Η20) 93. 43 gをエタ ノール 40 Om 1中に入れ、 溶解させた。 その液中にテトラエトキシシラン (S iZinc nitrate hexahydrate (Z n (N_〇 3) 2 · 6Η 2 0) 93. 43 g were placed in ethanol 40 Om 1 as a metal salt were dissolved. Tetraethoxysilane (S i
(OC2H5) 4) を 27. 74 g加え、 次いで純水 1 6. 76 gを滴下し、 液を撹拌 することでゾル状組成物を作製した。 このゾル状組成物中に担持材料粒子として平 均粒径 1 μιηの水酸化アルミニウム 500 gを入れ、 撹拌しながら混合した。 その 後、 1 20°Cの乾燥器に入れ、 溶媒分を揮発させて水酸化アルミニウム表面にゲル 状組成物 (ガラス前駆体組成物) のコーティング被膜を形成した。 27.74 g of (OC 2 H 5 ) 4 ) was added, followed by dropwise addition of 16.76 g of pure water, and the solution was stirred to produce a sol composition. 500 g of aluminum hydroxide having an average particle size of 1 μιη was added to the sol composition as support material particles and mixed with stirring. Thereafter, the mixture was placed in a dryer at 120 ° C., and the solvent was evaporated to form a coating film of a gel composition (glass precursor composition) on the aluminum hydroxide surface.
上記ゾルゲル法によりコーティングした水酸化アルミニウムと、 実施例 5と同様 のポリプロピレンの粉末あるいはペレツトとを混合し (ポリプロピレン 100部に 対し、 水酸化アルミニウム 50部) 、 その後射出成形機に入れ、 180°Cにて難燃 性テスト用サンプル形状に射出成形した。 難燃性テスト用サンプル形状は実施例 5 と同じものとし、 UL 94燃焼性試験を行つた。 また、 実施例 5と同様の酸素指数 測定用サンプル、 及び引張試験測定用サンプルを作成し、 酸素指数法による燃焼試 験、 引張試験法による引張強度試験も行った。 The aluminum hydroxide coated by the sol-gel method was mixed with the same polypropylene powder or pellet as in Example 5 (100 parts of polypropylene and 50 parts of aluminum hydroxide), and then placed in an injection molding machine at 180 ° C. Flame retardant at It was injection molded into a sample shape for the test. The sample shape for the flame retardancy test was the same as in Example 5, and a UL 94 flammability test was performed. Further, a sample for measuring an oxygen index and a sample for measuring a tensile test were prepared in the same manner as in Example 5, and a combustion test by an oxygen index method and a tensile strength test by a tensile test were also performed.
UL 94燃焼性試験にてテストした結果、 同試験の V— 2規格をクリアした。 ま た、 酸素指数法による燃焼試験の結果、 酸素指数値 32%を得た。 さらに、 引張試 験法による引張試験の結果、 引張強度 23. 1 X 106[P a]を得た。 As a result of testing in the UL 94 flammability test, it passed the V-2 standard of the test. As a result of a combustion test using the oxygen index method, an oxygen index value of 32% was obtained. Further, as a result of a tensile test by a tensile test method, a tensile strength of 23.1 × 10 6 [Pa] was obtained.
(比較例 3)  (Comparative Example 3)
実施例 7と同様の平均粒径 1 zmの水酸化アルミニウムとポリプロピレンとを混 合し (ポリプロピレン 100重量部に対し、 水酸化アルミニウム 50重量部) 、 そ の後射出成形機に入れ、 1 80°Cにて難燃性テスト用サンプル形状に射出成形した, 難燃性テスト用サンプル形状は実施例 5と同じである。 この難燃性テスト用サンプ ルを用い、 UL 94燃焼性試験にてテストした結果、 サンプルはテスト開始後直ち に着火した。 また、 実施例 5と同様の酸素指数測定用サンプルを作成し、 酸素指数 法による燃焼試験を行ったところ、 酸素指数値 1 9. 7%を得た。 さらに、 実施例 5と同様の引張試験測定用サンプルを作成し、 引張試験法による引張強度試験を行 つたところ、 引張強度 1 9. 6 X 1 06[P a]を得た。 As in Example 7, aluminum hydroxide having an average particle size of 1 zm and polypropylene were mixed (50 parts by weight of aluminum hydroxide with respect to 100 parts by weight of polypropylene), and then placed in an injection molding machine. The sample shape for the flame retardancy test, which was injection-molded in C into the sample shape for the flame retardancy test, is the same as that of Example 5. Using this flame retardant test sample, the sample was ignited immediately after the start of the test as a result of a UL 94 flammability test. Further, a sample for measuring an oxygen index similar to that of Example 5 was prepared, and a combustion test was performed by an oxygen index method. As a result, an oxygen index value of 19.7% was obtained. Furthermore, to create a similar tensile test measurement sample as in Example 5, where the tensile strength test by a tensile testing method was one row, to obtain a tensile strength 1 9. 6 X 1 0 6 [ P a].
(比較例 4)  (Comparative Example 4)
ポリプロピレン 100 gを射出成形機に入れ、 180°Cにて難燃性テスト用サン プル形状に射出成形した。 難燃性テスト用サンプル形状は実施例 5と同じである。 この難燃性テスト用サンプルを用い、 UL 94燃焼性試験にてテストした結果、 サ ンプルはテスト開始後直ちに着火した。 また、 実施例 5と同様の酸素指数測定用サ ンプルを作成し、 酸素指数法による燃焼試験を行ったところ、 酸素指数値 1 7. 5 %を得た。 さらに、 実施例 5と同様の引張試験測定用サンプルを作成し、 引張試験 法による引張強度試験を行ったところ、 引張強度 22. 3 X 106[P a]を得た。 上記実施例 5〜 7、 及び比較例 3, 4の結果を表 2にまとめる c 表 2 100 g of polypropylene was placed in an injection molding machine and injection molded at 180 ° C into a sample shape for flame retardancy test. The sample shape for the flame retardancy test is the same as in Example 5. The sample was ignited immediately after the start of the test as a result of a UL 94 flammability test using this flame retardant test sample. Further, a sample for oxygen index measurement similar to that of Example 5 was prepared, and a combustion test was performed by the oxygen index method. As a result, an oxygen index value of 17.5% was obtained. Further, a sample for tensile test measurement similar to that of Example 5 was prepared, and a tensile strength test was performed by a tensile test method. As a result, a tensile strength of 22.3 × 10 6 [Pa] was obtained. C Table 2 summarizes the results of Example 5-7, and Comparative Example 3, 4 in Table 2
Figure imgf000034_0001
Figure imgf000034_0001
*PP…ポリプロピレン これらの結果より、 ゾルゲル法によりコーティングを施した水酸化アルミニウム を添加したポリプロピレンは、 高い難燃性を有していることが分かる。 しかしなが ら、 平均粒径の大きい水酸化アルミニウムを用いると、 樹脂特性 (引張強度) が低 下しており、 そこで、 平均粒径の小さい水酸化アルミニウムを用いると、 樹脂特性 (引張強度) を維持したまま難燃性を向上させることが可能であることが分かる。 * PP: polypropylene From these results, it can be seen that the polypropylene added with aluminum hydroxide coated by the sol-gel method has high flame retardancy. However, when aluminum hydroxide having a large average particle size is used, the resin properties (tensile strength) are reduced. Therefore, when aluminum hydroxide having a small average particle size is used, the resin properties (tensile strength) are reduced. It can be seen that it is possible to improve the flame retardancy while maintaining.
(実施例 8) (Example 8)
金属塩として硝酸第二銅三水和物 (Cu (Ν03) 2 · 3Η20) 18. 22 gをェ タノール 3 Om 1中に入れ、 溶解させた。 その液中にテトラエトキシシラン (S iCupric nitrate trihydrate as a metal salt (Cu (Ν0 3) 2 · 3Η 2 0) 18. Put 22 g in E methanol 3 Om 1, were dissolved. Tetraethoxysilane (S i
(OC2H5) 4) を 6. 94 g加え、 次いで純水 4. 14 gを滴下し、 液を撹拌する ことでゾル状組成物を作製した。 このゾル状組成物中に担持材料粒子として平均粒 径 650 At mのポリプロピレン樹脂粉末 100 gを入れ、 撹拌しながら混合した。 その後、 90°Cの乾燥器に入れ、 溶媒分を揮発させて樹脂表面にゲル状組成物 (ィ匕 合物層) のコーティング被膜を形成した。 なお、 コーティング被膜の成分を推定す るために、 ゾル状組成物のみを乾燥したゲル状組成物を分析したところ、 S i、 C u、 0、 N及び Cの各元素を含有した化合物となっていることがわかった。 また、 コーティング被膜を施した粒子 (難燃性付与用複合粒子) を燃焼させた場合、 燃焼 残留物中の重量比は、 酸化物換算で担持材料粒子としての樹脂 1 00重量部に対し、 S i O22重量部、 Cu06重量部であった。 6.94 g of (OC 2 H 5 ) 4 ) was added, followed by dropwise addition of 4.14 g of pure water, and the solution was stirred to produce a sol composition. 100 g of polypropylene resin powder having an average particle diameter of 650 Atm was added as carrier material particles to the sol composition and mixed with stirring. Thereafter, the mixture was placed in a dryer at 90 ° C., and the solvent was evaporated to form a coating film of the gel-like composition (adhesive compound layer) on the resin surface. In order to estimate the components of the coating film, when a gel composition obtained by drying only the sol composition was analyzed, a compound containing each element of Si, Cu, 0, N, and C was obtained. I understood that. When particles coated with a coating film (combustible particles for imparting flame retardancy) are burned, the weight ratio in the combustion residue is 100 parts by weight of resin as carrier material particles in terms of oxides, i O 2 2 parts by weight, was Cu06 parts.
上記ゾルゲル法によりコーティングした粉末 (難燃性付与用複合粒子) と、 基質 としてのポリプロピレン (グランドポリマー製: J 708) の粉末あるいはペレツ トとを混合し (ポリプロピレン 1 00部に対し、 難燃性付与用複合粒子 1 00部) 、 その後射出成形機に入れ、 200°Cにて難燃性テスト用サンプル形状に射出成形し た。 難燃性テスト用サンプル形状は、 UL 94燃焼性試験に基づき、 長さ 1 25m m、 幅 1 3mm、 厚み 1. 6 mmとした。 なお、 成形体としては、 酸化物換算で樹 脂 100部に対し、 S i〇2 l重量部、 Cu〇3重量部である。 The powder coated with the sol-gel method (composite particles for imparting flame retardancy) is mixed with a powder or pellet of polypropylene (made by Grand Polymer: J708) as a substrate. The composite particles for application (100 parts) were then placed in an injection molding machine and injection molded at 200 ° C into a sample shape for a flame retardancy test. The sample shape for the flame retardancy test was 125 mm in length, 13 mm in width and 1.6 mm in thickness based on the UL 94 flammability test. As the moldings, to tree fat 100 parts in terms of oxide, S I_〇 2 l parts by weight and Cu_rei_3 parts.
上記作製した難燃性テスト用サンプルを用い、 UL 94燃焼性試験にてテストし た結果、 同試験の V— 2規格をクリアした。  Using the sample for flame retardancy test prepared above, it was tested in the UL 94 flammability test. As a result, it passed the V-2 standard of the test.
(実施例 9 )  (Example 9)
金属塩として硝酸亜鉛六水和物 (Ζ η (Ν03) 2 · 6Η2〇) 21. 94 gをエタ ノール 30m l中に入れ、 溶解させた。 その液中にテトラエトキシシラン (S i ( OC2H5) 4) を 6. 94 g加え、 次いで純水 4. 14 gを滴下し、 液を撹拌するこ とでゾル状組成物を作製した。 このゾル状組成物中に実施例 8と同様の担持材料粒 子としてのポリプロピレン樹脂粉末 1 00 gを入れ、 撹拌しながら混合した。 その 後、 90°Cの乾燥器に入れ、 溶媒分を揮発させて樹脂表面にゲル状組成物 (化合物 層) のコーティング被膜を形成した。 なお、 コーティング被膜の成分を推定するた めに、 ゾル状組成物のみを乾燥したゲル状組成物を分析したところ、 S i、 Z n、 0、 N及び Cの各元素を含有した化合物となっていることがわかった。 また、 コー ティング被膜を施した粒子 (難燃性付与用複合粒子) を燃焼させた場合、 燃焼残留 物中の重量比は、 酸化物換算で担持材料粒子としての樹脂 100重量部に対し、 S i 022重量部、 Z n06重量部であった。 As a metal salt, 21.94 g of zinc nitrate hexahydrate (Ζ η (Ν0 3 ) 2 · 6Η 2 〇) was placed in 30 ml of ethanol and dissolved. 6.94 g of tetraethoxysilane (Si (OC 2 H 5 ) 4 ) was added to the solution, and then 4.14 g of pure water was added dropwise, and the solution was stirred to prepare a sol-like composition. . 100 g of the same polypropylene resin powder as the carrier material particles as in Example 8 was put into this sol-like composition, and mixed with stirring. Thereafter, the mixture was placed in a dryer at 90 ° C., and the solvent was evaporated to form a coating film of the gel composition (compound layer) on the resin surface. In order to estimate the components of the coating film, when the gel composition obtained by drying only the sol composition was analyzed, Si, Zn, It turned out to be a compound containing each element of 0, N and C. When particles coated with a coating film (composite particles for imparting flame retardancy) are burned, the weight ratio in the combustion residue is 100 parts by weight of resin as carrier material particles in terms of oxides. i 0 2 2 parts by weight, was Z n06 parts.
上記ゾルゲル法によりコーティングした粉末 (難燃性付与用複合粒子) と、 実施 例 8と同様の基質としてのポリプロピレンの粉末あるいはペレツトとを混合し、 実 施例 8と同様の方法にて難燃性テスト用サンプル形状に射出成形した。 なお、 成形 体としては、 酸化物換算で樹脂 100部に対し、 S i〇2 l重量部、 Z n03重量部 である。 作製した難燃性テス ト用サンプルを用い、 UL 94燃焼性試験にてテス ト した結果、 同試験の V— 2規格をクリアした。 The powder coated with the sol-gel method (composite particles for imparting flame retardancy) was mixed with a polypropylene powder or pellet as a substrate similar to that in Example 8, and the flame retardancy was determined in the same manner as in Example 8. It was injection molded into a test sample shape. As the moldings, per 100 parts of resin in terms of oxide, S I_〇 2 l parts by weight and Z n03 parts. Using the prepared flame-retardant test sample in the UL 94 flammability test, it passed the V-2 standard of the test.
(実施例 10)  (Example 10)
金属塩として硝酸第二鉄九水和物 (F e (Ν03) 2 · 9Η2〇) 33. 74 gをェ タノール 3 Om 1中に入れ、 溶解させた。 その液中にテトラエトキシシラン (S i (〇C2H5) 4) を 6. 94 g加え、 次いで純水 4. 14 gを滴下し、 液を撹拌する ことでゾル状組成物を作製した。 このゾル状組成物中に実施例 8と同様の担持材料 粒子としてのポリプロピレン樹脂粉末 100 gを入れ、 撹拌しながら混合した。 そ の後、 90°Cの乾燥器に入れ、 溶媒分を揮発させて樹脂表面にゲル状組成物 (化合 物層) のコーティング被膜を形成した。 なお、 コーティング被膜の成分を推定する ために、 ゾル状組成物のみを乾燥したゲル状組成物を分析したところ、 S i、 F e、 0、 N及び Cの各元素を含有した化合物となっていることがわかった。 また、 コー ティング被膜を施した粒子 (難燃性付与用複合粒子) を燃焼させた場合、 燃焼残留 物中の重量比は、 酸化物換算で担持材料粒子としての樹脂 100重量部に対し、 S i〇22重量部、 F e〇6重量部であった。 33.74 g of ferric nitrate nonahydrate (F e ({0 3 ) 2 · 9 2 }) as a metal salt was placed in ethanol 3 Om 1 and dissolved. 6.94 g of tetraethoxysilane (Si (〇C 2 H 5 ) 4 ) was added to the solution, and then 4.14 g of pure water was added dropwise, and the solution was stirred to prepare a sol-like composition. . Into this sol-like composition, 100 g of polypropylene resin powder as the same support material particles as in Example 8 were added and mixed with stirring. Thereafter, the mixture was placed in a dryer at 90 ° C., and the solvent was evaporated to form a coating film of the gel composition (compound layer) on the resin surface. In order to estimate the components of the coating film, when the gel composition obtained by drying only the sol composition was analyzed, it became a compound containing each element of Si, Fe, 0, N and C. I knew it was there. When particles coated with a coating film (composite particles for imparting flame retardancy) are burned, the weight ratio in the combustion residue is 100 parts by weight of resin as carrier material particles in terms of oxides. I_〇 2 2 parts by weight, was F E_rei_6 parts.
上記ゾルゲル法によりコーティングした粉末 (難燃性付与用複合粒子) と実施例 8と同様の基質としてのポリプロピレンの粉末あるいはペレッ トとを混合し、 実施 例 8と同様の方法にて難燃性テスト用サンプル形状に射出成形した。 なお、 成形体 としては、 酸化物換算で樹脂 100部に対し、 S i〇2 l重量部、 F e〇3重量部で ある。 作製した難燃性テスト用サンプルを用い、 UL 94燃焼性試験にてテストし た結果、 同試験の V— 2規格をクリアした。 The powder coated with the sol-gel method (composite particles for imparting flame retardancy) was mixed with a polypropylene powder or pellet as the same substrate as in Example 8, and In the same manner as in Example 8, injection molding was performed into a sample shape for a flame retardancy test. As the moldings, per 100 parts of resin in terms of oxide, S I_〇 2 l parts by weight, F E_rei_3 parts. Using the prepared sample for flame retardancy test in the UL 94 flammability test, it passed the V-2 standard of the test.
(比較例 5)  (Comparative Example 5)
金属塩として硝酸亜鉛六水和物 (Ζ η (Ν03) 2 · 6Η2〇) 36. 6 gをェタノ —ル 3 Om 1中に入れ、 溶解液を撹拌した。 この溶解液に実施例 8と同様の担持材 料粒子としてのポリプロピレン樹脂粉末 100 gを入れ、 撹拌しながら混合した。 その後、 90°Cの乾燥器に入れ、 溶媒分を揮発させて樹脂表面に付着物を形成した, なお、 付着物の成分を推定するために、 上記溶解液のみを乾燥した組成物を分析し たところ、 Zn元素を含有した化合物となっていることがわかった。 また、 上記付 着物を形成した粒子を燃焼させた場合、 燃焼残留物中の重量比は、 酸化物換算で樹 脂 1 00重量部に対し、 Z ηθ 10重量部であった。 36.6 g of zinc nitrate hexahydrate (Ζ η (Ν0 3 ) 2 · 6Η 2 〇) as a metal salt was placed in ethanol 3 Om1, and the solution was stirred. To this solution, 100 g of polypropylene resin powder as the same carrier material particles as in Example 8 was added and mixed with stirring. After that, it was placed in a dryer at 90 ° C to evaporate the solvent to form deposits on the resin surface.In order to estimate the components of the deposits, the composition obtained by drying only the above solution was analyzed. As a result, it was found that the compound contained a Zn element. When the particles formed with the above-mentioned attachment were burned, the weight ratio in the combustion residue was 100 parts by weight of the resin and 10 parts by weight of Zηθ in terms of oxide.
上記付着物を形成した粉末と、 実施例 8と同様の基質としてのポリプロピレンの 粉末あるいはペレツトとを混合し、 実施例 8と同様の方法にて難燃性テスト用サン プル形状に射出成形した。 なお、 成形体としては、 酸化物換算で樹脂 100部に対 し、 Zn05重量部である。 作製した難燃性テスト用サンプルを用い、 UL 94燃 焼性試験にてテストした結果、 サンプルはテスト開始後直ちに着火した。  The powder on which the deposits were formed was mixed with a polypropylene powder or a pellet as a substrate as in Example 8, and injection-molded into a sample shape for a flame retardancy test in the same manner as in Example 8. In addition, as a molded body, Zn05 parts by weight was calculated based on 100 parts of resin in terms of oxide. Using the prepared sample for flame retardancy test in the UL 94 flammability test, the sample ignited immediately after the start of the test.
上記実施例 8〜 10、 及び比較例 5の結果を表 3にまとめる。 Table 3 summarizes the results of Examples 8 to 10 and Comparative Example 5 described above.
表 3 Table 3
Figure imgf000038_0001
Figure imgf000038_0001
これらの結果より、 テトラエトキシシラン (珪素成分) を配合しない比較例のサ ンプルは、 基質樹脂 (難燃性付与対象材料) に対して難燃性付与効果がないことが 分かる。 これに対し、 実施例で示したように、 テトラエトキシシラン (珪素成分) を配合させたゲル状組成物をコ一ティングしたサンプル (実施例 8〜 1 0 ) は、 少 量配合でも高い難燃性付与効果があることが分かる。 From these results, it is understood that the sample of Comparative Example in which tetraethoxysilane (silicon component) is not blended has no effect of imparting flame retardancy to the base resin (material to which flame retardancy is imparted). On the other hand, as shown in the examples, the samples (Examples 8 to 10) coated with the gel composition in which tetraethoxysilane (silicon component) was blended exhibited high flame retardancy even in a small amount. It can be seen that there is a property imparting effect.
なお、 本実施例における担持材料粒子について、 ゲル状組成物のコーティング前 後を電子顕微鏡で観察した時の観察図を図 9に示す。 図 9 ( a ) はコーティング前 の担持材料粒子で、 図 9 ( b ) はコーティング後の担持材料粒子 (難燃性付与用複 合粒子) であり、 担持材料粒子に対して均一に化合物層がコーティングされている ことが分かる。  FIG. 9 shows an observation diagram of the support material particles in this example when observed before and after coating the gel composition with an electron microscope. Fig. 9 (a) shows the carrier particles before coating, and Fig. 9 (b) shows the carrier particles (composite particles for imparting flame retardancy) after coating. You can see that it is coated.
なお、 本明細書において 「主成分」 あるいは 「主体とする」 とは、 特に断りがな いかぎり、 最も重量含有率の高くなる成分を意味するものとして用いた。  In this specification, the term “main component” or “mainly” is used to mean a component having the highest weight content unless otherwise specified.
正された用紙 (規則 91 ) Corrected form (Rule 91)

Claims

請 求 の 範 囲 The scope of the claims
1 . 高分子材料、 無機材料及び金属材料の 1種又は 2種以上からなる担持材料粒子 に、 珪素成分及びノ又は金属成分と酸素とを含有する化合物層を複合化させた構造 を有する難燃性付与用複合粒子を、 高分子材料からなる基質 (以下、 高分子基質と も言う) 中に分散させたことを特徴とする難燃性高分子複合材料。 1. Flame retardant having a structure in which a compound layer containing a silicon component and a metal component and oxygen and a compound layer containing oxygen are combined with a carrier material particle composed of one or more of a polymer material, an inorganic material, and a metal material. A flame-retardant polymer composite material, characterized in that composite particles for imparting property are dispersed in a substrate made of a polymer material (hereinafter also referred to as a polymer substrate).
2 . 高分子材料、 無機材料及び金属材料の 1種又は 2種以上からなる担持材料粒子 に、 珪素成分及びノ又は金属成分と酸素とを含有する化合物層を複合化させた構造 を有する難燃性付与用複合粒子を、 高分子材料からなる基質の表面に定着したこと を特徴とする難燃性高分子複合材料。  2. Flame retardant with a structure in which a compound layer containing a silicon component and / or a metal component and oxygen is combined with a carrier material particle composed of one or more of a polymer material, an inorganic material, and a metal material. A flame-retardant polymer composite material, characterized in that the composite particles for imparting property are fixed on the surface of a substrate made of a polymer material.
3 . 前記化合物層は、 加熱により珪素及び Z又は金属の酸化物を主体とするガラス 質セラミックスを生ずるものである請求の範囲第 1項又は第 2項に記載の難燃性高 分子複合材料。  3. The flame-retardant high molecular weight composite material according to claim 1, wherein the compound layer generates a vitreous ceramic mainly composed of silicon, Z or a metal oxide by heating.
4 . 前記化合物層は炭素成分を含有する請求の範囲第 1項ないし第 3項のいずれか に記載の難燃性高分子複合材料。  4. The flame-retardant polymer composite material according to any one of claims 1 to 3, wherein the compound layer contains a carbon component.
5 . 加熱により燃焼阻害性気体を分解生成する請求の範囲第 1項ないし第 4項のい ずれかに記載の難燃性高分子複合材料。  5. The flame-retardant polymer composite material according to any one of claims 1 to 4, which decomposes and generates a combustion-inhibiting gas by heating.
6 . 前記燃焼阻害性気体として、 窒素、 硫黄及び炭素の 1種又は 2種以上を含有す るものが生成される請求の範囲第 5項記載の難燃性高分子複合材料。  6. The flame-retardant polymer composite material according to claim 5, wherein a substance containing one or more of nitrogen, sulfur and carbon is generated as the combustion inhibiting gas.
7 . 前記難燃性付与用複合粒子の平均粒径が 0 . 0 5〜5 0 0 mである請求の範 囲第 1項ないし第 6項のいずれかに記載の難燃性高分子複合材料。  7. The flame-retardant polymer composite material according to any one of claims 1 to 6, wherein the average particle size of the composite particles for imparting flame retardancy is 0.05 to 500 m. .
8 . 前記担持材料粒子は難燃材料粒子である請求の範囲第 1項ないし第 7項のいず れかに記載の難燃性高分子複合材料。  8. The flame-retardant polymer composite material according to any one of claims 1 to 7, wherein the carrier material particles are flame-retardant material particles.
9 . 前記難燃材料粒子は、 無機材料系粒子又は金属材料系粒子である請求の範囲第 8項記載の難燃性高分子複合材料。 9. The flame-retardant polymer composite material according to claim 8, wherein the flame-retardant material particles are inorganic material-based particles or metal material-based particles.
1 0 . 前記無機材料系粒子は、 水酸化アルミニゥム及び水酸化マグネシゥムの少な くともレ、ずれかを主成分とするものである請求の範囲第 9項記載の難燃性高分子複 合材料。 10. The flame-retardant polymer composite material according to claim 9, wherein the inorganic material-based particles are mainly composed of at least one of aluminum hydroxide and magnesium hydroxide.
1 1 . 前記担持材料粒子は高分子材料粒子である請求の範囲第 1項ないし第 1 0項 のいずれかに記載の難燃性高分子複合材料。  11. The flame-retardant polymer composite material according to any one of claims 1 to 10, wherein the carrier material particles are polymer material particles.
1 2 前記高分子材料粒子は熱可塑性高分子材料からなる請求の範囲第 1 1項記載 の難燃性高分子複合材料。  12. The flame-retardant polymer composite material according to claim 11, wherein the polymer material particles are made of a thermoplastic polymer material.
1 3 前記高分子材料粒子は熱硬化性高分子材料からなる請求の範囲第 1 1項記載 の難燃性高分子複合材料。  13. The flame-retardant polymer composite material according to claim 11, wherein the polymer material particles are made of a thermosetting polymer material.
1 4 . 請求の範囲第 1項ないし第 1 3項のいずれかに記載の難燃性高分子複合材料 の製造に使用され、 未硬化の熱硬化性樹脂を含有する主剤と、 該主剤を硬化させる ための硬化剤とからなり、 前記難燃性付与用複合粒子を前記主剤又は硬化剤の少な くともいずれかに配合されてなり、 前記主剤と前記硬化剤とを混合することにより 熱硬化性樹脂を基質としてこれに前記難燃性付与用複合粒子を分散させた難燃性高 分子複合材料が得られるようにしたことを特徴とする難燃性高分子複合材料製造用 組成物。  14. A main agent containing an uncured thermosetting resin, which is used for producing the flame-retardant polymer composite material according to any one of claims 1 to 13, and curing the main agent. The composite particles for imparting flame retardancy are blended with at least one of the main agent and the curing agent, and the thermosetting is performed by mixing the main agent and the curing agent. A composition for producing a flame-retardant polymer composite material, characterized in that a flame-retardant polymer composite material is obtained by dispersing the flame-retardant composite particles in a resin as a substrate.
1 5 . 請求の範囲第 1項ないし第 1 3項のいずれかに記載の難燃性高分子複合材料 を所定の形状に成形したことを特徴とする難燃性高分子複合材料成形体。  15. A flame-retardant polymer composite material formed by molding the flame-retardant polymer composite material according to any one of claims 1 to 13 into a predetermined shape.
1 6 . 前記高分子基質の軟化を伴う再成形を前提としない、 最終成形体として構成 された請求の範囲第 1 5項記載の難燃性高分子複合材料成形体。  16. The flame-retardant polymer composite material molded article according to claim 15, wherein the molded article is configured as a final molded article without assuming remolding accompanied by softening of the polymer substrate.
1 7 . 前記高分子基質を軟化させて所期の二次形状に再成形するための仮成形体と して使用される請求の範囲第 1 5項記載の難燃性高分子複合材料成形体。  17. The flame-retardant polymer composite material molded article according to claim 15, wherein the molded article is used as a temporary molded article for softening the polymer matrix to re-mold it into an intended secondary shape. .
1 8 . 高分子材料、 無機材料及び金属材料の 1種又は 2種以上からなる担持材料粒 子に、 加熱により珪素及びノ又は金属の酸化物を主体とするガラス質セラミックス を生ずる化合物層を複合化させた構造を有する難燃性付与用複合粒子が、 高分子材 料からなる基質 (以下、 高分子基質ともいう) 中に分散され、 かつ U L 9 4燃焼性 試験にてテストしたときに、 V— 0〜 V— 2の範囲を充足する難燃性能を付与した ことを特徴とする難燃性高分子複合材料。 18. Composite particles of carrier material composed of one or more of polymer materials, inorganic materials, and metal materials, which form glassy ceramics mainly composed of silicon, oxides, or metal oxides when heated Composite particles with flame retardant properties When dispersed in a substrate composed of a mixture (hereinafter also referred to as a polymer substrate) and tested in the UL 94 flammability test, it has provided flame-retardant performance that satisfies the range of V-0 to V-2 A flame-retardant polymer composite material, characterized in that:
1 9 . 高分子材料、 無機材料及び金属材料の 1種又は 2種以上からなる担持材料粒 子に、 加熱により珪素及びノ又は金属の酸化物を主体とするガラス質セラミックス を生ずる化合物層を複合化させた構造を有する難燃性付与用複合粒子が、 高分子材 料からなる基質 (以下、 高分子基質ともいう) の表面に定着され、 かつ U L 9 4燃 焼性試験にてテストしたときに、 V—0〜V— 2の範囲を充足する難燃性能を付与 したことを特徴とする難燃性高分子複合材料。  19. Combined with a carrier material particle composed of one or more of a polymer material, an inorganic material, and a metal material, a compound layer that generates a glassy ceramic mainly composed of silicon, silicon, or a metal oxide when heated. When the composite particles for imparting flame retardancy having a structured structure are fixed on the surface of a substrate made of a polymer material (hereinafter also referred to as a polymer substrate) and tested in a UL 94 flammability test A flame-retardant polymer composite material characterized by having a flame-retardant property satisfying the range of V-0 to V-2.
2 0 . 高分子材料、 無機材料及び金属材料の 1種又は 2種以上からなる担持材料粒 子に、 珪素成分及び/又は金属成分と酸素とを含有する化合物層を複合化させた構 造を有する難燃性付与用複合粒子が、 高分子材料からなる基質 (以下、 高分子基質 ともいう) 中に分散され、 かつ U L 9 4燃焼性試験にてテストしたときに、 V—0 〜V— 2の範囲を充足する難燃性能を付与したことを特徴とする難燃性高分子複合 材料。  20. A structure in which a compound layer containing a silicon component and / or a metal component and oxygen is combined with a carrier material particle composed of one or more of a polymer material, an inorganic material, and a metal material. When the composite particles for imparting flame retardancy are dispersed in a matrix made of a polymer material (hereinafter, also referred to as a polymer matrix) and tested in a UL 94 flammability test, V-0 to V- 2. A flame-retardant polymer composite material characterized by imparting flame-retardant performance satisfying the range of 2.
2 1 . 高分子材料、 無機材料及び金属材料の 1種又は 2種以上からなる担持材料粒 子に、 珪素成分及び/又は金属成分と酸素とを含有する化合物層を複合化させた構 造を有する難燃性付与用複合粒子が、 高分子材料からなる基質 (以下、 高分子基質 ともいう) の表面に定着され、 かつ U L 9 4燃焼性試験にてテストしたときに、 V — 0〜V— 2の範囲を充足する難燃性能を付与したことを特徴とする難燃性高分子 複合材料。  21. A structure in which a compound layer containing a silicon component and / or a metal component and oxygen is combined with a carrier material particle composed of one or more of a polymer material, an inorganic material, and a metal material. When the composite particles for imparting flame retardancy are fixed to the surface of a substrate made of a polymer material (hereinafter also referred to as a polymer substrate) and tested in a UL 94 flammability test, V — 0 to V — A flame-retardant polymer composite material with flame retardancy that satisfies the range of 2.
2 2 . 高分子材料、 無機材料及び金属材料の 1種又は 2種以上からなる担持材料粒 子に、 珪素成分及びノ又は金属成分と酸素とを含有する化合物層を複合化させた構 造を有する難燃性付与用複合粒子が高分子基質中に分散された粒状成形物として構 成され、 個々の粒状成形物よりも大体積の二次形状に再成形するために使用される ことを特徴とする難燃性高分子複合材料成形体製造用マスターバッチ。 22. A structure in which a compound layer containing a silicon component and / or a metal component and oxygen is combined with a carrier material particle composed of one or more of a polymer material, an inorganic material, and a metal material. The composite particles for imparting flame retardancy are composed as a granular molded product dispersed in a polymer matrix, and are used to re-mold a secondary shape that has a larger volume than individual granular molded products A masterbatch for producing a flame-retardant polymer composite material molded body, characterized in that:
2 3 . 高分子材料、 無機材料及び金属材料の 1種又は 2種以上からなる担持材料粒 子に、 加熱により珪素及び 又は金属の酸化物を主体とするガラス質セラミックス を生ずる化合物層を複合化させた構造を有する難燃性付与用複合粒子が高分子基質 中に分散された粒状成形物として構成され、 個々の粒状成形物よりも大体積の二次 形状に再成形するために使用されることを特徴とする難燃性高分子複合材料成形体 製造用マスターバッチ。 23. Compounding a compound layer that generates glassy ceramics mainly composed of silicon and / or metal oxides by heating onto particles of one or more of polymeric materials, inorganic materials, and metallic materials The composite particles for imparting flame retardancy with a distorted structure are composed as a granular molded product dispersed in a polymer matrix, and are used to re-mold into a secondary shape having a larger volume than individual granular molded products A masterbatch for producing a flame-retardant polymer composite material molded body.
PCT/JP2000/005190 1999-08-03 2000-08-03 Flame-retardant polymer composite material, composition for producing flame-retardant polymer composite material, formed article of flame-retardant polymer composite material and masterbatch for producing formed article of flame-retardant polymer composite material WO2001009235A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU64709/00A AU6470900A (en) 1999-08-03 2000-08-03 Flame-retardant polymer composite material, composition for producing flame-retardant polymer composite material, formed article of flame-retardant polymer composite material and masterbatch for producing formed article of flame-retardant polymer composite material

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP21941399 1999-08-03
JP11/219413 1999-08-03
JP11/234703 1999-08-20
JP23470399 1999-08-20
JP35684199A JP2001131292A (en) 1999-08-03 1999-12-16 Flame retardant polymeric composite material, composition for making the same and molded product of flame retardant polymeric composite material
JP11/356841 1999-12-16

Publications (1)

Publication Number Publication Date
WO2001009235A1 true WO2001009235A1 (en) 2001-02-08

Family

ID=27330278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/005190 WO2001009235A1 (en) 1999-08-03 2000-08-03 Flame-retardant polymer composite material, composition for producing flame-retardant polymer composite material, formed article of flame-retardant polymer composite material and masterbatch for producing formed article of flame-retardant polymer composite material

Country Status (3)

Country Link
JP (1) JP2001131292A (en)
AU (1) AU6470900A (en)
WO (1) WO2001009235A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024027000A1 (en) * 2022-08-03 2024-02-08 江苏卡续曼新材料科技有限公司 Method for realizing flame retardation of flame retardant on basis of blending modification of thermoplastic high polymer material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040111516A (en) * 2002-04-15 2004-12-31 니폰 제온 가부시키가이샤 Varnish, shaped item, electrical insulating film, laminate, flame retardant slurry and process for producing flame retardant particle and varnish

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236897A (en) * 1975-09-18 1977-03-22 Ig Tech Res Inc Filler for fire-proof building material and composition for fire-proof building material
JPS63125594A (en) * 1986-07-25 1988-05-28 エフ・ア−ル・システムズ・インコ−ポレ−テッド Fire retardant agent
JPH02150433A (en) * 1988-08-09 1990-06-08 Firestop Chem Corp Fireproofed foamed polymeric material
DE19629809A1 (en) * 1996-07-24 1998-01-29 Hilti Ag Fireproof silicone sealant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236897A (en) * 1975-09-18 1977-03-22 Ig Tech Res Inc Filler for fire-proof building material and composition for fire-proof building material
JPS63125594A (en) * 1986-07-25 1988-05-28 エフ・ア−ル・システムズ・インコ−ポレ−テッド Fire retardant agent
JPH02150433A (en) * 1988-08-09 1990-06-08 Firestop Chem Corp Fireproofed foamed polymeric material
DE19629809A1 (en) * 1996-07-24 1998-01-29 Hilti Ag Fireproof silicone sealant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024027000A1 (en) * 2022-08-03 2024-02-08 江苏卡续曼新材料科技有限公司 Method for realizing flame retardation of flame retardant on basis of blending modification of thermoplastic high polymer material

Also Published As

Publication number Publication date
JP2001131292A (en) 2001-05-15
AU6470900A (en) 2001-02-19

Similar Documents

Publication Publication Date Title
JP6121074B1 (en) Alumina-based thermally conductive oxide and method for producing the same
JP6209695B1 (en) Alumina-based thermally conductive oxide and method for producing the same
JP2006016461A (en) Method for producing naturally occurring filler-including resin composition and resin composition produced thereby
JPWO2005068558A1 (en) Flame retardant and flame retardant resin composition
JP2001233992A (en) Molding auxiliary, its manufcturing method, and polymeric composite compounded with holding auxiliary
TWI655238B (en) Epoxy resin composition, use thereof and filler for epoxy resin composition
JP2007270011A (en) Laminar silicate compound and resin composition containing the laminar silicate compound
JP2019206459A (en) Thermally conductive oxide and method for producing the same
WO2001009235A1 (en) Flame-retardant polymer composite material, composition for producing flame-retardant polymer composite material, formed article of flame-retardant polymer composite material and masterbatch for producing formed article of flame-retardant polymer composite material
Liu et al. Flame retardance and mechanical properties of a polyamide 6/polyethylene/surface‐modified metal hydroxide ternary composite via a master‐batch method
RU2502602C1 (en) Binder for glass-fiber material and pull-extruded section thereof
Kong et al. Low‐temperature synthesis of Mg (OH) 2 nanoparticles from MgO as halogen‐free flame retardant for polypropylene
WO2001009251A1 (en) Flame-retardant polymer composite material, composition for producing, formed article of flame-retardant polymer composite material, masterbatch for producing formed article of flame-retardant polymer composite material and method for producing flame-retardant polymer composite material
WO2001009234A1 (en) Composite particle for imparting flame retardancy and method for producing composite composition for imparting flame retardancy
JP2001131552A (en) Composite particle for imparting flame retardance
JP2001234082A (en) Method for producing flame-retardant polymeric- composite material and molded material of flameretardant polymeric composite material
JP2001131293A (en) Flame retardant polymeric composite material, composition for making the same and molded product of flame retardant polymeric composite material
JP2001131294A (en) Master batch for manufacturing molded product of flame retardant polymeric composite material
JP2001234169A (en) Preparation process of flame retardance-imparting composite composition, flame retardance-imparting composite composition, flame-retardant polymer composite material and molded product of flame- retardant polymer material
JP2001131430A (en) Flame retardant polymeric composite material, composition for making the same and molded product of flame retardant polymeric composite material
JP2001131432A (en) Box part for electrical equipment
JP2002302612A (en) Flame retardance-imparting composite material, and flame-retardant polymeric composite material
CN104672811A (en) Environment-friendly flame-retardant antistatic reinforced PBT/PET (polybutylene terephthalate/polyethylene terephthalate) composite material
JP2001131336A (en) Master batch for producing molding product of flame- retardant polymer composite material
JP2001233991A (en) Composite particle for imparting flame retardance

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase