WO2001007148A1 - Membrana de polimero para la separacion de mezclas de gases - Google Patents

Membrana de polimero para la separacion de mezclas de gases Download PDF

Info

Publication number
WO2001007148A1
WO2001007148A1 PCT/ES1999/000279 ES9900279W WO0107148A1 WO 2001007148 A1 WO2001007148 A1 WO 2001007148A1 ES 9900279 W ES9900279 W ES 9900279W WO 0107148 A1 WO0107148 A1 WO 0107148A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
separation
hollow fiber
vol
treated
Prior art date
Application number
PCT/ES1999/000279
Other languages
English (en)
French (fr)
Other versions
WO2001007148A9 (es
Inventor
Ricardo Blach Vizoso
Alexander Kotenko
Dimitri Amirkhanov
Mikhail Tulsky
Vladimir Fateev
Original Assignee
David Systems Technology, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by David Systems Technology, S.L. filed Critical David Systems Technology, S.L.
Priority to CA002380119A priority Critical patent/CA2380119A1/en
Priority to EP99944646A priority patent/EP1206959A1/en
Priority to MXPA02000827A priority patent/MXPA02000827A/es
Priority to JP2001512021A priority patent/JP2003505231A/ja
Priority to KR1020027000889A priority patent/KR20020026545A/ko
Priority to AU57474/99A priority patent/AU5747499A/en
Priority to BR9917417-0A priority patent/BR9917417A/pt
Publication of WO2001007148A1 publication Critical patent/WO2001007148A1/es
Publication of WO2001007148A9 publication Critical patent/WO2001007148A9/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • B01D61/362Pervaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • C01B3/503Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion characterised by the membrane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/048Composition of the impurity the impurity being an organic compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0485Composition of the impurity the impurity being a sulfur compound

Definitions

  • the invention is intended for the technology of separation membranes of gas mixtures and can be applied in a chemical, oil refineries, natural gas industries, as well as in other branches of the petrochemical industry, and can be used for separation of technological gas mixtures, including hydrogen and / or natural gas components with a high content of hydrogen sulfide and heavy hydrocarbons.
  • membrane separation has displaced traditional methods of gas division, such as the cryogenic method of pressure division and adsorption.
  • membrane technology has become the most widespread in the following industry branches: hydrogen separation in petroleum chemistry procedures and oil refinery; removal of carbon dioxide from natural gas; air separation obtaining highly enriched nitrogen, and enriched before 40% oxygen flow rate in full air.
  • One of the most important applications of polymer membranes is the separation and refining of hydrogen from the fuel gases of oil refineries. This is explained by the very high main cost of hydrogen production in single-purpose facilities, and the possibility of using any other source to obtain hydrogen is of great interest to specialists.
  • the main sources of hydrogen-containing residual gases from petroleum chemistry are: gas purging of ammonia synthesis; gas purging in the production of methanol, styrene and others; residual gas from steam craking; the residual gas from the hydrodesalkylation of toluene.
  • the sources of residual gases in the oil refinery processes are: residual gas from the catalytic reforming; residual gas from catalytic craking; • Hydro-desulfurization exhaust gas; exhaust gas from hydrocraking.
  • the membrane technology allows, in a procedure similar to a single stage, to reduce a concentration of C0 2 from 5-7% by volume to 1.0-1.5% by volume. They were first performed with a cellulose acetate based membrane from "Separex Corporation" [Schell WJ et al., J. Chem. Eng. Progress. 1982, v. 78, no. 10, pp. 33-37], and also polysulfone from the "Monsanto" company, Prism Separators by Monsanto.
  • the main characteristics which define the ability to carry the membrane to commercial practice, are the following: membrane selectivity for separation of main components.
  • a membrane For commercial use effective for the separation of natural gas and / or containing hydrogen, a membrane must have a selectivity in the H 2 -CH 4 pair not less than 50, and in the C0 2 -CH 4 pair not less than 30. Lower values of selectivity causes the use of multistage separation schemes of the target component that requires additional compression that raises energy costs and vastly prolongs waste gas losses.
  • specific productivity The specific productivity of a membrane is defined by its type and structure, as well as by the design of the membrane separator (as equipment).
  • the membrane separation procedures are based on the different solubility of the gases in the polymer and the diffusion of the gas molecules therethrough, the capital costs of the membrane installation are defined with the thickness of a selective membrane barrier.
  • the membrane must withstand a significant force of pressure on its wall (below 5-7 MPa). So the most widespread types of polymer membranes, which have commercial use, are of the asymmetric type and of composite material. membrane geometry. This parameter is defined in the creation stage of the membrane separator.
  • Three main types of membrane element designs (bundle) are known: a) flat sheet fiber, b) spiral and c) hollow. For the first two, the flat membrane located in the form of glued sheets or with spiral scrolls is used, as appropriate.
  • the third type of design comprises fixing a membrane fiber in a beam, fixed subsequently in a membrane device.
  • the type of fiber is the one with the greatest perspective. Chemical stability to components of the mixture that separates. Taking into account the requirements set forth above, the polymers of greater perspective for the creation of membranes are polysulfone, polyethersulfone, fluorine-containing polymers, polyamidoi ida.
  • the isotropic hollow fiber membrane from pol ⁇ -4-met ⁇ lpenteno-l, is well known (trade name in Russia "Graviton”), which is used in Russia in membrane installations for the separation of gaseous mixtures, including components of natural gas [Kostrov Yu. A. et al., "Chemical Fibers” Magazine, 1986, No. 6, pp. 49-51].
  • the disadvantages of the mentioned membrane can be attributed to the following characteristics: isotropic structures, and as a result, low specific productivity; low selectivity; low selective properties after working with mixtures in which the concentration of heavy hydrocarbons (C and heavy) is greater than 8% by volume.
  • the hollow fiber membrane of composite material from polypropylene, with selective layer from polyethersulfone [EP MC14 B OID 13/04, B OID 53/22, No. 0 1 74 918, 1985].
  • the disadvantages of the composite membrane the following characteristics can be attributed: technological complicity to apply a homogeneous selective layer on the polypropylene support; possibility of distraction of the selective layer, including its extraction.
  • the immediate technical solution of this problem is an asymmetric polyethersulfone hollow fiber membrane, produced from an initial gas separation hollow fiber membrane with an initial selectivity on the H 2 / CH 4 ⁇ 5 pair by means of modification in 0.02 M solution of HBr / nC 5 with a subsequent vacuum treatment up to 24 hours [US Pat. UU. , NC1 55/1 6, No. 4 4 12 1 15, 1 984].
  • the polymer membrane is produced by the following procedure: an initial hollow fiber is treated from polyethersulfone with organic liquid mixtures
  • the dried hollow fiber is treated with 2.5% by volume solution of uretanosiloxane (eg, siloctane) in isopropanol.
  • uretanosiloxane eg, siloctane
  • the hollow fibers are then modified in the gas phase with a mixture of F 2 : HF: N 2 (He).
  • the content of inert components varies from 0 to 90% by volume, the content of HF in F 2 is 4-6% by volume.
  • Table No. I shows the actual separation factors for pairs H 2 / CH 4 and C0 2 / CH 4 for the hollow fiber membrane, produced in the above-mentioned procedure.
  • the gas phase modification can be carried out in the wide range of fluorine concentration and treatment time. The results achieved are stable for a long time.
  • the assumed properties of the membrane produced depend on the separation properties of the initial membrane, content of the liquid mixture and modification conditions (fluorine concentration, pressure of the modified gas mixture, treatment time).
  • An asymmetric hollow fiber membrane is treated from polyethersulfone by pervaporation in an 8% (vol.) Solution of toluene in C 2 H 5 OH for 65 minutes, dried under vacuum 15 minutes, then treated in solution at 2 , 5% (vol.) Of uretanosiloxane with isopropanol for 60 seconds.
  • An asymmetric hollow fiber membrane is treated from polyethersulfone by pervaporation in an 11% (vol.) Solution of acetone in C 2 H 5 OH for 75 minutes, dried under vacuum 15 minutes, then treated for 60 seconds in 2.5% solution (vol.) of uretanosiloxane with isopropanol.
  • the hollow fiber dries in the air for 12 hours.
  • Example 3 An asymmetric hollow fiber membrane is treated for 85 minutes from polyethersulfone by pervaporation in a 9% (vol.) Solution of dimethylforamide in C 2 H 5 OH, dried under vacuum 15 minutes, then treated for 60 minutes seconds in 2.5% solution (vol.) of uretanosiloxane with isopropanol. The hollow fiber dries in the air for 12 hours.
  • Example 5 An asymmetric hollow fiber membrane is treated for 90 minutes from polyethersulfone by pervaporation in a 7% (vol.) Solution of acetone in C 2 H 5 OH, dried under vacuum 15 minutes, then treated for 60 seconds in 2.5% solution (vol.) of uretanosiloxane with isopropanol. The hollow fiber dries in the air for 12 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Water Supply & Treatment (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)

Abstract

Esta membrana comprende fibra hueca asimétrica, a partir de polietersulfuro con fines de pervaporación, tratada con mezclas de líquidos (C2H50H+X) en la que X=tolueno, acetona, dimetilformamida con un contenido entre un 7 - 12 % en volumen de la mezcla, tratando posteriormente con una disolución al 2,5 % en volumen de uretanosiloxano en alcohol isopropílico.

Description

MEMBRANA DE POLÍMERO PARA LA SEPARACIÓN DE MEZCLAS DE
GASES
OBJETO DE LA INVENCIÓN
La invención está destinada a la tecnología de membranas de separación de mezclas de gases y se puede aplicar en un producto químico, refinerías de petróleo, industrias del gas natural, asi como en otras ramas de la industria petroquímica, y se puede usar para la separación de mezclas gaseosas tecnológicas, incluyendo hidrogeno y/o componentes de gas natural con amplio contenido de sulfuro de hidrogeno e hidrocarburos pesados .
ANTECEDENTES DE LA INVENCIÓN
En la actualidad el progreso en las tecnologías de productos químicos esta conectado con las nuevas tecnolo- gias de ahorro de energía. Uno de tales procedimientos en perspectiva es la separación por membranas de mezclas de gases.
Los procedimientos de membranas atraen a los técnicos por sus reducidos gastos de comportamiento en el campo, simplicidad de equipo y servicio, y ausencia de equipo completo de intercambio de frío y calor.
Desde mediados de los años 80 la separación por membranas ha desplazado los métodos tradicionales de división de gases, tales como el método criogénico de división y adsorción de funcionamiento a presión. En este momento, la tecnología de membranas se ha convertido en la más extendida en las siguientes ramas de la industria: separación de hidrogeno en procedimientos de química del petróleo y refinería del petróleo; eliminación de dióxido de carbono del gas natural; separación de aire obteniendo nitrógeno altamente enriquecido, y enriquecido antes del 40% de caudal de oxigeno en pleno aire. Una de las aplicaciones más importantes de las membranas de polímeros es la separación y refinado de hidrógeno a partir de los gases de combustible de las refinerías de petróleo. Esto se explica por el coste principal muy elevado de la producción de hidrógeno en instalaciones de un solo propósito, y la posibilidad de usar cualquier otra fuente para obtener hidrógeno presenta un gran interés para los especialistas.
Las fuentes principales de gases residuales que contienen hidrógeno de la química del petróleo son: el purgado de gas de la síntesis de amoniaco; el purgado de gases en la producción de metanol, estireno y otros; el gas residual del craking por vapor; el gas residual de la hidrodesalquilación de tolueno.
Las fuentes de gases residuales en los procesos de la refinería del petróleo son: gas residual del reformado catalítico; gas residual del craking catalítico; • gas de escape de la hidra-desulfuración; gas de escape del hidrocraking.
Sin embargo, es necesario observar que el uso de membranas de polímeros se realizó habitualmente por los medios con contenidos de hidrocarburos pesados menores que en 3-4% en volumen, cuando los contenidos eran más elevados se observó un efecto plastificantes reversible con pérdida de características selectivas, pero sin la destrucción mecánica. Según han demostrado las investigaciones de los inventores, cuando se reducen las concentraciones de hidrocarburos pesados por debajo del 2-3% en volumen gradualmente se restaura la característica selectiva (pero no más del 80% del inicio) .
La mayoría ha acogido el método de membranas para eliminar dióxido de carbono a partir del gas natural. La tecnología de membrana permite, en un procedimiento similar a una sola etapa, reducir una concentración de C02 desde 5-7% en volumen a 1,0-1,5% en volumen. Se realizaron primero con una membrana a base de acetato de celulosa de "Separex Corporation" [Schell W. J. y otros, J. Chem. Eng. Progress. 1982, v. 78, no. 10, pp. 33-37], y también polisulfona de la compañía "Monsanto" [Monsanto Company] , Prism Separators por Monsanto. Para una variedad diferentes fuentes de gas natural (Rusia, Canadá, SAR) , estas membranas necesitan una significativa modernización en cuanto a que en el gas natural de estos paises se observa un elevado contenido de hasta un 40% de sulfuro de hidrógeno. Como han demostrado las investigaciones de los inventores bajo las condiciones de laboratorio y la industria, la membrana polimérica de acetato de celulosa, en los medios con contenidos de sulfuro de hidrógeno de 5-7% en volumen, plastifican rápidamente y pierden las características básicas.
OBJETO DE LA INVENCIÓN
Las características principales, que definen la capacidad de llevar a la práctica comercial a la membrana, son las siguientes: selectividad de la membrana para la separación componentes principales . Para un uso comercial eficaz para la separación de gas natural y/o que contiene hidrógeno, una membrana debe poseer una selectividad en el par H2-CH4 no menor que 50, y en el par C02-CH4 no menor que 30. Valores inferiores de selectividad provocan el uso de esquemas de separación multietapa del componente objetivo que requiere una compresión adicional que eleva los gastos de energía y prolonga vastamente pérdidas inútiles de gas. • productividad especifica. La productividad especifica de una membrana se define por su tipo y estructura, asi como por el diseño del separador de membrana (como equipo) . En tanto en cuanto los procedimientos de separación de membrana se basan en las diferentes solubilidad de los gases en el polímero y la difusión de las moléculas de gas a su través, los gastos de capital de la instalación de la membrana se definen con el espesor de una barrera selectiva de membrana. Por otro lado, la membrana debe soportar una fuerza significativa de presión sobre su pared (por debajo de 5-7 MPa) . De forma que los tipos más ampliamente extendidos de membranas de polímeros, que tienen un uso comercial, son de tipo asimétrica y de material compuesto. geometría de la membrana. Este parámetro se define en la etapa de creación del separador de membrana. Se conocen tres tipos principales de diseños de elementos de membrana (manojo) : a) fibra de hoja plana, b) de espiral y c) hueca. Para las dos primeras, se usa la membrana plana situada en forma de láminas pegadas o con volutas en espiral, según sea el caso. El tercer tipo de diseño comprende fijar una fibra de membrana en un haz, fijado posteriormente en un dispositivo de membrana. El tipo de fibra es el de mayor perspectiva-. estabilidad química a componentes de la mezcla que se separa. Teniendo en cuenta los requisitos enunciados más arriba, los polímeros de mayor perspectiva para la creación de membranas son polisulfona, polietersulfona, polímeros que contienen flúor, poliamidoi ida.
La membrana isotropica de fibra hueca, a partir de polι-4-metιlpenteno-l , es bien conocida (nombre comercial en Rusia "Graviton"), que se usa en Rusia en instalaciones de membrana para la separación de mezclas gaseosas, incluyendo componentes de gas natural [Kostrov Yu . A. y otros , Revi sta de ci encia "Chemical Fibers " , 1986, No . 6, pp. 49-51 ] .
Las desventajas de la membrana mencionada, se pueden atribuir a las siguientes características: estructuras ísotropicas, y como resultado, baja productividad especifica; baja selectividad; bajas propiedades selectivas después de trabajar con mezclas en las que la concentración de hidrocarburos pesados (C y pesados) es mayor que el 8% en volumen.
Es bien conocida la membrana de fibra hueca de material compuesto a partir de polipropileno, con capa selectiva a partir de polietersulfona [EP MC14 B OÍD 13/04 , B OÍD 53/22 , No . 0 1 74 918 , 1985] .
Las desventajas de la membrana de material compuesto, se pueden atribuir las siguientes características: complicidad tecnológica para aplicar una capa selectiva homogénea sobre el soporte de polipropileno; posibilidad de distracción de la capa selectiva, incluyendo su extracción.
La solución técnica inmediata de este problema es una membrana asimétrica de fibra hueca de polietersulfona, producida a partir de una membrana de fibra hueca de separación de gas inicial con una selectividad inicial sobre el par H2/CH4 < 5 por medio de modificación en disolución 0,02 M de HBr/n-C5 con un tratamiento posterior de vacio hasta 24 horas [Patente de EE. UU. , NC1 55/1 6, No . 4 4 12 1 15 , 1 984 ] . Las desventajas de esta solución se pueden mencionar las siguientes: pérdida de una selectividad alcanzada después de la modificación en el periodo de explotación (la selectividad del par hidrógeno/metano se reduce constantemente: después de 1 dia de explotación la selectividad es 147, después de 6 dias - 35 y asi sucesivamente) ; tiempo de uso muy corto de modificación de la disolución liquida; • mantener necesariamente la membrana tratada en vacio a fin de alcanzar las propiedades selectivas requeridas hasta 24 horas.
DESCRIPCIÓN DE LA INVENCIÓN
Los resultados técnicos de la solución técnica, creada por los autores de la presente invención, para la producción de membrana de fibra hueca asimétrica a partir de polietersulfona son los siguientes: • altas propiedades selectivas, estables durante el tiempo del uso; selectividad requerida para los procedimientos de separación de hidrógeno y/o componentes de gas natural con amplio contenido en H2S (hasta 40% en volumen) e hidrocarburos pesados (hasta 15% en volumen) .
El resultado técnico se logra debido al hecho de que la membrana de separación de gas de polímero para dividir los componentes del gas natural tiene una construcción especial: primeramente, se trata la membrana de fibra hueca asimétrica a partir de polietersulfona para la pervapora- ción con mezclas de líquidos tales como C2H5OH + X, en la que X = tolueno, acetona, dimetilformamida, con actitud de X = 7-12% en volumen; luego la membrana se trata con una disolución al 2,5% en volumen de uretanosiloxano en alcohol isoamilico; luego se trata con una mezcla gaseosa de F2- HF - gas inerte; el contenido de gas inerte varia de 0 a 90%, y la actitud de HF en la corriente de F es igual a 4-6% en volumen.
La membrana de polímero se produce por el siguiente procedimiento: se trata una fibra hueca inicial a partir de polietersulfona con las mezclas de líquidos orgánicos
(C2H5OH-tolueno, C;HOH-acetona o C>H5OH-dimetilforamida con contenido de disolventes orgánicos a C2H5OH igual a
7-12% en volumen en el periodo de 60-90 minutos con un próximo bombeo de vacio a la temperatura T=293 K durante 15 minutos.
La fibra hueca seca se trata con disolución al 2,5% en volumen de uretanosiloxano (por ejemplo, siloctano) en isopropanol .
Luego las fibras huecas se modifican en fase gaseosa con una mezcla de F2:HF:N2 (He) .
El contenido de componentes inertes varia de 0 a 90% en volumen, el contenido de HF en F2 es 4-6% en volumen. En la tabla No. I se muestran los factores de separación reales para pares H2/CH4 y C02/CH4 para la membrana de fibra hueca, producida en el procedimiento arriba mencionado.
Tabla I Características de separación de la membrana de polímero de fibra hueca producida
Figure imgf000009_0001
Figure imgf000010_0001
Los resultados obtenidos muestran que las muestras de la membrana tratada con mezclas de líquidos orgánicos, luego tratadas con uretanosiloxano y/o modificadas con mezclas gaseosas, que contienen flúor, permiten unas características selectivas, mejores que las propiedades selectivas de la polietersulfona inicial.
La modificación en fase de gas se puede llevar a cabo en el amplio intervalo de concentración de flúor y tiempo de tratamiento. Los resultados logrados son estables durante largo tiempo.
Las muestras de membrana, tratadas con flúor, conservan las propiedades selectivas en un medio con elevada concentración de H2S e hidrocarburos pesados. Las propiedades asumidas de la membrana producida dependen de las propiedades de separación de la membrana inicial, contenido de la mezcla de líquidos y condiciones de modificación (concentración de flúor, presión de la mezcla de gas modificada, tiempo de tratamiento).
EJEMPLOS DE REALIZACIÓN PREFERENTE DE LA INVENCIÓN
Ejemplo 1
Se trata una membrana de fibra hueca asimétrica a partir de polietersulfona por pervaporación en una disolución al 8% (vol.) de tolueno en C2H5OH durante 65 minutos, se seca bajo vacío 15 minutos, entonces se trata en disolución al 2,5% (vol.) de uretanosiloxano con isopropanol durante 60 segundos. La fibra hueca se seca en el aire durante 12 horas a fin de alcanzar el factor de separación estable para el par H2 /CH4 = 71 , CO2/CH4 =
41 .
Ej emplo 2
Se trata una membrana de fibra hueca asimétrica a partir de polietersulfona por pervaporación en una disolución al 11% (vol.) de acetona en C2H5OH durante 75 minutos, se seca bajo vacío 15 minutos, entonces se trata durante 60 segundos en disolución al 2,5% (vol.) de uretanosiloxano con isopropanol. La fibra hueca se seca en el aire durante 12 horas. Después de secar, la membrana de fibra hueca se modifica con una mezcla gaseosa (F2+HF) :N2=10 : 90 (vol.) durante 60 minutos; eso da por resultado un crecimiento adicional del factor de separación de 92 a 103 para el par H2/CH , y para el par CO2/CH4 de 45 a 56. La membrana producida en tal procedimiento mantuvo sus propiedades bajo la utilización en el medio H2S:CH =40: 60 (presión 0,3 MPa) durante 240 horas . Ejemplo 3 Se trata durante 85 minutos una membrana de fibra hueca asimétrica a partir de polietersulfona por pervaporación en una disolución al 9% (vol.) de dimetilforamida en C2H5OH, se seca bajo vacío 15 minutos, entonces se trata durante 60 segundos en disolución al 2,5% (vol.) de uretanosiloxano con isopropanol. La fibra hueca se seca en el aire durante 12 horas. Después de secar, la membrana de fibra hueca se modifica con una mezcla gaseosa (F2+HF):N2 = 20:80 (vol.) durante 120 minutos; eso da por resultado un crecimiento adicional del factor de separación de 58 a 71 para el par H2/CH4, y para el par CO2/CH4 de 34 a 44. La membrana producida en tal procedimiento mantuvo sus propiedades bajo la utilización en el medio CH4:(C3H8 + CH10 + CsH^) = 85:15 (presión 0,1 MPa) durante 240 horas. Ejemplo 4
Se trata durante 60 minutos una membrana de fibra hueca asimétrica a partir de polietersulfona por
HOJA SUSTITUTORIA REGLA 26 pervaporación en una disolución al 12% (vol.) de tolueno en C2H5OH, se seca bajo vacío 15 minutos, entonces se trata durante 60 segundos en disolución al 2,5% (vol.) de uretanosiloxano con isopropanol. La fibra hueca se seca en el aire durante 12 horas. Después de secar, la membrana de fibra hueca se modifica con una mezcla gaseosa (F2+HF) :N2 = 20:80 (vol.) durante 45 minutos; eso da por resultado un crecimiento adicional del factor de separación de 67 a 79 para el par H2/CH4, y para el par C02/CH de 35 a 40. La membrana producida en tal procedimiento mantuvo sus propiedades bajo la utilización en el medio H2S: CH4=40 : 60 (presión 0,3 MPa) durante 240 horas. Ejemplo 5 Se trata durante 90 minutos una membrana de fibra hueca asimétrica a partir de polietersulfona por pervaporación en una disolución al 7% (vol.) de acetona en C2H5OH, se seca bajo vacío 15 minutos, entonces se trata durante 60 segundos en disolución al 2,5% (vol.) de uretanosiloxano con isopropanol. La fibra hueca se seca en el aire durante 12 horas. Después de secar, la membrana de fibra hueca se modifica con una mezcla gaseosa (F2+HF):N2 = 10:90 (vol.) durante 60 minutos; eso da por resultado un crecimiento adicional del factor de separación de 84 a 97 para el par H2/CH , y para el par CO2/CH4 de 43 a 50. La membrana producida en tal procedimiento mantuvo sus propiedades bajo la utilización en el medio CH4:(C3H8 + C4H10 + C5H12) = 85:15 (presión 0,1 MPa) durante 240 horas.
HOJA S T El empleo de la invención permite:
* realizar el proceso de separación para mezclas gaseosas, que contienen H2 o componentes de gas natural, con mayor eficacia que las membranas producidas hasta ahora;
* separar mezclas con alto contenido de H2S (hasta 40% en vol.) e hidrocarburos pesados (hasta 15% en vol. ) ; * cambiar condiciones de modificación y/o tratamiento para producir membranas con diferentes propiedades requeridas sobre la base de un solo tipo de membrana inicial - membrana de fibra hueca a partir de polietersulfona para pervaporación; * aumentar la esfera de uso para la membrana de pervaporación;
* usar una modificación de flúor en fase gas en todas las etapas de la creación del separador de membrana: como una membrana, como un manojo (elemento de membrana) o separador de membrana preparado.

Claims

R E I V I N D I C A C I O N E S
1. Membrana de polímero para la separación de componentes de gas natural, que comprende fibra hueca asimétrica, a partir de polietersulfona con fines de pervaporación, tratada con mezclas de líquidos (C2H50H + X) , en la que X = tolueno, acetona, dimetilformamida, con un contenido de X=7-12% (vol.) en la mezcla, tratados posteriormente con una disolución al 2,5% (vol.) de uretanosiloxano en alcohol isopropilico .
2. Membrana de polímero, según la reivindicación 1, caracterizada porque se usa membrana de fibra hueca a partir de polietersulfona, modificada con mezcla gaseosa [ (F2 - HF) : gas inerte] con contenido de (F2 - HF) en el intervalo de 0-90% (vol.), y concentración de HF en flúor de 4-6% (vol.) .
PCT/ES1999/000279 1999-07-22 1999-08-27 Membrana de polimero para la separacion de mezclas de gases WO2001007148A1 (es)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA002380119A CA2380119A1 (en) 1999-07-22 1999-08-27 Polymer membrane for separating mixtures of gases
EP99944646A EP1206959A1 (en) 1999-07-22 1999-08-27 Polymer membrane for the separation of gas mixture
MXPA02000827A MXPA02000827A (es) 1999-07-22 1999-08-27 Membrana de polimero para la separacion de mezclas de gases.
JP2001512021A JP2003505231A (ja) 1999-07-22 1999-08-27 ガス混合物分離用の高分子膜
KR1020027000889A KR20020026545A (ko) 1999-07-22 1999-08-27 가스 혼합물 분리용 폴리머 막
AU57474/99A AU5747499A (en) 1999-07-22 1999-08-27 Polymer membrane for the separation of gas mixture
BR9917417-0A BR9917417A (pt) 1999-07-22 1999-08-27 Membrana polimérica e processo para tratar e modificar a mesma

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES009901652A ES2154230B1 (es) 1999-07-22 1999-07-22 Membrana de polimero para la separacion de mezclas de gases.
ESP9901652 1999-07-22

Publications (2)

Publication Number Publication Date
WO2001007148A1 true WO2001007148A1 (es) 2001-02-01
WO2001007148A9 WO2001007148A9 (es) 2001-04-12

Family

ID=8309333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES1999/000279 WO2001007148A1 (es) 1999-07-22 1999-08-27 Membrana de polimero para la separacion de mezclas de gases

Country Status (10)

Country Link
EP (1) EP1206959A1 (es)
JP (1) JP2003505231A (es)
KR (1) KR20020026545A (es)
CN (1) CN1361712A (es)
AU (1) AU5747499A (es)
BR (1) BR9917417A (es)
CA (1) CA2380119A1 (es)
ES (1) ES2154230B1 (es)
MX (1) MXPA02000827A (es)
WO (1) WO2001007148A1 (es)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2397303B (en) * 2003-01-17 2007-04-04 Smartmembrane Corp Gas separation membranes
GB2397821B (en) 2003-01-30 2006-04-05 Smartmembrane Corp Oxygen and nitrogen enriched atmospheres in aircraft
KR101929644B1 (ko) * 2014-04-16 2019-03-12 사우디 아라비안 오일 컴퍼니 클라우스 유닛에서 btex로 저 내지 중간 몰 퍼센트 황화수소 가스 피드를 처리하기 위한 개선된 황 회수 공정
JP2018086620A (ja) * 2016-11-28 2018-06-07 宇部興産株式会社 ガス分離方法
KR20200035545A (ko) 2018-09-27 2020-04-06 장병남 잉여열을 이용한 전원주택 보일러 시스템

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4746333A (en) * 1985-07-15 1988-05-24 Kernforschungszentrum Karlsruhe Gmbh Method for producing an integral asymmetric gas separating membrane and the resultant membrane
US4828585A (en) * 1986-08-01 1989-05-09 The Dow Chemical Company Surface modified gas separation membranes
US5085676A (en) * 1990-12-04 1992-02-04 E. I. Du Pont De Nemours And Company Novel multicomponent fluid separation membranes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4746333A (en) * 1985-07-15 1988-05-24 Kernforschungszentrum Karlsruhe Gmbh Method for producing an integral asymmetric gas separating membrane and the resultant membrane
US4828585A (en) * 1986-08-01 1989-05-09 The Dow Chemical Company Surface modified gas separation membranes
US5085676A (en) * 1990-12-04 1992-02-04 E. I. Du Pont De Nemours And Company Novel multicomponent fluid separation membranes

Also Published As

Publication number Publication date
CN1361712A (zh) 2002-07-31
ES2154230A1 (es) 2001-03-16
BR9917417A (pt) 2002-06-18
ES2154230B1 (es) 2001-12-01
KR20020026545A (ko) 2002-04-10
EP1206959A1 (en) 2002-05-22
WO2001007148A9 (es) 2001-04-12
CA2380119A1 (en) 2001-02-01
JP2003505231A (ja) 2003-02-12
AU5747499A (en) 2001-02-13
MXPA02000827A (es) 2003-07-14

Similar Documents

Publication Publication Date Title
Iulianelli et al. Membrane engineering: Latest advancements in gas separation and pre-treatment processes, petrochemical industry and refinery, and future perspectives in emerging applications
Alqaheem et al. Polymeric gas‐separation membranes for petroleum refining
US5879431A (en) Ethylene/nitrogen separation process
Baker Future directions of membrane gas separation technology
Baker et al. Gas separation membrane materials: a perspective
BRPI0906976B1 (pt) Processo para a remoção de contaminantes ácidos gasosos de uma corrente de alimentação hidrocarbônica gasosa
Perry et al. Polymer membranes for hydrogen separations
Ning et al. Carbon molecular sieve membranes derived from Matrimid® polyimide for nitrogen/methane separation
Sridhar et al. Membrane-based gas separation: Principle, applications and future potential
Liu et al. Surprising plasticization benefits in natural gas upgrading using polyimide membranes
US9205382B2 (en) Carbon dioxide separation system
WO2012092040A2 (en) Use of gas-separation membranes to enhance production in fields containing high concentrations of hydrogen sulfides
AU2009203713A1 (en) Multi - stage membrane separation process
Dong et al. Simulation and feasibility study of using thermally rearranged polymeric hollow fiber membranes for various industrial gas separation applications
AU2016362424A1 (en) Method and system for purification of natural gas using membranes
Belaissaoui et al. Evaluation of a dense skin hollow fiber gas-liquid membrane contactor for high pressure removal of CO2 from syngas using Selexol as the absorbent
WO2019046291A1 (en) PROCESS FOR SEPARATING DEAD-ENDED MEMBRANE GAS
WO2001007148A1 (es) Membrana de polimero para la separacion de mezclas de gases
WO2017096146A1 (en) Method and system for purification of natural gas using membranes
Ding Volatile organic compound liquid recovery by the dead end gas separation membrane process: theory and process simulation
EP0472794A1 (en) Liquid membrane process for separating gases
KR20130011394A (ko) 분리막 모듈 및 이를 포함하는 불화가스 분리농축장치
US8075671B2 (en) Supported metal membrane with internal cooling for H2 separation
Jasim et al. A Review of the Natural Gas Purification from Acid Gases by Membrane
Baudot Gas/Vapor permeation applications in the hydrocarbon-processing industry

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: C2

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: C2

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

COP Corrected version of pamphlet

Free format text: PAGES 1 AND 2, INTERNATIONAL SEARCH REPORT, REPLACED BY CORRECT PAGES 1 AND 2

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2380119

Country of ref document: CA

Ref document number: 998168149

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: PA/a/2002/000827

Country of ref document: MX

Ref document number: 57474/99

Country of ref document: AU

Ref document number: 1020027000889

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2002/136/KOL

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1999944646

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2002 2002104578

Country of ref document: RU

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1020027000889

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1999944646

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 10048140

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 1999944646

Country of ref document: EP