WO2001005995A1 - Method of preparing cell cultivation supernatant - Google Patents

Method of preparing cell cultivation supernatant Download PDF

Info

Publication number
WO2001005995A1
WO2001005995A1 PCT/JP2000/004776 JP0004776W WO0105995A1 WO 2001005995 A1 WO2001005995 A1 WO 2001005995A1 JP 0004776 W JP0004776 W JP 0004776W WO 0105995 A1 WO0105995 A1 WO 0105995A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture
cells
supernatant
phytase
yeast
Prior art date
Application number
PCT/JP2000/004776
Other languages
French (fr)
Japanese (ja)
Inventor
Kiyoshi Ito
Satoshi Yoshigai
Hitoshi Takahashi
Tadashi Araki
Junko Tokuda
Daisuke Mochizuki
Takeshi Nakamura
Original Assignee
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals, Inc. filed Critical Mitsui Chemicals, Inc.
Priority to AU60186/00A priority Critical patent/AU6018600A/en
Publication of WO2001005995A1 publication Critical patent/WO2001005995A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/34Extraction; Separation; Purification by filtration, ultrafiltration or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins

Definitions

  • Ol igonucleotide to act as a PGR primer for amplifying of Phytase gene from Schwann iomyces occidental is
  • Oligonucleotide to act as a PCR primer for amplifying of Phytase gene from Schwann i omyces occidental is
  • the present invention relates to a method for producing a cell culture supernatant from which cells and nucleic acids have been removed.
  • Microorganisms are widely used as hosts for producing useful substances such as organic acids, amino acids, and proteins.
  • useful substances such as organic acids, amino acids, and proteins.
  • a technology for efficiently producing a useful substance using a transformed microorganism into which a gene for an industrially useful protein has been introduced by utilizing genetic engineering technology has become known. .
  • the microorganism When a microorganism is subjected to liquid culture and the microorganism secretes and produces a useful substance such as a protein outside the cell, when the microorganism is recovered (purified) from the culture, the microorganism must be removed from the culture. There is. In addition, depending on the purpose of use of the useful substance, it is important to remove foreign substances such as DNA fragments leaked from cells killed during the culture. In particular, when the intended useful substance is used for adding food or feed, and when a transformed microorganism is used, the transformed microorganism cells should be completely removed. Not only is essential, but also it is required not to mix the recombinant DNA fragment introduced into the transformed microorganism.
  • centrifugal separation, filtration, treatment with a flocculant, membrane separation, etc. are known as methods for removing microbial cells from a microorganism culture solution.
  • other methods than membrane separation completely remove the cells. Can not do it.
  • membrane separation microbial cells can be completely removed by using an ultrafiltration membrane such as the commonly used 1 ⁇ 1 "Membrane F" membrane, but DNA fragments
  • ultrafiltration membrane such as the commonly used 1 ⁇ 1 "Membrane F" membrane
  • microorganisms can be cultured at a high concentration (for example, 5 g ZL or more in dry cell weight) by fed-batch culture using glucose / methanol or the like as a carbon source, or can be cultured for a long period of one day or more (continuous culture).
  • a high concentration for example, 5 g ZL or more in dry cell weight
  • continuous culture there are cases where a large amount of viscous substances such as polysaccharides and high molecular components generated by the cells leaked from the cells killed during the culture and the cells are accumulated in the culture solution.
  • MF Two In order to almost completely separate and remove microbial cells from such cultures, MF Two
  • an object of the present invention is to remove not only cells but also nucleic acids such as DNA fragments when producing a culture supernatant from a cell culture of a microorganism or the like, and the filter is clogged.
  • An object of the present invention is to provide a method for producing a cell culture supernatant, which allows a target substance produced by a cell to be recovered at a high recovery rate without causing cell bleeding.
  • the inventors of the present application have found that by using a porous filter having a zeta potential, the recovery rate of the target useful substance is not reduced, and the filter is not clogged.
  • the present inventors have found that cells and nucleic acids can be removed, and have completed the present invention.
  • the present invention relates to a method for producing a culture supernatant from a cell culture, wherein the culture obtained by liquid culturing the cells or a processed product thereof is passed through a porous filter having a zeta potential.
  • a method for producing a culture supernatant which comprises the step of removing the cells and the nucleic acids.
  • the present inventors added a chitosan-based flocculant and a polyacrylic acid-based flocculant to a culture solution before subjecting the cell culture to one treatment with a porous filter having a zeta potential.
  • the cells and nucleic acids are firstly removed, and then the obtained primary supernatant is subjected to a single treatment with a porous filter having a zeta potential, without reducing the recovery rate of the target useful substance, and
  • the present inventors have found that cells and nucleic acids can be removed without clogging of filters, and the present invention has been completed.
  • the present invention relates to a method for producing a culture supernatant from a cell culture, wherein the culture obtained by liquid culture of the cells is 1) a chitosan-based culture medium or a processed product thereof.
  • a first step of adding a polyacrylic acid-based flocculant to aggregate the cells and nucleic acids 2) separating the aggregated cells and nucleic acids to prepare a primary supernatant, 3) The primary supernatant was used as a reagent having a zeta potential. Pass through L filter Three
  • the present invention provides a method for producing a culture supernatant, which comprises removing the cells and nucleic acids through the third step.
  • Cells in the cell culture used in the method of the present invention may be any of microbial cells, plant cells, and animal cells. Cells that produce the desired useful substance and secrete it into the culture supernatant are preferred, and in particular, microbial cells, particularly microbial cells that are transformed with a gene encoding the useful substance and produce the useful substance, are suitable. A simple example can be mentioned.
  • microorganisms examples include gram-negative bacteria such as Escherichia coli and Pseudomonas spp., Gram-philic fungi such as Bacillus sp. Lactic acid bacteria, yeasts such as Saccharomyces sp. And Actinomycetes such as Streptomyces sp.
  • Candida yeast is often used not only as a host for producing useful substances such as proteins and aldehydes, but also in recent years, utilizing genetic engineering technology, it has been possible to obtain genes for industrially useful proteins. Techniques for efficiently producing the useful substance using the introduced transformed Candida yeast have become known.
  • preferred microorganisms used in the present invention include Candida yeast, and Candida yeast transformed separately. Further, among the yeasts of the genus Candida, Candida boidini is a typical example.
  • the yeast of the genus Candida in the present invention is not particularly limited as long as it is capable of efficiently producing an industrially useful substance.
  • the gene of the above-mentioned useful protein is introduced by genetic recombination technology.
  • a preferred example is a transformed Candida yeast capable of efficiently producing the useful substance.
  • useful substances produced by cells are not limited at all, and examples thereof include enzyme proteins such as phytase, cellulase, xylanase, dalcanase, peroxidase, and oxidase, various amino acids, and various physiologically active peptides. Is not limited to these.
  • a cell culture or a processed product thereof is passed through a filter described below.
  • the cell culture means a culture in which the above-mentioned cells are cultured in a medium containing ordinary organic and Z or inorganic components.
  • the processed product of the cell culture means a product obtained by subjecting the cell culture to some treatment.
  • the processed product is subjected to centrifugation, filtration, coagulant treatment, etc.
  • Treatment of cell cultures from which cells have been primarily removed, cultures that have been sterilized in advance by chemical treatment or heat treatment, and cultures to which the above-mentioned useful protein substrates and inhibitors have been added in advance Means things.
  • a liquid containing a useful substance of interest immobilized in a carrier or in contact with cells cultured on the carrier is also included in the “cell culture or processed product thereof” of the present invention. Is done.
  • the nucleic acid in the present invention may be any nucleic acid contained in a cell culture or a processed product thereof, and may be any of DNA and RNA.
  • Typical examples are DNA fragments derived from chromosomal DNA molecules of cells, such as chromosomal DNA leaked out of cells and physically and chemically fragmented, and alkaline SDS treatment.
  • Examples include DNA molecules that are not insolubilized even after denaturation treatment of DNA molecules, DNA molecules that have not been insolubilized by a coagulant treatment, and DNA molecules that have not been supplemented by treatment with a resin such as a porous membrane or glass beads. .
  • examples thereof include a recombinant expression vector such as a recombinant plasmid vector or a recombinant virus vector used for the transformation and a fragment thereof.
  • a recombinant expression vector such as a recombinant plasmid vector or a recombinant virus vector used for the transformation and a fragment thereof.
  • nucleic acids having a size of 100 Kbp or less, more preferably 100 Kbp or less, and particularly about 100 to 10 Kbp can be removed.
  • r zeta filter a porous filter having a zeta potential
  • a porous filter having a zeta potential refers to not only a mechanical filtration action by a porous filter but also a culture or a cell and a nucleic acid in the processed product which are treated by the zeta potential of the filter. Means a porous filter that is also removed by being electrostatically adsorbed to the filter.
  • the zeta potential of the filter is not particularly limited, but is preferably +5 mV or more with respect to pure water having a pH of 7.0. Further, the pore size of the porous filter is preferably about 0.05 to 20 im.
  • Zeta filters usually have a basic structure of a porous matrix in which constituent fibers composed of cellulose, low melting point polyester, polyester, polyethylene, polypropylene or a combination thereof are mechanically entangled and Z or adhesively bonded between the fibers.
  • a modifier having a positive zeta potential in a neutral liquid is attached to the porous matrix.
  • the adhesive bonding between the fibers is performed by a method of adhesively bonding the fibers with an adhesive fiber, a method of adhesively bonding the fibers with an adhesive resin, or the like, but is not limited thereto.
  • Examples of the modifier for imparting a zeta potential include cationic colloidal silica and a polymer having a positive zeta potential in a neutral liquid.
  • preferred examples of the polymer include polyvinyl pyridine-styrene copolymer quaternary chloride, polycation-acrylic copolymer, polyallylamine, polyethylamine, polyethyleneamine, polyethyleneimine, polyamide-epiclorhydrin, and the like. It can be mentioned.
  • it is desirable that the water-soluble one is cross-linked with a cross-linking agent such as epoxy, melamine, aldehyde, or the like, and is insoluble in water. As described above, it is preferable that these modifiers can impart a zeta potential of +5 mV or more to neutral water.
  • the modifier having a positive zeta potential can be attached relatively uniformly to the surface of the porous matrix.
  • the zeta potential can be measured by an ordinary method, and a device for that is also commercially available (for example, an ultrasonic zeta potential measuring device (model: Acoustophor 8000) manufactured by Penkem, a laser zeta manufactured by Coulter) Potential measuring device (model: DELSA-440), laser zeta potentiometer manufactured by Otsuka Electronics Co., Ltd. (model: ELS-8000, ELS-6000, etc.) Zeta potential can be easily measured using such a commercially available device. .
  • an ultrasonic zeta potential measuring device model: Acoustophor 8000 manufactured by Penkem
  • Potential measuring device model: DELSA-440
  • laser zeta potentiometer manufactured by Otsuka Electronics Co., Ltd. model: ELS-8000, ELS-6000, etc.
  • Zeta potential can be easily measured using such a commercially available device. .
  • the principle of measuring the zeta potential by a conventional method is as follows. In other words, when two phases are in contact with each other, when a voltage is applied externally between them, both phases move relative to each other, or conversely, both phases move relatively.
  • the electrokinetic phenomenon in which an electric field appears in the direction parallel to the interface, was measured, and the zeta potential, which indicates the charge state at both interfaces, was indirectly determined from each calculation formula using the measurement results. For example, when the streaming potential is used, the zeta potential is obtained by the following equation (1).
  • ⁇ ( ⁇ ' ⁇ ) / ( ⁇ 0 ⁇ ⁇ ⁇ ) ⁇ - ⁇ / ⁇ ⁇ ⁇ (1)
  • the conductivity ⁇ is based on Ohm's law used in the process of deriving the equation, and is proportional to the magnitude of the streaming potential generated by the movement of the electric charge at the interface electric double layer. Used as a count.
  • the dielectric constant ⁇ and the conductivity ⁇ must accurately consider the dielectric constant and conductivity of the interfacial electric double layer.However, assuming that they are equal to the dielectric constant and conductivity of the liquid, The values described in the literature for pure liquids are used.
  • the zeta potential has been measured and calculated as described above.
  • ⁇ ⁇ ⁇ ⁇ in equation (1) is measured with a pair of electrodes installed in the measurement system. Since this E depends on the dielectric constant and the electrical conductivity between the electrodes in principle, the value of E slightly varies depending on the measurement system. Since phenomena in the system interact, strictly speaking, the values of the dielectric constant and conductivity should assume both the electric charge of a liquid and a solid, but in general, a pure liquid
  • the zeta potential is determined using the literature value of.
  • the pore size of the L-type matrix may be evenly distributed, but should the pore size on the inflow side be larger than on the water outflow side? It is desirable that the L diameter is distributed. With such a structure, relatively large particles that cause contamination are collected on the inflow side, and relatively small particles are collected on the outflow side, so that clogging hardly occurs. Or many with multiple zeta potentials with different average pore sizes? The same can be achieved with an L filter.
  • the first porous filter having a zeta potential having a large average diameter for example, about 5 to 2 Om in average diameter
  • a first porous filter having a smaller average diameter for example, By treating with a second porous filter having a zeta potential, clogging hardly occurs and the life of the filter can be extended.
  • a plurality of filters are used, they can be used by arranging them in series in descending order of average pore diameter from the upstream side.
  • the zeta filter itself is well known and is commercially available.
  • a commercially available porous filter that claims to cause adsorption based on zeta potential satisfies the above-mentioned zeta potential of +7.0 mV with respect to pure water having a pH of 7.0, and the method of the present invention.
  • An example of one such commercially available filter is the Zetaplus (registered trademark) series, manufactured by CUNO, IC. Of Connecticut, USA (and Cuno Corporation of Yokohama, Japan, a Japanese corporation), ie, Zetablass® filters S Series, C Series, A, Series, U Series, LA Series and the like. Since these have a lineup of those having various pore sizes, desired filters can be used in combination as appropriate as described above. 8
  • a preferred example is a method of adding a chitosan-based and / or Z- or polyacrylic-acid-based flocculant to the culture solution or the processed product of the culture solution.
  • Coagulants are used in industrial wastewater such as papermaking, mining, civil engineering, cement manufacturing, aluminum refining and food processing, as well as in the sedimentation and dehydration of inorganic and organic sludge in the process. Widely used for etc. In other words, if the size of the solid suspended in the liquid is about 1 or less, it becomes difficult to separate the solid by physical methods such as ordinary precipitation and filtration. Have been. Chemicals that aggregate suspended fine particles into large aggregates, thereby facilitating sedimentation and filtration are called flocculants. Organic and inorganic flocculants are used.
  • a chitosan-based flocculant and a Z or acrylic acid-based flocculant, which are organic polymer-based flocculants, are used.
  • Chitosan is obtained by heating chitins of crustaceans such as renji and shrimp with a concentrated alkaline solution to at least partially deacetylate the acetylamino group attached to the cyclic portion of the sugar unit of chitin. Things.
  • the acetylation rate of the chitosan used is not particularly limited, but is preferably about 67 to 85 mol%.
  • such chitosan can be preferably used as a flocculant.
  • a chitosan derivative in which an anionic group, for example, a carboxyl group, a sulfone group, or the like is introduced into chitosan can be preferably used.
  • Chitosa 9 Chitosa 9
  • the chitin-based flocculants include chitosan itself and its derivatives.
  • the chitosan used as the coagulant preferably has a large molecular weight, more preferably 20,000 or more, particularly preferably about 50,000 to 400,000.
  • a chitosan-based flocculant itself preferably used in the method of the present invention is well known, is commercially available, and a commercially available product can be preferably used.
  • a commercially available product there may be mentioned, for example, Crime Bar 101 manufactured by Kurita Kogyo Co., Ltd. of Tokyo, Japan, but is not limited to this.
  • polyacrylic acid-based flocculant a polymer comprising a repeating unit represented by the following general formula can be preferably used.
  • X is a substituent selected C00H, G00Na, from C00NH 2.
  • X is polyacrylic acid (anionic For G00H), polyacrylic acid sodium For GOONa (cationic) And polyacrylamide (non-ionic), each of which is used as a polyacrylic acid-based flocculant
  • the molecular weight of the polyacrylic acid-based flocculant is not particularly limited, but is preferably as large as possible. Usually, about 200,000 to 100,000 is preferable.
  • Such a polyacrylic acid-based flocculant itself preferably used in the method of the present invention is well known, commercially available, and a commercially available product can be preferably used.
  • a commercially available product Crimbar 201 manufactured by Kurita Kogyo Co., Ltd. of Tokyo, Japan can be exemplified, but of course, the invention is not limited to this.
  • any of a chitosan-based flocculant alone, a polyacrylic acid-based flocculant alone, or a combination of two kinds of chitosan-based and polyacrylic acid-based flocculants may be used.
  • the amount of the chitosan-based flocculant used is preferably 0.1 to 8% by weight, more preferably 1 to 6% by weight, based on the amount of cells contained in the culture solution (in terms of dry weight). % By weight.
  • the amount of the polyacrylic acid-based flocculant used is preferably 0.05 to 2.0% by weight / o with respect to the amount of cells contained in the culture solution.
  • the p H of the culture solution sulfuric acid, propionic acid, formic acid, from p H 2.
  • Pre-adjustment under acidic conditions of 5 to 5.0 improves the cell aggregation effect.
  • the order of addition is not particularly limited. However, when adding these, it is easier to agglutinate the cells by stirring as strongly as possible.
  • the liquid thus treated with the flocculant is separated from the cell culture by centrifugation, filtration, decantation, etc., and is not separated from the primary supernatant by the zeta filter treatment described above. Cells and nucleic acids may be removed.
  • the cells in the cell culture to be subjected to the method of the present invention are not particularly limited as described above.
  • a transformed candy producing a useful substance as described above is preferable.
  • Da yeast can be mentioned.
  • As an example of such transformed Candida yeast Candida boidini i MT-40544 strain (FERM BP-5936) (EPM) into which a phytase gene derived from Schwanniomyces occidental is introduced has been introduced. 0 931 837 A1), but of course, the present invention is not limited to this, and the same form can be applied to microorganisms in general.
  • the composition of the liquid medium for culturing Candida yeast is not particularly limited as long as Candida yeast grows smoothly and useful substances are produced in the culture medium.
  • the carbon source include methanol, glycerol, ethanol, glucose and the like.
  • the nitrogen source various organic or inorganic nitrogen sources such as peptone, corn steep liquor, yeast extract and ammonium sulfate can be used alone or in combination. Also, salts of metals such as magnesium, sodium and potassium (phosphate, sulfate, hydrochloride), trace amounts of gold 1 1
  • a variety of vitamins, nucleic acid-related substances, pH regulators, etc. can be added to the medium.
  • the liquid culture method is 15 to 35 ° C, preferably 25 to 30 ° C.
  • the pH of the culture solution during the liquid culture is not particularly limited as long as the pH can grow the present yeast, but is usually in the range of pH 2 to 8, more preferably pH 4 to 7.
  • the culture period is usually about 1 day to 60 days, preferably about 7 days to 40 days. When the yeast cells and the supernatant are separated from the liquid in the continuous culture, the culture period is not particularly limited.
  • Candida boidinii MT-40544 (FERM BP-5936) was inoculated and cultured at 27 ° C for 2 days with shaking.
  • the culture was subjected to primary filtration using a Zetaplus filter BioCap 01A (particle size: 5 to 20 m, 24.6 cm 2 ) manufactured by Cuno Co., Ltd., which was washed with sterile water.
  • the obtained filtrate was filtered through a zeta plus filter BioCap10S (particle diameter: 0.9 to 2 im).
  • the filtrate obtained here is used as a Zetaplus filter BioCap30S (particle diameter 0.6 to 1.5 m), and the same BioCap60S (particle diameter 0.2 to 0.5). ⁇ m).
  • the number of viable yeast in 0.1 ml of the filtrate at each filtration stage was confirmed using a solid medium containing 1.5 ⁇ 1 ⁇ 2 agar in a culture solution having the composition shown in Table 1, and Separately, the amount of phytase protein in the filtrate was measured. Table 3 shows the results. At this time, the recovery rate of the phytase protein by the final 4-stage treatment of the zeta filter was 91%. 13
  • the culture termination solution obtained in Example 1 was centrifuged (9000 X g, 5 minutes) to remove yeast cells primarily. This centrifuged supernatant was divided into four tubes of 20 OmI each. Each of the supernatants was washed with sterile water, and the ZetaPlus filter BioCap (24.6 cm2) manufactured by Cuno Co., Ltd. was used for 01A (particle size 5 to 2 Oyum) and BIOcap 30S (particle size). 0.6 to 1.5 / im), BioC ap 60 S (particle size 0.2 to 0.55 m), BioC ap 90 S (particle size 0.05 to 0.2 m) ).
  • the number of viable yeast in 0.1 ml of each filtrate was confirmed using an individual medium obtained by adding 1.5% agar to the liquid medium shown in Table 1, and the amount of phytase protein in the filtrate was measured at the same time. .
  • Table 4 shows the results. No live yeast was detected in the 60 S filtrate, and the recovery of phytase protein at this time was 93%. Even when using any filter, supply pressure filtration end plate remained within 0. 5 k gZcm 2. 14
  • Oligonucleotides having a base sequence were used.
  • the Perkin-Elmer Corporation 3 ⁇ 4 (0.5 U CD Amp Ii Taq Gold.
  • the PCR reaction was performed under the condition that a reaction cycle consisting of 72 ° C. and 1 minute was repeated 25 times. (Galose concentration 0.8%), the presence of the amplified fragment could not be confirmed.
  • Example 2 The same centrifugal supernatant 2 OOm I as used in Example 2 was converted to a microza pencil type module PS of Asahi Kasei Kogyo Co., Ltd., which is a cruz flow type ultrafiltration membrane without zeta potential. Filtration was performed with P-013 (MF, 80 cm 2 , particle size 0.1 l / ⁇ m). Since the back pressure at the end of filtration became 1 kgZcm 2 or more, which is the maximum working pressure, the filtration operation was stopped when the liquid volume at the start was approximately 6 times concentrated.
  • P-013 MF, 80 cm 2 , particle size 0.1 l / ⁇ m
  • the number of viable yeast in 0.1 ml of the filtrate was confirmed using a solid medium containing 1.5% agar in a liquid medium having the composition shown in Table 1. No live yeast was detected. When the amount of phytase protein in the filtrate was measured, the recovery of phytase protein was 45%. Table 5 shows the results. Table 5
  • a chitosan diluent was prepared by mixing 98.5 g of pure water with 0.5 g of Crime Bar 101 manufactured by Kurita Water Industries Ltd. and 1 g of acetic acid.
  • the amount of the above-mentioned diluted chitosan solution was changed to 30 g , 45 g, and 60 g, and the mixture was stirred vigorously for 5 minutes.
  • This treated solution was centrifuged to remove bacteria (about 3000 X g, 10 minutes), and the turbidity (absorbance: 660 nm) of the supernatant was measured to confirm the cohesiveness of the yeast cells.
  • the addition of the chitosan-based flocculant reduced the turbidity of the supernatant, and confirmed the aggregation of yeast cells.
  • the chitosan diluent was prepared by adding 98 g of pure water to Crime Bar 101 (made by Kurita Water Industries Ltd.) 1 7
  • the polyacrylic acid diluent was prepared by dissolving 0.2 g of Crime Bar 201 (manufactured by Kurita Water Industries Ltd.) in 99.8 g of pure water. Propionic acid was used as a pH adjuster.
  • 0.7 g of the chitosan diluent was added to each 1 Og of the culture termination solution obtained by culturing in the same manner as in Example 1 when the pH was not adjusted and when the pH was adjusted to 4.2.
  • the mixture was vigorously stirred for 5 minutes, and then 0.7 g of a diluted polyacrylic acid solution was added.
  • the mixture was stirred until uniform formation of floc and floc was confirmed, and allowed to stand for 30 minutes.
  • This treated solution was subjected to centrifugal eradication treatment (about 2000 X g , 10 minutes), and the turbidity (absorbance: 660 nm) of the supernatant was measured to confirm the cohesiveness of the yeast cells.
  • Table 8 when the pH was adjusted to 4.2, the turbidity of the supernatant liquid was reduced, and it was confirmed that the yeast cells were better aggregated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

A method of preparing a cell cultivation supernatant free from cells and nucleic acid without causing clogging of a filter. It has a high recovery percentage of a desired useful substance produced by the cells. In this method, the cells and the nucleic acid are removed by passing a cultivation product or its processed product obtained by liquid cultivation through a porous filter having a zeta potential.

Description

SEQUENCE LISTING  SEQUENCE LISTING
<110> MITSUI CHEMICALS, INC. <110> MITSUI CHEMICALS, INC.
<120> Method for Producing Cel l Culture Supernatant  <120> Method for Producing Cel l Culture Supernatant
<130> 00PF204- PCT <130> 00PF204- PCT
<160> 2 <160> 2
<210> 1 <210> 1
<211> 29 <211> 29
く 212〉 DNA K 212> DNA
く 213〉 Artificial Sequece 213〉 Artificial Sequece
<220> <220>
<223> Ol igonucleotide to act as a PGR primer for ampl ifying of Phytase gene from Schwann iomyces occidental is  <223> Ol igonucleotide to act as a PGR primer for amplifying of Phytase gene from Schwann iomyces occidental is
く 400〉 1 C 400> 1
gttcgggtcc ttacattcaa cgcagtggt 29 gttcgggtcc ttacattcaa cgcagtggt 29
<210> 2 <210> 2
く 211〉 22 K 211> 22
〈212〉 DNA <212> DNA
<213> Artificial Sequece  <213> Artificial Sequece
<220> <220>
<223> Oligonucleotide to act as a PCR primer for ampl ifying of Phytase gene from Schwann i omyces occidental is  <223> Oligonucleotide to act as a PCR primer for amplifying of Phytase gene from Schwann i omyces occidental is
<400> 2 <400> 2
caacaaagtc aacatcccta ag 22 1 caacaaagtc aacatcccta ag 22 1
明細書  Specification
細胞培養上清液の製造方法  Method for producing cell culture supernatant
技術分野  Technical field
本発明は、 細胞及び核酸が除去された、 細胞培養上清液の製造方法に関する。  The present invention relates to a method for producing a cell culture supernatant from which cells and nucleic acids have been removed.
背景技術  Background art
微生物は、 有機酸やアミノ酸、 タンパク質などの有用物質を生産するための宿 主として広く利用されている。 特に近年は、 遺伝子工学技術を活用して、 産業上 有用なタンパク質の遺伝子を導入した形質転換された微生物を使用し、 該有用物 質を効率的に製造する技術が知られるようになつている。  Microorganisms are widely used as hosts for producing useful substances such as organic acids, amino acids, and proteins. In particular, in recent years, a technology for efficiently producing a useful substance using a transformed microorganism into which a gene for an industrially useful protein has been introduced by utilizing genetic engineering technology has become known. .
微生物を液体培養し、 該微生物にタンパク質などの有用物質を菌体外に分泌生 産させた後に、 該培養液より回収 (精製) する際には、 培養液から該微生物菌体 を除去する必要がある。 また、 該有用物質の使用目的によっては、 培養途中で死 滅した菌体から漏出した D N A断片などの夾雑物を除くことも重要となる。 特に、 目的とする有用物質を食品用や飼料用添加用途などに使用する場合であ リ、 かつ、 形質転換された微生物を使用する場合には、 該形質転換微生物菌体を 完全に除去することが必須であるばかりか、 該形質転換微生物に導入された組換 え D N A断片も混入させないことが求められている。  When a microorganism is subjected to liquid culture and the microorganism secretes and produces a useful substance such as a protein outside the cell, when the microorganism is recovered (purified) from the culture, the microorganism must be removed from the culture. There is. In addition, depending on the purpose of use of the useful substance, it is important to remove foreign substances such as DNA fragments leaked from cells killed during the culture. In particular, when the intended useful substance is used for adding food or feed, and when a transformed microorganism is used, the transformed microorganism cells should be completely removed. Not only is essential, but also it is required not to mix the recombinant DNA fragment introduced into the transformed microorganism.
一般的に微生物培養液より微生物菌体を除去する方法としては、 遠心分離 ·ろ 過,凝集剤処理,膜分離などが知られているが、 膜分離以外の方法では、 菌体を 完全に除去することができない。 一方、 膜分離の場合、 一般的に用いられている 1\ 1「膜ゃリ F膜などの限外ろ過膜を用いた場合、 微生物菌体は完全に除去するこ とはできるが、 D N A断片を完全に除去することはできないという問題点があつ た。  In general, centrifugal separation, filtration, treatment with a flocculant, membrane separation, etc. are known as methods for removing microbial cells from a microorganism culture solution. However, other methods than membrane separation completely remove the cells. Can not do it. On the other hand, in the case of membrane separation, microbial cells can be completely removed by using an ultrafiltration membrane such as the commonly used 1 \ 1 "Membrane F" membrane, but DNA fragments However, there was a problem that it was not possible to completely eliminate this.
さらに、 微生物をグルコースゃメタノールなどを炭素源とした流加培養等によ リ高濃度 (たとえば、 乾菌体重量で 5 g Z L以上) に培養したり、 一日以上の長 期間培養 (連続培養も含む) すると、 培養中に死滅した菌体からの漏出物ゃ菌体 が生成する多糖類や高分子成分等の粘性物質が培養液中に多く蓄積する場合があ る。 このような培養液から微生物菌体をほぼ完全に分離 '除去するために、 M F 2 In addition, microorganisms can be cultured at a high concentration (for example, 5 g ZL or more in dry cell weight) by fed-batch culture using glucose / methanol or the like as a carbon source, or can be cultured for a long period of one day or more (continuous culture). In this case, there are cases where a large amount of viscous substances such as polysaccharides and high molecular components generated by the cells leaked from the cells killed during the culture and the cells are accumulated in the culture solution. In order to almost completely separate and remove microbial cells from such cultures, MF Two
膜や U F膜などの限外ろ過膜を用いると、 培養液中の多糖類や高分子成分が膜に 目詰まりを起こし、 ろ過の障害となる。 このような場合、 実用的なろ過速度や低 圧損を維持することができないばかりでなく、 目的とする有用物質が同時に膜に 捕捉されてしまい、 結果的に有用物質の回収率が低下するという問題点もあった。  If an ultrafiltration membrane such as a membrane or a UF membrane is used, polysaccharides and polymer components in the culture solution will cause clogging of the membrane, which will hinder filtration. In such cases, not only is it impossible to maintain a practical filtration rate and low pressure drop, but also the target useful substance is simultaneously captured by the membrane, resulting in a reduction in the recovery rate of the useful substance. There were also points.
発明の開示  Disclosure of the invention
従って、 本発明の目的は、 微生物等の細胞培養物から培養上清液を製造する際 に、 細胞のみならず、 D N A断片等の核酸をも除去することができ、 かつ、 フィ ルターの目詰まりを起こすことなく、 細胞により産生される目的物質を高い回収 率で回収することができる、 細胞培養上清液の製造方法を提供することである。 本願発明者らは、 鋭意研究の結果、 ゼータ電位を有する多孔性フィルターを用 いることにより、 目的とする有用物質の回収率を低下させることなく、 かつ、 フ ィルターの目詰まリを伴うことなく、 細胞及び核酸を除去できることを見出し、 本発明を完成した。  Therefore, an object of the present invention is to remove not only cells but also nucleic acids such as DNA fragments when producing a culture supernatant from a cell culture of a microorganism or the like, and the filter is clogged. An object of the present invention is to provide a method for producing a cell culture supernatant, which allows a target substance produced by a cell to be recovered at a high recovery rate without causing cell bleeding. As a result of intensive studies, the inventors of the present application have found that by using a porous filter having a zeta potential, the recovery rate of the target useful substance is not reduced, and the filter is not clogged. The present inventors have found that cells and nucleic acids can be removed, and have completed the present invention.
すなわち、 本発明は、 細胞培養物から培養上清液を製造する方法であって、 前 記細胞を液体培養して得られる培養物又はその処理物を、 ゼータ電位を有する多 孔性フィルターに通し、 前記細胞及び核酸を除去する工程を含む、 培養上清液の 製造方法を提供する。  That is, the present invention relates to a method for producing a culture supernatant from a cell culture, wherein the culture obtained by liquid culturing the cells or a processed product thereof is passed through a porous filter having a zeta potential. A method for producing a culture supernatant, which comprises the step of removing the cells and the nucleic acids.
さらに、 本願発明者らは、 細胞培養物を、 ゼータ電位を有する多孔性フィルタ 一処理に供する前に、 キトサン系凝集剤およびノまたはポリアクリル酸系凝集剤 を培養液に添加して該培養液よリ該細胞及び核酸を一次除去し、 次いで、 得られ た一次上清液をゼータ電位を有する多孔性フィルタ一処理に供することにより、 目的とする有用物質の回収率を低下させることなく、 かつ、 フィルターの目詰ま リを伴うことなく、 細胞及び核酸を除去できることを見出し、 本発明を完成した。 すなわち、 本発明は、 細胞培養物から培養上清液を製造する方法であって、 前 記細胞を液体培養して得られる培養液を、 1 ) 該培養液又はその処理物にキトサ ン系および またはポリアクリル酸系凝集剤を添加して該細胞及び核酸を凝集さ せる第一の工程、 2 ) 凝集した該細胞及び核酸を分離して一次上清液を調製する 第二の工程、 3 ) 該一次上清液を、 ゼータ電位を有する多? L性フィルターに通す 3 Further, the present inventors added a chitosan-based flocculant and a polyacrylic acid-based flocculant to a culture solution before subjecting the cell culture to one treatment with a porous filter having a zeta potential. The cells and nucleic acids are firstly removed, and then the obtained primary supernatant is subjected to a single treatment with a porous filter having a zeta potential, without reducing the recovery rate of the target useful substance, and The present inventors have found that cells and nucleic acids can be removed without clogging of filters, and the present invention has been completed. That is, the present invention relates to a method for producing a culture supernatant from a cell culture, wherein the culture obtained by liquid culture of the cells is 1) a chitosan-based culture medium or a processed product thereof. Alternatively, a first step of adding a polyacrylic acid-based flocculant to aggregate the cells and nucleic acids, 2) separating the aggregated cells and nucleic acids to prepare a primary supernatant, 3) The primary supernatant was used as a reagent having a zeta potential. Pass through L filter Three
第三の工程を経ることにより、 前記細胞及び核酸を除去することを特徴とする培 養上清液の製造方法を提供する。  The present invention provides a method for producing a culture supernatant, which comprises removing the cells and nucleic acids through the third step.
本発明の方法によれば、 目的とする有用物質の回収率を低下させることなく、 かつ、 フィルターの目詰まりを伴うことなく、 細胞及び核酸が除去された細胞培 養上清液を製造することができる。  According to the method of the present invention, it is possible to produce a cell culture supernatant from which cells and nucleic acids have been removed without lowering the recovery of the target useful substance and without clogging the filter. Can be.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
本発明の方法に用いられる細胞培養物中の 「細胞」 は、 微生物細胞、 植物細胞 及び動物細胞のいずれであってもよい。 目的とする有用物質を生産し、 培養上清 液中に分泌する細胞が好ましく、 特に、 微生物細胞、 とりわけ該有用物質をコー ドする遺伝子で形質転換され、 該有用物質を産生する微生物細胞を好適な例とし て挙げることができる。  "Cells" in the cell culture used in the method of the present invention may be any of microbial cells, plant cells, and animal cells. Cells that produce the desired useful substance and secrete it into the culture supernatant are preferred, and in particular, microbial cells, particularly microbial cells that are transformed with a gene encoding the useful substance and produce the useful substance, are suitable. A simple example can be mentioned.
好ましい微生物の例として、 大腸菌ゃシユードモナス属菌などのグラム陰性菌、 バチルス属菌ゃ乳酸菌などのグラム暘性菌、 サッカロマイセス属ゃキャンディダ 属などの酵母、 ァスペルギウス属ゃぺニシリウ厶属などの糸状菌、 ストレブトマ イセス属ゃ口ドコッカス属などの放線菌を挙げることができる。  Examples of preferred microorganisms include gram-negative bacteria such as Escherichia coli and Pseudomonas spp., Gram-philic fungi such as Bacillus sp. Lactic acid bacteria, yeasts such as Saccharomyces sp. And Actinomycetes such as Streptomyces sp.
特に、 キャンディダ属酵母は、 タンパク質やアルデヒド類などの有用物質を生 産するための宿主としてしばしば利用されてきたばかりか、 近年は遺伝子工学技 術を活用して、 産業上有用なタンパク質の遺伝子を導入した形質転換されたキヤ ンディダ属酵母を使用し、 該有用物質を効率的に製造する技術が知られるように なってきた。 かかる技術水準を鑑み、 本発明に用いる微生物としては、 キャンデ ィダ属酵母、 とリわけ形質転換されたキャンディダ属酵母をその好適な例として 挙げることができる。 さらに、 キャンディダ属酵母の中でも、 キャンディダ'ボ ィディニイ Candida boidini ί、がその代表例として挙げられる。  In particular, Candida yeast is often used not only as a host for producing useful substances such as proteins and aldehydes, but also in recent years, utilizing genetic engineering technology, it has been possible to obtain genes for industrially useful proteins. Techniques for efficiently producing the useful substance using the introduced transformed Candida yeast have become known. In view of the state of the art, preferred microorganisms used in the present invention include Candida yeast, and Candida yeast transformed separately. Further, among the yeasts of the genus Candida, Candida boidini is a typical example.
すなわち、 本発明におけるキャンディダ属酵母とは、 産業上有用な物質を効率 的に生産できるものであれば特に制限はなく、 とりわけ、 遺伝子組換え技術によ リ上述の有用タンパク質の遺伝子が導入され、 該有用物質を効率的生産できるよ うになつた形質転換されたキャンディダ属酵母を好適な例として挙げることがで さる。 4 That is, the yeast of the genus Candida in the present invention is not particularly limited as long as it is capable of efficiently producing an industrially useful substance. Particularly, the gene of the above-mentioned useful protein is introduced by genetic recombination technology. A preferred example is a transformed Candida yeast capable of efficiently producing the useful substance. Four
また、 細胞が生産する有用物質も何ら限定されるものではなく、 例えば、 フィ ターゼ、 セルラーゼ、 キシラナーゼ、 ダルカナーゼ、 ペルォキシダーゼ、 ォキシ ダーゼなどの酵素タンパク質、 各種アミノ酸、 各種生理活性ペプチド等を挙げる ことができるがこれらに限定されるものではない。  In addition, useful substances produced by cells are not limited at all, and examples thereof include enzyme proteins such as phytase, cellulase, xylanase, dalcanase, peroxidase, and oxidase, various amino acids, and various physiologically active peptides. Is not limited to these.
本発明の方法においては、 細胞培養物又はその処理物を、 後述するフィルター に通す。 ここで、 細胞培養物とは、 通常の有機および Zまたは無機成分を含有す る培地中にて上述の細胞を培養した培養物を意味する。 また、 細胞培養物の処理 物とは、 細胞培養物に何らかの処理を行って得られたものを意味し、 たとえば、 後述するような遠心分離処理、 ろ過処理や凝集剤処理等によリ予め該細胞を一次 除去した細胞培養物の処理物、 薬剤処理や加熱処理などにより予め殺菌処理を施 した培養物の処理物や、 上述の有用なタンパク質の基質や阻害物を予め添加した 培養物の処理物等を意味する。 さらに、 バイオリアクター等において、 担体中に 不動化され、 又は担体上で培養されている細胞に接触した、 目的とする有用物質 を含む液も本発明における 「細胞培養物又はその処理物」 に包含される。  In the method of the present invention, a cell culture or a processed product thereof is passed through a filter described below. Here, the cell culture means a culture in which the above-mentioned cells are cultured in a medium containing ordinary organic and Z or inorganic components. The processed product of the cell culture means a product obtained by subjecting the cell culture to some treatment. For example, the processed product is subjected to centrifugation, filtration, coagulant treatment, etc. Treatment of cell cultures from which cells have been primarily removed, cultures that have been sterilized in advance by chemical treatment or heat treatment, and cultures to which the above-mentioned useful protein substrates and inhibitors have been added in advance Means things. Furthermore, in the bioreactor and the like, a liquid containing a useful substance of interest immobilized in a carrier or in contact with cells cultured on the carrier is also included in the “cell culture or processed product thereof” of the present invention. Is done.
本発明における核酸とは、 細胞培養物又はその処理物中に含まれるいずれの核 酸であってもよく、 D N A及び R N Aのいずれであってもよい。 代表的な例とし て、 細胞の染色体 D N A分子に起因する D N A断片、 たとえば、 菌体外に漏出し た染色体 D N Aであって物理的 ·化学的に断片化された D N A分子、 アルカリノ S D S処理などの D N A分子の変性処理を経ても不溶化しない D N A分子、 凝集 剤処理などによって不溶化されなかった D N A分子、 多孔膜やグラスビーズなど の樹脂による処理によっても補足されなかった D N A分子などを挙げることがで きる。 さらに、 細胞が形質転換細胞である場合には、 その形質転換に用いられた 組換えプラスミドベクタ一や組換えウィルスベクターのような組換え発現べクタ 一やその断片を挙げることができる。 なお、 本発明の方法によれば、 1 0 0 K b p以下、 より好ましくは、 1 0 K b p以下、 特に 1 0 0 b p〜 1 0 K b p程度の サイズの核酸を除去することができる。  The nucleic acid in the present invention may be any nucleic acid contained in a cell culture or a processed product thereof, and may be any of DNA and RNA. Typical examples are DNA fragments derived from chromosomal DNA molecules of cells, such as chromosomal DNA leaked out of cells and physically and chemically fragmented, and alkaline SDS treatment. Examples include DNA molecules that are not insolubilized even after denaturation treatment of DNA molecules, DNA molecules that have not been insolubilized by a coagulant treatment, and DNA molecules that have not been supplemented by treatment with a resin such as a porous membrane or glass beads. . Further, when the cell is a transformed cell, examples thereof include a recombinant expression vector such as a recombinant plasmid vector or a recombinant virus vector used for the transformation and a fragment thereof. According to the method of the present invention, nucleic acids having a size of 100 Kbp or less, more preferably 100 Kbp or less, and particularly about 100 to 10 Kbp can be removed.
本発明の方法では、 上記した細胞培養物又はその処理物を、 ゼータ電位を有す る多孔性フィルター (以下、 rゼータフィルター」 と言うことがある) に通し、 5 In the method of the present invention, the above-described cell culture or a processed product thereof is passed through a porous filter having a zeta potential (hereinafter, sometimes referred to as “r zeta filter”), Five
前記細胞及び核酸を除去する。 ここで、 Γゼータ電位を有する多孔性フィルター 」 とは、 多孔性フィルターによる機械的なろ過作用のみならず、 フィルターが持 つゼータ電位により、 処理される培養物又はその処理物中の細胞及び核酸がフィ ルターに静電的に吸着されることによつても除去される多孔性フィルターを意味 する。 The cells and nucleic acids are removed. Here, the term “a porous filter having a zeta potential” refers to not only a mechanical filtration action by a porous filter but also a culture or a cell and a nucleic acid in the processed product which are treated by the zeta potential of the filter. Means a porous filter that is also removed by being electrostatically adsorbed to the filter.
フィルターのゼータ電位は、 特に限定されないが、 p H 7. 0の純水に対して + 5 mV以上であることが好ましい。 また、 多孔性フィルターの孔径は 0. 05〜20 i m程度が好ましい。  The zeta potential of the filter is not particularly limited, but is preferably +5 mV or more with respect to pure water having a pH of 7.0. Further, the pore size of the porous filter is preferably about 0.05 to 20 im.
ゼータフィルタ一は、 通常、 セルロース、 低融点ポリエステル、 ポリエステル、 ポリエチレン、 ポリプロピレン又はこれらの組合せから成る構成繊維が機械的に 絡合及び Z又は繊維間が接着結合された多孔質マトリックスを基本構造とし、 該 多孔質マトリックスに、 中性液体中でのゼータ電位がプラスの改質剤が付着した ものである。 繊維間の接着結合は、 接着性繊維により繊維間を接着結合する方法 や、 接着樹脂によリ繊維間を接着結合する方法等により行われるがこれらに限定 されるものではない。  Zeta filters usually have a basic structure of a porous matrix in which constituent fibers composed of cellulose, low melting point polyester, polyester, polyethylene, polypropylene or a combination thereof are mechanically entangled and Z or adhesively bonded between the fibers. A modifier having a positive zeta potential in a neutral liquid is attached to the porous matrix. The adhesive bonding between the fibers is performed by a method of adhesively bonding the fibers with an adhesive fiber, a method of adhesively bonding the fibers with an adhesive resin, or the like, but is not limited thereto.
ゼータ電位を付与するための改質剤としては、 中性液体中でのゼータ電位がプ ラスの、 カチオン性コロイド状シリカやポリマー等が挙げられる。 ここで、 ポリ マーとしては、 ポリビニルピリジン一スチレン共重合体 4級塩化物、 ポリカチォ ンーアクリル共重合体、 ポリアリルァミン、 ポリェチルァミン、 ポリエチレンァ ミン、 ポリエチレンィミン、 ポリアミド一ェピクロルヒドリン等を好ましい例と して挙げることができる。 なお、 水溶性のものはエポキシ、 メラミン、 アルデヒ ド等の架橋剤で架橋させ、 水に不溶化させておくことが望ましい。 なお、 これら の改質剤は、 上記の通り、 中性の水に対して + 5 m V以上のゼータ電位を付与で きるものが好ましい。  Examples of the modifier for imparting a zeta potential include cationic colloidal silica and a polymer having a positive zeta potential in a neutral liquid. Here, preferred examples of the polymer include polyvinyl pyridine-styrene copolymer quaternary chloride, polycation-acrylic copolymer, polyallylamine, polyethylamine, polyethyleneamine, polyethyleneimine, polyamide-epiclorhydrin, and the like. It can be mentioned. In addition, it is desirable that the water-soluble one is cross-linked with a cross-linking agent such as epoxy, melamine, aldehyde, or the like, and is insoluble in water. As described above, it is preferable that these modifiers can impart a zeta potential of +5 mV or more to neutral water.
さらに、 これらの改質剤の付着方法としては、 上記カチオン性コロイド状シリ 力やポリマーを、 溶剤溶液、 ェマルジヨン溶液などの溶液状態とし、 多孔質マト リックスに含浸又は塗布するのがよい。 このような付着方法によると、 多孔質マ トリックス表面に比較的均一にゼータ電位がプラスの改質剤を付着できる。 6 Further, as a method for attaching these modifiers, it is preferable to impregnate or apply the above-mentioned cationic colloidal silicic acid or polymer in a solution state such as a solvent solution or emulsion solution and to impregnate or coat the porous matrix. According to such an attachment method, the modifier having a positive zeta potential can be attached relatively uniformly to the surface of the porous matrix. 6
なお、 ゼ一タ電位は常法により測定することができ、 そのための装置も市販さ れている (例えば、 Penkem社製超音波ゼータ電位測定装置 (型式: Acoustophor 8000)、 コールター社製レーザー法ゼータ電位測定装置 (型式: DELSA- 440)、 大塚 電子 (株) 製レーザーゼータ電位計 (型式: ELS-8000、 ELS - 6000等) 。 このよ うな市販の装置を用いて容易にゼータ電位を測定できる。  The zeta potential can be measured by an ordinary method, and a device for that is also commercially available (for example, an ultrasonic zeta potential measuring device (model: Acoustophor 8000) manufactured by Penkem, a laser zeta manufactured by Coulter) Potential measuring device (model: DELSA-440), laser zeta potentiometer manufactured by Otsuka Electronics Co., Ltd. (model: ELS-8000, ELS-6000, etc.) Zeta potential can be easily measured using such a commercially available device. .
常法によるゼータ電位の測定原理は次の通りである。 すなわち、 固体、 液体 2 相が接しているとき、 これらの間に外部から電圧を与えると、 これらの両相が相 対的に移動し、 あるいは逆に、 両相を相対的に移動させることによって、 界面に 平行な方向に電界が現れる界面動電現象を測定し、 その測定結果を用いたそれぞ れの計算式から、 両界面における荷電状態を表すゼータ電位が間接的に求められ ている。 例えば、 流動電位を用いた場合には下記の式(1)によってゼータ電位 を求める。  The principle of measuring the zeta potential by a conventional method is as follows. In other words, when two phases are in contact with each other, when a voltage is applied externally between them, both phases move relative to each other, or conversely, both phases move relatively. The electrokinetic phenomenon, in which an electric field appears in the direction parallel to the interface, was measured, and the zeta potential, which indicates the charge state at both interfaces, was indirectly determined from each calculation formula using the measurement results. For example, when the streaming potential is used, the zeta potential is obtained by the following equation (1).
ξ = { ( ν ' λ ) / ( ε 0■ ε Γ) } - Ε/Ρ ■ · ■ (1 ) ξ = {(ν 'λ) / (ε 0 ■ ε Γ )}-Ε / Ρ ■ · (1)
ここで、 ?は液体の粘性率、 λは液体の導電率、 は真空の誘電率、 s rは液 体の比誘電率、 Eは流動電位、 Pは流動圧力である。 Where? Is the viscosity of the liquid, λ is the conductivity of the liquid, is the dielectric constant of vacuum, s r is the relative dielectric constant of the liquid, E is the streaming potential, and P is the flowing pressure.
(1 )式において、 誘電率 ε ( = ε。· s r)は、 式の導出過程において用いられる He l mho l tzの分子容量説に基づくものであり、 界面電気二重層の持つ電荷量を表 すために用いられる。 また、 (1 )式において導電率 λは式の導出過程において用 いられる Ohmの法則に基づくものであり、 界面電気二重層の電荷が移動すること により発生する流動電位の大きさを表現する比例計数として用いられる。 誘電率 εや導電率 λは、 正確には界面電気二重層の誘電率、 導電率を考慮しなければな らないが、 通常、 液体の誘電率、 導電率に等しいとして、 これらの値には純液体 の文献に記載されている値が用いられている。 そして、 分散層又は充填層に対し て一方向に液体を流した場合に、 電極間に発生する流動電位 Εと液体を流動させ る流動圧力 Ρを測定し、 前記の(1 )式に当てはめることによリゼータ電位^を算 出する。 In the equation (1), the dielectric constant ε (= ε. Sr ) is based on the Helmholtz molecular capacity theory used in the derivation process of the equation, and the electric charge of the interface electric double layer is Used to represent. In Equation (1), the conductivity λ is based on Ohm's law used in the process of deriving the equation, and is proportional to the magnitude of the streaming potential generated by the movement of the electric charge at the interface electric double layer. Used as a count. The dielectric constant ε and the conductivity λ must accurately consider the dielectric constant and conductivity of the interfacial electric double layer.However, assuming that they are equal to the dielectric constant and conductivity of the liquid, The values described in the literature for pure liquids are used. Then, when a liquid is caused to flow in one direction to the dispersion layer or the packed bed, the flow potential 間 に generated between the electrodes and the flow pressure さ せ for flowing the liquid are measured and applied to the above equation (1). Calculates the resizer potential ^.
従来より、 ゼータ電位は以上のように測定、 算出されており、 例えば、 流動電 位方においては(1 )式における Εを測定系に設置された一対の電極で測定するが、 この Eは原理的に該電極間の誘電率及び導電率に依存するので、 測定系によって Eの値は多少変わる。 系内の現象には相互作用があるため、 厳密には、 誘電率及 び導電率の値には液体及び固体の持つ両方の電荷量を想定すべきであるが、 一般 的には、 純液体の文献値を用いてゼータ電位を求める。 Conventionally, the zeta potential has been measured and calculated as described above. For example, in the flowing potential method, に お け る in equation (1) is measured with a pair of electrodes installed in the measurement system. Since this E depends on the dielectric constant and the electrical conductivity between the electrodes in principle, the value of E slightly varies depending on the measurement system. Since phenomena in the system interact, strictly speaking, the values of the dielectric constant and conductivity should assume both the electric charge of a liquid and a solid, but in general, a pure liquid The zeta potential is determined using the literature value of.
上記多? L質マトリックスの孔径は一様に分布していてもよいが、 水の流出側よ リも流入側の孔径が大きくなるように? L径が分布していることが望ましい。 この ような構造にすると、 汚れの原因となる比較的大きな粒子は流入側で、 比較的小 さな粒子は流出側で捕集されることとなり、 目詰まりが生じにくくなる。 あるい は、 平均孔径の異なる複数のゼータ電位を有する多? L性フィルターを用いて、 こ れと同様なことを達成することができる。 すなわち、 先ず、 平均 ¾径の大きな ( 例えば、 平均 ¾径 5〜2 O m程度) のゼータ電位を有する第 1の多孔性フィル ターで処理し、 次いで、 平均孔径のより小さな (例えば、 平均孔径 0. 1〜5 ;u m 程度) 、 ゼータ電位を有する第 2の多孔性フィルターで処理することにより、 目 詰まりが生じにくくなリ、 フィルタ一の寿命を延ばすことができる。 さらに、 平 均孔径が異なる 3種類以上のゼータ電位を有する多孔性フィルターを用いて、 平 均孔径の大きなものから順次用いて処理していくことも好ましい。 なお、 複数の フィルターを用いる場合には、 上流側から、 平均孔径の大きなもの順に直列に配 列して用いることができる。  Above many? The pore size of the L-type matrix may be evenly distributed, but should the pore size on the inflow side be larger than on the water outflow side? It is desirable that the L diameter is distributed. With such a structure, relatively large particles that cause contamination are collected on the inflow side, and relatively small particles are collected on the outflow side, so that clogging hardly occurs. Or many with multiple zeta potentials with different average pore sizes? The same can be achieved with an L filter. That is, first, the first porous filter having a zeta potential having a large average diameter (for example, about 5 to 2 Om in average diameter) is processed, and then a first porous filter having a smaller average diameter (for example, By treating with a second porous filter having a zeta potential, clogging hardly occurs and the life of the filter can be extended. Furthermore, it is also preferable to use a porous filter having three or more kinds of zeta potentials having different average pore diameters, and to perform the treatment in order from one having a larger average pore diameter. When a plurality of filters are used, they can be used by arranging them in series in descending order of average pore diameter from the upstream side.
なお、 ゼータフィルター自体は、 周知であり、 市販もされている。 ゼータ電位 に基づく吸着が生じることを標榜している市販の多孔性フィルタ一は、 上記した、 p H 7. 0の純水に対するゼータ電位 +5 mV以上を満足するものであり、 本発明の 方法において好ましく用いることができる。 このような市販のフィルタ一の例と して、 米国コネチカット州の CUNO, I C. (及び日本法人である日本国横浜市の キュノ株式会社) 製のゼ一タプラス (登録商標) シリーズ、 すなわち、 ゼータブ ラス (登録商標) フィルター Sシリーズ、 Cシリーズ、 A、 シリーズ、 Uシリー ズ、 L Aシリーズ等を挙げることができる。 これらには、 各種の孔径を有するも のがラインアップされているので、 所望のフィルタ一を上記の通り適宜組み合わ せて利用することができる。 8 The zeta filter itself is well known and is commercially available. A commercially available porous filter that claims to cause adsorption based on zeta potential satisfies the above-mentioned zeta potential of +7.0 mV with respect to pure water having a pH of 7.0, and the method of the present invention. Can be preferably used. An example of one such commercially available filter is the Zetaplus (registered trademark) series, manufactured by CUNO, IC. Of Connecticut, USA (and Cuno Corporation of Yokohama, Japan, a Japanese corporation), ie, Zetablass® filters S Series, C Series, A, Series, U Series, LA Series and the like. Since these have a lineup of those having various pore sizes, desired filters can be used in combination as appropriate as described above. 8
一方、 微生物菌体等の細胞を高密度培養した場合や、 連続培養などにより長期 間培養した結果、 培養中に死滅した細胞からの漏出物や、 細胞が生成する多糖や 高分子成分などの粘性物質が培養液中で増加している場合には、 培養液を直接ゼ ータフィルタ一で処理すると、 酵母菌体と培養上清液の分離そのものが困難とな つたり、 実用的なフィルター寿命、 ろ過速度や低圧損を維持することが困難とな ることがある。 その場合には、 前処理として凝集剤処理や遠心分離などの方法に よって、 酵母菌体をある程度除去した一次上清液をゼータフィルタ一処理に供す る方がより望ましい。  On the other hand, when cells such as microbial cells are cultured at high density, or as a result of long-term culture such as continuous culture, leakage from cells that have died during culture, and viscosity of polysaccharides and polymer components produced by the cells, etc. If substances are increasing in the culture solution, treating the culture solution directly with a zeta filter makes it difficult to separate the yeast cells from the culture supernatant, and has a practical filter life and filtration. Maintaining speed and low pressure drop can be difficult. In that case, it is more preferable to subject the primary supernatant liquid from which yeast cells have been removed to some extent to a zeta filter treatment by a method such as a flocculant treatment or centrifugation as a pretreatment.
特に本発明においては、 該培養液、 または、 培養液の処理物に、 キトサン系お よび Zまたはポリアクリル酸系凝集剤を添加する方法を好適な例として挙げるこ とができる。  In particular, in the present invention, a preferred example is a method of adding a chitosan-based and / or Z- or polyacrylic-acid-based flocculant to the culture solution or the processed product of the culture solution.
凝集剤は、 製紙、 鉱山、 土木、 セメント製造、 アルミニウム精鍊、 食品などの 産業排水や工程中の無機、 有機汚泥の沈降、 脱水等、 さらには、 上下水道や生活 排水の浄化、 脱水プロセスの合理化のため等に広く用いられている。 すなわち、 液体中に懸濁する固形物の大きさが、 1 程度以下になると、 通常の沈殿、 ろ 過等の物理的方法だけでは固形物の分離が困難となるので、 凝集沈殿法が採用さ れている。 懸濁している微粒子をまとめて大きな固まりにし、 それによつて沈降 やろ過を容易にする薬剤を凝集剤といい、 有機系凝集剤と無機系凝集剤が用いら れている。  Coagulants are used in industrial wastewater such as papermaking, mining, civil engineering, cement manufacturing, aluminum refining and food processing, as well as in the sedimentation and dehydration of inorganic and organic sludge in the process. Widely used for etc. In other words, if the size of the solid suspended in the liquid is about 1 or less, it becomes difficult to separate the solid by physical methods such as ordinary precipitation and filtration. Have been. Chemicals that aggregate suspended fine particles into large aggregates, thereby facilitating sedimentation and filtration are called flocculants. Organic and inorganic flocculants are used.
本発明の方法では、 これらのうち、 有機高分子系凝集剤であるキトサン系凝集 剤及び Z又はァクリル酸系凝集剤が用いられる。  In the method of the present invention, a chitosan-based flocculant and a Z or acrylic acid-based flocculant, which are organic polymer-based flocculants, are used.
キトサンは、 力二、 ェビなどの甲殻類のキチン質を濃アルカリ溶液と加熱し、 キチンの糖単位の環状部分に結合しているァセチルァミノ基を少なくとも部分的 に脱ァセチル化することにより得られるものである。 使用するキトサンのァセチ ル化率は、 特に限定されないが、 6 7〜8 5モル%程度であることが好ましい。 本発明において、 このようなキトサンを凝集剤として好ましく用いることができ る。 また、 キトサンにァニオン性基、 例えば、 カルボキシル基、 スルホン基等が 導入されたキトサン誘導体も好ましく用いることができる。 このように、 キトサ 9 Chitosan is obtained by heating chitins of crustaceans such as renji and shrimp with a concentrated alkaline solution to at least partially deacetylate the acetylamino group attached to the cyclic portion of the sugar unit of chitin. Things. The acetylation rate of the chitosan used is not particularly limited, but is preferably about 67 to 85 mol%. In the present invention, such chitosan can be preferably used as a flocculant. Also, a chitosan derivative in which an anionic group, for example, a carboxyl group, a sulfone group, or the like is introduced into chitosan can be preferably used. Thus, Chitosa 9
ン系凝集剤には、 キトサン自身及びその誘導体が包含される。 なお、 凝集剤とし て用いられるキトサンは、 分子量が大きい方が好ましく、 分子量 2万以上、 特に, 分子量 5万〜 4 0万程度のものが好ましく用いられる。  The chitin-based flocculants include chitosan itself and its derivatives. The chitosan used as the coagulant preferably has a large molecular weight, more preferably 20,000 or more, particularly preferably about 50,000 to 400,000.
なお、 本発明の方法において好ましく用いられるこのようなキトサン系凝集剤 自身は周知であり、 市販されており、 市販品を好ましく用いることができる。 市 販品の例として、 日本国東京都の栗田工業社製のクリム一バー 1 0 1等を挙げる ことができるが、 もちろん、 これに限定されるものではない。  In addition, such a chitosan-based flocculant itself preferably used in the method of the present invention is well known, is commercially available, and a commercially available product can be preferably used. As an example of a marketed product, there may be mentioned, for example, Crime Bar 101 manufactured by Kurita Kogyo Co., Ltd. of Tokyo, Japan, but is not limited to this.
ポリアクリル酸系凝集剤としては、 次の一般式で表される繰り返し単位から成 る重合体を好ましく用いることができる。
Figure imgf000011_0001
As the polyacrylic acid-based flocculant, a polymer comprising a repeating unit represented by the following general formula can be preferably used.
Figure imgf000011_0001
(式中、 Xは C00H、 G00Na、 C00NH2から選択される置換基である。 Xが G00Hの 場合はポリアクリル酸 (陰イオン性) 、 GOONaの場合はポリアクリル酸ナトリウ ム (陽イオン性) 、 ポリアクリル酸アミド (非イオン性) であり、 これらはいず れもポリアクリル酸系凝集剤として用いられている。 なお、 ポリアクリル酸系凝 集剤の分子量は特に限定されないが、 大きい程好ましく、 通常、 2 0万〜 1 0 0 0万程度が好ましい。 (Wherein, X is a substituent selected C00H, G00Na, from C00NH 2. X is polyacrylic acid (anionic For G00H), polyacrylic acid sodium For GOONa (cationic) And polyacrylamide (non-ionic), each of which is used as a polyacrylic acid-based flocculant The molecular weight of the polyacrylic acid-based flocculant is not particularly limited, but is preferably as large as possible. Usually, about 200,000 to 100,000 is preferable.
なお、 本発明の方法において好ましく用いられるこのようなポリアクリル酸系 凝集剤自身は周知であり、 市販されており、 市販品を好ましく用いることができ る。 市販品の例として、 日本国東京都の栗田工業社製のクリム一バー 2 0 1等を 挙げることができるが、 もちろん、 これに限定されるものではない。  Such a polyacrylic acid-based flocculant itself preferably used in the method of the present invention is well known, commercially available, and a commercially available product can be preferably used. As an example of a commercially available product, Crimbar 201 manufactured by Kurita Kogyo Co., Ltd. of Tokyo, Japan can be exemplified, but of course, the invention is not limited to this.
添加に際しては、 キトサン系凝集剤単独、 ポリアクリル酸系凝集剤単独、 又は キトサン系およびポリアクリル酸系凝集剤のうちの 2種の組合せのいずれでもよ い。  At the time of addition, any of a chitosan-based flocculant alone, a polyacrylic acid-based flocculant alone, or a combination of two kinds of chitosan-based and polyacrylic acid-based flocculants may be used.
キトサン系凝集剤の使用量は、 培養液に含有されている細胞量 (乾燥重量換算、 以下同様) に対して、 キトサンとして 0 . 1から 8重量%が好ましく、 さらに好 ましくは 1から 6重量%である。 一方、 ポリアクリル酸系凝集剤の使用量は、 培 養液に含有されている細胞量に対して、 好ましくは 0 . 0 5から 2 . 0重量 °/o、 1 0 The amount of the chitosan-based flocculant used is preferably 0.1 to 8% by weight, more preferably 1 to 6% by weight, based on the amount of cells contained in the culture solution (in terms of dry weight). % By weight. On the other hand, the amount of the polyacrylic acid-based flocculant used is preferably 0.05 to 2.0% by weight / o with respect to the amount of cells contained in the culture solution. Ten
さらに好ましくは 0 . 1から 1 . 0重量%である。  More preferably, it is 0.1 to 1.0% by weight.
また、 上記の凝集剤の添加前に、 培養液の p Hを、 硫酸、 プロピオン酸、 ギ酸、 酢酸などの酸で p H 2 . 0から 6 . 5の酸性下に、 好ましくは、 P H 3 . 5から 5 . 0の酸性条件下に予め調整しておいた方が、 細胞の凝集効果が向上する。 キトサン系凝集剤とポリアクリル酸系凝集剤を同時に添加する際、 添加順序に 特に制限はない。 だた、 これらを添加する際は、 できるだけ強く撹拌した方が、 細胞が凝集しやすい。 Further, prior to the addition of the flocculant, the p H of the culture solution, sulfuric acid, propionic acid, formic acid, from p H 2. 0 6. Acidified under 5 with an acid such as acetic acid, preferably, P H 3 Pre-adjustment under acidic conditions of 5 to 5.0 improves the cell aggregation effect. When the chitosan-based flocculant and the polyacrylic acid-based flocculant are added simultaneously, the order of addition is not particularly limited. However, when adding these, it is easier to agglutinate the cells by stirring as strongly as possible.
このように凝集剤処理を行った液を、 遠心分離、 ろ過やデカンテーシヨン等の 操作により、 細胞培養液から細胞を分離し、 さらに、 上述のゼータフィルター処 理により一次上清液から未分離の細胞及び核酸を除去すればよい。  The liquid thus treated with the flocculant is separated from the cell culture by centrifugation, filtration, decantation, etc., and is not separated from the primary supernatant by the zeta filter treatment described above. Cells and nucleic acids may be removed.
本発明の方法に供される細胞培養物中の細胞は、 上記の通り何ら限定されるも のではないが、 好ましい例として、 上記のように、 有用物質を生産する、 形質転 換されたキャンディダ属酵母を挙げることができる。 このような、 形質転換され たキヤンディダ属酵母の例として、 Schwann i omyces occidental is由来のフィタ ーゼ遺伝子が導入されたキャンディダ ·ボイディニイ Candida boidini i MT-405 44株 (FERM BP- 5936) (EP 0 931 837 A1に記載) を挙げることができるが、 も ちろん、 これに限定されるものではなく、 微生物全般についても同様の形態を適 用することができる。 尚、 本菌株は、 平成 9年 5月 1 日より特許手続上の微生物 の寄託の国際的承認に関する条約に基づいて、 茨城県つくば市東 1丁目 1番 3号 の通商産業省工業技術院生命工学工業技術研究所に上記寄託番号にて寄託されて いる。  The cells in the cell culture to be subjected to the method of the present invention are not particularly limited as described above. As a preferred example, a transformed candy producing a useful substance as described above is preferable. Da yeast can be mentioned. As an example of such transformed Candida yeast, Candida boidini i MT-40544 strain (FERM BP-5936) (EPM) into which a phytase gene derived from Schwanniomyces occidental is introduced has been introduced. 0 931 837 A1), but of course, the present invention is not limited to this, and the same form can be applied to microorganisms in general. This strain was established on May 1, 1997 based on the Convention on the International Recognition of the Deposit of Microorganisms in Patent Procedures, 1-3-1 Higashi, Tsukuba City, Ibaraki Prefecture. Deposited at the Industrial Technology Research Institute with the above deposit number.
キャンディダ属酵母を培養するための液体培地の組成は、 キャンディダ属酵母 にが円滑に生育し、 かつ、 有用物質が培養液中に生産される限り特に限定される ものではない。 炭素源としては、 メタノール、 グリセロール、 エタノール、 グル コースなどを挙げることができる。 窒素源としては、 各種ペプトン、 コーンステ ィープリカ一、 酵母エキス、 硫酸アンモニゥムなどの有機体、 あるいは、 無機体 窒素源を一つあるいは組み合わせて用いることができる。 また、 マグネシウム、 ナトリウム、 カリウムなどの金属の塩類 (リン酸塩、 硫酸塩、 塩酸塩) 、 微量金 1 1 The composition of the liquid medium for culturing Candida yeast is not particularly limited as long as Candida yeast grows smoothly and useful substances are produced in the culture medium. Examples of the carbon source include methanol, glycerol, ethanol, glucose and the like. As the nitrogen source, various organic or inorganic nitrogen sources such as peptone, corn steep liquor, yeast extract and ammonium sulfate can be used alone or in combination. Also, salts of metals such as magnesium, sodium and potassium (phosphate, sulfate, hydrochloride), trace amounts of gold 1 1
属ゃ各種ビタミン類、 核酸関連物質、 P H調整剤などを培地に添加することがで きる。  A variety of vitamins, nucleic acid-related substances, pH regulators, etc. can be added to the medium.
本発明の方法に使用される培養液を得るための液体培養の方法および培養条件、 培養期間には特に制限はない。 具体的な培養条件は概ね以下のとおりである。 培 養温度は 1 5 から35°〇、 好ましくは 25°Cから 30°Cである。 液体培養中の 培養液の p Hは本酵母が生育できる p Hであれば特に制限はされないが、 通常 p H 2から 8、 より好ましくは p H 4から 7の範囲である。 培養期間は通常 1 日か ら 60日間程度、 好ましくは 7日から 40日間程度であり、 連続培養状態の液か ら酵母菌体と上清液を分離する際は特に培養期間は限定されない。  There is no particular limitation on the liquid culture method, culture conditions, and culture period for obtaining the culture solution used in the method of the present invention. Specific culture conditions are generally as follows. The cultivation temperature is 15 to 35 ° C, preferably 25 to 30 ° C. The pH of the culture solution during the liquid culture is not particularly limited as long as the pH can grow the present yeast, but is usually in the range of pH 2 to 8, more preferably pH 4 to 7. The culture period is usually about 1 day to 60 days, preferably about 7 days to 40 days. When the yeast cells and the supernatant are separated from the liquid in the continuous culture, the culture period is not particularly limited.
以下、 実施例を示して本発明をさらに詳細に説明するが、 本発明はこれらに限 定されるものではない。  Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.
実施例 1 Example 1
500m l容のバッフル付三角フラスコ 3本のそれぞれに表 1に示す組成の液 体培地を 80m l入れ、 高圧蒸気滅菌した。 フイターゼ生産用組換え酵母  80 ml of a liquid medium having the composition shown in Table 1 was added to each of three 500 ml Erlenmeyer flasks with baffles and subjected to high-pressure steam sterilization. Recombinant yeast for phytase production
Candida boidinii MT-40544 (FERM BP - 5936)を接種し、 27 °Cで 2日間振とう培 養を行った。 Candida boidinii MT-40544 (FERM BP-5936) was inoculated and cultured at 27 ° C for 2 days with shaking.
表 1 table 1
培地組成 グルコース 20. 0 /L  Medium composition Glucose 20.0 / L
イーストナイトロゲンベース 1. 7 g/L  East Nitrogen Base 1.7 g / L
酵母エキス 5. O gZL  Yeast extract 5. O gZL
硫酸アンモニゥ厶 5. O gZL  Ammonium sulfate 5. O gZL
p H 6. 5 次に、 表 2に示す組成の培地 5 Lを入れて高圧蒸気滅菌した 1 O L容ジャーフ アーメンターに前記で得られた培養液 240m I (フラスコ 3本分) を接種し、 温度 27°C、 通気量 5 LZ分間、 回転数 500 r pmで、 アンモニア水を用いて 1 2 pH 6.5 Next, 240 ml of the culture solution obtained above (for three flasks) was inoculated into a 1 OL jar armmenter sterilized by adding 5 L of medium having the composition shown in Table 2 and autoclaving with high pressure. Using ammonia water at a temperature of 27 ° C, a ventilation volume of 5 LZ minutes, and a rotation speed of 500 rpm 1 2
p Hを 6. 0に保ちながら、 23日間培養した < 追加炭素源としてはメタノール を用いた。  Culture was performed for 23 days while maintaining the pH at 6.0 <Methanol was used as an additional carbon source.
表 2  Table 2
培地組成 グリセ口ール 30. 0 g/L  Medium composition Glyceal 30.0 g / L
コーンスティープリカ- 30. 0 gZL  Corn steep liquor-30.0 gZL
K 2 H PO 4 1 . 0 gZし  K 2 H PO 4 1.0 gZ
M g S04 ■ 7 H 2 O 0. 5 g/L  M g S04 ■ 7 H 2 O 0.5 g / L
N a C I 0. 1 gZL  N a C I 0.1 gZL
硫酸アンモニゥム 5. 0 gZL  Ammonium sulfate 5.0 gZL
メタノール 1 5. 0m I ZL  Methanol 15.0m I ZL
上記培養終了後、 培養液を滅菌水で洗浄したキュノ (株) 製のゼータプラスフ ィルター B i o C a p 0 1 A (粒子径 5〜20 m、 24. 6 c m2) で一次ろ 過処理した。 次いで、 得られたろ液をゼータプラスフィルター B i o C a p 1 0 S (粒子径 0. 9〜2 i m) でろ過処理した。 さらに、 ここで得られたろ液をゼ ータプラスフィルター B i o C a p 30 S (粒子径 0. 6〜 1 . 5 m) 、 同 B i o C a p 60 S (粒子径 0. 2~0· 5 μ m) と順次ろ過処理した。 各ろ過段 階のろ液中 0. 1 m I中のの生酵母数を表 1に記載の組成の培養液に 1 . 5<½寒 天を加えた個体培地を用いて確認し、 併せて別途ろ液中のフイターゼタンパク質 量を測定した。 結果を表 3に示す。 この時、 最終的なゼータフィルター 4段処理 によるフィターゼタンパク質の回収率は 9 1 %であった。 1 3 After the completion of the culture, the culture was subjected to primary filtration using a Zetaplus filter BioCap 01A (particle size: 5 to 20 m, 24.6 cm 2 ) manufactured by Cuno Co., Ltd., which was washed with sterile water. Next, the obtained filtrate was filtered through a zeta plus filter BioCap10S (particle diameter: 0.9 to 2 im). Further, the filtrate obtained here is used as a Zetaplus filter BioCap30S (particle diameter 0.6 to 1.5 m), and the same BioCap60S (particle diameter 0.2 to 0.5). μm). The number of viable yeast in 0.1 ml of the filtrate at each filtration stage was confirmed using a solid medium containing 1.5 <½ agar in a culture solution having the composition shown in Table 1, and Separately, the amount of phytase protein in the filtrate was measured. Table 3 shows the results. At this time, the recovery rate of the phytase protein by the final 4-stage treatment of the zeta filter was 91%. 13
表 3 液種類 生酵母数 'イターゼタンパク質 Table 3 Liquid type Number of live yeasts' Itase protein
(c f u/ml) の回収率 (%) 培養終了液 未測定 1 00 %  Recovery rate of (cfu / ml) (%) Culture termination solution Not measured 100%
1 0 Sろ液 約 1 0000  1 0 S filtrate about 10000
30 Sろ液 250  30 S filtrate 250
60Sろ液 非検出 91 % 実施例 2  60S filtrate non-detection 91% Example 2
実施例 1で得られた培養終了液を遠心処理 (9000 X g、 5分間) し、 酵母 菌体を一次除去した。 この遠心上清液を 20 Om Iずつ 4本に分けた。 それぞれ 上清液を滅菌水で洗浄したキュノ (株) 製のゼータプラスフィルター B i oCa p (24. 6 cm2) の 01 A (粒子径 5〜 2 Oyum) 、 同 B i oC a p 30S (粒子径 0. 6〜1. 5/im) 、 同 B i oC a p 60 S (粒子径 0. 2〜 0 · 5 〃 m) 、 同 B i o C a p 90 S (粒子径 0. 05〜0. 2 m) でろ過処理した。 各ろ液 0. 1 m I 中の生酵母数を表 1組成の液体培地に 1. 5%寒天を加えた個 体培地を用いて確認し、 同時にろ液中のフイターゼタンパク質量を測定した。 結 果を表 4に示す。 60 Sのろ液中には生酵母は検出されず、 このときのフィター ゼタンパクの回収率は 93%であった。 どのフィルターを用いたときも、 ろ過終 盤の供給圧力は 0. 5 k gZcm2以内にとどまった。 1 4 The culture termination solution obtained in Example 1 was centrifuged (9000 X g, 5 minutes) to remove yeast cells primarily. This centrifuged supernatant was divided into four tubes of 20 OmI each. Each of the supernatants was washed with sterile water, and the ZetaPlus filter BioCap (24.6 cm2) manufactured by Cuno Co., Ltd. was used for 01A (particle size 5 to 2 Oyum) and BIOcap 30S (particle size). 0.6 to 1.5 / im), BioC ap 60 S (particle size 0.2 to 0.55 m), BioC ap 90 S (particle size 0.05 to 0.2 m) ). The number of viable yeast in 0.1 ml of each filtrate was confirmed using an individual medium obtained by adding 1.5% agar to the liquid medium shown in Table 1, and the amount of phytase protein in the filtrate was measured at the same time. . Table 4 shows the results. No live yeast was detected in the 60 S filtrate, and the recovery of phytase protein at this time was 93%. Even when using any filter, supply pressure filtration end plate remained within 0. 5 k gZcm 2. 14
表 4  Table 4
液種類 生酵母数 'イターゼタンパク質 Liquid type Number of live yeasts' Itase protein
( c f u Zm I ) の回収率 (%)  (c f u Zm I) recovery rate (%)
遠心上清液 約 3 X 1 05 1 00 % Centrifugal supernatant approx. 3 X 10 5 100%
01 Aろ液 約 1 0000 98%  01 A filtrate Approx. 10000 98%
30 Sろ液 1 30 96%  30 S filtrate 1 30 96%
60Sろ液 非検出 93%  60S filtrate not detected 93%
90 Sろ液 非検出 88% 得られた 60 Sのろ液 5 m I を分子量分画 1 2、 000から 1 4、 000の透 析膜を用いて、 滅菌水 5 Lに対して 24H r透析処理を行った。 この後、 透析処 理液中のフィターゼ遺伝子断片の有無を確認するために、 PCRによるフィター ゼ遺伝子の増幅を試みた。 PCR用のプライマーは、 既知の Shcwanniomyces oc ci dental is由来のフィターゼ塩基配列 (GenBank accession No. E12200:増幅領 域は塩基番号 132-1301) に基づいて設計した以下の配列番号 1及び 2に示す塩 基配列を有するオリゴヌクレオチド (北海道システム■サイエンス株式会社に委 託して合成) を使用した。 尚、 本プライマーにより 1 1 70 b pのフイタ一ゼ遺 伝子断片を増幅することが可能である。  90 S filtrate Non-detection 88% The obtained 60 S filtrate 5 ml was subjected to molecular weight fractionation Dialysis against 5 L of sterile water for 24 hours using a membrane with a molecular weight of 12,000 to 14,000 Processing was performed. Thereafter, in order to confirm the presence or absence of the phytase gene fragment in the dialysis solution, amplification of the phytase gene by PCR was attempted. The primers for PCR are the salts shown in the following SEQ ID Nos. 1 and 2 designed based on the phytase base sequence (GenBank accession No. E12200: base number 132-1301) derived from the known Shcwanniomyces occi dental is. Oligonucleotides having a base sequence (synthesized out of Hokkaido System Science Co., Ltd.) were used. In addition, it is possible to amplify a 170 bp phytase gene fragment using this primer.
配列番号 1 : GTTGGGGTCCTTACATTCMCGGAGTGGT (29 b p)  Sequence number 1: GTTGGGGTCCTTACATTCMCGGAGTGGT (29 bp)
配列番号 2 : CAACAAAGTCAACATCCCTAAG (22 b p)  Sequence number 2: CAACAAAGTCAACATCCCTAAG (22 bp)
The Perkin-Elmer Corporation ¾( 0. 5 U CD Amp I i Taq Gold. 同社の 3 I の AmpliTaq Go I d用反応用バッファー (x 1 0液) 、 透析処理液 1 μ I、 配列番 号 1及び 2に示すプライマー各 0. 5 iM、 各 d NT PO. 2mMを含む 30 Iの PC R反応液を用いて、 変性: 95°C、 1分間、 アニーリング: 60°C、 1 分間、 伸長反応: 72°C、 1分間からなる反応サイクルを、 25サイクル繰り返 す条件下で PC R反応を行なった。 PCR反応終了後、 ァガロース電気泳動 (ァ ガロース濃度 0. 8%) を行ったところ、 増幅断片の存在を確認することができ なかった。 The Perkin-Elmer Corporation ¾ (0.5 U CD Amp Ii Taq Gold. The company's 3 I reaction buffer for AmpliTaq Go Id (x10 solution), dialysis solution 1 μI, sequence number 1 and Denaturation: 95 ° C, 1 minute, Annealing: 60 ° C, 1 minute, extension reaction: Using a 30 I PCR reaction solution containing 0.5 iM of each primer and 2 mM of each dNTPO. The PCR reaction was performed under the condition that a reaction cycle consisting of 72 ° C. and 1 minute was repeated 25 times. (Galose concentration 0.8%), the presence of the amplified fragment could not be confirmed.
比較例 1 Comparative Example 1
実施例 2で使用したものと同じ遠心上清液 2 OOm I を、 ゼ一タ電位を有しな いクルスフロータイプの限外ろ過膜である旭化成工業 (株) のマイクローザペン シル型モジュール PS P— 01 3 (MF、 80 cm2、 粒子径 0. l /^m) でろ 過処理した。 ろ過終盤の背圧が最高使用圧力の 1 k gZcm2以上になったため、 開始時の液量が約 6倍濃縮された時点でろ過操作を停止した。 The same centrifugal supernatant 2 OOm I as used in Example 2 was converted to a microza pencil type module PS of Asahi Kasei Kogyo Co., Ltd., which is a cruz flow type ultrafiltration membrane without zeta potential. Filtration was performed with P-013 (MF, 80 cm 2 , particle size 0.1 l / ^ m). Since the back pressure at the end of filtration became 1 kgZcm 2 or more, which is the maximum working pressure, the filtration operation was stopped when the liquid volume at the start was approximately 6 times concentrated.
ろ液 0. 1 m I中の生酵母数を表 1に記載の組成の液体培地に 1. 5%寒天を 加えた個体培地を用いて確認したところ、 PS P— 01 3のろ液中には生酵母が 検出されなかった。 また、 ろ液中のフィターゼタンパク質量を測定したところ、 フィターゼタンパク質の回収率は 45%であった。 以上の結果を表 5に示す。 表 5  The number of viable yeast in 0.1 ml of the filtrate was confirmed using a solid medium containing 1.5% agar in a liquid medium having the composition shown in Table 1. No live yeast was detected. When the amount of phytase protein in the filtrate was measured, the recovery of phytase protein was 45%. Table 5 shows the results. Table 5
液種類 生酵母数 フィターゼタンパク質 Liquid type Number of live yeasts Phytase protein
(c f u/ml) の回収率 (%)  (c f u / ml) recovery rate (%)
遠心上清液 約 3 X 1 05 1 00% Centrifugal supernatant approx. 3 X 10 5 100%
PS P-01 3 非検出 45% 実施例 2と同様に、 得られた PS P— 01 3のろ液の透析処理を行った後に、 透析処理液中のフィターゼ遺伝子断片の有無を PCRによるフイターゼ遺伝子の 増幅により調べた。 その結果、 約 1. 2 k b pの増幅断片の存在が確認された。 実施例 3  PS P-01 3 Not detected 45% As in Example 2, the obtained filtrate of PS P-013 was dialyzed, and then the presence or absence of the phytase gene fragment in the dialyzed solution was determined by PCR. Was examined by amplification. As a result, the presence of an amplified fragment of about 1.2 kbp was confirmed. Example 3
実施例 2と同じ遠心上清液 200m I を硫酸を用いて、 p H4. 2に調整した 時と調整しない時、 それぞれを滅菌水で洗浄したキュノ (株) 製のゼータプラス フィルター B i oCa p (24. 6 cm ) の 60 LA (粒子径 0. 2〜0. 5 u rn) でろ過し、 そのときの総ろ過時間を測定し、 ろ過性を確認した (供給圧力 1 6 は 0. 3 k gZcm2以内) 。 表 6に示したように、 Ρ Η 4· 2に調整した時の 方がろ過速度が速く、 ろ過性が良好であることが認められた。 The same centrifugal supernatant, 200 ml, as in Example 2, was adjusted to pH 4.2 with sulfuric acid, and when not adjusted, each was washed with sterile water, and each was washed with sterilized water. (24.6 cm), filtered through 60 LA (particle size 0.2-0.5 urn), the total filtration time at that time was measured, and the filterability was confirmed (supply pressure 1 6 0. 3 k gZcm 2 or less). As shown in Table 6, Ρ Η 4 · 2 is faster filtration rate better when adjusted to, it was confirmed filtration is good.
表 6  Table 6
ろ過処理前 Ρ Η ろ過時 , Before filtration 時 時 During filtration,
Ρ Η 6. 0 (調整前) 6. 6分 Ρ Η 6.0 (before adjustment) 6.6 minutes
Ρ Η 4. 2 (調整後) 5. 4分 実施例 4  Ρ Η 4.2 (After adjustment) 5.4 minutes Example 4
キトサン希釈液として、 純水 98. 5 gに栗田工業株式会社製のクリム一バー 1 01 を 0. 5 g、 酢酸を 1 g混合して調製した。  A chitosan diluent was prepared by mixing 98.5 g of pure water with 0.5 g of Crime Bar 101 manufactured by Kurita Water Industries Ltd. and 1 g of acetic acid.
実施例 1 と同様に培養して得られた培養終了液 200 gに、 上記キトサン希釈 液を 30 g、 45 g、 6 O gと添加量を変更し、 5分間強く撹拌した。 この処理 液を遠心除菌処理 (約 3000 X g、 1 0分間) し、 上清液の濁度 (吸光度 66 0 nm) を測定し、 酵母菌体の凝集性を確認した。 表 7に示したように、 キトサ ン系凝集剤の添加によって上清液の濁度が減少し、 酵母菌体の凝集が認められた。 To 200 g of the culture termination solution obtained by culturing in the same manner as in Example 1, the amount of the above-mentioned diluted chitosan solution was changed to 30 g , 45 g, and 60 g, and the mixture was stirred vigorously for 5 minutes. This treated solution was centrifuged to remove bacteria (about 3000 X g, 10 minutes), and the turbidity (absorbance: 660 nm) of the supernatant was measured to confirm the cohesiveness of the yeast cells. As shown in Table 7, the addition of the chitosan-based flocculant reduced the turbidity of the supernatant, and confirmed the aggregation of yeast cells.
キトサン希釈液添加量 吸光度 660 n m Chitosan diluent addition Absorbance 660 nm
無添加 ( 0 g ) 0. 58 No additive (0 g) 0.58
30 g 0. 47  30 g 0.47
45 g 0. 32  45 g 0.32
60 g 0. 26 実施例 5  60 g 0.26 Example 5
キトサン希釈液は、 純水 98 gにクリム一バー 1 01 (栗田工業株式会社製) 1 7 The chitosan diluent was prepared by adding 98 g of pure water to Crime Bar 101 (made by Kurita Water Industries Ltd.) 1 7
を 1 g、 酢酸を 1 g混合して調製した。 ポリアクリル酸希釈液は、 純水 99. 8 gにクリム一バー 201 (栗田工業株式会社製) を 0. 2 g溶解して調製した。 p H調整剤としては、 プロピオン酸を用いた。  Was mixed with 1 g of acetic acid and 1 g of acetic acid. The polyacrylic acid diluent was prepared by dissolving 0.2 g of Crime Bar 201 (manufactured by Kurita Water Industries Ltd.) in 99.8 g of pure water. Propionic acid was used as a pH adjuster.
まず、 実施例 1 と同様に培養して得られた培養終了液各 1 O gに、 p H調整し ない時と p H4. 2に調整した時、 それぞれキトサン希釈液 0. 7 gを加え、 5 分間強く攪拌し、 ついで、 ポリアクリル酸希釈液 0. 7 gを添加して、 均一にな リ、 フロックの生成を確認するまで搜拌し、 30分間静置した。 この処理液を遠 心除菌処理 (約 2000 X g、 1 0分間) し、 上清液の濁度 (吸光度 660 nm ) を測定し、 酵母菌体の凝集性を確認した。 表 8に示したように、 p H4. 2に 調整した時の方が上清液の濁度が減少し、 酵母菌体の凝集が良好であることが認 められた。 First, 0.7 g of the chitosan diluent was added to each 1 Og of the culture termination solution obtained by culturing in the same manner as in Example 1 when the pH was not adjusted and when the pH was adjusted to 4.2. The mixture was vigorously stirred for 5 minutes, and then 0.7 g of a diluted polyacrylic acid solution was added. The mixture was stirred until uniform formation of floc and floc was confirmed, and allowed to stand for 30 minutes. This treated solution was subjected to centrifugal eradication treatment (about 2000 X g , 10 minutes), and the turbidity (absorbance: 660 nm) of the supernatant was measured to confirm the cohesiveness of the yeast cells. As shown in Table 8, when the pH was adjusted to 4.2, the turbidity of the supernatant liquid was reduced, and it was confirmed that the yeast cells were better aggregated.
表 8 凝集処理前 p H 凝集剤添加 吸光度 660 n m Table 8 Before aggregation treatment pH Addition of flocculant Absorbance 660 nm
P H 5. 9 (調整前) 無し 3. 94 P H 5.9 (before adjustment) None 3.94
p H4. 2 (調整後) 無し 3. 50  pH4. 2 (after adjustment) None 3.50
p H 5. 9 (調整前) 有り 2. 98  pH 5.19 (before adjustment) Yes 2.98
p H4. 2 (調整後) 有り 2. 39 実施例 6  p H4.2. (after adjustment) Yes 2. 39 Example 6
実施例 1 と同様にして得られた培養終了液 1 · 2 k gに、 硫酸を添加して、 p H 4. 2に調製した。 これに、 実施例 5と同じキトサン希釈液 93 gを加え、 5 分間強く攪拌し、 ついで、 実施例 5と同じポリアクリル酸希釈液 97 gを添加し て、 均一になり、 フロックの生成を確認するまで攪拌し、 30分間静置した。 こ の処理液を遠心除菌処理 (約 1 0000 x g、 1 5分間) し、 フィターゼタンパ ク質を含む培養上清液を 1 · 0 k gを製造した。 この培養上清液をゼータフィル ター 60 S (キュノ製 (株) B i o c a p 24. 6 cm2) でろ過処理した。 Sulfuric acid was added to 1.2 kg of the culture termination solution obtained in the same manner as in Example 1 to adjust the pH to 4.2. To this, 93 g of the same chitosan diluent as in Example 5 was added, and the mixture was stirred vigorously for 5 minutes.Then, 97 g of the same polyacrylic acid diluent as in Example 5 was added, and the mixture became uniform and the formation of flocs was confirmed. And left to stand for 30 minutes. This treated solution was centrifuged to remove bacteria (about 10,000 xg, 15 minutes) to produce 1.0 kg of a culture supernatant containing a phytase protein. The culture supernatant was filtered through Zetafilter 60S (Biocap 24.6 cm 2, manufactured by Kuno).

Claims

1 8 処理流速は 1 3m I Zm i nであり、 このろ液中に生酵母は全く認められなかつ た。 このゼータフィルター処理前後のフイターゼタンパク質の回収率は 98%で あった。 実施例 7 実施例 1 と同様にして得られた培養液終了液 5. 8 k gに、 プロピオン酸を添 加して、 p H 4. 2に調整し、 これにキトサン希釈液 (純水 950 g+クリム一 バー 1 01 (栗田工業製) 1 0 g+プロピオン酸 40 g) 91 4 gを攪拌しなが ら添加し、 30分間攪拌した。 この処理液を遠心除菌処理し、 フイターゼタンパ ク質を含む一次上清液 5. 2 k gを得た。 この一次上清液 2 k gをゼータフィル ター 60 S (キュノ製 (株) B i o c a p 24. 6 cm2) でろ過処理した。 処理流速は 1 3m I Zm i nであり、 このろ液中に生酵母は全く認められなかつ た。 このゼータフィルター処理前後のフイタ一ゼタンパク質の回収率は 99%で あった。 実施例 2と同様に、 得られたゼータフィルター 60 Sのろ液の透析処理を行つ た後に、 透析処理液中のフィターゼ遺伝子断片の有無を PCRによるフィターゼ 遺伝子の増幅により調べた。 その結果、 増幅断片の存在を確認することができな かった。 比較例 2 実施例 7の一次上清液 1 k gを比較例 1 と同様のゼータ電位を有しないクルス フロータイプの限外ろ過膜である旭化成工業 (株) のマイクローザペンシル型モ ジュール PS P-01 3 (MF、 80 cm2、 粒子径 0. 1 A<m) でろ過処理し た。 ろ過終盤の背圧が最高使用圧力の 1 k gZcm2以上になったため、 開始時 の液量が約 6倍濃縮された時点でろ過操作を停止した。 このろ液中に生酵母は全 く認められなかった。 また、 この PS P— 01 3処理前後のフィターゼタンパク 質の回収率は 80<½であった。 実施例 2と同様に、 得られた PS P— 01 3のろ液の透析処理を行った後に、 透析処理液中のフィターゼ遺伝子断片の有無を PCRによるフイターゼ遺伝子の 増幅により調べた。 その結果、 約 1. 2 k b pの増幅断片の存在が確認された。 1 9 請求の範囲 The treatment flow rate was 13 mI Zmin, and no live yeast was observed in this filtrate. The recovery of phytase protein before and after the zeta filter treatment was 98%. Example 7 Propionic acid was added to 5.8 kg of the culture broth obtained in the same manner as in Example 1 to adjust the pH to 4.2, and the chitosan diluent (950 g + Crimbar 101 (Kurita Kogyo) 10 g + propionic acid 40 g) 914 g was added with stirring, and the mixture was stirred for 30 minutes. The treated solution was subjected to centrifugal sterilization to obtain 5.2 kg of a primary supernatant containing a phytase protein. 2 kg of the primary supernatant was filtered through Zetafilter 60S (Biocap 24.6 cm2, manufactured by Kuno). The treatment flow rate was 13 mI Zmin, and no live yeast was observed in this filtrate. The recovery of phytase protein before and after the zeta filter treatment was 99%. In the same manner as in Example 2, the obtained filtrate of the zeta filter 60S was dialyzed, and then the presence or absence of the phytase gene fragment in the dialyzed solution was examined by amplification of the phytase gene by PCR. As a result, the presence of the amplified fragment could not be confirmed. COMPARATIVE EXAMPLE 2 1 kg of the primary supernatant of Example 7 was used as a cruz flow type ultrafiltration membrane having no zeta potential similar to that of Comparative Example 1 as a microza pencil type module PS P- from Asahi Kasei Corporation. The solution was filtered through 01 3 (MF, 80 cm2, particle size 0.1 A <m). Since the back pressure at the end of filtration exceeded the maximum operating pressure of 1 kgZcm2, the filtration operation was stopped when the liquid volume at the start was approximately 6 times concentrated. No live yeast was found in this filtrate. The recovery rate of the phytase protein before and after the treatment with PSP-013 was 80 <½. In the same manner as in Example 2, the obtained filtrate of PSP-013 was dialyzed, and then the presence or absence of a phytase gene fragment in the dialyzed liquid was examined by amplification of the phytase gene by PCR. As a result, the presence of an amplified fragment of about 1.2 kbp was confirmed. 1 9 Claims
1. 細胞培養物から培養上清液を製造する方法であって、 前記細胞を液体培養 して得られる培養物又はその処理物を、 ゼータ電位を有する多孔性フィルターに 通し、 前記細胞及び核酸を除去する工程を含む、 培養上清液の製造方法。  1. A method for producing a culture supernatant from a cell culture, comprising: passing a culture obtained by liquid-culturing the cells or a processed product thereof through a porous filter having a zeta potential; A method for producing a culture supernatant, comprising a step of removing.
2. 細胞培養物から培養上清液を製造する方法であって、 前記細胞を液体培養 して得られる培養液を、 1 ) 該培養液又はその処理物にキトサン系および また はポリアクリル酸系凝集剤を添加して該細胞及び核酸を凝集させる第一の工程、 2) 凝集した該細胞及び核酸を分離して一次上清液を調製する第二の工程、 3) 該一次上清液を、 ゼータ電位を有する多 ¾性フィルターに通す第三の工程を経る ことにより、 前記細胞及び核酸を除去することを特徴とする培養上清液の製造方 法。  2. A method for producing a culture supernatant from a cell culture, wherein a culture obtained by liquid culture of the cells is: 1) a chitosan-based or polyacrylic acid-based A first step of adding the aggregating agent to aggregate the cells and nucleic acids, 2) a second step of separating the aggregated cells and nucleic acids to prepare a primary supernatant, 3) the primary supernatant A method for producing a culture supernatant, comprising removing the cells and nucleic acids by passing through a third step of passing through a porous filter having a zeta potential.
3. 前記細胞は、 有用物質を生産する微生物である請求項 1又は 2記載の方法。  3. The method according to claim 1, wherein the cell is a microorganism that produces a useful substance.
4. 前記微生物がキャンディダ属酵母であり、 前記核酸が該キャンディダ属酵 母菌体由来の DN A断片であることを特徴とする、 請求項 3記載の方法。  4. The method according to claim 3, wherein the microorganism is a Candida yeast, and the nucleic acid is a DNA fragment derived from the Candida yeast.
5. 前記微生物が、 形質転換された微生物であり、 前記核酸が該微生物菌体に 導入された外来性 D N A断片、 該 D N A断片若しくはその一部を含む D N A断片 又は該 D N A断片の一部であることを特徴とする、 請求項 3又は 4記載の方法。  5. The microorganism is a transformed microorganism, and the nucleic acid is an exogenous DNA fragment, a DNA fragment containing the DNA fragment or a part thereof, or a part of the DNA fragment. The method according to claim 3 or 4, wherein:
6. 形質転換された微生物が形質転換されたキャンディダ属酵母である請求項 5記載の方法。 6. The method according to claim 5, wherein the transformed microorganism is a transformed Candida yeast.
7. 形質転換されたキャンディダ属酵母が、 形質転換されたキャンディダ 'ボ ィディニイ (Candida boidini i) であることを特徴とする、 請求項 6記載の方法。 7. The method according to claim 6, wherein the transformed Candida yeast is a transformed Candida boidini.
8. 形質転換されたキャンディダ属酵母菌体に導入された外来性 DN A断片が、 フイターゼ活性を有するタンパク質の遺伝子であることを特徴とする、 請求項 6 又は 7記載の方法。 8. The method according to claim 6, wherein the exogenous DNA fragment introduced into the transformed Candida yeast is a gene of a protein having phytase activity.
9. 前記有用物質がフィターゼ活性を有するタンパク質である請求項 3〜 8の 何れか 1項に記載の方法。 9. The method according to any one of claims 3 to 8, wherein the useful substance is a protein having phytase activity.
1 0. 培養物の p Hが 4. 0〜7. 0であることを特徴とする、 請求項 3〜9 のいずれか 1項に記載の方法。 20 10. The method according to any one of claims 3 to 9, wherein the pH of the culture is between 4.0 and 7.0. 20
1 1. 凝集剤処理を p Hが 2. 0〜6. 5で行うことを特徴とする、 請求項 2 〜 1 0のいずれか 1項に記載の方法。  11. The method according to any one of claims 2 to 10, wherein the flocculant treatment is performed at a pH of 2.0 to 6.5.
1 2. 請求項 1〜1 1のいずれか 1項に記載の方法により製造された培養上清 液。  1 2. A culture supernatant produced by the method according to any one of claims 1 to 11.
PCT/JP2000/004776 1999-07-15 2000-07-14 Method of preparing cell cultivation supernatant WO2001005995A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU60186/00A AU6018600A (en) 1999-07-15 2000-07-14 Method of preparing cell cultivation supernatant

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP20146999 1999-07-15
JP11/201469 1999-07-15
JP20146899 1999-07-15
JP11/201468 1999-07-15

Publications (1)

Publication Number Publication Date
WO2001005995A1 true WO2001005995A1 (en) 2001-01-25

Family

ID=26512802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004776 WO2001005995A1 (en) 1999-07-15 2000-07-14 Method of preparing cell cultivation supernatant

Country Status (2)

Country Link
AU (1) AU6018600A (en)
WO (1) WO2001005995A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020000149A (en) * 2018-06-29 2020-01-09 ナガセケムテックス株式会社 Method for producing cell product
CN115669542A (en) * 2022-11-04 2023-02-03 西北农林科技大学 Plant tissue culture detoxification method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03201977A (en) * 1989-12-28 1991-09-03 Kobayashi Pharmaceut Co Ltd Culture of microorganism in blood and culture medium used for method thereof
JPH04197410A (en) * 1990-11-28 1992-07-17 Unitika Res Lab:Kk Multilayer structural filter cloth for liquid
JPH08289782A (en) * 1994-07-05 1996-11-05 Mitsui Toatsu Chem Inc New phytase
JPH11206368A (en) * 1998-01-28 1999-08-03 Mitsui Chem Inc Secretory production of phytase

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03201977A (en) * 1989-12-28 1991-09-03 Kobayashi Pharmaceut Co Ltd Culture of microorganism in blood and culture medium used for method thereof
JPH04197410A (en) * 1990-11-28 1992-07-17 Unitika Res Lab:Kk Multilayer structural filter cloth for liquid
JPH08289782A (en) * 1994-07-05 1996-11-05 Mitsui Toatsu Chem Inc New phytase
JPH11206368A (en) * 1998-01-28 1999-08-03 Mitsui Chem Inc Secretory production of phytase

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020000149A (en) * 2018-06-29 2020-01-09 ナガセケムテックス株式会社 Method for producing cell product
JP7132771B2 (en) 2018-06-29 2022-09-07 ナガセケムテックス株式会社 Methods for producing cell products
CN115669542A (en) * 2022-11-04 2023-02-03 西北农林科技大学 Plant tissue culture detoxification method
CN115669542B (en) * 2022-11-04 2023-08-25 西北农林科技大学 Plant tissue culture detoxification method

Also Published As

Publication number Publication date
AU6018600A (en) 2001-02-05

Similar Documents

Publication Publication Date Title
Liao et al. A review of membrane fouling and its control in algal-related membrane processes
US4299825A (en) Concentrated xanthan gum solutions
Riske et al. The use of chitosan as a flocculant in mammalian cell culture dramatically improves clarification throughput without adversely impacting monoclonal antibody recovery
WO2008127134A4 (en) Galactose-rich polysaccharide, process for the production of the polymer and its applications
JP2010523789A5 (en)
JP6441680B2 (en) Matrix and composition for microbial culture of Gram positive bacteria
HUE029596T2 (en) Preparation of sodium hyaluronate using a mutant of streptococcus zooepidemicus
WO2013077341A1 (en) Method for producing cellulase, and apparatus for said method
EP2739745A1 (en) New method for manufacture of dextran, dextran solution obtained, and uses
JP2020519312A5 (en)
CN113735991A (en) Process for extracting pullulan from high-viscosity fermentation liquor
FR2551070A1 (en) PROCESS FOR TREATING A POLYSACCHARIDE SOLUTION AND USE THEREOF
CA1244368A (en) Processing of a heteropolysaccharides solution; heteropolysaccharides powder compositions and their use
JP5969390B2 (en) Fucose-containing bacterial biopolymer
JP4441304B2 (en) Method for preparing water-soluble low-viscosity β-D-glucan-containing culture solution
WO2001005995A1 (en) Method of preparing cell cultivation supernatant
JP2002176996A (en) Production of exopolysaccharide unattached to surface of bacterial cell
CN112111473A (en) Chitosanase with high activity, preparation and application thereof
Wei et al. Decolorization of dye solutions with Ruditapes philippinarum conglutination mud and the isolated bacteria
US20200255307A1 (en) Method of processing thin stillage
JP2003277416A (en) Aqueous acrylamide solution containing saccharides
CN115287275A (en) Method for purifying hyaluronidase
CN109370907B (en) Method for clarifying escherichia coli lysate
CN103602652B (en) A kind of method of purification of food-grade neutral protease
JP7132771B2 (en) Methods for producing cell products

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 511205

Kind code of ref document: A

Format of ref document f/p: F

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase