JP4441304B2 - Method for preparing water-soluble low-viscosity β-D-glucan-containing culture solution - Google Patents

Method for preparing water-soluble low-viscosity β-D-glucan-containing culture solution Download PDF

Info

Publication number
JP4441304B2
JP4441304B2 JP2004092330A JP2004092330A JP4441304B2 JP 4441304 B2 JP4441304 B2 JP 4441304B2 JP 2004092330 A JP2004092330 A JP 2004092330A JP 2004092330 A JP2004092330 A JP 2004092330A JP 4441304 B2 JP4441304 B2 JP 4441304B2
Authority
JP
Japan
Prior art keywords
glucan
viscosity
water
culture
soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004092330A
Other languages
Japanese (ja)
Other versions
JP2004321177A (en
Inventor
利雄 鈴木
誠司 中村
聡 中山
孝治 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP2004092330A priority Critical patent/JP4441304B2/en
Publication of JP2004321177A publication Critical patent/JP2004321177A/en
Application granted granted Critical
Publication of JP4441304B2 publication Critical patent/JP4441304B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

本発明は、微生物が菌体外に産生する水溶性β-D-グルカンを主成分とする培養液から、食品用添加物や健康食品素材などとして有用な水溶性低粘度β-D-グルカンの調製方法に関する。   The present invention relates to a water-soluble low-viscosity β-D-glucan useful as a food additive, a health food material, etc. from a culture solution mainly composed of a water-soluble β-D-glucan produced by microorganisms outside the cell. It relates to a preparation method.

β-グルカン(β-1,3-D-グルカンやβ-1,6-D-グルカンやβ-1,3-1,6-D−グルカン)は自然界に生息するキノコ(担子菌の子実体)に多く含まれる成分(数%から50%程度)で、それらの子実体だけでなく培養菌糸体にも含まれていることが最近明らかになりつつある。またそれらのβ-グルカンには抗腫瘍活性があることが知られている。例えば、スエヒロタケ、カワラタケ、シイタケから抽出されたそれぞれのβ-グルカンは既に抗がん剤などの医薬品として製造販売されている。
一方、不完全菌であるオーレオバシジウム属(Aureobasidium)に属する微生物もβ-グルカンを生産することが知られている。
しかしながら、一般にβ-グルカン水溶液はその構造から1重らせんや3重らせん構造をとるためゲルを形成しやすく、その培養液は高粘度であるため、精製はきわめて困難であった(非特許文献1参照)。例にもれずオーレオバシジウム属に属する微生物の産生するβ-グルカン含有培養液も粘度が高く、その培養液から菌体と水溶性β-グルカンの工業的分離回収精製法は殆ど報告されていなく、菌体と共に用いられているのが現状である。
β-glucan (β-1,3-D-glucan, β-1,6-D-glucan and β-1,3-1,6-D-glucan) is a mushroom (the basidiomycete fruit body) that inhabits nature. Recently, it is becoming clear that it is contained not only in their fruit bodies but also in cultured mycelium. These β-glucans are known to have antitumor activity. For example, each β-glucan extracted from Suehirotake, Kawaratake and Shiitake is already manufactured and sold as a pharmaceutical such as an anticancer agent.
On the other hand, it is known that a microorganism belonging to the genus Aureobasidium, which is an incomplete bacterium, also produces β-glucan.
However, in general, β-glucan aqueous solution has a single-helix or triple-helix structure from its structure, so that a gel is easily formed, and the culture solution is highly viscous, so that purification is extremely difficult (Non-Patent Document 1). reference). For example, β-glucan-containing cultures produced by microorganisms belonging to the genus Aureobasidium are also highly viscous, and there have been few reports on industrial separation, recovery and purification of bacterial cells and water-soluble β-glucan from the cultures. It is currently used with bacteria.

また、キノコなどの子実体に含有されるβ-グルカンは非常に水に溶け難く、アルカリ溶液でしか可溶化しないため、最近では、キノコなどの不溶性のβ-グルカンを熱水やアルカリ抽出後、乳化剤などの分散化剤存在下で高圧処理(300-800kgf/cm2)し、コロイド状に超微粒子化する方法も特許出願されている(特許文献1)。
その他に、
In addition, β-glucan contained in fruit bodies such as mushrooms is very difficult to dissolve in water and is only solubilized in an alkaline solution. Recently, after insoluble β-glucan such as mushrooms are extracted with hot water or alkali, A patent application has also been filed for a method in which high-pressure treatment (300-800 kgf / cm 2 ) is carried out in the presence of a dispersing agent such as an emulsifier to form colloidal ultrafine particles (Patent Document 1).
Other,

1)特許文献2によれば、オーレオバシジウム属(Aureobasidium. sp) FERM‐P.No.4257株の培養液を加熱殺菌した後、ろ過または遠心分離して飲食物として利用可能な培養液を得る方法が開示されている。 1) According to Patent Document 2, Aureobasidium. Sp. FERM-P. A method is disclosed in which a culture solution of No. 4257 strain is sterilized by heating and then filtered or centrifuged to obtain a culture solution that can be used as food and drink.

2)特許文献3によれば、オーレオバシジウム属の微生物の濾過または遠心分離した菌体またはその細胞壁に熱水、希アルカリ水溶液を接触させ水溶性β-1,3-1,6-D-グルカンを溶出させ、採取する方法が開示されている。 2) According to Patent Document 3, hot water or a dilute alkaline aqueous solution is contacted with filtered or centrifuged cells or cell walls of microorganisms belonging to the genus Aureobasidium, and water-soluble β-1,3-1,6-D- A method for eluting and collecting glucan is disclosed.

3)特許文献4によれば、微生物の産生する不溶性β-グルカンの水分散液あるいは培養液(菌体内に産生したグルカンあるいは細胞壁成分)に親水性有機溶媒存在下でアルカリ熱処理(0.2N以上、通常0.2-1N好ましくは0.3-0.5Nアルカリ)を行い、不溶性のβ-グルカンが析出した混合液を中和する精製方法が開示されている。 3) According to Patent Document 4, an alkaline heat treatment (0.2 N or more, in an aqueous dispersion of an insoluble β-glucan produced by a microorganism or a culture solution (glucan or cell wall component produced in a cell) in the presence of a hydrophilic organic solvent. In general, a purification method is disclosed in which a mixed solution in which insoluble β-glucan is precipitated is neutralized by performing 0.2-1N, preferably 0.3-0.5N alkali).

4)特許文献5によれば、キノコや微生物などの不溶性β-グルカンを含む菌体の懸濁液(特に細胞壁成分)に過酸化物と水酸化物を加えpHを10-12.5にせしめ、水不溶性β−グルカンを回収精製する方法が開示されている。 4) According to Patent Document 5, peroxide and hydroxide are added to a suspension of cell bodies (particularly cell wall components) containing insoluble β-glucan such as mushrooms and microorganisms to adjust the pH to 10-12.5, and water. A method for recovering and purifying insoluble β-glucan is disclosed.

5)特許文献6によれば、オーレオバシジウム属の微生物より産生される水溶性β-1,3-1,6-D-グルカンを含む培養液に苛性アルカリを加えpHを9-10に調節し、生成するアルカリ塩を噴霧乾燥する方法が開示されている。
国際公開第02/087603号パンフレット 特開昭61−146192号公報 特公平6−92441号公報 特開平5−308987号公報 特開平9−322795号公報 特開平10−276739号公報 Fragrance Journal, 5, 71-75 (1995) Agric. Biol. Chem., 47, 1167-1172 (1983) K. Ogawa, Carbohydrate Research, 67, 527-535 (1978) 今中忠行 監修、微生物利用の大展開、1012-1015、エヌ・ティー・エス(2002) 濱田ら、科学と工業、64、131-135(1990)
5) According to Patent Document 6, the pH is adjusted to 9-10 by adding caustic to a culture solution containing water-soluble β-1,3-1,6-D-glucan produced by microorganisms belonging to the genus Aureobasidium. And the method of spray-drying the produced alkali salt is disclosed.
International Publication No. 02/087603 Pamphlet JP-A-61-146192 Japanese Patent Publication No. 6-92441 JP-A-5-308987 Japanese Patent Laid-Open No. 9-322795 Japanese Patent Laid-Open No. 10-276739 Fragrance Journal, 5, 71-75 (1995) Agric. Biol. Chem., 47, 1167-1172 (1983) K. Ogawa, Carbohydrate Research, 67, 527-535 (1978) Supervised by Tadayuki Imanaka, Development of microbe utilization, 1012-1015, NTS (2002) Hamada et al., Science and Industry, 64, 131-135 (1990)

本発明の目的は、微生物、特にオーレオバシジウム属に属する微生物が菌体外に産生する水溶性β-D-グルカンを主成分とする培養液の低粘度化および低粘度化水溶性β-D-グルカンに関する。   The object of the present invention is to reduce the viscosity of a culture solution mainly composed of water-soluble β-D-glucan produced by microorganisms, particularly microorganisms belonging to the genus Aureobasidium, and to reduce the viscosity of water-soluble β-D. -Concerning glucan.

本発明者らは、微生物を醗酵せしめ、得られる培養液に含有するβ-D-グルカン、特にオーレオバシジウム属に属する微生物の培養液に含有する水溶性β-D-グルカンを高アルカリ水溶液で処理することにより、水溶性でかつ、低粘度のβ-D-グルカン含有培養液が得られることを見出し、本発明を完成した。
すなわち、本発明は、水溶性β-D-グルカン、例えばβ-1,3-D-グルカン、β-1,3-1,6-D-グルカンを主成分とする微生物、例えばオーレオバシジウム属プルランスの如きオーレオバシジウム属に属する微生物の培養液にアルカリまたはその水溶液を加え、該培養液を低粘度化するに必要なpH濃度に調整することを特徴とする水溶性低粘度β-D-グルカン含有培養液の調製方法に関する。
The present inventors fermented microorganisms, and β-D-glucan contained in the obtained culture broth, particularly water-soluble β-D-glucan contained in the culture broth of microorganisms belonging to the genus Aureobasidium, in a highly alkaline aqueous solution. As a result of the treatment, it was found that a β-D-glucan-containing culture solution that is water-soluble and low in viscosity can be obtained, and the present invention has been completed.
That is, the present invention relates to a water-soluble β-D-glucan, for example, a β-1,3-D-glucan, a microorganism having β-1,3-1,6-D-glucan as a main component, for example, Aureobasidium spp. A water-soluble low-viscosity β-D-, characterized by adding an alkali or an aqueous solution thereof to a culture solution of a microorganism belonging to the genus Aureobasidium such as pullulans and adjusting the pH concentration to lower the viscosity of the culture solution The present invention relates to a method for preparing a culture solution containing glucan.

本発明は、上記方法で得られる水溶性低粘度β-D-グルカン含有培養液から微生物を含む不純物を分離することによる水溶性低粘度β-D-グルカンの精製方法にも関する。
本発明は、上記方法で得られる水溶性低粘度β-D-グルカン含有培養液または上記方法で得られる水溶性低粘度β-D-グルカン含有水溶液に酸を加えて、弱アルカリ性〜酸性に調整する水溶性低粘度β-D-グルカン含有培養液または水溶性低粘度β-D-グルカン含有水溶液の調整方法に関する。
本発明は、上記の方法により得られる水溶性低粘度β-D-グルカンまたはその水溶液を含む食品に関する。
本発明は、また水溶性β-D-グルカンを主成分とする微生物培養液にアルカリ水溶液を加え、pHを12以上に調整することにより製造される水溶性低粘度β-D-グルカンに関する。
本発明は、また上記方法で得られた水溶性低粘度β-D-グルカン含有水溶液を乾燥して得られる乾燥水溶性低粘度β-D-グルカンに関する。
The present invention also relates to a method for purifying water-soluble low-viscosity β-D-glucan by separating impurities containing microorganisms from a water-soluble low-viscosity β-D-glucan-containing culture solution obtained by the above method.
The present invention is adjusted to weak alkaline to acidic by adding an acid to the water-soluble low-viscosity β-D-glucan-containing culture solution obtained by the above method or the water-soluble low-viscosity β-D-glucan-containing aqueous solution obtained by the above method. The present invention relates to a method for preparing a water-soluble low-viscosity β-D-glucan-containing culture solution or a water-soluble low-viscosity β-D-glucan-containing aqueous solution.
The present invention relates to a food containing a water-soluble low-viscosity β-D-glucan obtained by the above method or an aqueous solution thereof.
The present invention also relates to a water-soluble low-viscosity β-D-glucan produced by adding an alkaline aqueous solution to a microorganism culture solution mainly composed of water-soluble β-D-glucan and adjusting the pH to 12 or more.
The present invention also relates to a dry water-soluble low-viscosity β-D-glucan obtained by drying a water-soluble low-viscosity β-D-glucan-containing aqueous solution obtained by the above method.

以上のように、オーレオバシジウム属に属する微生物などにより産生される高粘度の水溶性β-D-グルカンを高アルカリ処理することにより低粘度化することに成功した。その結果、従来の培養液では困難であった菌体の除去やスプレ−ドライなどによる粉末化が可能となった。   As described above, the high viscosity water-soluble β-D-glucan produced by microorganisms belonging to the genus Aureobasidium has been successfully reduced by high alkali treatment. As a result, it was possible to remove the bacterial cells, which was difficult with the conventional culture solution, and to be pulverized by spray drying.

本発明に使用される微生物は、水溶性β-D-グルカンを産生し得る限り、特に限定されないが、好ましくはオーレオバシジウム属微生物、特にオーレオバシジウム属プルランスである。
オーレオバシジウム(Aureobasidium) sp. K-1株(非特許文献2参照)から変異処理により得られた変異菌株GM-NH-1A1株またはGM-NH-1A2株は、低分子グルカンも産生するので、特に好ましい菌である。なお、上記オリジナルの菌株であるオーレオバシジウム sp. K-1株は高分子量のβ-グルカンを数種類(200万以上と100万程度のβ-グルカン)を産生し、そのβ‐グルカン含有培養液の粘度は高く、増粘剤として食品添加物として利用されている。また、オーレオバシジウム sp. K-1株の産生するβ‐グルカンは一部スルホ酢酸基により置換されており、その含量は培地組成など培養方法により異なる(非特許文献追加)。
The microorganism used in the present invention is not particularly limited as long as it can produce water-soluble β-D-glucan, but is preferably an Aureobasidium microorganism, particularly an Aureobasidium pullulans.
Mutant strains GM-NH-1A1 or GM-NH-1A2 obtained by mutation treatment from Aureobasidium sp. K-1 strain (see Non-Patent Document 2) also produce low-molecular glucans. Particularly preferred bacteria. The original strain Aureobasidium sp. K-1 produces several kinds of high molecular weight β-glucan (over 2 million and about 1 million β-glucan), and the β-glucan-containing culture solution Has a high viscosity and is used as a food additive as a thickener. In addition, β-glucan produced by Aureobasidium sp. K-1 strain is partially substituted with sulfoacetic acid groups, and the content varies depending on the culture method such as medium composition (added non-patent literature).

本変異菌株GM-NH-1A1株とGM-NH-1A2株は、実施例で示すようにメインピークが100万程度の高分子量のβ-グルカンとメインピークが10-20万程度の低分子量のβ-グルカンの両方を産生する菌株で、これらにより産生されたβ‐グルカンはオリジナル菌株と同様に一部スルホ酢酸基により置換されており、その含量はいづれも約0.1%であった(非特許文献2参照)。これらの菌株の性質は下記表に示した通りである。それぞれの菌株の形態学的性質および28s rDNAの塩基配列から、これらの菌株はAureobasidium pullulansに属する微生物であることが確認された。これらの菌株は独立行政法人産業技術研究所特許生物寄託センターにそれぞれFERM P-19285 とFERM P-19286として寄託されている。   As shown in the Examples, the mutant strains GM-NH-1A1 and GM-NH-1A2 have a high molecular weight β-glucan with a main peak of about 1 million and a low molecular weight with a main peak of about 100,000 to 200,000. In the strains that produce both β-glucans, the β-glucans produced by them were partially substituted with sulfoacetic acid groups as in the original strains, and their contents were all about 0.1%. Reference 2). The properties of these strains are as shown in the table below. From the morphological properties of each strain and the base sequence of 28s rDNA, it was confirmed that these strains belong to Aureobasidium pullulans. These strains are deposited as FERM P-19285 and FERM P-19286 at the National Institute of Advanced Industrial Science and Technology Patent Biological Deposit Center, respectively.

Figure 0004441304
Figure 0004441304

微生物を培養して水溶性β-D-グルカンを産生するには、公知の水溶性β-D-グルカン産生能を有する菌或いは上記の寄託された菌を使用し、それぞれの微生物に応じて公知の培地、培養方法により行うことができる。
オーレオバシジウム属に属する微生物を培養して、水溶性β-1,3-1,6-D-グルカンを生産する方法もまた種々報告されているが、使用できる炭素源としては、シュ−クロース、グルコース、フラクトースなどの炭水化物、ペプトンや酵母エキスなどの有機栄養源を挙げることができる。窒素源としては、硫酸アンモニウムや硝酸ナトリウム、硝酸カリウムなどの無機窒素源を挙げることができる。場合によってはβ-グルカンの生産量を上昇させるために適宜上、塩化ナトリウム、塩化カリウム、リン酸塩、マグネシウム塩、カルシウム塩などの無機塩、さらには鉄、銅、マンガンなどの微量金属塩やビタミン類を添加するのも有効な方法である。
In order to cultivate microorganisms to produce water-soluble β-D-glucan, a known water-soluble β-D-glucan-producing bacterium or the above-mentioned deposited bacterium is used. It can be performed by the culture medium and culture method.
Various methods for producing water-soluble β-1,3-1,6-D-glucan by culturing microorganisms belonging to the genus Aureobasidium have also been reported. As a usable carbon source, sucrose is used. , Carbohydrates such as glucose and fructose, and organic nutrient sources such as peptone and yeast extract. Examples of the nitrogen source include inorganic nitrogen sources such as ammonium sulfate, sodium nitrate, and potassium nitrate. In some cases, in order to increase the production amount of β-glucan, as appropriate, inorganic salts such as sodium chloride, potassium chloride, phosphate, magnesium salt, calcium salt, trace metal salts such as iron, copper, manganese, etc. Adding vitamins is also an effective method.

たとえばオーレオバシジウム属に属する微生物を炭素源としてシュークロースを含むツアペック培地にアスコルビン酸ナトリウムを添加した培地で培養した場合、高濃度の水溶性β-1,3-1,6-D-グルカンを産生することが報告されている(非特許文献2参照)。しかしながら、培養液はこの組成に限定されるものではなく、さらに必要に応じて酵母エキスやペプトンなどの有機栄養源を添加してもよい。
オーレオバシジウム属に属する微生物を上記培地で好気培養するための条件は、温度が10−50℃、好ましくは20−35℃であり、pHが4−7、好ましくは4.5−6.5である。
効果的に培養pHを制御するためにアルカリ、あるいは酸で培養液のpHを制御するのも得策である。さらに培養液の消泡のために適宜、泡消剤を添加してもよい。培養時間は通常1−10日間が好ましく、1−4日間培養すれば水溶性β‐D‐グルカンを生産することが可能である。なお、β‐D‐グルカンの生産量を測定しながら培養時間を決めてもよい。
For example, when a microorganism belonging to the genus Aureobasidium is cultured in a medium containing sodium ascorbate in a tourpec medium containing sucrose as a carbon source, a high concentration of water-soluble β-1,3-1,6-D-glucan is added. It has been reported to produce (see Non-Patent Document 2). However, the culture solution is not limited to this composition, and an organic nutrient source such as yeast extract or peptone may be added as necessary.
The conditions for aerobic culture of microorganisms belonging to the genus Aureobasidium in the above medium are a temperature of 10-50 ° C, preferably 20-35 ° C, and a pH of 4-7, preferably 4.5-6.5.
In order to effectively control the culture pH, it is also a good idea to control the pH of the culture solution with alkali or acid. Furthermore, an antifoaming agent may be added as appropriate for defoaming the culture solution. The culture time is usually preferably 1-10 days. If cultured for 1-4 days, water-soluble β-D-glucan can be produced. The culture time may be determined while measuring the production amount of β-D-glucan.

上記条件でオーレオバシジウム属に属する微生物を4−6日間通気攪拌培養すると、培養液には水溶性β-1,3-1,6-D−グルカンを主成分とするβ-グルカン多糖が0.1%から数%(w/v)含有されており、その培養液の粘度はBM型回転粘度計(東機産業社製)により30℃では数千cP [mPa・s])から数百cP ([mPa・s])という非常に高い粘度を有する。
上記のようにして得られる培養液に、通常常温でアルカリまたはその水溶液を加え、該培養液を低粘度化するに必要なpHに調整することにより、急激にその粘度を低下させることができる。
When a microorganism belonging to the genus Aureobasidium is cultured under aeration and agitation for 4-6 days under the above conditions, 0.1-β-glucan polysaccharide mainly composed of water-soluble β-1,3-1,6-D-glucan is contained in the culture solution. % To several% (w / v), and the viscosity of the culture broth is from several thousand cP [mPa · s] at 30 ° C to several hundred cP (by Toki Sangyo Co., Ltd.). [mPa · s]).
The viscosity can be drastically reduced by adding an alkali or an aqueous solution thereof to the culture solution obtained as described above at normal temperature and adjusting the pH to a value necessary for reducing the viscosity of the culture solution.

本発明で用いられるアルカリまたはその水溶液としては、炭酸カルシウム水溶液、炭酸ナトリウム水溶液、炭酸カリウム水溶液、炭酸アンモニウム水溶液などの炭酸アルカリ塩水溶液、水酸化ナトリウム水溶液、水酸化カリウム水溶液、水酸化カルシウム水溶液などの水酸化アルカリ水溶液、あるいはアンモニア水溶液など通常用いられる水溶性のアルカリであれば特に制限はない。ただし、食用には食品添加物として認められているアルカリが好ましいことは言うまでもない。
pHの調整は対象の培養液中の多糖類の濃度により異なるが、比較的高濃度の場合、pHが11以上で、好ましくは12以上、更に好ましくは13以上になるようにアルカリまたはその水溶液を添加する。低濃度の場合には、より低いpHで処理することにより低粘度化することができる。
Examples of the alkali or an aqueous solution thereof used in the present invention include calcium carbonate aqueous solution, sodium carbonate aqueous solution, potassium carbonate aqueous solution, ammonium carbonate aqueous solution and the like alkali carbonate aqueous solution, sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, calcium hydroxide aqueous solution and the like. There is no particular limitation as long as it is a commonly used water-soluble alkali such as an aqueous alkali hydroxide solution or an aqueous ammonia solution. However, it goes without saying that alkalis recognized as food additives are preferred for edible use.
The pH adjustment varies depending on the polysaccharide concentration in the culture medium of interest, but in the case of a relatively high concentration, an alkali or an aqueous solution thereof is used so that the pH is 11 or more, preferably 12 or more, more preferably 13 or more. Added. In the case of a low concentration, the viscosity can be lowered by processing at a lower pH.

アルカリ処理後の粘度を低下させた水溶性β-D-グルカン培養液から、菌体などの不溶性物質を分離する方法としては、培養液から不溶性物質を分離できる方法であれば特に制限はなく、遠心分離、ろ紙あるいはろ布を利用した全量ろ過、フィルタープレス、更に膜ろ過(MF膜などの限外ろ過)などで行うことができる。ろ紙あるいはろ布による全量ろ過の場合はセライトなどろ過助剤を利用するのも一つの手段である。ろ過により除菌する場合、培養液の粘度は100cp以下、好ましくは60cp以下、更に好ましくは30cp以下に調整されていることが好ましい。
アルカリ処理後、粘度を低下させた水溶性β-D-グルカン含有培養液あるいは、更に除菌などの精製後の水溶性β-D-グルカン含有水溶液に、酸を添加しpHを弱アルカリ性(pH10)から酸性(pH2)に中和処理してもよい。
本発明においては、上記方法で得られる水溶性低粘度β-D-グルカン含有培養液をアルカリ処理で低粘度化した培養液や、更に菌体を取り除たり、中和処理したり、脱塩まで行った水溶性低粘度化β-D-グルカンを乾燥して、乾燥水溶性低粘度β-D-グルカンを製造できる。乾燥方法としては、噴霧乾燥法や、凍結乾燥法等公知の方法を採用できる。また、噴霧乾燥の作業性を改善したり、回収率を上げるため、必要に応じて、乳糖、デキストリン、シクロデキストリン、クラスタ−デキストリン、トレハロ−ス等の糖質化合物を適宜配合することが出来る。
As a method for separating insoluble substances such as bacterial cells from a water-soluble β-D-glucan culture solution with reduced viscosity after alkali treatment, there is no particular limitation as long as it is a method capable of separating insoluble substances from the culture solution, Centrifugation, total filtration using filter paper or filter cloth, filter press, and membrane filtration (ultrafiltration such as MF membrane) can be performed. In the case of total filtration with filter paper or filter cloth, it is one means to use a filter aid such as celite. When sterilizing by filtration, the viscosity of the culture solution is preferably adjusted to 100 cp or less, preferably 60 cp or less, more preferably 30 cp or less.
After alkali treatment, acid is added to the water-soluble β-D-glucan-containing culture solution with reduced viscosity, or to a water-soluble β-D-glucan-containing aqueous solution after purification such as sterilization. ) To acidic (pH 2) neutralization treatment.
In the present invention, the culture solution containing the water-soluble low-viscosity β-D-glucan obtained by the above method is reduced in viscosity by alkali treatment, and further, the cells are removed, neutralized, or desalted. The water-soluble, low-viscosity β-D-glucan that has been subjected to the above can be dried to produce dry water-soluble low-viscosity β-D-glucan. As a drying method, a known method such as a spray drying method or a freeze drying method can be employed. Moreover, in order to improve the workability of spray drying or increase the recovery rate, a sugar compound such as lactose, dextrin, cyclodextrin, cluster-dextrin, trehalose and the like can be appropriately blended as necessary.

本発明によれば、アルカリ処理後の水溶性β-D-グルカン含有培養液または精製β-D-グルカン含有水溶液のpHを中性付近から酸性付近に調整しなおしてもグルカンなどの多糖がゲル化するようなことは無く、粘度は低粘度のままである。
このように本発明は、高粘度の水溶性β-D-グルカン含有培養液をアルカリ処理により低粘度化させ、必要に応じ精製処理後、引き続きpHを酸性(pH2)に調整しなおしても粘度の上昇が無く、健康食品素材、特に健康食品飲料素材として有用である。特にそのままでホットパック滅菌(pHが4以下、90℃以下で数分)に供することができることから、本発明に係る方法は実際的な方法である。
この場合のpHの調整は目的に応じて適当に調整すればよい。
本発明の方法において用いられる酸としては、塩酸、燐酸、硫酸、クエン酸など通常アルカリを中和させることができるものであれば特に制限がない。ただし、食用には、食品添加物として認められている酸、例えばクエン酸やリンゴ酸が使用される。
According to the present invention, polysaccharides such as glucan are gelated even when the pH of a water-soluble β-D-glucan-containing culture solution or purified β-D-glucan-containing aqueous solution after alkali treatment is adjusted from near neutral to near acidic. The viscosity remains low.
As described above, the present invention reduces the viscosity of a culture solution containing high-viscosity water-soluble β-D-glucan by alkaline treatment, and after refining as necessary, the pH is subsequently adjusted to acidic (pH 2). It is useful as a health food material, particularly a health food beverage material. In particular, the method according to the present invention is a practical method because it can be used for hot pack sterilization (pH is 4 or less, 90 ° C. or less for several minutes) as it is.
In this case, the pH may be adjusted appropriately according to the purpose.
The acid used in the method of the present invention is not particularly limited as long as it can normally neutralize alkali such as hydrochloric acid, phosphoric acid, sulfuric acid, citric acid. However, for food, acids that are recognized as food additives, such as citric acid and malic acid, are used.

下記に実施例1及び2に示す2種類の培養液を用いて行った粘度低下実験の結果を示す。なお、粘度の測定はアルカリ処理した培養液を50%(w/v)クエン酸水溶液でpH4.9に調整してから行った。   The results of viscosity reduction experiments conducted using the two types of culture solutions shown in Examples 1 and 2 are shown below. The viscosity was measured after adjusting the alkali-treated culture solution to pH 4.9 with a 50% (w / v) aqueous citric acid solution.

Figure 0004441304
Figure 0004441304

Figure 0004441304
Figure 0004441304

次に実施例を挙げて本発明を詳細に説明するが、本発明はこれらの例に限定されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these examples.

実施例1 Aureobasidium pullulans GM-NH-1A1株の使用
1)β-グルカンの培養産生−1
下記の組成からなる60mlの液体培地をバッフル付きの300 ml三角フラスコに入れ、121℃、15分間、加圧蒸気滅菌を行った後、GM-NH-1A1株を同培地組成のスラントより無菌的に1白金耳植菌し、24時間、30℃で130rpmの通気攪拌培養を行い種培養液を調製した。ついで、同組成の培地3Lを5L容ジャーファーメンター(ミツワ理科学社製)に入れ、121℃、15分間、加圧蒸気滅菌を行い、先ほど得られた種培養液を無菌的に植菌し、400rpm、 30℃、 600ml/minの通気攪拌培養を行った。なお、pHは水酸化ナトリウムと塩酸を用いてpH4.6〜5.0に制御した。約96時間後の菌体濁度は24 OD(660nm)で、多糖濃度は0.6%(w/v)であった。多糖濃度は、培養液から菌体を遠心除去した後、66%(v/v)となるようにエタノールを加えて沈殿させ、イオン交換水に溶解後、フェノール硫酸法で定量した。
Example 1 Use of Aureobasidium pullulans GM-NH-1A1 1) Culture production of β-glucan-1
Put 60ml liquid medium with the following composition into a 300ml Erlenmeyer flask with baffle, autoclaved at 121 ° C for 15 minutes, and then sterilize GM-NH-1A1 strain from the slant with the same composition. A seed culture solution was prepared by inoculating 1 platinum ear and incubating at 130 rpm with aeration and stirring at 30 ° C. for 24 hours. Next, 3 L of the medium with the same composition was placed in a 5 L jar fermenter (manufactured by Mitsuwa Riken), autoclaved at 121 ° C for 15 minutes, and the seed culture solution obtained above was aseptically inoculated. Then, aeration and agitation culture at 400 rpm, 30 ° C. and 600 ml / min were performed. The pH was controlled at pH 4.6 to 5.0 using sodium hydroxide and hydrochloric acid. The turbidity after about 96 hours was 24 OD (660 nm), and the polysaccharide concentration was 0.6% (w / v). The polysaccharide concentration was determined by the phenol-sulfuric acid method after centrifuging and removing ethanol from the culture, adding ethanol to 66% (v / v), precipitating it, and dissolving in ion-exchanged water.

ついでコンゴ―レッド法によって、480nmから525nm付近への波長シフトを確認することができたのでβ-グルカンを含有していることが証明された(非特許文献3、4参照)。そのときの極大値へのシフト差分はΔ0.48/500μg多糖であった。また、本多糖の2次元NMR(13C-1H COSY NMR )スペクトルより、構成糖であるD-グルコースのC1炭素に由来する13C NMR 104ppmと相関関係を有する1H NMRスペクトル 4.7ppmと4.4ppm付近の2つのシグナルを得た。この結果、β-グルカンがβ-1,3-1,6-D-グルカンであることが証明された(非特許文献4参照)。それぞれの1H NMRシグナルの積分比から、β−1,3-結合/β1,6-結合の比は1.17であることが判明した。
また、この菌体除去した培養上清にエタノールを最終濃度が66%となるように添加し、β‐グルカンを沈殿回収した。その後、再度イオン交換水に溶解し、不溶各分をろ紙でろ過除去した。その上清に最終濃度が0.9%になるように食塩を加えた後、再度66%エタノールでβ‐グルカンを回収した。このβ‐グルカン回収精製操作をさらに2回繰り返し、得られたβ‐グルカン水溶液をイオン交換水で透析後、凍結乾燥によりβ‐グルカン粉末を得た。本β‐グルカンの組成分析結果からS含量は239mg/kgであり、これから計算される置換スルホ酢酸含量は0.09%であった。これは非特許文献2記載の方法で測定したスルホ酢酸含量からも確認できた。
Subsequently, the wavelength shift from 480 nm to around 525 nm could be confirmed by the Congo-Red method, and it was proved that β-glucan was contained (see Non-Patent Documents 3 and 4). The shift difference to the maximum value at that time was Δ0.48 / 500 μg polysaccharide. Also, from the two-dimensional NMR (13 C1 H COSY NMR) spectrum of the Honda sugar, 1 H NMR spectra 4.7ppm correlating with 13 C NMR 104 ppm derived from the C1 carbon of D- glucose is constituent sugar and 4.4 Two signals near ppm were obtained. As a result, it was proved that β-glucan is β-1,3-1,6-D-glucan (see Non-Patent Document 4). From the integral ratio of the respective 1 H NMR signals, the ratio of β-1,3-bond / β1,6-bond was found to be 1.17.
Further, ethanol was added to the culture supernatant from which the cells had been removed so that the final concentration was 66%, and β-glucan was collected by precipitation. Then, it melt | dissolved in ion-exchange water again, and insoluble each part was filtered and removed with the filter paper. Sodium chloride was added to the supernatant to a final concentration of 0.9%, and β-glucan was again collected with 66% ethanol. This β-glucan recovery and purification operation was repeated twice more, and the resulting β-glucan aqueous solution was dialyzed against ion-exchanged water and then freeze-dried to obtain β-glucan powder. From the compositional analysis results of this β-glucan, the S content was 239 mg / kg, and the substituted sulfoacetic acid content calculated from this was 0.09%. This could also be confirmed from the sulfoacetic acid content measured by the method described in Non-Patent Document 2.

Figure 0004441304
Figure 0004441304

2)アルカリ処理
上記1)で得られた培養液3LをBM型回転粘度計により測定したところ、粘度は30℃で1400cP ([mPa・s])であった。この培養液に最終濃度が2.4 %(w/v)となるように25%(w/w)水酸化ナトリウムを添加し攪拌したところ、瞬時に粘度が低下した。そのときのpHは13.6であった。引き続いて50%(w/v)クエン酸水溶液でpH4.9にしてから粘度を測定したところ、そのときの粘度は18cP ([mPa・s])であった。次いで、この培養液にろ過助剤としてKCフロック(日本製紙社製)を添加し、ろ紙(アドバンテック社製 No.2)を用いて吸引ろ過により菌体を除去し、最終的に培養ろ液を約3.5L得た。その多糖濃度は0.6%(w/v)で、ほぼ100%の回収率であった。
2) Alkali treatment When 3 L of the culture solution obtained in 1) was measured with a BM type rotational viscometer, the viscosity was 1400 cP ([mPa · s]) at 30 ° C. When 25% (w / w) sodium hydroxide was added to this culture broth to a final concentration of 2.4% (w / v) and stirred, the viscosity decreased instantaneously. The pH at that time was 13.6. Subsequently, when the viscosity was measured after adjusting the pH to 4.9 with a 50% (w / v) aqueous citric acid solution, the viscosity at that time was 18 cP ([mPa · s]). Next, KC Flock (manufactured by Nippon Paper Industries Co., Ltd.) is added to the culture broth as a filter aid, and the cells are removed by suction filtration using filter paper (Advantech No. 2). About 3.5L was obtained. The polysaccharide concentration was 0.6% (w / v), and the recovery rate was almost 100%.

3)β-D-グルカン水溶液の脱塩
上記のβ-グルカン水溶液(培養ろ液)をUF膜(分子量カット5万、スペクトラム社製)によって脱塩を行い、最終的に塩濃度を30-40分の1程度に脱塩した。最後に、50%(w/v)クエン酸水溶液によりpHを3.5にした後、95℃、3分間殺菌処理を行い、最終製品として3.5Lのβ-D-グルカン水溶液を得た。この時のβ-D-グルカンの濃度はフェノール硫酸法により測定したところ0.43%(w/v)で、培養液からの収率は約70%であった。
また、得られたβ‐グルカン水溶液をイオン交換水で透析後、凍結乾燥によりβ‐グルカン粉末を得た。本β‐グルカンの組成分析結果からS含量は330mg/kgであり、これから計算される置換スルホ酢酸含量は0.12%であった。これは非特許文献2記載の方法で測定したスルホ酢酸含量からも確認できた。
また、東ソー社製のトーヨーパールHW65(カラムサイズ 75cm x φ1cm、排除分子量250万(デキストラン))により0.1Mの水酸化ナトリウム水溶液を溶離液としてゲルクロマトグラフィーを行ったところ、得られた多糖の分子量は平均分子量で5万から30万のピークの低分子画分と50万から250万以上の高分子画分の二種類からなることが判明した。なお、分子量マーカーとしてShodex社製のプルランを用いた。
3) Desalination of β-D-glucan aqueous solution The above β-glucan aqueous solution (culture filtrate) is desalted with a UF membrane (molecular weight cut 50,000, manufactured by Spectrum), and finally the salt concentration is 30-40. Desalinated to about 1 / min. Finally, after the pH was adjusted to 3.5 with a 50% (w / v) citric acid aqueous solution, sterilization was performed at 95 ° C. for 3 minutes to obtain a 3.5 L β-D-glucan aqueous solution as a final product. The concentration of β-D-glucan at this time was 0.43% (w / v) as measured by the phenol sulfate method, and the yield from the culture was about 70%.
The obtained β-glucan aqueous solution was dialyzed against ion-exchanged water and then freeze-dried to obtain β-glucan powder. From the compositional analysis result of this β-glucan, the S content was 330 mg / kg, and the substituted sulfoacetic acid content calculated from this was 0.12%. This could also be confirmed from the sulfoacetic acid content measured by the method described in Non-Patent Document 2.
In addition, when Toyopearl HW65 manufactured by Tosoh Corporation (column size 75cm x φ1cm, excluded molecular weight 2.5 million (dextran)) was subjected to gel chromatography using 0.1M sodium hydroxide aqueous solution as the eluent, the molecular weight of the polysaccharide obtained Was found to consist of two types of low molecular fractions with an average molecular weight of 50,000 to 300,000 peaks and high molecular fractions of 500,000 to over 2.5 million. A pullulan manufactured by Shodex was used as a molecular weight marker.

実施例2 Aureobasidium pullulans GM-NH-1A1株の使用
1)β-D-グルカンの培養産生−2
前記、表4の組成からなる60mlの液体培地をバッフル付きの300 ml三角フラスコに入れ、121℃、15分間、加圧蒸気滅菌を行った後、GM-NH-1A1株を同培地組成のスラントより無菌的に1白金耳植菌し、96時間、30℃で130rpmの通気攪拌培養を多糖生産実験を行った。96時間後の菌体濁度は35 OD(660nm)で、多糖濃度は0.3%(w/v)であった。多糖濃度は、培養液から菌体を遠心除去した後、66%(v/v)となるようにエタノールを加えて沈殿させ、イオン交換水に溶解後、フェノール硫酸法で定量した。
Example 2 Use of Aureobasidium pullulans GM-NH-1A1 1) Culture production of β-D-glucan-2
60 ml of the liquid medium having the composition shown in Table 4 was placed in a 300 ml Erlenmeyer flask with baffle and autoclaved at 121 ° C for 15 minutes, and then GM-NH-1A1 strain was slanted with the same medium composition. One platinum ear inoculation was performed more aseptically, and a polysaccharide production experiment was conducted by aeration-stirring culture at 30 ° C. and 130 rpm for 96 hours. The turbidity after 96 hours was 35 OD (660 nm), and the polysaccharide concentration was 0.3% (w / v). The polysaccharide concentration was determined by the phenol-sulfuric acid method after centrifuging and removing ethanol from the culture, adding ethanol to 66% (v / v), precipitating it, and dissolving in ion-exchanged water.

2)以下、実施例1と同様にして、この多糖の性質を調べた。
コンゴ―レッドでのシフト効果を調べたところ、極大吸収が480nmから525nm付近へのシフトが観察されβ-D-グルカンを含有していることが証明された。そのときの極大値へのシフト差分はΔ0.45/500μg多糖であった。また2次元NMR(13C-1H COSY NMR)分析を行った。その結果より、得られた多糖はβ-1,3-1,6-D-グルカンであることが証明された。それぞれの1H シグナルの積分比より、β-1,3-結合/β1,6-結合の比は1.11であった。
引き続いて、得られた培養液60mlをBM型回転粘度計により測定したところ、粘度は30℃で140cP ([mPa・s])であった。この培養液に最終濃度が2.4 %(w/v)となるように25%(w/w)水酸化ナトリウムを添加し攪拌したところ、瞬時に粘度が低下しpHは13.4であった。続いてpHを50%(w/v)クエン酸水溶液でpH4.9に調整した。そのときの粘度は8.5cP ([mPa・s])であった。
2) The properties of this polysaccharide were examined in the same manner as in Example 1.
When the shift effect in Congo-Red was investigated, the maximum absorption was observed to shift from 480 nm to around 525 nm, and it was proved to contain β-D-glucan. The shift difference to the maximum value at that time was Δ0.45 / 500 μg polysaccharide. Two-dimensional NMR ( 13 C- 1 H COSY NMR) analysis was also performed. From the result, it was proved that the obtained polysaccharide was β-1,3-1,6-D-glucan. From the integral ratio of each 1 H signal, the ratio of β-1,3-bond / β1,6-bond was 1.11.
Subsequently, when 60 ml of the obtained culture broth was measured with a BM type rotational viscometer, the viscosity was 140 cP ([mPa · s]) at 30 ° C. When 25% (w / w) sodium hydroxide was added to this culture broth to a final concentration of 2.4% (w / v) and stirred, the viscosity decreased instantaneously and the pH was 13.4. Subsequently, the pH was adjusted to 4.9 with a 50% (w / v) aqueous citric acid solution. The viscosity at that time was 8.5 cP ([mPa · s]).

実施例3 Aureobasidium pullulans GM-NH-1A2株の使用
菌株をGM-NH-1A1株からGM-NH-1A2株に変更した以外はすべて実施例1の方法で行った。その結果、生成した多糖濃度は0.5%(w/v)、そのときの粘度は1300cP([mPa・s])であった。得られた培養液に実施例2と同様にして水酸化ナトリウムを最終濃度が2.4%(w/w)になる様に添加したところpHは13.6となり著しく粘度が低下した。引き続いて50%(w/v)クエン酸水溶液でpH4.9に調整してから粘度を測定したところ、粘度は7cP ([mPa・s])であった。そのときの多糖濃度は0.5%(w/v)であった。
Example 3 The same procedure as in Example 1 was performed except that the strain used in the Aureobasidium pullulans GM-NH- 1A2 strain was changed from the GM-NH-1A1 strain to the GM-NH-1A2 strain. As a result, the produced polysaccharide concentration was 0.5% (w / v), and the viscosity at that time was 1300 cP ([mPa · s]). When sodium hydroxide was added to the obtained culture broth in the same manner as in Example 2 so that the final concentration was 2.4% (w / w), the pH was 13.6 and the viscosity was significantly reduced. Subsequently, when the viscosity was measured after adjusting the pH to 4.9 with a 50% (w / v) citric acid aqueous solution, the viscosity was 7 cP ([mPa · s]). The polysaccharide concentration at that time was 0.5% (w / v).

以下、実施例1と同様にして、この多糖の性質を調べた。
コンゴ―レッドでのシフト効果を調べたところ、極大吸収が480nmから525nm付近へのシフトが観察された。そのときの極大値へのシフト差分はΔ0.45/500μg多糖であった。また2次元NMR(13C-1H COSY NMR)分析を行った。その結果より、得られた多糖はβ-1,3-1,6−D-グルカンであることが証明された。それぞれの1H シグナルの積分比より、β−1,3−結合/β1,6−結合の比は1.23であった。
更に分子量を測定したところ、その分子量は平均分子量で5万から30万のピークの低分子画分と50万から250万以上の高分子画分の二種類からなることが判明した。
また、本β‐グルカンの組成分析結果からS含量は229mg/kgであり、これから計算される置換スルホ酢酸含量は0.09%であった。これは非特許文献2記載の方法で測定したスルホ酢酸含量からも確認できた。
Thereafter, the properties of this polysaccharide were examined in the same manner as in Example 1.
When the shift effect in Congo-Red was examined, the maximum absorption was observed to shift from 480 nm to around 525 nm. The shift difference to the maximum value at that time was Δ0.45 / 500 μg polysaccharide. Two-dimensional NMR ( 13 C- 1 H COSY NMR) analysis was also performed. From the results, it was proved that the obtained polysaccharide was β-1,3-1,6-D-glucan. From the integral ratio of each 1 H signal, the ratio of β-1,3-bond / β1,6-bond was 1.23.
Furthermore, when the molecular weight was measured, it was found that the molecular weight was composed of two types, a low molecular fraction having an average molecular weight of 50,000 to 300,000 peaks and a high molecular fraction having 500,000 to 2.5 million or more.
In addition, the S content was 229 mg / kg from the compositional analysis result of this β-glucan, and the substituted sulfoacetic acid content calculated from this was 0.09%. This could also be confirmed from the sulfoacetic acid content measured by the method described in Non-Patent Document 2.

実施例4 Aureobasidium sp. K-1株の使用
菌株をGM-NH-1A1株からK−1株に変更した以外はすべて実施例1の方法で行った。その結果、生成した多糖濃度は0.5%(w/v)、そのときの粘度は1800cP ([mPa・s])であった。得られた培養液に実施例2と同様にして水酸化ナトリウムを最終濃度が2.4%(w/w)になる様に添加したところpHは13.5となり、著しく粘度が低下した。引き続いて50%(w/v)クエン酸水溶液でpH4.9に調整してから粘度を測定したところ、粘度は30cP ([mPa・s])であった。そのときの多糖濃度は0.5%(w/v)であった。
Example 4 The same procedure as in Example 1 was performed except that the strain used for the Aureobasidium sp. K-1 strain was changed from the GM-NH-1A1 strain to the K-1 strain. As a result, the produced polysaccharide concentration was 0.5% (w / v), and the viscosity at that time was 1800 cP ([mPa · s]). When sodium hydroxide was added to the obtained culture broth in the same manner as in Example 2 so that the final concentration was 2.4% (w / w), the pH was 13.5, and the viscosity was significantly reduced. Subsequently, when the viscosity was measured after adjusting the pH to 4.9 with a 50% (w / v) aqueous citric acid solution, the viscosity was 30 cP ([mPa · s]). The polysaccharide concentration at that time was 0.5% (w / v).

以下、実施例1と同様にして、この多糖の性質を調べた。
コンゴ―レッドでのシフト効果を調べたところ、極大吸収が480nmから525nm付近へのシフトが観察された。そのときの極大値へのシフト差分はΔ0.52/500μg多糖であった。また2次元NMR(13C-1H COSY NMR)分析を行った。その結果より、得られた多糖はβ-1,3-1,6−D-グルカンであることが証明された。それぞれの1H シグナルの積分比より、β−1,3−結合/β1,6−結合の比は1.42であった。更に分子量を測定したところ、その分子量は10万から300万であることが判明した。
また、本β‐グルカンの組成分析結果からS含量は6,800mg/kgであり、これから計算される置換スルホ酢酸含量は2.7%であった。これは非特許文献2記載の方法で測定したスルホ酢酸含量からも確認できた。
Thereafter, the properties of this polysaccharide were examined in the same manner as in Example 1.
When the shift effect in Congo-Red was examined, the maximum absorption was observed to shift from 480 nm to around 525 nm. The shift difference to the maximum value at that time was Δ0.52 / 500 μg polysaccharide. Two-dimensional NMR ( 13 C- 1 H COSY NMR) analysis was also performed. From the results, it was proved that the obtained polysaccharide was β-1,3-1,6-D-glucan. From the integral ratio of each 1 H signal, the ratio of β-1,3-bond / β1,6-bond was 1.42. Further, when the molecular weight was measured, it was found that the molecular weight was 100,000 to 3 million.
In addition, the S content was 6,800 mg / kg from the compositional analysis result of this β-glucan, and the substituted sulfoacetic acid content calculated from this was 2.7%. This could also be confirmed from the sulfoacetic acid content measured by the method described in Non-Patent Document 2.

実施例5 培地組成の変更
菌株をGM-NH-1A2株に変更し、表4の培地のアスコルビン酸ナトリウムを無添加とした以外はすべて実施例1の方法で行った。その結果、生成した多糖濃度は0.6%、そのときの粘度は1500cP ([mPa・s])であった。得られた培養液に実施例2と同様にして水酸化ナトリウムを最終濃度が2.4%(w/w)になる様に添加したところpHは13.6となり、著しく粘度が低下した。引き続いて50%(w/v)クエン酸水溶液でpH4.9にしてから粘度を測定したところ、その粘度は7cP ([mPa・s])であった。コンゴ―レッド法で、極大吸収が480nmから525nm付近へのシフトが観察された。そのときの極大値へのシフト差分はΔ0.45/500μg多糖であった。
また実施例1と同様に2次元NMR(13C-1H COSY NMR)分析を行った。その結果、得られた多糖はβ-1,3-1,6-D-グルカンであることが証明され、それぞれの1H シグナルの積分比より、β-1,3-結合/β1,6-結合の比は1.21であった。
次いで分子量を実施例3と同様の方法で測定したところ、その分子量は平均分子量で5万から30万のピークの低分子画分と50万から250万以上の高分子画分の二種類からなることが判明した。
Example 5 The method of Example 1 was used except that the strain of the medium composition was changed to the GM-NH-1A2 strain and sodium ascorbate in the medium of Table 4 was not added. As a result, the concentration of the produced polysaccharide was 0.6%, and the viscosity at that time was 1500 cP ([mPa · s]). When sodium hydroxide was added to the obtained culture broth in the same manner as in Example 2 so that the final concentration was 2.4% (w / w), the pH was 13.6, and the viscosity was significantly reduced. Subsequently, when the viscosity was measured after adjusting the pH to 4.9 with a 50% (w / v) aqueous citric acid solution, the viscosity was 7 cP ([mPa · s]). In the Congo-Red method, a maximum absorption shift from 480 nm to around 525 nm was observed. The shift difference to the maximum value at that time was Δ0.45 / 500 μg polysaccharide.
Further, two-dimensional NMR ( 13 C- 1 H COZY NMR) analysis was performed in the same manner as in Example 1. As a result, it was proved that the obtained polysaccharide was β-1,3-1,6-D-glucan. From the integral ratio of each 1 H signal, β-1,3-bond / β1,6- The binding ratio was 1.21.
Subsequently, the molecular weight was measured in the same manner as in Example 3. The molecular weight was composed of two types of a low molecular fraction having an average molecular weight peak of 50,000 to 300,000 and a high molecular fraction having 500,000 to 2.5 million or more. It has been found.

実施例6 水溶性高分子β-グルカンの粘度低下テスト
市販されているAureobasidium sp.の水溶性β−1,3−1,6−Dグルカン含有培養液A(商品名 “天慈のしずく”、発売元 フジカInc FS 宮崎県宮崎市清水2−7−39)及びB(商品名 “アクファ−ジマックス”、発売元 一光化学株式会社 岡山県浅口郡里庄町浜中93−59)を用いてアルカリ処理による粘度低下実験を行った。
製品の多糖濃度を測定したところ培養液Aは0.45%(w/v)、そのときの粘度は250cP ([mPa・s])であった。その培養液に実施例1−2)と同様、水酸化ナトリウムを最終濃度が2.4%(w/w)になる様に添加し(pH13.4)、引き続いて50%(w/v)クエン酸水溶液でpH4.9にしてから粘度を測定したところ、その粘度は10cP ([mPa・s])に低下した。そのときの多糖濃度は0.46% (w/v)であった。
培養液Bは多糖濃度0.07%(w/v)、そのときの粘度は115cP ([mPa・s])であった。その培養液に実施例1−2)と同様、水酸化ナトリウムを最終濃度が2.4%(w/w)になる様に添加し(pH13.4)、引き続いて50%(w/v)クエン酸水溶液でpH4.9にしてから粘度を測定したところ、その粘度は20cP ([mPa・s ])に低下した。
よって、市販されているAureobasidium sp.の水溶性β−1,3−1,6−Dグルカン含有培養液についても低粘度化が確認された。
Example 6 Viscosity reduction test of water-soluble polymer β-glucan Aureobasidium sp. Water-soluble β-1,3-1,6-D glucan-containing culture solution A (trade name “Tenji no Shizuku”, Sold by Fujika Inc FS 2-7-39 Shimizu, Miyazaki-shi, Miyazaki) and B (trade name “Akfa-Zimax”, sold by Ikko Chemical Co., Ltd. 93-59 Hamaka, Satosho-cho, Asakuchi-gun, Okayama) A viscosity reduction experiment was conducted.
When the polysaccharide concentration of the product was measured, the culture solution A was 0.45% (w / v), and the viscosity at that time was 250 cP ([mPa · s]). As in Example 1-2), sodium hydroxide was added to the culture solution to a final concentration of 2.4% (w / w) (pH 13.4), followed by 50% (w / v) citric acid. When the viscosity was measured after adjusting the pH to 4.9 with an aqueous solution, the viscosity decreased to 10 cP ([mPa · s]). The polysaccharide concentration at that time was 0.46% (w / v).
The culture solution B had a polysaccharide concentration of 0.07% (w / v), and the viscosity at that time was 115 cP ([mPa · s]). As in Example 1-2), sodium hydroxide was added to the culture solution to a final concentration of 2.4% (w / w) (pH 13.4), followed by 50% (w / v) citric acid. When the viscosity was measured after adjusting the pH to 4.9 with an aqueous solution, the viscosity decreased to 20 cP ([mPa · s]).
Therefore, it was confirmed that the viscosity of the Aureobasidium sp. Water-soluble β-1,3-1,6-D glucan-containing culture broth was also reduced.

一方、培養液Aについて実施例1と同様にコンゴ―レッド法で、極大吸収波長を測定したところ、480nmから525nm付近へのシフトが観察された。そのときの極大値へのシフト差分はΔ0.41/500μg 多糖であった。また2次元NMR(13C-1H COSY NMR)分析を行ったところ、得られた多糖はβ−1,3−1,6−D−グルカンであることが証明され、それぞれの1Hシグナルの積分比より、β−1,3結合/β−1,6結合の比は1.33であった。
また、培養液Aについて分子量を実施例1−3)と同様の方法で測定したところ、その分子量は平均分子量で50万から250万以上の高分子画分の一種類からなることが判明した。
On the other hand, when the maximum absorption wavelength of the culture solution A was measured by the Congo-Red method in the same manner as in Example 1, a shift from 480 nm to around 525 nm was observed. The shift difference to the maximum value at that time was Δ0.41 / 500 μg polysaccharide. In addition, when two-dimensional NMR (13C-1H COZY NMR) analysis was performed, it was proved that the obtained polysaccharide was β-1,3-1,6-D-glucan. From the integration ratio of each 1H signal, The ratio of β-1,3 bond / β-1,6 bond was 1.33.
Further, when the molecular weight of the culture broth A was measured by the same method as in Example 1-3), it was found that the molecular weight consisted of one kind of polymer fraction having an average molecular weight of 500,000 to 2.5 million or more.

実施例7 粉体化(スプレ−ドライ法)
実施例1−2)でアルカリで低粘度化処理を行ったのち、クエン酸にてpH6に調整したβ-グルカン(菌体を含む)を、坂本技研製の噴霧乾燥装置R−3(直径1200mm、高さ800mm)用いて、熱風入口温度145℃、熱風出口温度65℃、アトマイザ−回転数15000rpm、送液速度1000ml/hで噴霧乾燥を行い、β−1,3−1,6−D−グルカン粉体約50gを得た。この粉体はやや赤褐色をしており、β-グルカン純度は約8%であった。
Example 7 Powdering (Spray-Dry Method)
After performing the viscosity reduction treatment with alkali in Example 1-2), β-glucan (including fungus bodies) adjusted to pH 6 with citric acid was applied to a spray drying apparatus R-3 (diameter 1200 mm, manufactured by Sakamoto Giken). , Height 800mm), spray drying with hot air inlet temperature 145 ° C, hot air outlet temperature 65 ° C, atomizer rotation speed 15000rpm, liquid feed speed 1000ml / h, β-1,3-1,6-D- About 50 g of glucan powder was obtained. This powder was slightly reddish brown and had a β-glucan purity of about 8%.

実施例8 粉体化(エタノ−ル沈澱−凍結乾燥法)
実施例1−2)でアルカリ処理、脱塩、pH3.5 調整まで行った最終製品(菌体除去品)200mlをエタノ−ル800mlに混合し、一晩放置した後、沈殿物を遠心分離で回収した。この沈殿物をEYERA製の凍結乾燥装置を用いて乾燥させた。乾燥物は乳鉢で粉砕し、粉体約0.6gを得た。この粉体はわずかに褐色を示したが、β-グルカン純度はほぼ100%であることを確認した。このようにして、得られる乾燥粉末は、水、温水、アルカリ水に容易に再分散し、飲食物の添加剤として有用である。
Example 8 Powdering (Ethanol Precipitation-Freeze Drying Method)
200 ml of the final product (bacteria-removed product) that had been subjected to alkali treatment, desalting and pH 3.5 adjustment in Example 1-2) was mixed with 800 ml of ethanol and allowed to stand overnight, and then the precipitate was centrifuged. It was collected. This precipitate was dried using a freeze drying apparatus manufactured by EYERA. The dried product was pulverized in a mortar to obtain about 0.6 g of powder. Although this powder showed a slight brown color, it was confirmed that the purity of β-glucan was almost 100%. Thus, the obtained dry powder is easily redispersed in water, warm water and alkaline water, and is useful as an additive for food and drink.

Claims (10)

水溶性β-1,3-1,6-D-グルカンを主成分とするオーレオバシジウム属(Aureobasidium)に属する微生物の培養液に常温でアルカリ溶液を加え、pH13以上に調整することを特徴とする水溶性低粘度β-1,3-1,6-D-グルカン含有培養液の調製方法。 It is characterized by adding an alkaline solution to the culture solution of microorganisms belonging to the genus Aureobasidium whose main component is water-soluble β-1,3-1,6-D-glucan, and adjusting the pH to 13 or more. For preparing a water-soluble low-viscosity β-1,3-1,6-D-glucan- containing culture solution. オーレオバシジウム属に属する微生物がオーレオバシジウム属プルランス(Aureobasidium pullulans)またはオーレオバシジウム属スピシーズ(Aureobasidium sp.)である請求項1に記載の方法。 The method according to claim 1 , wherein the microorganism belonging to the genus Aureobasidium is Aureobasidium pullulans or Aureobasidium sp. オーレオバシジウム属プルランスがオーレオバシジウム属プルランス(Aureobasidium pullulans)GM-NH-1A1株(国内寄託番号 FERM P-19285)またはオーレオバシジウム属プルランス(Aureobasidium pullulans)GM-NH-1A2株(国内寄託番号FERM P-19286)である請求項1または2に記載の方法。 Aureobasidium pullulans strain Aureobasidium pullulans GM-NH-1A1 (domestic deposit number FERM P-19285) or Aureobasidium pullulans GM-NH-1A2 strain (domestic deposit number) FERM P-19286). The method according to claim 1 or 2 . 請求項1〜3の何れかに記載の方法で得られる水溶性低粘度β-1,3-1,6-D-グルカン含有培養液から微生物を含む不溶物を分離することによる水溶性低粘度β-1,3-1,6-D-グルカン含有水溶液の精製方法。 Water-soluble low-viscosity by separating insoluble matter containing microorganisms from a water - soluble low-viscosity β-1,3-1,6-D-glucan- containing culture solution obtained by the method according to any one of claims 1 to 3 A method for purifying an aqueous solution containing β-1,3-1,6-D-glucan . 請求項1〜3の何れかに記載の方法で得られる水溶性低粘度β-1,3-1,6-D-グルカン含有培養液に酸を加えて、該培養液をpH2〜10に調整する水溶性低粘度β-1,3-1,6-D-グルカン含有培養液の調製方法。An acid is added to the water-soluble low-viscosity β-1,3-1,6-D-glucan-containing culture obtained by the method according to any one of claims 1 to 3 to adjust the culture to pH 2 to 10 For preparing a water-soluble low-viscosity β-1,3-1,6-D-glucan-containing culture solution. 請求項4に記載の方法で得られる水溶性低粘度β-1,3-1,6-D-グルカン含有水溶液に酸を加えて、該水溶液をpH2〜10に調整する水溶性低粘度β-1,3-1,6-D-グルカン含有水溶液の精製方法。A water-soluble low-viscosity β- solution wherein the aqueous solution is adjusted to pH 2 to 10 by adding an acid to the water-soluble low-viscosity β-1,3-1,6-D-glucan-containing aqueous solution obtained by the method according to claim 4. A method for purifying an aqueous solution containing 1,3-1,6-D-glucan. 請求項1〜3に記載の方法で水溶性低粘度β-1,3-1,6-D-グルカン含有培養液を調製し、該培養液を食品に添加することを特徴とする水溶性低粘度β-1,3-1,6-D-グルカン含有培養液配合食品の製造法。A water-soluble low-viscosity β-1,3-1,6-D-glucan-containing culture solution is prepared by the method according to claims 1 to 3, and the culture solution is added to food. A method for producing a culture liquid-containing food containing a viscosity β-1,3-1,6-D-glucan. 請求項4又は6に記載の方法で水溶性低粘度β-1,3-1,6-D-グルカン含有水溶液を精製し、該水溶液を食品に添加することを特徴とする水溶性低粘度β-1,3-1,6-D-グルカン含有水溶液配合食品の製造法。A water-soluble low-viscosity β comprising purifying a water-soluble low-viscosity β-1,3-1,6-D-glucan-containing aqueous solution by the method according to claim 4 and adding the aqueous solution to food. A method for producing an aqueous solution containing -1,3-1,6-D-glucan. 水溶性β-1,3-1,6-D-グルカンを主成分とするオーレオバシジウム属に属する微生物の培養液に常温でアルカリ溶液を加え、pH13以上に調整し、水溶性低粘度β-1,3-1,6-D-グルカン含有培養液を得、該培養液を食品に添加することを特徴とする水溶性低粘度β-1,3-1,6-D-グルカン含有培養液配合食品の製造法。Add an alkaline solution at room temperature to the culture solution of microorganisms belonging to the genus Aureobasidium, whose main component is water-soluble β-1,3-1,6-D-glucan, and adjust the pH to 13 or higher to achieve water-soluble low-viscosity β- A culture solution containing a water-soluble low-viscosity β-1,3-1,6-D-glucan obtained by obtaining a culture solution containing 1,3-1,6-D-glucan and adding the culture solution to food Manufacturing method of compound food. 水溶性β-1,3-1,6-D-グルカンを主成分とするオーレオバシジウム属に属する微生物の培養液に常温でアルカリ溶液を加え、pH13以上に調整し、水溶性低粘度β-1,3-1,6-D-グルカン含有培養液を得、該培養液から微生物を含む不溶物を除去し、更にpH2〜10に調整し、水溶性低粘度β-1,3-1,6-D-グルカン含有水溶液を得、ついで該水溶液を食品に添加することを特徴とする水溶性低粘度β-1,3-1,6-D-グルカン含有水溶液配合食品の製造法。Add an alkaline solution at room temperature to the culture solution of microorganisms belonging to the genus Aureobasidium, whose main component is water-soluble β-1,3-1,6-D-glucan, and adjust the pH to 13 or higher to achieve water-soluble low-viscosity β- 1,3-1,6-D-glucan-containing culture broth is obtained, insoluble matter containing microorganisms is removed from the culture broth, and further adjusted to pH 2-10, water-soluble low viscosity β-1,3-1, A method for producing a water-containing low-viscosity β-1,3-1,6-D-glucan-containing aqueous solution characterized by obtaining an aqueous solution containing 6-D-glucan and then adding the aqueous solution to food.
JP2004092330A 2003-04-10 2004-03-26 Method for preparing water-soluble low-viscosity β-D-glucan-containing culture solution Expired - Lifetime JP4441304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004092330A JP4441304B2 (en) 2003-04-10 2004-03-26 Method for preparing water-soluble low-viscosity β-D-glucan-containing culture solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003106676 2003-04-10
JP2004092330A JP4441304B2 (en) 2003-04-10 2004-03-26 Method for preparing water-soluble low-viscosity β-D-glucan-containing culture solution

Publications (2)

Publication Number Publication Date
JP2004321177A JP2004321177A (en) 2004-11-18
JP4441304B2 true JP4441304B2 (en) 2010-03-31

Family

ID=33513045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004092330A Expired - Lifetime JP4441304B2 (en) 2003-04-10 2004-03-26 Method for preparing water-soluble low-viscosity β-D-glucan-containing culture solution

Country Status (1)

Country Link
JP (1) JP4441304B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4807941B2 (en) * 2004-07-14 2011-11-02 株式会社Adeka β-glucan
JP2006262877A (en) * 2005-03-25 2006-10-05 Daiso Co Ltd FISH FEED COMPOSITION CONTAINING beta-1,3-1,6-D-GLUCAN OF AUREOBASIDIUM SP
JP4967420B2 (en) * 2005-09-07 2012-07-04 ダイソー株式会社 Agent for preventing or improving constipation using β-1,3-1,6-D-glucan
JP4736908B2 (en) * 2006-03-31 2011-07-27 ダイソー株式会社 Process for producing β-1,3-1,6-D-glucan
JP4802821B2 (en) * 2006-03-31 2011-10-26 ダイソー株式会社 Process for producing purified β-D-glucan
JP5080029B2 (en) * 2006-06-05 2012-11-21 信威 濱田 β-glucan producing microorganism, culture method, product and food
JP5740072B2 (en) * 2007-03-05 2015-06-24 ダイソー株式会社 Stress relieving agent using β-1,3-1,6-D-glucan
JP2009060895A (en) * 2007-08-16 2009-03-26 Daiso Co Ltd PRODUCTION METHOD OF SOLUBLE beta-D-GLUCAN POWDER
JP5660781B2 (en) * 2007-11-01 2015-01-28 公立大学法人大阪市立大学 β-1,3-glucan-derived polyaldehyde / polyamine hydrogel
JP5172930B2 (en) * 2009-10-20 2013-03-27 国立大学法人佐賀大学 Method for reducing the viscosity of highly viscous cultures
WO2020045430A1 (en) * 2018-08-27 2020-03-05 学校法人東京薬科大学 Orally administrable composition for hair growth or hair restoration

Also Published As

Publication number Publication date
JP2004321177A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
Dermlim et al. Screening and characterization of bioflocculant produced by isolated Klebsiella sp.
JP4375266B2 (en) β-1,3-1,6-D-glucan and uses thereof
CN101512006B (en) Efficient process for purification of high molecular weight hyaluronic acid
US10793648B2 (en) Fucose-containing bacterial biopolymer
JP4441304B2 (en) Method for preparing water-soluble low-viscosity β-D-glucan-containing culture solution
CN110607254B (en) Bacillus amyloliquefaciens and preparation method of extracellular polysaccharide thereof
KR20060044829A (en) beta-1,3-1,6-D-GLUCAN AND ITS USE
JP5080029B2 (en) β-glucan producing microorganism, culture method, product and food
JP5969390B2 (en) Fucose-containing bacterial biopolymer
JP2009060895A (en) PRODUCTION METHOD OF SOLUBLE beta-D-GLUCAN POWDER
KR20080059850A (en) A novel micoorganism of pseudoalteromonas sp. and method for producing oligofucoidan using the same and produts thereof
JPH07119243B2 (en) β-glucan and method for producing the same
JP4974453B2 (en) Intestinal immunity activator using β-1,3-1,6-D-glucan
JP4523909B2 (en) Acid heteropolysaccharide AX-1
Manzoni et al. Influence of the culture conditions on extracellular lyase activity related to K5 polysaccharide
JP2691838B2 (en) BS-2 substance and method for producing the same
JPH1156384A (en) Purification of polysaccharide
JP2012191875A (en) Psyllium brought to have low viscosity and method for producing the same
JP2014223027A (en) Novel amino polysaccharide which filamentous fungus produces
JPH06313001A (en) Bs-5 substance
WO2011114472A1 (en) Hyaluronic acid purification method
Chandran et al. Bioprospecting of Traditional Sweet Manufacturing Effluent for Exopolysachharide Producing Bacteria and Their Biotechnological Applications
JPH0219392A (en) Galactosaminooligosaccahride and production thereof
AU2013273729A1 (en) Efficient process for purification of high molecular weight hyaluronic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4441304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350