JP2014223027A - Novel amino polysaccharide which filamentous fungus produces - Google Patents
Novel amino polysaccharide which filamentous fungus produces Download PDFInfo
- Publication number
- JP2014223027A JP2014223027A JP2013103277A JP2013103277A JP2014223027A JP 2014223027 A JP2014223027 A JP 2014223027A JP 2013103277 A JP2013103277 A JP 2013103277A JP 2013103277 A JP2013103277 A JP 2013103277A JP 2014223027 A JP2014223027 A JP 2014223027A
- Authority
- JP
- Japan
- Prior art keywords
- aminopolysaccharide
- chitosan
- present
- amino polysaccharide
- glucosamine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Fodder In General (AREA)
- Coloring Foods And Improving Nutritive Qualities (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
Abstract
Description
本発明は粘度が低く、溶解し易い新規なアミノ多糖に関する。 The present invention relates to a novel aminopolysaccharide having a low viscosity and easily dissolved.
従来、キトサンは凝集剤としての用途が主であったが、その後医療分野、工業分野、農業分野、食品分野で多岐の用途開発が行われ、特に近年では抗コレステロ−ル、抗高血圧に着目した健康食品、またその構成糖であるグルコサミンの関節痛に対する健康食品としての用途からその供給源としての需要が増加しており、様々なキチン・キトサン様物質が報告されている(特許文献1、2,非特許文献1,2)。しかしながら、従来のキチン・キトサン様物質は、分子量分布が広く、粘性が高くかつ水に不溶であることが知られている。 Conventionally, chitosan has been mainly used as an aggregating agent, but since then, various uses have been developed in the medical field, industrial field, agricultural field, and food field, and in recent years, attention has been focused on anti-cholesterol and anti-hypertension. Due to the use of health foods and glucosamine, which is a constituent sugar, as health foods for joint pain, the demand as a supply source is increasing, and various chitin / chitosan-like substances have been reported (Patent Documents 1 and 2). Non-patent documents 1, 2). However, it is known that conventional chitin / chitosan-like substances have a wide molecular weight distribution, high viscosity, and insolubility in water.
本発明は水へ溶かしても粘性が低く、溶解度が高い、より使いやすい新規アミノ多糖を提供することを目的とする。 An object of the present invention is to provide a novel aminopolysaccharide which has a low viscosity and a high solubility even when dissolved in water and is easy to use.
本発明者らは、上記課題を解決するために鋭意検討をした結果、以下に示す項目によって、上記課題を解決できることを見出し、本発明を完成するに至った。
すなわち、本発明は、以下のとおりである。
[1]グルコサミンがβ1→3結合とβ1→4結合で交互に連なる構造で結合した構造を有するアミノ多糖。
[2]赤外吸収スペクトル:891±10 cm−1、3300±100cm−1、2900±50cm−1、3300±100cm−1、1550〜1650cm−1にピ−クを有する[1]記載のアミノ多糖。
[3]元素分析値(重量%)が以下である、[2]記載のアミノ多糖。
C:38〜40
H:6〜9
N:6〜9
O:38〜40
[4] 分子量が300,000〜500,000である[2]又は[3]記載のアミノ多糖。
[5]ペイロネラ カロプレフェレンス(Peyronellaea calorpreferens)NITE P−01575菌株或いはその自然的或いは人工的変異体の産生した[1]〜[4]いずれか記載のアミノ多糖。
[6][1]から[5]いずれか記載のアミノ多糖を含む粘度が5cP以下の水溶液。
[7][1]から[5]いずれか記載のアミノ多糖を含む15重量%以下の水溶液。
[8][1]から[5]いずれか記載のアミノ多糖を含む廃液浄化剤。
[9][8]記載の廃液浄化剤を凝集沈殿法により廃液の浄化を行うことを特徴とする浄化方法。
[10][1]から[5]のいずれか記載のアミノ多糖を含む食品。
[11][1]から[5]いずれか記載のアミノ多糖を含む飼料。
[12][1]から[5]いずれか記載のアミノ多糖を含む医薬。
As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by the following items, and have completed the present invention.
That is, the present invention is as follows.
[1] An aminopolysaccharide having a structure in which glucosamine is bound in a structure in which β1 → 3 bonds and β1 → 4 bonds are alternately linked.
[2] Infrared absorption spectrum: 891 ± 10 cm -1, 3300 ± 100cm -1, 2900 ± 50cm -1, 3300 ± 100cm -1, peak to 1550~1650cm -1 - having click [1] Amino according Polysaccharides.
[3] The aminopolysaccharide according to [2], wherein the elemental analysis value (% by weight) is as follows.
C: 38-40
H: 6-9
N: 6-9
O: 38-40
[4] The amino polysaccharide according to [2] or [3], which has a molecular weight of 300,000 to 500,000.
[5] The aminopolysaccharide according to any one of [1] to [4], which is produced by Peyronellaea calorpreferens NITE P-01575 strain or a natural or artificial variant thereof.
[6] An aqueous solution containing the aminopolysaccharide according to any one of [1] to [5] and having a viscosity of 5 cP or less.
[7] An aqueous solution of 15% by weight or less containing the amino polysaccharide according to any one of [1] to [5].
[8] A waste liquid purifying agent comprising the amino polysaccharide according to any one of [1] to [5].
[9] A purification method, wherein the waste liquid purifying agent according to [8] is purified by a coagulation precipitation method.
[10] A food containing the aminopolysaccharide according to any one of [1] to [5].
[11] A feed comprising the amino polysaccharide according to any one of [1] to [5].
[12] A medicament comprising the amino polysaccharide according to any one of [1] to [5].
本発明は水に溶かしても粘度が低く、溶解度が高いユニ−クな物性と生理活性を有する新規アミノ多糖を提供可能とした。 The present invention makes it possible to provide a novel aminopolysaccharide having a unique physical property and physiological activity that has low viscosity and high solubility even when dissolved in water.
本発明は、新規アミノ多糖を含む浄化剤を提供することを可能とし、凝集沈殿法を用いて容易に廃液を浄化することを可能とした。 The present invention makes it possible to provide a purification agent containing a novel aminopolysaccharide, and to easily purify a waste liquid using a coagulation precipitation method.
本発明のアミノ多糖は、一般式(1)に示す様に、グルコサミンがβ1→3結合とβ1→4結合で交互に連なって結合した構造を有する。
通常グルコ−スは一般式(2)に示す様に、環状構造であり、C−1位のOH基の向きにより2種類の化学構造をとることが可能である。OH基が環状面に対してC−6位の炭素原子と反対にある場合(アキシアル)をα−グルコ−ス、同じ側にある場合(エクトリアル)をβ−グルコ−スとして区別している。水溶液中では平衡状態にあり、存在比率はα約36%、β約64%である。
多糖の場合、単糖同士の結合様式にはα型とβ型の2種類がある。α−グルコ−ス同士が結合した多糖類をα−グルカン、βグルコ−ス同士が結合した多糖類をβ−グルカンと称している。グルコ−スのC−1位の炭素原子は、他のグルコ−スのC−5位を除く5種の炭素と結合が可能である。結合位置の組み合わせとして、(1→1)、(1→2)、(1→3)、(1→4)、(1→6)の5種類があり、自然界に多いのは、(1→3)、(1→4)、(1→6)の組み合わせである。キトサンはグルコサミンのβ(1→4)を有しており、本発明のアミノ多糖と良く似ている。 In the case of polysaccharides, there are two types of linkage between monosaccharides, α-type and β-type. The polysaccharide in which α-glucose is bonded is called α-glucan, and the polysaccharide in which β-glucose is bonded is called β-glucan. The carbon atom at the C-1 position of glucose can be bonded to five types of carbons other than the C-5 position of other glucoses. There are five types of combinations of coupling positions: (1 → 1), (1 → 2), (1 → 3), (1 → 4), (1 → 6). 3), (1 → 4), (1 → 6). Chitosan has glucosamine β (1 → 4) and is very similar to the aminopolysaccharide of the present invention.
本発明のアミノ多糖の分子量は、高速液体クロマトグラフィ−によって求めたとき、300,000から500,000である。
従来のキトサンを始め、高分子量体は通常水に溶解しても高粘性を示し、溶解度は溶液の濃度増加と共に高粘性を示すが、本発明のアミノ多糖は、高分子量であるが、水溶液濃度に関わらず5cP以下の極めて低い粘性を有し、かつ水、酸、アルカリによく溶解するという特徴を有する。室温では、水溶液に対して15重量%以下、特に5重量%まで溶解させることが出来る。水溶液のなかでも、酸性水溶液の場合は10重量%まで溶解させることができ、アルカリ性水溶液の場合は2重量%まで溶解させることが出来る。すなわち、本発明のアミノ多糖は、いかなる用途形態のものであっても水溶液中15重量%濃度相当まで自由に添加でき、広い用途展開が可能である。
The molecular weight of the aminopolysaccharide of the present invention is 300,000 to 500,000 as determined by high performance liquid chromatography.
Conventional chitosan and other high molecular weight polymers usually show high viscosity even when dissolved in water, and the solubility shows high viscosity as the concentration of the solution increases. Regardless of this, it has a very low viscosity of 5 cP or less and is well soluble in water, acid and alkali. At room temperature, it can be dissolved in an aqueous solution up to 15% by weight, particularly 5% by weight. Among aqueous solutions, an acidic aqueous solution can be dissolved up to 10% by weight, and an alkaline aqueous solution can be dissolved up to 2% by weight. That is, the amino polysaccharide of the present invention can be freely added up to a concentration equivalent to 15% by weight in an aqueous solution, regardless of the application form, and can be used in a wide range of applications.
本発明のアミノ多糖の元素分析値(重量%)は以下の範囲である。
C:38〜40
H:6〜9
N:6〜9
O:38〜40
The elemental analysis value (% by weight) of the aminopolysaccharide of the present invention is in the following range.
C: 38-40
H: 6-9
N: 6-9
O: 38-40
本発明のアミノ多糖は、微生物が産出するものであり、微生物の培養物、その処理物から単離される。好ましい微生物としては、ペイロネラカロプレフェレンス(Peyronellaea calorpreferens)があり、MGC130Lとして独立行政法人製品評価技術基盤機構特許微生物寄託センタ−に2013年3月18日にNITE P−01575として寄託されている。 The aminopolysaccharide of the present invention is produced by a microorganism and is isolated from a culture of the microorganism and a processed product thereof. A preferred microorganism is Peyronellaea calorpreferens, and MGC130L was deposited as NITE P-01575 on March 18, 2013 at the Patent Evaluation Center for Microorganisms of the National Institute of Technology and Evaluation. Yes.
菌学的性質
ポテトデキストロ−ス(以下、PDAと略する)寒天培地上で胞子の形成がなく、本来(Studies in Mycology,65:31−32 2010)の形質を失った新菌株であった。
すなわちpH5.6に調整したPDA寒天平板培地、25℃において生育は早く、14日間培養により図1に示す様に白色〜緑褐色、羊毛状のコロニ−を形成した。顕微鏡を用いた観察を図2に示す。栄養菌糸は無色〜茶褐色で隔壁を持ち、菌糸の一部が膨らむなどの特徴を有していたが、分生子等は形成されていなかった。
Bacteriological properties A new strain that lost the original trait (Studies in Mycology, 65: 31-32 2010) without spore formation on agar potato dextrose (hereinafter abbreviated as PDA) .
That is, the growth was fast in a PDA agar plate medium adjusted to pH 5.6 at 25 ° C., and a white-green-brown, wooly colony was formed by culturing for 14 days as shown in FIG. Observation using a microscope is shown in FIG. The vegetative mycelium was colorless to brown and had a partition wall and had a feature such that a part of the mycelium swelled, but no conidia were formed.
培養条件
本発明のアミノ多糖を生産するための微生物の培養条件は、通常の好気的培養方法が適用でき、pHは3〜8、好ましくは4〜7、温度は20〜35℃、好ましくは25〜30℃、培養時間は72〜168時間、好ましくは120〜144時間である。
Culture Conditions The microorganisms for producing the aminopolysaccharide of the present invention can be cultured by a conventional aerobic culture method. The pH is 3 to 8, preferably 4 to 7, and the temperature is 20 to 35 ° C., preferably The culture time is 25 to 30 ° C., and the culture time is 72 to 168 hours, preferably 120 to 144 hours.
栄養源には一般に使用される炭素源、窒素源、無機塩などを適当な割合で混合溶解させた天然培地、合成培地のいずれでも利用できる。炭素源としてはグルコ−ス、シュクロ−ス、廃糖蜜等を利用でき、これらを2〜10%の濃度で、好ましくは3〜5%の濃度で添加すると良い。窒素源としてはペプトン、酵母エキス、コ−ンスティープリカー、肉エキス、硫酸アンモニウム等を利用できる。これらを0.1〜2%、単品で或いは組み合わせて使用しても良い。また、無機塩としてMgとCaを添加する。Mgとしては硫酸マグネシウム・7水塩、Caとしては炭酸カルシウムを用いて、それぞれ0.1〜1%、好ましくは0.3〜0.6%添加する。 As a nutrient source, any of a natural medium and a synthetic medium in which commonly used carbon source, nitrogen source, inorganic salt, etc. are mixed and dissolved in an appropriate ratio can be used. Glucose, sucrose, molasses, etc. can be used as the carbon source, and these may be added at a concentration of 2 to 10%, preferably 3 to 5%. Peptone, yeast extract, corn steep liquor, meat extract, ammonium sulfate, etc. can be used as the nitrogen source. You may use these 0.1 to 2% individually or in combination. Further, Mg and Ca are added as inorganic salts. Magnesium sulfate · 7 hydrate is used as Mg and calcium carbonate is used as Ca, and 0.1 to 1%, preferably 0.3 to 0.6%, is added respectively.
合成培地として寒天培地を用いる場合、通常の寒天培地等で生育できる培地であれば特に限定されるものではなく、カビの生育培地としてよく使用されるPDA寒天培地が好適である。 When an agar medium is used as the synthetic medium, the medium is not particularly limited as long as it can grow on a normal agar medium or the like, and a PDA agar medium often used as a mold growth medium is suitable.
分離方法
菌体が産生したアミノ多糖の分離方法は特に限定するものではなく、例えばごく一般的な方法であるエタノ−ル沈殿法を用いることが出来る。遠心分離後の培養上清液にこれの2〜3倍量のエタノ−ルを加え静置すると沈殿が沈降するので、上部を斜瀉により除いた後、沈殿部を1000〜3000回転程度で遠心分離すると灰白色ケ−キ状の物として得られる。
Separation method The method for separating the aminopolysaccharide produced by the cells is not particularly limited, and for example, ethanol precipitation, which is a very common method, can be used. After adding 2 to 3 times the amount of ethanol to the culture supernatant after centrifugation, the precipitate settles down. After removing the upper part with a skewer, the precipitate is centrifuged at about 1000 to 3000 rpm. When separated, it is obtained as an off-white cake.
本発明の菌株の保存方法としては、凍結乾燥等の乾燥による保存では胞子を形成しないため好ましくなく、グリセリンストックによる−80℃或いは液体窒素中で安定に保存することができる。 As a method for preserving the strain of the present invention, storage by drying such as freeze-drying is not preferred because it does not form spores, and it can be stably stored in -80 ° C. or liquid nitrogen using a glycerin stock.
本発明品のアミノ多糖は、先に述べた様に、キトサンと同様にグルコサミンのβ−1,4結合を有しており、構造が類似している。一方、βーグルカンで総称される多糖類もβー1,4結合を有することが知られている。βーグルカンは分岐の有無、分子量、構成する糖の種類などの違いにより、様々な分子種が存在することが報告されている。この様にキトサン、本発明品及びβーグルカンは全てβー結合を有しており、基本構造が類似している。
βーグルカンを含む成分は、免疫活性を増強する作用、免疫機能活性化作用、抗腫瘍活性、腸内細菌増殖作用、保湿作用、重金属の排泄作用等種々の生理活性が報告されている。同様の生理活性はキトサンについても多数報告されており、当該生理活性がβー結合を有する基本構造によるものであることは容易に推測される。
更に、本発明品と類似の結合様式をとるものとして大麦由来のβーグルカンが報告されている。(埼玉大学著:大麦βーグルカンの健康維持増進機能に着目した大麦食品の開発)大麦βーグルカンは分岐のない直鎖構造であり、β1→3結合とβ1→4結合の2種類からなり、β−D−グルコースを構成糖とし、連続するβ1→4の2〜3個に1つの割合でβ1→3結合が存在し、β1→3結合は連続して存在しないことが示されている。このものの生理機能はコレステロール低下作用、血糖値の改善、免疫機能促進などが報告されており、米国食品医薬品局(FDA)は、血清コレステロール値を低下させる作用があることを認め健康強調表示物質として認可している。
このようにβーグルカンやキトサンの生理活性に関する知見の積み重ねから、本発明品がキトサンと同様の効果を有することは容易に想定できる。
As described above, the aminopolysaccharide of the present invention has a β-1,4 bond of glucosamine similar to chitosan and has a similar structure. On the other hand, polysaccharides collectively called β-glucan are also known to have β-1,4 bonds. It has been reported that β-glucan has various molecular species depending on the presence / absence of branching, the molecular weight, and the type of sugar to be composed. Thus, chitosan, the product of the present invention and β-glucan all have β-bonds and have similar basic structures.
A component containing β-glucan has been reported to have various physiological activities such as an action to enhance immune activity, an immune function activation action, an antitumor activity, an intestinal bacterial growth action, a moisturizing action, and a heavy metal excretion action. Many similar physiological activities have been reported for chitosan, and it is easily assumed that the physiological activity is due to a basic structure having a β-bond.
Furthermore, barley-derived β-glucan has been reported as having a binding mode similar to that of the present invention. (Saitama University: Development of barley foods focusing on the health maintenance and promotion function of barley β-glucan) Barley β-glucan has a non-branched linear structure and consists of two types of β1 → 3 bonds and β1 → 4 bonds. It is shown that β1 → 3 bonds are present at a ratio of 1 to 2 of consecutive β1 → 4, and β1 → 3 bonds are not continuously present, with -D-glucose as a constituent sugar. It has been reported that the physiological function of this substance is cholesterol lowering action, blood glucose level improvement, immune function promotion, etc., and the US Food and Drug Administration (FDA) has recognized that it has the action of lowering serum cholesterol level as a health claiming substance. Authorized.
Thus, it can be easily assumed that the product of the present invention has the same effect as chitosan from the accumulation of knowledge on the physiological activities of β-glucan and chitosan.
すなわち、本発明のアミノ多糖は、キトサンと同様に健康食品、食品添加物等の食品、飼料、医薬品、化粧品、排水浄化・汚泥凝集剤等の多岐用途に用いることが出来る。
健康食品としては、例えば、コレステロ−ル低下・血圧降下・脂肪吸収抑制・腸内細菌活性化又は膝関節痛改善のためのグルコサミン原料等が、医薬品としては、例えば免疫細胞の活性化、がん細胞の増殖抑制用途が、化粧品としては、例えば化粧水等の保湿剤が、食品添加物としては、抗菌・抗カビ用途等が挙げられる。
That is, the aminopolysaccharide of the present invention can be used in various applications such as foods such as health foods, food additives, feeds, pharmaceuticals, cosmetics, wastewater purification / sludge flocculants, and the like, similar to chitosan.
Examples of health foods include cholesterol lowering, blood pressure lowering, fat absorption inhibition, intestinal bacteria activation, or glucosamine raw materials for improving knee joint pain, and pharmaceuticals such as immune cell activation, cancer Examples of cell growth suppression applications include cosmetics such as moisturizers such as lotions, and examples of food additives include antibacterial and antifungal applications.
排水浄化・汚泥凝集剤に関しては、廃液中の放射性物質や重金属等を容易に浄化させることができる。浄化方法としては、水溶液或いは粉末形態で散布して、吸着沈殿させる凝集沈殿法を用いることが可能である。水溶液で散布する場合は、廃液の規模にもよるが、高濃度で添加したほうが効率は良い。例えば酸性水溶液の場合、10重量%溶液又はこれ以上の濃度で、添加するのが好ましい。重金属の具体例としては、Zn、Cu、Fe等が挙げられる。従来、特開平8−68893公報等の様に、キトサンをカラムに充填して廃液を通過させて吸着除去することが知られていたが、本発明のアミノ多糖は水溶性ゆえカラムに充填して廃液を通過させる工程を行うことなく、容易に廃液の浄化が可能である。 Regarding wastewater purification / sludge flocculant, radioactive substances and heavy metals in waste liquid can be easily purified. As a purification method, it is possible to use an agglomeration precipitation method in which an aqueous solution or a powder is dispersed and adsorbed and precipitated. When spraying with an aqueous solution, depending on the scale of the waste liquid, it is more efficient to add it at a high concentration. For example, in the case of an acidic aqueous solution, it is preferably added at a concentration of 10% by weight or higher. Specific examples of the heavy metal include Zn, Cu, Fe and the like. Conventionally, as disclosed in JP-A-8-68893 and the like, it has been known that chitosan is packed into a column and the waste liquid is passed through and adsorbed and removed. However, since the amino polysaccharide of the present invention is water-soluble, it is packed into the column. The waste liquid can be easily purified without performing the process of passing the waste liquid.
次に、本発明を実施例および比較例をもってより具体的に説明する。ただし、本発明はこれらの例にのみ制限されるものではない。 Next, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited only to these examples.
実施例1
三角フラスコにグルコース3重量%、ペプトン1.5重量%、酵母エキス0.1重量%、硫酸アンモニウム0.5重量%、塩化ナトリウム0.1重量%、硫酸マグネシウム0.3重量%、炭酸カルシウム0.4重量%の割合でイオン交換蒸留水に溶解した培地400mlをpH7に調整しオートクレーブ滅菌後、NITE P−01575株を接種し、培養温度25℃、回転数180rpmで7日間培養した。
Example 1
In an Erlenmeyer flask, dissolve in ion-exchanged distilled water at a ratio of 3% glucose, 1.5% peptone, 0.1% yeast extract, 0.5% ammonium sulfate, 0.1% sodium chloride, 0.3% magnesium sulfate, 0.4% calcium carbonate. 400 ml of the prepared medium was adjusted to pH 7, sterilized by autoclave, inoculated with NITE P-01575 strain, and cultured for 7 days at a culture temperature of 25 ° C. and a rotation speed of 180 rpm.
培養開始後1日毎に培養液の2〜3mlを抜き出し、遠心分離後その上清についてキチンキトサン実験マニュアル キチンキトサン研究会編(技報堂出版)を参考にインドールー塩酸法によるアミノ糖の定性的な比色分析を以下の手順で行い、生産量の目安とした。
アミノ糖の定性的な比色分析
1)亜硝酸分解
遠心分離後の培養上清液1mlを試験管にとり、酢酸10μlを加えた。これに10%亜硝酸ナトリウム水溶液1mlと5%硫酸水素カリウム水溶液1mlを加え、室温で一晩放置し反応させた。翌日12.5%スルファミン酸アンモニウム水溶液2mlを加え、10分間振盪させた。
2)インドール−HCL法
振盪終了後得られた亜硝酸分解物を30分間放置後に1%インドール−エタノール溶液0.1mlを加え、沸騰湯浴中5分間反応させた。氷水中で充分冷却後、エタノールを1ml加えた。この発色液についてOD(λ=492nm)を測定した。
Qualitative colorimetric coloration of amino sugar by indole-hydrochloric acid method with reference to Chitin Chitosan Experiment Manual (Gihodo Publishing Co., Ltd.) edited by Chitin Chitosan Experimental Manual The analysis was performed according to the following procedure, which was used as a guideline for production.
Qualitative colorimetric analysis of amino sugars 1) 1 ml of the culture supernatant after nitrous acid degradation centrifugation was put in a test tube and 10 μl of acetic acid was added. To this was added 1 ml of a 10% aqueous sodium nitrite solution and 1 ml of a 5% aqueous potassium hydrogen sulfate solution, and the mixture was allowed to react overnight at room temperature. The next day, 2 ml of 12.5% ammonium sulfamate aqueous solution was added and shaken for 10 minutes.
2) Indole-HCL method The nitrous acid decomposition product obtained after completion of shaking was allowed to stand for 30 minutes, after which 0.1 ml of a 1% indole-ethanol solution was added and reacted in a boiling water bath for 5 minutes. After sufficiently cooling in ice water, 1 ml of ethanol was added. The OD (λ = 492 nm) of this color developing solution was measured.
図3は横軸を培養日数、縦軸をODλ=492nmとしてその経日変化を示したものである。グラフが示すように培養開始後から生産が始まり、日の経過と供に増大し7日経過時点でほぼ最大に達した。培養開始後の7日目に培養を停止し遠心分離後培養上清300mlを取得した。これにエタノール3倍量を加え静置すると徐々に沈殿が進行し、上清部を傾瀉により除いたあとの沈殿部を3000回転で遠心分離しエタノールで二回洗浄し真空乾燥した。粗製品として0.28gであった。
これにより、本発明品がアミノ多糖であることが確認出来た。
FIG. 3 shows the changes over time, with the horizontal axis representing the number of culture days and the vertical axis representing OD λ = 492 nm . As the graph shows, production started from the beginning of the culture and increased with the passage of the day, reaching a maximum at about 7 days. On the seventh day after the start of the culture, the culture was stopped, and after centrifugation, 300 ml of the culture supernatant was obtained. When 3 times the amount of ethanol was added thereto and allowed to stand, precipitation gradually progressed, and after removing the supernatant by decantation, the precipitate was centrifuged at 3000 rpm, washed twice with ethanol and dried in vacuo. It was 0.28 g as a crude product.
This confirmed that the product of the present invention was an aminopolysaccharide.
実施例2−1、2−2
培養温度を30℃とし、培地組成は炭素源をグルコース(実施例2−1)又はシュクロース(実施例2−2)とした他は実施例1と同様の方法を用いて培養し、生産性を比較した。図4に経日変化を示した。実施例1と比較するとやや増殖が早く、培養日数が4〜5日で生産量上限に達した。炭素源の違いによる生産量に差は認められず、どちらも良好に資化することできた。
Examples 2-1 and 2-2
The culture temperature was 30 ° C., and the medium composition was cultured using the same method as in Example 1 except that the carbon source was glucose (Example 2-1) or sucrose (Example 2-2). Compared. FIG. 4 shows changes over time. Compared to Example 1, the growth was slightly faster, and the upper limit of production was reached in 4-5 days. There was no difference in production due to differences in carbon sources, and both were successfully assimilated.
ミリポア攪拌式セル8400に分画分子量が50000(アミコン社製のダイアフローメンブレンXM50)の濾過用フィルターを用いた限外濾過で濃縮しながら適時イオン交換蒸留水を補充→濃縮→イオン交換蒸留水の補充を繰返し、濃縮時毎に実施例3のHPLCによるGPC分析により濃縮液をモニターして低分子画分のピークが認められなくなったときを限外濃縮終了の目安として抽出・精製を行った。本発明品は粘性が極めて低いため濃縮の進行による濾過速度の低下が生じず、極めてスムーズに濃縮脱塩が同時進行した。限外濾過器(ミリポア攪拌式セル8400)使用により300ml程度の液量であれば1両日(夜間はしない)で濃縮脱塩が同時進行し、短時間で精製濃縮液となった。適当な量まで濃縮した後、凍結乾燥して本発明品を取得した。収量はそれぞれ0.29g(実施例2−1)と0.25g(実施例2−2)であった。 Refill ion-exchange distilled water in a timely manner while concentrating by ultrafiltration using a filter for filtration having a molecular weight cut off of 50000 (Adiacon Diaflow Membrane XM50) in Millipore stirring cell 8400 → Concentration → Ion-exchange distilled water The replenishment was repeated, and the concentrated solution was monitored by GPC analysis by HPLC of Example 3 every time of concentration, and extraction and purification were performed when the peak of the low molecular fraction was not recognized as a guideline for the end of the ultraconcentration. Since the product of the present invention has a very low viscosity, the filtration rate does not decrease due to the progress of concentration, and the concentration and desalting proceeded very smoothly simultaneously. By using an ultrafilter (Millipore stirring type cell 8400), if the amount of liquid was about 300 ml, concentration desalting proceeded simultaneously in one day (not at night), and a purified concentrated solution was obtained in a short time. After concentration to an appropriate amount, the product of the present invention was obtained by lyophilization. Yields were 0.29 g (Example 2-1) and 0.25 g (Example 2-2), respectively.
実施例3
実施例1と同様の培地組成・培養条件で約1週間の培養し、400mlの培養液から上清液350mlを得た。上清液はミリポア攪拌式セル8400により限外濃縮した。この時用いた濾過用フィルターは分画分子量が50000(アミコン社製のダイアフローメンブレンXM50)のものを用いた。
Example 3
Culture was performed for about 1 week under the same medium composition and culture conditions as in Example 1, and 350 ml of the supernatant was obtained from 400 ml of the culture solution. The supernatant was subjected to ultraconcentration by Millipore stirring cell 8400. The filter used at this time had a molecular weight cut off of 50000 (Diaflow Membrane XM50 manufactured by Amicon).
以下のステップで濃縮脱塩を行った。上清液350mlを限外濾過により70mlに濃縮した後、イオン交換蒸留水250mlを追加し、再度70mlまで濃縮・脱塩の操作を計6回繰返し、6回目は50mlまで濃縮しこれを凍結乾燥した。収量0.36g、培養上清液の0.1%であった。 Concentrated desalting was performed by the following steps. Concentrate 350 ml of the supernatant to 70 ml by ultrafiltration, add 250 ml of ion-exchanged distilled water, repeat the operation of concentration and desalting again to 70 ml for a total of 6 times, and the 6th time, concentrate to 50 ml and freeze-dry it. did. The yield was 0.36 g and the culture supernatant was 0.1%.
50ml濃縮精製液の一部をマイクロシリンジに取り以下の条件にてHPLCによるGPCカラムで分析したクロマト結果を図5に示す。後半14分のピークは溶離液に由来するピークであることは確認した。図が示すとおり本発明品以外のピークは検出されず、90%以上の純度まで精製された。
カラム:Shodex Asahipack GF510HQ7.6×300mm(排除限界分子量300,000)
温度:35℃
溶媒:1%酢酸
流速:1ml/m
検出:RI
注入量:20μl
FIG. 5 shows a chromatographic result obtained by taking a part of a 50 ml concentrated purified solution in a microsyringe and analyzing it with a GPC column by HPLC under the following conditions. It was confirmed that the peak in the latter half 14 minutes was derived from the eluent. As the figure shows, no peaks other than the product of the present invention were detected, and the product was purified to a purity of 90% or more.
Column: Shodex Asahipack GF510HQ7.6 × 300mm (exclusion limit molecular weight 300,000)
Temperature: 35 ° C
Solvent: 1% acetic acid Flow rate: 1 ml / m
Detection: RI
Injection volume: 20 μl
実施例4−1 溶解性試験
シュクロースを炭素源にした他は実施例1と同様の条件で培養した。このときの培養上清液は250mlであった。培養後、実施例3と同様に限外濃縮し凍結乾燥した。収量0.28g、培養上清液の0.11%であった。
更に、凍結乾燥品20mgを小試験管に採り、水0.2mlを加え、10%相当の水縣濁液として、超音波洗浄器の水浴中で溶解状態を目視で観察した。全体が溶解しきれない時はこれに逐次水を加えていき、溶解の状態を観察した。5%相当になるまで水を加えた時点で全体が溶解し、淡褐色の溶液となった。
Example 4-1 Solubility test Culture was carried out under the same conditions as in Example 1 except that sucrose was used as a carbon source. The culture supernatant at this time was 250 ml. After the cultivation, it was subjected to ultraconcentration and freeze-dried in the same manner as in Example 3. The yield was 0.28 g and the culture supernatant was 0.11%.
Furthermore, 20 mg of the freeze-dried product was taken into a small test tube, 0.2 ml of water was added, and the dissolved state was visually observed in a water bath of an ultrasonic cleaner as a 10% water suspension. When the whole could not be dissolved, water was successively added to the solution and the state of dissolution was observed. When water was added to the equivalent of 5%, the whole was dissolved and became a light brown solution.
凍結乾燥品の0.23%/1%酢酸溶液を調製し実施例3と同様の条件にてHPLCによるGPCカラムにより分析した時のクロマト結果を図6に示す。本発明のアミノ多糖のみのピークであり面積比による割合は95%となり、かつ図18のピークと同保持時間に溶出された。 FIG. 6 shows the chromatographic results when a 0.23% / 1% acetic acid solution of a lyophilized product was prepared and analyzed using a GPC column by HPLC under the same conditions as in Example 3. It was a peak of the aminopolysaccharide of the present invention alone, the ratio by area ratio was 95%, and it was eluted at the same retention time as the peak of FIG.
実施例4−2
実施例4−1と同様にして得られた凍結乾燥品5mgを小試験管に採り、これに1%酢酸0.2mlを加え、溶解状態を目視で観察した。溶解したため、更に5mgを追加した。溶解したため5mgずつ追加を更に2回行ったところ溶解し、1%酢酸に少なくとも10%相当は溶解することを確認した。更にこれ以上の溶解が可能と推測できた。
Example 4-2
5 mg of the freeze-dried product obtained in the same manner as in Example 4-1 was taken in a small test tube, 0.2 ml of 1% acetic acid was added thereto, and the dissolved state was visually observed. Because it dissolved, an additional 5 mg was added. Since it was dissolved, 5 mg each was added two more times, and it was dissolved. It was confirmed that at least 10% equivalent was dissolved in 1% acetic acid. Furthermore, it was speculated that further dissolution was possible.
実施例4−3
実施例4−1と同様にして得られた凍結乾燥品10mgを小試験管に採り、これに2%水酸化ナトリウム0.5mlを加え、溶解状態を目視で観察した。溶解したため、2%相当が溶解することを確認した。
Example 4-3
10 mg of the freeze-dried product obtained in the same manner as in Example 4-1 was put in a small test tube, 0.5 ml of 2% sodium hydroxide was added thereto, and the dissolved state was visually observed. Since it melt | dissolved, it confirmed that 2% equivalent melt | dissolved.
実施例5 成分分析
実施例1で得たアミノ多糖と参考例1としてキトサン標品(キトサン7B Lot No.TB25−M:フナコシ(株))について元素分析を行った。結果を表1に示す。元素分析値はキトサン7Bとよく類似した成分含量を示した。
実施例6 構成糖の確認
次に、本発明のアミノ多糖の構成糖について、エルソン−モルガン法「還元糖の定量法 福井作蔵著(東京大学出版会)」を用いて比色分析を行い確認した。エルソン−モルガン法は単糖類を対象とした比色分析であり、本発明のアミノ多糖のような高分子量の場合はあらかじめ加水分解する必要がある為、非特許文献(Biotechnology Letters 2005 Vol.27. 13−18)に記載されたキトサンの加水分解条件を参考に、6N塩酸に対する1%溶液を調整し、115℃ 3時間の加水分解を行った。
Example 6 Confirmation of Constituent Sugar Next, the constituent sugar of the aminopolysaccharide of the present invention was confirmed by colorimetric analysis using the Elson-Morgan method “Quantitative method for reducing sugar, Sakuzo Fukui (University of Tokyo Press)”. . The Elson-Morgan method is a colorimetric analysis for monosaccharides, and in the case of a high molecular weight such as the aminopolysaccharide of the present invention, it needs to be hydrolyzed in advance, so that non-patent literature (Biotechnology Letters 2005 Vol. 27. With reference to the hydrolysis conditions of chitosan described in 13-18), a 1% solution in 6N hydrochloric acid was prepared, and hydrolysis was performed at 115 ° C. for 3 hours.
得られた強酸性の加水分解液を発色を妨害しない程度まで水で希釈して塩酸濃度が最終的に0.12N(加水分解物量60μg/0.12N塩酸1ml)となるように希釈調製し、エルソンーモルガン法による比色分析を行った。比較のため対照としてキトサン標品の加水分解物、グルコサミン標品についても同様の濃度に調製して分析した。結果を表2に示す。
実施例7 構成糖の同定
次に構成糖がいかなるアミノ糖であるか確認した。1H−NMR、13C−NMRの測定を実施例6で得られた加水分解物、グルコサミン標品、キトサン加水分解物について行った。
NMRは日本電子製JEOL RESONANCE ECA−500を用い、溶媒は重水に化学シフトの基準物質として3−(トリメチルシリル)−2,2,’3,3’−テトラジュウテロプロピオン酸(TSP−d4)を0.1%添加したものを用いた。
これに表3に示す様に各試料を0.3〜0.5wt%溶解して室温で測定した。結果を図7〜12に示す。各試料のスペクトルは一致し、構成糖がグルコサミンであることが分かった。
For NMR, JEOL RESONANCE ECA-500 manufactured by JEOL Ltd. was used, and 3- (trimethylsilyl) -2,2, '3,3'-tetradeuteropropionic acid (TSP-d4) was used as a reference substance for chemical shift in heavy water as a solvent. What added 0.1% was used.
As shown in Table 3, each sample was dissolved at 0.3 to 0.5 wt% and measured at room temperature. The results are shown in FIGS. The spectra of each sample were consistent and it was found that the constituent sugar was glucosamine.
実施例8 酵素反応
キトサンと同等の構造であるとすると、キトサナーゼにより分解しグルコサミンが遊離するはずであり、このことを実証するためキトサナーゼを用いた酵素反応させ、その後反応液についてエルソンーモルガン法による比色分析を行った。この場合は定量が目的ではなく、定性的にエルソンーモルガン法に応答して発色(ピンク色)の有無によりキトサンとの異同を検証した。
Example 8 Enzyme reaction Assuming a structure equivalent to that of chitosan, it should be decomposed by chitosanase to liberate glucosamine. To verify this, an enzyme reaction using chitosanase was carried out, and then the reaction mixture was subjected to the Elson-Morgan method. Colorimetric analysis was performed. In this case, quantification was not the purpose, and the difference with chitosan was verified qualitatively by the presence or absence of color development (pink) in response to the Elson-Morgan method.
実施例3で得られたアミノ多糖を0.1M酢酸緩衝液(pH5.6)の0.5%溶液としたものとキトサナ−ゼ(Bacillus pumilus BN−262:和光純薬工業(株))粉末を0.1M酢酸緩衝液(pH5.6)に溶解し、0.04mg/1mlの割合に調製したものを40℃で反応させ、経時的に一定量をサンプリングし、エルソンーモルガン法により比色分析した。 A 0.5% solution of the amino polysaccharide obtained in Example 3 in 0.1M acetate buffer (pH 5.6) and chitosanase (Bacillus pumilus BN-262: Wako Pure Chemical Industries, Ltd.) powder in 0.1M What was dissolved in an acetate buffer (pH 5.6) and prepared at a ratio of 0.04 mg / 1 ml was reacted at 40 ° C., a certain amount was sampled over time, and colorimetrically analyzed by the Elson-Morgan method.
対照としてキトサン標品を1%酢酸に0.1%溶液とした後pH5.6に調整したものを反応液として40℃でキトサナーゼと反応させ、経時的に一定量をサンプリングし、エルソンーモルガン法により比色分析した。 As a control, a chitosan preparation made into a 0.1% solution in 1% acetic acid and adjusted to pH 5.6 was reacted with chitosanase as a reaction solution at 40 ° C. A certain amount was sampled over time, and the ratio was measured by the Elson-Morgan method. Color analysis was performed.
キトサン標品は反応時間の経過と共にエルソンーモルガン法による発色(ピンク色)の程度が強くなり、キトサナーゼに反応しグルコサミンを時間の経過とともに遊離させていることが明らかとなった。即ちキトサナーゼはβ−1,4−ポリグルコサミン(キトサン)のβ−1,4−結合をendo型に加水分解するという当然の結果を示した。一方本発明品はエルソン−モルガン法にまったく応答せずいかなる時間経過後の反応液も無色透明であった。即ち、本発明のアミノ多糖の構成糖はグルコサミンであるが、結合様式はキトサンと異なるということを示唆する結果となった。 The chitosan preparation developed a strong color (pink) by the Elson-Morgan method over the course of the reaction time, and it was revealed that glucosamine was released over time in response to chitosanase. That is, chitosanase showed the natural result that the β-1,4-bond of β-1,4-polyglucosamine (chitosan) was hydrolyzed to the endo type. On the other hand, the product of the present invention did not respond at all to the Elson-Morgan method, and the reaction solution after any time passed was colorless and transparent. That is, although the constituent sugar of the aminopolysaccharide of the present invention is glucosamine, the result suggests that the binding mode is different from that of chitosan.
実施例9 結合様式
酵素分析から本発明のアミノ多糖のグルコサミン結合様式が従来のキトサンとは異なるということが明らかとなりこの結合様式を明らかにすべく、次なる構造解析を行った。
Example 9 Binding mode Enzyme analysis revealed that the aminopolysaccharide glucosamine binding mode of the present invention was different from that of conventional chitosan, and the following structural analysis was performed in order to clarify this binding mode.
赤外吸収スペクトルの測定
本発明品、キトサン標品についてフーリエ変換赤外分光分析を行った。結果を図13に示す。共に類似した吸収スペクトルを示し、キチン・キトサンに特有の吸収スペクトルであるOH伸縮振動3300±100cm−1、CH伸縮振動2900±50cm−1、NH伸縮振動3300±100cm−1、アミド基に由来する吸収が1550〜1650cm−1にみられた。
Measurement of infrared absorption spectrum The product of the present invention and the chitosan preparation were subjected to Fourier transform infrared spectroscopy. The results are shown in FIG. Both show similar absorption spectra, and are derived from the amide group, OH stretching vibration 3300 ± 100 cm −1 , CH stretching vibration 2900 ± 50 cm −1 , NH stretching vibration 3300 ± 100 cm −1 , which are absorption spectra peculiar to chitin and chitosan. Absorption was observed at 1550-1650 cm −1 .
糖の吸収特性としてα型は844±10cm−1、、β型は891±10cm−1にC1−H変角振動が見られることが知られている。キトサン標品は896cm−1付近に吸収が見られ、本発明品も同程度の位置に吸収が見られたことからβ型と判断出来た。 It is known that the α 1 type has 844 ± 10 cm −1, and the β type has 89 1 ± 10 cm −1 C 1 -H bending vibration as absorption characteristics of sugar. The chitosan preparation was found to be in the vicinity of 896 cm −1 , and the product of the present invention was also found to be in the β-type because absorption was seen at the same position.
実施例10 結合位置
NMR測定
結合様式はβ型であることが明らかとなったが、キトサンと異なることから、炭素の結合位置が異なることが推測できた。そこでこれを明らかにすべく、実施例3で得られた本発明品、キトサン標品それぞれについて、1H−NMRによる結合位置の解析を行った。1H−NMRの測定には日本電子製JEOL RESONANCE ECA−500を用い、溶媒は重水に重酢酸を1%、化学シフトの基準物質としてTSP−d4を0.1%添加したものを用いた。これに各試料を1wt%溶解して測定した。測定温度は50℃で行った。
Example 10 Coupling position
NMR measurement
Although the binding mode was found to be β-type, it was speculated that the bonding position of carbon was different from that of chitosan. Therefore, in order to clarify this, the binding position of each of the product of the present invention and the chitosan sample obtained in Example 3 was analyzed by 1H-NMR. For measurement of 1H-NMR, JEOL RESONANCE ECA-500 manufactured by JEOL Ltd. was used, and the solvent used was 1% heavy acetic acid in heavy water and 0.1% TSP-d4 as a chemical shift reference substance. This was measured by dissolving 1 wt% of each sample. The measurement temperature was 50 ° C.
本発明品、キトサン標品それぞれの1H−NMRスペクトルの結果を図14,15に示す。キトサンはβ−1→4結合に由来するC−1位のHのシグナルが1本4.85ppmに検出され、本発明品ではC−1位のHと考えられるシグナルが5.1ppmと4.8ppmに2本検出された。結合様式が2種類存在し、かつ1H積分比が1:1であることから2種類の結合が同数存在することが明らかとなった。 The results of 1H-NMR spectra of the product of the present invention and the chitosan preparation are shown in FIGS. In chitosan, one H-1 signal at C-1 position derived from β-1 → 4 bond was detected at 4.85 ppm, and in the present invention, signals considered to be H at C-1 position were 5.1 ppm and 2 at 4.8 ppm. This was detected. Since there are two types of binding and the 1H integration ratio is 1: 1, it became clear that there are the same number of two types of binding.
本発明品の重水+1%重酢酸溶液の13C−NMRによるスペクトルの結果を図16に示す。Cサイトは全12であり、C−1に帰属するシグナルが100ppm付近に2本検出されていることから、糖の結合様式が2種類あることを示している。 The result of the spectrum by 13 C-NMR of the heavy water + 1% biacetic acid solution of this invention goods is shown in FIG. There are 12 C sites, and two signals belonging to C-1 are detected in the vicinity of 100 ppm, indicating that there are two types of sugar binding.
本発明について二次元測定(COSY,HMQC,HMBC,HMQC−TOCSY)行った結果を図17に示す。HMBCでは、2〜3結合離れたCとHの相関を観測できる。Oをまたいだ3JCHの相関を確認した。C−3位のHとC−1’位のC(1H:4.1ppmと13C:99.4ppm)、C−1’位のHとC−3位のC(1H:5.1ppmと13C:80.6ppm)の相関はβ1→3結合を示す。C−4’位のHとC−1位のC(1H:4.0ppmと13C:100.5ppm)、C−1位のHとC−4’位のC(1H:4.8pmと13C:78.8ppm)の相関はβ1→4結合を示す。これより、2種類の結合様式はβ1→3結合とβ1→4結合であり、Cのサイトが全12であることから、β1→3結合とβ1→4結合が交互に連なる構造であると結論した。 FIG. 17 shows the result of two-dimensional measurement (COSY, HMQC, HMBC, HMQC-TOCSY) of the present invention. In HMBC, the correlation between C and H separated by 2 to 3 bonds can be observed. The correlation of 3 J CH across O was confirmed. H at C-3 and C at C-1 '(1H: 4.1ppm and 13C: 99.4ppm), H at C-1' and C at C-3 (1H: 5.1ppm and 13C: 80.6ppm) ) Indicates β1 → 3 binding. H at C-4 'and C at C-1 (1H: 4.0ppm and 13C: 100.5ppm), H at C-1 and C at C-4' (1H: 4.8pm and 13C: 78.8ppm ) Indicates β1 → 4 binding. From this, the two types of binding are β1 → 3 and β1 → 4, and there are 12 C sites, so it is concluded that β1 → 3 and β1 → 4 are alternately linked. did.
実施例11 分子量測定
実施例1と同様の培養条件で得られた培養上清液300mlを濾過用フィルター(アミコン社製のダイアフローメンブランXM50)により通過させた限外濃縮液を2%水酸化ナトリウム溶液でpH8〜10に調整しながら硫酸アンモニアで塩析することにより沈殿濃縮後、これを水に溶解させ流水透析後凍結乾燥し、1%酢酸液に0.2%溶解液とし、この20μlを実施例3と同様の条件にてHPLCを測定した。また、分子量検定用標準試料として分子量の異なる5種類のキット品からなるアミノ糖類プルラン(Shodex STANDARD P−82)についても同様に測定し、保持時間を比較することにより分子量を推測した。この時キトサン標品についても測定し、同様に推測した。
Example 11 Molecular Weight Measurement An ultra-concentrated solution obtained by passing 300 ml of a culture supernatant obtained under the same culture conditions as in Example 1 through a filter for filtration (Diaflow Membrane XM50 manufactured by Amicon) was added with 2% sodium hydroxide. After concentration by precipitation by salting out with ammonium sulfate while adjusting the pH to 8 to 10 with a solution, this was dissolved in water, dialyzed under running water and freeze-dried to obtain a 0.2% solution in 1% acetic acid solution. HPLC was measured under the same conditions as in 3. In addition, amino sugar pullulan (Shodex STANDARD P-82) consisting of five kinds of kit products having different molecular weights was also measured as a standard sample for molecular weight test, and the molecular weight was estimated by comparing the retention times. At this time, the chitosan preparation was also measured and estimated in the same manner.
結果を図18に示す。流水透析液はこの後これ以上の分画操作を行わず凍結乾燥したものであるが、本発明品以外の高分子量物は検出されず、本発明品のみが選択的に生産されていることが確認でき、その分子量は標準試料プルランの344,000相当と推測できた。キトサン標品もこれとほぼ同程度の保持時間で溶出された。 The results are shown in FIG. The running water dialysate was lyophilized without further fractionation, but no high molecular weight products other than the product of the present invention were detected and only the product of the present invention was selectively produced. The molecular weight was confirmed to be equivalent to 344,000 of the standard sample pullulan. The chitosan preparation was also eluted with approximately the same retention time.
実施例12 粘度
実施例3で得られたアミノ多糖の0.05,0.1,0.25,0.5%水溶液を調製し、キトサン標品(キトサン7B Lot.NoTB25−M:フナコシ(株)製)は1%酢酸に対して0.05,0.1,0.25,0.5%濃度のものを調製し、それぞれの濃度における粘度を25℃でエー・アンド・ディ(株)のSV型粘度計(SV−10)を用いて測定した。図19に結果を示す。
Example 12 Viscosity
A 0.05, 0.1, 0.25, and 0.5% aqueous solution of the aminopolysaccharide obtained in Example 3 was prepared, and a chitosan preparation (Chitosan 7B Lot. NoTB25-M: manufactured by Funakoshi Co., Ltd.) was 0.05 with respect to 1% acetic acid. 0.1, 0.25, and 0.5% concentrations were prepared, and the viscosities at the respective concentrations were measured at 25 ° C. using an SV type viscometer (SV-10) manufactured by A & D Corporation. FIG. 19 shows the result.
従来のキトサン標品を用いた溶液は濃度の増加と共に高粘性を示していくのに対して本発明品の粘度上昇は極めて緩やかなものであった。ほとんど粘性を有しないと言っても過言ではなかった。 The solution using the conventional chitosan preparation showed high viscosity as the concentration increased, whereas the increase in viscosity of the product of the present invention was extremely gradual. It was no exaggeration to say that it has almost no viscosity.
実施例13−1〜13−10、比較例13−1〜13−10 廃液の浄化
表5に示す各金属の1%水溶液1mlを調製し、これに実施例4で取得したキトサン様物の2%水溶液を50μl、或いは比較例として従来のキトサン(キトサン7B)の1%溶液(1%酢酸)を100μl加えたときの沈殿生成の有無を定性的に観察した。結果を表4に示した。
比較例のキトサン7Bの場合、硫酸第一鉄に対してのみ沈殿形成作用が認められたのに対して、本発明のキトサン様物は実施例13−1〜13−5において+〜+++の範囲で沈殿生成作用を示し、従来のキトサン7Bに比べて高い沈殿形成能力と浄化作用を有することが示された。
Examples 13-1 to 13-10, Comparative Examples 13-1 to 13-10 Purification of waste liquid 1 ml of 1% aqueous solution of each metal shown in Table 5 was prepared, and to this, 2 of the chitosan-like material obtained in Example 4 was prepared. The presence or absence of precipitation was qualitatively observed when 100 μl of a 1% solution (1% acetic acid) of conventional chitosan (chitosan 7B) was added as a comparative example. The results are shown in Table 4.
実施例14 硫酸亜鉛7水和物を用いた精製
炭素源はシュクロ−スとした他は、実施例1と同様の条件で5日間本菌株を培養した。培養終了後遠心分離して、上清液65ml(pH7.2)を得た。これに硫酸亜鉛7水和物の1%水溶液を3〜4mlを加えて攪拌した。攪拌と同時に沈殿が生成し徐々に沈降した。遠心分離により沈殿を取得したら水10mlを加えて攪拌洗浄した。これを2回繰り返したあと、再度水10mlに縣濁した。これに強酸性イオン交換樹脂Dowex50 [H]型を5ml加えて、振盪攪拌した。静置し、上清部をピペットで吸い取り別の容器に移し取った。樹脂部は水を加えて洗浄し、静置後上清部をピペットで吸い取り、同容器に移し取り合わせて一つとした。凍結乾燥し0.083gを得た。収量0.13%。
Example 14 This strain was cultured for 5 days under the same conditions as in Example 1 except that sucrose was used as the purified carbon source using zinc sulfate heptahydrate. After completion of the culture, the mixture was centrifuged to obtain 65 ml of supernatant (pH 7.2). To this, 3 to 4 ml of a 1% aqueous solution of zinc sulfate heptahydrate was added and stirred. Simultaneously with stirring, a precipitate formed and gradually settled. When the precipitate was obtained by centrifugation, 10 ml of water was added and washed with stirring. This was repeated twice and then suspended again in 10 ml of water. To this was added 5 ml of strongly acidic ion exchange resin Dowex 50 [H], and the mixture was shaken and stirred. The supernatant was aspirated with a pipette and transferred to another container. The resin part was washed with water, and after standing, the supernatant part was sucked up with a pipette, transferred to the same container, and combined into one. Lyophilized to obtain 0.083 g. Yield 0.13%.
本発明は食品、健康食品、サプリメント、食品添加剤、化粧品、トイレタリ−製品、化成品、医薬品、廃液処理等への広範な応用が期待できる。 The present invention can be expected to be widely applied to foods, health foods, supplements, food additives, cosmetics, toiletries, chemicals, pharmaceuticals, waste liquid treatment, and the like.
Claims (12)
C:38〜40
H:6〜9
N:6〜9
O:38〜40 The aminopolysaccharide according to claim 2, wherein the elemental analysis value (% by weight) is as follows.
C: 38-40
H: 6-9
N: 6-9
O: 38-40
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013103277A JP2014223027A (en) | 2013-05-15 | 2013-05-15 | Novel amino polysaccharide which filamentous fungus produces |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013103277A JP2014223027A (en) | 2013-05-15 | 2013-05-15 | Novel amino polysaccharide which filamentous fungus produces |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014223027A true JP2014223027A (en) | 2014-12-04 |
Family
ID=52122281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013103277A Pending JP2014223027A (en) | 2013-05-15 | 2013-05-15 | Novel amino polysaccharide which filamentous fungus produces |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014223027A (en) |
-
2013
- 2013-05-15 JP JP2013103277A patent/JP2014223027A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shukla et al. | Depicting the exemplary knowledge of microbial exopolysaccharides in a nutshell | |
FI110324B (en) | New polysaccharides and their production | |
Singh et al. | Pullulan: microbial sources, production and applications | |
Kim et al. | Purification and characterization of acidic proteo-heteroglycan from the fruiting body of Phellinus linteus (Berk. & MA Curtis) Teng | |
US7923437B2 (en) | Water soluble β-glucan, glucosamine, and N-acetylglucosamine compositions and methods for making the same | |
Xiu et al. | The chemical and digestive properties of a soluble glucan from Agrobacterium sp. ZX09 | |
Yadav et al. | A novel exopolysaccharide from probiotic Lactobacillus fermentum CFR 2195: Production, purification and characterization | |
JPH07504928A (en) | High-molecular glucuronic acid compounds, their production methods and uses, especially as gelling agents, viscosity-imparting agents, moisture-imparting agents, stabilizers, chelating agents, or flocculants | |
KR870001814B1 (en) | Process for preparing high molecular waight beta-1,3-glucan | |
Sun et al. | Structure characterization, antioxidant and emulsifying capacities of exopolysaccharide derived from Pantoea alhagi NX-11 | |
Prasad et al. | Microbial exopolysaccharide: Sources, stress conditions, properties and application in food and environment: A comprehensive review | |
Lee et al. | Study of macrophage activation and structural characteristics of purified polysaccharides from the fruiting body of Hericium erinaceus | |
WO1994003500A1 (en) | Glucans with immunostimulant activity | |
Maalej et al. | Depolymerization of Pseudomonas stutzeri exopolysaccharide upon fermentation as a promising production process of antibacterial compounds | |
JP4441304B2 (en) | Method for preparing water-soluble low-viscosity β-D-glucan-containing culture solution | |
JP3181337B2 (en) | Method for producing chitosan oligosaccharide mixture and method for producing chitin oligosaccharide mixture | |
JP2009060895A (en) | PRODUCTION METHOD OF SOLUBLE beta-D-GLUCAN POWDER | |
CN110373356B (en) | Bacillus amyloliquefaciens exopolysaccharide for inhibiting growth of enterotoxigenic escherichia coli | |
JP4736908B2 (en) | Process for producing β-1,3-1,6-D-glucan | |
Yevstigneyeva et al. | Structural properties of capsular and O-specific polysaccharides of Azospirillum brasilense Sp245 under varying cultivation conditions | |
Zhang et al. | Structural characterization of a water-soluble and antimicrobial β-glucan secreted by Rhizobium pusense | |
JP2014223027A (en) | Novel amino polysaccharide which filamentous fungus produces | |
JPH0881501A (en) | Acidic polysaccharide | |
Kogan et al. | Glucomannan from Candida utilis: structural investigation | |
JP2003274928A (en) | Culture medium for producing polysaccharides and method for producing the polysaccharides |