WO2001003772A1 - Photocoagulateur laser a adaptation de fluence - Google Patents

Photocoagulateur laser a adaptation de fluence Download PDF

Info

Publication number
WO2001003772A1
WO2001003772A1 PCT/FR2000/002038 FR0002038W WO0103772A1 WO 2001003772 A1 WO2001003772 A1 WO 2001003772A1 FR 0002038 W FR0002038 W FR 0002038W WO 0103772 A1 WO0103772 A1 WO 0103772A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluence
laser
photocoagulator
time
icg
Prior art date
Application number
PCT/FR2000/002038
Other languages
English (en)
Inventor
Serge Mordon
Thomas Desmettre
Original Assignee
Inserm (Institut National De La Sante Et De La Recherche Medicale)
Universite De Lille 2
Centre Hospitalier Regional Et Universitaire De Lile (Chru)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inserm (Institut National De La Sante Et De La Recherche Medicale), Universite De Lille 2, Centre Hospitalier Regional Et Universitaire De Lile (Chru) filed Critical Inserm (Institut National De La Sante Et De La Recherche Medicale)
Priority to US10/030,548 priority Critical patent/US6582421B1/en
Publication of WO2001003772A1 publication Critical patent/WO2001003772A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/062Photodynamic therapy, i.e. excitation of an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00057Light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00137Details of operation mode
    • A61B2017/00154Details of operation mode pulsed
    • A61B2017/00159Pulse shapes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0635Radiation therapy using light characterised by the body area to be irradiated
    • A61N2005/0643Applicators, probes irradiating specific body areas in close proximity
    • A61N2005/0644Handheld applicators

Definitions

  • the invention relates to apparatus and methods for photocoagulation of tissues, enhanced by administration of a chromophore; this chromophore is generally indocyanine green, called ICG, which has an absorption peak in the blood at 800 nm varying between 760 and 840 nm depending on the dose. This wavelength is that of the emission of diode lasers currently available.
  • the use of a continuous injection to compensate for the short lifespan reduces the selectivity due to this diffusion.
  • the invention aims to reduce the consequences of short life by using the observation that the elimination kinetics of ICG can be modeled with a sufficient approximation for ten minutes after administration in the form of a decreasing mono-exponential with a time constant which practically varies between 3 min and 5 min.
  • the invention therefore proposes a laser photocoagulator comprising:
  • the time t is counted from the administration of the ICG and not from the start of the laser treatment.
  • a value is chosen for Fo as high as possible within the limit fixed by the selectivity of action on the vessels which have received the ICG.
  • the present initial Fo will be chosen according to the dose of ICG injected and the time interval which elapses between the injection and the first laser shot on the vessels. In practice, the dose of ICG injected will not exceed approximately 15 mg / kg of tissue.
  • the corresponding initial fluence is a substantially linear decreasing function of the dose, from an initial value, for a zero dose, of the order of 300 J / cm 2 for a zero dose.
  • the change in fluence over time makes it possible to cause reproducible thermal damage from one operation to another and to maintain selective photocoagulation of the vessels which have received ICG, provided that they do not exceed ten minutes. from the injection.
  • the power administered, and therefore the fluence is adjusted by action on a parameter available on the laser used.
  • the module is programmed or controlled to vary the fluence by modifying the unit power and / or the duration.
  • the frequency of successive shots of a sequence can also be adjustable.
  • a diode laser emitting at 810 nm, having a power of 0.8 W and a firing duration of up to 10 seconds, making it possible to vary the fluence from 60 to 360 J / cm 2 gives good results for the destruction of vessels of the dermis.
  • Common laser photocoagulators generally have an external socket for controlling the duration, spacing and power of the pulses from an external control module.
  • Such a module may in particular include a processor provided with a memory in which the program fixing the evolution over time of the output power of the laser photocoagulator is loaded.
  • the invention also relates to such a control module programmed so as to cause a variation in fluence according to the function defined above and a program which, when loaded into a control module, causes the execution of this function.
  • the photocoagulator device is associated with means permanently supplying an estimate of the concentration of ICG in the blood and it is programmed so as to continuously adjust the average fluence as a function of the estimation in order to achieve compensation.
  • concentration estimation means can be used to continuously adjust the fluence by correcting the law stored in the power supply module. Means can also replace the memorized law. Finally, they can be used to adjust the time constant ⁇ .
  • the means can for example be constituted by an ICG concentration measurement device sold under the name "ICG Clearance Meter" by Daiichi Pharmaceutical Co., which bases the estimation of the concentration on the absorption of infrared light by the phalangette of a finger. To date, such a device is only used to determine the rate at which the ICG is eliminated by the liver and therefore to evaluate the possible degradation of the hepatic function.
  • the problem to be solved is related to the rapid decrease in the concentration in the blood of a chromophore, namely the ICG, intended to allow photocoagulation by thermal action and not on the elimination of faster photosensitization by tumor cells than by healthy cells during laser treatment of cancer.
  • FIG. 1 is a diagram showing the different components of a photocoagulator for implementing the invention
  • FIG. 2 is an example of a law of variation of fluence as a function of the delay after injection of ICG, in the case of elimination kinetics modeled by a decreasing mono-exponential with a time constant ⁇ of 4, 8 min;
  • FIG. 3 is a flowchart for controlling a photocoagulator according to a particular embodiment.
  • the photocoagulator the general construction of which is shown by way of example in FIG. 1, comprises an assembly 10 grouping together a diode laser and its power module, in a housing the front panel of which is provided with control buttons and indicators allowing adjust the power output, the duration of each shot and the interval between shots.
  • the assembly shown is provided with a connector 12 intended to receive an optical fiber 14 for transmitting light power to an applicator 16.
  • the housing of the assembly 10 is provided with a connector 18 intended for a connection with an external control module comprising a host processor 22 and an interface 20.
  • an RS232 serial link will be used.
  • This link allows the processor 22 to control the power of the pulse or of each pulse and its duration.
  • the shot or each shot can be triggered by an operator, for example using a foot control.
  • the control voltage may be generated by the interface 20.
  • the program for changing the output power and the duration of the pulse as a function of the elapsed time will be loaded into the processor 22.
  • This program can use a table matching a duration and a pulse power, to the elapsed time from an initialization instant corresponding to the ICG injection.
  • the program can also be provided for calculating a polynomial function whose coefficients are initially loaded, the calculation of the duration of the power then being performed in real time at each triggering of a pulse.
  • FIG. 2 shows, by way of example, the theoretical variation to be given to the fluence as a function of the time elapsed after injection, in the case of a time constant ⁇ of 4.8 min, after injection of a dose of 15 mg / kg of ICG and for a maximum fluence at the end of photocoagulation of 300 J / cm 2 .
  • the exponential can be simulated by a polynomial formula.
  • the table below gives a first degree polynomial and a second degree polynomial.
  • the simple polynomial of the first degree is enough to reduce the error compared to the exponential to less than 10%, from 0.33 min and beyond 9 min.
  • a second degree exponential reduces the error to less than 2% in the same domain. Even less error could be obtained with a third degree formula.
  • the treatments will be carried out using a single pulse, of duration and power selected so that the total fluence received by the tissues is that arising from Fo for the tissues concerned and from the time elapsed since the injection.
  • duration of the pulse it will often be necessary to choose the duration of the pulse to a value corresponding to 3 to 5 times the relaxation time for the vessels to be treated, so as to allow the diffusion of heat from the blood to the wall.
  • the power to be supplied will be deducted taking into account the size of the task and the time elapsed since the administration of the ICG.
  • the implementation process may include a preliminary step of determining the exact location of the vessels to be attacked, by illuminating the tissues under low power, after administration of the ICG.
  • FIG. 3 is a flowchart summarizing a possible mode of implementation of the device, in the case of a single shot. This flowchart is designed to prohibit firing when the delay in relation to the injection exceeds the full duration of the treatment session, including the duration of the laser pulse.
  • the processor 22 receives a signal representative of the concentration of ICG in the blood of a measuring device.
  • This measuring device comprises a sensor 24 intended to be fixed on a finger and having a light-emitting diode 26 which emits light in the absorption range of the ICG and a detection element, such as a photodiode 28.
  • a monitor 30 generates, from absorption, a signal representative of the actual concentration.
  • the processor 22 is provided for controlling the energy of the laser processing pulse taking into account the output signal of the monitor, either in real time to control the dose to be applied, or to adjust the dose according to the received signal. This arrangement allows in particular, for example by an initial calibration, to take into account possible degradations of the hepatic function of the patient.
  • the measurement can be made at another location on the body, for example on the earlobe.
  • the initial value Fo of the fluence is chosen in particular as a function of the dose of IGC injected. This dose will generally not exceed 1.5 mg per kg of the patient. Fo will be the fluence which produces the coagulation of the vessels to be destroyed without damaging the adjacent tissues for the initial concentration. In practice, a Fo fluence of about 20 J / cm 2 will often be used in the case of the maximum dose, for the treatment of new vessels at the back of the eye. The time at the end of which the laser treatment is carried out is that which is necessary for the ICG to invade the entire circulatory system from the intravenous injection.
  • the duration of the laser emission will depend very much on the location, the nature and the diameter of the vessels to be treated.
  • the duration will generally be from 10 to a few tens of ms.
  • the duration may be up to 2 s, since the diffusion to the adjacent tissues to be preserved is longer.
  • the applicator 16 can be placed outside the body or at the end of an endoscope when it is necessary to treat internal mucous membranes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Radiation-Therapy Devices (AREA)
  • Laser Surgery Devices (AREA)

Abstract

Le photocoagulateur laser comprend un laser émettant à une longueur d'onde comprise dans le spectre d'absorption de l'ICG et muni de moyens de focalisation et un module d'alimentation du laser programmé ou commandé de façon que la fluence moyenne F au foyer à partir d'un instant initial varie suivant une fonction croissante dans le temps ne s'écartant à aucun moment de plus de 10 % d'une mono-exponentielle croissante de la forme F = Fo(1-e<-t/ tau >) où F est la fluence initiale et tau est une constante de temps comprise entre 3 et 5 mn.

Description

PHOTOCOAGULATEUR LASERAADAPTATION DE FLUENCE
L'invention concerne les appareils et procédés de photocoagulation de tissus, renforcée par administration d'un chromophore ; ce chromophore est généralement du vert d'indocyanine, dit ICG, qui présente un pic d'absorption dans le sang à 800 nm variant entre 760 et 840 nm en fonction de la dose. Cette longueur d'onde est celle de l'émission de lasers à diode actuellement disponibles.
On a déjà proposé de tels procédés pour la destruction de néovaisseaux sous-rétiniens (article de David R. Guyer et al "Indocyanine Green Angiography and Dye-Enhanced Diode Laser Photocoagulation", Seminars in Ophtalmology, vol. 7, n° 3, 1992) et, en dermatologie, pour la photocoagulation d'angiodysplasies cutanées situées en profondeur et peu accessibles au traitement par les lasers émettant dans le spectre d'absorption de l'hémoglobine. L'utilisation de l'ICG pour la photocoagulation se heurte cependant à de nombreuses difficultés dont la principale est sa courte durée de vie plasmatique, qui s'ajoute à sa diffusion progressive à partir des néovaisseaux dans laquelle elle a été injectée. L'utilisation d'une injection continue pour compenser la faible durée de vie réduit la sélectivité du fait de cette diffusion. L'invention vise à réduire les conséquences de la courte vie en utilisant la constatation que la cinétique d'élimination de l'ICG peut être modélisée avec une approximation suffisante pendant une dizaine de minutes après administration sous forme d'une mono-exponentielle décroissante avec une constante de temps qui varie pratiquement entre 3 mn et 5 mn. L'invention propose en conséquence un photocoagulateur laser comprenant :
- un laser émettant à une longueur d'onde comprise dans le spectre d'absorption de l'ICG et muni de moyens de focalisation ;
- un module d'alimentation du laser, programmé ou commandé de façon que la fluence moyenne F au foyer à partir d'un instant initial varie suivant une fonction croissante dans le temps ne s'écartant à aucun moment de plus de 10 % d'une mono-exponentielle croissante de la forme F = Fo(1-e"t/τ) où Fo est la fluence initiale et τ est une constante de temps comprise entre 3 et 5 mn, correspondant à la constante de temps ci-dessus.
Le temps t est compté à partir de l'administration de l'ICG et non pas du début du traitement laser. On choisit pour Fo une valeur aussi élevée que possible dans la limite fixée par la sélectivité d'action sur les vaisseaux qui ont reçu l'ICG. La présente initiale Fo sera choisie en fonction de la dose d'ICG injectée et de l'intervalle de temps qui s'écoule entre l'injection et le premier tir laser sur les vaisseaux. Dans la pratique, la dose d'ICG injectée ne dépassera pas environ 15 mg/kg de tissu. La fluence initiale correspondante est une fonction sensiblement linéaire décroissante de la dose, à partir d'une valeur initiale, pour une dose nulle, de l'ordre de 300 J/cm2 pour une dose nulle.
L'évolution de la fluence dans le temps permet de provoquer un dommage thermique reproductible d'une opération à l'autre et de conserver une photocoagulation sélective des vaisseaux qui ont reçu de l'ICG, à condition de ne pas dépasser une dizaine de minutes à partir de l'injection.
La puissance administrée, et donc la fluence, est ajustée par action sur un paramètre disponible sur le laser utilisé. Dans le cas habituel d'un laser à impulsions, le module est programmé ou commandé pour faire varier la fluence par modification de la puissance unitaire et/ou de la durée. La fréquence de tirs successifs d'une séquence peut également être ajustable.
A titre d'exemple, on peut indiquer qu'un laser à diode émettant à 810 nm, ayant une puissance de 0,8 W et une durée de tir allant jusqu'à 10 secondes, permettant de faire varier la fluence de 60 à 360 J/cm2 donne de bons résultats pour la destruction de vaisseaux du derme. Les photocoagulateurs laser courants comportent généralement une prise externe permettant de commander la durée, l'espacement et la puissance des impulsions à partir d'un module de commande externe. Un tel module peut notamment comporter un processeur muni d'une mémoire dans lequel on charge le programme fixant l'évolution dans le temps de la puissance de sortie du photocoagulateur laser. L'invention a également pour objet un tel module de commande programmé de façon à provoquer une variation de la fluence suivant la fonction définie ci-dessus et un programme qui, lorsqu'il est chargé dans un module de commande, provoque l'exécution de cette fonction. Dans une variante de réalisation de l'invention, le dispositif photocoagulateur est associé à des moyens fournissant en permanence une estimation de la concentration d'ICG dans le sang et il est programmé de façon à ajuster en permanence la fluence moyenne en fonction de l'estimation de façon à réaliser une compensation. Ces moyens d'estimation de la concentration peuvent être utilisés pour ajuster en permanence la fluence par correction de la loi mémorisée dans le module d'alimentation. Les moyens peuvent également se substituer à la loi mémorisée. Enfin, il peuvent être utilisés pour ajuster la constante de temps τ. Les moyens peuvent par exemple être constitués par un appareil de mesure de la concentration d'ICG vendu sous le nom "ICG Clearance Meter" par Daiichi Pharmaceutical Co., qui base l'estimation de la concentration sur l'absorption de lumière infrarouge par la phalangette d'un doigt. Un tel appareil n'est utilisé à ce jour que pour déterminer la vitesse à laquelle l'ICG est éliminé par le foie et donc pour évaluer la dégradation éventuelle de la fonction hépathique.
Il est encore important de noter que le problème à résoudre est lié à la décroissance rapide de la concentration dans le sang d'un chromophore, à savoir l'ICG, destiné à permettre une photocoagulation par action thermique et non pas sur l'élimination d'un photosensibilisant plus rapide par des cellules tumorales que par des cellules saines lors d'un traitement laser d'un cancer.
Les caractéristiques ci-dessus ainsi que d'autres apparaîtront mieux à la lecture de la description qui suit d'un mode particulier de réalisation, donné à titre d'exemple non limitatif. La description se réfère aux dessins qui l'accompagnent, dans lesquels :
- la figure 1 est un schéma montrant les différents constituants d'un photocoagulateur permettant de mettre en œuvre l'invention ;
- la figure 2 est un exemple de loi de variation de la fluence en fonction du délai après injection d'ICG, dans le cas d'une cinétique d'élimination modélisée par une mono-exponentielle décroissante avec une constante de temps τ de 4,8 mn ;
- la figure 3 est un organigramme de commande d'un photocoagulateur conforme à un mode particulier de réalisation. Le photocoagulateur dont la constitution générale est montré à titre d'exemple sur la figure 1 comprend un ensemble 10 regroupant un laser à diode et son module d'alimentation, dans un boîtier dont le panneau avant est muni de boutons de commande et de voyants permettant de régler la puissance émise, la durée de chaque tir et l'intervalle entre les tirs. L'ensemble représenté est muni d'un connecteur 12 destiné à recevoir une fibre optique 14 de transmission de la puissance lumineuse à un applicateur 16. De plus, le boîtier de l'ensemble 10 est muni d'un connecteur 18 destiné à une liaison avec un module externe de commande comprenant un processeur hôte 22 et un interface 20. En général, on utilisera une liaison série RS232. Cette liaison permet au processeur 22 de commander la puissance de l'impulsion ou de chaque impulsion et sa durée. Le tir ou chaque tir peut être déclenché par un opérateur, par exemple à l'aide d'une commande au pied. Dans le cas fréquent où la puissance des impulsions est déterminée par une commande en tension, la tension de commande pourra être générée par l'interface 20.
On peut notamment utiliser comme laser l'appareil vendu sous la référence OPC-H005-FCTS, qui permet un réglage de la puissance de sortie optique de 0 à 5 W, par échelon de 0,1 W, un réglage de largeur d'impulsion de 200 μs à 100 s et un réglage de la séparation entre impulsions entre 200 μs et 100 s, avec une longueur d'onde de sortie de 808 nm.
Le programme d'évolution de la puissance de sortie et de la durée de l'impulsion en fonction du temps écoulé sera chargé dans le processeur 22. Ce programme peut utiliser une table faisant correspondre une durée et une puissance d'impulsion, au temps écoulé depuis un instant d'initialisation correspondant à l'injection d'ICG. Le programme peut également être prévu pour effectuer le calcul d'une fonction polynomiale dont les coefficients sont initialement chargés, le calcul de la durée de la puissance s'effectuant alors en temps réel à chaque déclenchement d'une impulsion.
La figure 2 montre, à titre d'exemple, la variation théorique à donner à la fluence en fonction du délai écoulé après injection, dans le cas d'une constante de temps τ de 4,8 mn, après injection d'une dose de 15 mg/kg d'ICG et pour une fluence maximale en fin de photocoagulation de 300 J/cm2. Une augmentation de 1/03772
la dose d'ICG permet d'augmenter la durée pendant ,aque„e une photocoagulation renforcée peut être obtenue. „ _ ,-,/, œ,le
On peu, notamment choisir, comme .oi de variation du terme y - 2 , celle
qui est donnée ci-après :
Figure imgf000006_0001
Comme on l'a indiqué plus haut, l'exponentielle peut être simulée par une formule polynomiale. Le tableau ci-après donne un polynôme du premier degré et un polynôme du second degré. On constate que le polynôme simple du premier degré suffit pour réduire l'erreur par rapport à l'exponentielle à moins de 10 %, dès 0,33 mn et au-delà de 9 mn. Une exponentielle du second degré permet de réduire l'erreur à moins de 2 % dans le même domaine. Une erreur encore moindre pourrait être obtenue avec une formule du troisième degré.
Figure imgf000007_0001
En général, les traitements seront effectués en utilisant une seule impulsion, de durée et de puissance sélectionnées pour que la fluence totale reçue par les tissus soit celle découlant de Fo pour les tissus concernés et du délai écoulé depuis l'injection. Dans la pratique, on sera souvent amené à choisir la durée de l'impulsion à une valeur correspondant à 3 à 5 fois le temps de relaxation pour les vaisseaux à traiter, de façon à permettre la diffusion de la chaleur du sang vers la paroi. La puissance à fournir en sera déduite en tenant compte de la dimension de la tache et du temps écoulé depuis l'administration de l'ICG. Le procédé de mise en oeuvre peut comporter une étape préliminaire de détermination de l'emplacement exact des vaisseaux à attaquer, en illuminant sous faible puissance les tissus, après administration de l'ICG. La fluorescence de celle-ci permet de déterminer l'emplacement des néovaisseaux et peut définir exactement l'emplacement à donner à la tache du laser pour la coagulation. La figure 3 est un organigramme résumant un mode possible de mise en œuvre du dispositif, dans le cas d'un tir unique. Cet organigramme est prévu de façon à interdire le tir lorsque le retard par rapport à l'injection dépasse la durée complète de la séance de traitement, y compris la durée de l'impulsion laser.
Dans une variante de réalisation de l'invention, le processeur 22 reçoit un signal représentatif de la concentration d'ICG dans le sang d'un appareil de mesure. Cet appareil de mesure comporte un capteur 24 destiné à être fixé sur un doigt et ayant un diode électroluminescente 26 qui émet une lumière dans la plage d'absorption de l'ICG et un élément de détection, tel qu'une photodiode 28. Un moniteur 30 génère, à partir de l'absorption, un signal représentatif de la concentration réelle. Le processeur 22 est prévu pour commander l'énergie de l'impulsion laser de traitement en tenant compte du signal de sortie du moniteur, soit en temps réel pour commander la dose à appliquer, soit pour ajuster la dose en fonction du signal reçu. Cette disposition permet notamment, par exemple par un calibrage initial, de tenir compte de dégradations éventuelles de la fonction hépatique du patient.
Au lieu d'être effectuée sur un doigt, la mesure peut être effectuée à un autre emplacement du corps, par exemple sur le lobe de l'oreille. La valeur initiale Fo de la fluence est choisie notamment en fonction de la dose d'IGC injectée. Cette dose ne dépassera généralement pas 1 ,5 mg par kg du patient. Fo sera la fluence qui produit la coagulation des vaisseaux à détruire sans porter atteinte aux tissus adjacents pour la concentration initiale. Dans la pratique, on utilisera souvent une fluence Fo d'environ 20 J/cm2 dans le cas de la dose maximale, pour le traitement de néovaisseaux au fond de l'œil. Le temps au bout duquel on effectue le traitement laser est celui qui est nécessaire pour que l'ICG envahisse l'ensemble du système circulatoire à partir de l'injection par voie intraveineuse. La durée de l'émission laser dépendra beaucoup de l'emplacement, de la nature et du diamètre des vaisseaux à traiter. Pour le traitement du fond de l'œil, la durée sera généralement de 10 à quelques dizaines de ms. Dans le cas de néovaisseaux placés sur des muqueuses, la durée pourra aller jusqu'à 2 s, du fait que la diffusion vers les tissus adjacents à préserver est plus longue. L'applicateur 16 peut être placé à l'extérieur du corps ou à l'extrémité d'un endoscope lorsqu'il est nécessaire de traiter des muqueuses internes.

Claims

REVENDICATIONS
1. Photocoagulateur laser comprenant :
- un laser émettant à une longueur d'onde comprise dans le spectre d'absorption de l'ICG et muni de moyens de focalisation ;
- un module d'alimentation du laser programmé ou commandé de façon que la fluence moyenne F au foyer à partir d'un instant initial varie suivant une fonction croissante dans le temps ne s'écartant à aucun moment de plus de 10 % d'une mono-exponentielle croissante de la forme F = Fo(1-e"t τ) où F est la fluence initiale et τ est une constante de temps comprise entre 3 et 5 mn.
2. Photocoagulateur selon la revendication 1 , caractérisé en ce que le module d'alimentation est programmé ou commandé pour faire varier la fluence par modification de la puissance unitaire et/ou de la durée ou du tir.
3. Photocoagulateur selon la revendication 1 ou 2, caractérisé en ce que le module est commandé par un module externe programmé.
4. Photocoagulateur selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la fonction croissante est une fonction linéaire ou quadratique.
5. Photocoagulateur selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le laser a une émission dans la plage allant de 700 à
900 nm.
6. Photocoagulateur selon l'une quelconque des revendications précédentes, caractérisé en ce que le module d'alimentation est relié à un appareil de mesure de la concentration instantanée d'ICG dans le sang et prévu pour tenir compte du signal de sortie dudit appareil pour ajuster la fluence.
7. Procédé de photocoagulation de néovaisseaux, suivant lequel :
- on administre à un patient une dose déterminée de vert d'indocyanine,
- au bout d'un temps déterminé t, on focalise, sur les néovaisseaux à photocoaguler, une impulsion laser programmée ou commandée de façon que la fluence moyenne F au foyer, ladite fluence étant déterminée à partir du temps t et d'une fluence initiale Fo, ne s'écarte pas de plus de 10 % d'une valeur F = Fo(1-e_t/τ) où F est la fluence initiale et τ est une constante de temps comprise entre 3 et 5 mn.
PCT/FR2000/002038 1999-07-13 2000-07-13 Photocoagulateur laser a adaptation de fluence WO2001003772A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/030,548 US6582421B1 (en) 1999-07-13 2000-07-13 Laser photocoagulator with fluence adaptation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR99/09112 1999-07-13
FR9909112A FR2796295B1 (fr) 1999-07-13 1999-07-13 Photocoagulateur laser a adaptation de fluence

Publications (1)

Publication Number Publication Date
WO2001003772A1 true WO2001003772A1 (fr) 2001-01-18

Family

ID=9548076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/002038 WO2001003772A1 (fr) 1999-07-13 2000-07-13 Photocoagulateur laser a adaptation de fluence

Country Status (3)

Country Link
US (1) US6582421B1 (fr)
FR (1) FR2796295B1 (fr)
WO (1) WO2001003772A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2004322538A1 (en) * 2004-08-23 2006-03-02 Rajeev Raut Incising cell to basement membrane bonds
WO2009052503A2 (fr) * 2007-10-18 2009-04-23 University Of Rochester Procédé pour contrôler l'irradiation de la thérapie photodynamique et instrumentation correspondante
US10589120B1 (en) 2012-12-31 2020-03-17 Gary John Bellinger High-intensity laser therapy method and apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0673627A1 (fr) * 1994-03-23 1995-09-27 Yasuo Hashimoto Cathéter à fibre optique
WO1997031582A1 (fr) * 1996-02-29 1997-09-04 Cytopharm, Inc. Phototherapie contre les pathologies et affections cancereuses et/ou dermatologiques
WO1997033620A2 (fr) * 1996-03-15 1997-09-18 Pulsion Verw. Gmbh & Co. Medical Systems Kg Compose pour traiter des tumeurs
US5689520A (en) * 1995-10-31 1997-11-18 Xintec Corporation Method and apparatus for variable waveform output in surgical lasers

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576013A (en) * 1995-03-21 1996-11-19 Eastern Virginia Medical School Treating vascular and neoplastic tissues
US5658323A (en) * 1995-07-12 1997-08-19 Miller; Iain D. Method and apparatus for dermatology treatment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0673627A1 (fr) * 1994-03-23 1995-09-27 Yasuo Hashimoto Cathéter à fibre optique
US5689520A (en) * 1995-10-31 1997-11-18 Xintec Corporation Method and apparatus for variable waveform output in surgical lasers
WO1997031582A1 (fr) * 1996-02-29 1997-09-04 Cytopharm, Inc. Phototherapie contre les pathologies et affections cancereuses et/ou dermatologiques
WO1997033620A2 (fr) * 1996-03-15 1997-09-18 Pulsion Verw. Gmbh & Co. Medical Systems Kg Compose pour traiter des tumeurs

Also Published As

Publication number Publication date
FR2796295A1 (fr) 2001-01-19
FR2796295B1 (fr) 2001-10-05
US6582421B1 (en) 2003-06-24

Similar Documents

Publication Publication Date Title
EP0375578B1 (fr) Installation utilisant l&#39;effet laser, pour la coupe ou la vaporisation de matériaux et tissus divers
EP2237731B1 (fr) Dispositif de traitement thermique dermatologique par faisceau laser
EP0477361A1 (fr) Instrument dentaire a faisceau laser
US20160374758A1 (en) Skin treatment apparatus utilising intense pulsed light (ipl)
CA2672371A1 (fr) Appareil de traitement par emission de flashs lumineux avec dispositif d&#39;anti-eblouissement
FR2675371A1 (fr) Dispositif de traitement thermique de tissus par groupe de sequence d&#39;impulsions.
EP0375584A2 (fr) Dispositif d&#39;injection à usage médical et vétérinaire évitant les contaminations
US9474576B2 (en) Coherent imaging fiber based hair removal device
EP1523294B1 (fr) Appareil pour le traitement de la degenerescence maculaire liee a l&#39;age (dmla)
WO2010031908A1 (fr) Appareil et procede de traitement d&#39;une partie de corps humain ou animal mettant en oeuvre des moyens de delivrance de doses de traitement et des moyens de contrôle de dosimetrie
WO2001003772A1 (fr) Photocoagulateur laser a adaptation de fluence
Ash et al. Relevance of the structure of time‐resolved spectral output to light‐tissue interaction using intense pulsed light (IPL)
WO2016087556A1 (fr) Dispositif, système et procédé d&#39;évaluation de la microcirculation sanguine d&#39;un tissu
Bende et al. Laser thermal keratoplasty using a continuous wave diode laser
WO2010115753A1 (fr) Carte du type bancaire avec un interrupteur actionnable par un utilisateur
FR2513514A1 (fr) Appareil de traitement percutane
EP1736110A1 (fr) Moyen de calcul d&#39;un paramètre de fonctionnement (énergie, puissance ou durée d&#39;émission) d&#39;un laser endoveineux
Duker et al. Semiconductor diode laser endophotocoagulation
Brinkmann et al. Ablation dynamics in laser sclerostomy ab externo by means of pulsed lasers in the mid-infrared spectral range
FR2938179A1 (fr) Dispositif d&#39;aide a la cicatrisation
EP2168525A1 (fr) Appareil de traitement comportant un instrument invasif et des moyens d&#39;aide au controle du déplacement dudit instrument
EP1713423A1 (fr) Appareil et methode de traitement de la neovascularisation corneenne ou de l accumulation de vaisseaux sur la conjonctive
FR2685629A1 (fr) Dispositif d&#39;usinage, notamment d&#39;un lenticule corneen.
FR2577810A1 (fr) Dispositif d&#39;emission d&#39;un rayonnement laser a application medicale
FR2852222A1 (fr) Procede et dispositif de cartographie du ph intra-retinien, dispositif de photocoagulation des zones de la retine peripheriques

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10030548

Country of ref document: US

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP