WO2001003586A1 - Ecarteur a aiguille extensible de facon concentrique - Google Patents

Ecarteur a aiguille extensible de facon concentrique Download PDF

Info

Publication number
WO2001003586A1
WO2001003586A1 PCT/IL2000/000387 IL0000387W WO0103586A1 WO 2001003586 A1 WO2001003586 A1 WO 2001003586A1 IL 0000387 W IL0000387 W IL 0000387W WO 0103586 A1 WO0103586 A1 WO 0103586A1
Authority
WO
WIPO (PCT)
Prior art keywords
retractor
retractor element
opening
tissue
expansible
Prior art date
Application number
PCT/IL2000/000387
Other languages
English (en)
Inventor
David Michaeli
Original Assignee
David Michaeli
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by David Michaeli filed Critical David Michaeli
Priority to AU2000255620A priority Critical patent/AU2000255620A1/en
Publication of WO2001003586A1 publication Critical patent/WO2001003586A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/02Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
    • A61B17/0293Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors with ring member to support retractor elements

Definitions

  • the present invention relates to apparatus and techniques for performing minimally invasive surgery.
  • Minimally invasive surgical techniques are becoming increasingly widespread in many different surgical fields.
  • An area in which such techniques would appear to be particularly relevant is neurosurgical removal of space occupying lesions.
  • the skull is trepanned so as to remove a bone flap exposing an opening of up to 5 cm x 5 cm, after which retractors are inserted between the brain lobes and used to move and draw back the lobes in the region of the lesion, thereby exposing it for removal.
  • the retractors are removed and the bone flap is replaced. Imaging is performed once again so as to ensure that the entire lesion has, in fact, been removed.
  • the present invention seeks to provide a concentrically expansible needle retractor device for minimally invasive surgery, and a surgical technique for employing the retractor device.
  • a further aim of the present invention is to render surgical procedures, including neurosurgical procedures, shorter, less traumatic, and more reliable.
  • an expansible needle retractor device which includes a base arranged for positioning over an opening in a body portion; an expandable needle shaped retractor element having a longitudinal opening and an axis extending therealong, and configured for insertion through the opening so as to extend into the body portion and thus to engage body tissue, the retractor element having a first end supported in association with the base and a second, free end, spaced axially therefrom; and expansion apparatus mounted onto the base and operative to selectably expand the retractor element radially about the longitudinal axis into an expanded position so as to retract body tissue engaged by the retractor element, and thereby to expose a working area within the body portion, in generally axial alignment with the opening.
  • the retractor element is formed of a plurality of generally rigid rib members extending from the base, joined by an extendible web, which, when the retractor element is in the expanded position, is operative to resist, together with the elongate members, return of retracted body tissue to its non-retracted state.
  • the retractor element is expansible concentrically about the longitudinal axis.
  • the rib members are connected at the first end of the needle element to the expansion apparatus, and are distributed generally evenly about the longitudinal axis, thereby to expand in concentric fashion thereabout.
  • the extendible web is a flexible membrane.
  • the expansion apparatus is operative to expand the retractor element at a predetermined speed, thereby to provide retraction of body tissue at a corresponding rate, predetermined to minimize trauma to the tissue.
  • the expansion apparatus includes electrical drive apparatus.
  • the probe includes at least one of the group consisting of an imaging probe, and an electrocoagulation probe.
  • a method of minimally invasive surgery which includes the following steps: forming an opening in the exterior of a body portion located in proximity to a tissue portion sought to be surgically removed; inserting a radially expansible needle-like retractor element through the opening, through body tissue so as to reach the tissue portion sought to be surgically removed; expanding the retractor element concentrically, thereby to cause a lateral displacement of adjacent tissue, so as to expose the tissue portion sought to be surgically removed; and removing the tissue portion sought to be surgically removed.
  • the method also includes the step of inserting an imaging probe in association with the retractor element, thereby to provide imaging of a selected tissue portion during insertion thereof through body tissue.
  • the method also includes the step of inserting an electrocoagulation probe in association with the retractor element, thereby to provide selectable cauterization of blood vessels proximate thereto during insertion thereof through body tissue.
  • the step of forming an opening includes forming an opening of substantially same diameter as the retractor element, once expanded.
  • the step of expanding includes the step of expanding the retractor element at a preselected rate.
  • the step of forming an opening in the exterior of a body portion located in proximity to a tissue portion sought to be surgically removed includes forming an opening in a skull of a subject, located in proximity to a space occupying lesion sought to be removed from the subject's brain; the step of inserting a radially expansible needle-like retractor element includes inserting the retractor element between brain lobes so as to reach the space occupying lesion sought to be surgically removed; and the step of expanding the retractor element includes separating brain tissue adjacent thereto, so as to expose the space occupying lesion.
  • Fig. 1A is a side view of the concentrically expansible needle retractor device of the present invention in a contracted position
  • Fig. IB is a cross-sectional view of the retractor device of Fig. 1A, taken along line B-B therein;
  • Fig. 2 A is a side view of the retractor device of Fig. 1 A in an expanded position
  • Fig. 2B is a cross-sectional view of the retractor device of Fig. 2A, taken along line B-B therein;
  • Figs. 3A and 3B are enlarged schematic side and cross-sectional views of the multi-purpose probe of the retractor device of the present invention, seen in Figs. 1A and 2A;
  • Fig. 4 is a magnified sectional view of a the retractor device of the invention in an expanded position seen in situ during a surgical procedure;
  • Figs. 5A-5H are diagrams illustrating different steps during performance of a minimally invasive surgical procedure using the retractor device of the present invention.
  • Fig. 6 is an enlarged view of a trepanned portion of a skull, after replacement of the bone and skin flaps, as seen at portion 6 of Fig. 5H.
  • Retractor device 10 constructed an operative in accordance with a preferred embodiment of the present invention.
  • Retractor device 10 includes a generally planar base 12 which includes a lower plate 12a and an upper plate 12b which fits over and connects to lower plate 12a.
  • An expansible needle shaped retractor element 14, having a longitudinal axis 16, is mounted within a preferably central opening 17 formed within base 12, so as to protrude generally at right angles to the base 12, and so as to protrude through lower plate 12a, as seen in Fig. 1 A.
  • Retractor element 14 is formed of a plurality of longitudinal ribs 18 which, together with an expansible web element 20, are fastened to an expansion mechanism, referenced generally 22, mounted between the upper and lower base plates 12a and 12b.
  • Expansion mechanism 22 includes an outer toothed ring 24 mounted onto lower base plate 12a for selectable rotation about axis 16, and having inward facing and outward facing pluralities of teeth, respectively referenced 26 and 28.
  • Each linear drive element 32 is mounted for motion in a generally radial direction, having a plurality of teeth 34 arranged in meshing association with an associated transmission wheel 30. As seen, each linear drive element 32 also has an inward-facing end 35, to which typically a single longitudinal rib 18 and an associated portion of expansible web element 20 is attached. There is also provided a drive, referenced 36, which has a drive wheel 38 mounted in a housing 40 fastened to lower base plate 12a. Drive wheel 38 is typically a high precision toothed wheel arranged in meshing engagement with the outward-facing teeth 28 of toothed ring 24. Drive wheel 38 is arranged to be driven via a spindle 41, coupled via a flexible coupling 42 to a flexible drive rod 44, arranged to be driven by a suitable, very high precision drive (not shown), such as a suitable stepping motor.
  • retractor element 14 is contracted so that ribs 18 engage or nearly engage each other so as to form an almost closed cylinder, as illustrated in Figs. 1A and IB.
  • retractor element 14 has a needle like shape of no more than about 5 mm in diameter.
  • Activation of the drive causes a very slow rotation of drive wheel 38, as indicated by arrow 46 (Fig. IB). This then causes a corresponding rotation of toothed wheel ring 24, so as to cause a simultaneous and equal rotation of all toothed transmission wheels 30 so as to cause a radially outward linear translation of linear drive elements 32. Due to the fact that ribs 18 and extensible web element 20 are attached to linear elements 32, this radially outward motion causes a concentric expansion or extension of the retractor element 14, as illustrated in Figs. 2A and 2B. Preferably, the rate of expansion is in the region of 20 microns per second. As shown and described hereinbelow in conjunction with Fig.
  • Retractor element 14 is constructed such that, when completely expanded, it has a diameter of up to 15 - 30 mm.
  • the retractor element 14 has mounted onto a free end thereof 48, a probe 50.
  • Probe 50 is configured to be supported on free end 48 of the retractor element 14 when in the illustrated, contracted position. As the retractor element 14 expands, however, probe 50 is released, and may be manipulated for various purposes, as described below.
  • probe 50 is a dual purpose probe, and includes ultrasound imaging capabilities as well as coagulation or cauterizing capabilities. As described hereinbelow, the provision of this dual-purpose probe enables real time imaging throughout a surgical procedure, and uncomplicated cauterizing of blood vessels in the work area, thereby preventing undesired bleeding.
  • probe 50 has a generally dome-shaped, molded hollow housing 52, formed typically of a suitable plastic.
  • a coagulation wire 54 is wound in helical fashion about the outside of the probe housing 52, typically in a channel 53 provided for this purpose, which, when in use, applies a cauterizing current to any exposed blood vessels with which it comes into contact during use.
  • the housing 52 further includes, at an interior apex portion thereof, a piezoelectric crystal element 56, and a lining 58 formed of a damping material, arranged therebehind.
  • a suitable wire 59 is connected to the crystal element 56, for providing electrical excitation of piezoelectric crystal element 56 so as to cause emission of ultrasound energy therefrom, and transfer of signals received therefrom to suitable visual display apparatus, generally as described below in conjunction with Figs. 5B and 5F, so as to provide ultrasound imaging of the work area in real time.
  • probe 50 is described specifically as being a combined ultrasound and cauterizing probe, this is by way of example only, and additional or different functions may be provided therein, instead.
  • Figs. 4-6 there is described a method of minimally invasive surgery, in accordance with a preferred embodiment of the invention.
  • the method is described in conjunction with the neurosurgical removal of a space occupying lesion, although it may be equally adapted for removal of undesired tissue from other portions of the body, where it is feasible to replace invasive surgery with a minimally invasive method, as described herein.
  • Fig. 5A there is seen a cut-away representation of a human skull and brain, wherein a space occupying lesion is seen at a location 60.
  • the initial location of the lesion is performed by any suitable imaging technique known in the art, and is thus not described specifically herein.
  • the skull is trepanned so as to remove a circular bone flap, typically having a diameter in the range 15 - 30 mm.
  • the retractor element 14 is carefully inserted in-between brain lobes so as to reach the lesion, as seen in Figs. 5B and 5C.
  • the use of the ultrasound imaging properties of probe 50 during insertion of retractor element 14 enables a surgeon to view the exact location of the lesion on a monitor 58 while inserting the retractor element 14, thereby enabling him to insert the retractor element 14 with very high accuracy.
  • the coagulation portion of probe 50 may be energized, as via a pedal switch 60, and an electrocoagulation control 62 connected to a power source 64, seen in Fig. 5B.
  • the retractor device 10 is firmly fastened to the skull by use of a plurality of positioning screws 66 (Figs. 1 A-2B, and 4).
  • the motor (not shown) is activated so as to operate expansion mechanism 22 (Figs. IB and 2B), which, as described above, causes a concentric, radial expansion of retractor element 14, from its initial, contracted position, seen in Figs. 1A and IB, in which it may have a diameter of as little as 5 mm, to an expanded position, seen in Figs. 2A, 2B and 4, where it may have up to any predetermined, useful diameter, but typically in the range 15 - 30 mm.
  • a work area which is clearly defined is essentially free from blood, and in which the surgeon is able to concentrate fully on the removal of the lesion.
  • the probe 50 may be removed by use of specially adapted forceps 68, so as to clear the way for removal of the lesion.
  • the lesion is removed by insertion into the work area of an endoscope and aspiration device 70, enabling the lesion to be broken down and suctioned out, while viewing progress of this procedure on the endoscope screen 72.
  • probe 50 is reinserted by use of forceps 68, so as to enable ultrasound imaging of the area, thus making sure before removal of the retractor device 10, that no lesion tissue remains.
  • the expansion mechanism 22 is subsequently operated in reverse, so as to contract the retractor element 14, enabling subsequent removal of the device 10, and closure of the skull opening as seen in Figs. 5H and 6, generally as known in the art.
  • the minimally invasive technique of the present invention has a number of advantages over prior art, which include the following:
  • insertion of the needlelike retractor element causes less trauma to surrounding tissue than insertion of two or more retractors of the sort known in the art

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

La présente invention concerne un dispositif écarteur à aiguille extensible, comprenant une base conçue aux fins de positionnement sur une ouverture pratiquée dans un partie corporelle, et un élément écarteur à forme d'aiguille extensible comportant un axe longitudinal parcouru par un orifice, dont la configuration permet l'insertion via l'ouverture de façon à pénétrer la partie corporelle et engager ainsi un tissu corporel. L'élément écarteur possède une première extrémité supportée en association avec la base et une seconde extrémité, libre, séparée axialement de la base. Un appareil d'expansion, monté sur la base, permet de déployer radialement l'élément écarteur, de manière réglable autour de l'axe longitudinal, afin d'écarter un tissu engagé par l'élément écarteur, permettant ainsi de dégager une zone de travail à l'intérieur de la partie corporelle, en alignement généralement axial avec l'ouverture.
PCT/IL2000/000387 1999-07-07 2000-07-04 Ecarteur a aiguille extensible de facon concentrique WO2001003586A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2000255620A AU2000255620A1 (en) 1999-07-07 2000-07-04 Concentrically expansible needle retractor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IL13083599A IL130835A0 (en) 1999-07-07 1999-07-07 Concentrically expansible needle retractor
IL130835 1999-07-07

Publications (1)

Publication Number Publication Date
WO2001003586A1 true WO2001003586A1 (fr) 2001-01-18

Family

ID=11072996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IL2000/000387 WO2001003586A1 (fr) 1999-07-07 2000-07-04 Ecarteur a aiguille extensible de facon concentrique

Country Status (3)

Country Link
AU (1) AU2000255620A1 (fr)
IL (1) IL130835A0 (fr)
WO (1) WO2001003586A1 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007044673A1 (fr) * 2005-10-07 2007-04-19 Alphatec Spine, Inc. Rétracteur et procédés d'utilisation
EP1959844A2 (fr) * 2005-12-15 2008-08-27 Microdel Idea Center Ltd. Rétracteur radialement extensible amélioré pour chirurgie peu invasive
US8409089B2 (en) 2010-02-24 2013-04-02 Meni-Med Ltd. Surgical retractor
US8454504B2 (en) 2010-02-24 2013-06-04 Meni-Med Ltd Surgical retractor
US8663102B2 (en) 2010-02-24 2014-03-04 Meni-Med Ltd. Surgical retractor
US8727975B1 (en) 2013-05-10 2014-05-20 Spine Wave, Inc. Retractor for use in spinal surgery
US8974380B2 (en) 2010-02-24 2015-03-10 Meni-Med Ltd Surgical retractor
US9693762B2 (en) 2014-03-03 2017-07-04 Alphatec Spine, Inc. Soft tissue retractor
US10667868B2 (en) 2015-12-31 2020-06-02 Stryker Corporation System and methods for performing surgery on a patient at a target site defined by a virtual object
WO2022162327A1 (fr) 2021-02-01 2022-08-04 Clariance Ecarteur chirurgical
FR3119307A1 (fr) 2021-02-01 2022-08-05 Clariance Ecarteur chirurgical

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2313164A (en) * 1939-11-13 1943-03-09 Walfred A Nelson Self-retaining surgical retractor
US4130113A (en) * 1976-12-15 1978-12-19 Richards Manufacturing Co., Inc. Retractor
US4386602A (en) * 1977-05-17 1983-06-07 Sheldon Charles H Intracranial surgical operative apparatus
EP0455282A2 (fr) * 1990-04-03 1991-11-06 Giuseppe Amato Ecarteur chirurgical, surtout destiné à cholécystectomie
US5779629A (en) * 1997-10-02 1998-07-14 Hohlen; Robert D. Dual axis retractor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2313164A (en) * 1939-11-13 1943-03-09 Walfred A Nelson Self-retaining surgical retractor
US4130113A (en) * 1976-12-15 1978-12-19 Richards Manufacturing Co., Inc. Retractor
US4386602A (en) * 1977-05-17 1983-06-07 Sheldon Charles H Intracranial surgical operative apparatus
EP0455282A2 (fr) * 1990-04-03 1991-11-06 Giuseppe Amato Ecarteur chirurgical, surtout destiné à cholécystectomie
US5779629A (en) * 1997-10-02 1998-07-14 Hohlen; Robert D. Dual axis retractor

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7780594B2 (en) 2005-10-07 2010-08-24 Alphatec Spine, Inc. Retractor and methods of use
WO2007044673A1 (fr) * 2005-10-07 2007-04-19 Alphatec Spine, Inc. Rétracteur et procédés d'utilisation
EP1959844A2 (fr) * 2005-12-15 2008-08-27 Microdel Idea Center Ltd. Rétracteur radialement extensible amélioré pour chirurgie peu invasive
EP1959844A4 (fr) * 2005-12-15 2009-09-09 Microdel Idea Ct Ltd Rétracteur radialement extensible amélioré pour chirurgie peu invasive
US8152721B2 (en) 2005-12-15 2012-04-10 Microdel Idea Center Ltd. Radial expansible retractor for minimally invasive surgery
US8974380B2 (en) 2010-02-24 2015-03-10 Meni-Med Ltd Surgical retractor
US8409089B2 (en) 2010-02-24 2013-04-02 Meni-Med Ltd. Surgical retractor
US8454504B2 (en) 2010-02-24 2013-06-04 Meni-Med Ltd Surgical retractor
US8663102B2 (en) 2010-02-24 2014-03-04 Meni-Med Ltd. Surgical retractor
US9498200B2 (en) 2013-05-10 2016-11-22 Spine Wave, Inc. Method of retracting body tissue during surgery
US8727975B1 (en) 2013-05-10 2014-05-20 Spine Wave, Inc. Retractor for use in spinal surgery
US9545250B2 (en) 2013-05-10 2017-01-17 Spine Wave, Inc Kit of parts for use in retracting body tissue
US9693762B2 (en) 2014-03-03 2017-07-04 Alphatec Spine, Inc. Soft tissue retractor
US11134935B2 (en) 2014-03-03 2021-10-05 Alphatec Spine, Inc. Soft tissue retractor
US11826030B2 (en) 2014-03-03 2023-11-28 Alphatec Spine, Inc. Soft tissue retractor
US10667868B2 (en) 2015-12-31 2020-06-02 Stryker Corporation System and methods for performing surgery on a patient at a target site defined by a virtual object
US11103315B2 (en) 2015-12-31 2021-08-31 Stryker Corporation Systems and methods of merging localization and vision data for object avoidance
US11806089B2 (en) 2015-12-31 2023-11-07 Stryker Corporation Merging localization and vision data for robotic control
WO2022162327A1 (fr) 2021-02-01 2022-08-04 Clariance Ecarteur chirurgical
FR3119307A1 (fr) 2021-02-01 2022-08-05 Clariance Ecarteur chirurgical

Also Published As

Publication number Publication date
IL130835A0 (en) 2001-01-28
AU2000255620A1 (en) 2001-01-30

Similar Documents

Publication Publication Date Title
US9968414B2 (en) Apparatus and methods for performing brain surgery
US5782775A (en) Apparatus and method for localizing and removing tissue
US5967970A (en) System and method for balloon-assisted retraction tube
US5716325A (en) Arthroscopic retractors and method of using the same
JP4180382B2 (ja) 組織分離アセンブリー及び組織分離方法
EP1135066B1 (fr) Instrument permettant de disséquer et d'écarter des structures allongées
EP1327419B1 (fr) Dispositif pour suturer un orifice dans la membrane de tissus internes
US5197971A (en) Arthroscopic retractor and method of using the same
KR101716520B1 (ko) 수술 장비 및 방법
CA2542362C (fr) Dispositif d'acces chirurgical extensible
US20030225432A1 (en) Soft tissue retraction device for an endoscopic instrument
US20070213584A1 (en) Percutaneous access and visualization of the spine
US20030032975A1 (en) Arthroscopic retractors
WO2006050047A2 (fr) Dispositif et procedes pour mettre en oeuvre une intervention chirurgicale sur le cerveau
KR20080042814A (ko) 외과용 접근 장치, 시스템 및 사용 방법
JP2001513355A (ja) 廃棄可能な腹腔鏡式細切装置
JP2002501420A (ja) 再配置が可能な医療装置ハンドル
US20080039785A1 (en) Apparatus and method for creating working channel through tissue
WO2001003586A1 (fr) Ecarteur a aiguille extensible de facon concentrique
EP1993428A2 (fr) Acces par voie percutanee et visualisation de la colonne vertebrale
CN217408871U (zh) 一种脊柱肿瘤全脊椎切除术拉钩
US11298155B2 (en) Cutting guard with radiofrequency dissection
JP3122718B2 (ja) シーススライド式砕石バスケット
WO2021029955A1 (fr) Canule pour empêcher l'ensemencement tumoral

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP