WO2001001734A1 - Mikrowellenmodul eines mikrowellensystems für die thermische prozessierung - Google Patents

Mikrowellenmodul eines mikrowellensystems für die thermische prozessierung Download PDF

Info

Publication number
WO2001001734A1
WO2001001734A1 PCT/EP2000/005701 EP0005701W WO0101734A1 WO 2001001734 A1 WO2001001734 A1 WO 2001001734A1 EP 0005701 W EP0005701 W EP 0005701W WO 0101734 A1 WO0101734 A1 WO 0101734A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave
wave
rectangular
module according
projection area
Prior art date
Application number
PCT/EP2000/005701
Other languages
English (en)
French (fr)
Inventor
Lambert Feher
Original Assignee
Forschungszentrum Karlsruhe Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Karlsruhe Gmbh filed Critical Forschungszentrum Karlsruhe Gmbh
Priority to DE10081829T priority Critical patent/DE10081829D2/de
Publication of WO2001001734A1 publication Critical patent/WO2001001734A1/de

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/704Feed lines using microwave polarisers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/78Arrangements for continuous movement of material

Definitions

  • the invention relates to a microwave system for tempering starting materials in a process space to form stable composite structures.
  • DE 195 36 675 Cl describes a device and a method for producing large-area, dimensionally stable components made of fiber composite materials by injection of a resin mixture and subsequent accelerated curing by heating in an autoclave. The heating takes place by introducing warm air into the autoclave and thus over the structural surface. It is time-consuming and complex.
  • No. 4,314,036 describes a process for producing foam products from unsaturated polyester resin compositions.
  • the composition consists of an unsaturated monomer, a carrier, a trigger, a gas generator and a suitable surfactant.
  • a microwave To cure the foam composition, it is exposed to a microwave for a certain period of time.
  • the object of the invention is to process starting materials suitable for three-dimensional flat composite components in such a way that the properties of the composite component are achieved in an energy-saving manner and in a significantly shorter time than in conventional methods.
  • the microwave system consists of a necessary number of microwave modules lined up in order to continuously and evenly apply a required, powerful microwave to a rectangular surface onto which the body to be processed can be projected completely.
  • the microwave generated in at least one microwave source is coupled out via an associated rectangular decoupling device.
  • the wave emerges with a flat wavefront whose amplitude distribution is semi-sinusoidal.
  • An associated metal mirror reflects the wave and directs it onto the intended area of the base.
  • the mirror has corrugations for amplitude redistribution in the wave, it is a phase-corrected mirror.
  • the electromagnetic field conditions necessary for uniform thermal treatment of the shaped body in the process volume or in the partial process volume are thus achieved. There should be a uniform, or at least a sufficiently uniform amplitude distribution for the process.
  • the decoupling device In the waveguide between the microwave source and the decoupling device is a mode converter for linear polarization of the wave (claim 2). Furthermore, the decoupling device can be tapered (claim 3). The required radiation pattern is thus achieved.
  • a mode stirrer In order to improve the field conditions in the process volume, which are sufficiently uniform for the process, a mode stirrer has proven itself in the path of the respective wave after reflection. It is a metal wire arrangement that runs perpendicular to the path axis of the shaft and has a ladder-like shape (claim 4).
  • the microwave sources emit dm to mm waves (claim 5). Since the sources are powerful and have to be operated continuously because of the thermal processes, there are up to 10 kW per source, magnetrons or klystrons or even gyrotrons are used (claim 6).
  • the sources can be controlled in any way within their performance range, so that the thermalization of the molded body to be processed can be specifically regulated up and down.
  • the modules can be controlled separately, so that in a microwave system from several modules partial areas with different power can be applied.
  • the rectangular decoupling and loading is advantageous for a modular microwave system insofar as the arrangement of modules allows an uninterrupted coverage of an arbitrarily extended plane.
  • Another geometrical form of the coupling of the wave such as a circle, for example, and thus a corresponding loading of the process volume must of course be set up, but is not so suitable for the modular construction of a microwave system due to overlap or interruption areas in the process volume.
  • the advantage of this microwave system as a thermalization device lies in the fact that the uniform electromagnetic field conditions at the process site in the molded body laid out on the base and to be processed produce an immediate uniform heating inside. Heat is therefore only developed in the volume of the molded body and not in the entire interior of the module. This results in a much more efficient heating than in conventional devices in which the heat has to be introduced via the surface of the shaped body, as is the case with hot air heating, for example.
  • FIG 1 shows the structure of a module with two microwave sources
  • Figure 2 shows the microwave system from modules lined up.
  • the microwave system is used here for the thermal processing of long molded articles to form dimensionally stable composite structures. Since the system consists of at least one module, the explanations should initially be limited to one.
  • FIG. 1 shows the section through a module with two microwave sources 2 which emit in the 24 GHz range, that is to say a wavelength in empty space of approximately 1.2 cm. They are klystrons.
  • the microwave power of the module is designed for 16 kW microwave power, i. H. 8 kW per source. This achieves a heating rate of> 10 ° C / min.
  • the holding temperature in the molded body should be 120 ° C.
  • the dimensionally stable base 1 made of aluminum is set up at the bottom of the module.
  • the two klystrons 2 are located with their associated rectangular decoupling device 3 on the top left and right.
  • the respectively decoupled plane wavefront strikes the associated, metallic, wave-optical mirror 4, from where it is reflected and directed to the process volume 5.
  • the two mirrors 4 are attached to the bar-shaped area with a trapezoidal cross section in mirror image of one another in the process space 6. They are flat and have corrugations for amplitude redistribution on their reflective surface.
  • the geometry of the process space 6 is determined from the power required per projection area in the process volume 5 and the necessary extension of the base 1 or a partial area that can be processed with the module.
  • the outer contour of the module has in this implementation example the dimensions of 3 m 2 of floor space and less than 2 m in height.
  • the situation here is set up so that the amplitude distribution from both wave fronts together is constant or wavy to a tolerable extent over the width of the base, but below 10%.
  • the two wave fronts overlap so that the given uniform distribution across the width is achieved.
  • the amplitude distribution after the decoupling and before the reflection is indicated by the semi-sinusoidal course, also above the projection level of the process volume 5 by the two trapezoidal distributions after the reflection, which in this way overlap across the width.
  • the wave is exposed to the mode stirrer 8 after reflection.
  • This known aid consists in the module of a ladder-shaped, metallic wire band 8, which rotates over two rollers, so that at least the useful part 9 of the shaft must pass safely through the associated mode stirrer 8. For reasons of drive technology and shaft optics, the installation is immediately below the two mirrors 4.
  • the microwave system which is composed of seven modules, has a total length of around 21 m and is used to manufacture a long, flat, shell-like component, a kind of wall with openings, made of fiber composite materials. This can be easily done due to the rectangular projection surface to be loaded. judge. Even the field conditions at the intersection areas do not constitute an obstacle, since the arrangement is arranged one behind the other in such a way that the conditions at the contact zones correspond to those in the module itself with its overlap.
  • FIG. 2 The structure and linear expansion of the entire microwave system is indicated in FIG. 2.
  • the two klystrons per module are opposite each other in the middle, mirroring the longitudinal axis.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Abstract

Zur thermischen Prozessierung von Ausgangsmaterialien zu Kompositkörpern wird ein Mikrowellensystem verwendet, das modular aufgebaut ist. Das Modul besteht aus mindestens einer Mikrowellenquelle, aus der über eine rechteckige Auskoppeleinrichtung linear polarisierte Wellen ausgekoppelt werden. Die Welle wird an einem phasenkorrugierten Spiegel reflektiert und auf das Prozessvolumen gelenkt, wo sie aufgrund ihres rechteckigen Querschnitts mindestens ein rechteckiges Teilvolumen beaufschlagt. Die vor der Reflexion halbsinusförmige Amplitudenverteilung in der Welle wird bei der Reflexion durch die Korrugation auf dem Spiegel in eine gleichverteilte gewandelt, wodurch im Prozessvolumen gleichartige el.-mag. Feldverhältnisse bestehen, die eine gleichmässige Volumenerwärmung im Formkörper hervorrufen.

Description

Mikrowellenmodul eines Mikrowellensystems für die thermische Prozessierung
Die Erfindung betrifft ein Mikrowellensystem zur Temperierung von Ausgangsmaterialien in einem Prozeßraum zu formbeständigen Kompositstrukturen .
In der DE 195 36 675 Cl wird eine Vorrichtung und ein Verfahren beschrieben, um großflächige, formbeständige Bauelemente aus Faserverbundwerkstoffen durch Injektion eines Harzgemisches und anschließende beschleunigte Aushärtung durch Erwärmung in einem Autoklaven herzustellen. Die Erwärmung erfolgt durch Einleitung von Warmluft in den Autoklaven und damit über die Strukturoberfläche. Sie ist zeitraubend und aufwendig.
In der US 4,314,036 wird ein Verfahren angegeben, Schaumprodukte aus ungesättigten Polyesterharzkompositionen herzustellen. Die Komposition besteht aus einem ungesättigten Monomer, einem Träger, einem Auslöser, einem Gaserzeuger und einem passenden Surfaktanten. Zur Aushärtung der Schaumkomposition wird dieselbe für eine gewisse Zeitspanne einer Mikrowelle ausgesetzt .
Der Erfindung liegt die Aufgabe zugrunde, für dreidimensionale flächige Kompositbauelemente geeignete Ausgangsmaterialien so zu prozessieren, daß im Vergleich zu herkömmlichen Methoden die Eigenschaften des Kompositbauelements energiesparender und in wesentlich kürzerer Zeit erreicht werden.
Die Aufgabe wird durch ein Mikrowellsystem gemäß den Merkmalen des Anspruchs 1 gelöst.
Das Mikrowellensystem besteht aus einer notwendigen Anzahl aneinandergereihter Mikrowellenmodule, um eine Rechteckfläche, auf die sich der zu prozessierende Körper vollständig proji- zieren läßt, unterbrechungslos und gleichmäßig mit einer geforderten, leistungsstarken Mikrowelle zu beaufschlagen. Hierzu wird die in mindestens einer Mikrowellenquelle erzeugte Mikrowelle über eine zugehörige rechteckige Auskoppelvorrichtung ausgekoppelt. Die Welle tritt mit ebener Wellenfront aus, deren Amplitudenverteilung halbsinusförmig ist.
Ein zugehöriger Metallspiegel reflektiert die Welle und lenkt sie auf den vorgesehenen Bereich der Unterlage. Der Spiegel hat Korrugationen zur Amplitudenumverteilung in der Welle, er ist ein phasenkorrugierter Spiegel. Damit werden die zur gleichmäßig thermischen Behandlung des Formkörpers im Prozeßvolumen bzw. im Prozessteilvolumen notwendigen elektromagnetischen Feldzustände erreicht. Dort soll eine gleichmäßige, zumindest aber eine für den Prozeß hinreichend gleichmäßige Amplitudenverteilung bestehen.
Weitere technisch nützliche Maßnahmen in einem solchen Mikrowellenmodul sind in den Unteransprüchen 2 bis 6 aufgeführt.
Im Hohlleiter zwischen der Mikrowellenquelle und der Auskoppeleinrichtung ist ein Modenwandler zur linearen Polarisierung der Welle (Anspruch 2). Weiterhin kann die Auskoppeleinrichtung getapert sein (Anspruch 3) . Damit wird die verlangte Abstrahlcharakteristik erreicht.
Um die für den Prozeß hinreichend gleichmäßige Feldverhältnisse im Prozeßvolumen zu verbessern, bewährt sich ein Moden- rührer im Weg der jeweiligen Welle nach der Reflexion. Es ist eine senkrecht zur Wegachse der Welle umlaufende Drahtanordnung aus Metall, die leiterförmige Gestalt hat (Anspruch 4).
Die Mikrowellenquellen strahlen im dm bis mm-Wellen ab (Anspruch 5) . Da die Quellen leistungsstark sein und wegen der thermischen Prozesse kontinuierlich betrieben werden müssen, es sind bis zu 10 kW pro Quelle, werden Magnetrons oder Klystrons oder gar Gyrotrons verwendet (Anspruch 6) . Die Quellen sind innerhalb ihres Leistungsbereichs beliebig steuerbar, so daß die Thermalisierung des zu prozessierenden Formkörpers gezielt auf- und abgeregelt werden kann. Die Module sind getrennt ansteuerbar, damit können in einem Mikrowellensystem aus mehreren Modulen Teilbereiche mit unterschiedlicher Leistung beaufschlagt werden.
Die rechteckige Auskopplung und Beaufschlagung ist für ein mo- dulares Mikrowellensystem insoweit von Vorteil, als die Aneinanderreihung von Modulen eine unterbrechungslose Überdeckung einer beliebig ausgedehnten Ebene zuläßt. Eine andere geometrische Form der Auskopplung der Welle, wie ein Kreis beispielsweise, und damit einer entsprechenden Beaufschlagung des Prozeßvolumens ist selbstverständlich einzurichten, ist aber für den modularen Aufbau eines Mikrowellensystems aufgrund von Uberschneidungs- oder Unterbrechungsbereichen im Prozeßvolumen nicht so geeignet.
Der Vorteil dieses Mikrowellensystems als Thermalisierungsein- richtung liegt darin, daß durch die gleichartigen elektromagnetischen Feldverhältnisse am Prozeßort im auf der Unterlage ausgelegten, zu prozessierenden Formkörper eine sofortige gleichmäßige Erwärmung im Innern erzeugt wird. Es wird also nur im Volumen des Formkörpers Wärme entwickelt und nicht im gesamten Innenraum des Moduls. Dadurch wird eine wesentlich effizientere Erwärmung als bei herkömmlichen Einrichtungen erreicht, bei denen die Wärme über die Formkörperoberfläche eingebracht werden muß, wie das bei Heißlufterwärmung beispielsweise der Fall ist.
Ein Ausführungsbeispiel des Mikrowellensystems wird im folgenden Anhand der Zeichnung mit den Figuren 1 und 2 näher erläutert. Es zeigen:
Figur 1 den Aufbau eines Moduls mit zwei Mikrowellenquellen, Figur 2 das Mikrowellensystem aus aneinandergereihten Modulen. Das Mikrowellensystem wird hier zur thermischen Prozessierung langer Formkörper zu formbeständigen Kompositstrukturen verwendet. Da das System aus mindestens einem Modul besteht, sollen die Erläuterungen zunächst auf einen solchen beschränkt bleiben .
Figur 1 zeigt den Schnitt durch ein Modul mit zwei Mikrowellenquellen 2, die im 24 GHz- Bereich abstrahlen, das bedeutet eine Wellenlänge im leeren Raum von etwa 1,2 cm. Es sind Klystrons. Die Mikrowellenleistung des Moduls ist für 16 kW Mikrowellenleistung ausgelegt, d. h. 8 kW pro Quelle. Damit wird eine Heizrate von > 10°C/min erreicht. Die Haltetemperatur im Formkörper soll bei 120°C liegen.
Unten im Modul ist die formstabile Unterlage 1 aus Aluminium aufgestellt. Die beiden Klystrons 2 befinden sich mit ihrer zugehörigen rechteckigen Auskoppeleinrichtung 3 links und rechts oben. Die jeweils ausgekoppelte plane Wellenfront trifft auf den zugehörigen, metallischen, wellenoptischen Spiegel 4, von wo dieselbe reflektiert und auf das Prozeßvolumen 5 gelenkt wird. Die beiden Spiegel 4 sind an dem balken- förmigen Bereich mit trapezförmigem Querschnitt spiegelbildlich zueinander in dem Prozeßraum 6 angebracht. Sie sind eben und haben auf ihrer Reflexionsfläche Korrugationen zur Amplitudenumverteilung. Dies, weil, wie oben erläutert, eine ebene Wellenfront mit sinusförmiger Amplitudenverteilung ausgekoppelt wird, im Prozeßvolumen aber eine für den thermischen Prozeß hinreichende Gleichverteilung der Amplitude bestehen muß, damit in dem Volumen des aus den Ausgangsmaterialien aufgebauten Formkörpers 7 auf der Unterlage 1 der Heizeintrag durch die elektromagnetische Feldverteilung unmittelbar und überall hinreichend gleichmäßig hervorgerufen wird.
Die Geometrie des Prozeßraums 6 bestimmt sich aus der pro Pro- jektionsflache im Prozeßvolumen 5 benötigten Leistung und der notwendigen Ausdehnung der Unterlage 1 bzw. einer mit dem Modul prozessierbaren Teilfläche. Die Außenkontur des Moduls hat in diesem Durchführungsbeispiel die Dimension von 3 m2 Grundfläche und unter 2 m Höhe.
Die geforderte Situation der Feldverteilung im Prozeßvolumen 5, hier für den Prozeß hinreichende Gleichverteilung, bestimmt die Gestalt der Korrugation im jeweiligen Spiegel 4 und den Abstand der beiden spiegelbildlich zueinander angeordneten Spiegel von der Unterlage. Die Situation ist hier so eingerichtet, daß die Amplitudenverteilung aus beiden Wellenfronten zusammen über die Breite der Unterlage konstant bzw. wellig in tolerablem Maß, jedoch unter 10% ist. In der Mitte überlagern sich beide Wellenfronten so, daß resultierend die vorgegebene Gleichverteilung über die Breite zustande kommt. Die Amplitudenverteilung ist nach der Auskopplung und vor der, Reflexion durch den halbsinusförmigen Verlauf angedeutet, ebenso über der Projektionsebene des Prozeßvolumens 5 durch die beiden trapezförmigen Verteilungen nach der Reflexion, die sich zu einer dieser Art über die Breite überlagern.
Um die geforderte Gleichverteilung des elektro-magnetischen Feldes im Prozeßvolumen noch zu verbessern, wird die Welle nach der Reflexion dem Modenrührer 8 ausgesetzt. Dieses bekannte Hilfsmittel besteht in dem Modul aus einem leiterför- migen, metallischen Drahtband 8, das über zwei Rollen umläuft, so daß zumindest der Nutzteil 9 der Welle sicher durch den zugehörigen Modenrührer 8 hindurch muß. Aus antriebstechnischen und wellenoptischen Gründen bietet sich der Einbau unmittelbar unterhalb der beiden Spiegel 4 an.
Mit diesem symmetrisch aufgebauten Modul wird eine vorgegebene rechteckige Projektionsfläche mit der amplitudengleichverteil- ten, ebenen Wellenfront beaufschlagt. Das aus sieben Modulen zusammengesetzte Mikrowellensystem hat eine Gesamtlänge von etwa 21 m und wird zur Herstellung eines langen, flachen, schalenartigen Bauteils, einer Art Wand mit Durchbrüchen, aus Faserverbundwerkstoffen eingesetzt. Das läßt sich aufgrund der zu beaufschlagenden rechteckigen Projektionsfläche bequem ein- richten. Selbst die Feldverhältnisse an den Schnittbereichen stellen kein Hinternis dar, da die Anordnung hintereinander so aufgestellt wird, daß an den Berührzonen die Verhältnisse entsprechend der im Modul mit seiner Überschneidung selber bestehen.
Das gesamte Mikrowellensystem ist in seinem Aufbau und seiner linearen Ausdehnung in Figur 2 angedeutet. Die beiden Klystrons je Modul liegen in der Mitte einander spiegelbildlich zur Längsachse gegenüber.
Bezugs zeichenliste
1 Unterlage
2 Mikrowellenquelle
3 Auskoppeleinrichtung
4 Spiegel
5 Prozeßvolumen
6 Prozeßraum
7 Formkörper, Kompositstruktur
8 Modenrührer
9 Nutzteil

Claims

Patentansprüche :
1. Mikrowellenmodul eines Mikrowellensystems für die thermische Prozessierung in einem Prozessraum von auf einer starren Unterlage ausgelegten Ausgangsmaterialien zu formbeständigen, dreidimensionalen Kompositstrukturen, bestehend aus : einer zur unterbrechungslosen, gleichmäßigen Beaufschlagung mit Mikrowellen eines auf der Unterlage ausgelegten großflächigen Formkörpers notwendigen Anzahl aneinander gereihten Module, wobei ein Modul aus:
- mindestens einer Mikrowellenquelle mit rechteckiger Auskoppeleinrichtung, und
- einem zugehörigen wellenoptischen Spiegel, an dem die ankommende plane Wellenfront reflektiert und auf einen rechteckigen Projektionsbereich oder einen rechteckigen Teilprojektionsbereich davon gelenkt wird, und
- Korrugationen in dem Spiegel, derart dass die ankommende plane Wellenfront bei der Reflexion in ihrer Amplitudenverteilung so umverteilt wird, daß sich im zum rechteckigen Projektionsbereich oder dem Teilprojektionsbereich gehörigen Prozessvolumenteil auf der Unterlage eine hinreichend gleichmäßige Amplitudenverteilung in der Welle ausbildet, besteht .
2. Mikrowellenmodul nach Anspruch 1, dadurch gekennzeichnet, dass zwischen der Mikrowellenquelle und ihrer Auskopplung ein Modenwandler ist, der die erzeugte Welle linear polarisiert.
3. Mikrowellenmodul nach Anspruch 2, dadurch gekennzeichnet, dass die Auskopplungseinrichtung getapert ist, um eine vorgegebene Abstrahlungscharakteristik zu erhalten.
4. Mikrowellenmodul nach Anspruch 2 oder3, dadurch gekennzeichnet, dass sich im Wellengang der auf die Unterlagenfläche einfallenden Welle oder der Wellen eine bandleiterförmige Drahtanordnung befindet, die über zwei außerhalb des Stahlengangs liegende Rollen umläuft und dabei senkrecht von der Strahlachse oder den beiden Strahlachsen sowie der gesamten Strahlpyramide durchdrungen wird, so dass im Betrieb eine Modenrührung im Prozessraum stattfindet.
5. Mikrowellenmodul nach Anspruch 4, dadurch gekennzeichnet, dass die Mikrowellenquellen im Bereich von dm- bis mm-Wellen abstrahlen.
6. Mikrowellenmodul nach Anspruch 5, dadurch gekennzeichnet, dass als Mikrowellenquellen entsprechend der Leistungsforderung Magnetrons oder Klystrons oder Gyrotrons verwendet werden
PCT/EP2000/005701 1999-06-24 2000-06-21 Mikrowellenmodul eines mikrowellensystems für die thermische prozessierung WO2001001734A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE10081829T DE10081829D2 (de) 1999-06-24 2000-06-21 Mikrowellenmodul eines Mikrowellensystems für die thermische Prozessierung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19929107 1999-06-24
DE19929107.1 1999-06-24

Publications (1)

Publication Number Publication Date
WO2001001734A1 true WO2001001734A1 (de) 2001-01-04

Family

ID=7912492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/005701 WO2001001734A1 (de) 1999-06-24 2000-06-21 Mikrowellenmodul eines mikrowellensystems für die thermische prozessierung

Country Status (2)

Country Link
DE (1) DE10081829D2 (de)
WO (1) WO2001001734A1 (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1004277A (fr) * 1947-03-28 1952-03-27 Perfectionnements apportés aux traitements thermiques ou autres de matières par une énergie électro-magnétique rayonnante, notamment avec des effets de résonance
DE4032496A1 (de) * 1989-10-12 1991-04-25 Wieneke Franz Einrichtung zur applikation von mikrowellen hoher intensitaet
US5166484A (en) * 1990-10-05 1992-11-24 Astex/Gerling Laboratories, Inc. Microwave system and method for curing rubber
DE4313806A1 (de) * 1993-04-27 1994-11-03 Rene Salina Vorrichtung zum Erhitzen von Materialien in einer mit Mikrowellen bestrahlbaren Heizkammer und Verfahren zum Herstellen von keramischem Gut, bei dem das Rohgut mittels Mikrowellen getrocknet wird
US5507927A (en) * 1989-09-07 1996-04-16 Emery Microwave Management Inc. Method and apparatus for the controlled reduction of organic material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1004277A (fr) * 1947-03-28 1952-03-27 Perfectionnements apportés aux traitements thermiques ou autres de matières par une énergie électro-magnétique rayonnante, notamment avec des effets de résonance
US5507927A (en) * 1989-09-07 1996-04-16 Emery Microwave Management Inc. Method and apparatus for the controlled reduction of organic material
DE4032496A1 (de) * 1989-10-12 1991-04-25 Wieneke Franz Einrichtung zur applikation von mikrowellen hoher intensitaet
US5166484A (en) * 1990-10-05 1992-11-24 Astex/Gerling Laboratories, Inc. Microwave system and method for curing rubber
DE4313806A1 (de) * 1993-04-27 1994-11-03 Rene Salina Vorrichtung zum Erhitzen von Materialien in einer mit Mikrowellen bestrahlbaren Heizkammer und Verfahren zum Herstellen von keramischem Gut, bei dem das Rohgut mittels Mikrowellen getrocknet wird

Also Published As

Publication number Publication date
DE10081829D2 (de) 2001-12-13

Similar Documents

Publication Publication Date Title
EP1639865B1 (de) Mikrowellenresonator, eine aus einem solchen mikrowellenresonator modular aufgebaute prozessstrasse, ein verfahren zum betreiben und nach diesem verfahren thermisch prozessierte gegenstände/ werkstücke mittels mikrowelle
DE10157601B4 (de) Vorrichtung zur Erwärmung von Pressgut bei der Herstellung von Werkstoffplatten
EP2247418B1 (de) Verfahren und vorrichtung zur vorwärmung einer pressgutmatte im zuge der herstellung von holzwerkstoffplatten
DE69729335T2 (de) Verkleben unter Verwendung von Mikrowellenenergie verschiedener Frequenzen
EP2021161A2 (de) Mikrowellen-erwärmungsvorrichtung für kunststoffrohlinge und verfahren zum erwärmen von kunststoffrohlingen mit mikrowellen
DE102016110808A1 (de) Verfahren zum kontinuierlichen Erwärmen einer Materialbahn und Durchlaufofen
DE4313806A1 (de) Vorrichtung zum Erhitzen von Materialien in einer mit Mikrowellen bestrahlbaren Heizkammer und Verfahren zum Herstellen von keramischem Gut, bei dem das Rohgut mittels Mikrowellen getrocknet wird
EP3323273B1 (de) Anordnung zur behandlung von materialien mit mikrowellen
DE19929666A1 (de) Verfahren und Mikrowellensystem zur thermischen Prozessierung von aus Ausgangsmaterialien zusammengesetzten Formkörpern zu formbeständigen Kompositen
WO2001001734A1 (de) Mikrowellenmodul eines mikrowellensystems für die thermische prozessierung
DE60129461T2 (de) Vorrichtung und entsprechendes verfahren zur schnellvernetzung von sol-gel-beschichtungen
WO2020002497A1 (de) Vorrichtung und verfahren zum vernetzen mit geregelten mikrowellen
EP3310130A2 (de) Durchlaufofen zur kontinuierlichen erwärmung einer pressgutmatte
WO2021233597A1 (de) Mikrowellenbehandlungseinrichtung
DE102019210265B4 (de) Verfahren und Vorrichtung zur Optimierung der Gleichmäßigkeit der Wärmeverteilung dielektrischer Objekte bei Erwärmung mittels Hochfrequenzstrahlung
DE10137594B4 (de) Dichtverbindung mit höhenprofilierter Dichtfläche und Verfahren zu ihrer Herstellung
EP3685424B1 (de) Vorrichtung zur behandlung eines produkts mit mikrowellen
WO2018154094A1 (de) Verfahren zum betreiben eines durchlaufofens und durchlaufofen
WO2003056262A1 (de) Energietransmitter als bestandteil einer beschichtungs- und/oder trockenanlage, insbesondere für eine lackbeschichtung
DE102018105385B4 (de) Durchlaufofen und Anlage zur Herstellung von Holzwerkstoffplatten
DE202017104748U1 (de) Vorwärmvorrichtung für eine kontinuierlich arbeitende Presse
WO2019030310A1 (de) Vorwärmvorrichtung für eine kontinuierlich arbeitende presse und verfahren zur vorwärmung einer pressgutmatte
DE102018105390B4 (de) Durchlaufofen und Anlage zur Herstellung von Holzwerkstoffplatten
DE10329412B4 (de) Hochmodiger Mikrowellenresonator zur thermischen Prozessierung
DD151050A2 (de) Verfahren und einrichtung zur herstellung von gegenstaenden aus faserverstaerkten werkstoffen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REF Corresponds to

Ref document number: 10081829

Country of ref document: DE

Date of ref document: 20011213

WWE Wipo information: entry into national phase

Ref document number: 10081829

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP