WO2001001024A1 - Check valve structure and micro-pump using it - Google Patents

Check valve structure and micro-pump using it Download PDF

Info

Publication number
WO2001001024A1
WO2001001024A1 PCT/JP2000/004113 JP0004113W WO0101024A1 WO 2001001024 A1 WO2001001024 A1 WO 2001001024A1 JP 0004113 W JP0004113 W JP 0004113W WO 0101024 A1 WO0101024 A1 WO 0101024A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
hole
check valve
contact
receiving
Prior art date
Application number
PCT/JP2000/004113
Other languages
French (fr)
Japanese (ja)
Inventor
Noriyasu Shimizu
Nobuhisa Hagiwara
Original Assignee
Namiki Seimitsu Houseki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP11177543A external-priority patent/JP2001012356A/en
Priority claimed from JP25514499A external-priority patent/JP2001082619A/en
Application filed by Namiki Seimitsu Houseki Kabushiki Kaisha filed Critical Namiki Seimitsu Houseki Kabushiki Kaisha
Publication of WO2001001024A1 publication Critical patent/WO2001001024A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/14Check valves with flexible valve members
    • F16K15/144Check valves with flexible valve members the closure elements being fixed along all or a part of their periphery

Definitions

  • the present invention relates to a small-sized microfluid supply device for use in, for example, medical equipment, chemical analysis equipment, and the like. Particularly, the present invention relates to a high-precision delivery device even when liquid Z gas and both fluids are used alternately.
  • the present invention relates to a microport pump structure having a check valve mechanism for controlling the supply of pressure. This is a micro pump with a check valve mechanism that stably controls the supply of the feeder.Even if the check valve part is deteriorated or malfunctions, remove it immediately and repair it regularly.
  • the present invention relates to a valve mechanism capable of easily performing maintenance and its assembly. Background art
  • a valve mechanism is a lead valve type nozzleless type, and a driving system using a small motor is disclosed in A small pump having a diaphragm-type mechanism, such as Japanese Patent No. 62-291484, is generally known.
  • This type of micro-mouth pump is used as a microfluid supply device for medical equipment and chemical analysis equipment, and is used for the quantitative injection of chemicals and for transporting fluids such as reaction mixture gas. The development of a small and versatile microphone port pump that can be controlled is underway.
  • FIG. 7 is an example of a side sectional view of a conventional diaphragm-type micro pump developed by the present applicant.
  • a micropump 100 shown in a side cross section drives a small motor 110 such as a coreless motor as a driving unit side and a driving shaft rotation of a small motor 110 as a pump unit side. It has a force mechanism 120 that converts the reciprocating biston motion and a crankshaft 121 that transmits the reciprocating motion to the diaphragm 132. It comprises a pump head 130 having two suction and discharge valve mechanisms (check valves 150) at two locations.
  • the pump head section 130 has a disk-shaped diaphragm 132 made of an elastic sheet material such as synthetic rubber that divides a chamber space 133 provided at the lower part of the valve case 131.
  • An intermediate storage portion 137 is formed to temporarily store fluid therein, and a central portion of the diaphragm 132 is provided with a crank shaft 12 1 (FIG. 7) which reciprocates vertically. It is fixed to the tip, elastically deformed and can move with amplitude, and its outer circumference is held by the valve case 131 at the outermost circumference of the chamber 133. .
  • valve structure following the suction hole 133a and the discharge hole 133b penetrating the upper two places of the interior of the chamber 133 has a valve sheet with a different hole shape made of elastic rubber via an O-ring 136.
  • 15 1 and a valve receiving sheet 152 are configured as an on-off valve, and a circle in the valve case 131 is arranged so that the O-ring 136 is located downstream of the suction side and the discharge side of the valve mechanism in the flow direction. It has a structure in which it is stacked and filled in the cylindrical hole portion, and is further pressed and fixed by a pushing member 134.
  • the pushing member 134 includes a suction passage 135a connecting the suction port 140a of the suction side nozzle 140 (the broken line in FIG. 8) and the suction hole 133a, and a discharge side nozzle 140 (cross section in FIG. 7).
  • a discharge path 135b connecting the discharge port 140b and the discharge hole 133b is partially provided.
  • the pump head section 130 moves the center plane portion of the diaphragm 132 up and down by the crankshaft 121 to increase or decrease the volume of the intermediate storage section 137, and the pressure in the chamber 133 generated at that time.
  • This is a pump that sends a fluid in one direction by repeating a series of operations from the suction port 140a to the discharge port 140b using the fluctuation.
  • the check valve 150 is a flat plate such as a rubber sheet.
  • a valve sheet 151 made of an elastic elastic sheet, and a valve receiving sheet 152 made of rubber having the same diameter and stacked on an opposing surface on the upstream side in the flow direction of the valve sheet 151 are formed.
  • This valve sheet 151 has a plurality of openings 151a at the concentric peripheral edge, and the valve receiving sheet 152 has a small-diameter hole 152a at the center, and has two sheets.
  • the openings 151a and the holes 152a on both sides of the sheet are arranged so as not to communicate with each other.
  • the diaphragm 132 is displaced downward, that is, when the volume of the chamber is increased, the inside of the chamber-vessel in a closed state is naturally reduced by the check valve 150 (open / close valve), so that the suction side ( The valve sheet 151 on the (in side) is pushed by the fluid sent from the external suction port 140a through the suction passage 135a, and the valve sheet 151 from the central hole 152a of the valve receiving sheet 152 is formed.
  • the valve sheet 151 elastically deforms in an arc shape. That is, the first chamber 133 deflects inward and expands.
  • a gap is formed on the facing surface between the valve sheet 151 and the valve receiving sheet 152. Since the hole 152a and the opening 151a are connected through the gap, the fluid flows from the suction port 140a to the suction path 135a. Then, the fluid flows into the intermediate storage portion 137 in the chamber 133 from the suction hole 133a through the check valve 150, and the chamber 133 closed by the diaphragm 132 is filled with fluid.
  • the structure of the check valve 150 of the sheet-like elastic rubber shown in FIGS.
  • the check valve 150 of the sheet-like elastic rubber FIGS.
  • the liquid is temporarily stopped after switching, the gas is switched and the gas is intermittently flowed thereafter, and the liquid is paused for a certain period of time before the liquid dries, the liquid component remaining in the flow path or inside the pump is checked by the check valve.
  • the air between the valve sheet 151 and the valve receiving sheet 152 is naturally dried, and the opposite faces of the flat valve sheet made of elastic rubber may be physically stuck to each other.
  • the check valve 150 has a structural sealing effect by the surface contact between the valve sheet 151 and the valve receiver 152 sheet, so that the liquid dries on the opposing surfaces of the two valve sheets.
  • the liquid component is crystallized and precipitated, sufficient sealing pressure cannot be obtained as a check valve, and therefore the on-off valve or check valve effect is sufficient. May not be obtained. In such a case, there is a possibility that the fluid may flow backward from the intermediate storage unit 137 during the stop, and may flow out.
  • the responsiveness of the pump 100 may decrease.
  • valve head 200 is mechanically screwed and fixed to the valve case 131 side via the gasket 220 member.
  • the amount of pushing of the pushing member 134 that is, the allowance for tightening the outer peripheral portion (mainly the ring) of the on-off valve (in short, the clamping pressure applied to the O-ring) is not constant, and the screw tightening torque is subtle. Adjustment is required. Also, even when making adjustments, special jigs and measuring instruments were required, and it was not possible to adjust the squeeze allowance (clamp pressure) to a fixed amount and achieve a suitable arrangement. Including these problems, maintenance of pump on-off valves has not been easy in the past.
  • the present invention provides a non-return structure that does not cause a malfunction in the on-off valve portion even when both the gas Z liquid flows alternately, has excellent functionality, is easy to maintain, and can obtain a sufficient non-return effect.
  • the purpose is to provide. Also, by using this non-return structure, it is possible to provide both a liquid and a gas satisfactorily and to provide a highly accurate, highly responsive, and trouble-free reliable micropump. Also aim.
  • the present invention is based on the harsh conditions of alternating gas / liquid flow. Even in the event of a malfunction of the on-off valve that occurs, it is excellent in the function of disassembly work, easy to clean (maintenance) of the on-off valve, and adjusts the clamping pressure for the o-ring of the opening and closing valve during assembly
  • An object of the present invention is to provide a check valve holding structure that requires no work and that can obtain a sufficient check effect.
  • this check valve holding structure it is possible to transport both liquid Z gas satisfactorily without trouble even if the pump is disassembled and cleaned each time it is used for maintenance of the pump. Maintenance inspection of the on-off valve part of the pump becomes difficult.
  • Another object of the present invention is to always provide a reliable microphone-free pump that can reduce repair and maintenance costs and is free from failures. Disclosure of the invention
  • a receiving member e.g., flange sheet 20 having a hole (20a, 20b) at its center located at the inlet side of the fluid flow direction, and a receiving member located at the outlet side of the fluid flow direction;
  • a valve molded body (for example, a check valve 10) having an opening (12) through which a fluid passes at a peripheral position on a concentric circle is faced with a combination in which the arrangement of the holes (20a, 20b) and the opening (12) does not overlap.
  • the check valve structure for preventing the fluid from flowing backward by bringing the valve molded body into close contact with the receiving member,
  • the valve molded body is provided with a convex portion (chuck portion 11) at the center of the center of the one-sided circle facing the receiving member, and a ridgeline at the entrance of the hole (20a, 20b) of the receiving member.
  • a flat surface is formed on the receiving member that has a contact portion that makes linear contact with the entire circumference and is located on the outer circumference of a thin portion (14) that extends in the circumferential direction from the convex portion (chuck portion 11) at the center of the valve molded body. It also has a ring-shaped contact portion (for example, peripheral portion 13) to be in contact.
  • the dome-shaped convex portion (chuck portion 11) -shaped contact portion A shown in FIGS. 1 and 2 passes through the holes (20 a, 20 b) of the receiving member 20. Receives pressure upstream of the flow direction. Therefore, when the fluid is sent with the pressure on the upstream side higher than that on the downstream side, the protrusion (chuck) is required.
  • the portion 11) is pushed toward the downstream side, the contact portion A is separated, and the holes (20 a, 20 b) of the receiving member 20 are opened, so that fluid flows from the upstream side to the downstream side, that is, from the suction direction.
  • the operation flows in the discharge direction, and this operation is sequentially repeated by the vertical movement of the diaphragm of the drive unit.
  • the contact portion A is the circumference of the entrance portion of the hole. No backflow of fluid occurs because it is pressed all around the ridgeline.
  • the dome-shaped convex portion and the receiving member hole are combined to form a check valve mechanism, and are circumferentially in line contact with each other at a contact portion A, and are opposed to each other in other portions.
  • the surfaces are in close contact with each other at the ring-shaped flat portion (for example, the peripheral portion 13) of the receiving member and the outer peripheral portion.
  • the movable portion (chuck portion 11, thin portion 14) of the valve molded body (chuck valve 10) and the receiving member (flange sheet 20) are prevented from contacting each other on the opposing surfaces. . Therefore, even if the operation is temporarily stopped after the liquid and the gas are alternately flowed as described above, the valve molded body side and the receiving member side do not stick to each other due to a problem of liquid remaining, so that restart is immediately performed. Yes, it does not cause malfunction. Therefore, according to the present check valve structure, not only gas but also liquid can flow alternately.
  • the contact portion and the peripheral portion of the hole are substantially in line contact rather than in conventional surface contact, the contact pressure per unit area, that is, the sealing pressure of the check valve, is lower than in the past. And therefore the check valve function is improved and there is no backflow of fluid.
  • check valve structure may be as follows.
  • the contact portion is formed upright from the conventional elastic valve sheet body to form a three-dimensional shape
  • the central portion has a dome-shaped, conical-shaped convex shape.
  • a plug-shaped member that is arc-shaped or partially tapered toward the distal end side and is in line contact with the hole edge portion on the receiving member side at an angle on the same peripheral surface, and that fits into the hole of the receiving member.
  • the check part 11 in Fig. 3 It also includes a conical shape and a cork stopper shape in Fig. 4.
  • the shape of the check portion (11) is, for example, a hemisphere or a cone when the hole has a circular cross-section in the radial direction, and a parabolic shape in the side cross-section. When these tops are cut horizontally, all of the same shape as the hole are included in the circular shape.
  • the shape is not limited to only these shapes, and the cross-sectional shape of the hole (for example, an ellipse) is included. It can be arbitrarily deformed together.
  • the contact portion and the inner wall of the hole have a line contact at an arbitrary position. Can be.
  • the opposite surface of the contact portion having the shape of the convex portion (checker portion 11), that is, the rear surface opposite to the surface of the checker portion in contact with the hole of the receiving member has a fifth surface.
  • a valve body (check valve 10) that is hollowed out in a substantially hemispherical shape is combined.
  • the double-sided dome-shaped check portion 11 as the movable portion becomes lighter and its elastic property is improved, so that the contact portion is in close contact with the hole and is easy to separate from the hole, and therefore, a small pressure change. Responsiveness is good, and a check valve structure as a smaller and more precise micropump is possible.
  • check valve structures have a raised portion (21) which is formed by raising the entire periphery of one side of the hole of the receiving member (for example, the flange sheet 20), so that the end portion of the hole is formed.
  • the contact portion of the valve molded body (for example, the check valve 10) can be brought into linear contact.
  • the contact portion comes into line contact with the peripheral edge portion (section) of the hole by the raised portion.
  • the shape of the contact portion may be the structure described in claim 2 or claim 3.
  • a valve receiving sheet which is located at the inlet side of the fluid flow direction and has a hole through which the fluid flows, and an opening located at the outlet side of the fluid flow direction and through which the fluid passes are concentrically arranged.
  • a valve sheet having a peripheral position of These openings face each other in a non-overlapping combination, and these are placed inside a cylindrical hole of a valve case having a suction / discharge hole for transmitting the fluid at the bottom, and one at the outlet side in the flow direction.
  • a part of an outer peripheral surface of a cylindrical pushing member for bringing the valve sheet into close contact with the valve receiving sheet, and a part of an inner wall of a cylindrical hole on a valve case side into which the pushing member is inserted, are attached to each other.
  • a part of the stopper that serves as a receiving step is provided so that the pushing depth of the tip of the small diameter portion of the pushing member into the inside of the cylinder of the valve case is always constant.
  • the tip side of the bushing member 134 with respect to the inner bottom position E of the valve case.
  • the pressing depth of the bolt is always constant regardless of the screw tightening torque of the bolt 202 for fixing the valve head 200.
  • the ring 136 receives the clamping pressure from the pushing member 134 side with a certain amount of squeezing allowance, and forms a packing while suitably elastically deforming.
  • the pump head 200 and the gasket 220 can be relatively easily removed by loosening the bolt 202 and disassembling and removing it. Simplifies disassembly and assembly of the internal on-off valve part, improving maintenance work efficiency and making it easy to repair the on-off valve part without special technical skills. Can be.
  • the valve sheet 151, the valve receiving sheet 152, and the O-ring 136 are laminated in three stages in the suction and discharge directions as shown in FIG.
  • care must be taken to ensure that the suction and discharge sides are aligned.
  • the check valve structure may have the following structure.
  • As the stopper portion D at least a portion of the valve case cylindrical hole at least at a bottom portion has a small diameter.
  • the steps may be provided on the entire circumference or may be provided partially.
  • step portion Another effective means to function as a step portion is that the combined step portion is formed into a tapered surface with an inclination at the height position of the step portion, and the tapered surface is brought into contact with the tapered surface. It is also conceivable to use a method that works as a single step on the collar.
  • the present invention is a micro pump having a check valve structure of the above-described check mechanism.
  • FIG. 1 (A) is a schematic top view of a check valve 10 used for a check valve 1 according to an embodiment of the present invention
  • FIG. 1 (B) is a schematic side sectional view of the check valve 10.
  • FIG. 2 is a schematic side sectional view of the check valve 1.
  • FIG. 3 is a schematic side sectional view of the check valve 1 for explaining a modification of the check valve 10.
  • FIG. 4 is a schematic side sectional view of the check valve 1 for explaining another modification of the check valve 10.
  • FIG. 5 is a schematic (A) top view and a schematic (B) side sectional view illustrating another modification of the check valve 10.
  • FIG. 6 is a schematic (A) top view and a schematic (B) side sectional view illustrating the configuration of the flange sheet 20 of the present invention.
  • FIG. 7 is a schematic diagram illustrating the configuration of a micropump 100 as a conventional example.
  • Fig. 8 shows the pump head 130, a component of the micropump 100. It is a schematic diagram explaining the composition of.
  • FIG. 9 is a schematic diagram illustrating the configuration of a pump head section 130 of a micropump incorporating the check valve 1 of the present invention.
  • FIG. 10 is a schematic (A) top view and a schematic (B) side sectional view of a valve sheet 151 constituting a check valve 150 of a conventional example.
  • FIG. 11 is a schematic (A) top view and a schematic (B) side sectional view of a valve receiving sheet 152 constituting a check valve 150 of a conventional example.
  • FIG. 12 is a schematic side sectional view showing a check valve holding structure according to an embodiment of the present invention.
  • FIG. 13 is a schematic front sectional view showing a check valve holding structure according to an embodiment of the present invention.
  • FIG. 14 is a schematic partial cross-sectional view showing the entire configuration of a pump using a check valve holding structure according to an embodiment of the present invention.
  • FIG. 15 is a schematic side sectional view for explaining the configuration of the stopper portion of the valve case of the present invention.
  • FIG. 16 is a front external view and a schematic side sectional view illustrating the configuration of the stopper portion of the pushing member of the present invention.
  • Figure 17 is a c Fig. 18 is a side sectional schematic view illustrating the height when merging the valve case and the pushing member that is a component of the check valve holding structure of the present invention, the holding conventional check valve It is a front section schematic diagram showing a structure.
  • the check valve 1 has a check valve 10 on a flange sheet 20 (elastic rubber receiving member) serving as a valve receiving material.
  • the check valve 10 closes the holes (20a, 20b) of the flange sheet 20 so as to be pressed down without receiving pressure from the fluid.
  • the check valve 10 is made of an elastic material such as rubber (in the case of the embodiment, a Viton rubber having excellent chemical resistance) is used as in the case of the conventional valve sheet 151, and is a schematic top view of FIG. 1 (A). As shown in the schematic side cross-sectional view of FIG. 1 (B), a substantially hemispherical plug-shaped portion (checker portion 11) is provided at the center of the disk shape, and the plug-shaped portion (checker portion 11) is further provided. ) Has three openings 12 at 120 ° distribution to allow fluid to pass around.
  • a thin portion 14 continuing from the check portion 11 is recessed with a step at the close contact portion side of the peripheral portion 13, and is designed to have a gap with the flange sheet 20. .
  • the check portion 11 comes into line contact with the peripheral portion of the hole (20a, 20b).
  • the check valve 150 is provided at the position of the pump section 130 of the microphone port pump mechanism section 100, for example.
  • the valve seat 151 (elastic sheet) and the valve receiving sheet 152 that constitute the O-ring 136 and the check valve 150 are formed in the cylindrical holes provided in the metal valve case 131. Are inserted from the downstream side in the flow direction so as to be arranged in the above order, and a metal pushing member 134 is inserted and inserted into the hole.
  • a gasket 220 and a metal valve head 200 are superimposed above the pushing member 134, as in the conventional example, and the valve head 200 is further bolted by a bolt 202. It is fixed to the case 131 side.
  • the two cylindrical deep holes of the valve case 131 have a large diameter H on the opening side and a small diameter H on the circular side. K is connected, and the bottom of the deep hole passes through the chamber 133. Twist holes 133a and 133b are formed.
  • the two pushing members 134 combined with the push member 134 form an inlet passage 135a or a discharge passage 135b communicating with the suction / discharge port on the cylindrical side surface.
  • the outer shape of the valve case 131 is a shape that fits into the large and small diameter steps of the inner diameter of the valve case 131, and the step formed by the small diameter section S and the large diameter section R on the cylindrical outer side. Section (stopper section D).
  • the non-return valve structure is used, for example, in small-scale microfluid supply devices used in medical equipment, chemical analysis equipment, etc., and in particular, high-precision micropumps that can alternately use liquid Z gas and both fluids.
  • the microphone head pump 100 as shown in FIG. 7 is used instead of the conventional check valve structure of the pump head 130.
  • the shape of the check section 11 is not limited to a dome-shaped hemisphere, and may be, for example, as shown in the schematic cross-sectional views of FIGS. 3 and 4.
  • the back layer 11a may be hollow with a shape similar to the surface layer, and all of them have the same effect.
  • valve receiving member (flange sheet) of the other side of the check valve structure will be described with reference to FIG.
  • the structure of the check valve 1 is substantially the same as that of the conventional check valve 150, except that the valve receiving sheet 152 is replaced by a new structure shown in FIG. 6 (A).
  • the flange sheet 20 (receiving member) shown in the schematic side sectional view of Fig. (B) is newly adopted.
  • This flange sheet 20 is made of an elastic rubber like the check valve 10, for example, has holes (20a, 20b) for fluid to pass through the center of the disk, and has a conventional flat plate-like valve sheet.
  • the receiving surface against which 1 abuts has a semicircular cross section at the periphery of the hole (20a, 20b), and a new protuberance 21 is provided at the top, which is higher than the periphery 23.
  • a concave portion 22 formed by providing a step inside the circumference except for the portion 23 is newly added.
  • Fig. 9 shows the actual check valve 1 of the present invention incorporated in a micropump. Shown in
  • the basic operating principle of the check valve structure is the same as that of the conventional one described above, and the description is omitted.
  • the check valve has a partially complicated shape, it has the same size.
  • the valve case 131 is laminated and inserted into the cylindrical hole of the valve case.
  • the novel check valve 10 as described above is used.
  • a conventional flat plate valve sheet 151 of a conventional type is used instead, the effect can be sufficiently obtained. I have. That is, the conventional valve sheet 151 and the flange sheet 20 do not come into contact with each other except for the raised portion 21 and the peripheral portion 23, and the contact portion between the raised portion 21 and the valve sheet 151 still has a line contact. As a result, there is no close contact between the surfaces at the movable part.
  • the new check valve 10 and the new flange seat 20 are combined for the first time, but either one of the structures may be used in combination with the conventional valve seat 151 or the valve receiving seat 152. It is possible, and the above combinations can be freely selected according to cost and purpose of use.
  • valve molded body for example, the check valve 10
  • valve receiving member for example, the flange sheet 20
  • an elastic rubber for example, Viton rubber or the like
  • Some or all parts may be made of metal.
  • the check portion 11 is a small-diameter steel ball used for ball bearing and the like, and a thin metal plate having a panel-like property that covers the sphere from one side, and the thin portion 14 and the peripheral portion 13 of the above-described structure are press-formed integrally.
  • the flanged sheet 20 or the flange sheet 20 may be made of a metal flange formed by treating the surfaces of the raised portion 21 and the peripheral portion 13 into a mirror-finished state.
  • This check valve made of metal is made of a hard mixed material of a few micron, regardless of liquid or fluid. It is also possible to send fluids containing powder, diamond powder, etc.).
  • FIG. 17 shows a case where only the check valve holding part of the present invention is incorporated.
  • the basic dimensional setting management of the check valve holding structure is as follows.
  • the stopper portion D is a first step portion formed by reducing at least a portion of the valve case 13 1 at least a portion on the bottom side inside the cylindrical hole, and is pushed into the cylindrical hole.
  • a second stepped portion formed by increasing the diameter of the upper receiving side of the pushing member 134 is provided.
  • the check valve holding structure accurately controls the height W of the portion W of each of the cylindrical holes of the valve case 131 and the dimensional control.
  • the value of the dimension W of the check valve insertion portion is determined by the dimension T of the valve case 131 shown in FIG. 15 and the pushing member 134 shown in FIG. It is effectively controlled by the difference from the dimension V.
  • the opening / closing valve operates in a line contact state between the contact portion of the check valve and the peripheral portion of the hole at the center of the flange sheet.
  • the member and the flange sheet member do not adhere via the remaining liquid. Therefore, a check valve structure that can flow not only gas but also liquid in one device can be obtained.
  • the contact pressure between the contact part of the product and the peripheral edge of the hole is that the entire circumference is in a line contact state in a ring shape, so the pressure per unit area is higher than before and the check valve As a result, the backflow blocking of the fluid is better. As a result, a high-precision control can be performed, and a compact and versatile micropump can be obtained.
  • the check valve structure according to the present invention does not cause a malfunction in the on-off valve portion even when both gas and liquid are alternately flowed, has excellent responsiveness in function, and is easy to maintain and is sufficient.
  • the check valve structure of the present invention even in the problem of malfunction of the on-off valve portion caused by the severe condition of alternately flowing gas / liquid, the function of the disassembling operation is excellent, and Provides a check valve holding structure that facilitates cleaning (maintenance) of the on-off valve, does not require clamping pressure adjustment for the o-ring of the on-off valve during assembly, and has a sufficient check effect. can do.
  • this check valve holding structure eliminates the hassle of disassembling and cleaning the pump every time it is used for maintenance. Maintenance inspection of the on-off valve part becomes difficult. In addition, repair and maintenance costs can be reduced, and a reliable microphone-free pump without any failure can always be provided. Industrial applicability
  • the check valve structure and the microphone pump using the same according to the present invention are useful for a small-sized microfluid supply device for use in medical equipment, chemical analysis equipment, and the like. Even when both fluids are used alternately, it is suitable for a microphone port pump structure that has a check valve mechanism that controls supply of feeder with high accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Reciprocating Pumps (AREA)
  • Check Valves (AREA)

Abstract

A check valve structure which is suitable for the back-flow prevention of a micro-pump suitably used in a small, trace-amount fluid feeder used in a medical instrument and chemical analyzing instrument, and which prevents the back-flow of both gas and liquid; and a retaining structure for the check valve; wherein a valve forming body is provided with a convex portion (11) at the center of a half-split circle on the side opposite to a receiving member, and with an annular close-contact member (13) in close contact at the flat surface thereof with the receiving member and located on the outer periphery of a thin-walled portion (14) having a contact portion in linear contact with the entire periphery of a ridge line of an inlet circumference of a hole (20a, 20b) of the receiving member and extending from the convex portion (11) at the center of the valve forming body toward the circumference, and stopper portions acting as steps for receiving each other are provided at a part of the outer periphery of a cylindrical pushing member for bringing a valve seat into close contact with a valve receiving seat and at a part of the inner wall of a cylindrical hole on a valve case side for receiving thereinto the pushing member so as to keep constant the pushing-in depth of the small-diameter tip of the pushing member into the inner tube hole of the valve case.

Description

明 細 逆止弁構造およびそれを用いたマイク口 技術分野  MECHANISM Check valve structure and microphone opening using it
本発明は、 例えば医療機器、 化学分析機器等に用いるための小型の微 量流体供給装置に係り、 特に液体 Z気体、 双方の流体物を交互に使用し た場合においても、 高精度に送体を供給制御する逆止弁機構を有するマ ィク口ポンプ構造に関するものである。 安定して送体を供給制御する逆 止弁機構を有するマイ ク ロポンプであり、 また仮に逆止弁部分が劣化あ るいは動作不良を起こ したと しても、 即座に取り外して修理及び定期的 なメ ンテナンスが容易に行える弁機構、 及びその組立に関するものであ る。 背景技術  The present invention relates to a small-sized microfluid supply device for use in, for example, medical equipment, chemical analysis equipment, and the like. Particularly, the present invention relates to a high-precision delivery device even when liquid Z gas and both fluids are used alternately. The present invention relates to a microport pump structure having a check valve mechanism for controlling the supply of pressure. This is a micro pump with a check valve mechanism that stably controls the supply of the feeder.Even if the check valve part is deteriorated or malfunctions, remove it immediately and repair it regularly. The present invention relates to a valve mechanism capable of easily performing maintenance and its assembly. Background art
従来、 微量な液体を送液するマイク口ポンプには数多く の機構原理が 存在し、例えば弁機構においてはリ一ドバルブ型ノくルブレス型などが、 又、 駆動系では小型モータを用いた特開昭 62 -291484号などのダイヤフ ラム型の機構を有する小型ポンプが一般的に知られている。 この種のマ イク口ポンプは、医療機器及び化学分析機器の微量流体供給装置と して、 薬液の定量注入や反応混合ガス等の流体物を搬送するために用いられ、 現在、 より高精度な制御ができる小型で汎用性のあるマイク口ポンプの 開発が進められている。  Conventionally, there are a number of mechanism principles of a microphone port pump for sending a small amount of liquid, for example, a valve mechanism is a lead valve type nozzleless type, and a driving system using a small motor is disclosed in A small pump having a diaphragm-type mechanism, such as Japanese Patent No. 62-291484, is generally known. This type of micro-mouth pump is used as a microfluid supply device for medical equipment and chemical analysis equipment, and is used for the quantitative injection of chemicals and for transporting fluids such as reaction mixture gas. The development of a small and versatile microphone port pump that can be controlled is underway.
第 7図は、 本出願人が開発した従来タイプのダイヤフラム型マイクロ ポンプの側断面図の一例である。 側断面で示されるマイクロポンプ 100 は、 第 7図に示すよ うに、 駆動部側と して例えばコアレスモータなどの 小型モータ 110、 及びポンプ部側と して小型モータ 110 の駆動軸回転運 動を往復ビス トン運動に変換する力ム機構 120 と、 その往復動作をダイ ャフラム 132 に伝達するクランクシャフ ト 121 とを備え、 さらに図に示 す吸排出用のバルブ機構 (逆止弁 150 ) を 2箇所に有するポンプヘッ ド 部 130 とから概略構成されている。 FIG. 7 is an example of a side sectional view of a conventional diaphragm-type micro pump developed by the present applicant. As shown in FIG. 7, a micropump 100 shown in a side cross section drives a small motor 110 such as a coreless motor as a driving unit side and a driving shaft rotation of a small motor 110 as a pump unit side. It has a force mechanism 120 that converts the reciprocating biston motion and a crankshaft 121 that transmits the reciprocating motion to the diaphragm 132. It comprises a pump head 130 having two suction and discharge valve mechanisms (check valves 150) at two locations.
上記ポンプへッ ド部 130の作動原理は次のとおりである。 ポンプへッ ド部 130は、 第 8図の正面部分拡大図に示すよ うに、 バルブケース 131 下部に設けられたチャンバ一 133 室空間を合成ゴムなどの弾性シー ト材 からなる円盤状のダイヤフラム 132 を用いて塞さぎ、 ここに流体を一時 的に溜める中間貯蔵部 137が形成されており、 また、 前記ダイヤフラム 132 の中心部分は、 上下方向に往復運動するク ランクシャフ ト 12 1 (第 7図に図示) 先端に固着され、 弾性変形して振幅のある動きが可能であ り、 かつ、 その円外周部は前記チャンバ一 133 の最外郭径の円周部でバ ルブケース 131で保持されている。  The operating principle of the pump head 130 is as follows. As shown in the enlarged front view of FIG. 8, the pump head section 130 has a disk-shaped diaphragm 132 made of an elastic sheet material such as synthetic rubber that divides a chamber space 133 provided at the lower part of the valve case 131. An intermediate storage portion 137 is formed to temporarily store fluid therein, and a central portion of the diaphragm 132 is provided with a crank shaft 12 1 (FIG. 7) which reciprocates vertically. It is fixed to the tip, elastically deformed and can move with amplitude, and its outer circumference is held by the valve case 131 at the outermost circumference of the chamber 133. .
さ らに、チャンバ一 133 の室内上部 2力所を貫通している吸入孔 133a および排出孔 133b に続くバルブ構造には、 Oリ ング 136 を介して弾性 体ゴムからなる穴形状の異なるバルブシー ト 15 1 とバルブ受けシー ト 152が開閉弁と して構成され、 前記 O リ ング 136が吸入側と排出側のバ ルブ機構の送流方向の下流側に位置するよ うにバルブケース 131内の円 筒穴部分に積層され填め込まれ、 さらにプッシング部材 134で加圧固定 された構造をしている。  In addition, the valve structure following the suction hole 133a and the discharge hole 133b penetrating the upper two places of the interior of the chamber 133 has a valve sheet with a different hole shape made of elastic rubber via an O-ring 136. 15 1 and a valve receiving sheet 152 are configured as an on-off valve, and a circle in the valve case 131 is arranged so that the O-ring 136 is located downstream of the suction side and the discharge side of the valve mechanism in the flow direction. It has a structure in which it is stacked and filled in the cylindrical hole portion, and is further pressed and fixed by a pushing member 134.
ここで、 プッシング部材 134には、 吸入側ノズル 140 (第 8図の円破 線部) の吸入口 140a と吸入孔 133aとをつなぐ吸入路 135a と、 排出側 ノズル 140 (第 7図の断面) の排出口 140b と排出孔 133b とをつなぐ排 出路 135b とが一部に設けられている。  Here, the pushing member 134 includes a suction passage 135a connecting the suction port 140a of the suction side nozzle 140 (the broken line in FIG. 8) and the suction hole 133a, and a discharge side nozzle 140 (cross section in FIG. 7). A discharge path 135b connecting the discharge port 140b and the discharge hole 133b is partially provided.
すなわちポンプへッ ド部 130 は、 ク ラ ンクシャフ ト 12 1 によってダイ ャフラム 132の中央平面部分を上下に変位させて中間貯蔵部 137の容積 を増減させ、その際に発生するチャンバ一 133内の圧力変動を利用して、 流体を吸入口 140aカゝら排出口 140bまで、一連の動作を繰り返して一方 向に流体を送流するポンプである。  That is, the pump head section 130 moves the center plane portion of the diaphragm 132 up and down by the crankshaft 121 to increase or decrease the volume of the intermediate storage section 137, and the pressure in the chamber 133 generated at that time. This is a pump that sends a fluid in one direction by repeating a series of operations from the suction port 140a to the discharge port 140b using the fluctuation.
ここで、 開閉弁と しての逆止弁の構造について詳細に説明する。 前記 逆止弁 150は、 第 10図、 第 11図に示すよ うに、 ゴムシ一 トなどの平板 状弾性体シー トからなるバルブシー ト 15 1 と、 バルブシー ト 15 1の送流 方向の上流側の対向面に重ねられた同径ゴム製のバルブ受けシー ト 152 と、 により構成される。 このバルブシー ト 15 1 には同心円状周縁部に複 数の開口部 15 1 aが設けられており、 また、 バルブ受けシー ト 152 には 中心部に小径の孔 152 aが設けられ、 2枚のシー ト双方の開口部 15 1a と 孔 152 a とが連通しないように配置されている。 Here, the structure of the check valve as the on-off valve will be described in detail. As shown in FIGS. 10 and 11, the check valve 150 is a flat plate such as a rubber sheet. A valve sheet 151 made of an elastic elastic sheet, and a valve receiving sheet 152 made of rubber having the same diameter and stacked on an opposing surface on the upstream side in the flow direction of the valve sheet 151 are formed. This valve sheet 151 has a plurality of openings 151a at the concentric peripheral edge, and the valve receiving sheet 152 has a small-diameter hole 152a at the center, and has two sheets. The openings 151a and the holes 152a on both sides of the sheet are arranged so as not to communicate with each other.
すなわち逆止弁 150の上記構成において 2枚のシ一 ト状バルブの作動 原理は次のとおりである。 (説明を省略するため以下、 第 8図の吸入側の みを説明する。)  That is, in the above configuration of the check valve 150, the operating principle of the two sheet-like valves is as follows. (In order to omit the description, only the suction side in Fig. 8 will be described below.)
まずダイヤフラム 132が下に変位した場合、 つまりチヤンバーの容積 が増大した場合、 当然ながら前記逆止弁 150 (開閉弁) によ り密閉状態 にあるチャンバ一容器内は減圧状態となり、 よって吸入側 (イン側) の 前記バルブシー ト 15 1 は、 外部吸入口 140a カゝら吸入路 135a を経由し て送られてきた流体によ り押され、バルブ受けシ一 ト 152 の中心孔 152 a 部分からの押し出る圧力がバルブシー ト 15 1の弾性変形強度の限界を越 えた時、 バルブシー ト 15 1 は円弧状に弾性変形する。 つま りチャンバ一 133室内方向に撓んで膨らむ。  First, when the diaphragm 132 is displaced downward, that is, when the volume of the chamber is increased, the inside of the chamber-vessel in a closed state is naturally reduced by the check valve 150 (open / close valve), so that the suction side ( The valve sheet 151 on the (in side) is pushed by the fluid sent from the external suction port 140a through the suction passage 135a, and the valve sheet 151 from the central hole 152a of the valve receiving sheet 152 is formed. When the pushing pressure exceeds the limit of the elastic deformation strength of the valve sheet 151, the valve sheet 151 elastically deforms in an arc shape. That is, the first chamber 133 deflects inward and expands.
この際、 バルブシー ト 15 1 とバルブ受けシー ト 152 の対向面には隙間 ができ、 孔 152 a と開口部 15 1 aは前記隙間を介してつながるため、 流体 は吸入口 140 aから吸入路 135a、前記逆止弁 150部分を経て吸入孔 133 a からチャンバ一 133室内の中間貯蔵部 137に流れ込み、ダイヤフラム 132 で閉ざされたチヤンバ一 133内は流体で満たされる。  At this time, a gap is formed on the facing surface between the valve sheet 151 and the valve receiving sheet 152. Since the hole 152a and the opening 151a are connected through the gap, the fluid flows from the suction port 140a to the suction path 135a. Then, the fluid flows into the intermediate storage portion 137 in the chamber 133 from the suction hole 133a through the check valve 150, and the chamber 133 closed by the diaphragm 132 is filled with fluid.
次に、 ダイヤフラム 132 が変位しない静止状態、 又は逆に上に変位し た場合、 すなわち前記逆止弁 150 を挟んで吸入路 135 a側と中間貯蔵部 137側の圧が均等、 又は中間貯蔵部 137側がダイヤフラム 132の上方変 位によ り圧が高く なる場合は、 前記吸入側のバルブシー ト 151は弾性変 形が元に戻り、 対面するバルブ受けシー ト 152 の中心孔 152 a を完全に 塞ぐため、 中間貯蔵部 137 内の流体は吸入路 135a側に逆流しない構造 になっている。 この逆止弁構造の組み合わせによ り、 ポンプ機能と して の正常な働きをしている。 Next, when the diaphragm 132 is in a stationary state in which it is not displaced, or when the diaphragm 132 is displaced upward, that is, when the pressure on the suction passage 135a side and the intermediate storage part 137 side is equal across the check valve 150, or the intermediate storage part When the pressure on the 137 side increases due to the upward displacement of the diaphragm 132, the valve sheet 151 on the suction side returns to its original elastic deformation and completely closes the center hole 152a of the facing valve receiving sheet 152. Therefore, the structure is such that the fluid in the intermediate storage unit 137 does not flow backward to the suction passage 135a side. By combining this check valve structure, the pump function Is working normally.
ところで、 上記のよ うなダイヤフラム型マイクロポンプに限らず、 一 般的なマイクロポンプの使用用途と しては、 次の 3通りの状況が考えら れる。 まず、 液体のみを流す場合と気体のみを流す場合の 2通り 、 さら に双方の液体 Z気体の流体を交互に切り替えて流す場合の計 3通りが想 定できる。 従来は液体専用のマイク口ポンプと気体専用のマイク ロボン プは各々あつたが、 液体/気体両用タィプの機能的に優れたマイクロポ ンプは開発されておらず、暫定的に一方の専用機で兼用して使用するカ 、 または別々の液体専用機と気体専用機を交互に経路を切り替えて使用す る方法しかなかった。  By the way, the following three situations are conceivable not only for the above-mentioned diaphragm-type micropump but also for general use of the micropump. First, it is possible to envisage a total of three cases: a case where only a liquid flows and a case where only a gas flows, and a case where both liquid Z gases are alternately switched to flow. In the past, there was a liquid-only microphone pump and a gas-only micropump, but no functionally superior liquid / gas type micropump has been developed, and one special-purpose machine is used temporarily. There has been no alternative but to use the mosquitoes used separately, or alternately use separate liquid-only and gas-only machines by switching their paths.
しかし、 気体専用機で仮に兼用した場合、 上述した第 7図、 第 8図の シー ト状弾性体ゴム (第 10図と第 11図) の逆止弁 150 の構造では、 例 えば液体を流した後に一旦停止し、 流体を切り替えて気体をその後断続 的に流し、 液体が乾燥する前に一定時間休止した場合などでは、 送流経 路内又はポンプ内部に残留した液体成分が逆止弁部分のバルブシ一 ト 151 とバルブ受けシー ト 152 との隙間で自然乾燥され、 弾性体ゴムから なる平面状バルブシー トの対向面同士を物理的に貼り付いてしま う恐れ 力 Sめった。  However, if the gas dedicated machine is also used, the structure of the check valve 150 of the sheet-like elastic rubber (FIGS. 10 and 11) shown in FIGS. In the case where the liquid is temporarily stopped after switching, the gas is switched and the gas is intermittently flowed thereafter, and the liquid is paused for a certain period of time before the liquid dries, the liquid component remaining in the flow path or inside the pump is checked by the check valve. The air between the valve sheet 151 and the valve receiving sheet 152 is naturally dried, and the opposite faces of the flat valve sheet made of elastic rubber may be physically stuck to each other.
この状態になってしま う と再起動時に開閉弁が開かない動作不良 (故 障) が起き、 使用不能に陥ることがある。 よって、 このよ うな状況で使 用するポンプは毎回のよ う に開閉弁部分の分解修理が必要となるが、 そ の修理と保守にも、 一般的な機種では分解すら不可能なものや、 また分 解修理及び組立に特殊工具や専門の技術が必要であり、 さ らに故障した ポンプの代替え品も必要であり、 このため多大な時間と費用がかかり、 開閉弁部分の故障、 及び保守 (メ ンテナンス) は大きな問題であった。 また、 同逆止弁 150は、 バルブシ一 ト 15 1 とバルブ受け 152 シー トと の面接触によつて構造上封止効果を得るため、 前記 2枚のバルブシート の対向面で液体が乾燥し、 液体成分が結晶化して析出した状態では、 逆 止弁と して封止圧が十分得られず、 よって開閉弁又は逆止弁効果を十分 に得られない可能性もある。 このよ うな場合、 停止中に中間貯蔵部 137 から流体が逆流して抜けていく可能性もあり、 従って、 再起動した場合 に、 経路内で流体が正常に流れ出すまでにタイムラグが生じてマイ ク ロ ポンプ 100 の応答性が低下する可能性がある。 If this occurs, an operation failure (failure) occurs in which the on-off valve does not open when restarting, and it may become unusable. Therefore, the pump used in such a situation requires the disassembly and repair of the on-off valve part every time, but for the repair and maintenance, it is impossible to disassemble even a general model. In addition, special tools and specialized skills are required for disassembly repair and assembly, and replacement of a failed pump is also required, which requires a great deal of time and money, failure of the on-off valve part, and maintenance. (Maintenance) was a big problem. Also, the check valve 150 has a structural sealing effect by the surface contact between the valve sheet 151 and the valve receiver 152 sheet, so that the liquid dries on the opposing surfaces of the two valve sheets. However, when the liquid component is crystallized and precipitated, sufficient sealing pressure cannot be obtained as a check valve, and therefore the on-off valve or check valve effect is sufficient. May not be obtained. In such a case, there is a possibility that the fluid may flow backward from the intermediate storage unit 137 during the stop, and may flow out. (B) The responsiveness of the pump 100 may decrease.
このよ う な問題を含めて、 従来、 同一のマイク ロポンプで液体と気体 の双方を交互に流すことは実質上できなかった。  Including such problems, it has been virtually impossible to flow both liquid and gas alternately using the same micropump.
次に通常、 このよ うな開閉弁によるマイクロポンプの動作は、 弁自身 の動きがかなり精密であり、 特にシー ト状の弾性体からなる上記の開閉 弁の組み合わせでは、 バルブケース部分への組み込みと調整が微妙に影 響してく る。 つま り前記逆止弁は、 バルブシー トとバルブ受けシー トと の面接触によって構造上封止効果を得るもので、 さ らに o リ ングでシ一 リ ングされながら経路内の気密が保たれているので、 パッキン部となる 〇リ ングのつぶし代 (クランプ圧) の調整が微妙に必要である。  Next, in the operation of a micropump using such an on-off valve, usually, the movement of the valve itself is fairly precise. Adjustments are subtly affected. That is, the check valve obtains a structural sealing effect by the surface contact between the valve sheet and the valve receiving sheet. Further, the check valve is sealed by an o-ring and the airtightness in the passage is maintained. Therefore, it is necessary to delicately adjust the squeeze allowance (clamp pressure) of the ring that forms the packing.
しかし第 18 図に示す従来の構造では、 バルブへッ ド 200 を、 ガスケ ッ ト 220部材を介して機械的にバルブケース 131側にネジ締め固定する 方法であるので、ネジ締め トルクの強さによ り、前記プッシング部材 134 の押し込み量、 つまり開閉弁外周部分 (主に〇リ ング) への締め付けつ ぶし代 (要するに Oリ ングに加わるクランプ圧) は一定とならず、 ネジ 締め トルクの微妙な調整が必要となる。 また、 調整するにしても専用の 冶工具や測定器等が必要で、つぶし代(クランプ圧) を一定量に調整し、 好適な配置にすることなどできなかった。 このよ うな問題を含めて、 従 来は、 ポンプの開閉弁のメンテナンスは容易ではなかった。  However, in the conventional structure shown in FIG. 18, the valve head 200 is mechanically screwed and fixed to the valve case 131 side via the gasket 220 member. As a result, the amount of pushing of the pushing member 134, that is, the allowance for tightening the outer peripheral portion (mainly the ring) of the on-off valve (in short, the clamping pressure applied to the O-ring) is not constant, and the screw tightening torque is subtle. Adjustment is required. Also, even when making adjustments, special jigs and measuring instruments were required, and it was not possible to adjust the squeeze allowance (clamp pressure) to a fixed amount and achieve a suitable arrangement. Including these problems, maintenance of pump on-off valves has not been easy in the past.
本発明は、 気体 Z液体の双方を交互に流す場合においても開閉弁部分 で動作不良が起こらず、 機能性に優れ、 かつメ ンテナンスが容易で、 十 分な逆止効果を得られる逆止構造を提供することを目的とする。 また、 この逆止構造を用いることにより、 液体/気体の双方の流体を良好に搬 送できると ともに、 高精度で応答性の良い、 また故障のない信頼性があ るマイクロポンプを提供することも目的とする。  The present invention provides a non-return structure that does not cause a malfunction in the on-off valve portion even when both the gas Z liquid flows alternately, has excellent functionality, is easy to maintain, and can obtain a sufficient non-return effect. The purpose is to provide. Also, by using this non-return structure, it is possible to provide both a liquid and a gas satisfactorily and to provide a highly accurate, highly responsive, and trouble-free reliable micropump. Also aim.
さ らに本発明は、 気体/液体の双方を交互に流す過酷な条件によって 発生した開閉弁部分の動作不良問題においても、 分解作業の機能性に優 れ、 かつ開閉弁のク リーニング (メ ンテナンス) が容易で、 組立時の開 閉弁部分の oリ ングに対するクランプ圧調整作業が不要な、 かつ十分な 逆止効果が得られる逆止弁の保持構造を提供することを目的とする。 ま た、 この逆止弁の保持構造を用いることにより、 ポンプの保守と して毎 回使用するごとに分解掃除しても手間にならず、 液体 Z気体の双方の流 体を良好に搬送できるポンプの開閉弁部分の保守点検がしゃすく なる。 また、 修理およびメンテナンスコス トが削減でき、 故障のない信頼性が あるマイク口ポンプを常に提供することを目的とする。 発明の開示 In addition, the present invention is based on the harsh conditions of alternating gas / liquid flow. Even in the event of a malfunction of the on-off valve that occurs, it is excellent in the function of disassembly work, easy to clean (maintenance) of the on-off valve, and adjusts the clamping pressure for the o-ring of the opening and closing valve during assembly An object of the present invention is to provide a check valve holding structure that requires no work and that can obtain a sufficient check effect. In addition, by using this check valve holding structure, it is possible to transport both liquid Z gas satisfactorily without trouble even if the pump is disassembled and cleaned each time it is used for maintenance of the pump. Maintenance inspection of the on-off valve part of the pump becomes difficult. Another object of the present invention is to always provide a reliable microphone-free pump that can reduce repair and maintenance costs and is free from failures. Disclosure of the invention
上記課題を解決するため、 本発明では、  In order to solve the above-mentioned problems, in the present invention,
流体の送流方向入口側に位置していて流体を通す孔 (20a、20b) を中 心に有する受け部材 (例えばフランジシー ト 20) と、 流体の送流方向出 口側に位置していて流体を通す開口部 (12 ) を同心円上の周縁位置に有 するバルブ成形体 (例えばチヤツキバルブ 10) とを、 前記孔 (20a、20b) と前記開口部 (12 ) の配置が重ならない組み合わせで対面させ、 前記バ ルブ成形体を前記受け部材に密着させることにより、 流体が逆流するこ とを防ぐ逆止弁構造において、  A receiving member (e.g., flange sheet 20) having a hole (20a, 20b) at its center located at the inlet side of the fluid flow direction, and a receiving member located at the outlet side of the fluid flow direction; A valve molded body (for example, a check valve 10) having an opening (12) through which a fluid passes at a peripheral position on a concentric circle is faced with a combination in which the arrangement of the holes (20a, 20b) and the opening (12) does not overlap. In the check valve structure for preventing the fluid from flowing backward by bringing the valve molded body into close contact with the receiving member,
前記バルブ成形体は、 前記受け部材との対向側片面円中心の中央部に 凸部 (チヤツキ部 11 ) が設けられ、 前記受け部材の孔 (20a、20b) の入 り 口部円周の稜線全周で線接触する接触部を有し、 かつ前記バルブ成形 体中央の凸部 (チヤツキ部 11 ) から円周方向に延びた薄肉部 (14) の外 周に位置する前記受け部材に平面が密着する リ ング状密着部 (例えば周 縁部 13) とを兼ね備えている。  The valve molded body is provided with a convex portion (chuck portion 11) at the center of the center of the one-sided circle facing the receiving member, and a ridgeline at the entrance of the hole (20a, 20b) of the receiving member. A flat surface is formed on the receiving member that has a contact portion that makes linear contact with the entire circumference and is located on the outer circumference of a thin portion (14) that extends in the circumferential direction from the convex portion (chuck portion 11) at the center of the valve molded body. It also has a ring-shaped contact portion (for example, peripheral portion 13) to be in contact.
この上記記載の逆止弁構造においては、 例えば第 1図、 第 2図に示す ドーム状の凸部 (チヤツキ部 11 ) 形状の接触部 Aは、 前記受け部材 20 の孔(20a,20b)を通じて送流方向上流側の圧力を受ける。 従って、 上流側 の圧力を下流側よ り高く して流体を送流す場合は、 前記凸部 (チヤツキ 部 11 ) は下流側に向けて押され、 前記接触部 Aは離間し、 前記受け部材 20 の孔(20a,20b)を開放するため、 流体は上流側から下流側、 つま り吸 入方向から排出方向に向けて流れ、 駆動部のダイヤフラムの上下動によ り順次この動作は繰り返される。 In the check valve structure described above, for example, the dome-shaped convex portion (chuck portion 11) -shaped contact portion A shown in FIGS. 1 and 2 passes through the holes (20 a, 20 b) of the receiving member 20. Receives pressure upstream of the flow direction. Therefore, when the fluid is sent with the pressure on the upstream side higher than that on the downstream side, the protrusion (chuck) is required. The portion 11) is pushed toward the downstream side, the contact portion A is separated, and the holes (20 a, 20 b) of the receiving member 20 are opened, so that fluid flows from the upstream side to the downstream side, that is, from the suction direction. The operation flows in the discharge direction, and this operation is sequentially repeated by the vertical movement of the diaphragm of the drive unit.
これに対し、 流体を流さない場合、 すなわちダイヤフラムが停止状態 で、上流側の圧力が下流側と等しい力 、あるいは下流側より低い場合は、 前記接触部 Aは前記孔の入り 口部分の円周稜線全周に押しつけられるた め、 流体の逆流は起こらない。  On the other hand, when the fluid is not flowing, that is, when the diaphragm is in a stopped state and the pressure on the upstream side is equal to or lower than the pressure on the downstream side, the contact portion A is the circumference of the entrance portion of the hole. No backflow of fluid occurs because it is pressed all around the ridgeline.
ここで、 前記ドーム状凸部と前記受け部材孔とは、 組み合わされて逆 止弁機構を成し、 円周状にお互いが接触部 Aで線接触しており、 また、 その他の部分では対向する受け部材と外周部分のリ ング状平面部 (例え ば周縁部 13) で面同士が密着している。  Here, the dome-shaped convex portion and the receiving member hole are combined to form a check valve mechanism, and are circumferentially in line contact with each other at a contact portion A, and are opposed to each other in other portions. The surfaces are in close contact with each other at the ring-shaped flat portion (for example, the peripheral portion 13) of the receiving member and the outer peripheral portion.
このため、 前記バルブ成形体 (チヤ ツキバルブ 10) の可動部 (チヤ ッ キ部 11、 薄肉部 14) と前記受け部材 (フランジシー ト 20) とが対向面 で平面同士が接することを防いでいる。 従って、 前記記載の液体と気体 を交互に流した後に作動を一時停止しても、 前記バルブ成形体側と前記 受け部材側とが液体残留の問題で貼り付く ことはないため、 再起動はす ぐに行えて、 動作不良となることはない。 従って、 本逆止弁構造によれ ば、 気体のみならず液体も交互に流すことができる。  For this reason, the movable portion (chuck portion 11, thin portion 14) of the valve molded body (chuck valve 10) and the receiving member (flange sheet 20) are prevented from contacting each other on the opposing surfaces. . Therefore, even if the operation is temporarily stopped after the liquid and the gas are alternately flowed as described above, the valve molded body side and the receiving member side do not stick to each other due to a problem of liquid remaining, so that restart is immediately performed. Yes, it does not cause malfunction. Therefore, according to the present check valve structure, not only gas but also liquid can flow alternately.
また、 実質的に前記接触部と前記孔の周縁部とを従来の面接触ではな く、 線接触と したことによ り、 単位面積当たりの接触圧、 すなわち逆止 弁の密閉圧は従来よ り高く なり、 従って、 逆止弁機能は向上し、 流体の 逆流はない。  In addition, since the contact portion and the peripheral portion of the hole are substantially in line contact rather than in conventional surface contact, the contact pressure per unit area, that is, the sealing pressure of the check valve, is lower than in the past. And therefore the check valve function is improved and there is no backflow of fluid.
この逆止弁構造は、 よ り具体的には、 以下の構造が考えられる。  More specifically, the check valve structure may be as follows.
すなわち、 逆止弁構造と しては、 接触部を、 従来の弾性体バルブシー ト本体から立設して立体形状と し、 中央部 (チヤツキ部 11) 凸形状が ド —ム状、 円錐状、 円弧状、 または一部が先端側に向けてテーパー状に細 く、 前記受け部材側の孔縁部分に対し角度をもって同周面で線接触して おり、 受け部材の孔に填る栓状部材 (例えば第 3図のチヤツキ部 11 の 円錐形状、 また第 4図のコルク栓形状) と したこと も含まれる。 In other words, in the check valve structure, the contact portion is formed upright from the conventional elastic valve sheet body to form a three-dimensional shape, and the central portion (chuck portion 11) has a dome-shaped, conical-shaped convex shape. A plug-shaped member that is arc-shaped or partially tapered toward the distal end side and is in line contact with the hole edge portion on the receiving member side at an angle on the same peripheral surface, and that fits into the hole of the receiving member. (For example, of the check part 11 in Fig. 3 It also includes a conical shape and a cork stopper shape in Fig. 4.
ここでさ らに加えるならば、 前記チヤツキ部(11)の形状は、 例えば前 記孔の径方向断面形状が円である場合は、 半球や円錐、 さ らには側断面 が放物線形状のものを含み、 これらの頂部を水平に切断した時、 前記孔 と同型の円形状となるものが全て含まれるが、 これら形状のみに限定さ れるものではなく、 前記孔の断面形状 (例えば楕円) に合わせて任意に 変形できるものである。 このよ う に、 前記接触部の一部または全部を下 流側から上流側に向けて細くする形状とすると、 前記接触部と前記孔の 内壁とが任意の箇所で線接触する構造とすることができる。  Here, if further added, the shape of the check portion (11) is, for example, a hemisphere or a cone when the hole has a circular cross-section in the radial direction, and a parabolic shape in the side cross-section. When these tops are cut horizontally, all of the same shape as the hole are included in the circular shape. However, the shape is not limited to only these shapes, and the cross-sectional shape of the hole (for example, an ellipse) is included. It can be arbitrarily deformed together. As described above, when a part or the entirety of the contact portion is formed to be narrower from the downstream side toward the upstream side, the contact portion and the inner wall of the hole have a line contact at an arbitrary position. Can be.
また、 次の逆止弁構造と しては、 前記凸部 (チヤツキ部 11 ) 形状の接 触部の反対面、 つまり受け部材の孔と接するチヤツキ部表層とは反対側 の裏面は、 第 5図のよ うに略半球状にえぐられて空洞となっているバル ブ成形体 (チヤツキバルブ 10) が組み合わされる。  Further, in the following check valve structure, the opposite surface of the contact portion having the shape of the convex portion (checker portion 11), that is, the rear surface opposite to the surface of the checker portion in contact with the hole of the receiving member has a fifth surface. As shown in the figure, a valve body (check valve 10) that is hollowed out in a substantially hemispherical shape is combined.
この場合は、 前記可動部である両面ドーム状のチヤツキ部 11 は軽く なると共に、 その弾性特性は向上するため、 前記接触部は前記孔に密着 しゃすく、 また離れやすく 、 従って、 微小な圧力変化に対しても応答性 はよく、 より小型で精密なマイクロポンプと しての逆止弁構造が可能と なる。  In this case, the double-sided dome-shaped check portion 11 as the movable portion becomes lighter and its elastic property is improved, so that the contact portion is in close contact with the hole and is easy to separate from the hole, and therefore, a small pressure change. Responsiveness is good, and a check valve structure as a smaller and more precise micropump is possible.
また、 その他の逆止弁構造は、 受け部材 (例えばフランジシー ト 20) の孔片側の周縁部全周を隆起させた隆起部 (2 1 ) を設けることによ り、 前記孔の端部とバルブ成形体 (例えばチヤツキバルブ 10 ) の接触部とを 線接触させることができる。 この場合は、 対向するバルブ部材の接触部 の形状が従来と同様に平板状であっても、 前記隆起部によ り前記接触部 は前記孔の周縁部 (項部) と線接触する。 また、 当然、 前記接触部の形 状を請求項 2または請求項 3に記載の構造と しても良いのは言うまでも ない。  Further, other check valve structures have a raised portion (21) which is formed by raising the entire periphery of one side of the hole of the receiving member (for example, the flange sheet 20), so that the end portion of the hole is formed. The contact portion of the valve molded body (for example, the check valve 10) can be brought into linear contact. In this case, even if the shape of the contact portion of the opposing valve member is a flat plate shape as in the related art, the contact portion comes into line contact with the peripheral edge portion (section) of the hole by the raised portion. Needless to say, the shape of the contact portion may be the structure described in claim 2 or claim 3.
次に、 流体の送流方向入口側に位置していて流体を通す孔を中心に有 するバルブ受けシー トと、 流体の送流方向出口側に位置していて流体を 通す開口部を同心円上の周縁位置に有するバルブシー トとを、 前記孔と 前記開口部の配置が重なり合わない組み合わせで対面させ、 これらを底 部に前記流体を送通すための吸排出用の穴を有するバルブケースの円筒 穴内部に、 それぞれ送流方向出口側に一つの o リ ングを介して落と し込 み、 さ らに前記バルブケース内に同寸径の円筒状のプッシング部材を押 し込むことにより構成される逆止弁構造において、 Next, a valve receiving sheet, which is located at the inlet side of the fluid flow direction and has a hole through which the fluid flows, and an opening located at the outlet side of the fluid flow direction and through which the fluid passes are concentrically arranged. And a valve sheet having a peripheral position of These openings face each other in a non-overlapping combination, and these are placed inside a cylindrical hole of a valve case having a suction / discharge hole for transmitting the fluid at the bottom, and one at the outlet side in the flow direction. o In a check valve structure constituted by dropping through a ring, and further pushing a cylindrical pushing member of the same diameter into the valve case,
前記バルブシ一 トを前記バルブ受けシ一 トに密着させるための円筒状 プッシング部材の外周面の一部、 及び該プッシング部材を内挿するバル ブケース側の円筒穴内部内壁の一部に、 お互いが受止め段差となるス ト ツバ一部分を設け、 バルブケースの円筒内部に対し、 前記プッシング部 材の小径部先端の押し込み深さが常に一定となるよ うに構成している。  A part of an outer peripheral surface of a cylindrical pushing member for bringing the valve sheet into close contact with the valve receiving sheet, and a part of an inner wall of a cylindrical hole on a valve case side into which the pushing member is inserted, are attached to each other. A part of the stopper that serves as a receiving step is provided so that the pushing depth of the tip of the small diameter portion of the pushing member into the inside of the cylinder of the valve case is always constant.
この上記記載の逆止弁保持構造においては、 例えば第 12図、 第 13図 に示す段差部 (ス ト ッパー部分 D ) を設けることによ り、 バルブケース 内底部位置 Eに対するブッシング部材 134先端側の押し込み深さが、 バ ルブへッ ド 200を固定するボルト 202のネジ締め トルクに関係なく常に 一定となる。 このためバルブシ一 ト 151 とバルブ受けシー ト 152 の厚み が常に一定ならば、 〇リ ング 136は一定量のつぶし代をもってクランプ 圧をプッシング部材 134側から受け、 好適に弾性変形しながらパッキン と しての働きをして、 流体経路内部の気密を保つと共に、 前記組み合わ せの開閉弁(逆止弁)の好適な動作を再現性よく組み込むことができる。  In the check valve holding structure described above, for example, by providing a step portion (stopper portion D) shown in FIGS. 12 and 13, the tip side of the bushing member 134 with respect to the inner bottom position E of the valve case. The pressing depth of the bolt is always constant regardless of the screw tightening torque of the bolt 202 for fixing the valve head 200. For this reason, if the thickness of the valve sheet 151 and the valve receiving sheet 152 is always constant, the ring 136 receives the clamping pressure from the pushing member 134 side with a certain amount of squeezing allowance, and forms a packing while suitably elastically deforming. By maintaining the airtightness inside the fluid path, the suitable operation of the combined on-off valve (check valve) can be incorporated with good reproducibility.
また、 仮に悪条件によ り流体物が詰まって流れない場合においても、 ポンプへッ ド 200とガスケッ ト 220をボル ト 202をゆるめて分解取外し することで、 比較的簡単にプッシング部材 134を抜き取ることができる ので、 内部の開閉弁部分の分解や組立が簡単になり、 メンテナンスの作 業効率が向上するほか、 特に専門的な技術を要しなく と も開閉弁部分の 修理を容易に行う ことができる。  Also, even if the fluid material is clogged due to unfavorable conditions and does not flow, the pump head 200 and the gasket 220 can be relatively easily removed by loosening the bolt 202 and disassembling and removing it. Simplifies disassembly and assembly of the internal on-off valve part, improving maintenance work efficiency and making it easy to repair the on-off valve part without special technical skills. Can be.
ここで、 前記バルブシー ト 151 とバルブ受けシー ト 152 と O リ ング 136 とは、吸排出方向に対して第 12図のよ うにそれぞれ 3段に積層され ているので、 分解掃除して再度開閉弁部分を組み立てる時には、 吸入側 と排出側を間違いなく配列する注意が必要である。 また、 この逆止弁構造は、 より具体的には次の構造が考えられ、 前記 ス トツバ一部分 Dと して、 バルブケース円筒状穴部の底部側の少なく と も一部を小径にすることによ り形成される第 1 の段差部であり、 また、 前記バルブケース穴部に挿入されるプッシング部材の上部受止め側を大 径にすることによ り形成される第 2の段差部を備えている。 なお、 この 段差部はお互いに段差を全周に設けても良いし、 一部に設けてもよい。 その他、 段差部と して機能する有効な手段と しては、 前記段差部の高 さ位置で、 組み合わされる段部分を傾斜を付けたテーパー面にして、 テ —パー面の摺り合わせ位置でス ト ツバ一段差部と しての働きをさせる方 法も考えられる。 Here, the valve sheet 151, the valve receiving sheet 152, and the O-ring 136 are laminated in three stages in the suction and discharge directions as shown in FIG. When assembling the parts, care must be taken to ensure that the suction and discharge sides are aligned. More specifically, the check valve structure may have the following structure. As the stopper portion D, at least a portion of the valve case cylindrical hole at least at a bottom portion has a small diameter. And a second step formed by increasing the diameter of the upper receiving side of the pushing member inserted into the valve case hole. Have. In addition, the steps may be provided on the entire circumference or may be provided partially. Another effective means to function as a step portion is that the combined step portion is formed into a tapered surface with an inclination at the height position of the step portion, and the tapered surface is brought into contact with the tapered surface. It is also conceivable to use a method that works as a single step on the collar.
そして、 本発明は以上の逆止機構の逆止弁構造を有するマイク ロボン プである。 図面の簡単な説明  The present invention is a micro pump having a check valve structure of the above-described check mechanism. BRIEF DESCRIPTION OF THE FIGURES
第 1図 (A ) は、 本発明の実施例である逆止弁 1 に用いるチヤツキバ ルブ 10の上面概略図であり、 第 1図 (B ) はチヤツキバルブ 10の側断 面概略図である。  FIG. 1 (A) is a schematic top view of a check valve 10 used for a check valve 1 according to an embodiment of the present invention, and FIG. 1 (B) is a schematic side sectional view of the check valve 10.
第 2図は、 逆止弁 1 の側断面概略図である。  FIG. 2 is a schematic side sectional view of the check valve 1.
第 3図は、 チヤツキバルブ 10 の変形例を説明する逆止弁 1 の側断面 概略図である。  FIG. 3 is a schematic side sectional view of the check valve 1 for explaining a modification of the check valve 10.
第 4図は、 チヤツキバルブ 10 の他の変形例を説明する逆止弁 1の側 断面概略図である。  FIG. 4 is a schematic side sectional view of the check valve 1 for explaining another modification of the check valve 10.
第 5図は、 チヤツキバルブ 10 の他の変形例を説明する (A ) 上面概 略図、 及び (B ) 側断面概略図である。  FIG. 5 is a schematic (A) top view and a schematic (B) side sectional view illustrating another modification of the check valve 10.
第 6図は、 本発明のフランジシー ト 20 の構成を説明する (A ) 上面 概略図、 及び (B ) 側断面概略図である。  FIG. 6 is a schematic (A) top view and a schematic (B) side sectional view illustrating the configuration of the flange sheet 20 of the present invention.
第 7図は、 従来例であるマイクロポンプ 100 の構成について説明する 概略図である。  FIG. 7 is a schematic diagram illustrating the configuration of a micropump 100 as a conventional example.
第 8図は、 マイクロポンプ 100の構成要素であるポンプへッ ド部 130 の構成について説明する概略図である。 Fig. 8 shows the pump head 130, a component of the micropump 100. It is a schematic diagram explaining the composition of.
第 9図は、 本発明の逆止弁 1 を組み込んだマイクロポンプのポンプへ ッ ド部 130の構成について説明する概略図である。  FIG. 9 is a schematic diagram illustrating the configuration of a pump head section 130 of a micropump incorporating the check valve 1 of the present invention.
第 10図は、 従来例の逆止弁 150を構成するバルブシ一 ト 15 1 の ( A ) 上面概略図、 及び (B ) 側断面概略図である。  FIG. 10 is a schematic (A) top view and a schematic (B) side sectional view of a valve sheet 151 constituting a check valve 150 of a conventional example.
第 11図は、 従来例の逆止弁 150 を構成するバルブ受けシー ト 152 の ( A ) 上面概略図、 及び (B ) 側断面概略図である。  FIG. 11 is a schematic (A) top view and a schematic (B) side sectional view of a valve receiving sheet 152 constituting a check valve 150 of a conventional example.
第 12 図は、 本発明の一実施例である逆止弁保持構造を示す側断面概 略図である。  FIG. 12 is a schematic side sectional view showing a check valve holding structure according to an embodiment of the present invention.
第 13 図は、 本発明の一実施例である逆止弁保持構造を示す正面断面 概略図である。  FIG. 13 is a schematic front sectional view showing a check valve holding structure according to an embodiment of the present invention.
第 14 図は、 本発明の一実施例である逆止弁保持構造を用いたポンプ 構成全体を示す一部断面概略図である。  FIG. 14 is a schematic partial cross-sectional view showing the entire configuration of a pump using a check valve holding structure according to an embodiment of the present invention.
第 15 図は、 本発明のバルブケースのス ト ッパー部の形状構成を説明 する側断面概略図である。  FIG. 15 is a schematic side sectional view for explaining the configuration of the stopper portion of the valve case of the present invention.
第 16 図は、 本発明のプッシング部材のス トッパー部の形状構成を説 明する正面外観図及び側断面概略図である。  FIG. 16 is a front external view and a schematic side sectional view illustrating the configuration of the stopper portion of the pushing member of the present invention.
第 17 図は、 本発明の逆止弁保持構造の構成要素であるバルブケース とプッシング部材の組み合わせ時の高さ寸法を示す側断面概略図である c 第 18図は、 従来の逆止弁保持構造を示す正面断面概略図である。 発明の実施するための最良の形態 Figure 17 is a c Fig. 18 is a side sectional schematic view illustrating the height when merging the valve case and the pushing member that is a component of the check valve holding structure of the present invention, the holding conventional check valve It is a front section schematic diagram showing a structure. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 第 1図および第 2図を用いて本発明に係る逆止弁構造を用いた 逆止弁 1の弾性体バルブ及び逆止弁の保持構造について詳細に説明する。 逆止弁 1は、 第 2図の側断面概略図に示すよ うに、 バルブの受け材と なるフランジシー ト 20 (弾性体ゴムの受け部材) にチヤツキバルブ 10 Hereinafter, the holding structure of the elastic valve and the check valve of the check valve 1 using the check valve structure according to the present invention will be described in detail with reference to FIG. 1 and FIG. As shown in the schematic side sectional view of FIG. 2, the check valve 1 has a check valve 10 on a flange sheet 20 (elastic rubber receiving member) serving as a valve receiving material.
(弾性体ゴムからなる成形品) を図のよ うな対向面になるよ うに重ね、 周縁部 13 の円周面にて相互に押さえつけて密着させた構成である。 こ こでの前記円周面での押さえつけた密着とは、 組み合わされた第 2図の 破線位置に対し、 多少、 中央の孔の縁 (隆起部 2 1 ) との接触部で対向面 方向に弾力性を持たせた状態で保持する設定となっている。 (Molded article made of elastic rubber) are stacked so that they face each other as shown in the figure, and are pressed down and adhered to each other on the circumferential surface of the peripheral portion 13. Here, the pressed adhesion on the circumferential surface is as shown in Fig. 2 With respect to the position indicated by the broken line, the contact portion with the edge of the central hole (the protruding portion 21) is set to be held in a state where it has elasticity in the direction of the facing surface.
よって流体から圧力を受けなく てもチヤツキバルブ 10 はフランジシ —ト 20の孔(20a,20b)を押さえつけるように塞ぐことになる。  Therefore, the check valve 10 closes the holes (20a, 20b) of the flange sheet 20 so as to be pressed down without receiving pressure from the fluid.
チヤツキバルブ 10 は、 前記従来のバルブシー ト 151 と同様に、 ゴム などの弾性材料 (実施例の場合、 耐薬品性に優れたバイ トンゴムを使用) から作製され、 第 1図 (A ) の上面概略図および第 1図 (B ) の側断面 概略図に示すよ うに、 円板形状の中心部に略半球状の栓状部 (チヤツキ 部 11 ) を設け、 さ らに、 栓状部 (チヤツキ部 11 ) の周囲に流体を通す ための開口部 12 を 1 2 0 ° 配分に計 3箇所設けた形状をしている。  The check valve 10 is made of an elastic material such as rubber (in the case of the embodiment, a Viton rubber having excellent chemical resistance) is used as in the case of the conventional valve sheet 151, and is a schematic top view of FIG. 1 (A). As shown in the schematic side cross-sectional view of FIG. 1 (B), a substantially hemispherical plug-shaped portion (checker portion 11) is provided at the center of the disk shape, and the plug-shaped portion (checker portion 11) is further provided. ) Has three openings 12 at 120 ° distribution to allow fluid to pass around.
また、 チヤツキバルブ 10の対向面側は、 チヤツキ部 11から続く薄肉 部 14が、 周縁部 13 の密着部側で段差が付けられ窪んでおり、 フランジ シー ト 20 とは間隙を設ける設計となっている。 すなわち、 チヤツキバ ノレブ 10をフランジシ一 ト 20に対向させ、 チヤツキ部 11力 S孔(20a,20b) に填るよ うに重ねると、 チヤツキ部 11 は孔(20a, 20b)の周縁部に線接触 することになる。  In addition, on the opposite surface side of the check valve 10, a thin portion 14 continuing from the check portion 11 is recessed with a step at the close contact portion side of the peripheral portion 13, and is designed to have a gap with the flange sheet 20. . In other words, when the chuck boss 10 is opposed to the flange sheet 20 and overlapped so as to fit into the check portion 11 force S hole (20a, 20b), the check portion 11 comes into line contact with the peripheral portion of the hole (20a, 20b). Will be.
逆止弁 150は、 第 12図及び第 13図の断面概略図及び第 14図のボン プ全体の部分断面図に示すよ うに、 例えばマイク口ポンプ機構部 100の ポンプ部 130 位置に逆止手段と して用いられ、 金属製のバルブケース 13 1 に設けられた円筒状穴部に、 O リ ング 136 と逆止弁 150 を構成する バルブシー ト 151 (弾性シー ト)、 バルブ受けシー ト 152 とを、 送流方 向下流側から前記の順番に配置させるように填め込み、 さ らに穴に金属 製のプッシング部材 134を挿入し填め込んだ構造である。  As shown in the schematic cross-sectional views of FIGS. 12 and 13 and the partial cross-sectional view of the entire pump in FIG. 14, the check valve 150 is provided at the position of the pump section 130 of the microphone port pump mechanism section 100, for example. The valve seat 151 (elastic sheet) and the valve receiving sheet 152 that constitute the O-ring 136 and the check valve 150 are formed in the cylindrical holes provided in the metal valve case 131. Are inserted from the downstream side in the flow direction so as to be arranged in the above order, and a metal pushing member 134 is inserted and inserted into the hole.
ここで、 プッシング部材 134の上方には、 従来例と同様に、 ガスケッ ト 220及び金属製のバルブへッ ド 200が重ねられており、 さ らにバルブ へッ ド 200はボルト 202 によ りバルブケース 131側に固定されている。  Here, a gasket 220 and a metal valve head 200 are superimposed above the pushing member 134, as in the conventional example, and the valve head 200 is further bolted by a bolt 202. It is fixed to the case 131 side.
またバルブケース 131 の円筒状の二つの深穴は、 第 15 図の断面概略 図に示すよ うに、 円径の穴部には開口側の径が大な部分 Hとそれより径 が小な部分 Kがつながり、 さ らに深穴の底部にはチヤンバ一 133 内に通 じる孔 133a, 133bが形成されている。 As shown in the schematic cross-sectional view of Fig. 15, the two cylindrical deep holes of the valve case 131 have a large diameter H on the opening side and a small diameter H on the circular side. K is connected, and the bottom of the deep hole passes through the chamber 133. Twist holes 133a and 133b are formed.
さらにこれに組み合わされる二つのプッシング部材 134 は、 第 16 図 (外観図と断面図) に示されるよ うに、 円筒形状の側面に前記吸排出口 と連通する吸入路 135 a又は排出路 135bとなる導入部 Gを一力所に有し. その外観形状は前記バルブケース 131の内径部分の大小の径の段差部と 嵌合する形状で、 円筒外形側に小径部 S と大径部 Rからなる段差部 (ス トッパー部 D ) を設けたものである。  Further, as shown in FIG. 16 (external view and cross-sectional view), the two pushing members 134 combined with the push member 134 form an inlet passage 135a or a discharge passage 135b communicating with the suction / discharge port on the cylindrical side surface. The outer shape of the valve case 131 is a shape that fits into the large and small diameter steps of the inner diameter of the valve case 131, and the step formed by the small diameter section S and the large diameter section R on the cylindrical outer side. Section (stopper section D).
この逆止弁構造の用途と しては、 例えば医療機器、 化学分析機器等に 用いれる小型の微量流体供給装置で、 特に液体 Z気体、 双方の流体を交 互に使用できる高精度なマイクロポンプがある。 よ り具体的には、 前記 第 7図に示すよ うなマイク口ポンプ 100において、 ポンプへッ ド部 130 の従来の逆止弁構造の代わりに用いる。  The non-return valve structure is used, for example, in small-scale microfluid supply devices used in medical equipment, chemical analysis equipment, etc., and in particular, high-precision micropumps that can alternately use liquid Z gas and both fluids. There is. More specifically, the microphone head pump 100 as shown in FIG. 7 is used instead of the conventional check valve structure of the pump head 130.
なお、 チヤツキ部 11 の形状はドーム型の半球状に限定されるもので はなく、 例えば第 3図、 第 4図の断面概略図に示すよ うにしてもよく、 また、 第 5図の断面概略図に示すよ う に、 裏層 11 aを表層と類似形状で 空洞と してもよく、 これらは全て同様な効果が得られる。  The shape of the check section 11 is not limited to a dome-shaped hemisphere, and may be, for example, as shown in the schematic cross-sectional views of FIGS. 3 and 4. As shown in the schematic diagram, the back layer 11a may be hollow with a shape similar to the surface layer, and all of them have the same effect.
次に、 第 6図を用いて逆止弁構造の他方、 バルブの受け部材 (フラン ジシ一 ト) について説明する。  Next, the valve receiving member (flange sheet) of the other side of the check valve structure will be described with reference to FIG.
逆止弁 1 の構造は、 従来の逆止弁 150 と概略同じ部品構成であるが、 バルブ受けシ一 ト 152の代わりに、 新規構造である第 6図 ( A ) の上面 概略図および第 6図 (B ) の側断面概略図に示すフランジシ一ト 20 (受 け部材) を新たに採用したものである。  The structure of the check valve 1 is substantially the same as that of the conventional check valve 150, except that the valve receiving sheet 152 is replaced by a new structure shown in FIG. 6 (A). The flange sheet 20 (receiving member) shown in the schematic side sectional view of Fig. (B) is newly adopted.
このフランジシー ト 20は、 例えばチヤツキバルブ 10 と同様に弾性体 ゴム製であり、円板の中心に流体を通すための孔(20a,20b)を有し、また、 従来の平板平面状のバルブシー ト 15 1 を当接させる受け面には、 孔 (20a,20b)の周縁部に断面が半円で、 頂部は周縁部 23 より も高い隆起部 21を新たに設け、 さ らに、 外周の周縁部 23 を除いて円周内域に段差を 設けることにより形成される凹部 22が新たに追加されている。  This flange sheet 20 is made of an elastic rubber like the check valve 10, for example, has holes (20a, 20b) for fluid to pass through the center of the disk, and has a conventional flat plate-like valve sheet. The receiving surface against which 1 abuts has a semicircular cross section at the periphery of the hole (20a, 20b), and a new protuberance 21 is provided at the top, which is higher than the periphery 23. A concave portion 22 formed by providing a step inside the circumference except for the portion 23 is newly added.
実際に本発明の逆止弁 1 をマイクロポンプに組み込んだものを第 9図 に示す。 Fig. 9 shows the actual check valve 1 of the present invention incorporated in a micropump. Shown in
図において逆止弁構造の基本的な作動原理は、 前記記述した従来のも のと同様で説明を省略するが、 逆止弁と しては一部複雑な形状である割 には、 同サイズでコンパク 卜にバルブケース 131 円筒穴部分に積層され 填め込まれている。  In the figure, the basic operating principle of the check valve structure is the same as that of the conventional one described above, and the description is omitted. However, although the check valve has a partially complicated shape, it has the same size. The valve case 131 is laminated and inserted into the cylindrical hole of the valve case.
ここで本実施例においては前記のよ うな新規なチヤツキバルブ 10 を 用いているが、 代わり に従来タイプの平板状の平面バルブシー ト 151 を 仮に用いても、 その効果は十分に得られる構造と している。 すなわち、 従来のバルブシー ト 151 とフランジシ一 ト 20 とは、隆起部 21 と周縁部 23 とを除いて接することななく、 また、 隆起部 21 とバルブシー ト 151 の接触部とは、 やはり線接触しているので、 可動部分での面同士の密着 はなくなる。  Here, in the present embodiment, the novel check valve 10 as described above is used. However, even if a conventional flat plate valve sheet 151 of a conventional type is used instead, the effect can be sufficiently obtained. I have. That is, the conventional valve sheet 151 and the flange sheet 20 do not come into contact with each other except for the raised portion 21 and the peripheral portion 23, and the contact portion between the raised portion 21 and the valve sheet 151 still has a line contact. As a result, there is no close contact between the surfaces at the movable part.
このよ う に本実施例では、 新規なチヤツキバルブ 10 と新規なフラン ジシート 20 を初めて組み合わせたが、 どちらか一方の構造を従来バル ブシ一ト 151、 又はバルブ受けシート 152 と組み合わせて使用すること も可能であり、 コス ト と使用目的に応じて上記組み合わせを選択するこ とは自由である。  As described above, in the present embodiment, the new check valve 10 and the new flange seat 20 are combined for the first time, but either one of the structures may be used in combination with the conventional valve seat 151 or the valve receiving seat 152. It is possible, and the above combinations can be freely selected according to cost and purpose of use.
ここで付け加えておく力 本発明におけるバルブ成形体 (例えばチヤ ツキバルブ 10)、 及びバルブ受け部材 (例えばフランジシー ト 20) は、 耐薬品性に優れた弾性体ゴム (例えばバイ トンゴム等) と したが、 部品 材質については一部、 又は全ての部分が金属製であっても良い。  Force to be added Here, the valve molded body (for example, the check valve 10) and the valve receiving member (for example, the flange sheet 20) of the present invention are made of an elastic rubber (for example, Viton rubber or the like) having excellent chemical resistance. Some or all parts may be made of metal.
例えば、 チヤツキ部 11 をボールベアリ ングなどに用いられる小径の スチールボールと し、この球体を片側から覆うパネ性のある金属薄板で、 前記構造の薄肉部 14と周縁部 13を一体にプレス成形した金属製のバル ブ成形体や、 またフランジシー ト 20においても、 前記隆起部 21 と周縁 部 13 の表面を鏡面状態に処理した金属製のフランジ成形体とすること も考えられる。  For example, the check portion 11 is a small-diameter steel ball used for ball bearing and the like, and a thin metal plate having a panel-like property that covers the sphere from one side, and the thin portion 14 and the peripheral portion 13 of the above-described structure are press-formed integrally. It is also conceivable that the flanged sheet 20 or the flange sheet 20 may be made of a metal flange formed by treating the surfaces of the raised portion 21 and the peripheral portion 13 into a mirror-finished state.
この金属製の逆止弁は、 液体ノ流体を問わず、 数ミ ク ロン程度の硬質 素材からなる溶媒混合の顆粒 (例えばセラミ ックスパウダー、 カラスビ ース、 ダイヤモン ドパウダー等) を含む流体を送流することも可能であ る。 This check valve made of metal is made of a hard mixed material of a few micron, regardless of liquid or fluid. It is also possible to send fluids containing powder, diamond powder, etc.).
次に本発明の前記逆止弁保持部品のみを組み込んだものを、 第 17 図 に示す。 図において逆止弁保持構造の基本的な寸法設定管理は、 次の通 りである。  Next, FIG. 17 shows a case where only the check valve holding part of the present invention is incorporated. In the figure, the basic dimensional setting management of the check valve holding structure is as follows.
ス ト ッパ一部分 Dは、 バルブケース 13 1 円筒穴内部の底部側の少なく とも一部を小径にすることによ り形成される第 1の段差部であり、また、 円筒穴内部に押し込まれるプッシング部材 134の上部受止め側を大径に することにより形成される第 2の段差部を備えている。  The stopper portion D is a first step portion formed by reducing at least a portion of the valve case 13 1 at least a portion on the bottom side inside the cylindrical hole, and is pushed into the cylindrical hole. A second stepped portion formed by increasing the diameter of the upper receiving side of the pushing member 134 is provided.
前記に記述したス ト ッパー部 Dの構成によ り、 逆止弁保持構造と して は、 バルブケース 13 1のそれぞれの円筒状穴部の一部分の寸法 Wの高さ 寸法管理を正確に制御すればよいこと となり、 実際には、 逆止弁挿入部 分の寸法 Wの値は、前記第 15図に記載のバルブケース 13 1の寸法 Tと、 前記第 16 図に記載のプッシング部材 134 の寸法 Vとの差によ り事実上 管理されている。  With the configuration of the stopper portion D described above, the check valve holding structure accurately controls the height W of the portion W of each of the cylindrical holes of the valve case 131 and the dimensional control. In practice, the value of the dimension W of the check valve insertion portion is determined by the dimension T of the valve case 131 shown in FIG. 15 and the pushing member 134 shown in FIG. It is effectively controlled by the difference from the dimension V.
これによ り、 従来のよ うなボル トの締め付け トルクによるプッシング 部材の高さ寸法管理等の組立作業における構造上の調整、 また専用冶具 や測定機による確認などは、 上記構造ではいつさい不要となる。 また同 様に故障等による分解修理が容易になり、 開閉弁と共に積層される Oリ ングに対するつぶし代 (クランプ圧) は技術熟練者でなく とも必然的に 一定となる。 よって微調整せずに内部の気密が ί呆たれ、 メ ンテナンス性 に優れた保持構造となる。  As a result, structural adjustments in the assembly work such as the height dimension management of the pushing member using the bolt tightening torque as in the past, and confirmation with a dedicated jig or measuring machine are no longer necessary with the above structure. Become. Similarly, it is easy to disassemble and repair due to failures and the like, and the crushing allowance (clamp pressure) for the O-ring laminated with the on-off valve is inevitably constant even for non-technical experts. Therefore, the inside airtightness is noticeable without fine adjustment, and the holding structure is excellent in maintenance.
以上より、 本発明に係る逆止弁構造によれば、 前記チヤツキバルブの 接触部と前記フランジシ一 ト中心の孔の周縁部とは線接触状態で開閉弁 作動するため、 液体を流しても前記チヤツキバルブ部材と前記フランジ シー ト部材とが残留した前記液体を介して貼り付く ことはない。従って、 一つの装置で気体のみならず液体も併用して流すことができる逆止弁構 造が得られる。  As described above, according to the check valve structure of the present invention, the opening / closing valve operates in a line contact state between the contact portion of the check valve and the peripheral portion of the hole at the center of the flange sheet. The member and the flange sheet member do not adhere via the remaining liquid. Therefore, a check valve structure that can flow not only gas but also liquid in one device can be obtained.
また、 本発明に係る逆止弁構造によれば、 開閉弁を構成する 2つの部 品の前記接触部と前記孔の周縁部の接触圧、 すなわち逆止圧は、 全周が リ ング状に線接触状態と したため、 単位面積当たりの圧力は従来よ り高 く なり、 逆止弁と しての流体の逆流遮断はより優れたものとなる。 よつ て、 高精度な制御ができ、 小型で汎用性のあるマイク ロポンプが得られ る。 Further, according to the check valve structure of the present invention, two parts constituting the on-off valve are provided. The contact pressure between the contact part of the product and the peripheral edge of the hole, that is, the check pressure, is that the entire circumference is in a line contact state in a ring shape, so the pressure per unit area is higher than before and the check valve As a result, the backflow blocking of the fluid is better. As a result, a high-precision control can be performed, and a compact and versatile micropump can be obtained.
つまり、 本発明に係る逆止弁構造は、 気体/液体の双方を交互に流す 場合においても開閉弁部分での動作不良が起こらず、 機能的に応答性に 優れ、 かつメ ンテナンスが容易で十分な逆止効果を得られると共に、 液 体 Z気体の双方の流体を交互に搬送でき、 かつ高精度に供給制御するこ とが可能で、 なおかつ、 故障がなく信頼性が高いマイクロポンプを提供 することができる。  In other words, the check valve structure according to the present invention does not cause a malfunction in the on-off valve portion even when both gas and liquid are alternately flowed, has excellent responsiveness in function, and is easy to maintain and is sufficient. To provide a highly reliable micropump that can achieve both a non-return effect and can alternately transport both liquid and gaseous Z and can control supply with high precision. be able to.
さ らに、 本発明に係る逆止弁構造によれば、 気体/液体の双方を交互 に流す過酷な条件によって発生した開閉弁部分の動作不良問題において も、 分解作業の機能性に優れ、 かつ開閉弁のク リーニング (メンテナン ス) が容易で、 組立時の開閉弁部分の oリ ングに対するク ランプ圧調整 作業が不要な、 かつ十分な逆止効果が得られる逆止弁の保持構造を提供 することができる。  Furthermore, according to the check valve structure of the present invention, even in the problem of malfunction of the on-off valve portion caused by the severe condition of alternately flowing gas / liquid, the function of the disassembling operation is excellent, and Provides a check valve holding structure that facilitates cleaning (maintenance) of the on-off valve, does not require clamping pressure adjustment for the o-ring of the on-off valve during assembly, and has a sufficient check effect. can do.
また、 この逆止弁の保持構造を用いることによ り、 ポンプの保守と し て毎回使用するごとに分解掃除しても手間にならず、 液体 Z気体の双方 の流体を良好に搬送できるポンプの開閉弁部分の保守点検がしゃすく な る。 また、 修理およびメンテナンスコス トが削減でき、 故障のない信頼 性あるマイク口ポンプを常に提供することができる。 産業上の利用可能性  In addition, the use of this check valve holding structure eliminates the hassle of disassembling and cleaning the pump every time it is used for maintenance. Maintenance inspection of the on-off valve part becomes difficult. In addition, repair and maintenance costs can be reduced, and a reliable microphone-free pump without any failure can always be provided. Industrial applicability
以上のように、 本発明にかかる逆止弁構造およびそれを用いたマイク 口ポンプは、 医療機器、 化学分析機器等に用いるための小型の微量流体 供給装置に有用であり、 特に液体 Z気体、 双方の流体物を交互に使用し た場合においても、 高精度に送体を供給制御する逆止弁機構を有するマ イク口ポンプ構造に適する。  As described above, the check valve structure and the microphone pump using the same according to the present invention are useful for a small-sized microfluid supply device for use in medical equipment, chemical analysis equipment, and the like. Even when both fluids are used alternately, it is suitable for a microphone port pump structure that has a check valve mechanism that controls supply of feeder with high accuracy.

Claims

請 求 の 範 囲 The scope of the claims
1 . 流体の送流方向入口側に位置していて流体を通す孔を中心に有する 受け部材と、 流体の送流方向出口側に位置していて流体を通す開口部を 同心円上の周縁位置に有するバルブ成形体とを、 前記孔と前記開口部の 配置が重なり合わない組み合わせで対面させ、 前記バルブ成形体を前記 受け部材に密着させることによ り、 流体が逆流することを防ぐ逆止弁構 造において、 1. A receiving member which is located at the inlet side of the fluid flow direction and has a hole through which the fluid flows, and an opening which is located at the outlet side of the fluid flow direction and which allows the fluid to pass therethrough are located at concentric peripheral positions. A check valve that prevents fluid from flowing back by bringing the valve molded body into contact with the valve molded body in a combination in which the arrangement of the hole and the opening does not overlap with each other, and bringing the valve molded body into close contact with the receiving member. In the structure,
前記バルブ成形体は、 前記受け部材との対向側片面円中心の中央部に 凸部 (チヤツキ部 11 ) が設けられ、 前記受け部材の孔 (20 a、 20b ) の入 り 口部円周の稜線全周で線接触する接触部を有し、 かつ前記バルブ成形 体中央の凸部 (チヤツキ部 11 ) から円周方向に延びた薄肉部 (14) の外 周に位置する前記受け部材に平面が密着する リ ング状密着部 (例えば周 縁部 13) とを備えたことを特徴とする逆止弁構造。  The valve molded body is provided with a convex portion (chuck portion 11) at the center of the center of the one-sided circle on the opposite side to the receiving member, and the periphery of the entrance of the hole (20 a, 20 b) of the receiving member. A flat surface is formed on the receiving member which has a contact portion which makes line contact all around the ridge line and which is located on the outer periphery of a thin portion (14) extending in the circumferential direction from a convex portion (chuck portion 11) at the center of the valve molded body. A check valve structure comprising: a ring-shaped contact portion (for example, a peripheral portion 13) with which the contact portion comes into close contact.
2 . 前記接触部を、 円盤状弾性体バルブ本体から立設して、 中央部 (チ ャツキ部 11 ) 凸形状がドーム状、 円錐状、 円弧状、 または一部が先端側 に向けてテーパー状に細く 、 前記受け部材側の孔縁部分に対し角度をも つて同周面で線接触し、 受け部材の孔に填る栓状部材と したことを特徴 とする請求項 1 に記載の逆止弁構造。 2. The contact part is erected from the disk-shaped elastic valve body, and the central part (chuck part 11) is convex, dome-shaped, conical, arc-shaped, or partially tapered toward the distal end. 2. The check member according to claim 1, wherein the stopper member is formed into a plug-like member which is line-contacted on the same peripheral surface at an angle to an edge portion of the hole on the receiving member side and fits into the hole of the receiving member. Valve structure.
3 . 前記バルブ成形体中央の凸部 (チヤツキ部 11 ) は、 受け部材の孔に 接する表層側を除いて、 裏層が略半球状凹形状にえぐられて空洞となつ ていることを特徴とする請求項 2に記載の逆止弁構造。 3. The convex portion (chuck portion 11) at the center of the valve molded body is characterized in that the back layer is hollowed out in a substantially hemispherical concave shape except for the surface layer side in contact with the hole of the receiving member. 3. The check valve structure according to claim 2, wherein:
4 . 前記受け部材の孔の周縁部全周を隆起させた隆起部を設けることに より、 前記孔の端部とバルブ成形体の凸部 (チヤツキ部 11 )、 あるいは 平面板状の弾性体バルブシー トとの接触部を線接触させることを特徴と する請求項 1〜請求項 3のいずれかに記載の逆止弁構造。 4. By providing a protruding portion that protrudes the entire periphery of the hole of the receiving member, the end of the hole and the protruding portion (chuck portion 11) of the valve molded body, or a flat plate-shaped elastic valve seat The check valve structure according to any one of claims 1 to 3, wherein a contact portion with the contact is in linear contact.
5 . 流体の送流方向入口側に位置していて流体を通す孔を中心に有する バルブ受けシー トと、 流体の送流方向出口側に位置していて流体を通す 開口部を同心円上の周縁位置に有するバルブシー 卜とを、 前記孔と前記 開口部の配置が重なり合わない組み合わせで対面させ、 これらを底部に 前記流体を送通すための吸排出用の穴を有するバルブケースの円筒穴内 部に、 それぞれ送流方向出口側に一つの〇リ ングを介して落と し込み、 さらに前記バルブケース内に同寸径の円筒状のプッシング部材を押し込 むことにより構成される逆止弁構造において、 5. A valve receiving sheet positioned at the inlet side of the fluid flow direction and having a hole through which the fluid passes, and a concentric peripheral edge of the opening located at the outlet side of the fluid flow direction and passing the fluid The valve sheet at the position is faced with a combination in which the arrangement of the hole and the opening does not overlap, and these are placed inside the cylindrical hole of the valve case having a suction / discharge hole for transmitting the fluid at the bottom. However, in a check valve structure constituted by dropping through a single ring on each outlet side in the flow direction and further pushing a cylindrical pushing member having the same diameter into the valve case,
前記バルブシー トを前記バルブ受けシー トに密着させるための円筒状 プッシング部材の外周面の一部、 及び該プッシング部材を内挿するバル ブケース側の円筒内部穴内壁の一部に、 お互いが受止め段差となるス ト ツバ一部分を設け、 バルブケースの円筒内部に対し、 前記プッシング部 材の小径部先端の押し込み深さが常に一定となるように構成したことを 特徴とする逆止弁の保持構造。  A part of the outer peripheral surface of the cylindrical pushing member for bringing the valve sheet into close contact with the valve receiving sheet, and a part of the inner wall of the cylindrical inner hole of the valve case side into which the pushing member is inserted, are mutually received. A check valve holding structure, characterized in that a part of a flange that forms a step is provided so that the depth of the tip of the small diameter portion of the pushing member is always constant with respect to the inside of the cylinder of the valve case. .
6 . 前記ス トッパー部分は、 バルブケース円筒穴内部の底部側の少なく とも一部を小径にすることによ り形成される第 1 の段差部であり、また、 前記円筒穴内部に押し込まれるプッシング部材の上部受止め側を大径に することによ り形成される第 2の段差部を備えることを特徴とする請求 項 5に記載の逆止弁の保持構造。 6. The stopper portion is a first step formed by reducing the diameter of at least a part of the bottom side inside the valve case cylindrical hole, and the pushing is pushed into the cylindrical hole. 6. The check valve holding structure according to claim 5, further comprising a second step portion formed by making the upper receiving side of the member larger in diameter.
7 . 請求項 1〜請求項 6のいずれかに記載の逆止構造の逆止弁を有する ことを特徴とするマイクロポンプ。 7. A micropump comprising the check valve according to any one of claims 1 to 6.
PCT/JP2000/004113 1999-06-23 2000-06-23 Check valve structure and micro-pump using it WO2001001024A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP11177543A JP2001012356A (en) 1999-06-23 1999-06-23 Check valve structure and micropump using it
JP11/177543 1999-06-23
JP25514499A JP2001082619A (en) 1999-09-09 1999-09-09 Holding structure of check valve
JP11/255144 1999-09-09

Publications (1)

Publication Number Publication Date
WO2001001024A1 true WO2001001024A1 (en) 2001-01-04

Family

ID=26498057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004113 WO2001001024A1 (en) 1999-06-23 2000-06-23 Check valve structure and micro-pump using it

Country Status (1)

Country Link
WO (1) WO2001001024A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006109801A (en) * 2004-10-18 2006-04-27 Toru Akazawa Processed bean and method for producing the same
US20190350404A1 (en) * 2017-02-09 2019-11-21 Societe Des Produits Nestle S.A. Membrane pump for beverage preparation module
US11662034B2 (en) 2019-07-24 2023-05-30 Quest Medical, Inc. Filtered vacuum relief vent valve

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5027001Y1 (en) * 1969-12-19 1975-08-12
JPS50115232U (en) * 1974-02-28 1975-09-19
JPS5480133U (en) * 1977-11-18 1979-06-07
JPS6084870U (en) * 1983-11-15 1985-06-11 株式会社ナブコ Negative pressure check valve
JPH0247331Y2 (en) * 1980-06-26 1990-12-12
JPH03117857U (en) * 1990-03-16 1991-12-05
JPH09509728A (en) * 1994-12-21 1997-09-30 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Check valve

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5027001Y1 (en) * 1969-12-19 1975-08-12
JPS50115232U (en) * 1974-02-28 1975-09-19
JPS5480133U (en) * 1977-11-18 1979-06-07
JPH0247331Y2 (en) * 1980-06-26 1990-12-12
JPS6084870U (en) * 1983-11-15 1985-06-11 株式会社ナブコ Negative pressure check valve
JPH03117857U (en) * 1990-03-16 1991-12-05
JPH09509728A (en) * 1994-12-21 1997-09-30 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Check valve

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006109801A (en) * 2004-10-18 2006-04-27 Toru Akazawa Processed bean and method for producing the same
US20190350404A1 (en) * 2017-02-09 2019-11-21 Societe Des Produits Nestle S.A. Membrane pump for beverage preparation module
US11662034B2 (en) 2019-07-24 2023-05-30 Quest Medical, Inc. Filtered vacuum relief vent valve

Similar Documents

Publication Publication Date Title
US6827559B2 (en) Piezoelectric micropump with diaphragm and valves
US20030194332A1 (en) Diaphragm pump
EP2438335B1 (en) Valve
US20040136843A1 (en) Diaphragm pump
JP5189227B2 (en) Multi-layer diaphragm
US20070048188A1 (en) Multi-channel pipette device
JPH10512351A (en) Three-way poppet valve device
US20040109769A1 (en) Diaphragm pump
JP2001012356A (en) Check valve structure and micropump using it
JP5191618B2 (en) Liquid feed pump and flow control device
JP2016075300A (en) Small-sized solenoid valve
WO2001001024A1 (en) Check valve structure and micro-pump using it
JP5221993B2 (en) Microvalves and micropumps
JPH01219369A (en) Trace quantity pumping plant
EP3660309B1 (en) Diaphragm pump
JP6650576B2 (en) Liquid ejection device
JP2020063777A (en) Diaphragm valve
EP0393800B1 (en) Valve device
JP2003247658A (en) Valve device and device for continuously feeding powder
JP6646809B2 (en) Discharge nozzle for liquid discharge
JP2001082619A (en) Holding structure of check valve
JPH06147124A (en) Annular valve type air compressor with deformable annular valve
CN110725792B (en) Hydraulic diaphragm pump and combined cylindrical diaphragm assembly
WO2020217961A1 (en) Diaphragm, valve, and film forming method
JP6941087B2 (en) Valve device and solenoid valve

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase