JPH01219369A - Trace quantity pumping plant - Google Patents

Trace quantity pumping plant

Info

Publication number
JPH01219369A
JPH01219369A JP4202688A JP4202688A JPH01219369A JP H01219369 A JPH01219369 A JP H01219369A JP 4202688 A JP4202688 A JP 4202688A JP 4202688 A JP4202688 A JP 4202688A JP H01219369 A JPH01219369 A JP H01219369A
Authority
JP
Japan
Prior art keywords
fluid
thin
disk
orifice hole
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4202688A
Other languages
Japanese (ja)
Inventor
Kuniyoshi Tsubouchi
邦良 坪内
Shohei Yoshida
正平 吉田
Tsutomu Okuzawa
奥沢 務
Toru Arai
新井 亨
Nobuo Hamano
浜野 亘男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4202688A priority Critical patent/JPH01219369A/en
Publication of JPH01219369A publication Critical patent/JPH01219369A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make even a trace fluid stably transferrable by applying optional high-frequency excitation to a wall of a vortex type fluid diode with an exciting element such as a piezoelectric element or the like. CONSTITUTION:When a high-frequency signal is fed to electrodes 11, 11' and 14, 14' set up both sides of piezoelectric ceramics 9, 10 installed as a partition wall for a fluid diode type vortex chamber 6 from high-frequency power sources 17, 18, vibro-respiration is started in the thickness direction of the vortex chamber 6 by a piezoelectric effect. A flow being induced by respiratory vibration in the vortex chamber 6 is able to have a fluid transfer characteristic because a flow of an outflow nozzle 3 from an orifice hole 19 becomes dominant owing to characteristic of the fluid diode. In addition, transfer flow and pump head are optionally controllable by selection of frequency of this respiratory vibration and the amplitude value.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明はポンプ等の微量流体移送装置に係り、特に、被
移送流体による装置の汚染が少なく、流量制御が容易な
試料注入用微量ポンプに関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a microfluid transfer device such as a pump, and particularly relates to a microvolume pump for sample injection, which has less contamination of the device by the fluid to be transferred and can easily control the flow rate. .

〔従来の技術〕[Conventional technology]

従来、バイオ関連の分析機器や分離精製装置の試料注入
用の微量液送制御装置として、シリンジポンプやチュー
ブポンプ等が使用され、流路の切換装置としてピンチバ
ルブや蝋磁弁などが知られている。これらの液送制御装
置は、微小量の試料を高精度に移送制御することが可能
である。
Conventionally, syringe pumps, tube pumps, etc. have been used as micro-liquid transport control devices for sample injection in bio-related analysis equipment and separation and purification equipment, and pinch valves, wax valves, etc. are known as flow path switching devices. There is. These liquid transfer control devices are capable of controlling transfer of minute amounts of samples with high precision.

(発明が解決しようとする課題〕 しかし、これらの液送制御装置では、液送ポンプや制御
弁に摺動部をもつため、バルブやポンプの微小隙間に試
料が入り込むことが多い。一般に、バイオ関連機器では
、対象試料としてホルモンや酵素等の生理活性物質や細
胞などを使用する。このような試料が微小隙間に入ると
、長時間経過後に活性が失われ、変質など生物的な汚染
につながる。すなわち、分析、あるいは、分離精製装置
に供給される新鮮な試料や別種の試料が、この変質試料
の微量混入により悪影響を受ける恐れが多く、性能、信
頼性の面で重大な不都合を生じる。さらに、シリンジポ
ンプは、微量液送に好適なポンプではあるが、その送液
原理から連続送液が不可能であり、又、チューブポンプ
は、微量液送の場合に脈動流の影響で安定性が悪くなる
欠点をもっている。
(Problem to be solved by the invention) However, since these liquid feeding control devices have sliding parts in the liquid feeding pump and control valve, samples often enter the minute gaps between the valves and pumps. Related equipment uses physiologically active substances such as hormones and enzymes, cells, etc. as target samples.If such samples enter minute gaps, their activity will be lost after a long period of time, leading to biological contamination such as deterioration. In other words, fresh samples or samples of different types supplied to analysis or separation and purification equipment are likely to be adversely affected by the contamination of minute amounts of this denatured sample, resulting in serious inconveniences in terms of performance and reliability. Furthermore, although syringe pumps are suitable for transporting small amounts of liquid, their principle of liquid transport makes it impossible to continuously pump liquids, and tube pumps are unstable due to the effects of pulsating flow when transporting small amounts of liquid. It has the disadvantage of becoming worse.

本発明の目的は、移送対象試料の汚染が少なく、微量流
体でも安定して移送できる信頼性の高い小型の試料注入
制御装置を提供することにある。
An object of the present invention is to provide a highly reliable, small-sized sample injection control device that is capable of stably transferring even a minute amount of fluid with less contamination of the sample to be transferred.

(課題を解決するための手段〕 上記目的のため、本発明は、逆流抵抗の大きな渦流型流
体ダイオードの流路壁面に、圧電素子や電歪素子等の加
振素子を設けて高周波信号を与えることによって、摺動
部の少ない微量試料注入ポンプを実現するとともに、こ
の流体ダイオードの流出ノズルを中央部にはさんで、両
側を同じ構造の緩衝液用の流体ダイオードポンプの流出
ノズルを配設する。特に、この流体ダイオードの満室や
上・下壁に設ける加振素子等を薄板を用いて多層に重ね
合せて構成した、いわゆる薄形フローセル構造を採用し
たことを特徴とする。
(Means for Solving the Problems) For the above-mentioned purpose, the present invention provides a vibration element such as a piezoelectric element or an electrostrictive element on the flow path wall surface of an eddy current fluid diode with a large backflow resistance to apply a high frequency signal. By doing so, a micro sample injection pump with fewer sliding parts is realized, and the outflow nozzle of this fluidic diode is sandwiched in the center, and the outflow nozzle of a fluidic diode pump for buffer solution with the same structure is placed on both sides. In particular, it is characterized by the adoption of a so-called thin flow cell structure in which vibration elements and the like provided on the upper and lower walls of the fluidic diode are stacked in multiple layers using thin plates.

〔作用〕[Effect]

すなわち、渦流型流体ダイオードの壁面を圧電素子等の
加振素子で任意の高周波加振することによって、脈動が
少なく、摺動部の少ない微量の液送制御が可能となり、
試料注入用の流体ダイオード流出ノズル部から流出する
試料の流れを、緩衝液用の二つの流体ダイオードの流出
ノズルから流出する緩衝液で包み込むことが可能であり
、いわゆる、シースフローを実現できるので、試料汚染
の少ない、信頼性の高い微量な試料の注入制御を実現す
ることができる。
In other words, by subjecting the wall surface of an eddy current fluid diode to arbitrary high-frequency vibration using an excitation element such as a piezoelectric element, it becomes possible to control the flow of a minute amount of liquid with less pulsation and fewer sliding parts.
It is possible to envelop the flow of the sample flowing out from the outflow nozzle of the fluid diode for sample injection with the buffer solution flowing out from the outflow nozzles of the two fluid diodes for buffer solution, and it is possible to realize a so-called sheath flow. It is possible to realize highly reliable injection control of a minute amount of sample with less sample contamination.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図乃至第4図により詳細
に説明する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to FIGS. 1 to 4.

第1図に示すように、本実施例は薄板状のフローセルを
基本構造とし、フローセルの三個のノズルへの供給室を
渦流型流体ダイオード構造を採用したことを特徴として
いる。すなわち、薄板状のフローセル1に、一部をカッ
トした流路2を設けるとともに、この流路2の流出端に
対向する位置に、中央部の試料注入用の流出ノズル3を
はさんで、緩衝液用の流出ノズル4,5を配設するとと
もに、これら三個の流出ノズル3,4.5は、それぞれ
試料、及び、緩衝液を供給するための円形の空間6,7
.8と連通させる。この空間6,7゜8は、ノズル3,
4.5がこの円形空間の接線方向の外周部から連通させ
て、流れが渦巻形になるような渦室構造とする。この薄
板のフローセル1の上・下壁として、例えば、チタン酸
バリウム等に代表される圧電セラミックスからなる薄板
9゜10を多層に重ね合せるとともに、三個の渦室部6
.7.8の壁面部に相当する場所に、この圧電セラミッ
クス9,10をはさんで、上下壁面に渦室形状の薄板状
の電極11,12,13及び14゜15.16を設ける
。これらの電極は、互いに導通しないように絶縁して構
成され、夫々の電極には、高周波加振電源17,18と
導通させる。特に、本発明では、これら渦室6,7.8
の片方の電極14,15.16をもつ圧電セラミックス
板10には、渦室6,7.8の中心部位置にオリフィス
孔19,20.21を設け、薄板フローセル1と対応す
る側に、試料供給室23、及び、緩衝液供給室24を有
する板状の支持板22に配設し、この試料供給室23と
渦室6.緩衝液供給室24と渦室7,8とを連通させて
構成する。尚、この試料供給室23及び緩衝液供給室2
4には、外部から試料及び緩衝液を供給する試料供給管
25及び緩衝液供給管26も対抗して連通ずるよう構成
する。従って、渦室6,7.8は、中心部に流入オリフ
ィス孔19,20.21を、外周部に流出ノズル3,4
.5をもついわゆる渦流形ダイオード構造をもつことに
なる。
As shown in FIG. 1, this embodiment has a basic structure of a thin plate-shaped flow cell, and is characterized in that the supply chambers to the three nozzles of the flow cell have a vortex fluid diode structure. That is, a thin plate-shaped flow cell 1 is provided with a partially cut flow path 2, and an outflow nozzle 3 for sample injection in the center is sandwiched in a position opposite to the outflow end of this flow path 2. Outflow nozzles 4, 5 for the liquid are provided, and these three outflow nozzles 3, 4.5 form circular spaces 6, 7 for supplying the sample and the buffer solution, respectively.
.. Connect with 8. This space 6,7°8 is the nozzle 3,
4.5 is communicated from the outer circumference in the tangential direction of this circular space to create a vortex chamber structure in which the flow becomes spiral. As the upper and lower walls of this thin plate flow cell 1, for example, thin plates 9 and 10 made of piezoelectric ceramics such as barium titanate are stacked in multiple layers, and three vortex chambers 6
.. 7.8, thin plate electrodes 11, 12, 13 and 14° 15.16 in the shape of a vortex chamber are provided on the upper and lower walls with the piezoelectric ceramics 9 and 10 sandwiched therebetween. These electrodes are insulated so as not to be electrically connected to each other, and each electrode is electrically connected to the high frequency excitation power sources 17 and 18. In particular, in the present invention, these vortex chambers 6, 7.8
A piezoelectric ceramic plate 10 having electrodes 14, 15, 16 on one side is provided with an orifice hole 19, 20, 21 at the center of the vortex chamber 6, 7, 8, and a sample is placed on the side corresponding to the thin plate flow cell 1. The sample supply chamber 23 and the vortex chamber 6. The buffer solution supply chamber 24 and the vortex chambers 7 and 8 are configured to communicate with each other. Note that this sample supply chamber 23 and buffer solution supply chamber 2
4, a sample supply pipe 25 and a buffer supply pipe 26 for supplying a sample and a buffer solution from the outside are also configured to communicate with each other. Therefore, the vortex chambers 6, 7.8 have inlet orifice holes 19, 20.21 in the center and outlet nozzles 3, 4 in the outer periphery.
.. It has a so-called eddy current diode structure with 5.

第2図乃至第4図は、第1図のn−n断面及びその一部
破断面を示すが、このような流体ダイオード構造を有す
るフローセル型の流体移送装置では、流体ダイオード型
の渦室6の仕切壁として設けた圧電セラミック9,10
の両面に設置した電極11.11’及び14.14’ 
に高周波電源17.18から高周波信号を供給すると、
ピエゾ効果によって渦室6の厚み方向に振動呼吸を開始
する。この場合、渦室6をはさんで対向する電極11.
11’ と電極14.14’ に位相差が180゜異な
る高周波振動を与えると、第2図及び第3図に示すよう
に、渦室6の仕切壁面となる圧電セラミック9,10は
、渦室6の容積を拡大収縮させる吸収振動を開始する。
2 to 4 show the nn section of FIG. 1 and a partially broken section thereof. In a flow cell type fluid transfer device having such a fluid diode structure, the fluid diode type vortex chamber 6 Piezoelectric ceramics 9 and 10 provided as partition walls of
Electrodes 11.11' and 14.14' installed on both sides of
When a high frequency signal is supplied from a high frequency power supply 17.18 to
Vibratory breathing is started in the thickness direction of the vortex chamber 6 due to the piezo effect. In this case, the electrodes 11. which face each other across the vortex chamber 6.
11' and electrodes 14 and 14' are subjected to high frequency vibrations with a phase difference of 180°, as shown in FIGS. 2 and 3, the piezoelectric ceramics 9 and 10 forming the partition walls of the vortex chamber 6 Absorption vibration that expands and contracts the volume of 6 is started.

一般に、このような渦流形流体ダイオードでは、第4図
に示すように中央のオリフィス19から流体が流入する
と、流出ノズル3が渦室6の外周接線方向に開にしてい
るので、図示するように渦室6内で渦巻形の流れ28を
形成する。従って、流体がオリフィス孔19から流出ノ
ズル3に向う流れの場合、流体抵抗が少ないのに対して
、流出ノズル3からオリフィス孔19へ向う流れの場合
に流体抵抗が大きくなる特性をもつ。このような渦室形
流体ダイオードの特性効果によって、渦室6の容積を拡
大収縮させる呼吸振動を開始すると、第2図に示すよう
に、容積拡大時にはオリフィス孔19から流入する流体
の流れ27が、一方、第3図に示すように、容積収縮時
には、流出ノズル3へ流出する流体の流れ28が支配的
になる。このように、渦室6の呼吸振動によって誘起さ
れる流れが、流体ダイオードの特性からオリフィス孔1
9から流出ノズル3への流れが支配的になるので、流体
移送特性をもつことができ、しかも、この呼吸振動の振
動数及び振幅値の選択によって、移送流量及び揚程を任
意に制御することもできる。第2図乃至第4図は、第1
図の■−■矢視断面、すなわち、フローセルの試料注入
用のポンプ作用を受持つ渦室6に着目して作用動作を説
明したが、フローセルの緩衝液注入ポンプ作用を担当す
る渦室7,8も同様の作用によって流体移送特性をもつ
ことになるので、これら渦室6,7,8の流出ノズル3
,4.5が合体し、一つの流路2を構成する部分では、
試料注入用の流出ノズル3を中央に、両側に緩衝液注入
用の流出ノズル4,5が配置されるので、流路2では、
緩衝流の中央部を試料が流れるという安定したシースフ
ローを実現することができ、試料による流体移送装置構
造物への付着、Wr溜という生物汚染問題を防止するこ
とができる。
Generally, in such a vortex type fluid diode, when fluid flows in from the central orifice 19 as shown in FIG. A spiral flow 28 is formed within the vortex chamber 6 . Therefore, when the fluid flows from the orifice hole 19 toward the outflow nozzle 3, the fluid resistance is small, but when the fluid flows from the outflow nozzle 3 toward the orifice hole 19, the fluid resistance becomes large. Due to the characteristic effect of the vortex chamber type fluid diode, when breathing vibration is started to expand and contract the volume of the vortex chamber 6, as shown in FIG. On the other hand, as shown in FIG. 3, during volume contraction, the fluid flow 28 flowing out to the outflow nozzle 3 becomes dominant. In this way, the flow induced by the breathing vibration of the vortex chamber 6 flows through the orifice hole 1 due to the characteristics of the fluid diode.
Since the flow from 9 to the outflow nozzle 3 becomes dominant, it can have fluid transfer characteristics, and furthermore, by selecting the frequency and amplitude value of this breathing vibration, the transfer flow rate and lift can be arbitrarily controlled. can. Figures 2 to 4 show the first
The operation has been explained by focusing on the section taken along the arrow ■-■ in the figure, that is, the vortex chamber 6 which is responsible for the pumping action for sample injection into the flow cell. 8 also has fluid transfer characteristics due to the same action, so the outflow nozzles 3 of these vortex chambers 6, 7, and 8
, 4.5 are combined to form one flow path 2,
Since the outflow nozzle 3 for sample injection is placed in the center and the outflow nozzles 4 and 5 for buffer injection are arranged on both sides, in the flow path 2,
A stable sheath flow in which the sample flows through the center of the buffer flow can be achieved, and biological contamination problems such as attachment of the sample to the structure of the fluid transfer device and Wr accumulation can be prevented.

第5図及び第6図は1本発明の第二の実施例を示す。本
実施例では、第一の実施例の渦流型流体ダイオードを構
成する薄板状のフローセル1と、そのフローセル1に設
けた渦室6,7.8の中心部に相当するオリフィス孔1
9,20.21をもつ圧電セラミック板10の間に、オ
リフィス孔19.20.21の相当位置に、これらオリ
フィス孔19,20.21よりも大きな円盤状の封止板
30,31.32をもち、その外周側でフローセルの満
室6,7.8の大きさに相当する部分に連通孔33,3
4,35をもつ薄板状の逆止弁スペーサ29を設け、い
わゆる、渦室6..7.8の中心オリフィス孔19,2
0,21に逆止弁構造を採用したものである。さらに、
本実施例では、このフローセル形流体ダイオードのオリ
フィスプレート板となる圧電セラミック板10と、試料
及び緩衝流を外部から供給するための試料供給室23及
び緩衝液供給室24をもつ薄板状の支持板22の間に、
満室6,7.8の相当位置に円盤状の間隙37〜39を
もつ薄板スペーサ36と、逆止弁スペーサ29及び中心
にオリフィス孔19゜20.21をもち、渦室6,7.
8に対する位置の両面に電極板14,15.16をもつ
薄板状の圧電セラミックス板10とを一組とし、これら
を複数組重ね合せて一体にし、フローセル形流体移送装
置を構成する。第6図には、第5図のVI−VI断面図
を示すが、本実施例では、前述したように渦室6の中心
部に設けたオリフィス孔19の位置に円盤状の封止板3
0が設けられ、その周囲に連通孔33が設けられている
ので、図示したように渦室6が呼吸振動によって収縮作
用を受けると、オリフィス19をもつ圧電セラミック9
の振動でこの封止板30がオリフィス孔19を封止する
5 and 6 show a second embodiment of the present invention. In this embodiment, a thin plate-shaped flow cell 1 constituting the eddy current fluid diode of the first embodiment and an orifice hole 1 corresponding to the center of the vortex chambers 6, 7.8 provided in the flow cell 1 are described.
Between the piezoelectric ceramic plate 10 having the orifice holes 19, 20, 21, disk-shaped sealing plates 30, 31, 32 larger than the orifice holes 19, 20, 21 are provided at positions corresponding to the orifice holes 19, 20, 21. There are communication holes 33, 3 on the outer periphery of the flow cell in a portion corresponding to the size of the full chambers 6, 7.8.
A check valve spacer 29 in the form of a thin plate having a diameter of 4, 35 is provided to form a so-called swirl chamber 6. .. 7.8 central orifice hole 19,2
0 and 21 adopt a check valve structure. moreover,
In this embodiment, a piezoelectric ceramic plate 10 is used as an orifice plate of the flow cell type fluidic diode, and a thin plate-like support plate has a sample supply chamber 23 and a buffer solution supply chamber 24 for supplying a sample and a buffer flow from the outside. Between 22
A thin plate spacer 36 having disk-shaped gaps 37 to 39 at positions corresponding to the full chambers 6, 7.8, a check valve spacer 29, and an orifice hole 19° 20.21 in the center, and a vortex chamber 6, 7.
A thin piezoelectric ceramic plate 10 having electrode plates 14, 15, and 16 on both sides at a position relative to 8 is made into one set, and a plurality of sets are stacked and integrated to form a flow cell type fluid transfer device. FIG. 6 shows a VI-VI sectional view in FIG.
0 is provided and a communication hole 33 is provided around it, so when the vortex chamber 6 is contracted by respiratory vibration as shown in the figure, the piezoelectric ceramic 9 with the orifice 19
This vibration causes the sealing plate 30 to seal the orifice hole 19.

一方、拡大時には、オリフィス孔19が呼吸振動によっ
てこの封止板30から離れる作用をし、−種の逆止弁逆
果を発揮させることが可能となり、流体ダイオードの逆
流作用を解消することができる。特に、従来の逆止弁構
造では、流体力の作用で逆止弁が作動するので、渦室の
加振周波数と流体作用による弁の振動振幅が必ずしも一
致せず、位相遅れ現象が生じる欠点があったが本実施例
では、オリフィス孔19の方が振動して回動止、封止板
30が静止するので、逆止弁の作用が加振周波数と一致
し、位相遅れ現象が生じなくなる。このため、渦室6の
呼吸振動を高周波信号で加振することができ、脈動効果
も低減する。
On the other hand, during expansion, the orifice hole 19 acts to move away from the sealing plate 30 due to respiratory vibration, making it possible to exhibit the negative effect of the check valve, thereby eliminating the backflow effect of the fluid diode. . In particular, in conventional check valve structures, because the check valve is operated by the action of fluid force, the excitation frequency of the vortex chamber and the vibration amplitude of the valve due to fluid action do not necessarily match, resulting in a phase lag phenomenon. However, in this embodiment, the orifice hole 19 vibrates to prevent rotation and the sealing plate 30 remains stationary, so the action of the check valve matches the excitation frequency and no phase lag phenomenon occurs. Therefore, the respiratory vibration in the vortex chamber 6 can be excited with a high frequency signal, and the pulsation effect is also reduced.

本実施例では、さらにこの渦室6と試料供給量23の間
に、円盤状の呼吸室37及び封止板30をもつ逆止弁ス
ペーサ29及び表裏に電極板14゜14′をもち、その
中心部にオリフィス孔19をもつ薄板状の圧電セラミッ
ク板10を一組として、複数組挿入しであるので、試料
の流入方向に直列多段化、すなわち、それぞれの圧電セ
ラミック板10をある特定の位相差をもつ高周波信号で
加振することができ、さらに、流体移送装置の揚程。
In this embodiment, between the vortex chamber 6 and the sample supply amount 23, a check valve spacer 29 having a disk-shaped breathing chamber 37 and a sealing plate 30, and electrode plates 14° and 14' on the front and back sides are provided. Since a plurality of sets of thin piezoelectric ceramic plates 10 having an orifice hole 19 in the center are inserted, the piezoelectric ceramic plates 10 can be arranged in series in multiple stages in the direction of inflow of the sample, that is, each piezoelectric ceramic plate 10 can be inserted at a certain position. It can be excited with a high frequency signal with a phase difference, and furthermore, the lift of the fluid transfer device.

流量特性をさらに高めることができる特徴もある。There are also features that can further improve flow characteristics.

さらに、本発明の流体移送装置では、試料移送用の流体
ダイオードをはさんで、緩衝液移送用の二つの流体ダイ
オードを設け、これら一体にした薄型フローセル構造を
採用したので、流体ダイオード出口部では、試料が緩衝
液の中心を安定して流れるといったシースフローの特徴
をもっことになり、構造物への試料の汚染問題も最小限
にすることができる。このため、第7図に示すように、
分析、あるいは、分離精製装置43に、複数の試料41
.41’ 、41’を供給する際に、緩衝液42を利用
し、本発明の複数個の試料注入用微量ポンプを設けると
、試料注入用の渦室の加振周波数を制御することによっ
て、試料注入の制御弁を兼ねた試料注入移送制御システ
ムを構成することができ、生物汚染などの試料汚染問題
の少ないクリーンで、制御性の良いシステム構成を実現
できるなど、大きな効果を発揮する。
Furthermore, in the fluid transfer device of the present invention, a fluid diode for sample transfer is sandwiched between two fluid diodes for buffer solution transfer, and a thin flow cell structure is adopted in which these are integrated. , it has the characteristics of a sheath flow in which the sample flows stably through the center of the buffer solution, and the problem of sample contamination of the structure can be minimized. Therefore, as shown in Figure 7,
A plurality of samples 41 are sent to the analysis or separation/purification device 43.
.. 41' and 41', if the buffer solution 42 is used and a plurality of sample injection micropumps of the present invention are provided, the sample injection can be performed by controlling the excitation frequency of the sample injection vortex chamber. It is possible to configure a sample injection transfer control system that also serves as an injection control valve, and has great effects such as realizing a clean system configuration with good controllability, with fewer problems with sample contamination such as biological contamination.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、摺動部の少ないクリーンな微量流体移
送装置を実現することができ、加振周波数の高周波数比
が可能なために、相対的に脈動率を低減することができ
る。
According to the present invention, a clean microfluid transfer device with few sliding parts can be realized, and since a high frequency ratio of the excitation frequency is possible, the pulsation rate can be relatively reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の組立構成図、第2図及び第
3図は、第1図の■−■矢視断面図、第4図は第1図の
部分断面図、第5図は本発明の他の実施例を示す組立構
成図、第6図は第5図の■−■矢視断面図、第7図は、
本発明を応用したシステム構成図である。 1・・・薄形フローセル、9,10・・・圧電セラミッ
ク板、11,12,13,14,15,16・・・電極
板、22・・・試料供給支持板、25.26・・・試料
及び緩衝液供給管、29・・・逆止弁スペーサ、36・
・・第1図 第2図    第3図 第4図 第6図
FIG. 1 is an assembled configuration diagram of an embodiment of the present invention, FIGS. 2 and 3 are sectional views taken along arrows -■ in FIG. 1, FIG. 4 is a partial sectional view of FIG. 1, and FIG. The figure is an assembled configuration diagram showing another embodiment of the present invention, FIG. 6 is a sectional view taken along the line ■-■ in FIG. 5, and FIG. 7 is a
FIG. 1 is a system configuration diagram to which the present invention is applied. DESCRIPTION OF SYMBOLS 1... Thin flow cell, 9, 10... Piezoelectric ceramic plate, 11, 12, 13, 14, 15, 16... Electrode plate, 22... Sample supply support plate, 25.26... Sample and buffer supply pipe, 29... Check valve spacer, 36.
...Figure 1 Figure 2 Figure 3 Figure 4 Figure 6

Claims (1)

【特許請求の範囲】 1、円盤状の流路空間と、その円盤状の一方の側壁の中
心部にオリフィス孔を設け、円盤状の前記流路空間の外
周部に接線方向に開口ノズルを設け、前記オリフィス孔
と連通する液体供給室をもつ渦流型流体ダイオードにお
いて、 前記オリフィス孔をもつ前記側壁と、他方の側壁部とを
直接加振する振動子を具備したことを特徴とする微量ポ
ンプ装置。 2、特許請求の範囲第1項において、 前記振動子として両面に電極板をもつ圧電素子又は電歪
素子の薄板を用い、前記電極板に高周波信号を供給する
よう構成したことを特徴とする微量ポンプ装置。 3、特許請求の範囲第1項において、 円盤状の薄型流体ダイオードを一平面に複数個設け、前
記複数個の流体ダイオードの両側壁を構成する溝板状の
加振素子板によつて夫々の流体ダイオード室を呼吸振動
させるように構成したことを特徴とする微量ポンプ装置
。 4、特許請求の範囲第3項において、 少なくとも一個の前記流体ダイオードの流出ノズルを中
心にその両側に他の前記流体ダイオードの流出ノズルを
配し、前記流出ノズルが共通の流路に連通するように構
成したことを特徴とする微量ポンプ装置。 5、特許請求の範囲第1項において、 薄形円盤状の前記流路空間の前記側壁のうち、中心部に
前記オリフィス孔をもつ前記加振素子板の内側に、前記
オリフィス孔よりも大きな円盤状の封止板を設け、その
外周側が一部連通した薄板状の逆止弁プレートを設けた
ことを特徴とする微量ポンプ装置。 6、特許請求の範囲第1項または第5項記載の微量ポン
プ装置において、 前記薄型円盤状の前記流体ダイオードの上流側に、オリ
フィス孔を介して連通する円盤上の薄型流路スペースと
、前記逆止弁プレート及び中心部にオリフィス孔が開口
した薄板状の前記加振素子とを一組として、これを直列
多段に構成したことを特徴とする微量ポンプ装置。
[Claims] 1. A disk-shaped flow path space, an orifice hole provided in the center of one side wall of the disk shape, and an opening nozzle provided in the tangential direction on the outer periphery of the disk-shaped flow path space. , a vortex-type fluid diode having a liquid supply chamber communicating with the orifice hole, comprising: a vibrator that directly vibrates the side wall having the orifice hole and the other side wall portion; . 2. According to claim 1, the microscopic device is characterized in that the vibrator is a thin plate of a piezoelectric element or an electrostrictive element having electrode plates on both sides, and a high-frequency signal is supplied to the electrode plate. pump equipment. 3. In claim 1, a plurality of disk-shaped thin fluidic diodes are provided in one plane, and each of the plurality of fluidic diodes is A micro-pump device characterized in that the fluid diode chamber is configured to cause breathing vibrations. 4. In claim 3, the outflow nozzle of at least one of the fluid diodes is arranged on both sides of the outflow nozzle of the other fluid diodes, and the outflow nozzles of the other fluid diodes communicate with a common flow path. A micro-volume pump device characterized by comprising: 5. In claim 1, a disk larger than the orifice hole is provided inside the vibrating element plate having the orifice hole in the center of the side wall of the thin disk-shaped flow path space. 1. A micro-volume pump device comprising a thin check valve plate having a sealing plate having a shape and a part of its outer circumferential side communicating with the thin check valve plate. 6. The micro-volume pump device according to claim 1 or 5, further comprising: a thin flow path space on a disk that communicates with the upstream side of the thin disk-shaped fluidic diode through an orifice hole; 1. A micro-pump device comprising a check valve plate and the vibrating element in the form of a thin plate having an orifice hole opened in the center as a set, which are arranged in multiple stages in series.
JP4202688A 1988-02-26 1988-02-26 Trace quantity pumping plant Pending JPH01219369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4202688A JPH01219369A (en) 1988-02-26 1988-02-26 Trace quantity pumping plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4202688A JPH01219369A (en) 1988-02-26 1988-02-26 Trace quantity pumping plant

Publications (1)

Publication Number Publication Date
JPH01219369A true JPH01219369A (en) 1989-09-01

Family

ID=12624658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4202688A Pending JPH01219369A (en) 1988-02-26 1988-02-26 Trace quantity pumping plant

Country Status (1)

Country Link
JP (1) JPH01219369A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040036173A (en) * 2002-10-23 2004-04-30 김종원 Micro Compressor Actuated by Piezoelectric Actuator
KR100726395B1 (en) * 2006-08-02 2007-06-11 한국기계연구원 Ultrasonic piezoelectric pump
WO2008126377A1 (en) * 2007-03-30 2008-10-23 Daikin Industries, Ltd. Air heat exchanger unit and heat exchange module
WO2009087714A1 (en) * 2008-01-09 2009-07-16 Star Micronics Co., Ltd. Diaphragm air pump
CN103644098A (en) * 2013-11-11 2014-03-19 江苏大学 Synthetic jet type valveless piezoelectric pump capable of switching conveying directions and working method thereof
US8678787B2 (en) * 2006-12-09 2014-03-25 Murata Manufacturing Co., Ltd. Piezoelectric micro-blower
WO2019138675A1 (en) * 2018-01-10 2019-07-18 株式会社村田製作所 Pump and fluid control device
WO2019138676A1 (en) * 2018-01-10 2019-07-18 株式会社村田製作所 Pump and fluid control device
CN113250925A (en) * 2021-05-13 2021-08-13 浙江大学 Fully flexible electro-hydraulic pump

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040036173A (en) * 2002-10-23 2004-04-30 김종원 Micro Compressor Actuated by Piezoelectric Actuator
KR100726395B1 (en) * 2006-08-02 2007-06-11 한국기계연구원 Ultrasonic piezoelectric pump
US8678787B2 (en) * 2006-12-09 2014-03-25 Murata Manufacturing Co., Ltd. Piezoelectric micro-blower
WO2008126377A1 (en) * 2007-03-30 2008-10-23 Daikin Industries, Ltd. Air heat exchanger unit and heat exchange module
WO2009087714A1 (en) * 2008-01-09 2009-07-16 Star Micronics Co., Ltd. Diaphragm air pump
CN103644098B (en) * 2013-11-11 2016-01-20 江苏大学 Synthesizing jet-flow type Valveless piezoelectric pump and the method for work of throughput direction switching can be realized
CN103644098A (en) * 2013-11-11 2014-03-19 江苏大学 Synthetic jet type valveless piezoelectric pump capable of switching conveying directions and working method thereof
WO2019138675A1 (en) * 2018-01-10 2019-07-18 株式会社村田製作所 Pump and fluid control device
WO2019138676A1 (en) * 2018-01-10 2019-07-18 株式会社村田製作所 Pump and fluid control device
JPWO2019138676A1 (en) * 2018-01-10 2020-04-16 株式会社村田製作所 Pumps and fluid control devices
US11293428B2 (en) 2018-01-10 2022-04-05 Murata Manufacturing Co., Ltd. Pump and fluid control device
US11391277B2 (en) 2018-01-10 2022-07-19 Murata Manufacturing Co., Ltd. Pump and fluid control device
CN113250925A (en) * 2021-05-13 2021-08-13 浙江大学 Fully flexible electro-hydraulic pump

Similar Documents

Publication Publication Date Title
Woias Micropumps—past, progress and future prospects
US6179586B1 (en) Dual diaphragm, single chamber mesopump
EP2090781B1 (en) Piezoelectric micro-blower
Woias Micropumps: summarizing the first two decades
US8308452B2 (en) Dual chamber valveless MEMS micropump
US6827559B2 (en) Piezoelectric micropump with diaphragm and valves
Van De Pol et al. Micro liquid-handling devices-a review
JP2005299597A (en) Micro pump
CN101354030B (en) Micro-fluid pump with active control capability
JP5999200B2 (en) Fluid control device and pump connection method
JPH01219369A (en) Trace quantity pumping plant
JP4221184B2 (en) Micro chemical chip
DE19539020C2 (en) Pump for conveying gaseous or liquid media
JP2018123796A (en) Micro diaphragm pump
WO2008150210A1 (en) Micropump
US8668474B2 (en) Electro-active valveless pump
US10767641B2 (en) Micropump with electrostatic actuation
JPH05263763A (en) Piezoelectric pump and operating method thereof
Johnston et al. Elastomer-glass micropump employing active throttles
JP4206732B2 (en) Valve device and fluid control chip
JP3705266B2 (en) Microfluidic system
JP3705265B2 (en) Micro pump
CN116677592A (en) Piezoelectric micropump of high flow side direction air inlet
JPH04194380A (en) Fluid feed pump
JPH03225086A (en) Micropump