明 細 書 加速度センサ 技術分野 Description Accelerometer Technical field
本発明は、 重りとこの重りを可動自在に支える梁などからなり、 梁の たわみを利用して加速度を検出する加速度センサに係り、 特に、 マイク ロマシンで構成された構造体に信号処理回路を混載し、 多軸方向の加速 度成分を検出可能な加速度センサに関するものである。 背景技術 The present invention relates to an acceleration sensor that includes a weight and a beam that supports the weight movably, and relates to an acceleration sensor that detects acceleration by using the deflection of the beam. In particular, a signal processing circuit is mounted on a structure including a micromachine. Further, the present invention relates to an acceleration sensor capable of detecting acceleration components in multiple axes. Background art
従来、 この種の半導体加速度センサとしては、 例えば、 図 1 5に示す ような第 1の加速度センサと、 後述の第 2の加速度センサとが知られて いる。 Conventionally, as this type of semiconductor acceleration sensor, for example, a first acceleration sensor as shown in FIG. 15 and a second acceleration sensor described later are known.
第 1の加速度センサは、 図 1 5に示すように、 ガラス基板 5に固定さ れるシリコン基板からなる支持体 1と、 この支持体 1の周囲に配置され るシリコン基板からなる方形枠状の重り部 2と、 支持体 1と重り部 2と を接続し重り部 2を揺動自在に支持する薄肉のシリコン基板からなる 4 つの梁 3とを備え、 この各梁 3上の両端部に上述の応力検出部 4が配置 されるとともに、 支持体 1の上部には集積回路部 6が形成されている。 第 2の加速度センサは、 図 1 6に示すように、 ガラス基板 5に固定さ れる方形枠状の支持体 1 0と、 この支持体 1 0の内周部に配置される重 り部 9と、 支持体 1 0と重り部 9とを接続し重り部 9を揺動自在に支持 する薄肉の 4つの梁 3とを備えたものである。 As shown in FIG. 15, the first acceleration sensor includes a support 1 made of a silicon substrate fixed to a glass substrate 5, and a rectangular frame-shaped weight made of a silicon substrate disposed around the support 1. Part 2 and four beams 3 made of a thin silicon substrate connecting the support 1 and the weight part 2 and swingably supporting the weight part 2. The stress detecting section 4 is arranged, and the integrated circuit section 6 is formed on the support 1. As shown in FIG. 16, the second acceleration sensor includes a rectangular frame-shaped support 10 fixed to the glass substrate 5, and a weight 9 disposed on the inner periphery of the support 10. It has four thin-walled beams 3 that connect the support 10 and the weight portion 9 and support the weight portion 9 in a swingable manner.
このように構成される従来の両加速度センサでは、 各応力検出部 4か
らの検出信号を集積回路部 6で処理することにより、 X軸、 Y軸、 およ び Z軸の方向の加速度成分を出力できるようになつている。 In a conventional dual acceleration sensor configured as described above, each stress detection unit 4 By processing these detection signals in the integrated circuit section 6, acceleration components in the X-axis, Y-axis, and Z-axis directions can be output.
ところで、 従来の両加速度センサでは、 検出感度を増大させるには各 梁 3の長さを長くする必要がある。 この各梁 3を長くするには、 従来の ような加速度センサの構造では、 支持体 1の大きさを小さくするか、 ま たはセンサ全体を大きく しなければならない。 Incidentally, in the conventional dual acceleration sensor, it is necessary to increase the length of each beam 3 in order to increase the detection sensitivity. In order to lengthen each of the beams 3, in a conventional acceleration sensor structure, the size of the support 1 must be reduced, or the entire sensor must be increased.
しかし、 支持体 1がシリコン基板の場合には、 この上に C M O S等の 信号処理回路を搭載 (形成) 可能であり、 支持体 1の大きさを小さくす ると、 信号処理回路の搭載が不可能になるという不都合が生じる。 また 、 センサ全体の大型化は検出感度を増大できる点では好ましいが、 全体 としてみると必ずしも好適な解決方法とはいえない。 However, when the support 1 is a silicon substrate, a signal processing circuit such as a CMOS can be mounted (formed) thereon. If the size of the support 1 is reduced, the mounting of the signal processing circuit becomes impossible. The disadvantage that it becomes possible occurs. In addition, increasing the size of the sensor as a whole is preferable in that the detection sensitivity can be increased, but is not necessarily a suitable solution as a whole.
一方、 従来の第 2の加速度センサでは、 梁 3が支持体 1 0により囲ま れているため、 センサをケース 1 O Aでパッケージングした状態で、 支 持体 1 0が材料の熱膨張係数差により応力を受けた場合に、 その応力が 各梁 3に対してその長手方向に加わり、 各梁 3の座屈や出力信号のシフ トなどの不都合が生じる。 さらに、 梁 3を内側に延ばした場合に重り部 9の質量が減少するため、 検出感度が低下するという不都合がある。 このため、 センサ全体を大きくすることなく検出感度を向上させ、 小 型であっても検出感度の優れた新たな加速度センサの出現が望まれる。 そこで、 本発明の第 1の目的は、 上記の点に鑑み、 高感度かつ小型化 が可能な新たな加速度センサを提供することにある。 On the other hand, in the conventional second acceleration sensor, since the beam 3 is surrounded by the support 10, the support 10 is moved by the difference in the thermal expansion coefficient of the material while the sensor is packaged in the case 1 OA. When a stress is applied, the stress is applied to each beam 3 in the longitudinal direction, causing inconvenience such as buckling of each beam 3 and shift of an output signal. Further, when the beam 3 is extended inward, the mass of the weight portion 9 is reduced, so that the detection sensitivity is disadvantageously reduced. Therefore, it is desired to improve the detection sensitivity without increasing the size of the entire sensor, and to develop a new acceleration sensor with excellent detection sensitivity even if it is small. In view of the above, a first object of the present invention is to provide a new acceleration sensor that is highly sensitive and can be downsized.
また、 本発明の第 2の目的は、 高感度かつ小型化が可能な上に、 さら に、 加速度センサが本来の機能である外部から加わる加速度により生じ る応力以外の応力が、 検出素子に伝わることのない信頼性の高い加速度 センサを提供することにある。
さらに、 本発明の第 3の目的は、 第 1および第 2の目的に適合するよ うな検出回路を含む加速度センサを提供することにある。 発明の開示 A second object of the present invention is to achieve high sensitivity and downsizing, and furthermore, a stress other than a stress generated by an externally applied acceleration, which is an original function of the acceleration sensor, is transmitted to the detection element. It is an object of the present invention to provide a highly reliable acceleration sensor that does not have any problem. Further, a third object of the present invention is to provide an acceleration sensor including a detection circuit adapted to the first and second objects. Disclosure of the invention
本発明は、 固定された支持体と、 この支持体を囲うように配置される 重り部と、 この重り部を可動自在に前記支持体に支持させる梁とを備え 、 応力による前記梁のたわみを利用して加速度を検出する加速度センサ であって、 前記支持体は四角形からなるとともに、 前記重り部は四角形 の枠からなり、 前記梁は、 その長さ方向が前記支持体の各辺に沿うよう にその各辺に 2つずつ配置され、 その各梁の両端は前記支持体と前記重 り部の所定位置に接続されていることを特徴とする加速度センサを提供 する。 The present invention comprises: a fixed support; a weight disposed so as to surround the support; and a beam for movably supporting the weight on the support, the deflection of the beam due to stress. An acceleration sensor for detecting acceleration by using the support, wherein the support is formed of a square, the weight is formed of a square frame, and the beam has a length direction along each side of the support. In addition, two acceleration sensors are provided on each side, and both ends of each beam are connected to predetermined positions of the support and the overlapping portion, respectively.
本発明の加速度センサの実施態様としては、 前記梁の一端は、 前記支 持体の辺または前記重り部の内周辺の中央部に接続され、 その梁の他端 は、 前記重り部の内周部の角部または前記支持体の辺の端部に接続され ていることを特徴とする加速度センサが挙げられる。 According to an embodiment of the acceleration sensor of the present invention, one end of the beam is connected to a side of the support or a central portion of an inner periphery of the weight portion, and the other end of the beam is connected to an inner periphery of the weight portion. The acceleration sensor is connected to a corner of the portion or an end of a side of the support.
このような構成からなる本発明の加速度センサまたは実施態様によれ ば、 従来のセンサに比べて梁を長くできるので、 高感度かつ小型化が可 能となる。 According to the acceleration sensor or the embodiment of the present invention having such a configuration, the beam can be made longer than that of the conventional sensor, so that high sensitivity and miniaturization can be achieved.
本発明は、 また、 中央に中空部を有して固定された支持体と、 この支 持体の中空部内に配置される重り部と、 この重り部を可動自在に前記支 持体に支持する梁とを備え、 応力による前記梁のたわみを利用して加速 度を検出する加速度センサであって、 前記支持体は四角形の枠からなる とともに、 前記重り部は四角形からなり、 前記梁は、 その長さ方向が前 記重り部の各辺に沿うようにその各辺に 2つずつ配置され、 その各梁の 両端は前記支持体と前記重り部の所定位置に接続されていることを特徴
とする加速度センサを提供する。 The present invention also provides a support fixedly having a hollow portion in the center, a weight disposed in the hollow portion of the support, and movably supporting the weight on the support. An acceleration sensor for detecting acceleration by utilizing deflection of the beam due to stress, wherein the support comprises a rectangular frame, the weight portion comprises a square, and the beam comprises Two pieces are arranged on each side of the weight so that the length direction is along each side of the weight, and both ends of each beam are connected to predetermined positions of the support and the weight. An acceleration sensor is provided.
本発明の加速度センサの実施態様としては、 前記梁の一端は、 前記支 持体の内周辺または前記重り部の辺の中央部に接続され、 その梁の他端 は、 前記支持体の内周部の角部の近傍または前記重り部の辺の端部に接 続されていることを特徴とする加速度センサが挙げられる。 According to an embodiment of the acceleration sensor of the present invention, one end of the beam is connected to an inner periphery of the support or a center of a side of the weight, and the other end of the beam is an inner periphery of the support. The acceleration sensor is connected to the vicinity of a corner of the portion or to an end of a side of the weight portion.
この実施態様によれば、 重り部が中央で支持体がその重り部を囲う形 態であって、 その支持体がパッケージと一体になるような場合でも、 ノ ッケージなどから受ける応力が梁の長さ方向に直接作用しないので、 応 力検出素子への影響を抑制してセンサの信頼性を高めることができる。 本発明の加速度センサの実施態様としては、 前記支持体、 前記重り部 、 および前記各梁は、 シリコン基板により形成されていることを特徴と する加速度センサが挙げられる。 According to this embodiment, even when the weight is in the center and the support surrounds the weight, and the support is integrated with the package, the stress received from the knock cage or the like is not affected by the length of the beam. Since it does not act directly in the vertical direction, the effect on the stress detection element can be suppressed and the reliability of the sensor can be increased. As an embodiment of the acceleration sensor of the present invention, there is an acceleration sensor characterized in that the support, the weight, and each of the beams are formed of a silicon substrate.
このような構成からなる本発明の加速度センサまたは各実施態様によ れば、 従来のセンサに比べて梁を長くできるので、 高感度かつ小型化が 可能となる。 According to the acceleration sensor or each embodiment of the present invention having such a configuration, the beam can be made longer than that of a conventional sensor, so that high sensitivity and downsizing can be achieved.
本発明の加速度センサの実施態様としては、 前記各梁は、 その両端の 応力集中部にビエゾ抵抗素子を備え、 前記支持体の各辺または前記重り 部の各辺に配置される 2つの梁に配置された 4つのピエゾ抵抗素子から なるホイートストンブリッジを、 各辺ごとに構成するようにし、 これら 4組のホイートストンプリッジの出力信号について所定の演算処理をし て任意の方向の加速度を求める演算回路を備えたことを特徴とする加速 度センサが挙げられる。 As an embodiment of the acceleration sensor of the present invention, each of the beams includes a piezoresistive element at a stress concentration portion at both ends thereof, and each of the beams includes two beams arranged on each side of the support or each side of the weight portion. A Wheatstone bridge consisting of four piezoresistive elements is configured for each side, and an arithmetic circuit that performs predetermined arithmetic processing on the output signals of these four Wheatstone bridges and obtains acceleration in any direction is provided. There is an acceleration sensor that is characterized by being provided.
本発明の加速度センサの実施態様としては、 前記各梁は、 その両端の 応力集中部に M O S F E Tからなる応力検出素子を備え、 前記支持体の 各辺にまたは前記重り部の各辺に配置される 2つの梁に配置された 4つ の M O S F E Tを含む差動増幅回路を構成し、 これら 4組の差動増幅回
路の出力信号について所定の演算処理をして任意の方向の加速度を求め る演算回路を備えたことを特徴とする加速度センサが挙げられる。 本発明の加速度センサの実施態様としては、 前記 M O S F E Tは P型 M O S F E Tであり、 差動増幅回路は C M◦ S差動増幅回路であること を特徴とする加速度センサが挙げられる。 As an embodiment of the acceleration sensor of the present invention, each of the beams is provided with a stress detecting element made of a MOSFET at a stress concentration portion at both ends thereof, and is arranged on each side of the support or on each side of the weight portion. A differential amplifier circuit including four MOSFETs arranged on two beams is configured. An acceleration sensor includes an arithmetic circuit for performing predetermined arithmetic processing on a road output signal to obtain acceleration in an arbitrary direction. As an embodiment of the acceleration sensor of the present invention, there is provided an acceleration sensor, wherein the MOSFET is a P-type MOSFET, and the differential amplifier circuit is a CM • S differential amplifier circuit.
本発明の加速度センサの実施態様としては、 前記任意の方向とは、 X 軸、 Y軸、 および Z軸の 3方向であり、 前記 X軸方向と Y軸方向は前記 梁の長さ方向に対して 4 5 ° 回転した方向とし、 前記 Z軸方向は前記梁 の厚み方向であることを特徴とする加速度センサが挙げられる。 As an embodiment of the acceleration sensor of the present invention, the arbitrary directions are three directions of an X axis, a Y axis, and a Z axis, and the X axis direction and the Y axis direction are relative to the length direction of the beam. And the Z-axis direction is the thickness direction of the beam.
このような構成からなる各実施態様によれば、 4組の回路の出力信号 について所定の演算処理をして任意の方向の加速度を求める演算回路を 備えるようにしたので、 3軸の加速度センサとして利用できる。 図面の簡単な説明 According to each embodiment having such a configuration, the arithmetic circuit for performing predetermined arithmetic processing on the output signals of the four sets of circuits to obtain the acceleration in an arbitrary direction is provided. Available. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の加速度センサの第 1実施形態の外観構造を示し、 そ の一部を破断した斜視図である。 FIG. 1 is a perspective view showing an appearance structure of a first embodiment of an acceleration sensor of the present invention, a part of which is cut away.
図 2は、 その第 1実施形態の平面図である。 FIG. 2 is a plan view of the first embodiment.
図 3は、 図 2の a— a線の断面図である。 FIG. 3 is a cross-sectional view taken along line aa of FIG.
図 4は、 図 2の b— b線の断面図である。 FIG. 4 is a cross-sectional view taken along line bb of FIG.
図 5は、 本発明の加速度センサの第 2実施形態の外観構造を示し、 そ の一部を破断した斜視図である。 FIG. 5 is a perspective view showing the external structure of a second embodiment of the acceleration sensor of the present invention, a part of which is cut away.
図 6は、 その第 2実施形態の平面図である。 FIG. 6 is a plan view of the second embodiment.
図 7は、 図 6の c一 c線の断面図である。 FIG. 7 is a sectional view taken along line c-c in FIG.
図 8は、 図 6の d— d線の断面図である。 FIG. 8 is a cross-sectional view taken along line dd of FIG.
図 9は、 加速度が作用したときの梁の状態を説明する図である。 FIG. 9 is a diagram illustrating the state of the beam when acceleration is applied.
図 1 0は、 本発明の加速度センサの第 3実施形態の平面図である。
図 1 1は、 検出部のブリッジの構成例を示す図である。 FIG. 10 is a plan view of a third embodiment of the acceleration sensor of the present invention. FIG. 11 is a diagram illustrating a configuration example of a bridge of the detection unit.
図 1 2は、 加速度検出回路の構成例を示す図である。 FIG. 12 is a diagram illustrating a configuration example of the acceleration detection circuit.
図 1 3は、 差動増幅回路の構成例を示す図である。 FIG. 13 is a diagram illustrating a configuration example of a differential amplifier circuit.
図 1 4は、 加速度検出回路の他の構成例を示す図である。 FIG. 14 is a diagram illustrating another configuration example of the acceleration detection circuit.
図 1 5は、 従来の加速度センサの斜視図である。 FIG. 15 is a perspective view of a conventional acceleration sensor.
図 1 6は、 従来の他の加速度センサの断面図である。 発明を実施するための最良の形態 FIG. 16 is a cross-sectional view of another conventional acceleration sensor. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の好適な実施の形態について、 図面を参照して説明する 本発明の加速度センサの第 1実施形態について、 図 1〜図 4を参照し て説明する。 図 1は、 この第 1実施形態の外観構造を示し、 その一部を 破断した斜視図である。 図 2はその平面図、 図 3は図 2の a— a線の断 面図、 図 4は図 2の b— b線の断面図である。 Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings. A first embodiment of the acceleration sensor of the present invention will be described with reference to FIGS. FIG. 1 is a perspective view showing an appearance structure of the first embodiment, a part of which is cut away. 2 is a plan view, FIG. 3 is a cross-sectional view taken along line aa of FIG. 2, and FIG. 4 is a cross-sectional view taken along line bb of FIG.
この第 1実施形態に係る加速度センサは、 図 1〜図 4に示すようにガ ラス基板 5上に形成され、 そのガラス基板 5上の中央に四角錐台からな りその上下を逆にした支持体 1が固定されている。 この支持体 1の周囲 には、 所定の間隔をおいて四角形の枠からなる重り部 2がその支持体 1 を囲うように配置されている。 重り部 2は、 肉厚の薄い梁 1 1〜 1 8に より支持体 1に可動自在に支持されるとともに、 その各梁 1 1〜 1 8は 、 その長さ方向が支持体 1の各辺に沿うように配置されている。 支持体 1、 重り部 2、 および梁 1 1〜 1 8は、 シリコンの基板を素材にして形 成されている。 The acceleration sensor according to the first embodiment is formed on a glass substrate 5 as shown in FIG. 1 to FIG. Body 1 is fixed. Around the support 1, a weight 2 made of a rectangular frame is arranged at a predetermined interval so as to surround the support 1. The weight portion 2 is movably supported by the support 1 by thin beams 11 to 18, and each of the beams 11 to 18 has a length direction corresponding to each side of the support 1. It is arranged along. The support 1, the weight 2, and the beams 11 to 18 are formed using a silicon substrate.
梁 1 1、 1 2は、 図示のように、 その長さ方向が支持体 1の上辺に沿 うように配置され、 その各一端は支持体 1の上辺の中央部に共通に接続 され、 その各他端は重り部 2の内周部の角部 (隅の部分) にそれぞれ接
続されている。 As shown in the figure, the beams 11 and 12 are arranged so that their length directions are along the upper side of the support 1, and one ends thereof are commonly connected to the center of the upper side of the support 1. Each other end is in contact with the inner corner of the weight 2 Has been continued.
同様に、 梁 1 3、 1 4、 梁 1 5、 1 6、 および梁 1 7、 1 8は、 図示 のように、 その長さ方向が支持体 1の左辺、 下辺、 および右辺にそれぞ れ沿うように配置され、 その各梁の一端は支持体 1の対応する辺の中央 部に共通に接続され、 その各他端は重り部 2の内周部の対応する角部に それぞれ接続されている。 Similarly, beams 13, 14, beams 15, 16, and beams 17, 18 have their lengths on the left, bottom, and right sides of support 1, respectively, as shown. One end of each beam is commonly connected to the center of the corresponding side of the support 1, and the other end is connected to the corresponding corner of the inner periphery of the weight 2 respectively. I have.
梁 1 1、 1 2の応力集中部である両端には、 応力検出素子 2 1、 2 2 、 2 3、 2 4が配置されている。 同様に、 梁 1 3、 1 4、 梁 1 5、 1 6 、 および梁 1 7、 1 8の各両端には、 応力検出素子 2 1〜2 4がそれぞ れ配置されている。 Stress detecting elements 21, 22, 23, 24 are arranged at both ends of the beams 11, 12, which are stress concentration portions. Similarly, stress detecting elements 21 to 24 are disposed at both ends of the beams 13 and 14, the beams 15 and 16, and the beams 17 and 18, respectively.
なお、 図示の例では、 梁 1 1、 1 2は、 その各一端が支持体 1の上辺 の中央部に共通に接続され、 その各他端が重り部 2の内周部の角部にそ れぞれ接続されている。 しかし、 梁 1 1、 1 2は、 その各一端が重り部 2の内周辺の中央部に共通に接続され、 その各他端が支持体 1の上辺の 両端部にそれぞれ接続されるようにしても良い。 これは、 梁 1 3、 1 4 、 梁 1 5、 1 6、 および梁 1 7、 1 8の各両端の接続についても同様で ある。 In the example shown, one end of each of the beams 11 and 12 is connected in common to the center of the upper side of the support 1, and the other end is connected to the corner of the inner periphery of the weight 2. Each is connected. However, each of the beams 11 and 12 has one end connected to the center of the inner periphery of the weight 2 and the other end connected to both ends of the upper side of the support 1. Is also good. The same applies to the connection at both ends of beams 13 and 14, beams 15 and 16, and beams 17 and 18.
次に、 このような構成からなる第 1実施形態に係る加速度センサの動 作について説明する。 Next, the operation of the acceleration sensor according to the first embodiment having such a configuration will be described.
いま、 この加速度センサに加速度が加わると、 可動自在な重り部 2が 加速度に応じて移動し、 この重り部 2の移動に伴い梁 1 1〜 1 8に応力 が加わる。 このとき、 梁の両端で応力が最大となるので、 この応力を応 力検出素子 2 1〜2 4で検出し、 この検出に基づいて加速度を検出でき る Now, when acceleration is applied to the acceleration sensor, the movable weight 2 moves in accordance with the acceleration, and stress is applied to the beams 11 to 18 as the weight 2 moves. At this time, since the stress becomes maximum at both ends of the beam, this stress is detected by the stress detection elements 21 to 24, and the acceleration can be detected based on this detection.
ここで、 加速度を受けたときに梁 1 1〜 1 8に生ずる応力の大きさは 、 梁の長さに比例するので、 従来の構成に比べて梁 1 1〜 1 8の長さが
長くなつた分、 同一の加速度であっても発生する応力が大きくなり応力 検出素子 2 1〜2 4の検出感度が向上する。 Here, since the magnitude of the stress generated in the beams 11 to 18 when subjected to acceleration is proportional to the length of the beams, the length of the beams 11 to 18 is smaller than that of the conventional configuration. As the length increases, the generated stress increases even at the same acceleration, and the detection sensitivity of the stress detecting elements 21 to 24 improves.
次に、 本発明の加速度センサの第 2実施形態について、 図 5〜図 8を 参照して説明する。 図 5は、 この第 2実施形態の外観構造を示し、 その 一部を破断した斜視図である。 図 6はその平面図、 図 7は図 5の c一 c 線の断面図、 図 8は図 5の d— d線の断面図である。 Next, a second embodiment of the acceleration sensor of the present invention will be described with reference to FIGS. FIG. 5 is a perspective view showing an appearance structure of the second embodiment, a part of which is cut away. 6 is a plan view thereof, FIG. 7 is a cross-sectional view taken along line c-c of FIG. 5, and FIG. 8 is a cross-sectional view taken along line d-d of FIG.
この第 2実施形態に係る加速度センサは、 図 5〜図 8に示すようにガ ラス基板 5上に形成され、 そのガラス基板 5上の中央に四角錐台からな りその上下を逆にした重り部 7が可動自在に配置されている。 この重り 部 7の周囲には、 所定の間隔をおいて四角形の枠からなり支持体 8がそ の重り部 7を囲うように配置されるとともに、 その支持体 8はガラス基 板 5に固定されている。 重り部 7は、 肉厚の薄い梁 3 1〜3 8により支 持体 8に可動自在に支持されるとともに、 その各梁 3 1〜3 8は、 その 長さ方向が重り部 7の各辺に沿うように配置されている。 支持体 8、 重 り部 7、 および梁 3 1〜3 8は、 シリコン基板を素材にして形成されて いる。 The acceleration sensor according to the second embodiment is formed on a glass substrate 5 as shown in FIGS. 5 to 8, and has a truncated square pyramid in the center of the glass substrate 5 and a weight whose upside down is inverted. The part 7 is movably arranged. Around the weight 7, a support 8 composed of a rectangular frame is provided at a predetermined interval so as to surround the weight 7, and the support 8 is fixed to the glass substrate 5. ing. The weight portion 7 is movably supported by the support body 8 by thin beams 31 to 38, and each of the beams 31 to 38 has a length direction corresponding to each side of the weight portion 7. It is arranged along. The support 8, the weight 7, and the beams 31 to 38 are formed using a silicon substrate as a material.
梁 3 1、 3 2は、 図示のように、 その長さ方向が重り部 7の上辺に沿 うように配置され、 その各一端は重り部 7の上辺の中央部に共通に接続 され、 その各他端が支持体 8の内周部の角部の近傍にそれぞれ接続され ている。 As shown in the figure, the beams 31 and 32 are arranged so that the length direction thereof is along the upper side of the weight portion 7, and one end of each of the beams is commonly connected to the center of the upper side of the weight portion 7. Each other end is connected to a corner of the inner peripheral portion of the support 8.
同様に、 梁 3 3、 3 4、 梁 3 5、 3 6、 および梁 3 7、 3 8は、 図示 のように、 その長さ方向が重り部 7の左辺、 下辺、 および右辺にそれぞ れ沿うように配置され、 その各梁の一端は重り部 7の対応する辺の中央 部に共通に接続され、 その各他端は支持体 8の内周部の対応する角部の 近傍にそれぞれ接続されている。 Similarly, beams 3 3, 3 4, beams 3 5, 3 6, and beams 3 7, 3 8 have their length directions on the left side, bottom side, and right side of weight 7 as shown in the figure. One end of each beam is commonly connected to the center of the corresponding side of the weight 7, and the other end is connected to the vicinity of the corresponding corner of the inner periphery of the support 8. Have been.
従って、 支持体 8の内周部の 4つの各角部には、 図 5および図 6に示
すような 4つの空間 3 9が形成されることになる。 Therefore, the four corners of the inner periphery of the support 8 are shown in FIGS. 5 and 6. Such four spaces 39 are formed.
梁 3 1、 3 2の応力集中部である両端には、 応力検出素子 2 1、 2 2 、 2 3、 2 4が配置されている。 同様に、 梁 3 3、 3 4、 梁 3 5、 3 6 、 および梁 3 7、 3 8の各両端には、 応力検出素子 2 1〜2 4がそれぞ れ配置されている。 Stress detecting elements 21, 22, 23, 24 are arranged at both ends of the beams 31, 32, which are the stress concentration portions. Similarly, at both ends of the beams 33, 34, the beams 35, 36, and the beams 37, 38, the stress detecting elements 21 to 24 are arranged, respectively.
なお、 図示の例では、 梁 3 1、 3 2は、 その各一端が重り部 7の上辺 の中央部に共通に接続され、 その各他端が支持体 8の内周部の角部にそ れぞれ接続されている。 しかし、 梁 3 1、 3 2は、 その各一端が支持体 8の内周辺の中央部に共通に接続され、 その各他端が重り部 7の上辺の 両端部にそれぞれ接続されるようにしても良い。 これは、 梁 3 3、 3 4 、 梁 3 5、 3 6、 および梁 3 7、 3 8の各両端の接続についても同様で ある。 In the example shown, one end of each of the beams 31 and 32 is commonly connected to the center of the upper side of the weight portion 7, and the other end thereof is connected to a corner of the inner periphery of the support 8. Each is connected. However, each of the beams 31 and 32 has one end connected to the center of the inner periphery of the support 8 and the other end connected to both ends of the upper side of the weight 7. Is also good. The same applies to the connections at both ends of beams 33, 34, beams 35, 36, and beams 37, 38.
次に、 このような構成からなる第 2実施形態に係る加速度センサの動 作について説明する。 Next, an operation of the acceleration sensor according to the second embodiment having such a configuration will be described.
いま、 図 9 ( A ) に示すように、 この加速度センサに水平方向の加速 度が作用すると、 重り部 7にはこの加速度の方向とは反対方向に慣性力 が働き、 梁 3 5、 3 6の応力検出素子 2 1〜2 4の部分に、 図示のよう に圧縮応力 (一) と引張応力 (+ ) とが発生する。 また、 図図 9 ( B ) に示すように、 この加速度センサに垂直方向の加速度が作用すると、 重 り部 7にはこの加速度の方向とは反対方向に慣性力が働き、 梁 3 5、 3 6の応力検出素子 2 1 ~ 2 4の部分に、 図示のように圧縮応力 (―) と 引張応力 (+ ) とが発生する。 Now, as shown in Fig. 9 (A), when the acceleration in the horizontal direction acts on this acceleration sensor, an inertial force acts on the weight 7 in the direction opposite to the direction of the acceleration, and the beams 35, 36 A compressive stress (1) and a tensile stress (+) are generated at the stress detecting elements 21 to 24 of FIG. Also, as shown in Fig. 9 (B), when a vertical acceleration acts on this acceleration sensor, an inertial force acts on the weight 7 in the direction opposite to the direction of the acceleration, and the beams 35, 3 A compressive stress (-) and a tensile stress (+) are generated at the stress detecting elements 21 to 24 of FIG.
このように、 加速度センサに加速度が加わると、 可動自在な重り部 7 が加速度に応じて移動し、 この重り部 7の移動に伴い梁 3 1〜3 8に応 力が加わる。 このとき、 梁の両端で応力が最大となるので、 この応力を 応力検出素子 2 1〜2 4で検出し、 この検出に基づいて加速度を検出で
さる。 Thus, when acceleration is applied to the acceleration sensor, the movable weight 7 moves according to the acceleration, and the beam 31 to 38 is applied with the movement of the weight 7. At this time, since the stress is maximum at both ends of the beam, this stress is detected by the stress detecting elements 21 to 24, and acceleration is detected based on this detection. Monkey
ここで、 加速度を受けたときに梁 3 1〜3 8に生ずる応力の大きさは 、 梁の長さに比例するので、 従来の構成に比べて梁 3 1 ~ 3 8の長さが 長くなつた分、 同一の加速度であっても発生する応力が大きくなり応力 検出素子 2 1〜 2 4の検出感度が向上する。 Here, since the magnitude of the stress generated in the beams 31 to 38 when subjected to acceleration is proportional to the length of the beams, the length of the beams 31 to 38 becomes longer than in the conventional configuration. Accordingly, even at the same acceleration, the generated stress increases, and the detection sensitivity of the stress detecting elements 21 to 24 improves.
また、 この第 2の実施形態にかかる速度センサは、 重り部 7が中央で 支持体 8がその重り部 7を囲う形態であって、 その支持体 8がパッケ一 ジと一体になるものであるが、 梁 3 1〜3 8は、 重り部 7の各辺に対し て平行であって、 その両端の接続が、 上記のように支持体 8の内周部の 角部を除いた部分を利用している。 このため、 加速度センサの全体を囲 むパッケージから支持体 8に応力が加わった場合に、 梁 3 1〜3 8の長 手方向に直接応力が作用することなく、 梁の座屈や出力信号のシフ卜な どが発生しない。 Further, the speed sensor according to the second embodiment has a configuration in which the weight 7 is in the center and the support 8 surrounds the weight 7, and the support 8 is integrated with the package. However, the beams 31 to 38 are parallel to each side of the weight portion 7 and the connection of both ends uses the portion excluding the corner of the inner peripheral portion of the support 8 as described above. are doing. For this reason, when stress is applied to the support 8 from the package surrounding the entire acceleration sensor, no direct stress is applied in the longitudinal direction of the beams 31 to 38, and buckling of the beams and output signal No shift occurs.
次に、 本発明の加速度センサの第 3実施形態について、 図 1 0を参照 して説明する。 図 1 0は、 この第 3実施形態の平面図である。 Next, a third embodiment of the acceleration sensor of the present invention will be described with reference to FIG. FIG. 10 is a plan view of the third embodiment.
この第 3実施形態に係る加速度センサは、 第 2実施形態と基本的に同 様の構成からなり、 その各梁 3 1〜3 8の重り部 7との接続構造のみが 異なるようにしたものである。 The acceleration sensor according to the third embodiment has basically the same configuration as that of the second embodiment, and differs only in the connection structure of each of the beams 31 to 38 to the weight 7. is there.
すなわち、 第 2実施形態は、 図 6に示すように、 梁 3 1、 3 2、 梁 3 3、 3 4、 梁 3 5、 3 6、 及び梁 3 7、 3 8の各一端を、 重り部 7の対 応する各辺の中央部に共通に接続するようにしたが、 第 3実施形態は、 図 1 0に示すように、 梁 3 1、 3 2、 梁 3 3、 3 4、 梁 3 5、 3 6、 及 び梁 3 7、 3 8の各一端を、 重り部 7の対応する各辺の中央部に共通で はなく所定の間隔をあけて個別に接続するようにした。 That is, in the second embodiment, as shown in FIG. 6, one end of each of the beams 31, 32, beams 33, 34, beams 35, 36, and beams 37, 38 is connected to the weight portion. 7 was connected in common to the center of each corresponding side. However, in the third embodiment, as shown in FIG. 10, beams 3 1, 3 2, beams 3 3, 3 4, 3 Each end of 5, 36, and beams 37, 38 is not connected to the center of the corresponding side of the weight 7, but is connected separately at a predetermined interval.
なお、 第 3実施形態の他の部分の構成は、 図 6に示す第 2実施形態と 同様であるので、 同一の構成要素には同一符号を付してその説明は省略
する。 また、 このような構成からなる第 3実施形態の動作は、 第 2実施 形態の動作と同様であるので、 その説明は省略する。 Since the configuration of other parts of the third embodiment is the same as that of the second embodiment shown in FIG. 6, the same components are denoted by the same reference numerals and description thereof will be omitted. I do. Further, the operation of the third embodiment having such a configuration is the same as the operation of the second embodiment, and thus the description thereof will be omitted.
第 2実施形態では、 梁 3 1〜3 8と支持体 8の接続が支持体 8の内周 部の角部を除いた部分を利用することにより、 加速度センサの全体を囲 むパッケージから支持体 8に応力が加わった場合に、 梁 3 1〜3 8の長 手方向に直接応力が作用することがなく、 梁 3 1 ~ 3 8の座屈や出力信 号のシフ トを抑制するようにした。 In the second embodiment, the connection between the beams 31 to 38 and the support body 8 uses a portion of the support body 8 excluding the corners of the inner peripheral portion, so that the support body can be moved from the package surrounding the entire acceleration sensor. When stress is applied to 8, the beams 31 to 38 do not act directly in the longitudinal direction of the beams, and the buckling of the beams 31 to 38 and the shift of the output signal are suppressed. did.
これに対して、 第 3実施形態では、 梁 3 1 ~ 3 8の支持体 8との接続 を第 2実施形態と同様にするとともに、 梁 3 1〜3 8の重り部 7との接 続は、 図 1 0に示すように、 重り部 7の各辺の中央部に所定の間隔をあ けて個別に接続するようにした。 このため、 第 3実施形態では、 梁 3 1 〜3 8の座屈や出力信号のシフ トをさらに効果的に抑制できる。 On the other hand, in the third embodiment, the connection of the beams 31 to 38 to the support body 8 is the same as that of the second embodiment, and the connection of the beams 31 to 38 to the weight 7 is As shown in FIG. 10, the weights 7 are individually connected to the center of each side at predetermined intervals. Therefore, in the third embodiment, the buckling of the beams 31 to 38 and the shift of the output signal can be more effectively suppressed.
次に、 上述の第 1実施形態に係る加速度センサに適用される加速度検 出回路の構成例について、 図 1、 図 2、 図 1 1、 および図 1 2を参照し て説明する。 Next, an example of the configuration of an acceleration detection circuit applied to the acceleration sensor according to the first embodiment will be described with reference to FIGS. 1, 2, 11, and 12. FIG.
図 1および図 2に示すように、 支持体 1の各辺の各応力検出素子 2 1 〜2 4として、 ビエゾ抵抗素子を使用する場合には、 その応力検出素子 2 1〜2 4の各位置に P型の拡散層によるピエゾ抵抗素子 2 1 a〜2 4 aをそれぞれ配置する。 これらの 4つのピエゾ抵抗素子 2 1 a〜2 4 a は、 図 1 1に示すようなホイ一トストンブリッジを構成するものとする そして、 梁 1 1、 1 2の応力検出素子 2 1〜2 4の位置に配置される ピエゾ抵抗素子 2 1 a〜 2 4 aにより図 1 2に示すような第 1のホイ一 ス トンブリッジ 4 1を構成する。 同様に、 梁 1 3、 1 4、 梁 1 5、 1 6 、 および梁 1 7、 1 8の応力検出位置 2 1〜2 4の位置に配置される抵 抗素子 2 l a〜2 4 aにより、 図 1 2に示すように、 第 2、 第 3および
第 4のホイ一ストンブリッジ 42、 43、 44をそれぞれ構成する。 ホイートストンブリッジ 4 1〜44の各出力 S 1〜S 4は、 梁の長手 方向の加速度に対しては、 応力検出素子 2 1と応力検出素子 23が同一 の変形をし、 応力検出素子 22と応力検出素子 24が同一の変形をする ので、 その出力端子には信号が出力されない。 As shown in FIGS. 1 and 2, when a piezoresistive element is used as each of the stress detection elements 21 to 24 on each side of the support 1, each position of the stress detection elements 21 to 24 is The piezoresistive elements 21a to 24a each formed of a P-type diffusion layer are respectively arranged. These four piezoresistive elements 21a to 24a constitute a Wheatstone bridge as shown in Fig. 11 and the stress detecting elements 21 to 2 of beams 11 and 12 A first wheel bridge 41 shown in FIG. 12 is constituted by the piezoresistive elements 21 a to 24 a arranged at the position 4. Similarly, the resistance elements 2 la to 24 a arranged at the stress detection positions 21 to 24 of the beams 13, 14, beams 15, 16, and beams 17, 18 give As shown in Figure 12, the second, third and Configure the fourth Houston Bridges 42, 43 and 44 respectively. The outputs S 1 to S 4 of the Wheatstone bridge 4 1 to 44 indicate that the stress detecting element 21 and the stress detecting element 23 deform the same with respect to the acceleration in the longitudinal direction of the beam, and the stress detecting element 22 Since the detection element 24 performs the same deformation, no signal is output to its output terminal.
次に、 ホイ一トストンブリッジ 4 1〜44の出力信号により、 X軸、 Y軸、 および Z軸の各方向の加速度信号 Xs、 Ys、 Z sを求める演算 回路について図 12を参照して説明する。 なお、 X軸、 Y軸、 および Z 軸は、 図 2に示すようにとるものとし、 X軸と Y軸とは梁の長手方向に 対して 45 ° 回転した位置になっている。 Next, an arithmetic circuit for calculating acceleration signals Xs, Ys, and Zs in the X-axis, Y-axis, and Z-axis directions from the output signals of the Wheatstone bridge 41 to 44 will be described with reference to FIG. I do. The X-axis, Y-axis, and Z-axis are taken as shown in FIG. 2, and the X-axis and the Y-axis are at positions rotated by 45 ° with respect to the longitudinal direction of the beam.
この演算回路は、 ホイ一トストンブリッジ 4 1〜44の出力信号 S 1 〜S 4について、 ( 1 ) 式の演算を行って X軸方向の加速度信号 Xsを 求める加算器 45と、 その出力信号 S 1〜S 4について、 ( 2) 式の演 算を行って Y軸方向の加速度信号 Ysを求める加算器 46と、 その出力 信号 S 1〜S 4について、 (3) 式の演算を行って Z軸方向の加速度信 号 Z sを求める加算器 47とから構成されている。 This arithmetic circuit calculates an X-axis acceleration signal Xs by performing an operation of the equation (1) for the output signals S 1 to S 4 of the Wheatstone bridges 41 to 44, and an output signal thereof. With respect to S 1 to S 4, the adder 46 that calculates the acceleration signal Ys in the Y-axis direction by performing the calculation of the expression (2) and the output signal S 1 to S 4 by the calculation of the expression (3) And an adder 47 for obtaining an acceleration signal Zs in the Z-axis direction.
X s = (S 2 + S 3) - (S 1 +S 4) ··· ( 1 ) X s = (S 2 + S 3)-(S 1 + S 4) (1)
Y s = ( S 3 + S 4) 一 (S 1 +S 2) … ( 2) Y s = (S 3 + S 4) one (S 1 + S 2)… (2)
Z s = S l + S 2 + S 3 + S 4 - ( 3 ) Z s = S l + S 2 + S 3 + S 4-(3)
次に、 加算器 45〜47が ( 1 ) 〜 (3) 式を用いて各加速度信号 X s、 Ys、 Z sを求めることができる理由について説明する。 Next, the reason why the adders 45 to 47 can obtain the respective acceleration signals Xs, Ys, and Zs using the equations (1) to (3) will be described.
いま、 図 2の X軸方向に加速度が作用したとすると、 梁 1 3、 14と 梁 1 5、 1 6とは同一の変化をし、 梁 1 1、 1 2と梁 1 7、 18は同一 の変化をし、 前者と後者とではその変化が逆方向となる。 このため、 ホ ィ一トストンブリッジ 42と 43の出力信号 S 2、 S 3は正となり、 ホ ィ一トストンブリッジ 4 1と 44の出力信号 S 1、 S 4は負となる。 そ
こで、 その出力 S 1〜S 4について、 加算器 45で ( 1 ) 式の演算を行 うと、 X軸方向の加速度信号 Xsが求まる。 Now, assuming that acceleration is applied in the X-axis direction in Fig. 2, beams 13 and 14 and beams 15 and 16 undergo the same change, and beams 11 and 12 and beams 17 and 18 are the same. And the change is reversed in the former and the latter. Therefore, the output signals S2 and S3 of the Wheatstone bridges 42 and 43 are positive, and the output signals S1 and S4 of the Wheatstone bridges 41 and 44 are negative. So Here, when the outputs S1 to S4 are subjected to the operation of the expression (1) by the adder 45, the acceleration signal Xs in the X-axis direction is obtained.
このとき、 加算器 46は、 (2) 式による演算を行うが、 出力信号 S 3と出力信号 S 4は符号が逆となり打ち消しあい、 同様に出力信号 S 1 と出力信号 S 2は符号が逆となり打ち消しあうので、 その加速度信号 Y sは 「零」 となる。 また、 このとき、 加算器 47は (3) 式による演算 を行うが、 同様にその加速度信号 Z sは 「零」 となる。 At this time, the adder 46 performs the operation according to the equation (2), but the output signal S 3 and the output signal S 4 have opposite signs and cancel each other. Similarly, the output signal S 1 and the output signal S 2 have opposite signs. Therefore, the acceleration signal Y s becomes “zero”. At this time, the adder 47 performs the calculation according to the equation (3). Similarly, the acceleration signal Zs becomes “zero”.
次に、 図 2の Y軸方向に加速度が作用したとすると、 梁 1 5、 16と 梁 1 7、 1 8とは同一の変化をし、 梁 1 1、 1 2と梁 1 3、 14は同一 の変化をし、 前者と後者とではその変化が逆方向となる。 このため、 ホ ィートストンブリッジ 43と 44の出力信号 S 3、 S 4は正となり、 ホ ィ一トストンブリッジ 4 1と 42の出力信号 S 1、 S 2は負となる。 そ こで、 その出力 S 1〜S 4について、 加算器 46で (2 ) 式の演算を行 うと、 Y軸方向の加速度信号 Ysが求まる。 Next, assuming that acceleration acts in the Y-axis direction in Fig. 2, beams 15 and 16 and beams 17 and 18 change in the same way, and beams 11 and 12 and beams 13 and 14 The same change is made, and the change is reversed in the former and the latter. Therefore, the output signals S3 and S4 of the Wheatstone bridges 43 and 44 are positive, and the output signals S1 and S2 of the Wheatstone bridges 41 and 42 are negative. Then, when the outputs S1 to S4 are subjected to the calculation of the expression (2) by the adder 46, the acceleration signal Ys in the Y-axis direction is obtained.
このとき、 加算器 45は、 ( 1) 式による演算を行うが、 出力信号 S 2と出力信号 S 3は符号が逆となり打ち消しあい、 同様に出力信号 S 1 と出力信号 S 4は符号が逆となり打ち消しあうので、 その加速度信号 X sは 「零」 となる。 また、 このとき、 加算器 47は (3) 式による演算 を行うが、 同様にその加速度信号 Z sは 「零」 となる。 At this time, the adder 45 performs the operation according to the equation (1), but the output signal S 2 and the output signal S 3 have opposite signs and cancel each other. Similarly, the output signal S 1 and the output signal S 4 have opposite signs. The acceleration signals X s become “zero” because they cancel each other. At this time, the adder 47 performs the calculation according to the equation (3). Similarly, the acceleration signal Zs becomes “zero”.
さらに、 図 2の Z軸方向に加速度が作用したとすると、 梁 1 1、 12 、 梁 1 3、 14、 梁 1 5、 1 6、 梁 1 7、 18は同一の変化をする。 こ のため、 ホイートストンブリッジ 4 1〜44の出力信号 S 1〜S 4は正 となり、 その出力 S 1〜S 4について、 加算器 47で ( 3) 式の演算を 行うと、 Z軸方向の加速度信号 Z sが求まる。 Furthermore, if acceleration is applied in the Z-axis direction in Fig. 2, beams 11 and 12, beams 13 and 14, beams 15, 16 and beams 17, 18 change the same. Therefore, the output signals S 1 to S 4 of the Wheatstone bridges 41 to 44 are positive, and when the outputs S 1 to S 4 are subjected to the calculation of the expression (3) by the adder 47, the acceleration in the Z-axis direction is obtained. The signal Z s is obtained.
このとき、 加算器 45は、 ( 1 ) 式による演算を行うが、 その加速度 信号 X sは 「零」 となり、 加算器 46は (2) 式による演算を行うが、
その加速度信号 Ysは 「零」 となる。 At this time, the adder 45 performs the calculation according to the formula (1), but the acceleration signal Xs becomes “zero”, and the adder 46 performs the calculation according to the formula (2). The acceleration signal Ys becomes “zero”.
以上の説明から明らかなように、 加算器 45〜47は、 ( 1 ) 式〜 ( 3) 式のような演算を行うことにより、 X軸、 Y軸、 および Z軸方向の 各加速度に応じた加速度信号 X s、 Ys、 Z sを同時に生成することが できる。 As is clear from the above description, the adders 45 to 47 perform calculations according to the equations (1) to (3), thereby responding to the accelerations in the X-axis, Y-axis, and Z-axis directions. The acceleration signals Xs, Ys, and Zs can be generated simultaneously.
次に、 加速度検出回路の他の構成例について、 図 1、 図 2、 図 13、 および図 14を参照して説明する。 Next, another configuration example of the acceleration detection circuit will be described with reference to FIGS. 1, 2, 13, and 14. FIG.
この加速度検出回路は、 図 1および図 2に示すように、 支持体 1の各 辺の各応力検出素子 21〜24として、 P型 MO S F E Tを用いたもの であり、 その応力検出素子 21〜 24の各位置に P型 MO S FE T 21 b~ 24 bを配置する。 これらの 4つの MO S FET2 l b〜 24bは 、 入カトランジス夕として図 13に示すような CM 0 S差動増幅回路を 構成するものとする。 As shown in FIGS. 1 and 2, this acceleration detection circuit uses a P-type MOS SFET as each of the stress detection elements 21 to 24 on each side of the support 1, and the stress detection elements 21 to 24 P-type MOS FETs 21 b to 24 b are arranged at each position of. These four MOS FETs 2 lb to 24 b constitute a CM 0 S differential amplifier circuit as shown in FIG. 13 as an input transistor.
そして、 梁 1 1、 12の応力検出部 21-24の位置に配置される M OSFET21 b、 24 bより図 14に示すような第 1の差動増幅回路 51を構成する。 同様に、 梁 13、 14、 梁 15、 16、 および梁 17 、 18の応力検出部 2:!〜 24の位置に配置される MO S F E T 21 b 〜24bにより、 図 14に示すように、 第 2、 第 3および第 4の差動増 幅回路 52〜54をそれぞれ構成する。 Then, the first differential amplifier circuit 51 as shown in FIG. 14 is constituted by the MOS FETs 21 b and 24 b arranged at the positions of the stress detecting sections 21 to 24 of the beams 11 and 12. Similarly, the MO SFETs 21 b to 24 b arranged at the positions of the stress detectors 2 of the beams 13, 14, 15, 16, and 17, 18:! , And third and fourth differential amplifier circuits 52 to 54, respectively.
次に、 差動増幅回路 51~ 54の具体的な構成について、 図 13を参 照して説明する。 Next, a specific configuration of the differential amplifier circuits 51 to 54 will be described with reference to FIG.
この差動増幅回路は、 図 13に示すように、 応力検出部 21〜24に 配置される入力用の 4つの P型 MO S FE T 21 b〜24 bと、 電流源 となる P型 MOSFET 61と、 カレントミラーを構成する 2つの N型 MOSFET62 63から構成され、 出力端子 64から出力信号が出 力されるようになっている。
MO SFET 2 l bと MO S FET 24 bとは並列に接続され、 その 共通接続されたソースが MO S F E T 6 1を介して電源 Vd dに接続さ れるとともに、 その共通接続されたドレインがダイォード接続された M 0 S F E T 62を介して電源 Vs sに接続されるとともに、 その両ゲ一 卜にはゲートバイアス電圧が印加されている。 As shown in Fig. 13, this differential amplifier circuit has four P-type MOS FETs 21b to 24b for input arranged in the stress detection units 21 to 24, and a P-type MOSFET 61 as a current source. And two N-type MOSFETs 62 63 constituting a current mirror, and an output signal is outputted from an output terminal 64. The MO SFET 2 lb and the MO SFET 24 b are connected in parallel, the common connected source is connected to the power supply Vdd via the MOS FET 61, and the common connected drain is diode connected. In addition to being connected to the power supply Vss via the M0 SFET 62, a gate bias voltage is applied to both gates.
同様に、 MO S FET 22 bと MO S FET 23 bとは並列に接続さ れ、 その共通接続されたソースが MO S F E T 62を介して電源 Vd d に接続されるとともに、 その共通接続されたドレインが MO S F E T 6 3を介して電源 Vs sに接続されるとともに、 その両ゲートにはゲート バイアス電圧が印加されている。 Similarly, the MOS FET 22b and the MOS FET 23b are connected in parallel, and the commonly connected source is connected to the power supply Vdd via the MOS FET 62 and the commonly connected drain is connected. Is connected to the power supply Vss via the MOSFET 63, and a gate bias voltage is applied to both gates thereof.
このような構成からなる差動増幅回路 5 1〜54の各出力 S 1〜S 4 は、 梁の長手方向の加速度に対しては、 MOS FE T 5 1と MO S FE T 53が同一の変形をし、 MOS FE T 52と MO S FET 54が同一 の変形をするので、 その出力端子には信号が出力されない。 The outputs S 1 to S 4 of the differential amplifier circuits 51 to 54 having such a configuration have the same deformation as the MOS FET 51 and the MOS FET 53 for the acceleration in the longitudinal direction of the beam. Since the MOS FET 52 and the MOS FET 54 undergo the same deformation, no signal is output to the output terminal.
次に、 差動増幅回路 5 1〜54の出力信号により、 X軸、 Y軸、 およ び Z軸の各方向の加速度信号 X s、 Ys、 Z sを求める演算回路につい て図 14を参照して説明する。 なお、 X軸、 Y軸、 および Z軸は、 図 2 に示すようにとるものとし、 X軸と Y軸とは梁の長手方向に対して 45 ° 回転した位置になっている。 Next, refer to FIG. 14 for an arithmetic circuit for calculating acceleration signals Xs, Ys, and Zs in the X-axis, Y-axis, and Z-axis directions from the output signals of the differential amplifier circuits 51 to 54. I will explain. The X-axis, Y-axis, and Z-axis are taken as shown in FIG. 2, and the X-axis and the Y-axis are at positions rotated by 45 ° with respect to the longitudinal direction of the beam.
この演算回路は、 差動増幅回路 5 1〜54の出力信号 S 5〜S 8につ いて、 (4) 式の演算を行って X軸方向の加速度信号 Xsを求める加算 器 55と、 その出力信号 S 5〜S 8について、 (5) 式の演算を行って Y軸方向の加速度信号 Ysを求める加算器 56と、 その出力信号 S 5〜 S 8について、 (6) 式の演算を行って Z軸方向の加速度信号 Z sを求 める加算器 57とから構成されている。 This arithmetic circuit performs an arithmetic operation of equation (4) on the output signals S5 to S8 of the differential amplifier circuits 51 to 54 to obtain an acceleration signal Xs in the X-axis direction. For the signals S5 to S8, the adder 56 that calculates the acceleration signal Ys in the Y-axis direction by performing the calculation of the expression (5), and for the output signals S5 to S8, performs the calculation of the expression (6) And an adder 57 for obtaining an acceleration signal Zs in the Z-axis direction.
X s = (S 6 + S 7) — (S 5 + S 8) … (4)
Ys = (S 7 + S 8) - (S 5 + S 6) … (5) X s = (S 6 + S 7) — (S 5 + S 8)… (4) Ys = (S 7 + S 8)-(S 5 + S 6)… (5)
Z s = S 5 + S 6 + S 7 + S 8 ·'· ( 6) Z s = S 5 + S 6 + S 7 + S 8 (6)
次に、 加算器 55〜57が (4) 〜 (6) 式を用いて各加速度信号 X s、 Ys、 Z sを求めることができる理由について説明する。 Next, the reason why the adders 55 to 57 can obtain the acceleration signals Xs, Ys, and Zs using the equations (4) to (6) will be described.
いま、 図 2の X軸方向に加速度が作用したとすると、 梁 1 3、 14と 梁 15、 1 6とは同一の変化をし、 梁 1 1、 12と梁 1 7、 18は同一 の変化をし、 前者と後者とではその変化が逆方向となる。 このため、 差 動増幅回路 52と 53の出力信号 S 6、 S 7は正となり、 差動増幅回路 5 1と 54の出力信号 S 5、 S 8は負となる。 そこで、 その出力 S 5〜 S 8について、 加算器 55で (4) 式の演算を行うと、 X軸方向の加速 度信号 Xsが求まる。 Now, assuming that acceleration is applied in the X-axis direction in Fig. 2, beams 13 and 14 and beams 15 and 16 change in the same way, and beams 11 and 12 and beams 17 and 18 change in the same way. The change is reversed in the former and the latter. Therefore, the output signals S6 and S7 of the differential amplifier circuits 52 and 53 are positive, and the output signals S5 and S8 of the differential amplifier circuits 51 and 54 are negative. Therefore, when the outputs S5 to S8 are subjected to the operation of the expression (4) by the adder 55, the acceleration signal Xs in the X-axis direction is obtained.
このとき、 加算器 56は、 (5) 式による演算を行うが、 出力信号 S 7と出力信号 S 8は符号が逆となり打ち消しあい、 同様に出力信号 S 5 と出力信号 S 6は符号が逆となり打ち消しあうので、 その加速度信号 Y sは 「零」 となる。 また、 このとき、 加算器 57は (6) 式による演算 を行うが、 同様に打ち消しあってその加速度信号 Z sは 「零」 となる。 次に、 図 2の Y軸方向に加速度が作用したとすると、 梁 1 5、 1 6と 梁 1 7、 1 8とは同一の変化をし、 梁 1 1、 12と梁 1 3、 14は同一 の変化をし、 前者と後者とではその変化が逆方向となる。 このため、 差 動増幅回路 53と 54の出力信号 S 7、 S 8は正となり、 差動増幅回路 5 1と 52の出力信号 S 5、 S 6は負となる。 そこで、 その出力 S 5〜 S 8について、 加算器 56で (5) 式の演算を行うと、 Y軸方向の加速 度信号 Ysが求まる。 At this time, the adder 56 performs the operation according to the expression (5), but the output signal S 7 and the output signal S 8 have opposite signs and cancel each other. Similarly, the output signal S 5 and the output signal S 6 have opposite signs. The acceleration signal Y s becomes “zero” because they cancel each other. At this time, the adder 57 performs the calculation according to the expression (6), but similarly cancels out and the acceleration signal Z s becomes “zero”. Next, assuming that acceleration is applied in the Y-axis direction in Fig. 2, beams 15 and 16 and beams 17 and 18 change in the same way, and beams 11 and 12 and beams 13 and 14 The same change is made, and the change is reversed in the former and the latter. Therefore, the output signals S7 and S8 of the differential amplifier circuits 53 and 54 are positive, and the output signals S5 and S6 of the differential amplifier circuits 51 and 52 are negative. Then, when the outputs S5 to S8 are subjected to the calculation of the expression (5) by the adder 56, the acceleration signal Ys in the Y-axis direction is obtained.
このとき、 加算器 55は、 (4) 式による演算を行うが、 出力信号 S 6と出力信号 S 7は符号が逆となり打ち消しあい、 同様に出力信号 S 5
と出力信号 S 8は符号が逆となり打ち消しあうので、 その加速度信号 X sは 「零」 となる。 また、 このとき、 加算器 57は (6) 式による演算 を行うが、 同様に打ち消しあってその加速度信号 Z sは 「零」 となる。 さらに、 図 2の Z軸方向に加速度が作用したとすると、 梁 1 1、 12 、 梁 1 3、 14、 梁 1 5、 1 6、 梁 1 7、 18はいずれも同一の変化を する。 このため、 差動増幅回路 5 1〜54の出力信号 S 5〜S 8は正と なり、 その出力 S 5~S 8について、 加算器 57で (6) 式の演算を行 うと、 Z軸方向の加速度信号 Z sが求まる。 At this time, the adder 55 performs the operation according to the expression (4), but the output signal S 6 and the output signal S 7 have opposite signs and cancel each other. And the output signal S8 have opposite signs and cancel each other, so that the acceleration signal Xs becomes "zero". At this time, the adder 57 performs the calculation according to the equation (6), but similarly cancels out and the acceleration signal Zs becomes “zero”. Furthermore, assuming that acceleration is applied in the Z-axis direction in Fig. 2, beams 11 and 12, beams 13 and 14, beams 15, 16 and beams 17 and 18 all undergo the same change. Therefore, the output signals S5 to S8 of the differential amplifier circuits 51 to 54 are positive, and when the outputs S5 to S8 are calculated by the adder 57 using the expression (6), the Z-axis direction is obtained. Is obtained.
このとき、 加算器 55は、 (4) 式による演算を行うが、 その加速度 信号 X sは 「零」 となり、 加算器 56は ( 5) 式による演算を行うが、 その加速度信号 Ysは 「零」 となる。 At this time, the adder 55 performs the calculation according to the equation (4), but the acceleration signal Xs becomes “zero”. The adder 56 performs the calculation according to the equation (5), but the acceleration signal Ys is “zero”. It becomes.
以上の説明から明らかなように、 加算器 55〜57は、 (4) 式〜 ( 6) 式のような演算を行うことにより、 X軸、 Y軸、 および Z軸方向の 各加速度に応じた加速度信号 X s、 Ys、 Z sを同時に生成することが できる。 As is clear from the above description, the adders 55 to 57 perform the operations as shown in the expressions (4) to (6) to respond to the accelerations in the X-axis, Y-axis, and Z-axis directions. The acceleration signals Xs, Ys, and Zs can be generated simultaneously.
なお、 以上の説明は、 図 1〜図 4に示す第 1実施形態に 2つの加速度 検出回路を適用した場合について説明した。 しかし、 上述の 2つの加速 度検出回路は、 図 5〜図 8に示す第 2実施形態、 および図 1 0に示す第 3実施形態にも適用できること勿論であり、 その説明は重複記載になる ので省略する。 産業上の利用可能性 In the above description, the case where two acceleration detection circuits are applied to the first embodiment shown in FIGS. 1 to 4 has been described. However, the two acceleration detection circuits described above can be applied to the second embodiment shown in FIGS. 5 to 8 and the third embodiment shown in FIG. 10 as a matter of course. Omitted. Industrial applicability
以上述べたように、 本発明によれば、 従来のセンサに比べて梁を長く できるので、 高感度かつ小型化が可能となる。 As described above, according to the present invention, the beam can be made longer than that of a conventional sensor, so that high sensitivity and miniaturization can be achieved.
また、 本発明によれば、 高感度かつ小型化が可能な上に、 さらに、 カロ
速度センサが本来の機能である外部から加わる加速度により生じる応力 以外の応力が、 検出素子に伝わることのない信頼性の高い加速度センサ を得ることができる。 According to the present invention, high sensitivity and miniaturization are possible, and further, It is possible to obtain a highly reliable acceleration sensor in which stress other than the stress generated by externally applied acceleration, which is the original function of the speed sensor, is not transmitted to the detection element.
さらに、 本発明によれば、 4組の回路の出力信号について所定の演算 処理をして任意の方向の加速度を求める演算回路を備えるようにしたの で、 3軸の加速度センサとして利用できる。
Further, according to the present invention, since an arithmetic circuit for performing predetermined arithmetic processing on output signals of the four sets of circuits to obtain acceleration in an arbitrary direction is provided, it can be used as a three-axis acceleration sensor.