WO2000077231A1 - Sequences regulatrices de cellules animales et vecteurs d'expression recombinants - Google Patents

Sequences regulatrices de cellules animales et vecteurs d'expression recombinants Download PDF

Info

Publication number
WO2000077231A1
WO2000077231A1 PCT/JP2000/003956 JP0003956W WO0077231A1 WO 2000077231 A1 WO2000077231 A1 WO 2000077231A1 JP 0003956 W JP0003956 W JP 0003956W WO 0077231 A1 WO0077231 A1 WO 0077231A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
vector
promoter
gene
expression
Prior art date
Application number
PCT/JP2000/003956
Other languages
English (en)
French (fr)
Inventor
Noboru Nakamichi
Yoshiko Hirota
Mamiko Ito
Takuji Maeda
Hua Yan
Toshiharu Matsumura
Original Assignee
Roman Industries Co., Ltd.
Research Institute Of Innovative Technology For The Earth
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roman Industries Co., Ltd., Research Institute Of Innovative Technology For The Earth filed Critical Roman Industries Co., Ltd.
Publication of WO2000077231A1 publication Critical patent/WO2000077231A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2840/00Vectors comprising a special translation-regulating system
    • C12N2840/20Vectors comprising a special translation-regulating system translation of more than one cistron
    • C12N2840/203Vectors comprising a special translation-regulating system translation of more than one cistron having an IRES

Definitions

  • the present invention relates to a DNA sequence involved in the control of recombinant expression of a foreign gene using an animal cell as a host, an animal cell expression vector capable of producing an expression product of the foreign gene, and a set obtained by using the vector. Pertaining to transgenic animal cells. Background art
  • Recombinant production systems that use animal cells as a host tend to have lower production efficiency compared to conventional recombinant production systems that use Escherichia coli or yeast as a host. It has provided a production system that is indispensable for the purpose of obtaining products containing proteins.
  • the expression vector which is the basis for recombinant production, initially contains a promoter sequence that can function in animal cells, and an insertion site for the foreign protein gene cDNA for production downstream of the promoter sequence.
  • a promoter sequence that can function in animal cells
  • an insertion site for the foreign protein gene cDNA for production downstream of the promoter sequence.
  • the replication initiation region and the drug resistance factor gene are linked so that replication and selection in the microbial host are possible, most of which are plasmid vectors or virus vectors.
  • the vector DNA constructed in this manner is propagated by transfection into microorganisms or cells, separated as DNA, and then transfected into animal cells to obtain the desired foreign material in animal cells. The gene was expressed.
  • the first generation of recombinant production technology uses two types of vector DNA, a vector DNA containing a product gene and a vector DNA containing a drug resistance gene, in animal cells. Recombinant production by selecting by drug Cell clones.
  • P SV2 vector (Mulligan, RC and Berg P. (1981) Mol. Cell. Biol. 1: 449-459) for constructing a continuous expression system
  • pcD vector (Okayama, H. and Berg, P. et al. (1983) Mol. Cell. Biol. 3: 280-289).
  • pKan2 vector Yuichi is a vector incorporating a drug resistance gene.
  • a pcD vector here, this will follow the SV40 early promoter so that full-length cDNA is synthesized efficiently and that cDNA expression is guaranteed when the recombinant plasmid DNA is introduced into animal cells.
  • This is a vector constructed by adding a poly (A) addition signal downstream of the exogenous gene transfer site and adding a replication / selection device in E. coli.
  • this vector is introduced into COS cells that produce SV40 T antigen, the Ori sequence in the SV40 early promoter site functions and the vector DNA is replicated in COS cells.
  • it has a feature that highly transient expression of a foreign gene is performed.
  • the pKan2 vector aims to have an appropriate expression of the drug resistance gene when integrated into animal cells, and as a drug resistance gene, the neomycin phosphotransferase gene ( ne o r) the Nde select, which was introduced to the downstream of the thymidine kinase promoter, it is a vector one which was constructed further along the replication and selection system in E. coli.
  • each expression system for both a drug resistance expression system and a foreign gene expression system, and three expression systems for replication and selection in microorganisms, are independent of each other in one vector.
  • a typical vector is, for example, the production gene cDNA connected downstream of the glucocorticoid-induced promoter sequence in the mouse papilloma virus long ter rmina lr epe at (MMT VL TR), while the SV40 ⁇ ri 'A vector constructed by connecting a neomycin phosphotransferase gene downstream of the early promoter sequence and a replication device in E.
  • the product gene cDNA and the drug resistance gene are linked to each other downstream of one promoter (daicistronic) and arranged (by dicistronic), thereby producing the cells in the drug resistant cells. Have been attempted to increase the ratio.
  • a foreign gene and a drug resistance gene are linked downstream of a single promoter, a series of mRNAs is transcribed, but the drug resistance gene transcript is not translated as it is.
  • IRES internal liposome-multiple entry site
  • DHFR dehydrofolate reductase
  • MTX methotrexate
  • GS glutamine synthase
  • MS0 methionine sulfoximine
  • expression efficiency also depends greatly on the characteristics of the host cell, such as the animal species.
  • the mouse mammary tumor virus promoter exhibits a high expression efficiency in corticosteroid-sensitive cells only in the presence of corticosteroid for the first time. Expression vectors with low host dependence are therefore important conditions for production vectors.
  • the SR sequence Takebe, Y. et al. (1988) Mol. Cell Biol. 8: 466-472
  • the SR-sequence has expression efficiency comparable to that of the CMV promoter-enhancer sequence, has little host-dependence and characteristics, and is one of the most frequently used control sequences at present.
  • the SR control sequence is described in detail.
  • This sequence is located 10 ng termi na lr epe of adult human T-cell leukemia virus (HTLV-1) downstream of the SV40 virus promoter / enhancer sequence.
  • at (LTR) is a control sequence containing the R (repe at) region and a part of the U5 region in the sequence, and is usually downstream of the splicing junction sequence of SV40 late mRNA (Okayama, H and Berg, P. (1983) Mol. Cell. Biol. 3: 280-289, hereafter referred to as Sp sequence), a foreign gene, and a polyadenylation signal sequence downstream of the gene.
  • the HTLV-1 proviral DNA sequence In addition to the SR sequence, the HTLV-1 proviral DNA sequence, similar to other retroviruses, has terminal repeats called LTRs (1 ng termina lrepeat) on the 3 and 5 sides, respectively. Natl. Acad. Sci. USA 80: 3618-3622), but it has been found that this LTR region exhibits very strong promoter activity ( Natl. Acad. Sci. USA 82: 2277-2281), and this LTR is composed of regions called U3, R and U5 regions. It has been elucidated that the R and U5 regions located downstream of the U3 region have promoter-enhancer-activity (Fujisawa, J. et al. (1981) EMBO. J.
  • a continuous DNA sequence (R-U5 ') containing the entire R (repeat) region of the LTR region of HTLV-1 and a part of the U5 region is expressed as p cD animal expression vector
  • the first 31 hours are inserted by inserting the promoter downstream of the promoter. 01 ⁇ -31hi296 was developed (Takebe, Y. et al. (1988) Mol. Cell. Biol. 8: 466-472).
  • the expression vector containing the SR sequence is 10 to 100 times more efficient than the pSV-CAT vector in various animal host cells.
  • CAT expression was doubled (JP-A-1-277489 (4)).
  • sequences known to cause gene duplication in animal cells for example, a non-transcribed spacer region sequence existing in connection with the transcription region of the ribosomal RNA gene (Wegner, M. et al. (1989) Nucleic Acids Res. 17: 9909-9932; Meyer, J. et al. (1993) Gene 129: 263-268).
  • a technology that enables the expression efficiency to be increased by increasing the copy number of an expression vector.
  • the base sequence of the expression control region was changed to optimize the degree of bending.
  • a technique for improving expression efficiency has been reported (Pauly, M. et al. (1992) Nucl. Acids Res., 20: 975-982).
  • the muNTS1 sequence which is known to have a function of increasing the copy number of the expression vector by incorporating it into an expression vector in animal cells, is added, this sequence can be reduced to several hundred copies. It has a repetitive gene structure Is isolated from a non-transcribed spacer region in the mouse ribosomal RNA gene region (Wegner, M. et al.
  • the sequences involved in the gene amplification of mu NTS 1 are a sequence having a norindrome structure in the 3rd region and an AT-rich sequence in the 5 'region. (Wegner, M. et al. (1989) Nucleic Acids Res. 17: 9909-9932).
  • ER ester receptor
  • ERE ester respons iveel ement
  • the leucine zipper 'Family's AP-1 and CREB recognize the ATGA half-site of the recognition sequence as well as the mutation of the vent structure depending on the difference in the number of spacers. has been shown to bind (Paolella, DN et al. (1994) Science 264: 1130-1133). Thus, it appears that some DNA binding proteins recognize the bent DNA structure itself as part of the signal in addition to the recognition sequence. This suggests that bent DNA can contribute as an important parameter in determining the specificity of protein binding.
  • the SR promoter sequence is used as the basis of a control sequence that enables the expression of a desired high foreign gene, but one element of the SR probe sequence is used. It is known that a characteristic AT-rich nucleotide sequence is present in the SV40 Promo overnight, and that the vicinity of this nucleotide sequence is vented (Pauly, M. et al. (1992) Nucleic Acids Res. 20: 975-98; Hert z, GZ et al. (1987) J. Virol. 61: 2322-2325) 0
  • D is a typical example of high-efficiency expression of foreign genes by gene duplication.
  • expression vectors incorporating the HFR gene or GS gene require the use of mutant cells, which are originally possessed by cells and lack those genes, as hosts.
  • general cell lines cannot be used as hosts, which greatly restricts their versatility.
  • not only long-term treatment with the drug is required before obtaining the desired highly efficient recombinant production cells, but also the copy number of the foreign gene in the once obtained recombinant cells is kept stable. In many cases, expensive drugs must be continued to be selected, which can lead to higher product costs.
  • the vector containing the promoter sequence of the SR or CMV promoter / enhancer sequence as it is, it has become possible to express a considerably high level of foreign gene without such gene duplication.
  • its production efficiency is not comparable to gene duplication technology, and its application to industrial production is rare.
  • the value of the expression vector is not necessarily evaluated solely by the high level of recombinant protein production in the cell clone obtained by accidentally introducing the expression vector. Reproducible cells with high reproducibility are frequently obtained, cell clones showing stable recombinant expression are obtained, and clone selection time for obtaining high-productivity cell clones is short. Are extremely important from the practical point of view, and the state of the art is at a stage where it is far from fulfilling these needs.
  • some vectors into which the sequence of ⁇ papilloma virus has been introduced allow the sequence of the vector to replicate autonomously after introduction into animal cells, thereby increasing the expression of foreign genes. Since the resulting vector DNA exists without being integrated into the chromosome, it must be said that its stability is concerned.
  • the SV40 promoter sequence is a widely used promoter including the production of recombinant materials, but this promoter also contains an origin of replication. If the host cell produces the SV40 T antigen protein, it has the ability to self-replicate, and SV40 is a monkey-derived virus but has the ability to infect human cells as well.
  • one of these vectors contains a splicing signal derived from SV40 virus (0kayana, H. et al. and Berg, P. (1983) Mol. Cell. Biol. 3: 280-289; Takebe, Y. et al. (1988) Mol. Cell. Biol. 8: 466), the splicing signal sequence (Sp sequence) is The splice donor signal of the 16 S ribosome / 19 S ribosome and the sequence of the 19 S ribosome and the 16 S ribosomal DNA are contained in the 150 bp DNA sequence.
  • the transcript was expressed in an experiment in which a foreign gene was inserted into a pcD vector and expressed. 10-20% of the mRNA is not spliced and the sequence is 16 S MRNA containing upstream ATG As a result, it has been pointed out that the translation of the foreign gene from the original ATG is not performed, and that the translation may be performed from the upstream ATG to produce a fusion protein.
  • the pcDL-SR vector 296 has the R-U5 'sequence of HTLV-1 between the SV40 promoter of the pcD vector and the splicing signal derived from the SV40 virus.
  • the frequency of use of the Axceptor sequence in this vector has not been studied at all, and it is impossible to imagine the frequency of use in a pcD vector. This is because the base sequence of R-U5, contains the original spliced donor sequence of HTLV-1 virus, and the HTLV-1 donor sequence located upstream is of 16S / 19S derived from SV40.
  • the 19 S or 16 S max signal and the splice donor signal may be used at various frequencies.
  • the upstream ATG is included in the foreign gene mRNA, resulting in low production in the following points. It cannot be denied that it may have caused sex.
  • the first possibility is that the ribosome binds to the 5 'and 5' ends of the mRNA and continues scanning to the 3 'side, and when it reaches the vicinity of the first translation initiation codon (ATG), the base sequence near this starts. If the conditions are met, it is possible that a translation protein is produced by translation from this upstream ATG in order to start translation from here (Okayama, H. and Berg, P. (1983) Mol. Cell Biol. 3: 280-289). And with the second possibility Thus, depending on the content of the base sequence near the upstream ATG, the ribosome may be stagnated, and the translation efficiency from the original ATG may be reduced (Kozak, MJ).
  • muNTSl was discovered as a DNA sequence that induces gene amplification and improved productivity of the target gene product when mouse L-fibroblasts are used as a host. Have been confirmed to work effectively when human Jurkat t lymphocyte cells are used as a host (Meyer, J. et al. (1993) Gene 129: 263-268). ), Its mechanism of action is unknown, and it is not known whether it also acts on other types of cells, and its versatility remains unresolved. Regarding the mechanism of action, it has been suggested that the murine liposomal RNA non-transcribed sensor region in which this muNT S1 sequence was discovered by computer simulation is vented (Lan gst, G. et al.
  • non-histone nuclear protein HMG-1 purified from nuclear extracts as a protein that binds strongly to the AT-rich sequence of muNT S1 (Wegner, M. et al. (1989) Nucleic Acids Res. 17: 9909-9932), a DNA-binding protein that is known not to be sequence-specific but rather to bind to bent DNA, and to unwind DNA double-stranded DNA. It is said to have the effect of altering the supercoil structure of DNA, and is closely related to DNA replication and transcription, nucleosome structure reconstruction, and so on.
  • the presence of the local vent structure in the gene amplification function of the non-transcribed spacer region of the mouse ribosomal RNA gene depends on the HM It is thought that through bent DNA binding proteins such as G-1, chromosomal structures such as chromatin structure and supercoiling density of DNA may be affected, resulting in gene duplication. However, the details of the structure-function correlation are not clear.
  • element sequences for enhancing the ability to produce a foreign gene product in recombinant cells are extremely numerous, even if limited only to the structure of the expression vector, and are diverse.
  • the difficult problem here is that, as described in the examples above, all of these element sequences do not act synergistically or additively, and there are certain expression vectors, certain host cells, certain drug selection systems, etc.
  • the fact that they are incorporated within a single day does not necessarily mean that they function synergistically to provide high expression efficiency, and therefore, it is still extremely difficult to construct a highly efficient recombinant production system in the target system. In many cases.
  • the pMAMneo vector shows extremely efficient gene expression in some host cells, but very low productivity in other cells.
  • the cause is that the DNA-binding protein induced by the corticosteroid receptor is involved in the regulation of its expression in the vector.
  • the cause is often not clear.
  • a technique for inducing gene duplication by methotrexate in CH ⁇ cells transfected with a vector containing the DHFR gene to increase expression efficiency is a well-known technique, but this method is not applicable to human diploid cells. It does not work effectively, and the reason why it does not work is unknown.
  • the transcription efficiency is further increased. It is not entirely clear whether it is possible to increase. This is because, for example, the promoter activity of the SR-sequence is already several tens of times higher than that of the SV40 promoter-sequence, and the enhancement is empirical. This is because it is completely unclear whether changing the nucleotide sequence of the SV40 promoter overnight region further or synergistically enhances the promoter overnight activity of the sequence. In addition, too much remains to be known as to whether individual elemental techniques such as base substitutions will work for different host cells.
  • the SR «SP transcription and post-transcriptional regulatory sequences which provide one of the most widely used elemental sequences of high expression vectors at present, still face various problems as described above. They tried to solve the problem as follows. That is, the following problems are problems that the present invention seeks to solve. 1. To provide a post-transcriptional regulatory sequence that provides a higher translation efficiency than the transcript obtained under the control of the SRaS p sequence.
  • the expression vector should be a means that allows the selection of a drug to enhance the expression efficiency of a foreign gene in a short time and at a low drug concentration. Provide in the form.
  • a conventionally known high-efficiency expression vector and its element sequence were collected. That is, a PcDL-SRhi 296 vector (Takebe, Y. et al. (1988) Mol. Cell.) Containing an SR sp sequence and a sequence capable of growing in E. coli and selecting with ampicillin. Biol. 8: 466-472)), introduced into animal cells to enable expression of foreign genes by neomycin resistance and SV40 boriadenylation signal sequence, and further allow growth and selection in E. coli. PK an2 vector (Yates, J. et al. (1984) Proc. Natl. Acad. Sci.
  • control sequences and linker sequences were newly synthesized by a nucleotide sequential synthesis method or by a PCR synthesis method using an animal genome DNA as a ⁇ type with synthetic primers.
  • sequences were obtained by PCR synthesis and were reversed in direction to each other, similar to the muNTS1 sequence, but compared to the muNTS1 reported by Wegner, the bases were found at six places. Differences, 3 missing parts, 1 missing It is an array that is the that structure. Similar to the muNTS 1 sequence, these sequences are composed of a ribosomal RNA gene that is present in the mouse genome in multiple overlaps and one non-transcribed spacer region of the non-transcribed spacer region. Is an array that is presumed to be of type ⁇ .
  • the mu56-R sequence in SEQ ID NO: 5 and the mu56-F sequence in SEQ ID NO: 6 are sequences that are mutually inverted, and are partial sequences of the muNTS1 sequence. The obtained sequence.
  • RINTR R Ib 0 soma 1 Non-Transcribed
  • the linker also one sequence from SEQ ID NO: 7 to 17, i.e., La 33, La 3 4, L a 4 Lb 62, L c 62 S L c 57,: Lc 52, L c 47 S L c 21, L c 1 Is and Lc6 are sequences to be inserted between the SR and SR sequences and the promoter and upstream control sequences, respectively, and are artificially designed with a fragment of the sequence derived from pBR322. And an array.
  • a standard production vector (pK2 SRa Sp / hT fr vector and pK 2 Sa) for evaluation in which a foreign gene cDNA (human tora spherin cDNA or luciferase) was ligated to the basic expression vector thus constructed.
  • S ⁇ / f Luc was constructed and its structure was confirmed using restriction enzyme maps, DNA sequencing and other means.
  • the thus-constructed standard vector for evaluation was introduced into CH0 cells, and a clone of a foreign gene-expressing cell was selected using the drug.
  • HepG2 cells that naturally produce human trasferin were cultured, and the structure of human transfusin mRNA of this cell and The structure of the mRNA transcribed from the foreign gene of the modified CH0 cells was compared using the Northern plot method or the RT-PCR method.
  • the expression regulation was further expanded upstream of the SR hypromo overnight / enhansa region. That is, it has been reported that the muNT S1 sequence reported as a non-transcribed spacer sequence of the mouse ribosome: NA gene and its partial sequence exhibit gene duplication functions in mouse cells and human cells ( egner, M. et al. (1989) Nucleic Acids Res. 17: 9909-9932), and newly used the PCR method using primers near both ends of the muNTS1 sequence as a primer for the mouse genomic DNA. A new sequence similar to muNT S 1 (muNTS l v).
  • a partial sequence of the muNTS1 sequence (mu56 sequence) was synthesized, and further, various combinations of these control sequences and the expression system of the drug selection gene, and the SR hypromo-enhansa-sequence or the sequence were modified.
  • Derivatives of the SRa promoter / enhancer sequence, which improved the efficiency, and a spacer sequence that fills the gap between the control sequence and the SRa promoter were eagerly studied.
  • these sequences and expression systems were incorporated into the novel high-efficiency expression vector described above, and sequences and combinations thereof that can enhance the expression efficiency of the foreign gene when introduced into CHO cells are extremely high. Was found to be limited.
  • a limited sequence is incorporated together with the SR-promoter-enhancer-sequence or the SR-promoter-enhancer-sequence derivative whose sequence has been modified to enhance efficiency, and an expression vector is constructed by incorporating a foreign gene.
  • the basic expression vector that is, the SR promoter
  • the basic expression vector ie, the SR promoter Sp promoter.
  • the present inventors have demonstrated that high expression efficiency is exhibited even for an expression vector using an enhancer sequence derivative, and completed the present invention.
  • the present invention is not limited to the types of foreign genes and host vesicles, and application to other foreign genes and other host cells can be easily conceived by those skilled in the art.
  • the RINT R sequence used as a part of the expression control sequence in the above is not limited to a mouse-derived sequence, but may be a sequence derived from another animal, or a synthetic sequence having similarity to the sequence. It goes without saying that sequences can also be used and can be easily recalled by those skilled in the art.
  • the known promoters with high expression efficiency and low host dependence • enhancer sequences SR and post-transcriptional control sequences Sp
  • the basic means of the present invention is to create a highly efficient expression vector by thoroughly modifying this and combining additional control sequences.
  • pcDL—SR 296 (Y. Takebe et al., 1988. Mol. Cell. Biol. 8: 466,) is used.
  • This vector is composed of the SR + Sp sequence, the pBR322-type replication apparatus for allowing replication in E. coli, and the ampicillin resistance gene, but originally expresses the SV40 T antigen.
  • the vector is intended to amplify DNA and to transiently express foreign genes, and is integrated into the chromosome of animal cells. It does not include a drug-based selection system for the purpose of expressing cells in a state where they are in a state where they are not.
  • p Kan2 vector-1 (Yates, J. et al., 1984. Proc. Natl. Acad. Sci.) Is a standard expression system that incorporates the neomycin phosphotransferase gene downstream of the thymidine kinase promoter. USA 81: 3806-3810) and the pcDL—SR-296 vector to combine the exogenous gene insertion site downstream of the 31 + 3 sequence, the SV40-derived polyadenylation signal sequence downstream, and independently of thymidine.
  • a neomycin phosphotransferase gene located downstream of the kinase promoter, a drug selection system in animal cells, and a pBR322 replication system and ampicillin resistance gene expression system that enable independent replication and selection in E. coli An expression vector incorporating each of the above was constructed.
  • the post-transcriptional control sequence and the polyadenylation signal sequence in pcDL-SR vector 296 have a base sequence flanked by Pst1 and Kpn1 cleavage sites inserted. Upon construction, this sequence was partially modified to introduce a new Not 1 cleavage site therein to facilitate insertion of a foreign gene.
  • the vector thus prepared is called pK2 SRaSp (FIG. 2).
  • pGL 2 SR and pGL 2 SR (GG) (Fig. 6)
  • the pGL 2—B vector which uses the reporter gene as the luciferase gene, is located at the Xhol site of (Prome ga).
  • the vector containing the SR splice sequence was inserted immediately before the L. luciferase gene by inserting the SR splice sequence cut out from the K 2 SR sp vector by PstI and C1aI (pGL We constructed 2 SRs and Fig. 6).
  • a pRL-SV40 vector (Promega), which is a standard expression vector for expressing the luciferase gene of Pleurotus lucidum, was obtained.
  • pRL-SV40 and a test vector expressing firefly luciferase When co-transfection of animal cells with pRL-SV40 and a test vector expressing firefly luciferase, the activity of m. Luciferase and the activity of firefly luciferase are expressed.
  • photon photometry dual luciferase method
  • the expression level of luciferase in experimental vectors was quantitatively measured.
  • a foreign gene cDNA encoding a secretory protein was incorporated into the expression vector,
  • the production vector used as a standard for productivity evaluation was obtained (Fig. 3).
  • the foreign gene cDNA human transferrin (hTfr) cDNA was used, but as will be readily understood by those skilled in the art, the foreign gene cDNA used here should be one that encodes a secretory protein.
  • HT fr is not limited to.
  • the details of the preparation of hT fr cDNA used in the following examples have already been reported (Nakamichi N.
  • RNA was prepared from HepG2 cells (ATCC), a culture cell line known to produce hTfr, according to a conventional method.
  • ATCC HepG2 cells
  • hTfr HepG2 cells
  • two DNA sequences consisting of a part of a known human transferrin cDNA structure (Yang, F. et al., 1984. Proc. Natl. Acad. Sci. USA, 81: 2752-2756) were synthesized. .
  • a partial sequence of hTf rcDNA of HepG2 was synthesized from HepG2 RNA by RT-PCR.
  • a cDNA library was constructed from RNA of HepG2, and the hTfr cDNA was cloned using the hTfr partial sequence obtained as described above as a probe.
  • the nucleotide sequence of the cDNA clone obtained in this way was determined, and it was confirmed that it encodes the amino acid sequence of hTFr reported at the amino acid level. Prepared for insertion.
  • the hT ⁇ ′′ r cDNA obtained as described above was inserted into the Noti site of the exogenous gene insertion site of the standard expression system pK2SR / Sp vector described above, and the indicated pK2 SRaSp / hTfr was inserted.
  • Expression vector for foreign gene productivity as a standard for evaluation PK2 SR / Sp / hTf r is introduced into a versatile host animal cell, selected by a drug to obtain a cloned cell population, and the ability of these clones to secrete exogenous proteins is determined by measuring the concentration of exogenous proteins produced in the culture supernatant Was evaluated by.
  • CHO cells are used as versatile host animal cells.
  • the type of host cell can affect its expression depending on the type of expression vector.
  • the high-efficiency expression vectors of the present invention do not require that some vectors be genetically mutated relative to the host cell as they are, but in principle
  • the host cells are not limited to CHO cells because they are presumed to be highly versatile.
  • the expression vector was introduced into CH 0 cells by the calcium phosphate method or the lipofection method according to a conventional method, and selection with G418 was performed to isolate persistently expressing cell clones (Nakamichi N., et al.). 1997. in K. Funatsu et al. (Eds.), Animal Cell Technology: basic & applied aspects, Kluwers Academic. 8: 37 3-379.).
  • the highly productive clone (rCH 1 / C1 # 123) originally expresses the transferrin gene. Then, the structure of the hTfr mRNA was compared with the liver cancer-derived HepG2 cells secreting the protein.
  • the size of mRNA was compared by Northern blot analysis using RNA as a probe by extracting RNA from cells according to a conventional method and using transferrin cDNA labeled with an isotope as a probe.
  • the mRNA expression level of the rCH ⁇ cell line was He
  • the expression level of pG2 was at least 5 times higher than that of pG2
  • the amount of secreted transferrin protein was estimated to be about 2.5 times higher in HepG2 cells.
  • the recombinant expression vector pK 2 SR and Sp / hTfr contain the HTLV-l RU 5 'sequence and the splicing signal downstream of the SV40 promoter-enhancer sequence (Sp), and further downstream. It has a structure in which the hTfr gene is integrated.
  • hTf r gene-containing mRNA is HTLV 1 RU 5 5 sequences splicing signal 5, to be transferred in a form joined to the side, HTLV- 1 R-U5 'sprung Isudona sequences within, S in Sp sequence It can be imagined that splicing reactions due to various combinations between the spliced donor sequence of V40-derived 19S / 16S and the S40V-derived 19S and 16S spepson sequences occur in the cell nucleus ( Figure 1) .
  • the downstream part of the SV40 promoter in the SR sequence and the downstream portion of the enhancer sequence should be combined with the spliced donor in the HTLV-1 RU5 'sequence.
  • forward primers for PCR between sequences (referred to as 5 'GCTATTCCAGAAG T AGTGAG 3', SV315N) and transferrin
  • a reverse primer for PCR (5, ACAGT TTTATCAGGGACAGC3 ', referred to as hTfr104R) corresponding to the N-terminal region of the gene was prepared, and the previously purified polyadenylation mRNA was converted into type III RT-PCR The reaction was performed.
  • the target polysaccharide is released by removing or alleviating ribosome stasis by removing or mutating the upstream AUG sequence. They have discovered the possibility of enhancing the translation efficiency of peptides. g. Modification of vent characteristics in the 3 ⁇ 40 Ori region within the 311 Hypro Promoter region Among the enhancer promoter region of the SV40 virus genome contained in the SR Hypro Promoter region, within the SV40 Promo Alli region Of the 17 base pairs of the ori region following the three consecutive 21 base pair repeats, a sequence obtained by converting T in the central AT-rich region into two Gs in SEQ ID NO: 1, That is, a mutant SR hypromo overnight sequence having the sequence of SEQ ID NO: 2 was prepared.
  • SR-GG GG sequence
  • Fig. 6 the SR-promoted mutant obtained in this manner
  • GG SR-GG sequence
  • the IRES sequence is a sequence that functions in the same way as the cap structure. Binding occurs and translation proceeds (Duke GM et al. J. Virol. 66: 1602-1609 (1992)).
  • a dicistronic vector has been developed that translates a single transcript, a single mRNA, into two proteins by connecting two genes downstream of a single promoter via IRES. Yes (Dirks W. et al. 1993. Gene 128: 247-249 .; Rees S. et al .; BioTechniques 20: 102-110 .; K obayashi M., et al., 1996. BioTechniques 21: 398-402.
  • the drug resistance gene for selection is under the control of the same promoter as the foreign gene cDNA, and the expression level of the drug resistance gene following the IRES sequence enables drug selection. Must be expressed in In the present invention, as a result of various methods, this problem was solved by connecting a hygromycin resistance gene downstream of the IRES sequence (pCITE-4a (10), Novagen). See example).
  • pCITE-4a (10), Novagen a hygromycin resistance gene downstream of the IRES sequence
  • muNT S1 is a sequence consisting of 370 bases. Yes (Wegner, M. et al., 1989. Nucl. Acids Res., 17: 9909-9932), insert this sequence into a vector along with the thymidine kinase gene connected to the shortened TK promoter, and insert this vector into thymidine.
  • LTK mouse L-strain cells
  • sequence duplication occurs, and such duplication is a 56 base sequence that is part of the muNT S1 sequence, ie, the sequence. It has also been reported that it is induced by the number 6 (marked as mu 56—F).
  • the muNT S1 sequence present in their non-transcribed spacer region is therefore not uniform and may be diverse. There is. Thus, an attempt was made to separate a muNT S1 equivalent sequence of the non-ribosomal DNA coding region from mouse DNA using the PCR method, and a DNA fragment having the sequence shown in SEQ ID NO: 3 was obtained.
  • muNT S1 V sequence Compared to the muNTS1 sequence reported by Wegner et al., This sequence has 6 base differences, 3 deletions, and 1 insertion.
  • the ribosomal RNA region is considered to be one of a large number of overlapping muNT S1s and their similar sequences, and is hereinafter referred to as a muNT S1 V sequence.
  • the base sequence described above is described in the forward direction as a base sequence (SEQ ID NO: 3, muNT S1 vF), whereas the base sequence is described from the 5 'end of the base chain forming a pair of a DNA duplex.
  • the base sequence is the reverse base sequence (SEQ ID NO: 4, muNTS lv—R).
  • the above mu56-F was obtained by synthesis of the sequence reported in the literature (SEQ ID NO: 6).
  • the muNTS1 sequence and the muNTS1V sequence are rich in AT bases, and have a high homology with respect to the nucleotide sequence.
  • the results of the following examples can be similarly obtained for the muNT S1 sequence and the muNT S1 similar sequence obtained from the non-transcribed promoter region of the ribosomal RNA gene.
  • these mouse control sequences were introduced upstream of the SR and Sp sequences, their expression efficiency would not easily be improved, but this was not so clear, and the cause was initially unknown.
  • Breeding methods are basically a combination of established techniques.
  • the transfection was performed by the calcium phosphate method or the Lipofecmin method.
  • the method of transfusion can be any of various methods known to those skilled in the art, and is not limited to this method.
  • the conditions for drug selection need to be delicately adjusted depending on the expression vector and the host cell, and the conditions shown here are not always optimal. If it is possible, it is easily possible, and it is not limited to this method.
  • a frozen sample of CHO-K1 cells derived from ATCC that has been cryopreserved and thawed is thawed, and the cells are cultured in MEM / 10% FBS medium supplemented with non-essential amino acids (NAA) to obtain a mother culture.
  • NAA non-essential amino acids
  • thaw one sample of the transfected cell stock, prepare a cell suspension, and inoculate 100, 300, and 1000 cells / 200 ⁇ / well in a 96-well plate. I do. Taking hygromycin as an example of a drug, the medium is renewed every 2-3 days in the presence of 600 ⁇ g-1200 ⁇ g / ml, and the formation of colonies is confirmed by microscopy. Perform the trypsinization of the colony-formed cells in the well, and inoculate each of them into 3 wells of a 24-well well plate.
  • 1-well cells After culturing, 1-well cells are immunostained, the other 1-well cells are cryopreserved as a reserve, and the remaining 1-well cells are seeded on a 3.5 cm dish and grown. During this time, a drug-supplemented medium is used. Further, the transferrin concentration and cell number of the culture supernatant of the 3.5 cm dish are measured, and the transferrin productivity is measured.
  • the cells in the selected dish enter the clone separation process by the limiting dilution method. That is, after inoculating a small number of cells in a 96-well plate and forming a colony, the culture is expanded through a 24-well plate and a 3.5 cm dish, and the concentration of transfulin in the culture supernatant is determined. Measure the cell number and freeze the selected clones.
  • Figure 1 shows the mRNAs transcribed from the SR sp Sp promoter, the enhancer and the post-transcriptional control sequences (in this case, the mRNA containing transferrin mRNA transcribed from pK 2 SRaSp / hT fr).
  • Figure 2 shows a fragment of the pcDL-SR-296 vector derived from the SR-HI promoter, a foreign gene transduction site, and a fragment containing a polyadenylation signal sequence, and a fragment derived from the pKan2 vector containing a drug-resistance gene for selection.
  • a pK2SR sp vector having a Notl cloning site at the foreign gene introduction site is shown.
  • the promoter “enhancer sequence” or the vector having the structure in which the SR enhancer / enhancer sequence is replaced by the modified SR (ATG *) sequence is referred to as the “SR enhancer”. Is described as 'SR HI (ATG *)', and the other parts on the sequence are exactly the same, and are not shown.
  • FIG. 3 shows a pK2SR sp / hTfr expression vector in which a transferrin cDNA (hTfr) derived from a human cell was inserted into the Notl cloning site of the pK2SR sp vector.
  • hTfr transferrin cDNA
  • Figure 4 shows the deletion of the BamHI fragment (see Figure 2), which is in the Sp sequence of the pK2 SR Sp vector and contains the ATG sequence and the 16S splice receptor sequence (see Figure 2).
  • a pK2SR sp (with a mutated Sp sequence, which was truncated by inserting a synthetic DNA linker sequence containing a Notl breakpoint but containing an ATG sequence and a 16 S splice subsequence sequence). ⁇ 16 S) vector is shown.
  • FIG. 5 shows a pK2 SR sp (ATG *) vector having a mutant Sp sequence obtained by converting an ATG sequence in a Sp sequence in a pK2 SR sp vector into a GCA sequence.
  • FIG. 6 is a diagram showing the construction of the pGL 2 SR vector and the pGL 2 SR vector (GG).
  • a pGL2—SR vector was constructed by inserting an SR-containing sequence excised from the pK2SR-Sp vector into the pGL2-B vector containing the H. luciferase gene just before the H-luciferase gene. .
  • the SR-GG (GG) sequence was inserted instead of the SR-promote sequence immediately before the H-luciferase gene in the pGL2-B vector containing the H-luciferase gene.
  • the L2SRa (GG) vector was constructed.
  • FIG. 7 is a diagram showing the introduction of a DNA sequence derived from the mouse ribosome RNA non-transcribed spacer region into the pGL2SR / tkpac vector.
  • the DNA sequence (muNTS1V sequence) derived from the non-transcribed spacer region of the mouse ribosomal RNA gene was placed at the Kpnl site upstream of the SR hypromo of the pGL2SR / 1kp ac vector. Inserted in direction (1-F) and reverse (-R).
  • a short DNA sequence (mu56 sequence) derived from the non-transcribed spacer region of the mouse ribosomal RNA gene was placed in the Kpnl site upstream of the SR Promoter in the forward direction (1F). ) And in the reverse direction (—R) to obtain a total of four vectors.
  • t r. Tkp r o Is described as sequence, a thymidine kinase Promoted evening one of weakened promoter activity by shortening, the pu r r
  • the one described is the puromycin acetylacetyltransferase gene
  • the one described as Tkpur is the puromycin acetyltransferase immediately downstream of the thymidine kinase promoter, which has been shortened and has reduced promoter activity.
  • FIG. 8 is a diagram showing the expression results of the luciferase gene.
  • FIG. 9 shows the structure of the pSR ⁇ 1 / hTfr vector and its restriction enzyme map.
  • FIG. 10 shows the structure of the pSR ⁇ 1 vector obtained by removing the hTfr gene of the pSR ⁇ / hTfr vector at the No. 11 site.
  • Fig. 11 shows the construction diagram of the SRZr2ZhTfr vector and the procedure for making it.
  • Fig. 12 shows the PSR2 vector obtained by removing the hTfr gene of the pSR2 / hTfr vector at the NotI site. Show one. BEST MODE FOR CARRYING OUT THE INVENTION
  • the pKan 2 vector was digested with Hindlll and Sail, and the ne gene, TK polyadenylation signal sequence (TK poly A) and ampicillin resistance gene (Amp-containing fragment) connected to TK promoter were isolated.
  • the pcDL-SR vector was digested with PstI and Kpnl to remove the PstI / Kpnl fragment and opened, and then separately synthesized PstI / NotI / Kpnl.
  • a linker sequence was connected to the open site to close the ring, and a new multiple cloning site containing a Notl site was introduced to prepare an intermediate vector (pcDL-SRa 296 'vector).
  • the pcDL-SR spliced 296 'vector was cut with Sa11 and HindIII, and the spliced juncture of the SR spliced promoter and SV40 late mRNA was cut.
  • a fragment containing the Yon sequence, a multiple-cloning site, and TK poly A downstream thereof was obtained.
  • This fragment was ligated to the neomycin resistance gene (neo, TK polyA and ampicillin resistance gene (fragment including Amp) which was obtained by cutting the pKan2 vector with Hindlll and Sall.
  • a second-generation expression vector (referred to as pK2 SR sp vector-1) was obtained as shown in Fig. 2.
  • the expression vector pK2SR «Sp / hTfr was transfected into CHO cells, and G418 selection was performed to obtain 24 recombinant CHO cell clones. Of these clones, transferrin expression was confirmed by the antibody staining method in 8 clones (33%), and the clone with the highest expression level in the culture supernatant (Cl # l-23) was expressed. was 1. 6 ⁇ G / l 0 6 cells Zday.
  • pK2 SR «Sp is first cut with BamHI to have BamHI sites at both ends, and upstream ATG and 16Saxep. After removing the fragment containing the sequence, it was closed to construct a vector (pK2 SR / Sp ( ⁇ 16S) vector) in which the upstream ATG, the 16Sx sequence and its neighboring sequences were deleted (see FIG. 1). Drawing 4).
  • pK2 SR / Sp ( ⁇ 16S) vector in which the upstream ATG, the 16Sx sequence and its neighboring sequences were deleted (see FIG. 1). Drawing 4).
  • a fragment having the BamHI site at both ends as described above, and a fragment in which the ATG sequence contained in the fragment containing the upstream ATG sequence and the 16S receptor sequence was changed to a GCA sequence was chemically synthesized.
  • the fragment was inserted into the BamHI site of pK2 SR sp ( ⁇ 16S) and closed, and the ATG upstream of the pK2 SR sp vector was changed to GCA (pK2 SR sp (ATG *) (Referred to as drawing 5)
  • GCA pK2 SR sp (ATG *) (Referred to as drawing 5)
  • the luciferase gene was used as the repo overnight gene.
  • the sequences of the modified regions of these vector DNAs were confirmed by an automatic DNA sequencer (881, 377 type).
  • luciferase gene pK2SR, Sp / fLuc, pK2SRaSp (AT G *) / fLuc, pK2SRaSp ( ⁇ 16S) / fLuc
  • pK2SRaSp ⁇ 16S
  • pK2SRaSp ⁇ 16S
  • the two vector fragments obtained in this way were ligated together and closed, the orientation of the sequence at the insertion site was confirmed, and the pK2SR or pK2SR vector containing the luciferase gene was identified.
  • Sp / f Luc was obtained.
  • the pK2 SR Sp vector instead of the pK2 SR Sp vector, the pK2 SR Sp (ATG *) vector and the pK2 SR Sp ( ⁇ 16S) vector were used, and the pK 2 SR Sp (ATG *) / The fLuc vector and the pK2SR sp (A16S) no fLuc vector were obtained.
  • These vectors were prepared using DNA purified by Qiagen chip or purified by Qiagen chip, respectively, and DNA purified by cesium chloride density gradient ultracentrifugation. .
  • Each of these purified expression vector DNAs was introduced into CH0 cells together with the vector PRL-SV4 ODNA (Prome ga) expressing the D. luciferase gene.
  • Gene transfer was performed using Ribofectamine reagent (Gibco BRL) according to the attached protocol. After gene transfer, the dual luciferase activity was compared with that of the control, pK 2 SR or Sp / f Luc, on a dual luciferase assay. Dual Luciferase Atsushi, Dual-Lucifer The assay was performed according to the attached method using ase Reporter Assay System (Promega).
  • TT converted to GG indicated by a part of the base sequence (wild type in Fig. 6) in the SV40 promoter contained in SR Promo Promo Mutants were generated (SR (GG) Promo overnight).
  • the SH promoter or SR promoter (GG) promoter was excised with Pstl and ClaI and inserted into the XhoI site of the pGL2 vector using the luciferase gene as the repo overnight gene.
  • two types of expression vectors, pGL2SR and pGL2SR (GG) were prepared (Fig. 6).
  • the protein expression level is increased 40-fold compared to the SV40 promoter overnight and Enhansa.
  • TT base By replacing the TT base with the GG base at the above-mentioned site in the SR h promoter, it can also be applied to SR Hypro-Imoichi (Takebe II, et al., 1988. Mol. Cell Biol. 8: 466-472).
  • SR Hypro-Imoichi Takebe II, et al., 1988. Mol. Cell Biol. 8: 466-472.
  • the fact that the effect of activating gene expression without compromising the ability to increase the amount of transcript was shown by improving the activity of luciferase as a final product.
  • the yeast luciferase gene is ligated downstream of the SR promoter, and further, a part of the promoter sequence of the thymidine kinase gene, such that the transfected cells are selected by puromycin.
  • a sequence (tr.TK pro or tk) obtained by cutting with a restriction enzyme to remove a part of the Sp1 sequence in the upstream region of the sequence (tr.TK pro or tk), puromycin-N-acetyltrans as a drug resistance gene
  • a vector PGL2SR / tkpac also referred to as pSRhi0 vector-1
  • ferrous gene (pac) and TK polyA at its end were arranged in that order, was constructed (Fig. 7).
  • the following sequence derived from a mouse was inserted into pGL2SR / 1kpac in the following manner. That is, 31 bases at both ends of the mouse DNA sequence (muNTSl sequence) reported by Wegner et al. Were synthesized, and a similar sequence was synthesized from mouse DNA by PCR, and this was designated as muNTS1v sequence. . Furthermore, of the muNTS 1 sequence reported by Wegner et al., An AT-rich sequence of 56 base pairs (from the 48th base pair to the 103rd base pair of muNTS 1). Sequences (mu sequences) were obtained by sequential synthesis.
  • mouse ribosomal RN ⁇ gene non-transcribed sensor region DN ⁇ sequence (muNT S1 v sequence) was added to the Kpnl site upstream of the SR ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ promoter of the pGL2 SR
  • a short DNA sequence (mu 56 sequence) derived from the non-transcribed spacer region of the mouse liposomal RNA gene in the forward (-F) and reverse (-R) directions, also in the forward (-F) and Inserted in the opposite direction (-R), a total of four types of vectors were obtained.
  • the above four female luciferase expression vectors were transfected into CH0 cells by the lipofequinamine method, and selected with 5 / g / ml, 7 ⁇ g / ml, and ug / ml pure mouth mycin, respectively.
  • the luciferase activity of the cell population of CH 0 cells into which each vector was introduced was measured.
  • cell clones were isolated from each of the expression vector-introduced C H 0 cells selected with the drug, luciferase activity was measured for each clone, and the value was defined as a clone level luciferase activity value.
  • the luciferase activity of CH0 cells transfected with each vector at the cell population level was determined by CHO cells transfected with a mouse-derived sequence (muNTS lv) and a control vector (pGL 2 SRa / TKpur) without its partial sequence, and 56 salts.
  • muNTS lv mouse-derived sequence
  • pGL 2 SRa / TKpur control vector
  • PGL 2 SR / 1 kp a cZmu 56— F Alternatively, both CHO cells transfected with pSR0tf41 / fLuc) showed little change in luciferase activity at any of the concentrations of pieuromycin ( Figure 8). .
  • PGL 2 SR / tkPac / mu 56—R (or pSRhi0tr41 / fLuc) containing a 56 bp oligomer in the opposite direction, and bidirectionally in the full-size muNT S1v sequence PGL 2 SR / 1 kp ac / muNT S 1 vF (or pSR 0 vf 34 / f Luc) and pGL 2 SR t kp ac / muNT S 1 v— R (or pSR 0 vr 34 / f Luc), the luciferase activity was significantly increased in the CH ⁇ cells transfected with each vector (Fig. 8).
  • the ratio to the expression in the control vector without these inserts was not different in the low-concentration pieuromaine-added group (5 ⁇ g / ml), but in the high-concentration added group (9 ⁇ g / m 1). ) Showed a difference of more than 50 times.
  • pK 2 SaSp (ATG *) vector, a base substitution of the SR sequence (SR sequence (GG)), and an integrated vector (pSR file) incorporating the IRES sequence and other necessary sequences. 1, Drawing 10) was constructed as follows.
  • a vector (pcDL-SR1a) was constructed in which the PstI / Notl / Spel / Nhel / Kpnl linker was inserted into the PstI / Kpnl site of the pcDL-SRa296 vector.
  • a 3 kbp fragment obtained by digestion with the C1aI / NotI enzyme was purified.
  • the PK 2 SR (GG) vector is amplified as type I DNA using primers containing the C1aI / PvuI site, and the amplified fragment is digested with C1a1 / PvuI.
  • a fragment of 360 bp (including the base substitution portion of the SR splice sequence) was purified.
  • a fragment of 450 bp (including the base substitution of the GCA sequence in the Sp sequence) obtained by digesting pK 2 SR and Sp (ATG *) vector DNA with Pvul / Not I was purified.
  • pcDL-SRa intermediate vector
  • the pcDL-SRa was cut with Nhe I / Kpn I, and a hygromycin resistance gene with a separately prepared Nhe I end on the 5 'side and a Kpn l end on the 3' side was inserted.
  • this vector was digested with NheI to incorporate an IRES sequence having NheI sites at both ends.
  • the vector constructed in this way is called pSR file 1.
  • pSRh / hTfr integrated dicistronic vector in which the transferrin gene having the NotI end was integrated into the NotI site
  • the purified pSR1 / 1 / Tfr vector DNA was introduced into CHO cells, and cultured in a medium containing hygromycin for 14 days.
  • concentration of hygromycin of 600 ⁇ gZml is appropriate for the combination of dicistronic vector (pIRES1hyg) and CH0 cells (Gurtu, V. et al., 1996 Biochem. Biophys. Res. Co. thigh un. 229: 295-298)
  • 600 / g / ml hygromycin was tentatively used.
  • hygromycin resistance gene was expressed only from the introduced pSR ⁇ 1 / hT fr vector-1 DNA and conferred resistance to CH ⁇ cells originally sensitive to hygromycin. It was shown that the cistronic mRNA was transcribed, and the drug resistance gene below the IRES sequence was expressed in an amount that could withstand selection by drug selection.
  • the hygromycin-resistant colonies obtained by introducing the pSR ⁇ 1 / hTfr vector DNA and the pK2 SRaSp / hTfr vector
  • the established transferrin-producing cell line r CH0 # 1-23, and H that originally produces transferrin All RNAs were purified from each of the epG2 cells, and Northern blotting was performed using transferrin cDNA as a probe.
  • the approximately 4 kb band observed in the Northern analysis of the colonies obtained by introducing the pSR ⁇ l / hTfr vector DNA was a dyscyst nick composed of transcripts of both transferrin and hygroinci genes. It was confirmed to be mRNA.
  • Gurtu et al. Have determined that a combination of dicistronic vector (pIRES 1 hyg) and CH0 cells at an appropriate hygromycin concentration of 600 ⁇ g / ml (Gurtu, V. et al. et al., 1996. Biochem. Biophys. Res. Commun. 229: 295-298). At that time, all cells selected by the drug reported that they expressed the foreign gene. In our experiments, transferrin expressing cells did not reach 100% when selected at a hygromycin concentration of 600 / g / ml. Therefore, in order to determine the optimal concentration of hygromycin again, the colony formation rate and the ratio of transferrin-producing colonies were measured at concentrations of 300, 600, 800, 1,000, 1200, and 1500 ⁇ g / ml.
  • Gurtu et al. Determine the frequency by direct staining of cell populations, whereas we grow colonies and determine the frequency per colony. It is conceivable that this is caused by
  • Table 3 summarizes the results of several experiments of recombinant breeding of transferrin-producing cells with the PSR ⁇ lZhTfr vector performed on the basis of the above-described examination of the conditions, and summarizes the results.
  • the data of recombinant breeding using pK 2 SR / hT fr mentioned in Example 1 are additionally shown for comparison.
  • the frequency of clones producing transferrin in clones obtained by drug selection reached 70% in the case of breeding with pSR p1 / hTfr, and It was shown that fr was about 30% higher than that of about 30%.
  • the pSR file 1 / vector-1 to pSR file 2 / vector-1 were constructed as follows. That, SR monument pSR ⁇ sigma iota / hTf r vector (GG) Sp (ATG *) , hTf r, IRES, S a II restriction enzyme of approximately 5 k bp containing H yg gamma and P o 1 y A signal sequence The fragment was ligated with the Sail-Xhol fragment containing the Sac break point obtained from the vector pGL2-B to obtain the intermediate vector pSR-1 '/ hTfr.
  • the mouse control sequence (muNTS lv) PGL 2 SR / 1 kp ac / muNT S 1 v — Cut F vector (or p SRa ⁇ 0vf34 / fLuc) using restriction enzyme BamH1 and blunt-end
  • Sac i the shortened TK promoter sequence (tk) and the puc-mycin N-acetyltransferase gene (pac) placed downstream of it, and the thymidine kinase deliadenylation signal further downstream
  • An approximately 5 kbp fragment containing the sequence and the mouse-derived sequence (muNT S1 v_F sequence) was cut out.
  • the SRa (GG) p SRy ⁇ 1 containing other sequences obtained earlier was cut with Sal I, the break points were smoothed, and the SR h ( GG) S p (ATG *), hTfr, IES, 11 ⁇ ? 01 Approximately 5 kb including the fragment containing the basic part of the pSR file 1 / hTfr vector containing the yA signal, and the mouse-derived sequence (muNT S1V-F sequence) obtained as described above.
  • TK promoter sequence (tk), which is finally shortened, and the puromycin N-acetyltransferase gene (pac) s TK polyA signal sequence, which is located downstream thereof, and muNT S1V derived from mouse —
  • An integrated expression vector pSR ⁇ 2 / hTfr containing all F sequences was constructed (Figs. 11 and 12) o
  • the transferrin gene cDNA was derived from the constructed pSR ⁇ 2 / hTfr, using the PSR ⁇ 1 / hTfr as a starting material, in which the human transferrin cDNA had already been incorporated. Removal and introduction of other foreign genes is easily possible by using the breakpoint of restriction enzyme No. 11, and the method for producing pSR2 is not limited to the method described here. .
  • Transferrin secreted into the culture supernatant was quantified for another 50 transferrin-producing clones. From these clones, the clones with the highest productivity (c1 # 1_23) were obtained from among the standard recombinant CH ⁇ cell clones recombined with the initial control pK2 SR and SpT hTfr. The productivity was 1.6 g / 10 6 cells / day. Thus, 21 clones with higher productivity were obtained. This result indicates that the recombinant CH0 cells obtained by transfecting the p2 / hTfr vector are more effective than the CHO cells recombined with the standard recombinant vector pK2SR ⁇ / hTfr.
  • Example 7 Structure and transcript analysis of transcribed RNA transcribed from various vectors containing SR and Sp sequences
  • a vector having a downstream luciferase gene ligated was prepared in the same manner as in Example 2 (pK2 SR sp / Luc, K 2 SRa (ATG *) Sp / L c, and pK2 SR sp TG *) Sp (ATG *) / Luc).
  • the amount of mRNA transcribed in this manner was measured by Northern analysis using the DNA of the luciferase gene gene as a probe. Despite no difference, the protein luciferase mRNA was not
  • Example 8 In the pK2 SR sp sequence and the pK2 SR «Sp (ATG *) sequence, the G base directly linked to the downstream of the SR splicer promoter region (5, TATTTAT 3 ') was replaced with a C base. Construction of sequence and analysis of its expression characteristics by Lucifera-zeatssey system
  • the luciferase expression vector in which the muNT S1v sequence and the mu56 sequence were inserted in the forward and reverse directions, respectively, upstream of the SR sp sequence, was introduced into CH cells and selected with puromycin. Luciferase expression ratio The comparison is as already described in Example 4 and as shown in FIG. 8 and only when the muNTS lv-F, muNTS 1 v-R and mu56-R sequences are introduced. Although the luciferase activity was improved to some extent, the expression with mu 56-F sequence was improved, and the expression with buromycin was not improved at all when the mu 56-F sequence was or was not introduced. Did not admit.
  • both the SR sequence and the Sp sequence have been changed, so that in addition to the changed sequence (ie, the SR (GG) Sp (ATG *) sequence), the mouse sequence It is necessary to confirm whether or not works synergistically to improve expression efficiency. Therefore, newly cultivating CH0 cells in which the yeast luciferase gene has been continuously introduced and introduced by a selection system using a neomycin resistance gene, and cultivating them as host cells. Using luciferase as a reporter gene, introducing an expression vector having a selection system based on a puromycin resistance gene, selecting persistently expressing cells with puromycin, and selecting the expression of luciferase and Mycobacterium luciferase. By measuring the activity, a system was established to quantify the expression efficiency in the continuous expression system.
  • pK2SR vector is selected by neomycin and expression is possible by long-term subculture. Make sure that it is maintained
  • the pSR ⁇ 2 vector and the vector from which the muNT S1 v—F sequence was removed from the pSR ⁇ 2 vector-1 were transfected with a vector, in which m. Luciferase was introduced as a foreign gene. (Referred to as pSR @ 2 vf62 / rLuc and pSR @ 2 ** 62 / rLuc, respectively), and each of them was introduced into CHO / f Luc cells, After culturing for 1 day, 2 x 10 6 cells were seeded on 12 3.5 cm dishes for each group, and cultured for 4 weeks in the presence of puromycin (7.5 j g / ml).
  • the Lb62 sequence also functions as a linker sequence for expression vectors that use SR (GG) Sp (ATG *) as the transcriptional and post-transcriptional regulatory sequences for foreign genes.
  • SR GG
  • ATG * the transcriptional and post-transcriptional regulatory sequences for foreign genes.
  • the control SR sp was used as the transcriptional and post-transcriptional control sequences for the foreign gene, and muNTS 1V-
  • the expression efficiency was at least 10 times higher than that of a vector into which no F sequence was inserted (ie, a single pK2SRr ⁇ 1 vector or a PSR ⁇ 2 ** 62 vector), demonstrating its effectiveness.
  • tkpac is a short-lived promoter that reduces the activity of the thymidine kinase. This is a sequence to which the polyadenylation signal sequence of the zea gene is connected.In all of the vectors shown in this table, including vectors of the pSR ⁇ 2 series and the pSR ⁇ 3 series, promoters such as tr sequence or vf sequence are used. One night ⁇ Enhancer One upstream control sequence is located further upstream. Table 7 Effects of various linker sequences on the expression efficiency of foreign genes in the integrated vector pSR ⁇ 2 and pSR ⁇ 3 series
  • n 12 in each group.
  • n lL for pSRSR2 ** 62 / rLuc group
  • a recombinant CHO cell CHf / f Luc
  • the CHO / f Luc cell is transfected with the gene using the indicated vector. Introduced. After transfection, the cells were cultured for 1 day, seeded on a 3.5-cm culture dish, selected with puromycin (7.5 Aig / ml) for 4 weeks, and then subjected to dual luciferase attachment.
  • An expression control sequence according to the present invention and an expression vector comprising the control sequence as components are used for the expression of a foreign gene in a recombinant host cell with a conventionally known high efficiency expression.
  • the expression efficiency is several times or more than that of the current vector (SR Promoted Vector), which makes it possible to increase the economic efficiency of the production of foreign gene products.
  • the expression control sequence and the expression vector comprising the control sequence according to the present invention reduce the time for introducing a host cell into a recombinant cell clone and increasing the efficiency of clone separation. This makes it possible to increase the economic efficiency of breeding recombinant clone cells that produce foreign gene products.
  • the expression control sequence according to the present invention and the expression vector containing the control sequence as a component are based on the SV 40 promoter because the base sequence in the replication initiation region (ori) existing in the promoter is replaced. Even in host cells expressing the 40 T antigen, the DNA does not replicate indefinitely, thus recombining many cell lines immortalized using the SV40 T antigen gene. It can be used as a host.
  • An expression control sequence and an expression vector comprising the control sequence as a component according to the present invention include a vector constructed to include two drug selection markers.
  • a foreign gene is used. Selection of cells to be expressed and selection of cells with high expression efficiency can be performed in two steps, so that cells with high expression efficiency of foreign genes can be selected at high frequency and in a short time. It can be obtained within. 5.
  • the recombinant production cells bred using the expression vector of the present invention are stable in the copy number of the foreign gene and in the substance-producing ability even in the absence of the drug, and the long-term production of the foreign gene product Continuous recombinant production becomes possible.

Landscapes

  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

動物細胞用制御配列ならびに組換え発現ベクター 技術分野
本発明は、 動物細胞を宿主とする外来遺伝子の組換え発現制御に関わる D N A 配列、 該外来遺伝子の発現産物の生産を可能とする動物細胞用発現ベクター、 お よび該ベクターを用いて得られる組換え動物細胞に関する。 背景技術
1 . 動物細胞による組換え蛋白質生産
動物細胞を宿主とする組換え生産系は、 従来大腸菌や酵母を宿主とした組換え 生産系と比較してその生産効率が低い傾向があるにも関わらず、 医薬品として価 値の高いヒト型糖タンパク質を含む生産物の取得等の目的になくてはならない生 産系を提供してきた。
組換え生産の基礎となる発現べクタ一は、 当初は動物細胞で機能しうるプロモ 一夕一配列と、 その下流に生産を目的とする外来蛋白質遺伝子 c D N Aの挿入部 位を設け、 さらにベクター内の別の領域に微生物宿主内での複製と選択が可能と なるように複製開始領域と薬剤耐性因子遺伝子を連結した構造を有する、 多くは プラスミ ドベクタ一あるいはウィルスベクタ一であって、 このように構築したベ クタ一 D N Aを微生物あるいは細胞にトランスフエクシヨンすることによって増 殖させ、 D N Aとして分離した後に、 これを動物細胞にトランスフエクシヨンす ることによつて動物細胞内で目的とする外来遺伝子を発現させるものであつた。 第一世代の組換え生産技術は、 生産物遺伝子を組込んだベクター D NAと、 薬 剤耐性遺伝子を組込んだベクター D N Aとの二種類のベクタ一 D N Aを動物細胞 にコトランスフ: クシヨンし、 薬剤によって選択することにより、 組換え生産細 胞クローンを分離するものであった。 第一世代ベクターを代表する発現ベクター として、 持続発現系構築のための p SV 2ベクター (Mulligan, R.C. and Berg P .(1981) Mol. Cell. Biol. 1:449-459) 、 および一過性発現系構築のために p c Dベクタ一 (Okayama, H. and Berg, P. et al.(1983) Mol. Cell. Biol. 3: 28 0-289) がある。 また薬剤耐性遺伝子を組込んだベクタ一として pKan2べク 夕一 (Yates, J. et al.(1984) Proc. Natl. Acad. Sci. U.S.A. 81:3806-3810 ) がある。
ここで p cDベクタ一についてつけ加えれば、 これは効率的に全鎖長 cDNA が合成され、 さらに組換えプラスミ ド DNAを動物細胞に導入した際に cDNA 発現が保証されるように SV40初期プロモーターに引き続く外来遺伝子導入部 位の下流に po l y (A) 添加シグナルが加えられて、 これに大腸菌内での複製 •選択装置を併せて構築したベクターである。 とくにこのべクタ一を、 SV40 の T抗原を生産する COS細胞に導入した場合には、 SV40初期プロモーター 部位に内在する Or i配列が機能し、 CO S細胞内でベクタ一 DNAが複製され ることにより、 高い一過性の外来遺伝子の発現が行われるという特長を有してい る。
またここで pK an 2ベクタ一についてつけ加えれば、 これは動物細胞に組込 まれた際に適度な薬剤耐性遺伝子の発現があることを目的とし、 また薬剤耐性遺 伝子としてネオマイシンフォスフォトランスフェラーゼ遺伝子 (ne or) を選 んで、 これをチミジンキナーゼプロモーターの下流に導入し、 さらに大腸菌内で の複製 ·選択装置を併せて構築したベクタ一である。
第一世代ベクターにあっては、 選択用薬剤耐性遺伝子を発現させるためのぺク 夕一は一定で、 一方で、 発現ベクターに発現させたい外来遺伝子のみを組込めば よく、 手軽さがあった。 しかし、 この方法は原理的に外来遺伝子を発現している 細胞の取得効率において問題があり、 実際、 薬剤によって選択したクローンでの 外来遺伝子発現細胞の頻度は決して高いものではなかった (Wada, S. et al.( 1 997) J. Neuroendocri. 9:423-430)。
第二世代にあっては、 1つのベクター内に薬剤耐性発現系と外来遺伝子発現系 の両方の発現装置、 および微生物内での複製 ·選択系あわせて 3個の発現系をそ れぞれ独立に導入したベクターが構築された。 これによつて組換え生産細胞の選 択効率が格段に高まることとなった。 代表的なベクタ一として、 たとえばマウス 乳頭腫ウィルスの l ong t e rmina l r epe at (MMT V L TR) 中のグルココルチコィ ド誘発性プロモー夕一配列の下流に生産遺伝子 cD N Aを接続し、 一方で SV40の〇r i '初期プロモー夕一配列の下流にネオマ イシンフォスフォトランスフェラーゼ遺伝子を接続し、 これに大腸菌内での複製 装置を併せて構築したベクタ一 (pMAMne o, Lee, F. et al.(1981) Natur e 294:228 , Clontech Cat#6104-1) などがある。 以下に述べるように、 本発明 で使用している発現ベクター (pK2 SRひ) (Nakamichi, N. et al. (1997) in K. Funatsu et ai. (eds.), Animal Cell Techno logy: asic & applied aspe cts, Kluwers Academic. 8: 373-379.) 、 あるいは pMl 7 (McCormick, F. e t al.(1984) Mol. Cell. Biol. 4: 166-172) 等もこの基本構造を持っている。 しかし、 第二世代ベクターにあっても、 動物細胞内で発現させるべき 2つの遺 伝子がそれぞれ個別の発現系によって制御されていることから、 原理的にもまた 実際においても薬剤耐性遺伝子のみ発現し、 目的とする外来遺伝子が発現してい ない細胞が選択されてくることが避けられなかった (本発明の実施例参照) 。 更に第 3世代にあっては、 生産物遺伝子 c D N Aと薬剤耐性遺伝子とを一つの プロモ一夕一の下流に連結して (ダイシストロニックに) 配置することによって 、 薬剤耐性細胞中の生産細胞の比率をより高めることが試みられた。 通常、 単一 のプロモ一夕一の下流に外来遺伝子と薬剤耐性遺伝子を連結すると、 一連の mR NAが転写されるが、 このままでは薬剤耐性遺伝子転写物は翻訳されない。 すな わち、 通常の翻訳は、 転写 mRN A対してリボソームがその 5, 末端のキャップ 構造を認識して結合し、 翻訳を開始するシグナル (AUG) を認識するまで 3' 側に移動して、 その位置から翻訳を開始および継続し、 さらに終始コドン (UA A、 UAG、 UGA) を認識すると、 その遺伝子の翻訳が終結して、 リボソーム は mRNAから離脱してしまう。 このため、 さらに下流にある遺伝子の翻訳は行 われない。 従って薬剤耐性遺伝子が下流に位置している場合はこれが翻訳されず 、 薬剤による選択を行っても薬剤耐性細胞が選択されてこないばかりか、 薬剤添 加培地であるため細胞そのものの培養は不可能となる。
ダイシストロニックな遺伝子発現を許す発現ベクターの構築は、 しかしながら 、 イン夕一ナルリポゾ一マルエントリ一サイ ト ( I RE S) の発見により、 可能 となった。 IRE S配列は、 キャップ構造と同様な働きをする配列であって、 こ の配列は mRNAの中程にあっても、 その位置においてリボソームの結合が起こ り、 翻訳も進行する (Duke, G. M. et al.(1992) J. Virol. 66:1602-1609) 。 かくして、 単一プロモーターの下流に 2種類の遺伝子を I RESを介在させて接 続することにより、 転写物である単一 mRNAから 2種類の蛋白へ翻訳させるダイ シストロニックべクタ一が開発されたものである (Dirks, W. et al. (1993) Ge ne 128: 247-249; Rees, S. et al. (1996) BioTechniques 20: 102-110; Kobay ashi, M. et al.(1996) BioTechniques 21: 398-402; Kaufman, R. J. et al.(l 991)Nuc. Acids Res. 19:4485-4490) 。 このようなダイシストロニックベクター では 2種類の遺伝子のうち選択用薬剤耐性遺伝子を下流に配置することによって 薬剤耐性細胞の全てにおいて原理的には目的外来遺伝子も発現していることにな り、 薬剤耐性細胞クローンの分離による外来遺伝子発現クローンの選択の確率を 飛躍的に増加させることとなった。
これら動物細胞での物質生産を目的とした発現べクタ一の進歩の間にも、 つね にその基本技術として転写効率を高める技術の改良が進められてきた。 その一つ の方向は、 組込まれた組換え遺伝子 DN Aが効率高く発現した細胞を選択するこ とを可能とする薬剤および薬剤耐性遺伝子の組み合わせである。 とくにデヒドロ 葉酸還元素酵 (DHFR) 遺伝子とメ ト トレキセィ ト (MTX) による選択、 あ るいはグルタミン合成酵素 (GS) 遺伝子とメチォニンスルフォキシミン (MS 0) による選択の組み合わせによって、 組換え細胞の中でこれら薬剤耐性遺伝子 が重複して、 結果として転写産物が増加する現象が知られ、 この遺伝子重複現象 を利用して、 ついでに外来遺伝子も併せて重複させることによる発現効率向上技 術が完成され、 現在最も多用されている実用技術をなしている (McCormick, F. et al. (1984) Mol. Cell. Biol. 4: 166-172;Ringold, G. et al.(1981) J. Mo 1. & Applied Genetics 1:165-175; Kaufman, R.J. and Sharp, P.A.(1982) J. Mol. Biol. 159:601-621; Cockett, M.I. et al.(1990) Bio/Technology 8:662 - 667) o
いま一つの方向の技術開発は、 外来遺伝子の上流に配置する制御配列を改良す ることによつて転写および翻訳効率を高めることによって行われてきた。 このた めに動物細胞やウィルスの遺伝子に含まれる転写効率の制御および転写後プロセ シングの制御に関わる配列が熱心に検討された。 なかでも発現効率の高い合成を 可能とする制御配列として、 CMVのプロモ一夕一 'ェンハンサ一配列 (Boshar t, M. et al.(1985) Cell 41:521-530) が発見された。 この配列をベクターに導 入することによって、 p SV2ベクターの 50倍以上の発現効率が得られること となった。
発現効率は、 しかしながら動物種など、 宿主細胞の特性によっても大きく依存 する。 たとえばマウス乳ガン腫瘍ウィルスプロモーターは、 コルチコステロイ ド 感受性の細胞において、 コルチコステロイ ドの存在下においてのみ、 始めて高い 発現効率を示す。 宿主依存性の少ない発現べクタ一は、 従って生産用ベクターの 大切な条件である。 高発現制御を可能とするプロモーター ·ェンハンサー配列の なかでも SRひ配列 (Takebe, Y. et al.(1988) Mol. Cell Biol. 8:466-472) はこの視点から高く評価されることとなった。 SRひ配列は CM Vプロモーター •ェンハンサー配列に匹敵する発現効率を有するとともに、 宿主依存性が少なレ、 特性を有し、 現在最も多用されている制御配列の一つとなっている。 ここで S Rひ制御配列について詳細に述べれば、 この配列は、 S V 40ウィル スのプロモーター ·ェンハンサ一配列の下流に成人ヒト T細胞白血病ウィルス ( 以下 HT L V— 1 ) の 10 ng t e rmi na l r epe at (LTR) 配 列中の R (r epe at) 領域及び U 5領域の一部を含む制御配列であって、 通 常、 その下流に S V40後期 mRN Aのスプライシングジャンクション配列(Oka yama, H. and Berg, P. (1983) Mol. Cell. Biol. 3:280-289、 以下 Sp配列と称 する)、 外来遺伝子、 さらにその下流にポリアデニル化シグナル配列を配置する ことによって外来遺伝子発現装置を構築し、 さらに大腸菌内での複製 ·選択装置 や、 別途のプロモー夕一と薬剤耐性遺伝子よりなる選択装置と組み合わせたべク 夕一を構築するための要素配列として用いられる (たとえば p cDL—SRひ 2 96, Takebe, Y. et al.(1988) Mol. Cell. Biol. 8:466-472)。
さらに SRひ配列についてつけ加えるならば、 HTLV— 1のプロウィルス D N A配列は、 他のレトロウイルスと同様に 3, 側と 5, 側に各々 L T R ( 1 o ng t e rmina l r e p e a t ) と呼ばれる末端反復構造を有している が ( Seiki, M. et al.(1983) Proc. Natl. Acad. Sci. USA 80: 3618-3622)、 この LTR領域が、 非常に強いプロモーター活性を示すことが判明したこと ( F ujisawa, J. et al.(1985) Proc. Natl. Acad. Sci. USA 82: 2277-2281) 、 さ らにこの LTRが、 U3領域、 R領域及び U 5領域と呼ばれる領域から構成され ており、 U 3領域の下流に位置している R領域及び U 5領域がプロモ一夕一 ·ェ ンハンサ一活性を有していることが解明されてきた ( Fujisawa, J. et al.(198 6) EMBO. J. 5:713-718) ことから、 H T L V— 1の L T R領域の全 R (r ep eat) 領域及び U 5領域の一部を含む連続した DNA配列 (R— U5 ') を p cD動物発現ベクターのプロモ一夕一の下流部位に挿入することによって最初の 31 ひべク夕ーでぁる 。01^—31 ひ296が開発されたものである ( Takebe , Y. et al. (1988) Mol. Cell. Biol. 8:466-472)。 SRひ配列を含む発現べ クタ一は様々な動物宿主細胞において pSV— CATベクタ一に比べ 10〜100 倍の CAT発現が認められた (特開平 1—277489 (4) ) 。 また、 高発現プ ロ乇一夕一として知られている CM Vプロモーターと比較すると宿主依存性の点 で遥かに優れていることが明らかとなっている (Xu, A. et al. (1995) 160: 28 3-286. )o
上記に要約した技術の他にも、 組換え細胞の発現効率および組換えタンパク質 の生産効率を高めるさまざまな要素技術が開発されてきている。 たとえば動物細 胞内で増殖するウィルスの DN A配列の一部を導入することによって、 発現べク 夕一のコピー数を、 導入した細胞内で増加させ、 結果として遺伝子発現の効率を 高めることを可能とする技術がある。 たとえばゥシパピローマウィルス (PBV ) の遺伝子が持っている動物細胞内での自己増殖能を利用して、 外来遺伝子のコ ピー数を増加させる方法 (DiMaio, D. et al.(1982) Pro Natl. Acad. Sci., U.S.A. 79 :4030-4034; Law, M. -F. et al.(1983) Mol. Cell Biol. 3:2110-21 15) も用いられている。
また、 動物細胞内で遺伝子重複を引き起こすことが知られている配列、 例えば リボソーム RN A遺伝子の転写領域に接続して存在する非転写スぺーサー領域配 列(Wegner, M. et al.(1989) Nucleic Acids Res. 17:9909-9932; Meyer, J. et al.(1993) Gene 129:263- 268)など、 を発現べクタ一に組込むことによって、 導 入した動物細胞内で染色体 DN Aへ組み込まれ、 発現ベクターのコピー数を増加 させることにより、 発現効率を高めることを可能とする技術がある。
さらにまたべクタ一内の遺伝子発現制御領域の D N Aの曲がり具合が、 必ずし も最適な発現効率を与えるものでない点に注目して、 発現制御領域の塩基配列を 変更し、 曲がり具合を最適化することによって、 発現効率を向上させる技術も報 告されている(Pauly, M. et al.(1992) Nucl. Acids Res., 20: 975-982 )。 ここで、 動物細胞内で発現ベクターに組込むことによって、 該発現ベクターの コピー数を増加させる機能を有することが知られた muNT S 1配列について付 け加えるならば、 この配列は、 数百コピーにのぼる反復した遺伝子構造を持つこ とが知られているマウスのリボソーム R N A遺伝子領域内の非転写スベーサー領 域から分離されたものである (Wegner, M. et al. (1989)Nucleic Acids Res. 17: 8783-8802) 。 mu N T S 1の遺伝子増幅に関与する配列は 3, 領域にある ノ リンドローム構造をとつている配列と 5 ' 領域にある A Tに富んだ配列であり 、 特に後者の配列は単独でも遺伝子増幅能を有することが知られている( Wegner , M. et al. (1989) Nucleic Acids Res. 17: 9909-9932 )。
さらにここで、 発現制御領域の塩基配列を変更し、 曲がり具合 (ベント) を最 適化することによって、 発現効率を向上させる技術について付け加えるならば、 このような DNA分子の螺旋軸の軌道の曲がり (ベント) は、 原核生物、 真核生 物を問わず、 遺伝子の機能や構造を調節する上で重要な領域に数多く見出されて いる。 大腸菌の転写においては、 コア 'プロモーターの活性を調節するモジユレ —夕一として機能していることなどが知られている(Hirota, Y. and Ohyama, T. (1995) J.Mol.Biol. 25:566-578)。 真核細胞でのベント D Ν Αの構造 ·機能相関 は最近ようやく明らかとなりつつある。 即ち、 転写因子のような DNA結合タン パク質が D N Aに特異的に結合する場合、 従来その認識配列の塩基配列だけが注 目されてきたが、 その周辺の構造も影響することが明らかになつてきた。 例えば ER (e s t r ogen r e c ept o r) はェストロジェン依存的に標的遺 伝子プロモーター上流に存在する ERE (e s t r o gen r e spons i v e e l ement) にホモ 2量体として結合し、 標的遺伝子の転写を制御す るステロイ ドホルモン受容体の一つであるが、 その認識配列 EREは、 ERが結 合することにより強くベントすることが知られ、 その配列を修飾し、 ベントの向 きを変更する解析から、 ERの結合能が周辺のベント DN A構造に直接依存する ことが示された(Kim, J. et al. (1995)J. Biol.Chem. 270:1282-1288)。 ステロ ィ ドホルモン受容体以外では、 ロイシンジッパー 'フアミリーの AP— 1と CR E Bが認識配列の A T G Aハーフサイ トの他にスぺーサ一の数の違レヽに依存した ベント構造の変異を認識して結合することが明らかにされている(Paolella, D.N . et al. (1994)Science 264:1130-1133)。 このように、 DNA結合タンパク質 の中には、 認識配列の他にベント DNA構造自体をシグナルの一部として認識す るものもあるらしい。 このことから、 ベント DNAがタンパク結合の特異性を決 定する重要なパラメ一夕一として寄与し得ることが推察される。 一方、 アフリカ ッメガエルのビトロジェニン (v i t e l l o gen in) 遺伝子のコアプロモ 一夕一の上流に化学合成したベント DNA配列を挿入した発現ベクターを構築し て CH0細胞に導入した実験で、 レポ一夕一遺伝子の発現が上昇し、 ポイントミ ュ一テ一シヨンによってこの領域を直線状の DN A構造に変更すると、 発現が下 がることが報告されており(Kim, J. et al. (1995) J. Biol. Chem. 270:1282-1 288 ; Kim, J. et al. (1996) Biochem. Biophys. Res. Co腿 un. 226:638-644)、 ベント D N Aの発現制御技術への応用性を強く示唆したものである。
さらにベントについてつけ加えるならば、 本発明においては、 目的とする高い 外来遺伝子の発現を可能とする制御配列の土台として、 SRひプロモ一夕一配列 を用いているが、 SRひ配列の 1つの要素である S V40プロモ一夕一には特徴 的な ATに富んだ塩基配列が存在し、 この塩基配列付近がベントしていることが わかっている(Pauly, M. et al. (1992) Nucleic Acids Res. 20: 975-98 ;Hert z, G.Z. et al. (1987) J. Virol. 61: 2322-2325 )0
このベント D N Aの曲がり具合を塩基配列の部分的な置換によって変化させる ことにより、 SV40プロモー夕一による転写がさらに活性化され得ることも報 告されている(Pauly, M. et al. (1992) Nucleic Acids Res. 20:975-982)。 このようにして、 遺伝子組換えによる外来遺伝子の発現を高める技術は、 さま ざまな角度から改良が積まれ、 進歩してきている。 しかしながらその改良は、 ゥ ィルスや動物細胞等から分離された制御要素配列を組み合わせるという経験的な 積み重ねの上になされてきた部分が大きく、 完成したものでないと同時に、 決し て技術上の問題点のすべてを解決しっくしたものでもない。
たとえば遺伝子重複による外来遺伝子の高効率発現技術の代表的な例である D H F R遺伝子あるいは G S遺伝子を組込んだ発現ベクターについていえば、 これ らの発現ベクターを用いるためには、 本来細胞が所持しているそれら遺伝子を欠 損させた変異細胞を宿主として用いる必要があるために、 一般の細胞株を宿主と して用いることができず、 その汎用性に大きな制限が生ずる。 さらにまた、 目的 とする高効率な組換え生産細胞を取得する以前に薬剤による長時間の処理を必要 とするばかりか、 一旦取得した組換え細胞内の外来遺伝子のコピー数を安定に保 つには、 高価な薬剤による選択を続けなければならない場合も多々あり、 生産物 のコスト高の要因となりうる。
またたとえば S Rひ配列あるいは C M Vのプロモ一夕一 ·ェンハンサー配列を 含むベクタ一をそのまま用いることによって、 このような遺伝子重複を行わなく とも相当に高い外来遺伝子の発現を行うことは可能となってきているが、 その生 産効率については遺伝子重複技術に匹敵するものではなく、 工業的な生産への適 用は稀である。
発現べク夕一の価値は、 必ずしもたまたま該発現べクタ一を導入することによ つて得られた細胞クローンの組換え蛋白質の生産レベルが高いことだけで評価さ れるものではない。 再現的に高い生産性の組換え細胞が高頻度で得られること、 安定した組換え発現を示す細胞クローンが得られること、 および高生産性の細胞 クローンを得るためのクローン選択の時間が短いこと等も、 実用の視点から極め て重要なことであり、 現状技術はこれらの必要性をすベて充たすものとは到底い えない段階にある。
たとえばゥシパピローマウィルスの配列を導入したベクターには、 動物細胞に 導入した後にベクターの配列が自己複製し、 結果として外来遺伝子の発現を高め ることを可能とするものがあるが、 これら自己複製したベクター D N Aが染色体 に組込まれずに存在するために、 その安定性に危惧があるといわざるを得ない。 また例えば、 S V 4 0プロモーター配列は組み換え物質生産も含めて広範に使 用されているプロモーターではあるが、 このプロモーターは複製開始点も含んで おり、 宿主細胞が SV40の T抗原蛋白質を生産している場合には、 自己複製す る能力を保持していること、 ならびに SV40はサル由来のウィルスではあるが ヒト細胞にも感染する能力を有していることからいっても、 サル細胞ゃヒト細胞 を宿主とする組換え生産用のベクタ一の構成要素として、 そのままの形で使用す ることについては、 安全上全く危惧がないわけではない。 ヒトを含む宿主域を有 する他のウィルスから得たプロモー夕一についても、 安全面からいってそのまま ベクタ一の構成要素として使用する上では、 必ずしも完成されたものとは言い難 い。
このように現状技術が未完成である背景には、 多くの宿主べクタ一系について 、 外来遺伝子の生産効率を制御している機構の詳細が不明に残されているという 現状がある。 例えば、 遺伝子発現のレベルは外来遺伝子が組込まれる染色体上の 位置により著しく異なることが見いだされているが、 その詳細には不明な点が多 い (Wilson, C. et al. (1990) Annu. Rev. Cell. Biol. 6: 679-714)。 あるい はまた遺伝子発現機構の解析が進んで来ても、 発現べクタ一の最適化に必要な詳 細な検討がなされずに、 ベクタ一として未完のままに残されている場合もある。 例えば、 代表的な動物細胞発現ベクターである p cDベクターと p cDL—S Rひ 296ベクターについていえば、 これらのベクタ一には SV 40ウィルス由 来のスプライシングシグナルが含まれており (0kayana, H. and Berg, P. (1983 ) Mol. Cell. Biol. 3:280-289; Takebe, Y. et al. (1988) Mol. Cell. Biol. 8:466) 、 このスプライシングシグナル配列 (Sp配列) は 16 Sリボソーム /1 9 Sリボソームのスプライスドナ一シグナルと 19 Sリボソーム及び 16 Sリボ ソ一ムのァクセプ夕一配列が 150 bpの DNA配列の中に含まれており、 16 Sァクセプ夕一配列の上流に蛋白の翻訳開始コドンである ATG配列が含まれて いる特徴を有しているものであるが (図面 1参照) 、 pcDベクターに外来遺伝 子を挿入し、 発現させた実験において、 転写物 mRNAの 10— 20%はスプラ イスされずに 16 Sァクセプ夕ー配列上流の ATGを含んだ mRNAのままであ り、 結果として外来遺伝子本来の AT Gからの翻訳が行われず、 上流の AT Gか ら翻訳されて融合蛋白質が作られる可能性が指摘されている。
このようなァクセプ夕ー配列の使用される頻度は p cDベクターの構成要素で ある SV40由来のプロモ一夕一 ·ェンハンサ一に影響されているのか、 SV4 0ウィルス由来のスプライシングシグナル特異的なものかは全く分かっていない 。 従って外来遺伝子の発現効率という視点からいえば、 少なくともこのベクター についての生産性は最適化されているとはいい難い。
また例えば、 pcDL— SRひ 296ベクタ一は前述のように、 pcDベクター の S V40プロモ一夕一 ·ェンハンサ一と S V40ウィルス由来のスプライシン グシグナルのあいだに HT LV— 1の R— U 5 '配列を挿入して構築されている が、 このベクターにおけるァクセプ夕ー配列の使用される頻度については全く研 究されておらず、 p cDベクタ一における使用頻度をもって想像することも不可 能である。 なぜならば、 R— U5, の塩基配列のなかには HT LV— 1ウィルス 本来のスプライスドナ一配列が含まれており、 上流に位置している HTLV— 1 ドナー配列が SV40由来の 16 S/19 Sのスプライスドナーシグナルを一部 或いは完全に代替している可能性、 或いは 19 Sまたは 16 Sのァクセプ夕一シ グナルとスプライスドナーシグナルとがさまざまな頻度で使用されている可能性 が考えられるなかで、 特に、 HT LV— 1 ドナ一配列と 19 Sのァクセプ夕一シ グナルとの間でスプライシングが起きる場合は、 上流の AT Gが外来遺伝子 mR N Aに含まれることになり、 以下の点で低生産性を招いている可能性も否定でき ない。
すなわち第一の可能性として、 リボソームが mRNAの 5, 末端に結合して 3 ' 側へ走査を継続してゆき、 最初の翻訳開始コドン (ATG) 近辺に到達したと き、 この付近の塩基配列条件が整っていればここから翻訳を始めるために、 この 上流の ATGから翻訳されて融合蛋白が作られる可能性が考えられる (Okayama, H. and Berg, P. (1983) Mol. Cell Biol. 3:280-289) 。 また第 2の可能性と して、 上流の AT Gの近傍の塩基配列の内容によってはリボソームが停滞し、 本 来の AT Gからの翻訳効率が低下することも考えられるのである (Kozak, M. J.
(1989) Cell. Biol. 108: 229-241; Kozak, M. (1996) Mammalian Genome 7: 5 63 - 574)。
またさらに、 遺伝子増幅配列についていえば、 muNTS lは、 マウスの L繊 維芽細胞を宿主とした際に、 遺伝子増幅や目的遺伝子産物の生産性の向上を誘発 させる DN A配列として発見され、 その後の研究からヒトの Jurka t Tリ ンパ球細胞を宿主にした場合においても効果的に働くことが確認されてはいるも のの(Meyer, J. et al. (1993) Gene 129:263-268)、 その作用メカニズムが不明 であるばかりでなく、 他種の細胞でも同様に作用するかどうかも不明であり、 そ の汎用性は未解決に残されている。 その作用機作については、 コンピュータ一に よるシュミュレーシヨンによってこの muNT S 1配列が発見されたマウスのリ ポソーム RNA非転写スぺ一サ一領域がベントしていることが示唆されており(Lan gst, G. et al. (1997) Nucleic Acids Res. 25:511-517)、 また発明者らは後述 のように muNTS 1配列の両端 31塩基をそれぞれプライマーとして P CR合 成により、 あらたにマウスから類似した配列 (muNTS lv) を取得し、 パ一 ミューテ―シヨン解析を行ってベントセン夕一を決めるなどして、 この配列がベ ント DN Aであることを明らかにしている。
また関連して、 muNT S 1の ATに富む配列に強く結合するタンパク質とし て核抽出液から精製された非ヒストン核タンパク質 HMG— 1は(Wegner, M. et al. (1989) Nucleic Acids Res. 17:9909-9932)、 塩基配列特異的ではなくむ しろベント DNAに好んで結合することが知られている D N A結合夕ンパク質で あって、 DN Aの 2本鎖を巻き戻すことによって DN Aの超らせん構造を変化さ せる作用があり、 DNAの複製や転写、 ヌクレオソーム構造の再構築などと深い 関わりがあるとされている。 このように、 マウスリボソーム RN A遺伝子の非転 写スぺーサー領域の遺伝子増幅機能には、 その局所的なベント構造の存在が HM G - 1のようなベント D N A結合タンパクを通して、 クロマチン構造や D N Aの 超らせん密度といった次元の染色体構造に影響を与え、 結果的に遺伝子重複を引 き起こす可能性があると考えられるが、 いずれにせよ、 その構造 ·機能相関の詳 細は明らかでない。
前項に要約したように、 組換え細胞における外来遺伝子産物の生産能を高める ための要素配列は、 発現べクタ一の構造に関してのみに限定しても極めて多数、 また多方面に渡っているが、 ここで困難な問題は、 上記にその例を述べたけれど も、 これら要素配列がすべて相乗的あるいは相加的に作用するものではなく、 あ る発現ベクター、 ある宿主細胞、 ある薬剤選択系など、 個々の発現系の構築要素 に限定されて機能するものも多々あることである。 従って、 ある要素配列が発明 されたからといって、 その要素配列が他の宿主べクタ一系あるいは他の薬剤選択 系においても同様に機能するとは限らず、 またいくつかの要素配列を一つのべク 夕一内に組み込んだからといって、 それらが相乗的に機能して高い発現効率をも たらすとは限らず、 したがって目的とする系において高効率な組換え生産系を構 築することは、 引き続き極めて困難な問題を提供していることが多い。
例を挙げればきりがないが、 例えば p MAM n e oベクターはある宿主細胞に 対しては極めて効率の高い遺伝子発現を示すが、 他の細胞に対しては、 生産性は 極めて低い。 この場合、 原因は該ベクターにはコルチコステロイ ド受容体によつ て誘導される D N A結合タンパク質が、 その発現の調節に関与していることが原 因であることが明らかとされているが、 原因が明かでない場合も多々ある。 例え ば D H F R遺伝子を含むベクターを導入した C H〇細胞においてメ トトレキセィ 卜によって遺伝子重複を誘導し、 発現効率を高める技術はよく知られた技術であ るが、 この方法はヒト 2倍性細胞については有効に機能せず、 機能しない理由は 判明していない。
さらにつけ加えるならば、 S V 4 0プロモ一夕一には特徴的な A Tに富んだ塩 基配列が存在し、 この塩基配列付近がベントしていること(Pauly, M. et al . ( 1 992) Nucleic Acids Res. 20:975-982; Hertz, G.Z. et al. (1987) J. Virol. 61: 2322-2325)、 およびこのベント D N Aの曲がり具合を塩基配列の部分的な置 換によって変化させることにより、 S V40プロモ一夕一による転写がさらに活 性化され得ることが報告されている(Pauly, M. et al. (1992) Nucleic Acids R es. 20: 975- 982)ことは既に述べたが、 たとえばこのように塩基置換を、 同様に S V40プロモーター配列を含んでいる他のベクタ一について、 たとえば SRひ 制御配列を含むベクタ一中で行ったとき、 同様に転写の効率をさらに高めること が可能であるかどうかは全く不明である。 というのも、 たとえば SRひ配列のプ 口モー夕一活性は、 SV40プロモ一夕一配列のそれと比較してすでに数十倍に 高められており、 しかもその高揚は経験的なものであって、 SV40プロモ一夕 一領域の塩基配列の変更が、 さらに相加的あるいは相乗的に該配列のプロモー夕 一活性を向上させるものかどうかは全く不明であるからである。 さらに、 塩基置 換のような個々の要素技術が、 異なった宿主細胞に対しても効果を示すものであ るかどうかについても、 あまりにも多くが不明のままに残されている。
このようにすでに知られた要素技術についていっても、 相乗的あるいは相加的 なその組み合わせを実現した統合技術として、 また宿主依存性の少ない汎用技術 として完成するためには、 その作用機作の解析を含めたさまざまな困難な課題の 解決や、 深い洞察に基づいた試行が必要であり、 従ってこれらの困難な課題を解 決し、 技術の統合化に成功して、 高効率な発現ベクターを与えることには、 高い 新規性があることは当然である。 発明の開示
現在最も汎用されている高発現べクタ一の要素配列の一つを提供する SR«S P転写ならびに転写後制御配列についても、 上記のように様々な課題が残されて いる現状にあって、 発明者らは次のように課題の解決に挑戦した。 すなわち以下 の課題が本発明が解決しょうとする課題である。 1. SRaS p配列の制御下にあって得られる転写物の翻訳効率よりも高い翻訳 効率をもたらす転写後制御配列を提供すること。
2. SRaSp配列よりも高い転写効率をもたらす転写制御配列を提供すること
3. SRひ配列中の SV40プロモーター複製開始点配列が、 T抗原の存在下で も自己複製せず、 安定に組換え産物の生産に寄与するような技術を提供すること
4. SRaS p配列ならびにその改変配列との組み合わせによってさらに高い発 現効率を導き出すような発現制御配列を提供すること。
5. 課題 1、 2、 3、 ならびに 4の解決と併せて、 いままで構築されてきた第二 世代の S Rひ S p配列含有べクタ一に比較し、 組換え細胞をより高い選択効率で もたらす発現ベクターを提供すること。
6. 課題 2、 3、 4、 ならびに 5の解決と併せて、 外来遺伝子の発現効率を 高めるための薬剤による選択を、 短時間で、 また低い薬剤濃度で行うことができ る手段を発現ベクターの形で提供すること。
7. 上記課題の解決を、 汎用されている宿主細胞である CHO細胞においてなさ れるように機能する高発現べクタ一を提供すること。
上記課題を解決するために、 発明者らは以下のような一連の手段を取った。 す なわちまず、 従来知られた高効率発現べクタ一ならびにその要素配列を収集した 。 すなわち SRひ Sp配列を含み、 さらに大腸菌内での増殖ならびにアンピシリ ンによる選択を可能とする配列を含む P cDL— SRひ 296ベクタ一 ( Takeb e, Y. et al. (1988)Mol. Cell. Biol. 8:466-472) ) 、 動物細胞に導入して、 ネオマイシン耐性ならびに S V 40ボリアデ二ル化シグナル配列によって外来遺 伝子の発現を可能とし、 さらに大腸菌内での増殖ならびに選択を可能とする配列 を含む pK an 2ベクタ— ( Yates, J. et al.(1984) Proc. Natl. Acad. Sci. U.S.A. 81:3806-3810) 、 チミジンキナーゼプロモー夕一配列 (p Kan 2由来 ) 、 ハイグロマイシン耐性遺伝子 (pDR 2、 Clont ech) 、 ピューロマ イシン耐性遺伝子配列 (pPvu、 Cl ont ech) 、 £ (3 由来の111£ S配列 (p CITE— 4a (十) 、 No vagen) である。
さらに、 あらたに多数の制御配列ならびにリンカ一配列をヌクレオチド逐次合 成法によって、 あるいは合成プライマーによる動物ゲノム DN Aを錶型とした P C R合成法によつて合成した。
これら合成した配列は配列番号 3から 17までに表記されているが、 配列番号 3、 4、 5ならびに 6にある 4配列は、 SRひあるいは SRァ配列の直上流に配 置した上記リンカーのさらにその直上流に配置するプロモータ一 ·ェンハンサ一 上流制御配列として合成した配列であって、 そのなかで muNTS 1 V— F配列 (配列番号 3) ならびに muNT S I V— R配列 (配列番号 4) は、 それぞれ muNT S 1配列 (Wegner, M. et al. (1989)Nucleic Acids Res. 17: 8783-8 802) の両末端の部分配列 31づっを逐次合成し、 これらをプライマーとして、 マウスゲノム DNAを錶型とする P CR合成によって得た、 それぞれ互いに向き が逆転している配列であって、 muNT S 1配列と類似しているが、 Wegnerの 報告している muNTS 1と比較すると、 6箇所で塩基が相違し、 3箇所に欠損 があり、 1箇所に揷入がある構造となっている配列である。 これらの配列は、 m uNTS 1配列と同様に、 マウスゲノム中に多数重複して存在するリボソーム R N A遺伝子ならびに非転写スぺ一サー領域の幾返し構造のなかの一つの非転写ス ぺーサ一領域を錶型としたものであることが推察される配列である。 また配列番 号 5にある mu 56—R配列ならびに配列番号 6にある mu 56— F配列は、 それぞれ互いに向きが逆転している配列であって、 muNTS 1配列の部分配列 であり、 逐次合成によって得た配列である。
これらリボソーム遺伝子非転写領域と構造的に関連した配列を総称して、 以下 においては RINTR (R I b 0 s oma 1 Non-Trans cr ibed
Re l at e d) 配列と称する。 また、 配列番号 7から 17にあるリンカ一配列、 すなわち、 La 33、 La 3 4、 L a 4 Lb 62, L c 62S L c 57, : Lc 52、 L c 47S L c 21 、 L c 1 Is ならびに L c 6は、 それぞれ SRひあるいは SRァ配列とプロモ一 夕一 ·ェンハンサ一上流制御配列との間に挿入する配列であって、 pBR 322 に由来する配列の断片と人為的に設計した配列とを含んでいる。
さらに、 ホ夕ルルシフェラ一ゼ遺伝子 (pGL 2— B、 P r ome g a) 、 ゥ ミシィタケルシフェラ一ゼ遺伝子 (pRL— nu l l、 Pr ome ga) など、 組換え細胞における外来遺伝子の発現を定量的に評価するためのレポ一夕一遺伝 子、 および組換え細胞における外来遺伝子の分泌生産性を評価するためのヒト ト ランスフェリン遺伝子 cDN A ( Nakamichi, N. et al. (1997) in K. Funatsu et al. (eds. ), Animal Cell Techno logy: basic & applied aspects, Kluwers Academic. 8: 373-379.) 等々、 本発明による発現べクタ一に組込むことによつ て、 その新規性と有用性を実証するために必要なさまざまな要素配列を取得した 次に、 これら要素配列より、 基本とする標準発現ベクターとして、 SRひ配列 の下流に Sp配列、 外来遺伝子挿入部位を設け、 別に薬剤耐性遺伝子発現装置、 さらに大腸菌中での複製 ·選択装置のそれぞれを組込んだ第 2世代の発現べクタ ― (pK2 SRaSpベクタ一) を構築した。
このようにして構築した基本発現ベクターに外来遺伝子 cDNA (ヒト トララ スフエリン cDNAあるいはホ夕ルルシフェラーゼ) を結合した評価用の標準生 産べクタ一 (pK2 SRa S p/hT f rベクターならびに pK 2 S a S ρ/ f Luc) を構築し、 その構造を制限酵素マップ、 DN A配列決定等の手段を用 いて確認した。
このようにして構築した評価用の標準ベクターを C H 0細胞に導入し、 薬剤に よって外来遺伝子発現細胞のクローンを選択した。
選択して得た組換え細胞クローンについて、 外来遺伝子の発現量を測定すると ともに、 転写 mRN Aの構造解析を行った。
一方、 天然に得られる転写物 mRNAの構造を解析するために、 天然にヒトト ラスフェリンを生産する He pG 2細胞 (ATCC) を培養し、 この細胞のヒト トランスフヱリン mRN Aの構造と、 上記組換え C H 0細胞の外来遺伝子から転 写される mRNAの構造とをノーザンプロット法あるいは RT— P CR法等を用 いて比較した。
この比較から、 驚くべきことに、 SRひ配列 +Sp配列の支配下において転写 および転写後プロセスされる mRN Aが、 当初予想されていたように、 外来遺伝 子の読み出し開始シグナルとなる A T G配列のさらに上流にある A T G配列が転 写後プロセシングによって除去されるのではなく、 上流にある A T G配列が残さ れた形でプロセシングを終了していることが判明し、 結果として、 外来遺伝子の 効率の高い翻訳のために最適な配列を有していないことを実証した。
この結果を利用して、 S Rひ + S p配列よりもさらに高い翻訳効率を許す可能 性を求めて、 さまざまな配列を設計,製作し、 さらにこれらの配列の支配下にあ る外来遺伝子の発現が、 たしかに S Rひ + S pの支配下にある場合よりも高いこ とを実証することによって、 SRひ + Sp配列に優る新規な制御配列を発明する に至った。
一方、 SV40プロモーター中の一部の塩基配列について、 この配列を変更す ることによって DN Aのベン卜が強められ、 S V40プロモー夕一よりも高い転 写効率が得られることが報告されているが (Pauly, M. et al. (1992) Nucleic Acids Res. 20:975-982), この配列変更を、 S Rひ配列内での対応する配列につ いて行うことによって、 S V40プロモーター配列の数十倍の転写効率を有する SRひ配列においても、 驚くべきことにこの変更が相乗的に働いて発現効率がさ らに高まることを見いだした。
さらに、 SRひ + Sp配列の下流にある外来遺伝子挿入部位に直結して、 IR E S配列および引き続いて薬剤耐性遺伝子を結合し、 薬剤の適正な濃度で選択を 行うことが可能となるように、 IRES配列の構造を最適化することに成功した
SRひ配列中の SV 40のコアプロモー夕一配列 (5, T AT T T A 3 ' ) 中 の塩基を置換することにより、 プロモー夕一活性が変化することは知られていた が (Pauly, M. et al. (1992) Nucleic Acids Res. 20: 975-982) 、 コアプロモ 一夕一の直下流の配列がプロモーター活性に影響することは全く知られていなか つた。 ところが驚くべきことに、 コアプロモー夕一の直下にある配列を変更し、 コアプロモ一夕一配列からその直下の配列を (5' TATTTATGCAG3' から) 5, T AT T T AT C CAG 3 ' に置換したベクター (pK2 SRひ (A TG*) Sp、 ならびに pK2 SRひ (ATG*) S p (ATG*) を作成する ことにより、 対照標準とする基本べクタ一 (pK2 SRaSp) より有意に高い 発現効率を示すベクターが得られることを実証し、 本発明をさらに拡張した。 このようにして SRひ配列および Sp配列から出発して、 翻訳効率の向上、 転 写効率の向上、 および I RE S配列を導入した際の薬剤選択条件の最適化を経て 、 これら要素配列を統合した統合べクタ一において、 該統合ベクターに導入した 外来遺伝子が、 基本とする標準発現べクタ一と比較したとき、 発現効率において も、 また発現細胞の選択効率においても優れていることを実証し、 ここに新規な 転写および転写後制御配列、 および新規な第 3世代の高効率発現ベクターを発明 するに至った。
この発明にとどまらず、 さらに発現調節を SRひプロモ一夕一 ·ェンハンサ一 領域の上流に押し広げた。 すなわちマウスのリボソーム: N A遺伝子の非転写ス ぺーサ一配列として報告されている muNT S 1配列およびその部分配列がマウ ス細胞ならびにヒト細胞において遺伝子重複機能を示すことが報告されているこ と ( egner, M. et al. (1989) Nucleic Acids Res. 17: 9909-9932) に注目し 、 新たに muNTS 1配列の両端近傍の配列をプライマーとした PC R法によつ て、 マウスゲノム DNAから新たに muNT S 1に類似した配列 (muNTS l v) を獲得した。 さらに muNTS 1配列の部分配列 (mu56配列) を合成し 、 さらにこれら制御配列と薬剤選択遺伝子の発現系との種々な組み合わせ、 なら びに SRひプロモー夕一 ·ェンハンサ一配列、 あるいは配列を改変して効率を高 めた SRaプロモーター ·ェンハンサ一配列の誘導体と、 制御配列との間隔を埋 めるスぺ一サー配列を鋭意検討した。 その結果、 驚くべきことに、 これらの配列 および発現系を上記にある新規な高効率発現ベクターに組込み、 CHO細胞に導 入したときに外来遺伝子の発現効率を高め得る配列およびその組み合わせはきわ めて限定されたものであることを見いだした。 さらにそのような限定された配列 を SRひプロモー夕一 ·ェンハンサ一配列、 あるいは配列を改変して効率を高め た SRひプロモーター ·ェンハンサー配列誘導体とともに組込み、 また外来遺伝 子を組み込んで発現ベクターを構築したとき、 外来遺伝子が、 基本とする標準発 現べクタ一、 すなわち SRひ Spプロモーター ·ェンハンサ一を用いた発現べク 夕一は勿論、 さらに配列を改変して効率を高めた SRひプロモーター ·ェンハン サー配列誘導体を用いた発現べクタ一に対しても、 高い発現効率を示すことを実 証し、 本発明を完成させた。
本発明が外来遺伝子の種類、 宿主棚胞の種類に限定されるものではなく、 他の 外来遺伝子および他の宿主細胞への適用は当業者であれば容易に想起できるもの であり、 また本発明にある発現制御配列の構成配列の一部として使用している R I NT R配列はマウス由来の配列に限定されるものではなく、 他の動物由来の配 列、 あるいはさらに配列に類似性を有する合成配列も用いることができることも 、 当業者であれば容易に想起できるものであることは言うまでもない。
以下に本発明を詳細に説明する。 a. 基本べクタ一 (pK2SRひ Sp) の構築
上記したように、 発現効率が高く、 かつ宿主依存性の少ない既知プロモーター •ェンハンサー配列である S Rひ、 および転写後制御配列 S pを出発材料とし、 これを徹底的に改変し、 また付加的な制御配列を組み合わせることによって高効 率発現べク夕一を創造することを本発明の基本手段としている。
すでに報告されている SRひ + Sp配列含有べクタ一として、 p cDL— SR ひ 296 (Y. Takebe et al.,1988. Mol. Cell. Biol. 8:466, ) を用いる。 こ のべクタ一は S Rひ + S p配列と大腸菌内での複製を許すための p B R 322系 の複製装置、 およびアンピシリン耐性遺伝子より構成されているが、 本来は SV 40 T抗原を発現している CO S細胞にトランスフエクトすることによって、 ベ クタ一 DN Aを増幅させ、 一過性に外来遺伝子を発現させることを目的としたべ クタ一であるために、 動物細胞の染色体に組込まれた状態での発現を行うことを 目的とした、 薬剤による選択系を含んでいない。
そこで、 ネオマイシンフォスフォトランスフェラ一ゼ遺伝子をチミジンキナー ゼプロモーターの下流に組込んだ標準的な発現系である p Kan2ベクタ一 (Ya tes, J. et al.,1984. Proc. Natl. Acad. Sci. U.S.A. 81:3806-3810) と p c DL— SRひ 296ベクターとを組み合わせることによって、 31 ひ+ 3 配列 の下流に外来遺伝子挿入部位、 その下流に S V 40由来ポリアデニル化シグナル 配列、 さらに独立にチミジンキナーゼプロモーター下流にネオマイシンフォスフ オトランスフェラーゼ遺伝子を配置した、 動物細胞内での薬剤選択系、 さらに独 立に大腸菌内での複製および選択を可能とする pBR 322系複製装置とアンピ シリン耐性遺伝子発現系のそれぞれを組込んだ発現べクタ一を構築した。 なおこ こで、 p cDL— SRひ 296ベクタ一における転写後制御配列とポリアデニル 化シグナル配列は P s t 1切断部位と Kpn 1切断部位によって挟まれた塩基配 列が挿入されているが、 ベクタ一の構築にあたっては、 この配列を一部変更して 、 その内部に新たに No t 1切断部位を導入し、 外来遺伝子の挿入を容易とした 。 このようにして作製したベクタ一を pK2 SRaSpと称する (図 2) 。 しか し外来遺伝子挿入部位の配列の変更は本発明の本質に関わることではない。 b. pGL 2 SRひおよび pGL 2 SRひ (GG) の構築 (図 6) ホ夕ルルシフェラ一ゼ遺伝子をレポーター遺伝子とする pGL 2— Bベクタ - (P r ome g a) の Xho l部位に、 p K 2 S Rひ S pベクターから P s t Iと C 1 a Iで切り出した SRひ含有配列を挿入して、 ホ夕ルルシフェラ一ゼ遺 伝子の直前に SRひ配列が配置されたべクタ一 (pGL 2 SRひ、 図 6) を構築 した。 さらに、 SRひ配列中の SV40プロモ一夕一配列中に存在する ATに富 んだ配列 (5 'TAATTTTTTTTATTTAT 3' 、 配列番号 1 ) 中の 2 塩基の Tをそれぞれ Gで置換した配列、 すなわち 5 'TAATTTTGGTTT TATTTAT3' (配列番号 2) で置換した SRひ配列の誘導体 (以下 SRひ (GG) と称する) を合成し、 これを SRひ配列の代わりに pGL 2ベクターに 組込んだベクタ一 (pGL 2 SRa (GG) ベクタ一、 図 6) を構築した。 c . pRL- S V40を用いたデュアルルシフェラ一ゼアツセィ
ホタルのルシフェラ一ゼ遺伝子の発現を定量的に測定する目的で、 ゥミシイタ ケのルシフェラ一ゼ遺伝子を発現する標準的な発現べクタ一である pRL— SV 40ベクター (プロメガ社) を入手した。 動物細胞に対して pRL— SV40と ホタルのルシフェラーゼを発現する試験的なべクターとをコトランスフエクショ ンしたとき発現される、 ゥミシィタケルシフェラーゼの活性とホタルのルシフエ ラ一ゼの活性とをそれぞれフォトン測光する方法 (デュアルルシフェラ一ゼ法) により、 試験的なベクタ一におけるホ夕ルルシフェラーゼの発現量を定量的に測 定した。 d. トランスフェリン遺伝子 cDN Aの分離とトランスフヱリン遺伝子 cDNA 組込み標準発現系 PK2 SRひ Sp/hTf rの構築
発現ベクターの組換え生産用ベクターとしての効率を評価するために、 発現べ クタ一に分泌性タンパク質をコ一ドする外来遺伝子 cDNAを組込み、 このよう にして得た生産性評価の標準とする生産用ベクターを得た (図面 3) 。 外来遺伝 子 cDNAとしてはヒト トランスフェリン (hTf r) cDNAを用いたが、 当 該業者であれば用意に推察がつくように、 ここで用いる外来遺伝子 cDNAは分 泌性タンパク質をコードするものであれば、 hT f rに限るものではない。 例え ば、 HBs抗原、 ひ 2-マクログロブリン、 インターフェロン、 TPA等である。 以下の実施例で使用している hT f r cDNAの調製についてはすでに詳細を 報告しているが (Nakamichi N. et al., 1997. in K. Funatsu et al. (eds.), Animal Cell Technology :basic & applied aspects, Kluwer Academic, 8: 373- 379)、 要約は以下のようである。 すなわち hTf rを生産することが知られて いる培養株細胞である He pG 2細胞 (ATCC) から常法に従って RN Aを調 製した。 一方、 知られているヒトトランスフェリン cDNAの構造 (Yang, F. e t al.,1984. Proc. Natl. Acad. Sci. USA, 81: 2752-2756) の一部よりなる D N A配列 2個を合成した。 これら 2個の DN A配列をプライマーとして用い、 H epG2の RNAに対して RT— PCR法を用いて HepG2の hTf r cDN Aの部分配列を合成した。 つぎに He pG2の RNAから cDNAライブラリー を構築し、 以上のようにして得た hTf rの部分配列をプロ一ブとして、 hTf r cDNAをクローニングした。 このようにして得られた cDNAクローンの塩 基配列を決定し、 アミノ酸レベルで報告されている hT F rのアミノ酸配列をコ ードするものであることを確認して、 以下発現べクタ一への挿入に備えた。
ここで上記にある標準発現系 pK2SRひ Spベクタ一の外来遺伝子挿入部位 の No t iサイ トに上記のようにして得られた hT ί" r cDNAを挿入し、 標記 にある pK2 SRaSp/hTf rを完成した。 e. pK2 SRひ SpZhT f rを導入した持続性トランスフェリン生産 CH〇 細胞クローンの分離
評価の標準とする外来遺伝子生産性の発現べクタ一 PK2 SRひ Sp/hTf rを汎用性のある宿主動物細胞に導入し、 薬剤によって選択して、 クローン細胞 集団を得、 これらクローンについて外来性タンパク質の分泌能を培養上清中に生 産される外来性タンパク質の濃度測定によって評価した。
以下の実施例においては、 汎用性のある宿主動物細胞として CHO細胞を用い ている。 すでに述べたように、 発現ベクターの種類によっては宿主細胞の種類が その発現に影響を及ぼすことがある。 しかしながら本発明による高効率発現べク 夕一については、 一部のベクタ一がそうであるような宿主細胞に対して遺伝的な 変異細胞であることを要求するものでなく、 原理的にいって汎用性の高いもので あることが推察されることから、 宿主細胞は CHO細胞に限定されるものではな い。
発現べクタ一の C H 0細胞への導入は常法に従つてカルシゥム燐酸法あるいは リポフエクシヨン法を行い、 G418による選択を行って、 持続性発現細胞クロ —ンを分離した (Nakamichi N., et al. 1997. in K. Funatsu et al. (eds. ), Animal Cell Techno logy: basic & applied aspects, Kluwers Academic. 8: 37 3-379.) 。 f . 組換えトランスフェリン生産細胞クローン rCH0/C l# 1—23におけ る外来遺伝子転写物の構造解析によるスプライシングモ一ドの解明と H e p G 2 細胞における内在性の転写物の場合との比較
上記のようにして得られた組換え h T f r生産性の CHO細胞のうち、 生産性 の高かったクロ一ン (r CH〇/C 1 # 1一 23) について、 本来トランスフエ リン遺伝子を発現し、 その蛋白を分泌している肝臓ガン由来 He pG 2細胞を対 照としてその hT f rの mRNAの構造を比較した。
先ず mRN Aのサイズの比較は、 常法に従って細胞から RNAを抽出し、 アイ ソトープでラベルしたトランスフェリン c DNAをプローブとしたノーザンブロ ヅト解析によって行った。 この結果、 r CH〇細胞株の mRNAの発現量は He pG 2の発現量に比べ少なくとも 5倍以上であるが、 分泌されたトランスフェリ ン蛋白の量は逆に He pG 2細胞の方が約 2. 5倍以上であると推定された (Na kamichi N., et al. 1997. in K. Funatsu et al. (eds.), Animal Cell Techno logy: asic & applied aspects, Kluwers Academic. 8: 373-379. ) 。
この結果から、 転写後のプロセシングにおいて r CHO/C 1 # 1— 23と H e pG 2細胞に差異があることが推察された。 転写後に引き続いておこる反応と してスプライシングがあるが、 ここで、 pSRひ Sp発現べクタ一に含まれる S V40ウィルス由来の S p配列において、 スプライシングシグナルがどのように 働いているかについては研究がなされておらず、 そのスプライシングパ夕一ンは 予測できない点に注目し、 この点を解明すべく、 r CH〇# 1一 23細胞株を用 いて以下の実験を行った。
すなわち、 先ずこの細胞からポリアデニル化 mRN Aを精製し、 以下のように RT— PCRによる構造解析に供した。 さて、 組換え体発現べクタ一 pK 2 SR ひ Sp/hTf rには SV40プロモーター ·ェンハンサー配列 (Sp) の下流 に HTLV— l R-U 5 ' 配列とスプライシングシグナルが組込まれており、 さらにその下流に hTf r遺伝子が組込まれた構造を持っている。 hTf r遺伝 子含有 mRNAは HTLV— 1 R-U 55 配列とスプライシングシグナルを 5 , 側に接合した形で転写されるため、 HTLV— 1 R-U5' 配列内のスプラ イスドナー配列、 Sp配列内の S V40由来 19 S/16 Sのスプライスドナ一 配列および S V40由来の 19 S及び 16 Sのァクセプ夕ー配列、 それぞれとの 間で起こる様々な組み合わせによるスプライシング反応が細胞核内で起こること は想像できる (図 1) 。 そこで、 いかなる組み合わせでスプライシング反応が起 こっても検出できるようにするために SRひ配列中の SV 40プロモ一夕一 ·ェ ンハンサ一配列の下流部分と HTLV— 1 R-U 5 ' 配列内のスプライスドナ —配列の間で P CR用フォワードプライマー (5' GCTATTCCAGAAG T AGTGAG 3 ' 、 SV3 1 5 Nと称する) を作り、 さらにトランスフェリン 遺伝子の N—末端領域に対合する P CR用リバ一スプライマ一 (5, ACAGT TTTATCAGGGACAGC3' 、 h T f r 104 Rと称する) を作り、 先 に精製したポリアデニル化 mRNAを錡型として RT— P CR反応を行った。
RT— PCR反応の結果、 約 440塩基対の産物がほぼ全てであり、 この約 4 40塩基対の DN A断片をサブクローニングしてその塩基配列を決定してみると 、 HTLV- 1 R— U5' 配列内のスプライスドナー配列と Sp配列中の SV 40由来の 19 Sのァクセプ夕ー配列との間でスプライス反応が起こっているこ とが判明した。 このことはスプライスされた mRNAには hTf r遺伝子本来の 翻訳開始シグナルである A T G配列の上流に S V 40配列由来の A T G配列が残 存する事を示している (図 1) 。
ここで、 上記において分析した塩基配列を見ると、 AUGの Aの位置を + 1 ( A+ 1) としてその前後の配列の位置を数字で表したとき、 上流に残存する AU Gの一 3の位置の塩基は Uで、 +4の位置の塩基は Uであった。
さて従来、 経験的に、 — 3塩基の位置が Aまたは Gであり、 また + 4塩基の位置 が Gである一次構造、 すなわち 5, · · Α— 3 (o r G- 3) NNA+ 1UG G+4 · · · · 3' 、 を持つときは翻訳開始シグナルとして最も最適な配列構造 とされている。 しかし、 +4塩基の位置が Gであっても一 3の位置の塩基が U又 は Cのいずれかに置き換わったとき、 あるいは +4塩基の位置が U、 AN Cのい ずれかに置換し、 さらに— 3の位置の塩基が Gに呼応して置換したときは翻訳開 始シグナルとしての効率は低下するとされている。 その理由としてこのような不 適切な一次構造を持つ AU G配列領域ではリポソ一ムが停滞し、 漏洩した一部が 走査を続行して下流に位置する適切な一次構造を有する目的のポリべプチド本来 の A U Gに到達して翻訳が行われるとされている (リ一キ一スキヤニングモデル 、 Kozak, M.,1986. Advances Virus Res. 31:229-292) 。
ここにおいて、 上流位置の AUG配列を除去する、 あるいは変異を加えること によってリボソームの停滞を解除、 あるいは緩和することによる目的とするポリ ペプチドの翻訳効率を高揚させ得る可能性を見いだすに至った。 g. 311ひプロモー夕一内の3¥40 Or i領域におけるベント特性の改変 SRひプロモー夕一に含まれる S V40ウィルスゲノムのェンハンサー ·プロ モーター領域のうち、 S V40プロモ一夕一領域内において、 3つの連続した 2 1塩基対の繰り返し配列に引き続く o r i領域の 17塩基対の配列のうち、 配列 番号 1において、 中央にある ATが豊富な領域中の Tを 2個 Gに変換した配列、 すなわち配列番号 2なる配列、 を有する変異型の S Rひプロモ一夕一配列を作成 した。 以下、 このようにして得た SRひプロモー夕一変異体を SRひ (GG) プ 口モー夕—配列とする (図 6) 。 この配列の変換によって、 DN Aの立体構造に 湾曲がもたらされること、 このプロモー夕一領域が本来持っている複製開始点と しての作用が失われること、 およびプロモーター活性が変化することはすでに報 告されている(Pauly, M. et al., Nucl. Acids Res., 20, 975-982 (1992))。 し かし、 SV40初期プロモーターと比較してきわめて強力なプロモーターである S Rひプロモ一夕一内で、 あるいはさらに以下の実施例で詳述するような統合型 ベクターにおいて、 また CHO細胞を宿主として、 転写活性の変化をもたらすも のであるかどうかについては不明であった。 また、 ひプロモ一夕一の TA T Aボックス内の構造については、 以上のようにその構造とプロモ一夕一活性の 関係について一部研究されてきたものの、 プロモーター直下流の配列については 、 なんら研究されておらず、 その構造—発現相関は不明であった。 そこで、 本発 明においては、 SRひプロモーターならびにその直下流の配列に検討を加え、 さ らなる発現の高効率をなしとげたものである。 h. IRES配列
既に述べたように、 IRES配列は、 キャップ構造と同様な働きをする配列で あって、 この配列は mRNAの中程にあっても、 その位置においてリボソームの 結合が起こり、 翻訳も進行する (Duke G. M. et al. J. Virol. 66:1602-1609(1 992)) 。 かくして、 単一プロモーターの下流に 2種類の遺伝子を I RE Sを介在 させて接続することにより、 転写物である単一 mRNAから 2種類の蛋白へ翻訳 させるダイシストロニックベクターが開発されたものである (Dirks W. et al. 1993. Gene 128: 247-249.; Rees S. et al.; BioTechniques 20: 102-110. ; K obayashi M., et al.,1996. BioTechniques 21: 398-402., Kaufman R. J., et al.,1991.Nuc. Acids Res. 19: 4485-4490) 。 ダイシストロニックベクターにお いては、 選択用薬剤耐性遺伝子を外来遺伝子 cDN Aと同じプロモーターの支配 下におくこととなり、 I RE S配列に続く薬剤耐性遺伝子が薬剤による選択を可 能とする発現量で発現されている必要がある。 本発明においては、 さまざまなェ 夫の結果、 I RE S配列 (pC I TE— 4 a (十) 、 Novagen) の下流に ハイグロマイシン耐性遺伝子を接続することによって、 この問題を解決した (実 施例参照) 。 i . マウスリボソーム RN A遺伝子の非転写スぺーサ一領域 DN A断片の分離 Wegnerらによって分離されたマウスリボソーム R N A遺伝子の非転写スぺー サ一領域 DNA断片 muNT S 1は 370塩基よりなる配列であり(Wegner, M. et al.,1989. Nucl. Acids Res., 17: 9909-9932 )、 この配列を短縮 TKプロ モーターに接続したチミジンキナーゼ遺伝子とともにベクターに挿入し、 このべ クタ一をチミジンキナーゼの欠損したマウス L株細胞 (LTK ) あるいヒト細 胞に導入したとき、 配列の重複が起きること、 およびこのような重複は muNT S 1配列の一部である 56塩基の配列、 すなわち配列番号 6 (mu 56— Fと標 記する) によっても誘起されることが報告されている。
しかしながら、 これらの配列が発現べクタ一内に組込んだ状態で S Rひ配列、 あるいは S R a + S p配列と相加的あるいは相乗的に働いて発現効率を高めるか どうか、 また組換え生産に汎用される CHO細胞においても作用するかどうか、 は全く不明である。 以下の実施例に示すようにマウス制御配列と SRひ + Sp配 列との相互作用は複雑であり、 したがって、 これらマウス制御配列と SRひ +S p配列あるいはその誘導体配列との組み合わせによる高効率な発現べク夕一の構 築を含む本発明は精密なベクタ一の設計の結果実現したものであって、 当該業者 であれば容易に行えるものでは決してない。
さて、 マウスリボソーム RN A遺伝子はゲノム中で数百コピー存在することか ら、 それらの非転写スぺ一サー領域内に存在する muNT S 1配列もしたがって 一様でなく、 多様性が存在する可能性がある。 そこで、 あらたにマウス DN Aか ら P CR法を用いてリボソーム DN A非コード領域の muNT S 1相当配列を分 離することを試み、 配列番号 3に示す配列の D N A断片を得た。
本配列は Wegnerらによって報告されている mu N T S 1配列と比較すると 6 箇所で塩基の相違、 3箇所に欠損、 1箇所に挿入がある。 リボソーム RN A遺伝 子領域には多数の重複して存在する muNT S 1およびその類似配列の 1つであ ると考えられ、 以下 muNT S 1 V配列と表記する。 また以下において上記に記 載した塩基配列を正方向の塩基配列 (配列番号 3、 muNT S 1 v-F) 、 これ に対して D N A 2重鎖の対となる塩基鎖の 5 ' 側末端から記載される塩基配列を 逆方向の塩基配列 (配列番号 4、 muNTS l v— R) とする。 なお、 上記した mu56— Fは文献に報告されている配列 (配列番号 6) のものを合成によって 得た。 また mu 56— Fの逆向きの配列 (mu56— R) 、 すなわち、 配列番号 5を逐次合成によって得た。
実施例においては以上の配列を使用しているが、 muNTS 1配列と muNT S 1 V配列は AT塩基に富んでいること、 および塩基配列についてもホモロジ一 が高く、 したがって muNTS 1 V配列によって得られた以下実施例の結果は、 muNT S 1配列およびリボソーム R N A遺伝子の非転写スぺ一サ一領域から得 られる muNT S 1類似配列についても同様に得られることは容易に推察される 一方、 これらマウス制御配列を SRひ Sp配列の上流に導入した場合、 その発 現効率が容易に向上するかといえば、 決してそうではなく、 当初その原因は不明 であった。 しかし、 マウス配列の導入について、 鋭意工夫を重ねた結果、 マウス 制御配列の方向性、 ならびにマウス配列と S Rひ S p配列との間に介在させる配 列 (リンカ一配列) によって発現の効率が大きく変化することを発見し、 例えば 配列番号 7から 17に例示されているように、 リンカー配列を鋭意検討した結果 、 きわめて効率の高いリンカ一配列を見いだすことによって、 マウス制御配列の 効果と、 その他の発現高効率化配列との効果とを相乗的に発揮させることが可能 となり本発明を完成したものである。 j . C HO細胞のトランスフエクシヨンと組み換え細胞クローンの分離
育種の方法は、 基本的にはすでに確立している技術の組み合わせである。 トランスフエクシヨンはカルシウム燐酸法あるいはリポフエク夕ミン法によって 行った。
以下にリボフ: クタミン法における工程の例を示すが、 卜ランスフエクシヨン の方法は当該業者であれば知りうる各種の方法で可能であり、 この方法に限定す るものではない。 また、 薬剤選択の条件は発現ベクターや宿主細胞によって、 微 妙に調節する必要があり、 ここで示した条件があらゆる場合に最適とは限らない が、 しかし薬剤選択の条件設定法は当該業者であれば容易に可能であり、 この方 法に限定するものではない。
凍結保存してある ATCCに由来する CHO— K1細胞の凍結ァンプルを融解 し、 細胞を非必須アミノ酸 (NAA)添加 MEM · 10%FBS培地中で培養し て、 母培養を得、 これを 4 X 105個ずつ 6 cm ディッシュに播種し、 ー晚培 養後、 無血清培地 (Opt iMEM、 GibcoBRL) によって培地更新する o ここで別途リポフエク夕ミン (2mg/ml) X 12〃 を含む〇p t iM EM 20 とベクター DNA2 g含む Op t iMEM 200^ と を混合したトランスフエクシヨンカクテルに置換し、 6. 5時間培養後、 血清添 加培地 (ΜΕΜ · 20%FB S) に戻し、 一晩培養後、 さらに血清添加培地で培 地更新し、 さらに一晩培養後、 トリプシン処理して超低温で凍結保存し、 卜ラン スフ: ϋクシヨン済み細胞のストックとする。
薬剤選択を開始するに当たり、 トランスフエクション済み細胞ストツクの 1ァ ンプルを融解し、 細胞浮遊液を調製し、 96穴ゥエルプレートに 100細胞、 3 00細胞、 1000細胞 /200〃 /ゥエルそれぞれ播種する。 薬剤薬剤とし てハイグロマイシンを例にとれば、 600〃g— 1200〃g/mlの存在下で 、 2— 3日毎に薬剤添加培地で培地更新し、 コロニーの形成を検鏡によって確認 する。 コロニーの形成されたゥエルの細胞をトリプシン処理し、 それぞれを 24 穴ゥエルプレートの 3ゥエルずつに播種する。 培養後、 1ゥエルは免疫染色し、 他の 1ゥエルの細胞は予備として凍結保存し、 残った 1ゥエルの細胞を 3. 5 c mディッシュに播種して増殖させる。 この間引き続き薬剤添加培地を使用する。 さらに 3. 5 cmディヅシュの培養上清についてトランスフェリンの濃度と細胞 数を測定し、 トランスフェリン生産性を測定する。
ここで、 選択されたディッシュの細胞は限界希釈法によってクローン分離行程 に入る。 すなわち、 96穴ゥエルプレートに少数細胞を播種し、 コロニ一を形成 させた後、 24穴ゥエルプレート、 3. 5 cmディッシュを経て培養を拡大し、 ここで培養上清のトランスフヱリン濃度と細胞数を測定し、 選択したクローンの 凍結保存を行う。 図面の簡単な説明
図 1は、 SRひ Spプロモーター .ェンハンサ一ならびに転写後制御配列から 転写された mRNA (本図の場合 pK 2 SRaSp/hT f rから転写されたト ランスフェリン mRNA含有 mRNA) について、 mR N Aの配列から理論的に 予測される 5種類 (a、 b、 c、 d、 e) のスプライスパターンを示す。 図 2は、 pcDL— SRひ 296ベクターに由来する SRひプロモータ一、 外来 遺伝子導入部位、 ポリアデニル化シグナル配列を含む断片と、 pKan2ベクタ 一に由来する選択用薬剤耐性遺伝子等を含む断片とを接合し、 さらに外来遺伝子 導入部位に Notlクロ一ニング部位を有する pK 2 SRひ Spベクターを示す。 本図以下全図において、 SRひプロモーター ·ェンハンサー配列をその改変配列 である SRひ (ATG*) 配列で置換した構造を有するプロモーター 'ェンハン サ一配列あるいはベクターは、 それぞれの名称の 'SRひ, の部分が 'SRひ ( ATG*) ' と記載され、 配列上の他の部分は全く同様であるので、 図示を省略 する。
図 3は、 pK2 SRひ Spベクタ一の Notlクローニング部位にヒ ト細胞由来 トランスフェリン cDNA (hT f r) を挿入した p K 2 S Rひ S p/h T f r発 現ベクターを示す。
図 4は、 pK2 SR Spベクタ一中の Sp配列中にあり、 A TG配列と 16 Sスプライスァクセプ夕一配列を含む B amH I断片 (図面 2参照) を削除し、 ここに P s t l、 No t l断点を含むが、 AT G配列と 16 Sスプライスァクセ プ夕一配列を含まなレヽ合成 D N Aリンカ一配列を挿入して短縮した、 変異 S p配 列を有する pK 2 SRひ Sp (Δ 16 S) ベクターを示す。
図 5は、 pK2 SRひ Spベクター中の Sp配列中にある ATG配列を GCA 配列に変換した変異 Sp配列を有する pK2 SRひ Sp (ATG*) ベクタ一を 示す。
図 6は、 pGL 2 SRひベクターおよび pGL 2 SRひ (GG) ベクターの構 築を示す図である。 ホ夕ルルシフェラ一ゼ遺伝子を含む pGL 2— Bベクタ一の ホ夕ルルシフェラーゼ遺伝子の直前に pK 2 SRひ S pベクタ一から切り出した SRひ含有配列を挿入して pGL 2 SRひベクターを構築した。 また、 ホ夕ルル シフエラ一ゼ遺伝子を含む pGL 2— Bベクタ一のホ夕ルルシフヱラ一ゼ遺伝子 の直前に SRひプロモー夕一配列の代わりに SRひ (GG) 配列を挿入して pG L 2 SRa (GG)ベクターを構築した。
図 7は、 pGL2SRひ/ tkpa cベクタ一へのマウスリボソーム RN A遺 伝子非転写スぺ一サー領域由来 DN A配列の導入を示す図である。 pGL 2 SR ひ/ 1 kp a cベクターの SRひプロモ一夕一の上流部位にある Kpnlサイ ト にマウスリボソーム RNA遺伝子非転写スぺーサ一領域由来 DNA配列 (muN TS 1 V配列) をそれそれ正方向 (一 F) および逆方向 (— R) に挿入した。 一 方、 SRひプロモー夕一の上流部位 Kp nlサイ 卜にマウスリボソーム RNA遺 伝子非転写スぺーサー領域由来の短い DN A配列 (mu56配列) を、 これもそ れぞれ正方向 (一 F) および逆方向 (— R) に挿入し、 あわせて 4種のベクタ一 を得た。
本図、 図 8、 図 11、 ならびに図 12において、 t r. Tkp r o. と記載さ れている配列は、 短縮してプロモーター活性を弱めたチミジンキナーゼプロモー 夕一であり、 pu rrと記載されているものはピュー口マイシンァセチルトラン スフエラ一ゼ遺伝子であり、 また Tkp urと記載されているものは、 短縮して プロモーター活性を弱めたチミジンキナーゼプロモーターの直下流にピューロマ イシンァセチルトランスフェラーゼ遺伝子ならびにさらにその直下流にチミジン キナ一ゼ遺伝子のポリアデニル化シグナル配列を接続した配列であって、 本文中 において、 それぞれ tk、 p a cならびに t kp a cと記載されているものと同 じである。
図 8は、 ルシフヱラ一ゼ遺伝子の発現結果を示す図である。 マウスリボソーム R N A遺伝子非転写スぺ一サ一領域由来 D N A配列を挿入した 4種類の p G L 2 SRひ/ TKpurベクター、 と対照とするベクタ一、 すなわち pGL2 SRひ /tkpac;、 pGL 2 SRひ/ 1 kp a c/mu 56— F、 pGL2SRひ/ t kp a c/mu 56— R、 p GL 2 S a/t kp a c/muNT S 1 v-F 、 pGL 2 SRひ/ kp a c/muNT S 1 v— R、 のそれぞれを CHO細胞 に遺伝子導入し、 それぞれについて 5〃g/ml、 7〃g/ml、 9 /g/ml のピュー口マイシンで選択を行ない。 1力月後にそれぞれのベクターを導入した CHO細胞の細胞集団について、 そのルシフヱラーゼ活性を測定した。
図 9は、 pSRァ∑ 1/hTf rベクターの構造およびその制限酵素地図を示 す。
図 10は、 pSRァ Σ Ι/hTf rベクターの hTf r遺伝子を No 11部位 で除去した p SRァ∑ 1ベクタ一の構造を示す。
図 11は、 SRァ∑ 2ZhTf rベクタ一の構築図ならびに作成の手順を示す 図 12は、 pSRァ∑2/hTf rベクターの hTf r遺伝子を No t I部位 で除去した P SRァ∑ 2ベクタ一を示す。 発明を実施するための最良の形態
以下に、 本発明の実施例を記載するが、 本発明は、 これらの実施例に限定される ものではない。
[実施例 1] 発現ベクター pK2 SRaSp/hTf rの構築と該ベクター による形質転換細胞の分離および生産性の評価
pKan 2ベクターを H i ndlll および Sail で切断し、 TKプロモー夕 —に接続されている n e 遺伝子、 TKポリアデニル化シグナル配列 (TK po ly A) およびアンピシリン耐性遺伝子 (Amp を含む断片を分離しておいた 。 つぎに、 pcDL- SRひ 296ベクターを P s t Iおよび Kpnlで切断し、 P s t I/Kpnl 断片を除去 '開環した。 ついで、 別途合成しておいた P s t I /Not I/Kpnlリンカ一配列を該開環部位に接続して閉環させ、 Notl部 位を含む新たなマルチプルクローニングサイ トを導入して、 中間的なベクタ一 ( pcDL-SRa 296' ベクター) を作製した。
つぎに、 pcDL-SRひ 296' ベクタ一を S a 11および H i n d IIIで切 断し、 SRひプロモーター、 S V40後期 mRNAのスプライシングジャンクシ ヨン配列、 マルチプルクロ一ニングサイ ト、 さらにその下流に TK poly Aを含 む断片を得た。 この断片と、 さきに pK an 2ベクターを H i ndlll および S a ll で切断して得たネオマイシン耐性遺伝子 (ne o 、 TK poly Aおよ びアンピシリン耐性遺伝子 (Amp を含む断片とを結合し、 図面 2に示す第 二世代の発現ベクター (pK2 SRひ Spベクタ一と称する) を得た。 該ベクタ —の No t l サイ トに、 ヒト トランスフェリン cDNA (hTf r) を挿入した 発現べクタ一 pK 2 SRa Sp/hT f rを図面 3に示すが、 hTf r以外の外 来遺伝子を導入することも可能であることはいうまでもない。
発現べクタ一 pK 2 SR« S p/hT f rを CHO細胞にトランスフエクショ ンし、 G4 18選択により、 組換え CHO細胞クローン 24個を得た。 これらの クローンのうち、 抗体染色法によって、 トランスフェリン発現を確認したクロー ンは 8個 (33%) 、 培養上清への最大の発現量を示したクローン (C l# l— 23) の発現量は、 1. 6〃g/l 06細胞 Zdayであった。
[実施例 2] pK2 SRaSp (Δ 16 S) ベクターならびに pK 2 SRひ Sp (ATG*) ベクターの構築と転写活性測定
転写後の mRN Aの翻訳効率を最適化した配列をベクター内に構築するために 、 まず pK2 SR«Spを BamHI で切断して、 両端に BamHI 部位をもち 、 上流の ATGおよび 16 Sァクセプ夕一配列を含む断片を除去した後、 閉環し て、 上流の ATG、 16 Sァクセプ夕一配列およびその近傍の配列を欠如させた ベクタ一 (pK2 SRひ Sp (Δ16 S) ベクタ一) を構築した (図面 4) 。 一 方、 上記にある両端に B amHI 部位をもち、 上流の A T G配列および 16 Sァ クセプ夕一配列を含む断片中に含まれる AT G配列を GC A配列に変更した断片 を化学合成し、 この断片を、 pK2 SRひ Sp (Δ 16 S) の BamHI 部位に 挿入して閉環し、 pK 2 SRひ Spベクタ一の上流の ATGが GCAに変更さ れたベクター (pK2 SRひ Sp (ATG*) と称する) を構築した (図面 5) これら変異型発現べク夕一の転写活性を測定するために、 レポ一夕一遺伝子と してホ夕ルルシフヱラーゼ遺伝子を使用した。 これらのベクター DN Aの改変領 域の配列は自動 DNAシークェンサ一 (八81社377型) で確認した。
ルシフェラ一ゼ遺伝子を含む 3種類の発現べクタ一 (pK 2 SRひ S p/f L uc、 pK 2 SRaSp (AT G*) /f L u c、 pK2 SRaSp (Δ 16 S ) /f Lu c) それぞれの DNAは、 以下のようにして構築した。 まず、 pK2 SRひ Spベクターをその外来遺伝子挿入部位にある No t I 部位において切断 し、 末端を平滑化した。 一方、 ホ夕ルルシフヱラーゼ遺伝子を含むカセットべク 夕一 (PGV—CS— 2、 東洋インキ) を S a il および No t I で切断して、 ホ夕ルルシフェラ一ゼ遺伝子を含む断片を切りだし、 その末端を平滑化した。 こ のようにして得た 2つのベクターの断片を結合して閉環し、 挿入部位における配 列の方向性を確認して、 ホ夕ルルシフヱラーゼ遺伝子を含む pK 2 SRひ Spベ クタ一すなわち pK 2 SRひ Sp/f Lu cを得た。 pK2 SRひ Spベクター の代わりに、 pK2 SRひ Sp (ATG*) ベクターおよび p K 2 S Rひ S p ( △16 S) ベクタ一を用い、 同様にしてそれぞれ pK 2 SRひ Sp (ATG*) /f Lu cベクタ一および pK 2 SRひ Sp (A16 S) ノ f Lu cベクターを 得た。 これらのベクターは、 それぞれ、 キアジェンチップ (Q i agen) で精 製し、 またはキアジェンチップで精製した DNAを、 さらに、 セシウムクロライ ド密度勾配超遠心法で最終精製した DN Aを用いた。 これら精製した発現べクタ 一 DNAのそれぞれを、 ゥミシィタケルシフェラ一ゼ遺伝子を発現するベクター PRL-SV4 ODNA (P r ome ga) とともに C H 0細胞に導入した。 遺 伝子導入はリボフェク夕ミン試薬 (G i b c oBRL社) を使い、 添付のプロト コールにしたがい行った。 遺伝子導入後、 デュアルルシフェラ一ゼアツセィで、 それぞれのルシフェラ一ゼ活性を、 対照とする pK 2 SRひ Sp/f Lucのそ れと比較した。 デュアルルシフェラーゼアツセィは、 Dua l— Lu c i f er a s e Rep o r t e r As s ay S ys t em (P r ome ga) を用 い、 添付の方法にしたがって行った。
48時間後に、 ルシフェラ一ゼ活性をルミノメーターで測定した。 9回行った 実験結果をまとめ、 表 1に示す。 対照の pK 2 SRひ S p/f Lu cのルシフエ ラ一ゼ活性を 1とすると、 PK2 SRひ Sp (Δ 16 S) /f Lu cの活性はそ の 1. 2倍以上、 pK2 SRひ Sp (ATG*) /f L u cの活性はその 1. 4 倍以上であり、 ともに有意に活性が高いことが明らかである。 かくして、 SRひ 配列に新規な 2種類の転写後制御配列のいずれかを接続した場合にも、 S p配列 を接続した場合に比較して、 一過性発現における外来遺伝子の翻訳効率が向上さ れることが実証された。 表 1 ベクタ一に依存したルシフェラ一ゼ遺伝子の発現効率の比較(n=6) ベクター 測定値 土 標準誤差 (対 SRひ比)
PK2SRひ Sp/fLuc 1
pK2SR«Sp(A16S)/fLuc 1.24 土 0.11
pK2SRaSp(ATG*)/fLuc 1.45 ± 0.17
[実施例 3] ベント特性を変更したベクタ一 (pGLSRひ (GG) ) の構 築と転写活性測定
SRひプロモー夕一に含まれる S V40プロモーター中の一部の塩基配列 (図 面 6の wild type) の囲みで示される T Tを G Gに変換した S Rひプロモー夕一 変異体を作製した (SRひ (GG) プロモ一夕一) 。 SHひプロモー夕一あるい は SRひ (GG) プロモーター を、 Ps t lと Cl a Iで切り出して、 ルシフ エラーゼ遺伝子をレポ一夕一遺伝子とした p GL 2ベクターの X ho I部位に挿 入し、 2種類の発現ベクター pGL 2 SRひ、 および pGL2 SRひ (GG) を 作製した (図面 6) 。
ゥミホ夕ルルシフェラーゼ遺伝子を含む pRL— S V40ベクターをデュアル ルシフヱラーゼアツセィ法のための対照標準べク夕一とし、 上記発現べクタ一の 各々と対照ベクターとを CH0細胞に同時にコトランスフエクシヨンした後、 デ ユアルルシフェラ一ゼアツセィでルシフェラ一ゼ活性を測定し、 各々のテストプ 口モーターの活性を解析した。 1サンプル当たり 6回の一過性発現実験を行い、 平均値と標準誤差値を求めた。 結果を表 2に示す。 表 2 ベクターに依存したルシフェラ一ゼ遺伝子の発現効率の比較 ( n=6 ) 測定値 土 標準誤差 対 SRひ比 pGL2SRa/fLuc 22.5 ± 0.51 1.00
pGL2SRa(GG)/fLuc 32.0 士 0.67 1.42
表 2から、 pGL2SRひ (GG) を導入した CH0細胞は、 pGL2SRひ を導入した細胞の 1. 4倍以上のルシフヱラーゼ活性を示すことが明らかである なお、 S V40プロモー夕一のみを有する pGL 2— P (プロメガ社) を用い た場合は、 その活性は、 pGL2— SRひの 1/50以下、 pGL2— SRひ ( GG) の 1/80以下であった。 すでに SV40プロモーターに GG塩基置換を 導入した場合には、 S V40プロモーター ·ェンハンサ一を用いた場合に比較し て、 mRNAの転写量を約 2倍に上げることが報告されているが (Pauly, M. et al.,1992. Nucl. Acids Res., 20, 975-982 )、 驚くべきことに、 タンパク発現 量が、 S V40プロモ一夕一 ·ェンハンサ一に対して、 40倍に向上している S Rひプロモ一夕一(Takebe Υ·, et al.,1988. Mol. Cell Biol. 8: 466-472) に 対しても、 SRひプロモーター内の上記部位 TT塩基を GG塩基に置換すること で、 転写量向上能が相殺されることなく、 遺伝子発現を活性化する効果があるこ とを、 最終産物としてのルシフェラーゼの活性向上によって示したものである。
[実施例 4] マウス由来配列をプロモー夕一 ·ェンハンサー上流に導入した ベクタ一における発現特性
( 1) ベクタ一の構築と細胞へのトランスフエクシヨン
SRひプロモーターの下流にホ夕ル ·ルシフェラ一ゼ遺伝子を連結させ、 さら に別に導入細胞がピューロマイシンによって選択されるようにチミジンキナーゼ 遺伝子のプロモーター配列の一部で、 該配列を E c oR 1制限酵素で切断して、 該配列の上流域にある Sp 1配列の一部を切除して短縮した配列 (tr.TK proあ るいは t k) 、 薬剤耐性遺伝子としてピューロマイシン— N—ァセチルトランス フェラ一ゼ遺伝子 (pac) 、 さらにその末端に TK polyAをその順序で配置した ベクタ一 PGL 2 SRひ/ t kpac (あるいは p S Rひ∑ 0ベクタ一と称する ) を構築した (図面 7) 。 さらに pGL 2 SRひ/ 1 kpacに以下のマウス由 来の配列を以下の要領で挿入した。 すなわち、 We gn e rらの報告にあるマ ウス DNA配列 (muNTS l配列) の両端 3 1塩基をそれぞれ合成し、 PCR法 によってマウス DNAから類似する配列を合成し、 これを muNTS 1 v配列と した。 さらに Wegnerらの報告にある muNTS 1配列のうち、 ATに富んだ 5 6塩基対 (muNT S 1の 48番目の塩基対から 103番目の塩基対まで) の配 列 (mu配列) を、 逐次合成によって得た。 ここで、 pGL 2 SRひ/ t kpa cベクターの SRひプロモーターの上流部位にある Kpnlサイ トにマウスリボ ソーム RN Α遺伝子非転写スぺ一サー領域由来 DN Α配列 (muNT S 1 v配列 ) をそれぞれ正方向 (一 F) および逆方向 (― R) に、 あるいはマウスリポソ一 ム RNA遺伝子非転写スぺーサ一領域由来の短い DNA配列 (mu 56配列) を 、 これもそれぞれ正方向 (― F) および逆方向 (― R) に挿入し、 あわせて 4種 のべクタ一を得た。 これらを、 それぞれ、 pGL 2 SRひ/ 1 kp a c/muN TS l v— F、 pGL 2 S a/t kpa c/muNT S 1 v-RN pGL 2 SRa/t kp a c/mu 56— F、 pGL 2 SRa/t kp a c/mu 5 6— R、 あるいはそれぞれ pSRo:∑0vf34/fLuc、 pSRひ∑0vr34/fLuc、 pSRひ∑ 0tf34/fLuc、 pSRひ∑0tr41/fLucと称する (図面 7、 表 5、 表 6) 。 ここで 33 あるいは 34のような数字は、 SRひプロモー夕一 ·ェンハンサ一配列とマウス 制御配列との間に介在しているリンカ一配列の塩基数であり、 その配列はそれぞ れ配列番号 7ならびに配列番号 8に示す通りである。
以上 4つのホ夕ル ·ルシフェラーゼ発現べクタ一を、 リポフエク夕ミン法によ つて CH0細胞に遺伝子導入し、 それぞれ 5 /g/ml、 7〃g/ml、 ug /mlのピュー口マイシンで選択を行なった。 1力月後にそれぞれのベクタ一を 導入した C H 0細胞の細胞集団について、 そのルシフェラ—ゼ活性を測定した。 一方、 薬剤で選択された各々の発現ベクター導入 C H 0細胞より細胞クローンを 単離し、 各々のクローンについてルシフェラーゼ活性を測定し、 その値をクロ一 ンレベルのルシフヱラ一ゼ活性値として定義した。
( 2 ) 発現量の測定
細胞集団レベルで各ベクターを導入した CH0細胞についてのルシフェラーゼ 活性は、 マウス由来配列 (muNTS l v) およびその部分配列を含まない対照 ベクター (pGL 2 SRa/TKpur) を導入した C HO細胞、 および 56塩 基対のオリゴマーを順方向に含む pGL 2 SRひ/ 1 kp a cZmu 56— F ( または p SRひ∑ 0 t f 41/f Lu c) を導入した C HO細胞の両者では、 ピ ユーロマイシンの濃度のいかなる濃度においてもルシフェラーゼ活性に変化がほ とんど見られなかった (図面 8) 。 一方、 56塩基対のオリゴマーを反対方向に 含む PGL 2 SRひ/ t kpa c/mu 56— R (または pSRひ∑ 0 t r41 /f Lu c) 、 フルサイズの muNT S 1 v配列を双方向に含むそれぞれ pGL 2 SRひ/ 1 kp a c/muNT S 1 v-F (または pSRひ∑ 0vf 34/f Luc) と p GL 2 SRひ t kp a c/muNT S 1 v— R (または pSRひ ∑ 0vr 34/f Luc) の各べクタ一を導入した C H〇細胞においては、 ピュ —ロマイシンの濃度に依存して、 ルシフェラ一ゼ活性が著しく高まった (図面 8 ) 。 これら挿入配列を含まない対照ベクターにおける発現との比は、 低濃度のピ ユーロマイン添加群 (5〃g/ml) では差は認められないが、 高濃度添加群 ( 9 μ. g/m 1 ) では 50倍以上の差が認められた。
これらの結果は、 薬剤で選択された各々の発現ベクター導入 CHO細胞から分 離した細胞クローンにおけるルシフェラーゼ発現量の測定からも裏付けられた。 各々の薬剤の濃度で分離された細胞クローンにおけるルシフェラ一ゼ発現量は一 定ではなく、 大きな巾が認められ、 発現効率がベクターの構造以外の要因、 たと えば染色体上にべクタ一が組込まれる位置など、 の影響を受けることが推定され る。 しかしいずれにせよ、 平均値についていえば、 pGL 2 SRひ/ 1 kp a c /mu 56— R (または pSRひ∑ 0 t r 34ノ: f Luc) 、 pGL 2 SRa/ t kp a c/muNT S 1 v-F (または pSRひ∑ 0vf 34/f Luc) 、 および pGL 2 SRa/t kp a c/muNT S 1 v-R (または p SRひ ∑ 0 vr 34/f Luc) の各ベクターを導入した C H 0細胞においては、 ビュー口 マイシン 5〃 g/m 1および 7 g/m 1添加群に比較して、 9 g/m 1添加 群で顕著に高い生産量を示すクローンが得られ、 また、 pGL 2 SRひ/ t kp a c/mu 56 -F (または p S Rひ∑ 0 t f 34/f L u c ) を導入した群で は、 ピュー口マイシンの濃度をいかなる濃度においても高いルシフェラ一ゼ活性 を示すクローンがえられず、 細胞集団での実験結果と個々のクローンにおける実 験結果とが対応するものであることが証明された。
[実施例 5] 統合型ダイシストロニックべクタ一 p SRァ∑ 1ベクタ一の構築 と組み換え C H 0細胞の発現能評価
( 1 ) ベクタ一の構築
pK 2 S a S p (ATG*) ベクタ一、 SRひ配列の塩基置換体 (SRひ ( GG) ) 、 及び I RE S配列その他必要な配列を組込んだ統合べクタ一 (p SR ァ∑ 1、図面 1 0) は以下のようにして構築した。
先ず pcDL- SRa 2 9 6ベクターの P s t I/Kpn lサイ 卜に P s t I/N o t l/Sp e l/Nhe l/Kpn l リンカ一を挿入したベクター (pcDL- SRひ 1 a) を構築し、 C 1 a I/N o t I酵素で消化して得られる 3 k b pの断片を 精製した。 一方、 PK 2 SRひ (GG) ベクターを錡型 DNAとして C 1 a I /P vu Iサイ トを含むプライマーを使って増幅し、 この増幅断片を C 1 a 1/ Pvu Iで消化してできる 3 6 0 bp (SRひ配列の塩基置換部分を含む) の断 片を精製した。 さらに一方で、 pK 2 SRひ S p (ATG*) ベクタ一 DNA を Pvu l/No t Iで消化してできる 4 5 0 bp ( S p配列中の G C A配列の 塩基置換部分を含む) の断片を精製した。
これら 3種類の断片を同時に接合させて環状化し、 中間的なベクター (p cD L— SRァと称する) を構築した。 p cD L— SRァを Nhe I/Kpn Iで切 断し、 別途用意しておいた Nh e I末端を 5 ' 側に持ち Kpn l末端を 3 ' 側に 持つハイグロマイシン耐性遺伝子を組込んだ。 次にこのべクタ一を Nhe Iで消 化して両末端に Nh e Iサイ トを有する I RE S配列を組込んだ。 このように構 築したベクタ一を p SRァ∑ 1と称する。 最後に No t I末端を有するトランス フェリン遺伝子を No t Iサイ トに組込んだ統合ダイシストロニックベクター ( p SRァ Σ Ι/hT f r) を構築した (図面 9) 。 ここで p SRァ∑ l hTf rベクターを構築する過程で各遺伝子あるいは DNA断片を組込む度に組込まれ た方向と D N A配列に変異がないかどうかは制限酵素マップぉよび一部 D N A配 列によって確認している。 なお、 このような配列構造を有するベクターの構築方 法は、 必ずしも上記にある方法でなくともよく、 さまざまな方法があることは当 該業者であれば知りうることであり、 本発明を限定するものではない。
(2) ベクタ一の機能確認
精製した p SRァ∑ 1/hT f rベクター DNAを C HO細胞に導入してハイ グロマイシンを含む培地で 14日間培養した。 ダイシストロニックベクター (p I RE S 1 hy g) と C H 0細胞との組み合わせにおいては 600〃gZmlの ハイグロマイシンの濃度が適切であるとの報告を参考として (Gurtu, V. et al. ,1996. Biochem. Biophys. Res. Co腿 un. 229:295-298) 、 暫定的に 600 /g/m 1のハイグロマイシンを使用した。
結果、 pSRァ∑ 1/hT f rベクタ一 DNAを導入した細胞群では大小多数 のコロニーが現れ、 対象とする p SRァ∑ 1/hT f rベクター DNAを除いた 溶液を導入した細胞群では、 薬剤耐性コロニーは全く見られなかった。 また無処 理の CHO細胞をハイグロマイシンを含む培地で培養しても薬剤耐性コロニーは 全く見られなかった。
この結果より、 導入した pSRァ∑ 1/hT f rベクタ一 DN Aのみからハイ グロマイシン耐性遺伝子が発現し、 本来ハイグロマイシンに感受性である C H〇 細胞に耐性を付与していることが明かとなり、 ダイシストロニヅク mRNAが転 写され、 I RE S配列以下にある薬剤耐性遺伝子が薬剤による選択による選択に 耐える量発現していることが示された。
ダイシストロニック RNAの転写をさらに検証するために、 p SRァ∑ 1/h T f rベクタ一 DNAを導入して得られたハイグロマイシン耐性コロニー、 pK 2 SRaSp/hTf rベクタ一によって前述のように樹立したトランスフェリ ン生産細胞株 r CH0# 1— 23、 及び本来トランスフェリンを生産している H epG 2細胞からそれぞれ全 RN Aを精製し、 トランスフェリン c D N Aをプロ —ブとしてノーザンブロヅトを行った。
ノーザン解析では予想通り、 HepG2では約 2. 4kbに、 r C H〇 # 1— 23では約 3 kbにバンドが検出された。 このとき p SRァ∑ 1/hT f rぺク 夕一 DNAを導入して得られたコロニー由来の全 RNA中には約 4 kbのバンド が検出されていることから、 トランスフェリン遺伝子含有 mRNAが転写されて いることが明らかとなった。 さらに同じ RNAサンプルを使ったブロッ トに対し て P CR法で増幅したハイグロマイシン遺伝子断片プロ一ブをハイプリダイズさ せると pSRァ Σ Ι/hTf rベクター DN Aを導入して得られたコロニー由来 の全 RN A中にのみ約 4 kbのバンドが検出された。
以上の結果から、 p SRァ∑ l/hTf rベクター DNAを導入して得られた コロニーのノーザン解析で見られた約 4 kbのバンドはトランスフェリンとハイ グロマインシ両遺伝子の転写物よりなるダイシスト口ニック mRNAであること を確認した。
(3) ハイグロマイシンの適性濃度の検討
Gu r t uらは、 ダイシストロニックべクタ一 (p I RE S 1 hy g) と CH 0細胞との組み合わせで、 600〃g/mlのハイグロマイシンの濃度を適切と している(Gurtu, V. et al.,1996. Biochem. Biophys. Res. Commun. 229:295-2 98)。 その際、 薬剤で選択された細胞のすべてが外来遺伝子を発現していると報 告している。 我々の実験結果では、 600 /g/mlのハイグロマイシン濃度で 選択した場合、 トランスフェリン発現細胞は 100%には達しなかった。 そこで 改めてハイグロマイシンの至適濃度を求めるため、 300、 600、 800、 1 000、 1200、 1500〃g/mlの各濃度でコロニー形成率とトランスフ エリン生産コロニーの比率を測定した。
その結果、 300〃g/ml以上のすべての濃度で、 トランスフエクシヨンし なかったディッシュではコロニーは出現しなかったが、 トラスフエクシヨンした ディッシュでのトランスフェリン陽性のコロニーの比率は 60 0〃g/mlで 3
0— 7 0%、 8 0 0〃g/mlで 6 0— 8 0%で、 それ以上の濃度ではあまり変 わらず、 結局すベての濃度で 1 00%には達しなかった。 一方、 コロニー形成率 は 1 0 0 0〃g/ml以上で減少した。 この結果から 6 0 0乃至 8 0 Ojug/m 1での選択条件を採用した。
Gu r t uらと我々の結果の相違は、 Gur t uらが細胞集団を直接染色する 方法で頻度を求めているのに対し、 我々はコロニーを増殖させて、 コロニー単位 での頻度を求めていることに起因することが考えられる。
(4) トランスフェリン生産細胞の組換え育種
以上のような条件検討の上で行った P SRァ∑ lZhT f rベクタ一によるト ランスフェリン生産細胞の組換え育種の何回かの実験の結果を集計して、 表 3に まとめて表記した。 ここで、 実施例 1に触れた pK 2 SRひ/ hT f rによる組 換え育種のデータを付記して比較している。 表 3にあるように、 薬剤によって選 択して得たクローン中のトランスフェリンを生産するクローンの頻度は p SRァ ∑ 1/hTf rによる育種の場合 7 0%に達し、 pK 2 SRひ/ hT f rが 3 0 %程度であることに比較して、 倍以上高いことが示された。
一方生産量については、 クローン間に相当のばらつきがあるが、 実施例 1にお いて pK 2 SRa/hT f rベクタ一によって得られ、 トランスフェリン発現を 確認したクローン 8個のうち、 培養上清への最大の発現量を示したクローン (C 1 # 1— 23) の発現量が、 1. 6〃gZl 06細胞/ dayであったのに比較 し、 本実施例で得られたクローンのなかでの最大の発現量を示したクローン (C
4— 1 ) は、 その約 2倍に達した。 この結果は、 統合型ベクター p SR ァ∑ 1 /h T f rにおける S p配列の塩基置換、 S Rひ配列の塩基置換、 および
1 RE S配列導入のすべての組み合わせが相乗的に働き、 高い発現効率とクロー ン分離効率を生みだしたものであることを実証したものである。 なお、 本実施例 はヒト トランスフェリン c DN Aの生産性を評価指標とし、 CHO細胞を組換え 宿主として実施したが、 ヒト トランスフェリンにかぎらず、 他の多くのタンパク 質べプチドに対しても、 また C H 0細胞以外の多くの培養動物細胞に対しても、 この結果が適用できる可能性が高いことは、 当該業者であれば容易に想像できる ことである。 表 3
pK 2 SRa/hT f rならびに p SRァ∑ 1/hT f rによる
C HO細胞の組換え効率 へ、、クタ- pK2SRa/hTfr pSRァ ΣΙ/hTfr pSRァ ΣΙ/hTfr 薬剤 G418 Hygromycin Hygromycin
400 zg/ml 600 /g/ml 800/ g/ml hTrf陽性コロ二- 8/24=33% 9/13=69% 16/22=73% の頻度
[実施例 6] 統合型ダイシスト口ニックべクタ一 p SRァ∑ 2ベクターの構 築と組み換え C H◦細胞の外来遺伝子発現能評価
(1)統合べクタ一の構築
p SRァ∑ 1/ベクタ一から p SRァ∑ 2 /ベクタ一は以下のようにして構築 した。 即ち、 pSRァ Σ Ι/hTf rベクターの SRひ (GG) Sp (ATG* ) 、 hTf r、 IRES, H y g Γおよび P o 1 y Aシグナル配列を含む約 5 k bpの S a II制限酵素断片に、 ベクタ一 pGL 2— Bから得た S a cl断点を 含む Sail— Xhol断片をつなぎ、 中間的なベクタ一 pSRァ∑ 1' /hT f rを得た。 つぎに、 さきに構築したマウス制御配列 (muNTS lv) を正方 向に含む pGL 2 SRひ/ 1 kp a c/muNT S 1 v— Fベクタ一 (または p SRa∑0vf34/f Lu c) を制限酵素 B a mH 1を用いて切断し、 末端を平滑化 しておき、 一方、 さらに Sac iを用いて、 短縮した TKプロモーター配列 (t k) とその下流に配置したピュ一口マイシン N—ァセチルトランスフェラーゼ遺 伝子 (pac) 、 さらにその下流にチミジンキナーゼデリアデニル化シグナル配 列、 およびマウス由来配列 (muNT S 1 v_F配列) を含む約 5kbpの断片 を切り取った。
ここで、 さきに得た SRa (GG) ほかの配列を含む p SRy∑ 1, を S a l Iで切断し、 断点を平滑化しておき、 さらに S a clで切断して得た SRひ (G G) S p (ATG*) 、 hTf r、 I ES, 11 ^ぉょび? 01 yAシグナ ルを含む pSRァ∑ 1/hTf rベクタ一の基本部分を含む断片と、 一方で上記 のようにして得たマウス由来配列 (muNT S 1 V— F配列) 等を含む約 5 kb Pの断片とをつなぎ合わせ、 最終的に短縮した TKプロモーター配列 (t k) と その下流に配置したピューロマイシン N—ァセチルトランスフェラーゼ遺伝子 ( p a c) s TKポリ Aシグナル配列、 およびマウス由来 muNT S 1 V— F配列 のすベてを含む統合型の発現ベクター pSRァ∑ 2/hTf rを構築した (図面 1 1、 12) o
なお、 本ベクターの構築にあたっては、 ヒトトランスフェリン cDNAがすで に組込まれた P SRァ∑ 1/hT f rを出発材料としているが、 構築された p S Rァ∑ 2/hT f rからトランスフェリン遺伝子 cDNAを除去し、 他の外来遺 伝子を導入することは制限酵素 No 11の断点を利用することによって容易に可 能であり、 p SRァ∑ 2の製作法はここに述べた方法に限らない。
(2)統合べクタ一の CHO細胞への導入とトランスフヱリンの発現評価 p SRァ∑ 2ZhT f rを CH0細胞にトランスフエクトし、 96穴のゥエル プレートに、 1ゥエル当たり 2000、 10000、 50000個播種した後、 2週間ピューロマイシン (7 / /1111または9〃 ノ1111 ) 添加培地で選択し た。 さらに選択薬剤をハイグロマイシン ( 600/ g/ml) に代えて選択を続 け、 あわせて 4週間の後に 67個の一次クロ一ンを得た。 この一次クローンのう ち抗体染色法により トランスフェリン生産クローンであることが確認されたもの が 50個 (75%) 、 非生産細胞であることが確認されたものが 17個 (25% ) であった。 さらに 50個のトランスフェリン生産クローンについて、 培養上清 に分泌されるトランスフェリンを定量した。 これらのクローンから、 当初の対照 標準である pK2 SRひ Spノ hTf rで組換えた標準組換え CH〇細胞クロー ンのうちで入手した範囲でもっとも生産性の高かったクローン (c 1# 1 _23 、 生産性 1. 6〃g/106細胞ノ日) よりさらに生産性の高いクローンが 21 個得られた。 この結果は p ァ∑ 2/hTf rベクターをトランスフエクト することによつて得た組み換え C H 0細胞が、 標準組み換えべク夕一 p K 2 S R α/hTf rで組換えた CHO細胞よりもさらに高い生産性を示すものであるこ とを明らかにしたものである。 また、 本結果と実施例 4の結果とを総合すると、 p SRァ∑ 2に含まれている muNT S 1 v— F配列を、 muNT S 1 v— R配 列、 mu 56— R配列、 および類似の配列あるいはその断片によって置換したベ クタ一によっても高発現が得られることは容易に示唆される。
[実施例 7] SRひ Sp配列を含む各種べクタ一から転写される転写 RNAの 構造ならびに転写量解析
SRひ Sp配列を含むベクターから転写される転写 RNAの最上流にコアプロ モー夕一に直結する AT G配列を含むものが存在するかどうかを確認するために 、 常法に従いプライマ一伸長法によって mRN Aの 5' 末端の塩基を解析した。 その結果、 報告されているように (Takebe, Y. et al.(1988) Mol. Cell Biol. 8:466-472) 、 大部分の mRNAの 5, 末端はコアプロモー夕一から 20乃至 2 5塩基下流の部位から転写が開始されていることが確認された。 しかしながら、 極めてわずかではあるが、 コアプロモーターに直結する ATG配列を 5' 末端と する mRN Aの存在が検出された。
上記にある解析の結果から示唆されるような転写後 mR N Aの翻訳効率が最上 流にある AT Gによって抑制される可能性を排除するために、 pK2 SRひ Sp
(ATG) の SRひコアプロモータ一領域 (5, T AT T T AT 3 ' ) の下流に 直結する G塩基を C塩基に置換した配列 (pK2 SRひ (ATG*) S p) 、 な らびに PK2 SRひ Sp (ATG*) における対応する配列を同様に C塩基に置 換した配列 (pK2 SRひ (ATG*) Sp (ATG*) ) をそれぞれ常法に従 つて作成し、 さらにこれらの配列の下流にホ夕ルルシフェラーゼ遺伝子を結合し たベクターを実施例 2と同様な方法により作成した (それぞれ pK2 SRひ Sp /Luc, K 2 SRa (ATG*) Sp/L c, ならびに pK2 SRひ (A TG*) S p (ATG*) /Lucとする) 。
一方、 このようにして転写される mRN Aの量をホ夕ルルシフェラーゼ遺伝子 D N Aをプロ一ブとしてノーザン解析によって測定したところ、 対照標準とした GAPDHの mRNAについて、 この 3者になんらバンドの濃度に差異を認めな かったにも関わらず、 ホ夕ルルシフェラーゼ mRNAについては、 pK2 SRひ
(ATG*) S p (ATG*) ZLu cにおいて、 p K 2 S Rひ S p/L u c、 ならびに pK2 SRひ Sp (ATG*) /L u cのそれぞれと比較して少なくと も 2倍程度の増量が認められた。
[実施例 8] pK2 SRひ S p配列、 pK2 SR«Sp (ATG*) 配列中の SRひコアプロモーター領域 (5, TATTTAT 3' ) の下流に直結する G塩 基を C塩基にそれぞれ置換した配列の構築と、 ルシフェラ一ゼアツセィ系による その発現特性の解析
さらに、 実施例 2に記載のように、 これらレポーター遺伝子を導入したベクタ —と、 ゥミシィタケルシフェラ一ゼ遺伝子を発現するベクター DNA (pRL- S V40) とを同時に CHO細胞に導入し、 デュアルルシフェラ一ゼアツセィ法 によって、 レポ一夕一遺伝子の発現を測定した (表 4) 。 表 4
S Rひプロモー夕一直下流 A T Gの変更の外来遺伝子
(ルシフヱラ一ゼ) の発現効率に与える効果 (n=3) 測定値 (対 SRひ平均値) pK2SRctSp/fLuc 1
pK2SRaSp(ATG*)/fLuc 1.35
pK2SR« (ATG*)Sp(ATG*)/fLuc 1.61
この結果から、 コアプロモ一夕一に直結する AT G配列の変更は、 極めてわず かに含まれるこの配列を 5 ' 末端とする mRNAの干渉による発現抑制を解除す る効果もあるかもしれないが、 より大きくは、 配列の変更がもたらすプロモー夕 一活性の向上にあることが示唆された。 この ATG配列の変更によるプロモー夕 一活性の向上は本実施例によって始めて明かにされたものである。
[実施例 9] SRひならびに SRァプロモーター ·ェンハンサ一領域上流部位 における制御配列の機能発現におよぼすスぺ一サ一配列の効果
SRひ Sp配列の上流に muNT S 1 v配列ならびに mu56配列をそれぞれ 順方向ならびに逆方向に挿入したルシフェラ一ゼ発現べクタ一を、 それぞれ CH 〇細胞に導入し、 ピューロマイシンで選択した場合の、 ルシフェラーゼ発現の比 較については、 すでに実施例 4に述べた通りであり、 また図面 8に示す通りであ つて、 muNTS l v— F、 muN T S 1 v— Rならびに mu 56— R配列を導 入した場合にのみ、 それぞれ程度に差はあるが、 ルシフェラーゼ活性の向上を認 める一方、 mu 56— F配列を導入した場合、 ならびになにも導入しなかった場 合には、 ビューロマイシンによる選択ではまったく発現の向上を認めなかった。 この結果から、 発現効率の向上は、 使用したマウス制御配列の種類、 方向性が関 与することが明らかとなった。 つぎに、 マウス制御配列を p SRァ∑ 1ベクター の SRァ配列の上流に導入したベクタ一、 すなわち p SRァ∑ 2ベクタ一を構築 し、 外来遺伝子としてヒト トランスフェリン cDNAを導入して測定したところ 、 実施例 6に示すように、 確かに pK 2 SRひ Spベクターと比較して発現効率 は高まっているものの、 実施例 4から期待されたほどの相乗効果は認められなか つた。
p SRァ∑ 2ベクターにおいては、 SRひ配列も、 また Sp配列もそれぞれ変 更されているため、 変更された配列 (すなわち SRひ (GG) Sp (ATG*) 配列) に加えて、 マウス配列が発現効率の向上に相乗的に働いているかどうかを 確認する必要がある。 そこで、 あらたにホ夕ルルシフェラ一ゼ遺伝子をネオマイ シン耐性遺伝子による選択系によって導入して持続的に発現させた C H 0細胞を 育種してこれを宿主細胞とし、 この宿主細胞に、 ゥミシィタケルシフェラ一ゼを レポーター遺伝子とし、 ピューロマイシン耐性遺伝子による選択系を有する発現 ベクタ一を導入して、 ピューロマイシンによって持続発現細胞を選択し、 ホ夕ル ルシフェラ一ゼとゥミシィタケルシフェラ一ゼの活性を測定することにより、 持 続発現系における発現効率を定量する系を構築した。
ここで、 ホ夕ルルシフェラーゼを安定に発現する宿主細胞 (CHO/f Luc と称する) の育種には、 pK 2 SRひベクターを用いて、 ネオマインシにより選 択し、 発現が長期継代培養によっても安定に維持されていることはあらかじめ確
¾じ、しプこ ο W 0 /
53 このような準備をした後、 p SRァ∑ 2ベクタ一ならびに p SRァ∑ 2ベクタ 一から muNT S 1 v— F配列を除去したベクターにそれぞれ外来遺伝子として ゥミシィタケルシフェラーゼを導入したベクタ一 (それぞれ p SRァ∑ 2 vf 6 2/r Lu cならびに p SRァ∑ 2 ** 62/r Lu cと称する) を構築し、 そ れぞれを CHO/f Luc細胞に導入して、 1日間培養した後、 各群につき、 3 . 5 cmディッシュ 12枚にそれぞれ 2 X 106個づつの細胞を播種し、 ピュー ロマイシン (7. 5j g/ml) の存在下で 4週間培養し、 その後デュアルルシ フェラ一ゼアツセィを行って、 ホ夕ルルシフエラ一ゼ活性に対するゥミシィタケ ルシフェラ一ゼ活性の比をもって導入された外来遺伝子の発現効率の指標とした 表 7 (上段 2行) にその結果を示す通り、 p SRァ∑ 2 vf 62においては、 p SRァ∑ 2** 62の約 2倍の活性を示しており、 muNT S 1 v— F配列の 導入が、 たしかに SRひ Sp配列の構造修正 (すなわち SRひ (GG) Sp (A TG*) ) と相乗的に働いていることが示された。 しかしながら、 すでに実施例 4に示されているように、 その相乗効果は、 実施例 6で期待されたほど大きくな かったことが確認された。
そこで、 マウス制御配列の効果と S Rひ S p配列の構造改変による効果とが相 乗的に発揮される条件を鋭意検討した実験の中で、 マウス制御配列と S aSp 配列との間に介在する配列がきわめて大きな役割を果たしていることを明らかと した。 すなわち、 p SRァ∑ 2ベクタ一における muNT S 1 V— F配列と SR ひ (GG) S p (AT G*) 配列の間には、 主に pBR 322に由来する 62塩 基の配列 (L b 62として配列番号 10に表示) が存在するが、 この配列は、 さ きに実施例 6において、 SRo: S pプロモー夕一 ·ェンハンサ一を含むベクタ一 に対して muNT S 1 v— Fを導入した時の介在配列が塩基数 34 (L a 34と して塩基配列 8に表示) と塩基数においても、 また配列内容においても異なって いることに注目し、 さまざまな塩基数ならびに配列構成のリンカ一配列を合成し て、 muNT S I v— F配列と SRひ (GG) Sp ( A T G * )配列との間に挿 入したゥミホ夕ルルシフエラーゼ遺伝子発現べクタ一を構築し、 CHOZf Lu c細胞に導入してその発現効率を比較した。 表 5において、 実施例 4、 6ならび に本実施例において使用したベクターにおけるマウス制御配列、 S Rひ S p配列 あるいは SRひ (GG) Sp (ATG*)配列、 ならびにその間に介在するリン 力一配列の種類を表示している。 またここで使用しているリンカー配列は配列番 号 7番から 17番に表示したものである。
さらに発現ベクターの表示については、 本文中において、 習慣的に使用してき た表示と、 統一的な表示との両方を使用しているが、 その対照表を表 6に示して いる。
これらリンカ一配列の詳細な検討の結果、 SRひ (GG) Sp (ATG*) を 外来遺伝子の転写ならびに転写後制御配列とする発現ベクターに対しては、 リン 力一配列として Lb 62配列も機能はするが、 その程度は大きくなく、 Lc l l ならびに Lc 6、 とくに Lc 6において、 表 7に示すように、 対照とする SRひ Spを外来遺伝子の転写ならびに転写後制御配列とし、 muNTS 1 V— F配列 を挿入しないベクター (すなわち pK 2 SRr∑ 1ベクタ一あるいは P SRァ∑ 2**62ベクター) の示す発現効率の 10倍以上の発現効率を示し、 その有効 性を明らかにした。
なお、 実施例 4にすでに示されているように、 1種類のリンカ一に対して複数 のプロモーター ·ェンハンサー上流制御配列が有効であることから、 L a 33、 Lc 11あるいは L c 6のような有効なリンカ一配列は、 RINTR配列一般に 対して有効であることが推察され、 本発明における上流制御配列は必ずしもマウ ス由来の R I NTR配列に限定されるものではない。 «- aS ΊΤΠΤΠΤΠΤΠΊく一- *Λ->< a-210d-
3D3J,I3DW< 931 - --- >< -— JA->IO9VDOOVI03V939300
339XJ,39W<— -ΐ Ί—-- >< -— JA->XOOVD30V1DOVDD0300 HJAE S S 309I109W<-—- \m -—- ><—- JA->iODV003V10DVD09D03
0OOIJ,DDW<-—- i -—- ><—- iA->i3DV03aVI39VDD0300 LU Z HS 099I,L00W<—-- Ζ^Ί --— >< -— JA->IOOVOOOVIOOV9D3330 ZU^Z . HS 03DXI00W<-—- 2,901-—- ><—- JA->x3gv90DVXD3V09D003 ,SJAC 2 HS 000II0DW<-—- Ζ^Ί- --- ><—- JA->X00VDD0VX00V39D300 Z9 Z HS 099IX03W<- -— 2901 --— >******30I0DV00 VIDDVDDD300 Z9**Z Z HS
«- HS->nmTO™mmi<— *Λ --- >nn<-g-ziod-
09ΰΙ100νν< Zm ><— —- >9V0VSDV3DO300
3DD1I3DW< Z9qi >*****=i:***3V0VODVDOD000 z z s
<<-
Figure imgf000057_0001
3991I03W< ><—— —— >3VI00VD003D3
«- » HS- >ΊΤΠΉΉΤΠΉく- >ΊΤΠΊΤΠく—— 3-Z19d- 0DOIIODW<- --- \m—- ><-J^~>0930D93D3VID0V3DO333 TWO S »HS
«- » -〉 ΊΤΠΤΠΤΠΤΠΊく—— *Λ >ΊΤΠく- g-ZlSd-
3D0II00W<- --- i—— ><—— JA >9VOVOOV030000
399XI09W<- -— 一-- ><—— JA >9V3V33V9D0330
ODDUOOW<—— Κ^—— >*************9V0V9DV0DO303 2里 ©Κ1Μί 2 锄 ^: ^-mco—^ ^
99
S6£0/00dT/13d KZLL/OO O
Figure imgf000058_0001
例示
pSRァ∑0tr33/fLuc
p:plasmid
SR: simian-retro promoter-enhancer sequence
7: SRひ(GG)Sp(ATG*)
∑ 0 : integrated vector containing tkpac , linker=La series
∑2 : integrated vector containing tkpac , IRES & Hygr, linker=Lb se ries
∑ 3: integrated vector containing tkpac , IRES & Hyg11, linker=Lc se nes
tr: truncated muNTSl(=mu56 ) reverse fragment
vf :muNTSlv forward fragment
** :no fragment, skip
33 : spacer (La33 in this case)
I : foreign gene
/fLuc : firefly lucif erase
/rLuc : renilla lucif erase なお、 t k p a cは、 短縮してプロモ一夕一活性を弱めたチミジンキナーゼプ 口モー夕一の直下流にピュー口マイシンァセチルトランスフェラーゼ遺伝子、 さ らにその直下流にチミジンキナ一ゼ遺伝子のポリアデニル化シグナル配列を接続 した配列であって、 pSRァ∑2系列ならびに pSRァ∑3系列のベクターも含めて 、 本表にあるすベてのベクターにおいて、 t r配列あるいは v f配列等プロモ一 夕一 ·ェンハンサ一上流制御配列が配置されている位置のさらに上流に配置され る。 表 7 統合べクタ一 p S Rァ∑ 2ならびに p S Rァ∑ 3系列における各種リンカー配列 の外来遺伝子発現効率に与える効果
ホ夕ルルシフェラ一ゼ安定発現細胞を宿主とした、 ゥミシィタケルシフェラ一 ゼを外来遺伝子とするベクタ一導入による発現効率のデユアルルシフヱラーゼァ ッセィ測定値 ベクタ一の構成 マウス制御配列 平均値 土 S. E.
とリンカ一配列 pSRr∑2**62/rLuc 3.4 1.4
pSRr∑2vf62/rLuc muNTSlv-F 6.9 2.2
pSRr∑ 3**62/rLuc 7.2 3.3
pSRr∑ 3vf 62/rLuc muNTSlv- F/Lc62 6.9 1.9
pSRr∑ 3vf 57/rLuc muNTSlv-F/Lc57 18.5 4.7
pSRr∑ 3vf 52/rLuc muNTSlv- F/Lc52 17.5 3.5
pSRr∑3vf47/rLuc muNTSlv-F/Lc47 8.5 3.9
pSRr∑3vf21/rLuc muNTSlv-F/Lc21 10.6 3.1
pSRr∑3vfll/rLuc muNTSlv-F/Lcll 29.3 11.4
pSRr∑ 3vf 6/rLuc muNTSlv-F/Lc6 46.3 22.7 各群とも n=12。 ただし pSRァ∑2**62/rLuc群については n=lL 宿主細胞として、 あらかじめホ夕ルルシフヱラーゼを導入して安定に持続発現 している組換 CHO細胞 (CH〇/f Luc) を育種しておき、 CHO/f Lu c細胞に対して、 表記ベクターによる遺伝子導入を行った。 トランスフヱクショ ン後 1日間培養し、 3. 5センチ培養皿に播種して、 4週間ピュ一ロマイシン ( 7. 5 Aig/ml) で選択、 その後デュアルルシフェラーゼアツセィを行った。
[実施例 10] pSRァ∑ 2/hTf rベクタ一によって組換えた CHO細胞 の物質生産能
さきに pK 2 SRひ/ hT f rベクタ一の導入によって組換えた CHO細胞の クローンから高生産クローン (C# l— 23) を得た要領と同様に、 pSRァ∑ 2ZhTf rベクターの導入によって高生産 CHOクローンを得た。 その代表的 なものである C# 33_3と、 対照とするクローン C# 1— 23とを 6ヶ月間に わたって選択薬剤を添加することなく増殖継代培養し、 その間のヒトトランスフ エリン生産能を免疫的定量法により、 また組換えられているヒト トランスフェリ ン cDNAのコピー数をドットブロット法によって定量した。 この継代培養の期 間、 初期 2ヶ月間においてはトランスフェリン生産能の低下が認められたが、 そ の後安定した生産能を維持し、 6ヶ月間全期間にわたって常に C# 1—23と比 較して 2倍以上の生産性を示した。 また細胞あたりのヒト トランスフェリン cD N Aのコピ一数は C # 1一 23では約 1コピーであつたのに対し、 約 8コピーで あり、 どちらの細胞クローンも 6ヶ月間コピー数は安定に維持された。 これらの 結果は、 本発明による発現ベクターによって育種された組換え細胞が、 外来遺伝 子産物の生産のための有利な条件を満たしていることを示したものである。 産業上の利用の可能性
1. 本発明による発現制御配列および該制御配列を構成要素とする発現ベクター は、 組換え宿主細胞における外来遺伝子の発現について、 従来知られた高効率発 現べクタ— (S Rひプロモー夕一ベクタ一) の数倍あるいはそれ以上の発現効率 を示し、 外来遺伝子産物の生産の経済的な効率を高めることを可能とする。
2 . 本発明による発現制御配列ならびに該制御配列を構成要素とする発現べクタ 一は、 宿主細胞に導入して組換え細胞クローンを分離する時間を短縮し、 またク ローン分離の効率を高めることによって、 外来遺伝子産物を生産する組換えクロ —ン細胞の育種にかかわる経済的な効率を高めることを可能とする。
3 . 本発明による発現制御配列および該制御配列を構成要素とする発現ベクター は、 S V 4 0プロモー夕一中に存在する複製開始領域 (o r i ) 内の塩基配列を 置換しているために、 S V 4 0の T抗原を発現している宿主細胞においてもべク 夕一 D N Aが無制限に複製することがなく、 従って、 S V 4 0 T抗原遺伝子を用 いて不死化させた多くの細胞株を組換え宿主として利用することを可能とする。
4 . 本発明による発現制御配列および該制御配列を構成要素とする発現ベクター には、 2つの薬剤選択マ一カーを含んで構築されているものがあり、 このような ベクターにおいては、 外来遺伝子を発現する細胞の選択と、 発現効率の高い細胞 の選択とを 2段階に分けて行うことができるために、 外来遺伝子の発現効率の高 い細胞ク口一ンを高い頻度で、 しかも短時間の内に取得することが可能となる。 5 . 本発明による発現ベクターを用いて育種された組換え生産細胞は、 薬剤の存 在なくしても外来遺伝子のコピー数においても、 また物質生産能においても安定 であり、 外来遺伝子産物の長期にわたる連続組換え生産が可能となる。

Claims

請求の範囲
1. S V40由来の複製開始点、 ェンハンサー配列、 および初期プロモーター 配列、 ならびに HTLV— 1由来の LTR— R配列および U 5配列の一部 (U ' 配列) から構成される SRひプロモーター 'ェンハンサー配列 (以下、 「SRひ 配列」 と称する) の 3' 下流に、 S V40後期 mRNAスプライシングシグナル 配列 (以下、 「Sp配列」 と称する) を接続した転写ならびに転写後制御配列 ( 以下、 「SRひ Sp配列」 と称する) において、 Sp配列中にある 1個の ATG 配列が G C A配列に改変された転写および転写後制御配列 (以下、 「 S Rひ S p (ATG*) 配列」 と称する) を含む DNA。
2. SRひ Sp配列において、 その S p配列中の 1個の AT G配列および 1個 の 16 Sァクセプ夕一配列を含む配列領域が欠失された転写ならびに転写後制御 配列 (以下、 「SRo:Sp (Δ 16 S) 配列」 と称する) を含む DNA。
3. S Rひプロモーター 'ェンハンサ一配列において、 そのコアプロモーター 領域 (5' TATTTAT3' ) の下流に直結する塩基 G塩基が塩基 Cに置換されたプロ モ—夕— .ェンハンサ—配列 (以下、 「SRひ (ATG*) 配列」 と称する) を 含む DNA。
4 - SRひプロモーター 'ェンハンサー配列において、 その SV40プロモー 夕一配列中の ATに富んだ塩基配列 (配列番号 1) が配列番号: 2に記載の塩基 配列で置換されているプロモーター 'ェンハンサ一配列 (以下、 「SRひ (GG ) 配列」 と称する) を含む DNA。
5. 動物細胞で機能するプロモ一夕一配列またはプロモ一夕一 ·ェンハンサー 配列、 該配列の直上流に配置された配列番号 7、 10、 16、 17のいずれかに 記載のリンカ一配列、 該リンカ一配列の直上流に配置されたリポソーム R N A遺 伝子の非転写スぺーサー領域配列関連配列から構成される発現制御配列を含む D NA。
6. リポソーム RN A遺伝子の非転写スぺーサー領域配列関連配列が配列番号 : 3、 4、 5のいずれかに記載の塩基配列である、 請求項 5に記載の DNA。
7 - チミジンキナーゼプロモー夕一、 該プロモ一夕一の直下流に配置されたネ ォマイシン耐性 (ne o 遺伝子、 および該遺伝子の直下流に配置されたチミ ジンキナーゼ遺伝子のポリアデ二ル化シグナル配列、 並びにアンビシリン耐性遺 伝子をプラスミ ド pBR 322に挿入して構築されたプラスミ ドベクター (pK an 2ベクター) 上に、 SRひ配列若しくはその改変配列、 該配列の直下流に配 置された S p配列若しくはその改変配列、 並びに該 S p配列若しくはその改変配 列の下流に配置された少なくとも外来遺伝子を組込むための制限酵素認識配列お よびポリアデニル化シグナル配列からなる外来遺伝子発現装置配列が設けられた 動物細胞用発現ベクター。
8 - 請求項 7に記載の発現べクタ一であって、 その H i ndlll制限酵素断点 および S a 11制限酵素断点の間の配列を、 請求項 7に記載の外来遺伝子発現装 置配列によって置換した、 図 2、 3または 4に示す制限酵素マップを有し、 それ らの SRo:配列部分が、 それぞれ SRひ配列であるか、 あるいは SRひ (ATG *) であることを特長とする動物細胞用発現べクタ一 (以下それぞれ PK2 SR ひ Sp (ATG*) , pK2 SRひ (ATG*) 、 pK 2 SRa (ATG*) Sp (ATG*) 、 pK2 SRaSp (Δ 16 S) および pK2 SRひ (AT G*) Sp (Δ16 S) , と称する) 。
9. SRひ (GG) 配列を含む発現べクタ一であって、 該配列の直下流に、 S p (ATG*) 配列が配置され、 さらに下流に外来遺伝子組込みのための制限酵 素認識配列、 イン夕一ナルリポソ一マルエントリーサイ ト (IRE S配列) 、 薬 剤耐性遺伝子、 およびポリアデニル化シグナル配列を順に配置されている、 図 1 0に示す制限酵素マップを有する動物細胞用発現べクタ—。
10. 請求項 5に記載の発現制御配列を含む発現ベクターであって、 該発現制 御配列中のプロモ一夕一 'ェンハンサー配列が、 SRひ Sp配列、 SRひ Sp ( ATG*) 配列、 若しくは SRひ (GG) Sp (ATG*) 配列であり、 該プロ モータ一 ·ェンハンサー配列の直上流に配列番号: 7、 8、 10、 16、 17の いずれかに記載のリンカー配列が接続されており、 該リンカー配列の直上流に配 列番号: 3から 5のいずれかに記載のリボソーム RNA遺伝子の非転写スぺーサ 一領域配列関連配列が接続されており、 該非転写スぺーサ一領域配列関連配列の 上流に、 短縮されてプロモ一夕一活性を弱めたチミジンキナ一ゼプロモーター ( t k) 、 ピューロマイシンァセチルトランスフェラーゼ耐性遺伝子 (pa c) 、 およびにチミジンキナーゼポリアデニル化シグナル配列からなる薬剤選択系が配 置され、 かつ、 該プロモ一夕一 'ェンハンサ一配列の上流の配列の組み合わせが 表 5および表 6に示されたいずれかの配列である発現ベクター。
1 1. 請求項 1から 6のいずれかに記載の DN Aが挿入された発現ベクターま たは請求項 7から 10のいずれかに記載の発現ベクターに外来遺伝子を挿入する ことにより構築された外来遺伝子産物生産用べクタ一。
12. 請求項 1 1に記載のベクターが導入された組換え動物細胞。
PCT/JP2000/003956 1999-06-16 2000-06-16 Sequences regulatrices de cellules animales et vecteurs d'expression recombinants WO2000077231A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP17035599 1999-06-16
JP11/170355 1999-06-16

Publications (1)

Publication Number Publication Date
WO2000077231A1 true WO2000077231A1 (fr) 2000-12-21

Family

ID=15903407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/003956 WO2000077231A1 (fr) 1999-06-16 2000-06-16 Sequences regulatrices de cellules animales et vecteurs d'expression recombinants

Country Status (1)

Country Link
WO (1) WO2000077231A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102453720A (zh) * 2010-10-28 2012-05-16 华中农业大学 一种在猪肌肉组织高效表达的融合启动子

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Molecular and Cellular Biology, vol. 8, no. 1, Jan. 1988, YUTAKA TAKABE et al., "SRalpha promoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat", pages 466-472. *
Nucleic Acids Research, vol. 20, no. 5, Mar. 1992, MARC PAULY et al., "The initiation accuracy of the SV40 early transcription is determined by the functional domains of two TATA elements", pages 975-982. *
Nucleic Acids Research, vol. 23, no. 17, 1989, MICHAEL WEGNER et al., "Cis-acting sequences from mouse rDNA promote plasmid DNA amplification and persistence in mouse cells: implication of HMG-1 in their function", pages 9909-9932. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102453720A (zh) * 2010-10-28 2012-05-16 华中农业大学 一种在猪肌肉组织高效表达的融合启动子
CN102453720B (zh) * 2010-10-28 2013-01-30 华中农业大学 一种在猪肌肉组织高效表达的融合启动子

Similar Documents

Publication Publication Date Title
JP4307079B2 (ja) マトリックス付着領域およびその使用方法
AU2005300503B2 (en) Selection of host cells expressing protein at high levels
JP5888616B2 (ja) 組換えタンパク質の高レベル発現用の発現ベクター
Maquat et al. Mammalian heat shock p70 and histone H4 transcripts, which derive from naturally intronless genes, are immune to nonsense-mediated decay.
JP3881006B2 (ja) 哺乳動物の発現のための完全に障害されたコンセンサスコザク配列
US8771984B2 (en) Selection of host cells expressing protein at high levels
ES2151463T3 (es) Constructos de adn para la activacion y la modificacion de la expresion de genes endogenos.
EP1815001B8 (en) Gene trap cassettes for random and targeted conditional gene inactivation
EA014332B1 (ru) Селекция клеток-хозяев, экспрессирующих белок на высоких уровнях
JP2015091238A (ja) 哺乳類発現ベクター
JP2002519037A (ja) ウイルスコード配列を含有していない高い効率を有するレトロウイルスベクター
EP1115852A1 (en) Expression vectors containing hot spot for increased recombinant protein expression in transfected cells
Kawabe et al. Improved recombinant antibody production by CHO cells using a production enhancer DNA element with repeated transgene integration at a predetermined chromosomal site
EP1572994B1 (en) Means and methods for producing a protein through chromatin openers that are capable of rendering chromatin more accessible to transcription factors
CN107142247A (zh) 可诱导的CRISPRon或CRISPRi小鼠胚胎干细胞及其应用
Ikeguchi et al. Structural and functional analyses of the promoter of the murine multidrug resistance gene mdr3/mdrla reveal a negative element containing the AP-1 binding site
JP3582965B2 (ja) 哺乳動物細胞用発現ベクター
WO2000077231A1 (fr) Sequences regulatrices de cellules animales et vecteurs d&#39;expression recombinants
Zou et al. Translation of the reovirus M1 gene initiates from the first AUG codon in both infected and transfected cells
Hauser 1.1 Heterologous Expression of Genes in Mammalian Cells
Müller et al. Polyvalent vectors for coexpression of multiple genes
WO1999047647A1 (en) Eukaryotic cells stably expressing genes from multiple transfected episomes
AU2007217431B2 (en) Selection of host cells expressing protein at high levels

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 503673

Kind code of ref document: A

Format of ref document f/p: F