WO2000070696A1 - Collector for storage battery, storage battery comprising the same, and method for manufacturing the storage battery - Google Patents

Collector for storage battery, storage battery comprising the same, and method for manufacturing the storage battery Download PDF

Info

Publication number
WO2000070696A1
WO2000070696A1 PCT/JP2000/003145 JP0003145W WO0070696A1 WO 2000070696 A1 WO2000070696 A1 WO 2000070696A1 JP 0003145 W JP0003145 W JP 0003145W WO 0070696 A1 WO0070696 A1 WO 0070696A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
current collector
lead
active material
battery according
Prior art date
Application number
PCT/JP2000/003145
Other languages
French (fr)
Japanese (ja)
Inventor
Isamu Kurisawa
Original Assignee
Japan Storage Battery Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co., Ltd. filed Critical Japan Storage Battery Co., Ltd.
Priority to DE10081688T priority Critical patent/DE10081688T1/en
Publication of WO2000070696A1 publication Critical patent/WO2000070696A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • H01M10/126Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/18Lead-acid accumulators with bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a current collector for a storage battery, a storage battery using the same, and a method for manufacturing the storage battery.
  • Materials for the positive electrode current collector are required to have high conductivity, insolubility in the electrolyte, chemical stability at the positive electrode potential in the electrolyte, and high hydrogen / oxygen overvoltage.
  • Materials such as carbon and / or inexpensive and lightweight metal such as aluminum can not be used because they are significantly dissolved or corroded when exposed to the positive electrode potential in the electrolyte.
  • Most metallic materials cannot be used due to corrosion, melting, etc., and such corrosion-resistant conductive materials can be found slightly in ceramics such as oxygen compounds and silicon compounds. (Example: Sn0 2, T i S i 2, T i 5 S i 3, TaS i 2, TaS i 3, NbS i 2, Nb 5 S i 3 , etc.)
  • these conductive ceramic material is said to be excellent conductivity (volume resistance is 1 OMEGA. cm or less), and metal (volume resistivity 1 0- 6 ⁇ 1 0_ 5 ⁇ ⁇ cm or less)
  • these materials could not be used directly as current collectors because of their high specific resistance or high cost.
  • the voltage drop due to the conductive ceramic can be suppressed small, and the problem of specific resistance and cost reduction The problem is overcome, and a positive electrode current collector with excellent corrosion resistance can be obtained. For this reason, several electrode systems coated with conductive ceramics have been reported.
  • the present inventor has argued that sputtering methods and Using the method such as a plasma CVD method, even cheap easily processed low melting point material such as lead, covering the high melting point conductive ceramic having a good crystallinity and conductivity, for example, the S N_ ⁇ 2
  • a plasma CVD method even cheap easily processed low melting point material such as lead, covering the high melting point conductive ceramic having a good crystallinity and conductivity, for example, the S N_ ⁇ 2
  • the thin film produced by such a film-forming method has very few defects such as cracks, and its adhesion to the substrate is much larger than that produced by the conventional film-forming method of precipitating from the liquid phase. , as in the prior art / -? P b 0 2 plated step after extra, such that it is not necessary clarified and Natsuta.
  • the thicker the electrode plate the worse the diffusion of the electrolyte into the back of the electrode plate, and the lower the utilization rate of the active material. It is also known that it is good to lower the specific gravity of the electrolyte in order to improve the corrosion resistance of the positive electrode current collector, but this also makes the diffusion of the electrolyte worse, which is a factor that lowers the utilization rate of the active material. I was As the utilization rate of the active material decreases, a larger amount of the active material is required to obtain the required electric capacity, and the electrode plate becomes heavier and the energy density further decreases. The necessity of countermeasures against corrosion degradation of the positive electrode current collector is a major cause of further lowering the actual energy density of lead batteries with low theoretical energy density.
  • current collectors that have been surface-treated with conductive ceramics do not undergo a chemical bonding reaction between the current collector and the active material during the aging process, unlike conventional lead-acid batteries, and the current collector and the active material do not.
  • the current collector is separated from the active material by physical force, such as gas generation during charging, expansion and contraction of the active material due to charge and discharge, or external vibration. Therefore, there is a possibility that the function as an electrode plate is lost.
  • the present invention has been made under the above-mentioned background, and a current collector is formed by coating a current collector base material with a highly adhesive conductive ceramic thin film by a recent thin film manufacturing technique. Has improved corrosion resistance. As a result, it is possible to use a high-density electrolyte while reducing the weight of the current collector, and as a result, the utilization rate of the active material is increased, and a long-life, high-energy storage battery can be realized.
  • an active material is placed on the current collector surface, and a predetermined amount of compressive force is applied to the current collector surface in a direction perpendicular to the current collector surface to maintain electrical contact.
  • the exterior As a part of the exterior, it has a structure that combines the functions of the current collector, the battery exterior, and the connection terminal, so that the strap / pole of the storage battery can be omitted. As a result, the weight and cost of the strap and poles are reduced, and there is no risk of abnormal corrosion, etc., and a simple, reliable, inexpensive, and high-performance storage battery and a manufacturing method thereof can be provided. . Invention disclosure>
  • the current collector for a storage battery according to the present invention is characterized by the following.
  • a conductive ceramic thin film is formed on the surface of the current collector base material.
  • the conductive ceramic thin film is formed on the surface of the current collector substrate by a step of precipitating from the gas phase.
  • the step of depositing from the gas phase is a sputtering method.
  • the step of depositing from the gas phase is a plasma CVD method.
  • the material constituting the current collector base material is a metal or a metal alloy selected from lead, lead alloy, tin, tin alloy, bismuth or bismuth alloy.
  • the material constituting the current collector base material is a conductive polymer.
  • T i S i 2 as conductive ceramic, T i 5 S i 3, TaS i 2, T a 5S i 3, NbS i 2, Nb 5 using any of the silicon compound S i 3.
  • Storage batteries using these current collectors are characterized as follows.
  • X 10 4 ⁇ 2 0 X 10 4 that a structure to maintain the compressive force of P a.
  • a positive electrode active material is provided on one surface of the current collector for a storage battery, and a negative electrode active material is provided on the other surface to form a bipolar electrode.
  • the battery has a bipolar battery type structure in which a plurality of the electrodes are stacked via a separator for holding an electrolyte with the negative electrode active material surface facing the negative electrode active material.
  • the storage battery according to (13) which has one or two current collectors for a storage battery in which the active material is provided on one side and the active material is not provided on the other side.
  • the structure shall be such that the surface on which no active material is provided is at least part of the exterior of the storage battery.
  • the method of manufacturing a storage battery according to the present invention is characterized by the following.
  • the electrode plate is to be formed in a state where the voltage of the battery is controlled to 1.0 V / cell or more within T minutes after the electrolyte is injected. .
  • the battery voltage is controlled to 1.0 V / cell or more for at least one hour after the start of formation.
  • the current collector is joined to a plastic battery exterior body by heat welding.
  • FIG. 1 is a schematic view showing a cross section of a positive electrode current collector according to the present invention
  • Figure 2 is a characteristic diagram showing the relationship between S b amount and film resistivity to S n 0 2 thin film
  • Figure 3 is S n0 characteristic diagram der 4 shows the relationship between the F amount and film resistivity to 2 thin film, characteristic diagram showing the relationship between the thickness and the allowable resistivity of the conductive ceramic thin film And
  • Fig. 5 is a characteristic diagram showing the transition of the terminal voltage during the oxidation test.
  • FIG. 6 is a characteristic diagram showing the amount of corrosion of the Pb electrode after the oxidation test.
  • FIG. 7 is a characteristic diagram showing discharge characteristics
  • FIG. 8 is a schematic cross-sectional view showing an example of the configuration of a lead-acid battery using a conductive ceramic for the positive electrode.
  • Fig. 9 is a characteristic diagram showing the transition of the discharge capacity during the cycle life test
  • Fig. 10 is a schematic cross-sectional view showing an example of increasing the voltage of a lead-acid battery using conductive ceramic for the positive electrode. Yes,
  • FIG. 11 is a schematic cross-sectional view showing an example of increasing the capacity of a lead-acid battery using a conductive ceramic for the positive electrode.
  • FIG. 12 is a schematic cross-sectional view showing a configuration of a bipolar lead-acid battery using a conductive ceramic for a positive electrode.
  • the first 3 figure is a characteristic diagram showing the relationship between P B_ ⁇ 2 amount after the chemical conversion and conversion limit voltage, the first 4 figures indicate the relationship between the corrosion layer thickness after the oxidation test and chemical limit voltage It is a characteristic diagram,
  • Fig. 15 is a characteristic diagram showing the relationship between the time from injection and the start of chemical formation and the thickness of the corroded layer.
  • the first 6 is a characteristic diagram showing the relationship between the time until S n 0 2 layer thickness and chemical starting limits which S n 0 2 layers is not dissolved.
  • 1 denotes a positive electrode current collector base material
  • 2 denotes a conductive ceramic
  • 3 denotes a positive electrode active material
  • 4 denotes a negative electrode current collector
  • 5 denotes a negative electrode active material
  • 6 denotes a separator
  • 7 denotes an exhaust hole.
  • Reference numeral 8 denotes a plastic battery case
  • 9 denotes a connection plate
  • 10 denotes a bipolar electrode.
  • FIG. 1 is a diagram showing a cross section of a positive electrode current collector according to the present invention, wherein 1 is a current collector base material using lead which is a low melting point metal, and 2 is a conductive ceramic (SnO 2). ). Film of the thin film, and have use a target having the same composition as the material to be cane prepared (S n 0 2), 0 . 7 5 keep using the RF sputtering apparatus in A r gas cut ink in P a became. The substrate temperature during film formation was 120 ° C, which is sufficiently lower than the melting point of lead of 327 ° C.
  • lead was used as the base material.However, even if the material had a low melting point, such as lead alloy, tin, tin alloy, bismuth or bismuth alloy, and had been considered difficult to coat, the same structure was used. A current collector was obtained.
  • FIG. 2 is a diagram showing the result of measuring the resistivity of the formed thin film, and it can be seen that the film containing Sb in SnO 2 has a lower resistivity. Also, when the Sb content was in the range of 0.5 mole% to 8 mole% with respect to the total number of moles of Sn and Sb, a good film having low specific resistance was obtained.
  • FIG. 3 shows the result of measuring the resistivity of a thin film containing F instead of Sb. It can be seen that the film containing F also has a lower resistivity.
  • the F content was in the range of 7 mole% to 60 mole% with respect to the total number of moles of Sn and F, and a good film with low specific resistance was obtained.
  • FIG. 4 is a characteristic diagram showing the result of examining the relationship between the thickness of the thin film and the allowable resistivity.
  • the current density is 10 OmAZcm 2 and the voltage drop is 1 mV or less.
  • This is a current density equivalent to 1 CA or more (C: rated capacity) in a practical storage battery, and a voltage drop of 1 mV or less has little effect on discharge performance.
  • Sn0 2 film thickness it can be said that there is no influence on the battery performance if 100 microns or less.
  • the film contains Sb or F, the voltage drop can be further suppressed, and the film thickness can be increased to reduce defects such as pinholes in the conductive ceramic coating film, thereby improving reliability. Is possible.
  • Fig. 6 shows the amount of corrosion of the lead electrode measured after 600 hours of anodic oxidation test in Fig. 5. I understand.
  • Figure 7 is a graph showing the discharge characteristics when the current density was changed between the coated and uncoated electrodes when Pb was the current-collector base material. There was no difference due to the effect of the voltage drop due to the resistance of the covering film.
  • the same effect can be technically obtained by using the plasma CVD method.
  • the conventional sealed lead battery reached its life in about 500 cycles, but the capacity of the sealed lead battery of the present invention, which was compressed at 40 to 200 kPa, did not decrease at 800 cycles.
  • the capacity of the A cell with low compression force (20 kPa) decreased very quickly at 100 cycles.
  • the positive electrode active material was separated from the current collector, so the compression force was low, and the resistance at the interface between the current collector and the active material and the internal resistance of the battery increased during the cycle. It is considered that the capacity decreased.
  • the capacity of the sealed lead battery E-cell manufactured at a high pressure of 40 OkPa decreased after 300 cycles, but when disassembled, the active material penetrated into the glass mat and a short circuit occurred.
  • Pb_ ⁇ 2 particles or P b particles as an active material it seems to have One been penetrate into the small pores of the separator Isseki.
  • the positive electrode plate formed by applying the active material to the current collector was used. Even if a pellet of the active material separately prepared was prepared and the collector was brought into contact with the current collector at a predetermined pressure, the result was the same.
  • T i S i 2, T i 5 S i 3 shown in Example 1 TaS i 2, Ta 5 S i 3, Nb S i 2, Nb 5 S i adhesion is poor between the active material even if any of the silicon compound 3, required compression force was the same as for S n0 2.
  • the 2V battery shown in FIG. 8 was manufactured.
  • FIGS. 10 and 11 it is not possible to stack a 2V battery to manufacture a high-voltage or high-capacity module battery. Easy. Be in this cell for cheaper almost becomes c
  • manufacturing and parts costs not need a trouble of welding or connection of lead alloy each other at the required der ivy electrode plate group upper when a high voltage in a conventional lead battery
  • high output performance can be obtained because there is no voltage drop at this connection.
  • the weight of the connection can be reduced.
  • a bipolar battery can be realized because the current collector basically does not corrode.
  • a bipolar battery can be manufactured by applying a positive electrode and a negative electrode active material to both sides of a single current collector and stacking a large number of these electrode plates through a separator. Battery for voltage applications.
  • a battery using such a single electrode plate having a positive electrode / negative electrode active material is called a bipolar battery.
  • the positive electrode current collector also had a short life due to corrosion in this battery. Therefore, in order to extend the life, the electrode plate was thick and heavy, and the energy density was low.
  • the positive electrode plate does not corrode, a light and thin electrode plate can be used, and a current flows in the vertical direction of the current collector surface having a large area of the thin current collector. Even if the current collector is thin, the thinner the current collector, the smaller the voltage drop of the current flowing in the thickness direction, and the lighter the current collector, the lower the output performance. High voltage can be achieved simply by stacking the cells in order, so there is no need for welding or wiring. That is, a bipolar battery can be manufactured using the technology of the present invention. This would make it possible to supply very inexpensive, long-life, high-energy-density batteries.
  • the Sn0 2 layer was formed on the current collector surface, 1. become a voltage less than 0V, it was found that would eluted in the sulfuric acid. This potential is reached during the initial formation of the electrode plates during the manufacture of lead-acid batteries.
  • the electrode plate of the lead storage battery shows a very low voltage of 0 V to 0.5 V after sulfuric acid injection.
  • the formation is performed in two steps, and the first step is the formation in which the voltage is limited.
  • Table 2 Test conditions and test battery contents
  • the measured corrosion thickness after the oxidation test in Fig. 13 indicates that if the first formation voltage is lower than IV, the Sn0 2 layer may be melted, and the corrosion layer thickness is Sn0 2 This was the same as a conventional lead battery that was not formed on the body surface. However, when formed at a voltage of IV or higher, almost no corrosion occurred.
  • the voltage of the first chemical conversion it should be more than 1 V, to further improve the P b 0 2 amount to a voltage below 2 V, it should be the time to 1 hour or more Kotogawa won.
  • the first chemical conversion was performed under the conditions of 1 Vx 5 h, the relationship between the thickness of the Sn0 2 layer and the time from injection to the start of chemical formation, and the thickness of the corroded layer in the oxidation test Is shown in Figure 15. From the figure, when the Sn 2 layer was thickened and the time from the injection to the start of chemical formation was short, almost no corrosion occurred in the oxidation test.
  • metal Pb or Ti was used for the base material of the positive electrode current collector, but not necessarily. It does not need to be metal, and a conductive polymer to which a conductive filler is added may be used. At the same time, if a conductive polymer with a conductive filler added is used for the negative electrode current collector, the storage battery can be assembled by joining the positive and negative electrodes to the plastic battery outer package by heat welding, eliminating the need for an adhesive. Thus, it becomes possible to commercialize a cheaper sealed lead battery. Industrial applicability>
  • the conventional thin film of the corrosion-resistant conductive material is used.
  • the problem is that the assembly cost is high, as in the case of an electrode coated with aluminum, the adhesion between the current collector and the active material is poor, and the function cannot be maintained, or various problems that lead-acid batteries have And a light and thin lead-acid current collector for lead-acid batteries with excellent corrosion resistance and a high-performance lead-acid battery with long life, high energy density, high reliability and low cost Since it can be provided, its industrial value is extremely large.

Abstract

A collector for a storage battery the voltage drop of which is little, and which has an excellent corrosion resistance, a storage battery comprising the same, and a method for manufacturing the storage battery are disclosed. The collector comprises a collector base and a thin conductive ceramic film formed on the collector base.

Description

明 細 書  Specification
蓄電池用集電体、 それを用いた蓄電池及びその蓄電池の製造方法 ぐ従来技術 > Current collector for storage battery, storage battery using the same, and method for manufacturing the storage battery
本発明は、 蓄電池用集電体並びにそれを用いた蓄電池およびその蓄電池の製造 方法に関するものである。 ぐ背景技術 >  The present invention relates to a current collector for a storage battery, a storage battery using the same, and a method for manufacturing the storage battery. Background technology>
正極集電体の材料には、 高い導電性、 電解液への不溶性、 電解液中での正極電 位における化学的安定性、 高い水素 ·酸素過電圧などが要求される。 カーボンや あるいは金属で安価で軽量なアルミニゥムといった材料は、 電解液中で正極電位 にさらされると、 著しく溶解あるいは腐食してしまうために、 これを用いること はできない。 ほとんどの金属材料が腐食, 溶解などの理由により、 使用すること が出来ず、 酸素化合物や珪素化合物のようなセラミック中に、 そのような耐食性 導電材料をわずかに見出すことができる。 (例: Sn02、 T i S i2、 T i5S i 3、 TaS i2、 TaS i3、 NbS i2、 Nb5S i3他) Materials for the positive electrode current collector are required to have high conductivity, insolubility in the electrolyte, chemical stability at the positive electrode potential in the electrolyte, and high hydrogen / oxygen overvoltage. Materials such as carbon and / or inexpensive and lightweight metal such as aluminum can not be used because they are significantly dissolved or corroded when exposed to the positive electrode potential in the electrolyte. Most metallic materials cannot be used due to corrosion, melting, etc., and such corrosion-resistant conductive materials can be found slightly in ceramics such as oxygen compounds and silicon compounds. (Example: Sn0 2, T i S i 2, T i 5 S i 3, TaS i 2, TaS i 3, NbS i 2, Nb 5 S i 3 , etc.)
しかしながら、 これらの導電性セラミック材料は導電性に優れる (体積固有抵 抗が 1 Ω- cm以下) とはいえ、 金属 (体積固有抵抗が 1 0— 6〜 1 0_5Ω · cm以 下) と比較すれば、 比抵抗が高かったり、 あるいはコストが高いために、 これら の材料を集電体としてそのまま用いることは出来なかった。 しかし、 集電体の表 面にこの導電性セラミックを薄く製膜し、 集電体基材を被覆することで、 この導 電性セラミックによる電圧降下が小さく抑えられ、 比抵抗の問題ゃコストの問題 を克服し、 耐食性に優れた正極集電体が得られる。 そのような考え方から、 導電 性セラミックを被覆した電極系がこれまでにも幾つか報告されている。 However, these conductive ceramic material is said to be excellent conductivity (volume resistance is 1 OMEGA. cm or less), and metal (volume resistivity 1 0- 6 ~ 1 0_ 5 Ω · cm or less) By comparison, these materials could not be used directly as current collectors because of their high specific resistance or high cost. However, by forming a thin film of the conductive ceramic on the surface of the current collector and coating the current collector base material, the voltage drop due to the conductive ceramic can be suppressed small, and the problem of specific resistance and cost reduction The problem is overcome, and a positive electrode current collector with excellent corrosion resistance can be obtained. For this reason, several electrode systems coated with conductive ceramics have been reported.
例:電気化学 47、 668 ( 1 979 )、 48、 384 ( 1 980)  Example: Electrochemistry 47, 668 (1 979), 48, 384 (1 980)
T i (基材) /Sn02 (Sbドープ) / ?— Pb〇2 T i (base) / Sn0 2 (Sb-doped) / -? Pb_〇 2
T i (基材) /P t Ox/ S— Pb02 T i (基材) /I r 02/ 5-Pb02 T i (base) / P t O x / S- Pb0 2 T i (substrate) / I r 0 2 / 5-Pb0 2
T i (基材) /Ru02/ 5— Pb02 T i (substrate) / Ru0 2 / 5— Pb0 2
そして、 このような導電性セラミックを被覆した電極の実際例としては、 電解 用 D S A電極に用いられている二酸化鉛電極がある。  As a practical example of such an electrode coated with a conductive ceramic, there is a lead dioxide electrode used for a DSA electrode for electrolysis.
例:特開昭 63— 57791号公報  Example: JP-A-63-57791
T i (基材) /白金/ひ一 Pb02/ ?— Pb02…ベルヌレック社製 DST i (base material) / Platinum / Hiichi Pb0 2 /? — Pb0 2 … DS made by Bernoullek
A電極 A electrode
これらの電極が基材に T iを用いている理由は、 薄膜の製法が液相を媒体とし ているため、 通常のディ ップコーティング法であれば、 有機金属を飛散させるた め、 あるいは薄膜材料の良質な結晶性と導電性を得るために、 製膜工程の途中に 基材温度が 500°C前後の温度まで上がる焼成とよばれる工程が必要である。 ま た主に工業的に広く用いられている液相から析出させるスプレー熱分解法などを 用いても最低 340°C位まで基材温度が上がる工程が必要であったため、 T iな どの融点が高い材質の集電体でなければ、 良好な特性を有する耐食性薄膜が表面 に製膜できないことにあった。 ところが、 このような Tiあるいは高融点金属を材料とした正極集電体では、 蓄電池を製造するには、 極板の加工や溶接が困難であり、 組立コストが高くなつ てしまう問題があった。  The reason why these electrodes use Ti as a base material is that the thin-film manufacturing method uses the liquid phase as a medium, so that the usual dip coating method would disperse the organic metal, In order to obtain good crystallinity and conductivity of the material, a process called firing, in which the substrate temperature rises to around 500 ° C, is required during the film forming process. In addition, even when using a spray pyrolysis method that precipitates from a liquid phase, which is widely used industrially, a process of raising the substrate temperature to at least about 340 ° C was necessary, so the melting point such as Ti Unless a current collector of high quality is used, a corrosion-resistant thin film having good characteristics cannot be formed on the surface. However, with such a positive electrode current collector made of Ti or a refractory metal, there is a problem that processing and welding of the electrode plate are difficult to manufacture a storage battery, and the assembly cost is increased.
また T iは、 正極電位にて電解液中に暴露されると、 短期間でアノード酸化さ れ、 不働態化してしまうために、 集電体基材と被覆膜の界面に電解液が侵入して しまうと、集電体としての機能が維持できなくなってしまう問題がある。さらに、 従来の液相から析出させる製膜方法では、 膜と基材との密着力が小さく、 膜にひ び割れなどの欠陥も多いため、 被覆した膜と基材との界面に、 膜のヒビ割れ部分 から電解液が浸入し、 基材の表面がアノード酸化され、 集電体の耐食性を維持で きなくなる問題があった。 よって製膜した耐食性導電材の膜の上から ?— P b 0 2メツキを施すなどの後工程処理を行う必要があった。 When exposed to the electrolyte at the positive electrode potential, Ti is anodic oxidized in a short period of time and becomes passivated, so that the electrolyte enters the interface between the current collector base material and the coating film. If so, there is a problem that the function as a current collector cannot be maintained. Furthermore, in the conventional film forming method of depositing from the liquid phase, the adhesion between the film and the substrate is small, and the film has many defects such as cracks. There was a problem that the electrolytic solution penetrated from the cracked portion and the surface of the base material was anodic oxidized, so that the corrosion resistance of the current collector could not be maintained. Thus over the film and corrosion resistance conductive material film -? P b 0 2 plated it is necessary to perform the operation process after such an applied.
そこで発明者は、 多様化している今日の薄膜製法の中で、 スパッタリング法や プラズマ C V D法などの製法を用いれば、 鉛のような安くて加工しやすい低融点 材料にも、 良質な結晶性と導電性を持った高融点の導電性セラミック、 例えば S n〇2を被覆することが可能であることに着目し、 それを確認した。 本表面処理 を施すことにより、 正極集電体は飛躍的に耐食性が向上した。 そして、 このよう な製膜方法で作製した薄膜は、 ひび割れなどの欠陥が極めて少なく、 基材との密 着性も従来の液相から析出させる製膜方法で作製したものよりはるかに大きいた め、 従来のような/?— P b 0 2メツキなどの余分な後工程が不要であることが明 らかとなつた。 Therefore, the present inventor has argued that sputtering methods and Using the method such as a plasma CVD method, even cheap easily processed low melting point material such as lead, covering the high melting point conductive ceramic having a good crystallinity and conductivity, for example, the S N_〇 2 We noticed that it was possible and confirmed that. By applying this surface treatment, the corrosion resistance of the positive electrode current collector was dramatically improved. The thin film produced by such a film-forming method has very few defects such as cracks, and its adhesion to the substrate is much larger than that produced by the conventional film-forming method of precipitating from the liquid phase. , as in the prior art / -? P b 0 2 plated step after extra, such that it is not necessary clarified and Natsuta.
基本的に様々な電池系にて本発明が示す表面被覆処理を施した集電体の適用が 有効である。 鉛電池を例にすれば、 鉛電池はコスト ·安全性 ·信頼性の面で二次 電池として長く利用されてきているが、 ここ数年の性能向上および普及が著しい 新種電池 (ニッケル水素, L i _ i o n等) に比べ、 エネルギー密度が低いとい う欠点がある。  Basically, it is effective to apply a current collector having been subjected to the surface coating treatment shown in the present invention in various battery systems. Taking lead batteries as an example, lead batteries have long been used as secondary batteries in terms of cost, safety and reliability, but new types of batteries (nickel-metal hydride, L i_ion etc.) has the disadvantage of lower energy density.
その原因は、 理論エネルギー密度が低いことに加えて、 鉛蓄電池の極板である 鉛が使用期間に伴って徐々に腐食して二酸化鉛となり劣化するため、 寿命性能の 要求を満足するために集電体の体積を一定量以上確保しておく必要があり、 この ため、 極板が厚くなり重たくなることにあった。  The reason is that, in addition to the low theoretical energy density, lead, which is the electrode plate of lead-acid batteries, gradually corrodes and degrades to lead dioxide over the life of the battery. It was necessary to secure the volume of the conductor over a certain amount, which resulted in the electrode plate becoming thick and heavy.
加えて、極板が厚くなると、そのために極板の奥への電解液の拡散が悪くなり、 活物質の利用率が悪くなる。 また、 正極集電体の耐食性をよくするために、 電解 液の比重を下げると良いことが知られているが、これも電解液の拡散が悪くなり、 活物質の利用率を下げる要因となっていた。 活物質の利用率が低下すると、 必要 な電気容量を取り出すための活物質量がより多く必要となり、 極板がさらに重く なってエネルギー密度がさらに低下する。 このように正極集電体の腐食劣化への 対策の必要性が、 理論エネルギー密度の低い鉛電池の実際のエネルギー密度を更 に低くする大きな原因となっている。  In addition, the thicker the electrode plate, the worse the diffusion of the electrolyte into the back of the electrode plate, and the lower the utilization rate of the active material. It is also known that it is good to lower the specific gravity of the electrolyte in order to improve the corrosion resistance of the positive electrode current collector, but this also makes the diffusion of the electrolyte worse, which is a factor that lowers the utilization rate of the active material. I was As the utilization rate of the active material decreases, a larger amount of the active material is required to obtain the required electric capacity, and the electrode plate becomes heavier and the energy density further decreases. The necessity of countermeasures against corrosion degradation of the positive electrode current collector is a major cause of further lowering the actual energy density of lead batteries with low theoretical energy density.
上記のようなことから、 前述のように導電性セラミックによる被覆処理を施し た集電体を用いれば、 必要以上に重い集電体基材を使う必要が無く、 高比重の電 解液の使用にも耐えるので、 実用上のエネルギー密度を大きく改善できることに なる。 Based on the above, the use of a current collector coated with a conductive ceramic as described above eliminates the need to use an unnecessarily heavy current collector base material and uses a high-density electrolytic solution. To improve the practical energy density Become.
しかし、 導電性セラミックによる表面処理を施した集電体は、 従来の鉛蓄電池 のように熟成工程における集電体と活物質との化学的な結合反応が起らず、 集電 体と活物質との密着性が劣るので、 充電中のガス発生ゃ充放電にともなう活物質 の膨張 '収縮、 あるいは外的な振動などの、 物理的な力によって、 集電体と活物 質とが剥離して極板としての機能を失ってしまうおそれがある。  However, current collectors that have been surface-treated with conductive ceramics do not undergo a chemical bonding reaction between the current collector and the active material during the aging process, unlike conventional lead-acid batteries, and the current collector and the active material do not. The current collector is separated from the active material by physical force, such as gas generation during charging, expansion and contraction of the active material due to charge and discharge, or external vibration. Therefore, there is a possibility that the function as an electrode plate is lost.
また、 エネルギー密度を高くするために、 電解液比重を高くしたり、 極板を薄 くして、 電解液の拡散を良く して、 活物質の利用率を高めることが、 耐食性を飛 躍的に向上した集電体により可能になるが、 電池重量を軽減するために集電体を 薄くして、 その体積を小さくすると、 電流が流れる部分の断面積が小さくなり、 集電体の抵抗による電圧降下が大きくなり、 活物質が不均一に利用され、 利用率 が下がるなど、 放電性能に悪影響を及ぼすことが懸念された。  In addition, increasing the specific gravity of the electrolyte or thinning the electrodes to improve the diffusion of the electrolyte and increase the utilization rate of the active material to increase the energy density dramatically increases the corrosion resistance. Although this is possible with an improved current collector, if the current collector is made thinner to reduce the weight of the battery and its volume is made smaller, the cross-sectional area of the current-carrying part becomes smaller, and the voltage due to the current collector resistance There was a concern that discharge performance would be adversely affected, for example, the drop would increase, the active material would be used unevenly, and the utilization rate would decrease.
また、 蓄電池が大型化すると、 極板から端子まで電気を流すストラップゃポ一 ルも大型化し、 重量を増す原因になる。  In addition, as the size of the storage battery increases, the size of the straps and poles that conduct electricity from the electrode plates to the terminals also increases, causing an increase in weight.
本発明は上述のような背景の下になされたものであり、 近年の薄膜製造技術に よって、 集電体基材に密着性の高い導電性セラミックの薄膜を被覆することによ つて集電体の耐食性を向上させた。 これによつて、 集電体の重量を抑えながら、 高比重の電解液の使用を可能とし、 結果として活物質の利用率が高められ、 長寿 命でエネルギー密度の高い蓄電池を実現することが出来た。さらに集電体表面に、 活物質を配し、 これを集電体面と垂直の方向に所定量の圧迫力を加え、 電気的接 触を維持し、 作用物質を配していない面をそのまま蓄電池外装の一部として、 集 電体と電池外装と接続端子の機能を兼ね備える構造を有することにより、 蓄電池 のストラップゃポールを省略することが出来る。 これによつてストラップゃポー ルの重量およびコストが省略され、 異常腐食などを起こす恐れもない、 作り方も シンプルで信頼性の高い、 安価で高性能な蓄電池とその製造方法を提供すること ができる。 ぐ発明の開示 > SUMMARY OF THE INVENTION The present invention has been made under the above-mentioned background, and a current collector is formed by coating a current collector base material with a highly adhesive conductive ceramic thin film by a recent thin film manufacturing technique. Has improved corrosion resistance. As a result, it is possible to use a high-density electrolyte while reducing the weight of the current collector, and as a result, the utilization rate of the active material is increased, and a long-life, high-energy storage battery can be realized. Was. Furthermore, an active material is placed on the current collector surface, and a predetermined amount of compressive force is applied to the current collector surface in a direction perpendicular to the current collector surface to maintain electrical contact. As a part of the exterior, it has a structure that combines the functions of the current collector, the battery exterior, and the connection terminal, so that the strap / pole of the storage battery can be omitted. As a result, the weight and cost of the strap and poles are reduced, and there is no risk of abnormal corrosion, etc., and a simple, reliable, inexpensive, and high-performance storage battery and a manufacturing method thereof can be provided. . Invention disclosure>
本発明による蓄電池用集電体は、 以下に示すことを特徴とする。  The current collector for a storage battery according to the present invention is characterized by the following.
( 1 ) 集電体基材の表面に導電性セラミックの薄膜が形成されていること。 (1) A conductive ceramic thin film is formed on the surface of the current collector base material.
(2) 気相から析出させる工程により、 前記導電性セラミックの薄膜を集電体基 材の表面に形成したこと。 (2) The conductive ceramic thin film is formed on the surface of the current collector substrate by a step of precipitating from the gas phase.
(3) 前記気相から析出させる工程がスパッ夕リング法であること。  (3) The step of depositing from the gas phase is a sputtering method.
(4) 前記気相から析出させる工程がプラズマ CVD法であること。  (4) The step of depositing from the gas phase is a plasma CVD method.
(5) 前記集電体基材を構成する材料が鉛、 鉛合金、 すず、 すず合金、 ビスマス またはビスマス合金の中から選択された金属または金属合金であること。 (5) The material constituting the current collector base material is a metal or a metal alloy selected from lead, lead alloy, tin, tin alloy, bismuth or bismuth alloy.
( 6 ) 前記集電体基材を構成する材料が導電性高分子であること。 (6) The material constituting the current collector base material is a conductive polymer.
(7) 前記導電性セラミックとして Sn02を用いること。 (7) Sn0 2 to be used as the conductive ceramic.
(8) 前記導電性セラミック Sn02に対して、 Snと Sbの合計モル数に対し て 0. 5mo l e%〜8mo l e %の範囲で S b化合物を含有せしめたこ と。 (8) with respect to the conductive ceramic Sn0 2, Sn and a range of 0. 5mo le% ~8mo le% by the total number of moles of Sb and this was for the additional inclusion of S b compound.
(9) 前記導電性セラミック S n02に対して、 S nと Fの合計モル数に対して Fを 7mo l e%〜60mo l e %の範囲で含有せしめたこと。 (9) the relative conductive ceramic S n0 2, that the additional inclusion in the scope of 7mo le% ~60mo le% of F with respect to the total number of moles of S n and F.
( 10)前記導電性セラミックとして T i S i 2、 T i5S i3、 TaS i2、 T a 5S i3、 NbS i2、 Nb5S i 3の何れかの珪素化合物を用いること。 またこれらの集電体を用いた蓄電池は以下に示すことを特徴とする。 (10) wherein T i S i 2 as conductive ceramic, T i 5 S i 3, TaS i 2, T a 5S i 3, NbS i 2, Nb 5 using any of the silicon compound S i 3. Storage batteries using these current collectors are characterized as follows.
(11) 鉛蓄電池において ( 1) 〜 (9) に示す集電体を用いること。  (11) Use the current collector described in (1) to (9) in the lead storage battery.
(12) 鉛蓄電池において (10) に示す集電体を用いること。  (12) Use the current collector specified in (10) in a lead storage battery.
(13) ( 1) 〜 ( 10)に記載の蓄電池用集電体を用いた蓄電池であって、 該集 電体の表面に活物質を配し、 集電体の面と垂直の方向に 4 X 104〜2 0 X 104P aの圧迫力を維持する構造であること。 (13) A storage battery using the current collector for a storage battery according to any one of (1) to (10), wherein an active material is disposed on a surface of the current collector, and the active material is disposed in a direction perpendicular to a surface of the current collector. X 10 4 ~2 0 X 10 4 that a structure to maintain the compressive force of P a.
(14) ( 13)に記載の蓄電池において、蓄電池用集電体の片面に正極活物質を 配し、 反対面に負極活物質を配してバイポーラ型電極を形成し、 該正極 活物質面と該負極活物質面とを対向させ、 電解液を保持するセパレー夕 を介して複数枚の該電極を積層したバイポーラ電池型構造を有すること (15) ( 13)に記載の蓄電池において、片面に活物質を配しその反対面に活物 質を配していない蓄電池用集電体を 1枚もしくは 2枚有し、 該集電体の 活物質を配していない面を、 蓄電池外装の少なくとも一部とした構造を 有すること。 (14) In the storage battery according to (13), a positive electrode active material is provided on one surface of the current collector for a storage battery, and a negative electrode active material is provided on the other surface to form a bipolar electrode. The battery has a bipolar battery type structure in which a plurality of the electrodes are stacked via a separator for holding an electrolyte with the negative electrode active material surface facing the negative electrode active material. (15) The storage battery according to (13), which has one or two current collectors for a storage battery in which the active material is provided on one side and the active material is not provided on the other side. The structure shall be such that the surface on which no active material is provided is at least part of the exterior of the storage battery.
また本発明の蓄電池の製造方法は以下に示すことを特徴とする。 The method of manufacturing a storage battery according to the present invention is characterized by the following.
(16) ( 1 1)に示す鉛蓄電池を製造する方法であって、前記導電性セラミック の被覆層の厚さ (Aミクロン) に応じて、 電解液を注液後以下の式の時 間 (T分) 以内に化成を開始すること。  (16) A method for producing a lead-acid battery as described in (11), wherein after the electrolyte is injected according to the thickness (A micron) of the conductive ceramic coating layer, the following formula is used. Start chemical formation within T minutes).
T (分) ≤ 19. 21 o g10A (ミクロン) T (min) ≤ 19.21 og 10 A (micron)
(17) ( 16)に示す鉛蓄電池の製造方法において、電解液を注液後 T分以内に 電池の電圧を 1. 0 V/セル以上の電圧に制御した状態で極板の化成を おこなうこと。  (17) In the method for manufacturing a lead-acid battery described in (16), the electrode plate is to be formed in a state where the voltage of the battery is controlled to 1.0 V / cell or more within T minutes after the electrolyte is injected. .
(18) (16) または (17)に示す鉛蓄電池の製造方法において、 化成を開始 してから少なくても 1時間以上は電池の電圧を 1. 0 V/セル以上の電 圧に制御した状態で極板の化成をおこなうこと。  (18) In the lead-acid battery manufacturing method described in (16) or (17), the battery voltage is controlled to 1.0 V / cell or more for at least one hour after the start of formation. The formation of electrode plates.
(19) (6)に示す蓄電池用集電体を用いた蓄電池の製造方法において、集電体 を熱溶着にてプラスチヅク製電池外装体と接合すること。  (19) In the method for manufacturing a storage battery using the current collector for a storage battery described in (6), the current collector is joined to a plastic battery exterior body by heat welding.
<図面の簡単な説明 > <Brief description of drawings>
第 1図は、 本発明による正極集電体の断面を示す模式図であり、  FIG. 1 is a schematic view showing a cross section of a positive electrode current collector according to the present invention,
第 2図は、 S n 02薄膜への S b添加量と膜の抵抗率との関係を示す特性図で あり、 Figure 2 is a characteristic diagram showing the relationship between S b amount and film resistivity to S n 0 2 thin film,
第 3図は、 S n02薄膜への F添加量と膜の抵抗率との関係を示す特性図であ 第 4図は、 導電性セラミック薄膜の厚さと許容抵抗率との関係を示す特性図で あり、 Figure 3 is S n0 characteristic diagram der 4 shows the relationship between the F amount and film resistivity to 2 thin film, characteristic diagram showing the relationship between the thickness and the allowable resistivity of the conductive ceramic thin film And
第 5図は、 酸化試験中の端子電圧の推移を示す特性図であり、  Fig. 5 is a characteristic diagram showing the transition of the terminal voltage during the oxidation test.
第 6図は、 酸化試験後の P b電極の腐食量を示す特性図であり、 第 7図は、 放電特性を示す特性図であり、 FIG. 6 is a characteristic diagram showing the amount of corrosion of the Pb electrode after the oxidation test. FIG. 7 is a characteristic diagram showing discharge characteristics,
第 8図は、 正極に導電性セラミックを用いた鉛蓄電池の構成の一例を示す断面 模式図であり、  FIG. 8 is a schematic cross-sectional view showing an example of the configuration of a lead-acid battery using a conductive ceramic for the positive electrode.
第 9図は、 サイクル寿命試験中の放電容量の推移を示す特性図であり、 第 1 0図は、 正極に導電性セラミックを用いた鉛蓄電池の高電圧化の一例を示 す断面模式図であり、  Fig. 9 is a characteristic diagram showing the transition of the discharge capacity during the cycle life test, and Fig. 10 is a schematic cross-sectional view showing an example of increasing the voltage of a lead-acid battery using conductive ceramic for the positive electrode. Yes,
第 1 1図は、 正極に導電性セラミックを用いた鉛蓄電池の高容量化の一例を示 す断面模式図であり、  FIG. 11 is a schematic cross-sectional view showing an example of increasing the capacity of a lead-acid battery using a conductive ceramic for the positive electrode.
第 1 2図は、 正極に導電性セラミックを用いたバイポーラ鉛蓄電池の構成を示 す断面模式図であり、  FIG. 12 is a schematic cross-sectional view showing a configuration of a bipolar lead-acid battery using a conductive ceramic for a positive electrode.
第 1 3図は、 化成制限電圧と化成後の P b〇2量との関係を示す特性図であり、 第 1 4図は、 化成制限電圧と酸化試験後の腐食層厚さとの関係を示す特性図で あり、 The first 3 figure is a characteristic diagram showing the relationship between P B_〇 2 amount after the chemical conversion and conversion limit voltage, the first 4 figures indicate the relationship between the corrosion layer thickness after the oxidation test and chemical limit voltage It is a characteristic diagram,
第 1 5図は、 注液後、 化成開始までの時間と腐食層厚さとの関係を示す特性図 であり、  Fig. 15 is a characteristic diagram showing the relationship between the time from injection and the start of chemical formation and the thickness of the corroded layer.
第 1 6図は、 S n 0 2層が溶解しない限界の S n 0 2層厚さと化成開始までの時 間との関係を示す特性図である。 The first 6 is a characteristic diagram showing the relationship between the time until S n 0 2 layer thickness and chemical starting limits which S n 0 2 layers is not dissolved.
なお、 図中の符号、 1は正極集電体基材、 2は導電性セラミック、 3は正極活 物質、 4は負極集電体、 5は負極活物質、 6はセパレー夕、 7は排気孔、 8はプ ラスチック製電池外装体、 9は接続板、 1 0はバイポーラ電極である。  Reference numerals in the figure, 1 denotes a positive electrode current collector base material, 2 denotes a conductive ceramic, 3 denotes a positive electrode active material, 4 denotes a negative electrode current collector, 5 denotes a negative electrode active material, 6 denotes a separator, and 7 denotes an exhaust hole. Reference numeral 8 denotes a plastic battery case, 9 denotes a connection plate, and 10 denotes a bipolar electrode.
<発明を実施するための最良の形態 > <Best mode for carrying out the invention>
以下、 実施例を参考にしながら、 本発明を更に詳細に説明する。  Hereinafter, the present invention will be described in more detail with reference to examples.
[実施例 1 ]  [Example 1]
図 1は、 本発明による正極集電体の断面を示す図であり、 1は集電体基材であ り低融点金属である鉛を用いている、 2は導電性セラミック (S n 0 2 ) である。 薄膜の製膜は、 作製しょうとする材料と同じ組成 (S n 0 2 ) のターゲッ トを用 いて、 0 . 7 5 P aの A rガス雰因気中で R Fスパッタリング装置を用いておこ なった。製膜時の基材温度は 120°Cであり、鉛の融点 327°Cに比べ充分低い。 本例では基材に鉛を用いたが、 鉛合金、 すず、 すず合金、 ビスマスまたはビスマ ス合金のような融点が低く、 これまで被覆が困難とされていた材料であっても、 同構造の集電体が得られた。 FIG. 1 is a diagram showing a cross section of a positive electrode current collector according to the present invention, wherein 1 is a current collector base material using lead which is a low melting point metal, and 2 is a conductive ceramic (SnO 2). ). Film of the thin film, and have use a target having the same composition as the material to be cane prepared (S n 0 2), 0 . 7 5 keep using the RF sputtering apparatus in A r gas cut ink in P a became. The substrate temperature during film formation was 120 ° C, which is sufficiently lower than the melting point of lead of 327 ° C. In this example, lead was used as the base material.However, even if the material had a low melting point, such as lead alloy, tin, tin alloy, bismuth or bismuth alloy, and had been considered difficult to coat, the same structure was used. A current collector was obtained.
図 2は製膜した薄膜の抵抗率を測定した結果を示す図であり、 Sn02に S b を含有した膜は抵抗率がより低くなつていることがわかる。 また S b含有量は S nと S bの合計モル数に対して 0. 5mo l e%〜8mo l e%の範囲で良好な 比抵抗が小さい膜が得られた。 FIG. 2 is a diagram showing the result of measuring the resistivity of the formed thin film, and it can be seen that the film containing Sb in SnO 2 has a lower resistivity. Also, when the Sb content was in the range of 0.5 mole% to 8 mole% with respect to the total number of moles of Sn and Sb, a good film having low specific resistance was obtained.
図 3は S bのかわりに Fを含有した薄膜の抵抗率を測定した結果を示す図であ り、 Fを含有した膜も同様に抵抗率がより低くなつていることがわかる。 また F 含有量は S nと Fの合計モル数に対して 7 mo l e%〜60mo l e%の範囲で 良好な比抵抗が小さい膜が得られた。  FIG. 3 shows the result of measuring the resistivity of a thin film containing F instead of Sb. It can be seen that the film containing F also has a lower resistivity. The F content was in the range of 7 mole% to 60 mole% with respect to the total number of moles of Sn and F, and a good film with low specific resistance was obtained.
図 4は薄膜の膜厚と許容抵抗率との関係を調べた結果を示す特性図であり、 本 図においては、 電流密度 10 OmAZcm2で電圧降下 1 mV以下となる条件で 示している。 これは実用的な蓄電池では 1 C A以上 (C:定格容量) に相当する 電流密度であり、 1 mV以下の電圧降下であれば放電性能には殆ど影響しない。 これらの図から、 Sn02の膜厚は, 100ミクロン以下であれば電池性能へ の影響はないと言える。 また、 S bや Fを含有した膜であればより電圧降下を抑 えられ、 より膜厚を厚くして導電性セラミックの被覆膜のピンホールなどの欠陥 を少なくして信頼性を高めることが可能である。 FIG. 4 is a characteristic diagram showing the result of examining the relationship between the thickness of the thin film and the allowable resistivity. In this figure, the current density is 10 OmAZcm 2 and the voltage drop is 1 mV or less. This is a current density equivalent to 1 CA or more (C: rated capacity) in a practical storage battery, and a voltage drop of 1 mV or less has little effect on discharge performance. From these figures, Sn0 2 film thickness, it can be said that there is no influence on the battery performance if 100 microns or less. In addition, if the film contains Sb or F, the voltage drop can be further suppressed, and the film thickness can be increased to reduce defects such as pinholes in the conductive ceramic coating film, thereby improving reliability. Is possible.
鉛およびチタンを集電体基材に用い、 その上に膜厚 15 zmの S n 02の薄膜 を上述したスパッタリングにて形成させた電極と、 被覆しない電極を準備し、 そ の上にそれそれ鉛蓄電池用のペースト状活物質を塗布し、通常の化成をおこない、 電解液である硫酸の比重が 1. 280になるように調整した後、 20mA/cm 2の定電流にてアノード酸化試験をおこなった。 試験中の電圧推移を図 5に示す。 被覆しなかったチタン基材の電極は基材表面が不働態化したため、 早期に著し く高い抵抗を示し、 電極として機能が維持できなくなってしまった。 Sn02で 被覆した T i電極は、 600時間酸化試験を行っても全く電圧挙動に問題はなく、 試験後に解体調査しても S ηθ 2層の劣化なども見られなかった。 一方、 Pb基 材の電極は、 被覆なしでも、 機能が短期間で維持できなくなるということはなか つた。 しかし、 被覆していないために基材である鉛の腐食が著しかった。 Lead and titanium using the current collector substrate, prepared on the electrode a thin film of S n 0 2 having a thickness of 15 zm was formed by the above-mentioned sputtering thereon, the electrode not covered, it on its applying it paste active material for a lead storage battery is subjected to ordinary chemical conversion, after the specific gravity of an electrolyte sulfuric acid was adjusted to 1. 280 anode oxidation test at a constant current of 20 mA / cm 2 Was done. Figure 5 shows the voltage transition during the test. Uncoated titanium-based electrodes showed remarkably high resistance at an early stage due to passivation of the substrate surface, and could not maintain their function as electrodes. Sn0 T i electrodes coated with 2 had no problem at all to the voltage behavior even if 600 hours oxidation test, Even after disassembly inspection after the test, no deterioration of the S ηθ 2 layer was observed. On the other hand, Pb-based electrodes could not maintain their function in a short time without coating. However, since it was not coated, lead, the base material, was significantly corroded.
図 6は図 5にて 600 hアノード酸化試験をおこなった後で測定した鉛電極の 腐食量を示した図であるが、 被覆ありのものは被覆なしのものに比べ、 腐食量が 著しく少ないことが分る。  Fig. 6 shows the amount of corrosion of the lead electrode measured after 600 hours of anodic oxidation test in Fig. 5. I understand.
図 7は P bが集電体基材の場合で被覆ありと被覆なしの電極で電流密度を変え て放電したときの放電特性を示す図であり、 被覆ありと被覆なしでは、 放電性能 に被覆膜の抵抗による電圧降下の影響などによる差はなかった。  Figure 7 is a graph showing the discharge characteristics when the current density was changed between the coated and uncoated electrodes when Pb was the current-collector base material. There was no difference due to the effect of the voltage drop due to the resistance of the covering film.
また、今回は、 Sn02を Pb集電体表面にスパッタリングにより形成させた電 極を用いたが、 T i S i2、 T i5S i3、 TaS i2、 Ta5S i3、 NbS i2、 Nb 5 S i 3の何れかの珪素化合物を P b表面にスパッ夕リングにより 10ミク ロンの厚さの薄膜を形成させた電極も準備し、 上述のような試験を行ったが、 S n02で被覆した場合と同じく、 ほとんど腐食せず、 耐食性に著しい効果があり、 放電性能に差もなかった。 Also, this time, Sn0 2 and was used electrodes which were formed by sputtering Pb collector surface, T i S i 2, T i 5 S i 3, TaS i 2, Ta 5 S i 3, NbS i 2, Nb 5 S i either silicon compound 3 P b surface sputtering evening also to form a thin film having a thickness of the electrode of 10 microns was prepared by the ring, has been tested as described above, as with coated with S n0 2, little corrosion, there is a significant effect on the corrosion resistance, the difference was also not in discharge performance.
なお、 今回の実施例ではスパッタリング法を用いたが、 技術的にはプラズマ C VD法を用いても同等の効果が得られる。  Although the sputtering method is used in the present embodiment, the same effect can be technically obtained by using the plasma CVD method.
[実施例 2 ] [Example 2]
10ミクロン厚さの Sn02を、 スパッタリングにて 0. 5mm厚さの Pbシ ート表面に形成させた正極集電体の表面に、 鉛電池用正極ペーストを塗布し、 負 極には通常の P bシートの上に負極ペーストを塗布し、 極板の間にリテーナ式シ ール鉛電池用のガラスマツ トセパレー夕を種種の圧迫力で組み立て、 その後定法 に従い電解液である硫酸を注液し,通電(化成) を行い、 表 1に示す電池を組み立 て、 約 0. 25 Ah容量のシール鉛電池を作製した。本電池は図 7に示すように、 両極の集電体の活物質を配してない面は電池外装の一部をかねており、 電流を取 り出すための端子としての役割も兼ねている。 比較として S n〇2を形成させて いない Pbシートをそのまま用いた従来のシール鉛電池も製作し、試験に供した。 表 1 試験電池 10 micron thick Sn0 2, to the surface of the 0. 5 mm thickness of Pb sheet over preparative formed on the surface so the positive electrode current collector by sputtering, by applying a positive electrode paste for a lead battery, typically of the negative electrode A negative electrode paste is applied on the Pb sheet, and a glass mat separator for a retainer-type sealed lead battery is assembled between the electrodes with various types of pressing force. The battery shown in Table 1 was assembled to produce a sealed lead battery with a capacity of about 0.25 Ah. As shown in Fig. 7, the surface of the current collector of both electrodes where the active material is not disposed serves as a part of the battery exterior, and also serves as a terminal for extracting current. The Pb sheet not form a S N_〇 2 as compared also manufactured a conventional sealed lead battery is used as it is, and subjected to the test. Table 1 Test batteries
Figure imgf000012_0001
これらの電池を、 室温にて 0. 6 C A電流で 1時間放電し、 0. 2 C A電流で 4. 1 h充電するパターンの充放電サイクル試験に供した。 寿命試験中の放電容 量の推移を図 8に示す。
Figure imgf000012_0001
These batteries were discharged at room temperature with a current of 0.6 CA for 1 hour, and subjected to a charge / discharge cycle test of a pattern of charging for 4.1 hours with a current of 0.2 CA. Figure 8 shows the change in discharge capacity during the life test.
従来のシール鉛電池は、 約 500サイクルで寿命に達したが、 本発明の 40〜 200 kP aで圧迫したシール鉛電池はいずれも 800サイクル時点でほとんど 容量の低下がなかった。 しかし、 圧迫力が低い (20kPa) Aセルは、 100 サイクルと非常に早く容量が低下した。 解体したところ、 正極活物質が集電体か ら剥離していたので、 圧迫力が低いために、 サイクル中に集電体と活物質の界面 の抵抗および電池の内部抵抗が高くなつたために早期に容量が低下したものと思 われる。 また、 40 OkPaともつとも高圧迫にして作製したシール鉛電池 Eセ ルは 300サイクルで容量が低下したが、 解体したところ, 活物質がガラスマツ 卜の中に侵入し、 短絡が起こっていた。 圧迫が強すぎるたために、 活物質である Pb〇2粒子あるいは P b粒子が、 セパレ一夕の小さな孔の中にまで侵入してい つたものと思われる。 The conventional sealed lead battery reached its life in about 500 cycles, but the capacity of the sealed lead battery of the present invention, which was compressed at 40 to 200 kPa, did not decrease at 800 cycles. However, the capacity of the A cell with low compression force (20 kPa) decreased very quickly at 100 cycles. When disassembled, the positive electrode active material was separated from the current collector, so the compression force was low, and the resistance at the interface between the current collector and the active material and the internal resistance of the battery increased during the cycle. It is considered that the capacity decreased. In addition, the capacity of the sealed lead battery E-cell manufactured at a high pressure of 40 OkPa decreased after 300 cycles, but when disassembled, the active material penetrated into the glass mat and a short circuit occurred. For compression was too strong, is Pb_〇 2 particles or P b particles as an active material, it seems to have One been penetrate into the small pores of the separator Isseki.
以上の結果から、 Pbを基材とする集電体表面に Sn02を形成させ、 その上に 活物質をつけた正極板は、 従来の Sn02を被覆しない鉛の集電体を正極に用い た場合 Pbは表面が酸化され正極活物質である P b 02と化学的に結合するが、 これ比べ表面に S n02を形成させた集電体と活物質との密着性が良くないため、 圧迫力を高くする必要があること、 そしてその圧迫力も高すぎると短絡が起こつ てしまうため、 圧迫力は 40〜200 kP aに制限する必要がある。 From the above results, Pb and to form a Sn0 2 on the collector surface as a base material, the positive electrode plate carrying thereon an active material thereon, with a current collector lead that does not cover the conventional Sn0 2 in the positive electrode Pb surface is coupled to P b 0 2 chemically a positive electrode active material is oxidized if, but for this than the surface S n0 2 is poor adhesion between to form the current collector and the active material However, the compression force needs to be increased, and if the compression force is too high, a short circuit will occur. Therefore, the compression force must be limited to 40 to 200 kPa.
本実施例では、 活物質を集電体に塗布してなる正極板を使用したが、 あらかじ め別途作製した活物質のペレッ トを準備しておき、 集電体に所定の圧力で当接し ても、 結果は同じであった。 In this example, the positive electrode plate formed by applying the active material to the current collector was used. Even if a pellet of the active material separately prepared was prepared and the collector was brought into contact with the current collector at a predetermined pressure, the result was the same.
また、 本実施例では、 S n02を耐食性被覆としての導電性セラミックに用いた が、 実施例 1で示した T i S i 2、 T i5S i3、 TaS i2、 Ta5S i3、 Nb S i2、 Nb5S i3の何れかの珪素化合物の場合でも活物質との密着が悪く、 必 要な圧迫力は S n02の場合と同じであった。 Further, in the present embodiment uses the S n0 2 to electrically conductive ceramic as a corrosion resistant coating, T i S i 2, T i 5 S i 3 shown in Example 1, TaS i 2, Ta 5 S i 3, Nb S i 2, Nb 5 S i adhesion is poor between the active material even if any of the silicon compound 3, required compression force was the same as for S n0 2.
なお、 本実施例では図 8に示す 2 V電池を製作したが、 図 10および図 1 1に 示すように、 2 V電池を積層して高い電圧あるいは高容量のモジュール電池を作 製することは容易である。 この電池では従来の鉛電池で高電圧化の際に必要であ つた極板群上部での鉛合金同士の溶接や結線などの手間はほとんどいらなくなる c このため製造および部品コストを安くすることができ、 またこの接続部での電圧 降下がないため高い出力性能が得られる。 とともに、 接続部の重量を減少するこ とも可能になる。 In this example, the 2V battery shown in FIG. 8 was manufactured. However, as shown in FIGS. 10 and 11, it is not possible to stack a 2V battery to manufacture a high-voltage or high-capacity module battery. Easy. Be in this cell for cheaper almost becomes c Thus manufacturing and parts costs not need a trouble of welding or connection of lead alloy each other at the required der ivy electrode plate group upper when a high voltage in a conventional lead battery And high output performance can be obtained because there is no voltage drop at this connection. At the same time, the weight of the connection can be reduced.
そして、 本発明の導電性セラミック被覆を施した集電体を正極に用いるという 技術を使用すれば、 基本的に集電体の腐食がないために、 バイポーラ電池の実現 も可能である。 バイポーラ電池とは、 図 12に示すように、 1枚の集電体の両面 に正極および負極の活物質を塗布し、 この極板をセパレー夕を介して多数枚積層 することにより作製できる、 高電圧用途向けの電池である。 このような 1枚の極 板で正極 ·負極活物質を有する極板を用いた電池をバイポーラ電池と呼ぶ。 この 電池でも、 従来は正極集電体が腐食によって短寿命となるので、 寿命を延ばすた めには極板が厚く重くなりエネルギー密度が低かった。 そして多数セルを接続す るのに極板群の上部で鉛合金同士を溶接したり、 結線するなどの手間がかかって いた。 しかし、 本発明による蓄電池では、 正極板が腐食しないので軽くて薄い極 板が使用でき、 その薄い集電体の面積の広い集電体面の垂直方向に対して電流が 流れることになるので、 集電体が薄くてもそれが薄いほど厚さ方向に流れる電流 の電圧降下が小さくなり、 集電体を軽く しても出力性能が低下しない。 そしてそ のセルを順番に重ねるだけで高電圧化が可能であるので、 溶接や結線は全く不要 である。 すなわち、 本発明の技術を用いてバイポーラ電池を作製することができ れば、 非常に安価で長寿命かつ高エネルギー密度な電池を供給できることになる のである。 If the current collector coated with a conductive ceramic according to the present invention is used for the positive electrode, a bipolar battery can be realized because the current collector basically does not corrode. As shown in Fig. 12, a bipolar battery can be manufactured by applying a positive electrode and a negative electrode active material to both sides of a single current collector and stacking a large number of these electrode plates through a separator. Battery for voltage applications. A battery using such a single electrode plate having a positive electrode / negative electrode active material is called a bipolar battery. Conventionally, the positive electrode current collector also had a short life due to corrosion in this battery. Therefore, in order to extend the life, the electrode plate was thick and heavy, and the energy density was low. In order to connect a large number of cells, it took time and effort to weld and connect the lead alloys at the top of the electrode group. However, in the storage battery according to the present invention, since the positive electrode plate does not corrode, a light and thin electrode plate can be used, and a current flows in the vertical direction of the current collector surface having a large area of the thin current collector. Even if the current collector is thin, the thinner the current collector, the smaller the voltage drop of the current flowing in the thickness direction, and the lighter the current collector, the lower the output performance. High voltage can be achieved simply by stacking the cells in order, so there is no need for welding or wiring. That is, a bipolar battery can be manufactured using the technology of the present invention. This would make it possible to supply very inexpensive, long-life, high-energy-density batteries.
[実施例 3] [Example 3]
これまで我々が実験してきた結果、集電体表面に形成させた Sn02層は、 1. 0V以下の電圧になると、 硫酸中に溶出してしまうことがわかった。 鉛蓄電池製 造中にその電位になるのは極板の化成初期である。 鉛蓄電池の極板は硫酸注液後 0V〜0. 5 Vの非常に低い電圧を示す。 Previously result we have experimented, the Sn0 2 layer was formed on the current collector surface, 1. become a voltage less than 0V, it was found that would eluted in the sulfuric acid. This potential is reached during the initial formation of the electrode plates during the manufacture of lead-acid batteries. The electrode plate of the lead storage battery shows a very low voltage of 0 V to 0.5 V after sulfuric acid injection.
本発明では、 硫酸注入後、 直ちに電池の電圧を 1. 0V以上にすることにより、 集電体表面の S n02の溶出を抑制できた。 In the present invention, after the injection sulfate, immediately by the voltage of the battery above 1. 0V, it can suppress the elution of S n0 2 of the current collector surface.
一方、 高い電圧で化成すると S n02の表面で化成中にガス発生が起こり、活物 質と集電体との密着性が失われ、 電池の内部抵抗が高くなる。 本発明では、 化成 初期 1時間の電圧を 2 V以下に制限する事により、 S n02と活物質との密着性 を維持できることがわかった。 On the other hand, when formation is performed at a high voltage, gas is generated during the formation on the surface of the SnO 2 , and the adhesion between the active material and the current collector is lost, and the internal resistance of the battery increases. In the present invention, by limiting the voltage of the conversion initial 1 hour below 2 V, it was found to be maintained the adhesion to the S n0 2 and the active material.
まず、 厚さ 0. 5 mmの純 P bシートの表面に S n 02をスパッタリングにて 種々の厚さに形成した後、 通常の鉛電池用活物質を塗布して正極板を作製した。 この極板を、 通常の鉛電池用負極板およびシール鉛電池用の微細ガラス繊維セパ レー夕と組み合わせて、 約 0. 25 Ah容量の鉛電池を製作した。比較のために、 Pbシート表面に Sn02を形成させていない従来の鉛電池用正極板を用いた従 来型鉛電池を製作し、 試験に供した。 First, after forming the S n 0 2 to various thicknesses by sputtering the pure P b sheet surface of thick 0. 5 mm, and the active material for the conventional lead battery to prepare a by coating the positive electrode plate. This electrode plate was combined with a negative electrode plate for a normal lead battery and a fine glass fiber separator for a sealed lead battery to produce a lead battery with a capacity of about 0.25 Ah. For comparison, to prepare a Traditional lead battery using the positive electrode plate for a conventional lead battery which is not to form a Sn0 2 to Pb sheet surface was subjected to the test.
これらの電池を、 電解液注入後化成までの時間および電圧を種々変えて化成を おこない、 化成後の Pb02量を測定した後、 0. 05 C A電流で 120時間ァ ノード酸化試験をおこない、 試験後の腐食量を測定し、 比較した。 試験電池の内 容を表 2に示す。 These batteries, conducted various varied chemical conversion time and voltage until after electrolyte injection Kasei, after measuring the Pb0 2 amount after the chemical conversion, in 0. 05 CA current performed 120 hours § nodes oxidation test, the test The amount of corrosion afterwards was measured and compared. Table 2 shows the test battery contents.
なお、 化成は 2ステップでおこなつており、 第 1ステップが、 電圧を制限した 化成である。 表 2 試験条件および試験電池の内容 The formation is performed in two steps, and the first step is the formation in which the voltage is limited. Table 2 Test conditions and test battery contents
Figure imgf000015_0001
試験の結果を以下に示す。 まず、 10ミクロンの Sn02層を表面に形成させた 正極板を用いた電池で、 第 1化成の電圧 ·時間を変えた場合の、 化成後の PbO 2量および厚さを図 13および図 14に示す。 なお本試験では注液後化成開始ま での時間はいずれも 0分である。 図 12から、 第 1化成の電圧は 2 V以下にした 場合に P b 02量が多かった。 2 Vをこえる電圧の場合に P b 02量が少なかった のは、 化成初期の電圧が高すぎると、 Pbシート表面の Sn02と活物質との界 面でガス発生が激しいため化成効率が低下しているためと思われる。 また、 この 第 1化成時間は 1時間以上にした場合に、 PbO 2量が多かった。
Figure imgf000015_0001
The test results are shown below. First, in a battery using a positive electrode plate with an Sn0 2 layers of 10 microns is formed on the surface, when changing the voltage and time of the first chemical, the PbO 2 amount and thickness after conversion 13 and 14 Shown in In this test, the time from the start of injection to the start of chemical formation was 0 min. From Figure 12, the voltage of the first chemical conversion was often P b 0 2 quantity when below 2 V. The P b 0 2 quantity when the voltage exceeds 2 V was small, when chemical conversion initial voltage is too high, the conversion efficiency for gas generating intense in the field plane of the Sn0 2 and the active material of Pb seat surface It seems that it is decreasing. Also, when the first formation time was set to 1 hour or more, the amount of PbO 2 was large.
図 13の酸化試験後の腐食厚さの測定結果から、 第 1化成電圧を IVよりも低 くすると、 S n02層の溶解がおこるためか、 腐食層の厚さは S n02を集電体表 面に形成させていない従来鉛電池の場合と同じであつたが、 IV以上の電圧で化 成すれば、 ほとんど腐食は起こっていなかった。 The measured corrosion thickness after the oxidation test in Fig. 13 indicates that if the first formation voltage is lower than IV, the Sn0 2 layer may be melted, and the corrosion layer thickness is Sn0 2 This was the same as a conventional lead battery that was not formed on the body surface. However, when formed at a voltage of IV or higher, almost no corrosion occurred.
以上の結果より、第 1化成の電圧は 1 V以上にすべきこと、 さらに P b 02量を 向上させるには電圧を 2 V以下にし、 時間を 1時間以上にすべきであることがわ かった。 次に、 第 1化成を 1 Vx 5 hの条件でおこなった場合において、 Sn02層厚 さおよび注液から化成開始までの時間と、 酸化試験における腐食層の厚さの関係 を図 1 5に示す。 図から、 S n〇2層を厚く して、 注液後化成開始までの時間が 短い場合には酸化試験において腐食はほとんど起こっていなかった。 一方、 S n 〇2層が薄い場合や注液後化成開始までの時間が長い場合には、 酸化試験後の腐 食が多くなつた。 腐食量が少なくなる条件を明らかにするために、 腐食の少ない 限界の化成開始時間を S n 0 2層厚さに対し、 図 1 6にプロッ トしなおした。 こ の図から、 化成中に S n〇2層の溶解を抑制して耐食性能を向上させるには、 S n〇2の被覆層厚さ (Aミクロン) に応じて、 電解液を注液後、 以下の式の時間 ( T分) 以内に化成を開始すればよい。 From the above result, the voltage of the first chemical conversion it should be more than 1 V, to further improve the P b 0 2 amount to a voltage below 2 V, it should be the time to 1 hour or more Kotogawa won. Next, when the first chemical conversion was performed under the conditions of 1 Vx 5 h, the relationship between the thickness of the Sn0 2 layer and the time from injection to the start of chemical formation, and the thickness of the corroded layer in the oxidation test Is shown in Figure 15. From the figure, when the Sn 2 layer was thickened and the time from the injection to the start of chemical formation was short, almost no corrosion occurred in the oxidation test. On the other hand, when the Sn 2 layer was thin or when the time until the start of chemical conversion after injection was long, corrosion after the oxidation test increased. In order to clarify the conditions under which the amount of corrosion is reduced, the critical formation start time with less corrosion was plotted again in Fig. 16 against the Sn0 2 layer thickness. From this figure, it can be seen that in order to suppress the dissolution of the Sn 2 layer during chemical formation and improve the corrosion resistance, the electrolyte is injected after the injection according to the thickness of the Sn 2 coating layer (A micron). The formation should be started within the time (T minutes) of the following formula.
T (分) < 1 9 . 2 1 o g 10A (ミクロン) なお、 これまでの実施例では、 いずれも正極集電体の基材に金属の P bあるい は T iを用いたが、 必ずしも金属である必要はなく、 導電フィラーを添加した導 電性高分子を用いてもよい。 同時に負極集電体にも導電フィラーを添加した導電 性高分子を用いれば、 正負極をプラスチック製電池外装体と熱溶着にて接合する ことにより蓄電池を組み立てることができるので、 接着剤が不要になり、 さらに 安価なシール鉛電池の実用化が可能になる。 ぐ産業上の利用可能性 > T (min) <19.2 21 og 10 A (micron) In all of the above examples, metal Pb or Ti was used for the base material of the positive electrode current collector, but not necessarily. It does not need to be metal, and a conductive polymer to which a conductive filler is added may be used. At the same time, if a conductive polymer with a conductive filler added is used for the negative electrode current collector, the storage battery can be assembled by joining the positive and negative electrodes to the plastic battery outer package by heat welding, eliminating the need for an adhesive. Thus, it becomes possible to commercialize a cheaper sealed lead battery. Industrial applicability>
以上のように、 本発明による導電性セラミック被覆処理を施した集電体とそれ を用いた接続部品のいらない、 所定必要量の圧迫力を維持した蓄電池によれば、 従来の耐食性導電材料の薄膜を被覆した電極のように、 組立コス卜が高くなつて しまったり、集電体と活物質との密着性が悪くなり機能を維持できなくなる問題、 あるいは、 これまでの鉛蓄電池が抱えていた様々の問題点を解決し、 耐食性に優 れた軽くて薄い鉛蓄電池用正極集電体および長寿命でエネルギー密度が高く、 か つ信頼性も高くてコス卜が安い高性能な鉛蓄電池を安価で提供できるため、 その 工業的な価値は極めて大きい。  As described above, according to the current collector subjected to the conductive ceramic coating treatment according to the present invention and the storage battery maintaining a predetermined required amount of compressive force without the use of connecting parts using the same, the conventional thin film of the corrosion-resistant conductive material is used. The problem is that the assembly cost is high, as in the case of an electrode coated with aluminum, the adhesion between the current collector and the active material is poor, and the function cannot be maintained, or various problems that lead-acid batteries have And a light and thin lead-acid current collector for lead-acid batteries with excellent corrosion resistance and a high-performance lead-acid battery with long life, high energy density, high reliability and low cost Since it can be provided, its industrial value is extremely large.

Claims

請 求 の 範 囲 The scope of the claims
1. 集電体基材の表面に導電性セラミツクの薄膜が形成されたことを特徴とす る蓄電池用集電体。 1. A current collector for a storage battery, wherein a thin film of conductive ceramic is formed on the surface of a current collector base material.
2. 気相から析出させる工程により、 前記導電性セラミックの薄膜を集電体基 材の表面に形成したことを特徴とする請求の範囲第 1項記載の蓄電池用集電体。  2. The current collector for a storage battery according to claim 1, wherein the thin film of the conductive ceramic is formed on a surface of the current collector base by a step of precipitating from a gas phase.
3. 前記気相から析出させる工程がスパッ夕リング法であることを特徴とする 請求の範囲第 2項記載の蓄電池用集電体。 3. The current collector for a storage battery according to claim 2, wherein the step of precipitating from the gas phase is a sputtering method.
4. 前記気相から析出させる工程がプラズマ CVD法であることを特徴とする 請求の範囲第 2項記載の蓄電池用集電体。  4. The current collector for a storage battery according to claim 2, wherein the step of depositing from the gas phase is a plasma CVD method.
5. 前記集電体基材を構成する材料が鉛、 鉛合金、 すず、 すず合金、 ビスマス またはビスマス合金の中から選択された金属または金属合金であることを特徴と する請求の範囲第 1〜4項のいずれか 1項記載の蓄電池用集電体。  5. The material according to claim 1, wherein the material constituting the current collector base material is a metal or metal alloy selected from lead, lead alloy, tin, tin alloy, bismuth or bismuth alloy. 5. The current collector for a storage battery according to any one of the items 4 to 4.
6. 前記集電体基材を構成する材料が導電性高分子であることを特徴とする請 求の範囲第 1〜 4項のいずれか 1項記載の蓄電池用集電体。  6. The current collector for a storage battery according to any one of claims 1 to 4, wherein a material constituting the current collector base material is a conductive polymer.
7. 前記導電性セラミックとして S n02を用いた請求の範囲第 1〜6項のい ずれか 1項記載の蓄電池用集電体。 7. The electrically conductive ceramic as S n0 2 the battery current collector stomach Zureka 1 wherein the range of the first to sixth preceding claims using.
8. 前記導電性セラミック Sn02に対して、 S nと Sbの合計モル数に対して 0. 5mo l e%〜8mo l e%の範囲で Sb化合物を含有せしめたことを特徴 とする請求の範囲第 7項記載の蓄電池用集電体。 8. respect to the conductive ceramic Sn0 2, the scope of the claims, characterized in that for the additional inclusion of Sb compound in the range of 0. 5mo le% ~8mo le% relative to the total number of moles of S n and Sb Item 7. A current collector for a storage battery according to Item 7.
9. 前記導電性セラミック Sn02に対して、 Snと Fの合計モル数に対して 7mo l e%〜60mo l e %の範囲で Fを含有せしめたことを特徴とする請求 の範囲第 7または 8項記載の蓄電池用集電体。 9. respect to the conductive ceramic Sn0 2, Sn and F 7mo le% ~60mo range 7 or 8 the preceding claims, characterized in that for the additional inclusion of F in the range of le% relative to the total number of moles of The current collector for a storage battery according to the above.
10. 前記導電性セラミックとして T i S i 2、 T i 5S i 3、 T aS i 2、 T a 5S i3、 Nb S i 2、 Nb5S i 3の何れかの珪素化合物を用いた請求の範囲第 1 〜 6項のいずれか 1項記載の蓄電池用集電体。 10. use the T i S i 2 as conductive ceramic, T i 5 S i 3, T aS i 2, T a 5 S i 3, Nb S i 2, any of the silicon compounds of Nb 5 S i 3 The current collector for a storage battery according to any one of claims 1 to 6, wherein
1 1. 請求の範囲第 1〜9項のいずれか 1項に記載の蓄電池用集電体を用いた 鉛蓄電池。 1 1. A lead storage battery using the current collector for a storage battery according to any one of claims 1 to 9.
1 2 . 請求の範囲第 1 0項に記載の蓄電池用集電体を用いた鉛蓄電池。 12. A lead storage battery using the current collector for a storage battery according to claim 10.
1 3 . 請求の範囲第 1〜 1 0項のいずれか 1項に記載の蓄電池用集電体を用い た蓄電池であって、 該集電体の表面に活物質を配し、 集電体面と垂直方向に 4 X 1 0 4〜2 0 X 1 0 4 P aの圧迫力を維持する構造を特徴とする蓄電池。 13. A storage battery using the current collector for a storage battery according to any one of claims 1 to 10, wherein an active material is disposed on a surface of the current collector, and a surface of the current collector is provided. storage battery, characterized in structure to maintain the compression force of 4 X 1 0 4 ~2 0 X 1 0 4 P a in the vertical direction.
1 4 . 前記蓄電池において、 蓄電池用集電体の片面に正極活物質を配し、 反対 面に負極活物質を配してバイポーラ型電極を形成し、 該正極活物質面と該負極活 物質面とを対向させ、 電解液を保持するセパレー夕を介して複数枚の該電極を積 層したバイポーラ電池型構造を有することを特徴とする請求の範囲第 1 3項記載 の蓄電池。  14. In the storage battery, a positive electrode active material is provided on one surface of a current collector for a storage battery, and a negative electrode active material is provided on the opposite surface to form a bipolar electrode. The positive electrode active material surface and the negative electrode active material surface 14. The storage battery according to claim 13, wherein the storage battery has a bipolar battery type structure in which a plurality of the electrodes are stacked via a separator holding an electrolyte.
1 5 . 前記蓄電池において、 片面に活物質を配しその反対面に活物質を配して いない蓄電池用集電体を 1枚もしくは 2枚有し、 該集電体の活物質を配していな い面を、 蓄電池外装の少なくとも一部とした構造を有することを特徴とする請求 の範囲第 1 3項記載の蓄電池。  15. The storage battery has one or two current collectors for a storage battery on which an active material is provided on one side and no active material is provided on the other side, and the active material of the current collector is provided. 14. The storage battery according to claim 13, wherein the storage battery has a structure in which the non-surface is at least part of a storage battery exterior.
1 6 . 請求の範囲第 1 1項に記載の鉛蓄電池を製造する方法であって、 前記導 電性セラミックの被覆層厚さ (Aミクロン) に応じて、 電解液を注液後以下の式 の時間 (T分) 以内に化成を開始する事を特徴とした、 鉛蓄電池の製造方法。  16. The method for producing a lead-acid battery according to claim 11, wherein the electrolyte is injected according to the following formula according to the thickness of the conductive ceramic coating layer (A micron). A method for producing lead-acid batteries, characterized in that chemical formation starts within the time (T minutes).
T (分) ≤ 1 9 . 2 1og 1 0 A (ミクロン) T (min) ≤ 19.2 1og 10 A (micron)
1 7 . 請求の範囲第 1 6項記載の鉛蓄電池の製造方法において、 電解液を注液 後 T分以内に電池の電圧を 1 . 0 VZセル以上の電圧に制御した状態で極板の化 成をおこなうことを特徴とする鉛蓄電池の製造方法。  17. The method for manufacturing a lead-acid battery according to claim 16, wherein the voltage of the battery is controlled to a voltage equal to or higher than 1.0 VZ cell within T minutes after injecting the electrolyte, and the electrode plate is formed. A method for producing a lead storage battery, comprising:
1 8 . 請求の範囲第 1 6または 1 7項に記載の鉛蓄電池の製造方法において、 化成を開始してから少なくても 1時間以上は電池の電圧を 2 . 0 V以下の電圧に 制御した状態で極板の化成をおこなうことを特徴とする鉛蓄電池の製造方法。 18. The method for producing a lead storage battery according to claim 16 or 17, wherein the voltage of the battery is controlled to a voltage of 2.0 V or less for at least one hour after the start of the formation. A method for producing a lead storage battery, comprising forming an electrode plate in a state.
1 9 . 請求の範囲第 6項に記載の蓄電池用集電体を用いた蓄電池の製造方法に おいて、 集電体を熱溶着にてプラスチック製電池外装体と接合することを特徴と する蓄電池の製造方法。 19. The method for manufacturing a storage battery using the current collector for a storage battery according to claim 6, wherein the current collector is joined to a plastic battery exterior body by heat welding. Manufacturing method.
PCT/JP2000/003145 1999-05-18 2000-05-17 Collector for storage battery, storage battery comprising the same, and method for manufacturing the storage battery WO2000070696A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE10081688T DE10081688T1 (en) 1999-05-18 2000-05-17 Storage battery collector, storage battery comprising the same, and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP13787699 1999-05-18
JP11/137876 1999-05-18

Publications (1)

Publication Number Publication Date
WO2000070696A1 true WO2000070696A1 (en) 2000-11-23

Family

ID=15208771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/003145 WO2000070696A1 (en) 1999-05-18 2000-05-17 Collector for storage battery, storage battery comprising the same, and method for manufacturing the storage battery

Country Status (2)

Country Link
DE (1) DE10081688T1 (en)
WO (1) WO2000070696A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335206A (en) * 2006-06-14 2007-12-27 Nissan Motor Co Ltd Bipolar battery
JP2008098159A (en) * 2006-09-14 2008-04-24 Gs Yuasa Corporation:Kk Cathode collector, manufacturing method of cathode collector and lead storage battery using the same
WO2008114738A1 (en) * 2007-03-15 2008-09-25 Gs Yuasa Corporation Lead storage cell and battery
JP2012514287A (en) * 2010-03-05 2012-06-21 トヨタ自動車株式会社 Catalyst electrode for fuel cell
JP2012216561A (en) * 2012-07-04 2012-11-08 Nissan Motor Co Ltd Bipolar battery
JP2013089339A (en) * 2011-10-14 2013-05-13 Toyota Industries Corp Nonaqueous electrolyte secondary battery
WO2020005803A1 (en) * 2018-06-25 2020-01-02 Eskra Technical Products, Inc. Bipolar lead acid battery cells with increased energy density

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020004807A1 (en) 2020-07-16 2022-01-20 Michael Roscher End plates for bipolar batteries

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5628474A (en) * 1979-08-14 1981-03-20 Japan Storage Battery Co Ltd Manufacture of paste type lead battery
JPS62216154A (en) * 1986-03-17 1987-09-22 Matsushita Electric Ind Co Ltd Enclosed lead storage battery
JPS63291354A (en) * 1987-05-22 1988-11-29 Matsushita Electric Ind Co Ltd Manufacture of battery
JPH02158057A (en) * 1988-12-12 1990-06-18 Furukawa Battery Co Ltd:The Electrode substrate for bipolar lead-storage battery
WO1990013923A1 (en) * 1989-05-02 1990-11-15 Globe-Union Inc. Conductive components containing conductive metal oxide
JPH04141955A (en) * 1990-09-29 1992-05-15 Shin Kobe Electric Mach Co Ltd Lead storage battery
US5521029A (en) * 1995-02-22 1996-05-28 At&T Corp. Current collecting elements
JPH10189029A (en) * 1996-12-24 1998-07-21 Japan Storage Battery Co Ltd Manufacture for sealed lead storage battery
JPH10308222A (en) * 1997-05-07 1998-11-17 Nippon Glass Fiber Co Ltd Positive electrode for lithium secondary battery, and lithium secondary battery using thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5628474A (en) * 1979-08-14 1981-03-20 Japan Storage Battery Co Ltd Manufacture of paste type lead battery
JPS62216154A (en) * 1986-03-17 1987-09-22 Matsushita Electric Ind Co Ltd Enclosed lead storage battery
JPS63291354A (en) * 1987-05-22 1988-11-29 Matsushita Electric Ind Co Ltd Manufacture of battery
JPH02158057A (en) * 1988-12-12 1990-06-18 Furukawa Battery Co Ltd:The Electrode substrate for bipolar lead-storage battery
WO1990013923A1 (en) * 1989-05-02 1990-11-15 Globe-Union Inc. Conductive components containing conductive metal oxide
JPH04141955A (en) * 1990-09-29 1992-05-15 Shin Kobe Electric Mach Co Ltd Lead storage battery
US5521029A (en) * 1995-02-22 1996-05-28 At&T Corp. Current collecting elements
JPH10189029A (en) * 1996-12-24 1998-07-21 Japan Storage Battery Co Ltd Manufacture for sealed lead storage battery
JPH10308222A (en) * 1997-05-07 1998-11-17 Nippon Glass Fiber Co Ltd Positive electrode for lithium secondary battery, and lithium secondary battery using thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335206A (en) * 2006-06-14 2007-12-27 Nissan Motor Co Ltd Bipolar battery
JP2008098159A (en) * 2006-09-14 2008-04-24 Gs Yuasa Corporation:Kk Cathode collector, manufacturing method of cathode collector and lead storage battery using the same
WO2008114738A1 (en) * 2007-03-15 2008-09-25 Gs Yuasa Corporation Lead storage cell and battery
JPWO2008114738A1 (en) * 2007-03-15 2010-07-01 株式会社ジーエス・ユアサコーポレーション Lead-acid battery and battery pack
JP2012514287A (en) * 2010-03-05 2012-06-21 トヨタ自動車株式会社 Catalyst electrode for fuel cell
JP2013089339A (en) * 2011-10-14 2013-05-13 Toyota Industries Corp Nonaqueous electrolyte secondary battery
JP2012216561A (en) * 2012-07-04 2012-11-08 Nissan Motor Co Ltd Bipolar battery
WO2020005803A1 (en) * 2018-06-25 2020-01-02 Eskra Technical Products, Inc. Bipolar lead acid battery cells with increased energy density
US11050093B2 (en) 2018-06-25 2021-06-29 Eskra Technical Products, Inc. Bipolar lead acid battery cells with increased energy density
JP2021528821A (en) * 2018-06-25 2021-10-21 イスクラ テクニカル プロダクツ,インク. Bipolar lead-acid battery with increased energy density
JP7218004B2 (en) 2018-06-25 2023-02-06 イスクラ テクニカル プロダクツ,インク. Bipolar lead-acid battery cells with increased energy density

Also Published As

Publication number Publication date
DE10081688T1 (en) 2001-10-04

Similar Documents

Publication Publication Date Title
KR101050012B1 (en) Hybrid energy storage device and manufacturing method thereof
US6805999B2 (en) Buried anode lithium thin film battery and process for forming the same
KR101272879B1 (en) Grid for lead-acid battery with electroconductive polymer coating
TW200522409A (en) Anode and battery
US20120183847A1 (en) Composite current collector and methods therefor
EP3327837A1 (en) Li-ion based electrochemical energy storage cell
US7364814B2 (en) Separator of a fuel cell and a manufacturing method thereof
WO2000070696A1 (en) Collector for storage battery, storage battery comprising the same, and method for manufacturing the storage battery
JP4320536B2 (en) Positive electrode plate for lead acid battery and lead acid battery
KR100291135B1 (en) Battery electrode plate structure
Martha et al. A low-cost lead-acid battery with high specific-energy
EP1009047B1 (en) Battery plate and battery
JP3482605B2 (en) Lead storage battery
AU1782792A (en) Process for forming barium metaplumbate
JPS60167268A (en) Manufacture of grid for lead-acid battery
US3819414A (en) Storage battery and positive electrode therefor
JP2003187817A (en) Separator for fuel cell
US20230246164A1 (en) Customizable Current Collector Surfaces
JPS62274556A (en) Nonaqueous electrolyte battery
JP2011249223A (en) Positive electrode current collector for lead-acid storage battery and lead-acid storage battery
WO2003043108A1 (en) Buried anode lithium thin film battery and process for forming the same
Lee et al. Buried anode lithium thin film battery and process for forming the same
CA1169120A (en) Positive electrode for lead acid battery
Fiorino The positive grid in stationary lead-acid batteries
KR20170022871A (en) Electrode terminal, electro-chemical device and electro-chemical device comprising same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE JP US

WWE Wipo information: entry into national phase

Ref document number: 09743962

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 10081688

Country of ref document: DE

Date of ref document: 20011004

WWE Wipo information: entry into national phase

Ref document number: 10081688

Country of ref document: DE