JP2011249223A - Positive electrode current collector for lead-acid storage battery and lead-acid storage battery - Google Patents

Positive electrode current collector for lead-acid storage battery and lead-acid storage battery Download PDF

Info

Publication number
JP2011249223A
JP2011249223A JP2010123035A JP2010123035A JP2011249223A JP 2011249223 A JP2011249223 A JP 2011249223A JP 2010123035 A JP2010123035 A JP 2010123035A JP 2010123035 A JP2010123035 A JP 2010123035A JP 2011249223 A JP2011249223 A JP 2011249223A
Authority
JP
Japan
Prior art keywords
positive electrode
current collector
dioxide film
electrode current
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010123035A
Other languages
Japanese (ja)
Inventor
Yohei Tao
洋平 田尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2010123035A priority Critical patent/JP2011249223A/en
Publication of JP2011249223A publication Critical patent/JP2011249223A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode current collector for a lead-acid storage battery in which contact resistance between the current collector and an active material is reduced and a life performance is improved.SOLUTION: A positive electrode current collector 11 for a lead-acid storage battery comprises a titanium or titanium-alloy current collector substrate 12 with which a tin-dioxide membrane 13 is formed on a surface. On a surface of the tin-dioxide membrane 13, a β-type lead-dioxide membrane 14 containing β-type lead dioxide is formed. A half-value width of a maximum strength peak among peaks of tin dioxide in an X-ray diffraction pattern of the tin-dioxide membrane 13 is 1° or less, and a sum of the half-value width A and a half-value width B of a maximum-strength peak among peaks of β-type lead-dioxide in the X-ray diffraction pattern of the β-type lead-dioxide membrane 14 is 1.2° or more. Otherwise, the half-value width is more than 1°, and the sum of the half-value width A and the half-value width B is 1.2° or more and 2.2° or less.

Description

本発明は、鉛蓄電池用正極集電体および鉛蓄電池に関する。   The present invention relates to a positive electrode current collector for a lead storage battery and a lead storage battery.

鉛蓄電池は、コストや安全性及び信頼性に優れた二次電池として、長く利用されているが、近年、著しく性能が向上し、普及しているニッケル水素電池やリチウムイオン電池に比べてエネルギー密度が低いという欠点がある。   Lead-acid batteries have long been used as secondary batteries with excellent cost, safety, and reliability. However, in recent years, the performance has been significantly improved and the energy density compared to the popular nickel-metal hydride batteries and lithium-ion batteries. Has the disadvantage of being low.

鉛蓄電池のエネルギー密度が低い原因の一つは、正極集電体として用いられる鉛または鉛合金は、使用期間に伴い徐々に腐食して劣化するので、寿命性能を十分に確保するために、鉛の量を多くする必要があり、これにより極板の厚みが厚くなり質量も重くなることにあった。   One of the causes of the low energy density of lead-acid batteries is that lead or lead alloys used as positive electrode current collectors gradually corrode and deteriorate over the period of use, so in order to ensure sufficient life performance, lead Therefore, the thickness of the electrode plate is increased and the mass is increased.

この問題に対しては、鉛よりも比重の小さいチタンまたはチタン合金製の集電体を使用することにより、軽量化が図られているが、正極集電体をチタンまたはチタン合金とするだけでは、表面に不動態層が形成されて短期間で抵抗が高くなってしまう。そこで、チタンまたはチタン合金製(「チタン(合金)製」ともいう)の集電体基材の表面に導電性セラミックである二酸化錫膜を形成したものが、提案されている。   To solve this problem, the weight is reduced by using a current collector made of titanium or titanium alloy having a specific gravity smaller than that of lead. A passive layer is formed on the surface, and the resistance increases in a short period of time. Therefore, a material in which a tin dioxide film, which is a conductive ceramic, is formed on the surface of a current collector base material made of titanium or a titanium alloy (also referred to as “made of titanium (alloy)” has been proposed.

二酸化錫膜のような導電性セラミックス保護膜でチタン(合金)製の集電体基材の表面を覆うことにより、基材材料であるチタンが不動態化するのを防止するとともに、二酸化錫膜の低い導電性を、基材材料のチタンによって補うようにしている。しかしながら、二酸化錫膜により覆われたチタン(合金)製の正極集電体を使用した鉛蓄電池では、寿命性能が十分ではないという問題があった。
上記問題を解決するものとして、特許文献1においては、チタン(合金)製の集電体基材を結晶性の高い二酸化錫膜で被覆した正極集電体が提案されている。
By covering the surface of the current collector base material made of titanium (alloy) with a conductive ceramic protective film such as a tin dioxide film, titanium as a base material is prevented from being passivated, and the tin dioxide film The low conductivity of the base material is supplemented by titanium as a base material. However, a lead-acid battery using a positive electrode current collector made of titanium (alloy) covered with a tin dioxide film has a problem that its life performance is not sufficient.
As a solution to the above problem, Patent Document 1 proposes a positive electrode current collector in which a current collector base material made of titanium (alloy) is covered with a highly crystalline tin dioxide film.

国際公開第07/37382号パンフレットInternational Publication No. 07/37382 Pamphlet

しかしながら、上記特許文献1に記載の正極集電体は、結晶性の高い二酸化錫で被覆されているため、活物質との密着性が悪く、正極集電体と活物質との接触抵抗が大きい。   However, since the positive electrode current collector described in Patent Document 1 is coated with highly crystalline tin dioxide, the adhesion with the active material is poor, and the contact resistance between the positive electrode current collector and the active material is large. .

そこで、特許文献1に記載の正極集電体を用いた鉛蓄電池においては、セパレータを間に配した正極板および負極板を板厚方向に高圧縮した際に得られる高い反発力を利用して、正極集電体と正極活物質とを高い圧迫力(100〜400kPa)で物理的に押圧することにより、両者の密着性を確保している(特許文献1の段落[0067]を参照)。   Therefore, in the lead storage battery using the positive electrode current collector described in Patent Document 1, the high repulsive force obtained when the positive electrode plate and the negative electrode plate with the separators interposed therebetween are highly compressed in the plate thickness direction is used. The positive electrode current collector and the positive electrode active material are physically pressed with a high pressing force (100 to 400 kPa) to ensure adhesion between them (see paragraph [0067] of Patent Document 1).

しかしながら、特許文献1に記載のもののように、正極集電体と正極活物質とを、高圧迫力で押圧する必要のある鉛蓄電池では、圧迫用の外装体が必要であるので、その分質量が重くなるとともにコストも高くなる。
本発明は上記のような事情に基づいて完成されたものであって、高圧迫力をかけなくても、集電体と活物質との接触抵抗を小さくすることができ、かつ、寿命性能を向上させた鉛蓄電池用正極集電体を提供することを目的とする。
However, in the lead storage battery that needs to press the positive electrode current collector and the positive electrode active material with a high pressure force like the one described in Patent Document 1, an outer body for compression is necessary, and the mass is accordingly. It becomes heavier and more expensive.
The present invention has been completed based on the above circumstances, and it is possible to reduce the contact resistance between the current collector and the active material without applying high-pressure force, and to improve the life performance. An object of the present invention is to provide a positive electrode current collector for a lead storage battery.

上記課題を解決すべく、特許文献1に記載されているような結晶性の高い二酸化錫膜が形成されている集電体基材の表面にβ型二酸化鉛膜を形成した正極集電体について検討したが、この構成の正極集電体では、β型二酸化鉛膜の結晶性が高い場合には集電体と活物質との接触抵抗を小さくすることができなかった。一方、結晶性の低い二酸化錫膜が形成されている集電体基材に結晶性の低いβ型二酸化鉛膜を形成した正極集電体では、寿命性能が低下するという問題があった。   To solve the above problems, a positive electrode current collector in which a β-type lead dioxide film is formed on the surface of a current collector base material on which a highly crystalline tin dioxide film as described in Patent Document 1 is formed As a result, in the positive electrode current collector of this configuration, when the β-type lead dioxide film has high crystallinity, the contact resistance between the current collector and the active material cannot be reduced. On the other hand, the positive electrode current collector in which the β-type lead dioxide film having low crystallinity is formed on the current collector base material on which the tin dioxide film having low crystallinity is formed has a problem that the life performance is lowered.

そこで、集電体基材に二酸化錫膜とβ型二酸化鉛膜とを順に積層してなる正極集電体において、二酸化錫膜のX線回折パターンにおける二酸化錫のピークのうち強度が最大のピークの半値幅A(二酸化錫膜の半値幅Aという)と、β型二酸化鉛膜のX線回折パターンにおけるβ型二酸化鉛のピークのうち強度が最大のピークの半値幅B(β型二酸化鉛膜の半値幅Bという)について検討を行ったところ、以下の知見が得られた。
二酸化錫膜の半値幅Aが1°以下の場合には、二酸化錫膜の半値幅Aとβ型二酸化鉛膜の半値幅Bとの和が1.2°以上とし、二酸化錫膜の半値幅Aが1°より大きい場合には、二酸化錫膜の半値幅Aとβ型二酸化鉛膜の半値幅Bとの和が1.2°以上2.2°以下となるように制御すると、集電体と活物質との密着性が向上するので高い圧迫力をかけなくても接触抵抗を小さくすることができ、かつ、チタン(合金)製の集電体の不動態化を防止して寿命性能を向上させることができる(詳細は実施例を参照)。本発明はかかる新規な知見に基づくものである。
Therefore, in the positive electrode current collector formed by sequentially laminating a tin dioxide film and a β-type lead dioxide film on the current collector substrate, the peak having the maximum intensity among the tin dioxide peaks in the X-ray diffraction pattern of the tin dioxide film. Half-value width A (referred to as half-value width A of tin dioxide film) and the half-value width B (β-type lead dioxide film having the maximum intensity among the β-type lead dioxide peaks in the X-ray diffraction pattern of the β-type lead dioxide film) The following findings were obtained.
When the half-value width A of the tin dioxide film is 1 ° or less, the sum of the half-value width A of the tin dioxide film and the half-value width B of the β-type lead dioxide film is 1.2 ° or more. When A is greater than 1 °, the current collector is controlled so that the sum of the half-value width A of the tin dioxide film and the half-value width B of the β-type lead dioxide film is 1.2 ° or more and 2.2 ° or less. As the adhesion between the body and the active material is improved, the contact resistance can be reduced without applying a high pressing force, and the life performance of the titanium (alloy) current collector is prevented from being passivated. Can be improved (for details, see Examples). The present invention is based on such novel findings.

すなわち、本発明は、二酸化錫を含む二酸化錫膜が表面に形成されたチタンまたはチタン合金製の集電体基材を備える鉛蓄電池用正極集電体であって、前記二酸化錫膜の表面にはβ型二酸化鉛を含むβ型二酸化鉛膜が形成され、前記二酸化錫膜のX線回折パターンにおける二酸化錫のピークのうち強度が最大のピークの半値幅Aが1°以下であり、かつ、前記半値幅Aと、前記β型二酸化鉛膜のX線回折パターンにおけるβ型二酸化鉛のピークのうち強度が最大のピークの半値幅Bとの和が1.2°以上、もしくは、前記半値幅Aが1°より大きく、かつ前記半値幅Aと前記半値幅Bとの和が1.2°以上2.2°以下であることを特徴とする鉛蓄電池用正極集電体、ならびに、この鉛蓄電池用正極集電体を備える鉛蓄電池である。   That is, the present invention is a positive electrode current collector for a lead storage battery comprising a current collector base material made of titanium or a titanium alloy on which a tin dioxide film containing tin dioxide is formed, and is formed on the surface of the tin dioxide film. Is formed with a β-type lead dioxide film containing β-type lead dioxide, and the half-value width A of the peak with the highest intensity among the tin dioxide peaks in the X-ray diffraction pattern of the tin dioxide film is 1 ° or less, and The sum of the full width at half maximum and the full width at half maximum B of the peak of β-type lead dioxide in the X-ray diffraction pattern of the β-type lead dioxide film is 1.2 ° or more, or the half-value width A positive current collector for a lead storage battery, wherein A is greater than 1 °, and the sum of the half-value width A and the half-value width B is 1.2 ° or more and 2.2 ° or less, and the lead It is a lead acid battery provided with the positive electrode electrical power collector for storage batteries.

本発明によれば、正極集電体と正極活物質との密着性が向上するから、高い圧迫力をかけなくても正極集電体と正極活物質の接触抵抗を小さくすることができ、かつ、正極集電体の不動態化を防止して寿命性能を向上させることができる。   According to the present invention, since the adhesion between the positive electrode current collector and the positive electrode active material is improved, the contact resistance between the positive electrode current collector and the positive electrode active material can be reduced without applying a high pressing force, and Further, it is possible to improve the life performance by preventing passivation of the positive electrode current collector.

本発明において、二酸化錫膜の半値幅Aを1°以下とし、かつ、二酸化錫膜の半値幅Aとβ型二酸化鉛膜の半値幅Bとの和を1.2°以上とすると、顕著に寿命性能を向上させることができるので好ましい。   In the present invention, when the half-value width A of the tin dioxide film is 1 ° or less and the sum of the half-value width A of the tin dioxide film and the half-value width B of the β-type lead dioxide film is 1.2 ° or more, It is preferable because the life performance can be improved.

なお、本発明におけるX線回折パターンとは、X線回折測定において、試料にX線(CuKα線)を照射しながら入射角度θを所定角度範囲で走査し、この間に回折するX線の強度を計数し、横軸に回折角度2θ、縦軸に回折強度をプロットすることにより得られるものである。X線回折パターンによって、二酸化錫膜および二酸化鉛膜の結晶構造と、照射するX線の波長に基づき、X線回折強度のピークが現れた回折角度2θに対応する結晶面の種類を特定することができる。   The X-ray diffraction pattern in the present invention is an X-ray diffraction measurement in which an X-ray (CuKα ray) is irradiated on a sample while scanning an incident angle θ within a predetermined angle range, and the intensity of X-ray diffracted during this time This is obtained by counting and plotting the diffraction angle 2θ on the horizontal axis and the diffraction intensity on the vertical axis. Identifying the type of crystal plane corresponding to the diffraction angle 2θ at which the peak of the X-ray diffraction intensity appeared based on the crystal structure of the tin dioxide film and the lead dioxide film and the wavelength of the irradiated X-ray by the X-ray diffraction pattern Can do.

ピークとは、X線回折パターンにおける山状の部分をいう。個々のピークは結晶面に対応する。半値幅とは、ピークの強度(ピーク曲線の頂点のX線回折強度)の1/2となるX線回折強度における当該ピーク曲線の回折角度幅を示す。半値幅が小さいピークは急峻な山状となり、その結晶面の結晶性は高いといえる。一方、半値幅が大きいピークは裾広がりのなだらかな山状となり、その結晶面の結晶性は低いといえる。   The peak refers to a mountain-shaped portion in the X-ray diffraction pattern. Each peak corresponds to a crystal plane. The full width at half maximum represents the diffraction angle width of the peak curve at an X-ray diffraction intensity that is ½ of the peak intensity (X-ray diffraction intensity at the peak curve peak). A peak having a small half width has a steep mountain shape, and it can be said that the crystallinity of the crystal plane is high. On the other hand, a peak with a large half-value width has a gentle mountain shape with a wide skirt, and it can be said that the crystallinity of the crystal plane is low.

本発明によれば、高圧迫力をかけなくても、集電体と活物質の接触抵抗を小さくすることができ、かつ、寿命性能を向上させた鉛蓄電池用正極集電体を提供することができる。   According to the present invention, it is possible to provide a positive electrode current collector for a lead-acid battery capable of reducing the contact resistance between the current collector and the active material and improving the life performance without applying a high pressure force. it can.

実施形態1の鉛蓄電池(単電池)の断面図Sectional drawing of the lead storage battery (unit cell) of Embodiment 1. 二酸化錫膜を形成した正極集電体基材のX線回折パターンを示す図The figure which shows the X-ray-diffraction pattern of the positive electrode electrical power collector base material which formed the tin dioxide film 実施例の正極集電体及び比較例の正極集電体のX線回折パターンを示す図The figure which shows the X-ray-diffraction pattern of the positive electrode collector of an Example, and the positive electrode collector of a comparative example 実施形態1の単電池を用いた鉛蓄電池(組電池)の断面図Sectional drawing of the lead acid battery (assembled battery) using the single battery of Embodiment 1. 従来例1の鉛蓄電池の断面図Sectional drawing of the lead acid battery of Conventional Example 1

<実施形態1>
本発明の正極集電体11を備える実施形態1の鉛蓄電池1について図1を参照しながら説明する。
本実施形態の鉛蓄電池1は、図1に示すように、正極活物質15、セパレータ3、および負極活物質25を収容する電池ケース2と、電池ケース2を挟持する正極集電体11および負極集電体21と、を備える。正極集電体11および負極集電体21は、電池ケース2の上下の開口部分を封口するように配される。
<Embodiment 1>
The lead acid battery 1 of Embodiment 1 provided with the positive electrode current collector 11 of the present invention will be described with reference to FIG.
As shown in FIG. 1, the lead storage battery 1 of the present embodiment includes a battery case 2 that houses a positive electrode active material 15, a separator 3, and a negative electrode active material 25, and a positive electrode current collector 11 and a negative electrode that sandwich the battery case 2. Current collector 21. The positive electrode current collector 11 and the negative electrode current collector 21 are arranged so as to seal the upper and lower opening portions of the battery case 2.

電池ケース2は、正極活物質15、セパレータ3、及び負極活物質25を密閉収納するための絶縁性の枠体であり、外部に通じる排気口2aを備える。電池ケース2の排気口2aの開口部には、制御弁4が取り付けられている。この制御弁4には、はずれないように、弁おさえ5が取り付けられている。   The battery case 2 is an insulating frame for hermetically housing the positive electrode active material 15, the separator 3, and the negative electrode active material 25, and includes an exhaust port 2a that communicates with the outside. A control valve 4 is attached to the opening of the exhaust port 2 a of the battery case 2. A valve retainer 5 is attached to the control valve 4 so as not to come off.

電池ケース2の内部に収容された正極活物質15、セパレータ3、及び負極活物質25には、希硫酸を主成分とする電解液(図示せず)が含浸される。
本実施形態の鉛蓄電池1の正極板10は、正極集電体基材12の片側の面12A(図1における下側面)に、二酸化錫を含む二酸化錫膜13およびβ型二酸化鉛を含む二酸化鉛膜14を順に積層してなる正極集電体11と、この正極集電体11の下側に当接して配される正極活物質15と、を備える。
The positive electrode active material 15, the separator 3, and the negative electrode active material 25 housed in the battery case 2 are impregnated with an electrolytic solution (not shown) containing dilute sulfuric acid as a main component.
The positive electrode plate 10 of the lead storage battery 1 according to the present embodiment includes a tin dioxide film 13 containing tin dioxide and a β-type lead dioxide on one side 12A (the lower side in FIG. 1) of the positive electrode current collector base 12. A positive electrode current collector 11 formed by sequentially laminating a lead film 14 and a positive electrode active material 15 disposed in contact with the lower side of the positive electrode current collector 11 are provided.

正極活物質15は、通常の鉛蓄電池の製造方法によって得られる正極活物質ペーストを化成・充電してなる二酸化鉛を主体とする板状のものである。正極活物質ペーストの材料としては、鉛粉、水、希硫酸等を用いることができる。   The positive electrode active material 15 is a plate-shaped material mainly composed of lead dioxide obtained by chemical conversion and charging of a positive electrode active material paste obtained by a normal method for producing a lead-acid battery. As a material for the positive electrode active material paste, lead powder, water, dilute sulfuric acid, or the like can be used.

正極集電体基材12は厚さが0.1mmのチタンまたはチタン合金製であり、正極集電体基材12の表面のうち、図1における下側面12A(正極活物質15が配置される側)に、二酸化錫(SnO)を含む二酸化錫膜13およびβ型二酸化鉛(PbO)を含むβ型二酸化鉛膜14がこの順に積層されているのは前述のとおりである。 The positive electrode current collector substrate 12 is made of titanium or a titanium alloy having a thickness of 0.1 mm. Of the surface of the positive electrode current collector substrate 12, the lower side surface 12A (positive electrode active material 15 is disposed in FIG. As described above, the tin dioxide film 13 containing tin dioxide (SnO 2 ) and the β-type lead dioxide film 14 containing β-type lead dioxide (PbO 2 ) are laminated on this side in this order.

さて、本実施形態では、二酸化錫膜13のX線回折パターンにおける二酸化錫のピークのうち強度が最大のピークの半値幅A(二酸化錫膜13の半値幅A)とβ型二酸化鉛膜14のX線回折パターンにおけるβ型二酸化鉛のピークのうち強度が最大のピークの半値幅B(β型二酸化鉛膜14の半値幅B)とが以下のように制御される。
二酸化錫膜13の半値幅Aが1°以下のときには、二酸化錫膜13の半値幅Aと、β型二酸化鉛膜14の半値幅Bとの和が1.2°以上、二酸化錫膜13の半値幅Aが1°より大きいときには、二酸化錫膜13の半値幅Aとβ型二酸化鉛膜14の半値幅Bとの和が1.2°以上2.2°以下に制御される。半値幅Aおよび半値幅Bを上述のように制御することにより、正極集電体11と正極活物質15との密着性が向上するので、特許文献1に記載の鉛蓄電池のように高い圧迫力をかけなくても正極集電体11と正極活物質15の接触抵抗を小さくすることができ、かつ、正極集電体の寿命性能を向上させることができる。
In the present embodiment, the half-value width A (the half-value width A of the tin dioxide film 13) having the maximum intensity among the tin dioxide peaks in the X-ray diffraction pattern of the tin dioxide film 13 and the β-type lead dioxide film 14. Of the peaks of β-type lead dioxide in the X-ray diffraction pattern, the half-value width B (the half-value width B of the β-type lead dioxide film 14) of the peak having the maximum intensity is controlled as follows.
When the half width A of the tin dioxide film 13 is 1 ° or less, the sum of the half width A of the tin dioxide film 13 and the half width B of the β-type lead dioxide film 14 is 1.2 ° or more. When the half-value width A is larger than 1 °, the sum of the half-value width A of the tin dioxide film 13 and the half-value width B of the β-type lead dioxide film 14 is controlled to 1.2 ° or more and 2.2 ° or less. Since the adhesion between the positive electrode current collector 11 and the positive electrode active material 15 is improved by controlling the half-value width A and the half-value width B as described above, a high compression force as in the lead-acid battery described in Patent Document 1. Even if it does not apply, the contact resistance of the positive electrode collector 11 and the positive electrode active material 15 can be made small, and the lifetime performance of a positive electrode collector can be improved.

二酸化錫膜13の半値幅Aと二酸化鉛膜14の半値幅Bを上述のように制御することにより、上述のような効果が得られる理由は以下のように考えられる。
β型二酸化鉛膜14の半値幅Bが小さい(結晶性が高い)場合、耐久性はよいが、電子電導に必要な正孔のもとになる酸素格子欠陥が減少し、キャリア密度が低下して抵抗が大きくなる。二酸化錫膜13も、β型二酸化鉛膜14と同様に、二酸化錫膜13のX線回折パターンにおける二酸化錫のピークのうち強度が最大のピークの半値幅A(二酸化錫膜13の半値幅A)が小さい(結晶性が高い)と、耐久性はよいが、キャリア密度が低下して抵抗が大きくなる。
The reason why the above-described effects can be obtained by controlling the half-value width A of the tin dioxide film 13 and the half-value width B of the lead dioxide film 14 as described above is considered as follows.
When the half width B of the β-type lead dioxide film 14 is small (high crystallinity), the durability is good, but oxygen lattice defects that cause holes necessary for electronic conduction are reduced, and the carrier density is lowered. Resistance increases. Similarly to the β-type lead dioxide film 14, the tin dioxide film 13 also has a maximum half-value width A (half-value width A of the tin dioxide film 13) among the tin dioxide peaks in the X-ray diffraction pattern of the tin dioxide film 13. ) Is small (high crystallinity), the durability is good, but the carrier density decreases and the resistance increases.

したがって、二酸化錫膜13の半値幅Aが1°以下である場合に、二酸化錫膜13の半値幅Aとβ型二酸化鉛膜14の半値幅Bをともに小さくする(半値幅Aと半値幅Bとの和を小さくする)と二酸化錫膜13およびβ型二酸化鉛膜14からなる膜全体の耐久性はよいが、キャリア密度が低下して電気伝導性が悪化する。
そこで、二酸化錫膜13の半値幅Aが1°以下の場合には、半値幅Bを大きく設定すれば、二酸化鉛膜14のキャリア密度の低下を防止し、電気伝導性の悪化が防止できるので、膜全体(二酸化錫膜13およびβ型二酸化鉛膜14)としての電気伝導性は、正極集電体11として使用可能なレベルとなり、正極活物質15との接触抵抗も小さくなる。具体的には、二酸化錫膜13の半値幅Aが1°以下の場合に、二酸化錫膜13の半値幅Aとβ型二酸化鉛膜14の半値幅Bとの和を1.2°以上に制御すると、正極集電体11と正極活物質15との接触抵抗を小さくすることができ、かつ正極集電体11の不動態化を防止して寿命性能を向上させることができる。
Therefore, when the half-value width A of the tin dioxide film 13 is 1 ° or less, the half-value width A of the tin dioxide film 13 and the half-value width B of the β-type lead dioxide film 14 are both reduced (half-value width A and half-value width B). And the durability of the entire film composed of the tin dioxide film 13 and the β-type lead dioxide film 14 is good, but the carrier density is lowered and the electrical conductivity is deteriorated.
Therefore, when the half-value width A of the tin dioxide film 13 is 1 ° or less, if the half-value width B is set large, it is possible to prevent the carrier density of the lead dioxide film 14 from being lowered and the electrical conductivity from being deteriorated. The electrical conductivity of the entire film (the tin dioxide film 13 and the β-type lead dioxide film 14) becomes a level that can be used as the positive electrode current collector 11, and the contact resistance with the positive electrode active material 15 is also reduced. Specifically, when the half width A of the tin dioxide film 13 is 1 ° or less, the sum of the half width A of the tin dioxide film 13 and the half width B of the β-type lead dioxide film 14 is 1.2 ° or more. When controlled, the contact resistance between the positive electrode current collector 11 and the positive electrode active material 15 can be reduced, and passivation of the positive electrode current collector 11 can be prevented to improve the life performance.

一方、二酸化錫膜13の半値幅Aが1°より大きい場合には、二酸化錫膜13の耐久性は、半値幅Aが1°以下の場合よりも低くなる。そこで、半値幅Aが1°以下のものよりも耐久性の低い二酸化錫膜13が形成されている場合には、β型二酸化鉛膜14の結晶性をある程度高くすると、二酸化錫膜13を覆うβ型二酸化鉛膜14の導電性は低下するが、耐久性は高くなり、寿命性能の低下を抑制することができる。また、この構成の正極集電体11では二酸化錫膜13の導電性は半値幅Aが1°以下の場合よりも高くなるので、β型二酸化鉛膜14の導電性が低下しても、接触抵抗を集電体11として使用可能なレベルとすることができる。具体的には、二酸化錫膜13の半値幅Aが1°より大きい場合に、二酸化錫膜13の半値幅Aとβ型二酸化鉛膜14の半値幅Bとの和を1.2°以上2.2°以下に制御すると、膜全体(二酸化錫膜13およびβ型二酸化鉛膜14)としては耐久性に優れているので、正極集電体11の不動態化を防止でき、かつ、正極集電体11と正極活物質15との接触抵抗を小さくすることができる。   On the other hand, when the half width A of the tin dioxide film 13 is larger than 1 °, the durability of the tin dioxide film 13 is lower than when the half width A is 1 ° or less. Therefore, when the tin dioxide film 13 having a lower half-value width A than 1 ° is formed, the tin dioxide film 13 is covered by increasing the crystallinity of the β-type lead dioxide film 14 to some extent. Although the conductivity of the β-type lead dioxide film 14 is lowered, the durability is increased, and the deterioration of the life performance can be suppressed. Further, in the positive electrode current collector 11 having this configuration, the conductivity of the tin dioxide film 13 is higher than that in the case where the half-value width A is 1 ° or less. The resistance can be set to a level that can be used as the current collector 11. Specifically, when the half width A of the tin dioxide film 13 is larger than 1 °, the sum of the half width A of the tin dioxide film 13 and the half width B of the β-type lead dioxide film 14 is 1.2 ° or more 2 When controlled to 2 ° or less, the entire film (the tin dioxide film 13 and the β-type lead dioxide film 14) is excellent in durability, so that the passivation of the positive electrode current collector 11 can be prevented and the positive electrode current collector can be prevented. The contact resistance between the electric body 11 and the positive electrode active material 15 can be reduced.

二酸化錫膜13の半値幅Aおよびβ型二酸化鉛膜14の半値幅Bは、二酸化錫膜13の半値幅Aを1°以下、かつ半値幅Aと半値幅Bとの和が1.2°以上に制御するのが好ましい。このような半値幅の小さい(結晶性の高い)二酸化錫膜13を形成することにより、顕著に寿命性能を向上させることができるからである。   The half-value width A of the tin dioxide film 13 and the half-value width B of the β-type lead dioxide film 14 are equal to or less than 1 ° and the sum of the half-value width A and the half-value width B is 1.2 °. It is preferable to control as described above. This is because the lifetime performance can be remarkably improved by forming such a tin dioxide film 13 having a small half width (high crystallinity).

二酸化錫膜13の厚みは20nm〜500nm以下であるのが好ましい。厚みが20nm未満であると、膜に形成されるピンホールが多くなって基材が被覆されない箇所が生じやすくなり、厚みが500nmを超えるとマッドクラックと称される二酸化錫膜と基材との線膨張係数の差に起因する成膜後の冷却時に生じる亀裂が生じやすくなるからである。
また、二酸化錫膜13は、アンチモンを含む構成とするのが好ましい。二酸化錫膜13にアンチモンが含まれることによって、導電性が向上する。このように、二酸化錫膜13の導電性が高い場合には鉛蓄電池1の内部抵抗が低下するため、鉛蓄電池1の寿命性能はさらに優れる。なお、アンチモンを含むもののうち、アンチモンに加えてフッ素を含むものでは、導電性が高くなるので特に好ましい。
The thickness of the tin dioxide film 13 is preferably 20 nm to 500 nm or less. If the thickness is less than 20 nm, pinholes formed in the film increase and portions where the substrate is not covered are likely to occur. If the thickness exceeds 500 nm, the tin dioxide film referred to as a mud crack and the substrate This is because cracks that occur during cooling after film formation due to the difference in linear expansion coefficient are likely to occur.
Moreover, it is preferable that the tin dioxide film 13 includes antimony. By including antimony in the tin dioxide film 13, the conductivity is improved. As described above, when the conductivity of the tin dioxide film 13 is high, the internal resistance of the lead storage battery 1 is lowered, so that the life performance of the lead storage battery 1 is further improved. Of those containing antimony, those containing fluorine in addition to antimony are particularly preferred because of their high conductivity.

β型二酸化鉛膜14(PbO膜14)の厚みは、100μm以下であると、二酸化錫膜13の表面13Aから剥離し難いので、好ましい。β型二酸化鉛膜14の厚みが100μmを超えると、β型二酸化鉛膜14に含まれるPbOと、二酸化錫膜13に含まれるSnOと格子定数の差から生じるミスフィットの蓄積により、二酸化錫膜13の表面からβ型二酸化鉛膜14が剥離しやすくなるからである。 The thickness of the β-type lead dioxide film 14 (PbO 2 film 14) is preferably 100 μm or less because it is difficult to peel off from the surface 13A of the tin dioxide film 13. When the thickness of the β-type lead dioxide film 14 exceeds 100 μm, carbon dioxide is accumulated due to misfit caused by the difference in lattice constant between PbO 2 contained in the β-type lead dioxide film 14 and SnO 2 contained in the tin dioxide film 13. This is because the β-type lead dioxide film 14 is easily peeled off from the surface of the tin film 13.

本実施形態の鉛蓄電池1の負極板20は、厚さ0.1mmの銅製の負極集電体基材22の表面22A(図1における上側の面)に、厚さ20〜30μmの鉛メッキを施してなる負極集電体21と、この負極集電体21の上側に当接して配される負極活物質25と、を備える。   The negative electrode plate 20 of the lead storage battery 1 according to the present embodiment is obtained by applying a lead plating with a thickness of 20 to 30 μm to the surface 22A (the upper surface in FIG. 1) of a copper negative electrode current collector base material 22 with a thickness of 0.1 mm. And a negative electrode active material 25 disposed in contact with the upper side of the negative electrode current collector 21.

負極活物質25は、通常の鉛蓄電池の製造方法によって得られる負極活物質ペーストを、化成・充電してなる海綿状金属鉛を主体とする板状の活物質25である。負極活物質ペーストの材料としては、鉛粉、水、希硫酸、カーボン、硫酸バリウム、リグニン等を用いることができる。   The negative electrode active material 25 is a plate-like active material 25 mainly composed of spongy metallic lead obtained by forming and charging a negative electrode active material paste obtained by a normal method for producing a lead-acid battery. As a material for the negative electrode active material paste, lead powder, water, dilute sulfuric acid, carbon, barium sulfate, lignin and the like can be used.

次に、本実施形態の鉛蓄電池1の製造方法の一例について説明する。
まず、正極集電体11を以下の方法により作製する。正極集電体基材12の表面12Aに二酸化錫膜13を形成する。正極集電体基材12の材料となるチタンとしては、チタン(JIS1種)又はチタン(JIS2種)などが使用される。チタン合金としては、Ti−5Al−2.5V、Ti−3Al−2.5V、及びTi−6Al−4Vなどが使用される。
Next, an example of the manufacturing method of the lead storage battery 1 of this embodiment is demonstrated.
First, the positive electrode current collector 11 is produced by the following method. A tin dioxide film 13 is formed on the surface 12A of the positive electrode current collector base 12. As titanium used as the material of the positive electrode current collector base material 12, titanium (JIS type 1) or titanium (JIS type 2) is used. Ti-5Al-2.5V, Ti-3Al-2.5V, Ti-6Al-4V, etc. are used as a titanium alloy.

正極集電体基材12の表面12Aに二酸化錫膜13を形成する方法としては、錫化合物を溶媒に溶解した原料液を、加熱したチタン又はチタン合金からなる正極集電体基材12の表面12Aに間歇的に噴霧する方法等があげられる。この方法によれば、正極集電体基材12の表面12Aに結晶性の高い二酸化錫膜13を形成することができる。
この方法において用いる、錫化合物としては、有機錫化合物であるジブチル錫ジアセテート、トリブトキシ錫等の有機錫化合物、又は四塩化錫等の無機錫化合物があげられる。溶媒としては、エタノール又はブタノール等の有機溶媒が用いられる。
As a method of forming the tin dioxide film 13 on the surface 12A of the positive electrode current collector base material 12, the surface of the positive electrode current collector base material 12 made of titanium or a titanium alloy obtained by heating a raw material solution in which a tin compound is dissolved in a solvent. The method of spraying intermittently on 12A etc. is mention | raise | lifted. According to this method, the highly crystalline tin dioxide film 13 can be formed on the surface 12A of the positive electrode current collector substrate 12.
Examples of tin compounds used in this method include organic tin compounds such as dibutyltin diacetate and tributoxytin, which are organic tin compounds, and inorganic tin compounds such as tin tetrachloride. As the solvent, an organic solvent such as ethanol or butanol is used.

なお、アンチモンを含む二酸化錫膜13を形成する場合には、アンチモンの塩化物などのアンチモン原子を含む化合物を混合する方法などにより、アンチモンを含有させた錫化合物を溶媒に溶解した原料液を用いる。フッ素を含む二酸化錫膜13を形成する場合には、フッ素原子を含む化合物を混合する方法などにより、フッ素を含有させた錫化合物を溶媒に溶解した原料液を用いる。   In the case of forming the tin dioxide film 13 containing antimony, a raw material solution in which a tin compound containing antimony is dissolved in a solvent is used by a method of mixing a compound containing antimony atoms such as an antimony chloride. . When the tin dioxide film 13 containing fluorine is formed, a raw material solution in which a tin compound containing fluorine is dissolved in a solvent is used by a method of mixing a compound containing fluorine atoms.

上記の方法により二酸化錫膜13を形成する際には、原料液の錫化合物が正極集電体基材12に噴霧されたときに熱分解されるように、正極集電体基材12を加熱する必要がある。加熱に適する温度は、錫化合物の種類に依存する。例えば、ジブチル錫ジアセテート溶液(溶媒:エタノール)に、塩化アンチモン溶液(溶媒:エタノール)を混合した原料液を使用する場合、その温度は、通常400℃以上であり、好ましくは450℃以上、さらに好ましくは500℃以上である。   When forming the tin dioxide film 13 by the above method, the positive electrode current collector substrate 12 is heated so that the tin compound of the raw material liquid is thermally decomposed when sprayed on the positive electrode current collector substrate 12. There is a need to. The temperature suitable for heating depends on the type of tin compound. For example, when using a raw material liquid in which a dibutyltin diacetate solution (solvent: ethanol) is mixed with an antimony chloride solution (solvent: ethanol), the temperature is usually 400 ° C or higher, preferably 450 ° C or higher, Preferably it is 500 degreeC or more.

なお、正極集電体基材12の加熱温度を変えることにより、二酸化錫膜13の半値幅Aを制御することができる。正極集電体基材12の加熱温度が低いほど二酸化錫の結晶性が低くなり(半値幅Aが大きくなり)、加熱温度が高いほど結晶性が高く(半値幅Aが小さく)なる。   In addition, the half value width A of the tin dioxide film 13 can be controlled by changing the heating temperature of the positive electrode current collector substrate 12. The lower the heating temperature of the positive electrode current collector substrate 12, the lower the crystallinity of tin dioxide (the half-value width A becomes larger), and the higher the heating temperature, the higher the crystallinity (the half-value width A becomes smaller).

正極集電体基材12の表面12Aに原料液を噴霧する際には、加熱温度が低下しないように時間間隔をあけて(間歇的に)噴霧を繰り返す。結晶性の高い二酸化錫膜13を形成する場合には、1回の噴霧によって形成される二酸化錫膜13の厚みが、5nm以下であるのが好ましい。膜厚の極めて小さい二酸化錫膜13を積層するという方法により、結晶性の高い二酸化錫膜13が得られるからである。上述したような膜厚の極めて小さい二酸化錫膜13を形成するには、1回あたりの噴霧量が0.4ミリリットル以下であることが好ましい。   When spraying the raw material liquid onto the surface 12A of the positive electrode current collector base material 12, the spraying is repeated (intermittently) with a time interval so as not to lower the heating temperature. When forming the highly crystalline tin dioxide film 13, it is preferable that the thickness of the tin dioxide film 13 formed by one spray is 5 nm or less. This is because the tin dioxide film 13 having high crystallinity can be obtained by the method of laminating the tin dioxide film 13 having an extremely small film thickness. In order to form the tin dioxide film 13 having a very small thickness as described above, the spray amount per time is preferably 0.4 milliliter or less.

なお、上述のような膜厚が極めて小さい二酸化錫膜13を形成することにより、高い結晶性を得ることができる理由の詳細は明確ではないが、おそらく、正極集電体基材12の表面12Aに存在する酸化チタンや、二酸化錫膜13を形成する初期段階で形成されるチタンと錫との酸化物が下地層となり、二酸化錫膜13を構成する二酸化錫がエピタキシャル成長するためと考えられる。   The details of the reason why high crystallinity can be obtained by forming the tin dioxide film 13 having an extremely small film thickness as described above are not clear, but probably the surface 12A of the positive electrode current collector base material 12 It is considered that the titanium oxide present in the film and the oxide of titanium and tin formed in the initial stage of forming the tin dioxide film 13 serve as an underlayer, and tin dioxide constituting the tin dioxide film 13 is epitaxially grown.

次に、正極集電体基材12の表面12Aに形成された二酸化錫膜13の表面に、電解メッキ法によりβ型二酸化鉛膜14を形成する。電解メッキ法においては、所定の大きさの二酸化錫膜13を形成した正極集電体基材12と、所定の大きさの相手板(たとえばカーボン板等)とを、所定距離分離した状態で、10〜30%濃度の硝酸鉛水溶液中に浸漬し、溶液をスターラーで攪拌しながら正極集電体基材12側を陽極として通電し、アノード酸化によってβ型の二酸化鉛を、正極集電体基材12の二酸化錫膜13の表面13Aに電析する。これにより本実施形態の正極集電体11が得られる。   Next, a β-type lead dioxide film 14 is formed on the surface of the tin dioxide film 13 formed on the surface 12A of the positive electrode current collector substrate 12 by an electrolytic plating method. In the electrolytic plating method, in a state where the positive electrode current collector base material 12 on which the tin dioxide film 13 having a predetermined size is formed and a counterpart plate (for example, a carbon plate) having a predetermined size are separated by a predetermined distance, It is immersed in an aqueous 10-30% lead nitrate solution, and the solution is stirred with a stirrer and energized with the positive electrode current collector substrate 12 side as an anode. Electrodeposition is performed on the surface 13 A of the tin dioxide film 13 of the material 12. Thereby, the positive electrode current collector 11 of the present embodiment is obtained.

β型二酸化鉛膜14に含まれるβ型の二酸化鉛の結晶性は、溶液の濃度やメッキ速度を調整することにより制御することができる。メッキ速度が早いと、表面に電析するβ型二酸化鉛の結晶核が短時間に表面に多く形成されるため、ひとつひとつの粒子の結晶が細かくなり結晶性は高くならないが、メッキ速度が遅いと、最初にできた結晶核上にどんどん結晶が成長していき、結晶性の高い二酸化鉛膜14が形成される。   The crystallinity of β-type lead dioxide contained in the β-type lead dioxide film 14 can be controlled by adjusting the concentration of the solution and the plating speed. If the plating speed is fast, many β-type lead dioxide crystal nuclei are deposited on the surface in a short period of time, so that each particle crystal becomes fine and crystallinity does not increase, but if the plating speed is slow, A crystal grows on the crystal nucleus formed first, and the lead dioxide film 14 having high crystallinity is formed.

上述のようにして作製した正極集電体11のβ型二酸化鉛膜14側の表面に、二酸化鉛を主体とした正極活物質15を配することにより、正極板10が得られる。
負極板20は、銅製の負極集電体基材22の表面に、厚さ20〜30μmの鉛メッキを施してなる負極集電体21を作製し、この負極集電体21の鉛メッキ面側に負極活物質25を配することにより得られる。
The positive electrode plate 10 is obtained by arranging the positive electrode active material 15 mainly composed of lead dioxide on the surface of the positive electrode current collector 11 produced as described above on the β-type lead dioxide film 14 side.
The negative electrode plate 20 produces a negative electrode current collector 21 formed by performing lead plating with a thickness of 20 to 30 μm on the surface of a copper negative electrode current collector base material 22, and the lead-plated surface side of the negative electrode current collector 21 It is obtained by disposing the negative electrode active material 25 on the surface.

電池ケース2に、正極板10および負極板20を収納する。このとき、正極板10と負極板20との間には、ガラス繊維をマット状にしたセパレータ3を配置する。電池ケース2に正極板10、セパレータ3、および負極板20を収納すると、電池ケース2の開口部は正極集電体基材12と負極集電体基材22とに覆われる。次に、電池ケース2の排気口2Aから電解液を注入すると実施形態1の鉛蓄電池1(単電池1)が得られる。   The positive electrode plate 10 and the negative electrode plate 20 are accommodated in the battery case 2. At this time, between the positive electrode plate 10 and the negative electrode plate 20, the separator 3 which made the glass fiber the mat shape is arrange | positioned. When the positive electrode plate 10, the separator 3, and the negative electrode plate 20 are stored in the battery case 2, the opening of the battery case 2 is covered with the positive electrode current collector base material 12 and the negative electrode current collector base material 22. Next, when an electrolytic solution is injected from the exhaust port 2A of the battery case 2, the lead storage battery 1 (unit cell 1) of the first embodiment is obtained.

このように作製した単電池1は、複数個を直列に積層し接続することで組電池50とすることができる。具体的には、図4に示すように、単電池1の負極集電体21が、隣接する別の単電池1の正極集電体11の上に載置されるようにして、複数個(図4では4個)の単電池1を直列に積層し接続する。このようにして積層した単電池群を補助枠材51の中に入れて、その上下に銅製の端子板52および軽量の絶縁性材料からなる絶縁板53を配置して、絶縁板53をねじ54により固定することで、図4に示す組電池50が得られる。
本実施形態の単電池1は、上述した構成の正極集電体11を備えるので、正極集電体11と正極活物質15との密着性が向上する。したがって、組電池50を作製する際に、通常の鉛蓄電池と同程度の圧力(20〜40kPa)をかけて固定すればよいので、図5に示す鉛蓄電池100のように、金属製の外装体120やナット121やボルト122などの固定部材は不要であり、低コストである。図5の従来例1の鉛蓄電池100についての詳細は、以下の実施例において説明する。
The unit cell 1 produced in this way can be used as an assembled battery 50 by stacking and connecting a plurality of unit cells in series. Specifically, as shown in FIG. 4, the negative electrode current collector 21 of the single cell 1 is placed on the positive electrode current collector 11 of another adjacent single cell 1 so that a plurality of ( Four unit cells 1 in FIG. 4 are stacked and connected in series. The unit cell group laminated in this manner is put in the auxiliary frame member 51, and a copper terminal plate 52 and an insulating plate 53 made of a lightweight insulating material are arranged on the upper and lower sides thereof, and the insulating plate 53 is screwed on the screw 54. As a result, the assembled battery 50 shown in FIG. 4 is obtained.
Since the unit cell 1 of the present embodiment includes the positive electrode current collector 11 having the above-described configuration, the adhesion between the positive electrode current collector 11 and the positive electrode active material 15 is improved. Therefore, when the assembled battery 50 is manufactured, it may be fixed by applying a pressure (20 to 40 kPa) of the same level as that of a normal lead storage battery. Therefore, as in the lead storage battery 100 shown in FIG. Fixing members such as 120, nuts 121 and bolts 122 are unnecessary, and the cost is low. Details of the lead-acid battery 100 of Conventional Example 1 in FIG. 5 will be described in the following examples.

<実施例>
以下実施例により本発明をさらに説明する。
1.実施例1〜4の正極集電体および比較例1〜3の正極集電体の作製
(実施例1の正極集電体の作製)
(1)二酸化錫膜の形成およびX線回折測定
ジブチル錫ジアセテート溶液(溶媒:エタノール)と塩化アンチモン溶液(溶媒:エタノール)とを混合し原料液を作製した。なお、ジブチル錫ジアセテートの量は、原料液の全体に対して二酸化錫としての質量が2.5%となるように調整し、塩化アンチモンの量は、前記二酸化錫に対してアンチモンとしての質量が2.5%となるように調整した。
<Example>
The following examples further illustrate the present invention.
1. Preparation of positive electrode current collector of Examples 1 to 4 and positive electrode current collector of Comparative Examples 1 to 3 (Preparation of positive electrode current collector of Example 1)
(1) Formation of tin dioxide film and X-ray diffraction measurement A dibutyltin diacetate solution (solvent: ethanol) and an antimony chloride solution (solvent: ethanol) were mixed to prepare a raw material solution. The amount of dibutyltin diacetate is adjusted so that the mass as tin dioxide is 2.5% with respect to the whole raw material liquid, and the amount of antimony chloride is the mass as antimony with respect to the tin dioxide. Was adjusted to 2.5%.

原料液を、320℃に加熱された平板状の正極集電体基材の表面に間歇的に噴霧した。噴霧の際には、正極集電体基材の温度が320℃を保つことができるように、噴霧の間隔をあけた。原料液の噴霧により、集電体基材の表面上で熱分解が生じ、二酸化錫膜が形成された集電体基材が得られた。なお、正極集電体基材としては、20mm×70mmの大きさの方形状の平板を用いた。
二酸化錫膜が形成された正極集電体基材について、X線回折装置(マックサイエンス社製、MXP3)を用いてX線回折測定を行い、得られたX線回折パターンの二酸化錫のピークのうち、強度が最大のピークの半値幅(二酸化錫膜の半値幅、表1中では「SnOの半値幅」と記載)を表1に示した。
The raw material liquid was sprayed intermittently on the surface of the plate-shaped positive electrode current collector substrate heated to 320 ° C. During spraying, the spray interval was set so that the temperature of the positive electrode current collector substrate could be maintained at 320 ° C. By spraying the raw material liquid, thermal decomposition occurred on the surface of the current collector base material, and a current collector base material on which a tin dioxide film was formed was obtained. In addition, as a positive electrode electrical power collector base material, the square flat plate of a magnitude | size of 20 mm x 70 mm was used.
The positive electrode current collector base material on which the tin dioxide film was formed was subjected to X-ray diffraction measurement using an X-ray diffractometer (manufactured by Mac Science, MXP3), and the tin dioxide peak of the obtained X-ray diffraction pattern was measured. Among them, the half width of the peak with the maximum intensity (half width of tin dioxide film, described as “half width of SnO 2 ” in Table 1) is shown in Table 1.

(2)β型二酸化鉛膜の形成およびX線回折測定
二酸化錫膜が形成された正極集電体基材と、20mm×70mmの大きさのカーボン板(相手板)とを、50mm離した状態で,30%濃度の硝酸鉛水溶液中に浸漬し、溶液をスターラーで攪拌しながら正極集電体基材を陽極として通電し、アノード酸化によって二酸化錫膜の表面にβ型二酸化鉛膜を電析し、これにより実施例1の正極集電体を得た。なお、β型二酸化鉛のメッキ時間は20分間であった。
得られた正極集電体のβ型二酸化鉛膜形成面について、X線回折装置(Rigaku社製、UltimaIV)を用いてX線回折測定を行い、得られたX線回折パターンのβ型二酸化鉛のピークのうち、強度が最大のピークの半値幅(β型二酸化鉛膜の半値幅、表1中では「β−PbOの半値幅」と記載)を、表1に示した。
表1には、二酸化錫膜の半値幅とβ型二酸化鉛膜の半値幅との和(表1中では「SnOとβ−PbOの半値幅の和」と記載)も併せて示した。
(2) Formation of β-type lead dioxide film and X-ray diffraction measurement State where cathode current collector base material on which tin dioxide film is formed and carbon plate (counter plate) having a size of 20 mm × 70 mm are separated by 50 mm Then, it was immersed in 30% strength lead nitrate aqueous solution, and the solution was stirred with a stirrer, and the positive electrode current collector substrate was energized as an anode, and the β-type lead dioxide film was electrodeposited on the surface of the tin dioxide film by anodic oxidation. Thus, the positive electrode current collector of Example 1 was obtained. The plating time for β-type lead dioxide was 20 minutes.
The β-type lead dioxide film-forming surface of the obtained positive electrode current collector was subjected to X-ray diffraction measurement using an X-ray diffractometer (manufactured by Rigaku, Ultimate IV), and the obtained X-ray diffraction pattern of the β-type lead dioxide Table 1 shows the half-width of the peak having the maximum intensity (half-width of the β-type lead dioxide film, described as “half-width of β-PbO 2 ” in Table 1).
Table 1 also shows the sum of the half-value width of the tin dioxide film and the half-value width of the β-type lead dioxide film (described in Table 1 as “sum of the half-value widths of SnO 2 and β-PbO 2 ”). .

(実施例2の正極集電体の作製)
正極集電体基材の加熱温度を410℃として二酸化錫膜を形成したこと、およびβ型二酸化鉛のメッキ時間を3分間としたこと以外は実施例1と同様にして、実施例2の正極集電体を得た。実施例1と同様に、二酸化錫膜を形成した正極集電体基材および実施例2の正極集電体のX線回折測定をそれぞれ行い、二酸化鉛膜の半値幅、β型二酸化鉛膜の半値幅、二酸化鉛膜の半値幅とβ型二酸化鉛膜の半値幅との和を表1に示した。
(Preparation of the positive electrode current collector of Example 2)
The positive electrode of Example 2 in the same manner as in Example 1, except that the heating temperature of the positive electrode current collector substrate was 410 ° C. and a tin dioxide film was formed, and the β-type lead dioxide plating time was 3 minutes. A current collector was obtained. In the same manner as in Example 1, X-ray diffraction measurement was performed on the positive electrode current collector base material on which the tin dioxide film was formed and the positive electrode current collector in Example 2, and the half width of the lead dioxide film and the β-type lead dioxide film Table 1 shows the sum of the half width, the half width of the lead dioxide film, and the half width of the β-type lead dioxide film.

(実施例3の正極集電体の作製)
正極集電体基材の加熱温度を440℃として二酸化錫膜を形成したこと、およびβ型二酸化鉛のメッキ時間を2分間としたこと以外は実施例1と同様にして、実施例3の正極集電体を得た。実施例1と同様に、二酸化錫膜を形成した正極集電体基材および実施例3の正極集電体のX線回折測定をそれぞれ行い、二酸化鉛膜の半値幅、β型二酸化鉛膜の半値幅、二酸化鉛膜の半値幅とβ型二酸化鉛膜の半値幅との和を表1に示した。
(Preparation of the positive electrode current collector of Example 3)
The positive electrode of Example 3 in the same manner as in Example 1, except that the heating temperature of the positive electrode current collector base material was 440 ° C. and a tin dioxide film was formed and that the plating time of β-type lead dioxide was 2 minutes. A current collector was obtained. As in Example 1, X-ray diffraction measurement was performed on the positive electrode current collector base material on which the tin dioxide film was formed and the positive electrode current collector in Example 3, and the half width of the lead dioxide film and the β-type lead dioxide film Table 1 shows the sum of the half width, the half width of the lead dioxide film, and the half width of the β-type lead dioxide film.

(実施例4の正極集電体の作製)
正極集電体基材の加熱温度を430℃として二酸化錫膜を形成したこと、およびβ型二酸化鉛のメッキ時間を6分間としたこと以外は実施例1と同様にして、実施例4の正極集電体を得た。実施例1と同様に、二酸化錫膜を形成した正極集電体基材および実施例4の正極集電体のX線回折測定をそれぞれ行い、二酸化鉛膜の半値幅、β型二酸化鉛膜の半値幅、二酸化鉛膜の半値幅とβ型二酸化鉛膜の半値幅との和を表1に示した。
(Preparation of the positive electrode current collector of Example 4)
The positive electrode of Example 4 in the same manner as in Example 1, except that the heating temperature of the positive electrode current collector base material was 430 ° C. and a tin dioxide film was formed, and the β-type lead dioxide plating time was 6 minutes. A current collector was obtained. In the same manner as in Example 1, X-ray diffraction measurement was performed on the positive electrode current collector substrate on which the tin dioxide film was formed and the positive electrode current collector in Example 4, and the half width of the lead dioxide film and the β-type lead dioxide film were measured. Table 1 shows the sum of the half width, the half width of the lead dioxide film, and the half width of the β-type lead dioxide film.

(比較例1の正極集電体の作製)
正極集電体基材の加熱温度を435℃として二酸化錫膜を形成したこと、およびβ型二酸化鉛のメッキ時間を6分間としたこと以外は実施例1と同様にして、比較例1の正極集電体を得た。実施例1と同様に、二酸化錫膜を形成した正極集電体基材および比較例1の正極集電体のX線回折測定をそれぞれ行い、二酸化鉛膜の半値幅、β型二酸化鉛膜の半値幅、二酸化鉛膜の半値幅とβ型二酸化鉛膜の半値幅との和を表1に示した。
(Preparation of the positive electrode current collector of Comparative Example 1)
Comparative Example 1 positive electrode in the same manner as in Example 1 except that the heating temperature of the positive electrode current collector base material was 435 ° C. and a tin dioxide film was formed, and the β-type lead dioxide plating time was 6 minutes. A current collector was obtained. In the same manner as in Example 1, X-ray diffraction measurement was performed on the positive electrode current collector substrate on which the tin dioxide film was formed and the positive electrode current collector in Comparative Example 1, and the half width of the lead dioxide film and the β-type lead dioxide film were measured. Table 1 shows the sum of the half width, the half width of the lead dioxide film, and the half width of the β-type lead dioxide film.

(比較例2の正極集電体の作製)
正極集電体基材の加熱温度を440℃として二酸化錫膜を形成したこと、およびβ型二酸化鉛のメッキ時間を9分間としたこと以外は実施例1と同様にして、比較例2の正極集電体を得た。実施例1と同様に、二酸化錫膜を形成した正極集電体基材および比較例2の正極集電体のX線回折測定をそれぞれ行い、二酸化鉛膜の半値幅、β型二酸化鉛膜の半値幅、二酸化鉛膜の半値幅とβ型二酸化鉛膜の半値幅との和を表1に示した。
(Preparation of the positive electrode current collector of Comparative Example 2)
The positive electrode of Comparative Example 2 in the same manner as in Example 1, except that the heating temperature of the positive electrode current collector base material was 440 ° C. and a tin dioxide film was formed and the β-type lead dioxide plating time was 9 minutes. A current collector was obtained. In the same manner as in Example 1, X-ray diffraction measurement was performed on the positive electrode current collector base material on which the tin dioxide film was formed and the positive electrode current collector in Comparative Example 2, and the half width of the lead dioxide film and the β-type lead dioxide film Table 1 shows the sum of the half width, the half width of the lead dioxide film, and the half width of the β-type lead dioxide film.

(比較例3の正極集電体の作製)
正極集電体基材の加熱温度を320℃として二酸化錫膜を形成したこと、およびβ型二酸化鉛のメッキ時間を2分間としたこと以外は実施例1と同様にして、比較例3の正極集電体を得た。実施例1と同様に、二酸化錫膜を形成した正極集電体基材および比較例3の正極集電体のX線回折測定をそれぞれ行い、二酸化鉛膜の半値幅、β型二酸化鉛膜の半値幅、二酸化鉛膜の半値幅とβ型二酸化鉛膜の半値幅との和を表1に示した。
(Preparation of the positive electrode current collector of Comparative Example 3)
The positive electrode of Comparative Example 3 in the same manner as in Example 1 except that the heating temperature of the positive electrode current collector substrate was set to 320 ° C. and a tin dioxide film was formed and the β-type lead dioxide plating time was 2 minutes. A current collector was obtained. As in Example 1, X-ray diffraction measurement was performed on the positive electrode current collector substrate on which the tin dioxide film was formed and the positive electrode current collector in Comparative Example 3, and the half-value width of the lead dioxide film and the β-type lead dioxide film Table 1 shows the sum of the half width, the half width of the lead dioxide film, and the half width of the β-type lead dioxide film.

2.X線回折測定の結果と考察
(1)二酸化錫膜を形成した正極集電体基材のX線回折測定
図2に、比較例2、実施例2、比較例3の各正極集電体作製工程の途中で得られた二酸化錫膜のX線回折パターンを示した。図2中の「≒実施例3」との記載は、実施例3の正極集電体作製工程において得られた二酸化錫膜のX線回折パターンが、比較例2の正極集電体作製工程において得られた二酸化錫膜のX線回折パターンと近似していることを意味し、「≒実施例1」との記載は、実施例1の正極集電体作製工程において得られた二酸化錫膜のX線回折パターンが、比較例3の正極集電体作製工程において得られた二酸化錫膜のX線回折パターンと近似していることを意味する。図2中、黒点が付されたピークはチタンに帰属する。
2. Results and Discussion of X-ray Diffraction Measurement (1) X-ray Diffraction Measurement of Positive Electrode Current Collector Base Material Formed with Tin Dioxide Film FIG. 2 shows each positive electrode current collector preparation of Comparative Example 2, Example 2, and Comparative Example 3. The X-ray diffraction pattern of the tin dioxide film obtained in the middle of the process was shown. The description “≈Example 3” in FIG. 2 indicates that the X-ray diffraction pattern of the tin dioxide film obtained in the positive electrode current collector preparation process of Example 3 is the same as that in the positive electrode current collector preparation process of Comparative Example 2. It means that the obtained tin dioxide film is approximate to the X-ray diffraction pattern, and the description “≈Example 1” indicates that the tin dioxide film obtained in the positive electrode current collector preparation step of Example 1 It means that the X-ray diffraction pattern approximates the X-ray diffraction pattern of the tin dioxide film obtained in the positive electrode current collector preparation step of Comparative Example 3. In FIG. 2, the peak with a black dot belongs to titanium.

比較例2の正極集電体作製工程の途中で得られた二酸化錫膜のX線回折パターンにおいては、各結晶面のピーク曲線は急峻であり、強度が最大のピークである(200)面のピークの半値幅は実施例2および比較例3よりも小さく、0.72°であった。この結果より、実施例2や比較例3よりも結晶性が高いと考えられる。
実施例2の正極集電体作製工程の途中で得られた二酸化錫膜のX線回折パターンにおいては、各結晶面のピーク曲線が、比較例2の正極集電体作製工程途中で得られた二酸化錫膜と比較してゆるやかであった。実施例2において、強度が最大のピークは(200)面のピークであり、その半値幅は0.93°であった。
比較例3の正極集電体作製工程の途中で得られた二酸化錫膜のX線回折パターンにおいては、各結晶面のピーク曲線が、実施例2の正極集電体作製工程途中で得られた二酸化錫膜のピークよりも、さらにゆるやかであった。比較例3において、強度が最大のピークは(200)面のピークであり、その半値幅は1.88°であった。
In the X-ray diffraction pattern of the tin dioxide film obtained in the middle of the positive electrode current collector preparation process of Comparative Example 2, the peak curve of each crystal plane is steep, and the intensity is the maximum peak (200) plane. The full width at half maximum of the peak was 0.72 °, which was smaller than in Example 2 and Comparative Example 3. From this result, it is considered that the crystallinity is higher than that of Example 2 and Comparative Example 3.
In the X-ray diffraction pattern of the tin dioxide film obtained in the middle of the positive electrode current collector production process of Example 2, the peak curve of each crystal plane was obtained in the middle of the positive electrode current collector production process of Comparative Example 2. It was gentle compared to the tin dioxide film. In Example 2, the peak with the maximum intensity was the (200) plane peak, and its half-value width was 0.93 °.
In the X-ray diffraction pattern of the tin dioxide film obtained in the middle of the positive electrode current collector production process of Comparative Example 3, the peak curve of each crystal plane was obtained in the middle of the positive electrode current collector production process of Example 2. It was much gentler than the peak of the tin dioxide film. In Comparative Example 3, the peak with the maximum intensity was the (200) plane peak, and its half-value width was 1.88 °.

これらの結果より、二酸化錫膜を形成する際の正極集電体基材の加熱温度を高くするとピーク曲線が急峻になり、二酸化錫膜の半値幅が小さくなる(結晶性が高くなる)ということがわかった。
また、比較例2および実施例3では、ともに、二酸化錫膜を形成する際の正極集電体基材の加熱温度が440℃であり、比較例3および実施例1では、ともに二酸化錫膜を形成する際の正極集電体基材の加熱温度が320℃であるので、二酸化錫膜のX線回折パターンが近似していたと考えられる。
From these results, when the heating temperature of the positive electrode current collector base material when forming the tin dioxide film is increased, the peak curve becomes steeper and the half width of the tin dioxide film becomes smaller (the crystallinity becomes higher). I understood.
In Comparative Example 2 and Example 3, the heating temperature of the positive electrode current collector base material when forming the tin dioxide film was 440 ° C., and in Comparative Example 3 and Example 1, both of the tin dioxide films were formed. Since the heating temperature of the positive electrode current collector substrate at the time of formation is 320 ° C., it is considered that the X-ray diffraction pattern of the tin dioxide film was approximate.

(2)実施例の正極集電体および比較例の正極集電体のX線回折測定
図3に、実施例3、実施例4、実施例1の各正極集電体のβ型二酸化鉛膜のX線回折パターンを示した。なお、図3中の「≒比較例3」との記載は、実施例3の正極集電体のβ型二酸化鉛膜のX線回折パターンが、比較例3の正極集電体のβ型二酸化鉛膜のX線回折パターンと近似していることを意味する。図3中、黒点が付されたピークはα型二酸化鉛に帰属する。
実施例3、実施例4、実施例1の順でβ型二酸化鉛膜の各結晶面のピークが急峻であった。
(2) X-ray diffraction measurement of positive electrode current collector of Example and positive electrode current collector of Comparative Example FIG. 3 shows β-type lead dioxide films of the positive electrode current collectors of Example 3, Example 4, and Example 1. The X-ray diffraction pattern of was shown. The description “≈ Comparative Example 3” in FIG. 3 indicates that the X-ray diffraction pattern of the β-type lead dioxide film of the positive electrode current collector of Example 3 is the same as that of the positive electrode current collector of Comparative Example 3. It means that it approximates the X-ray diffraction pattern of the lead film. In FIG. 3, the peak with a black dot belongs to α-type lead dioxide.
In the order of Example 3, Example 4, and Example 1, the peak of each crystal plane of the β-type lead dioxide film was steep.

実施例3の正極集電体のβ型二酸化鉛膜のX線回折パターンにおいては、(301)面のピーク強度が最大であり半値幅は0.70°であった。実施例4の正極集電体のβ型二酸化鉛膜のX線回折パターンにおいては、(200)面のピーク強度が最大であり半値幅は0.40°であった。実施例1の正極集電体のβ型二酸化鉛膜のX線回折パターンにおいては、(110)面のピーク強度が最大であり半値幅は0.21°であった。   In the X-ray diffraction pattern of the β-type lead dioxide film of the positive electrode current collector of Example 3, the peak intensity on the (301) plane was the maximum, and the half width was 0.70 °. In the X-ray diffraction pattern of the β-type lead dioxide film of the positive electrode current collector of Example 4, the peak intensity on the (200) plane was the maximum, and the half width was 0.40 °. In the X-ray diffraction pattern of the β-type lead dioxide film of the positive electrode current collector of Example 1, the peak intensity on the (110) plane was the maximum, and the half width was 0.21 °.

また、β型二酸化鉛膜のメッキ時間は実施例3で2分、実施例4では6分、実施例1では20分であることから、メッキ時間を長く設定すると二酸化鉛膜の半値幅が小さくなる(結晶性が高くなる)ということがわかった。
さらに、実施例3と比較例3とではβ型二酸化鉛膜のメッキ時間はともに2分であることから、β型二酸化鉛膜のX線パターンが近似していたと考えられる。
In addition, the plating time of the β-type lead dioxide film is 2 minutes in Example 3, 6 minutes in Example 4, and 20 minutes in Example 1. Therefore, when the plating time is set long, the half width of the lead dioxide film is small. It was found that the crystallinity becomes high.
Furthermore, in Example 3 and Comparative Example 3, since the plating time of the β-type lead dioxide film is 2 minutes, it is considered that the X-ray pattern of the β-type lead dioxide film was approximate.

3.評価試験1(接触抵抗試験、寿命試験)
3−1.接触抵抗
実施例1〜4および比較例1〜3の正極集電体と正極活物質との接触抵抗を以下の方法により算出して評価を行った。
(1)試料(正極板)の作製
通常の鉛電池の製法に従い、鉛粉、水、及び硫酸を練り合わせることにより正極活物質ペーストを作製した。実施例1〜4および比較例1〜3の正極集電体の片面のW20×H20mmの範囲に正極活物質を塗布した後、通常の鉛電池の製法と同じく熟成・乾燥工程をおこなうことにより、未化成の正極板を作製した。
この未化成の正極板を、常法により作製した鉛電池の負極板を対向極に用いて、希硫酸電解液中で初充電し、正極活物質の化成をおこない、その後、希硫酸電解液の比重を1.270(20℃)に調整した。
3. Evaluation test 1 (contact resistance test, life test)
3-1. Contact Resistance The contact resistance between the positive electrode current collectors of Examples 1 to 4 and Comparative Examples 1 to 3 and the positive electrode active material was calculated and evaluated by the following method.
(1) Preparation of Sample (Positive Electrode Plate) A positive electrode active material paste was prepared by kneading lead powder, water, and sulfuric acid in accordance with an ordinary lead battery manufacturing method. By applying the positive electrode active material to a range of W20 × H20 mm on one side of the positive electrode current collectors of Examples 1 to 4 and Comparative Examples 1 to 3, and performing the aging and drying process in the same manner as the production method of a normal lead battery, An unchemically formed positive electrode plate was produced.
This unformed positive electrode plate was first charged in dilute sulfuric acid electrolyte using the negative electrode plate of a lead battery produced by a conventional method as the counter electrode, and then the positive electrode active material was formed. The specific gravity was adjusted to 1.270 (20 ° C.).

(2)試験方法
(1)で作製した正極板と通常の鉛電池の負極板とを用い、比重1.270(20℃)の希硫酸電解液にて、正極活物質質量あたり80mA/gの定電流で放電をおこなった。このとき、電解液中には参照極(Pb/PbSO)を入れて、正極板の電位降下量を測定した。
(2) Test method Using the positive electrode plate prepared in (1) and the negative electrode plate of a normal lead battery, a diluted sulfuric acid electrolyte with a specific gravity of 1.270 (20 ° C.) has a current density of 80 mA / g per positive electrode active material mass. Discharge was performed at a constant current. At this time, a reference electrode (Pb / PbSO 4 ) was put in the electrolyte, and the potential drop of the positive electrode plate was measured.

(3)接触抵抗の算出
放電前と放電後1秒目の正極電位差を1秒目電位降下量とした。また、放電した電流の絶対値を正極活物質を塗布した面積で除すことにより、単位面積あたりの放電電流値を算出した。
1秒目電位降下量を、単位面積あたりの放電電流値で除すことにより接触抵抗(Ωcm)を算出し、表1に示した。
接触抵抗を以下の基準により判定し、判定結果を表1に示した。
○:2Ωcm未満
×:2Ωcm以上
(3) Calculation of contact resistance The positive electrode potential difference before discharge and 1 second after discharge was defined as the first second potential drop. Further, the discharge current value per unit area was calculated by dividing the absolute value of the discharged current by the area where the positive electrode active material was applied.
The contact resistance (Ωcm 2 ) was calculated by dividing the first second potential drop by the discharge current value per unit area, and is shown in Table 1.
The contact resistance was determined according to the following criteria, and the determination results are shown in Table 1.
○: Less than 2 Ωcm 2 ×: 2 Ωcm 2 or more

3−2.寿命試験
実施例1〜4の正極集電体および比較例1〜3の正極集電体を使用して、寿命試験を行った。寿命試験の方法は、以下のとおりである。
(1)試験セルの作製
通常の鉛蓄電池の製法に従い、鉛粉、水、及び硫酸を練り合わせることにより正極活物質ペーストを作製した。その後、正極活物質ペーストを直径10mm×厚さ8mmの枠に充填して乾燥させることにより正極活物質ペレットとした。これを濃度20%の希硫酸溶液中に入れて50mAの通電を行うことにより、化成・充電した。
3-2. Life test A life test was conducted using the positive electrode current collectors of Examples 1 to 4 and the positive electrode current collectors of Comparative Examples 1 to 3. The method of the life test is as follows.
(1) Production of test cell A positive electrode active material paste was produced by kneading lead powder, water, and sulfuric acid in accordance with an ordinary method for producing a lead-acid battery. Thereafter, the positive electrode active material paste was filled in a frame having a diameter of 10 mm and a thickness of 8 mm and dried to obtain a positive electrode active material pellet. This was put in a dilute sulfuric acid solution having a concentration of 20% and energized at 50 mA to form and charge.

正極活物質ペレットを平板状にして、実施例1〜4の正極集電体および比較例1〜3の正極集電体の上にそれぞれ当接させ、これらの正極活物質ペレットと正極集電体を20kPa前後の圧力で圧接させた状態で、濃度40%の希硫酸溶液中に入れ、これを正極板とした。負極板には、鉛板が用いられた。このようにして作成した正極板及び負極板を使用して試験セルを作製した。   The positive electrode active material pellets are flattened and brought into contact with the positive electrode current collectors of Examples 1 to 4 and the positive electrode current collectors of Comparative Examples 1 to 3, respectively. Was put in a dilute sulfuric acid solution with a concentration of 40% in a state of being pressure-contacted at a pressure of about 20 kPa, and this was used as a positive electrode plate. A lead plate was used as the negative electrode plate. A test cell was prepared using the positive electrode plate and the negative electrode plate thus prepared.

(2)寿命試験
試験セルに2.3Vの定電圧を印加し、65℃の気相中で定電圧過充電試験を行った。
試験セルを定期的に試験環境から取り出して、24時間室温中で放置した。その後、150mAで放電を行うことにより正極容量を測定した。測定された正極容量が、初期値の50%を下回ったときを、「寿命が尽きた」時点であると判断し、寿命が尽きた時点までの日数を「寿命性能(日)」とし、寿命が尽きた時点までの日数を表1に示した。
寿命性能を以下の基準により判定し、判定結果を表1に示した。
◎:240日以上(長寿命品以上)
○:100日以上240日未満(一般的な鉛蓄電池以上)
×:100日未満
(2) Life test A constant voltage of 2.3 V was applied to the test cell, and a constant voltage overcharge test was conducted in a gas phase at 65 ° C.
The test cell was periodically removed from the test environment and left at room temperature for 24 hours. Then, the positive electrode capacity was measured by discharging at 150 mA. When the measured positive electrode capacity falls below 50% of the initial value, it is determined that the “life is exhausted” time, and the number of days until the end of the life is defined as “life performance (day)”. Table 1 shows the number of days up to the point when the time runs out.
The life performance was determined according to the following criteria, and the determination results are shown in Table 1.
A: 240 days or more (long-life product or more)
○: 100 days or more and less than 240 days (more than general lead storage battery)
×: Less than 100 days

Figure 2011249223
Figure 2011249223

3−3.考察
表1に記載の結果から明らかなように、二酸化錫膜の半値幅を1.0°以下とし、かつ、二酸化錫膜の半値幅とβ型二酸化鉛膜の半値幅との和を1.2°以上に制御した実施例2〜4の正極集電体では接触抵抗が小さく、かつ、寿命性能も優れていた。また二酸化錫膜の半値幅を1.0°より大きくし、かつ、二酸化錫膜の半値幅とβ型二酸化鉛膜の半値幅との和を1.2°以上2.2°以下とした実施例1の正極集電体では接触抵抗が小さく、かつ、寿命性能も優れていた。
3-3. Discussion As is apparent from the results shown in Table 1, the half width of the tin dioxide film is 1.0 ° or less, and the sum of the half width of the tin dioxide film and the half width of the β-type lead dioxide film is 1. In the positive electrode current collectors of Examples 2 to 4 controlled to 2 ° or more, the contact resistance was small and the life performance was excellent. In addition, the half width of the tin dioxide film was made larger than 1.0 °, and the sum of the half width of the tin dioxide film and the half width of the β-type lead dioxide film was 1.2 ° or more and 2.2 ° or less. The positive electrode current collector of Example 1 had low contact resistance and excellent life performance.

一方、二酸化錫膜の半値幅を1.0°以下とし、かつ、二酸化錫膜の半値幅とβ型二酸化鉛膜の半値幅との和を1.2°未満に制御した比較例1〜2の正極集電体では、接触抵抗が大きく、かつ、寿命性能が悪かった。
二酸化錫膜の半値幅を1.0°より大きくし、かつ、二酸化錫膜の半値幅とβ型二酸化鉛膜の半値幅との和を2.2°よりも大きくなるように制御した比較例3の正極集電体では、接触抵抗は小さかったが、寿命性能が悪かった。
On the other hand, Comparative Examples 1 and 2 in which the half width of the tin dioxide film was 1.0 ° or less and the sum of the half width of the tin dioxide film and the half width of the β-type lead dioxide film was controlled to be less than 1.2 °. In the positive electrode current collector, the contact resistance was large and the life performance was poor.
Comparative example in which the half-value width of the tin dioxide film was made larger than 1.0 ° and the sum of the half-value width of the tin dioxide film and the half-value width of the β-type lead dioxide film was made larger than 2.2 ° In the positive electrode current collector of No. 3, the contact resistance was small, but the life performance was poor.

この結果から、正極集電体基材の表面に二酸化錫膜とβ型二酸化鉛膜を積層してなる正極集電体において、二酸化錫膜の半値幅を1.0°以下とし、かつ、二酸化錫膜の半値幅とβ型二酸化鉛膜の半値幅との和を1.2°以上とするか、あるいは、二酸化錫膜の半値幅を1.0°より大きくし、かつ、二酸化錫膜の半値幅とβ型二酸化鉛膜の半値幅との和を1.2°以上2.2°以下とすれば、接触抵抗が小さく、かつ、寿命性能も優れた鉛蓄電池が得られるということがわかった。   From this result, in the positive electrode current collector formed by laminating a tin dioxide film and a β-type lead dioxide film on the surface of the positive electrode current collector base material, the half-value width of the tin dioxide film was 1.0 ° or less, and The sum of the half width of the tin film and the half width of the β-type lead dioxide film is 1.2 ° or more, or the half width of the tin dioxide film is made larger than 1.0 °, and It can be seen that if the sum of the half-value width and the half-value width of the β-type lead dioxide film is 1.2 ° or more and 2.2 ° or less, a lead-acid battery having low contact resistance and excellent life performance can be obtained. It was.

なお、実施例1〜4のうち、二酸化錫膜の半値幅を1.0°以下とし、かつ、二酸化錫膜の半値幅とβ型二酸化鉛膜の半値幅との和を1.2°以上に制御した実施例2〜4の正極集電体では特に寿命性能が優れていた。この結果から本発明においては、二酸化錫膜の半値幅を1.0°以下とし、かつ、二酸化錫膜の半値幅とβ型二酸化鉛膜の半値幅との和を1.2°以上とするのが好ましいということがわかった。   In Examples 1 to 4, the half width of the tin dioxide film is 1.0 ° or less, and the sum of the half width of the tin dioxide film and the half width of the β-type lead dioxide film is 1.2 ° or more. The positive electrode current collectors of Examples 2 to 4 controlled to have particularly excellent life performance. From this result, in the present invention, the half width of the tin dioxide film is 1.0 ° or less, and the sum of the half width of the tin dioxide film and the half width of the β-type lead dioxide film is 1.2 ° or more. It was found that this is preferable.

4.評価試験2(エネルギー密度、コスト)
本発明の正極集電体を備える鉛蓄電池(実施例5の鉛蓄電池50)および従来品の正極集電体111を備える鉛蓄電池100(従来例1の鉛蓄電池100)をそれぞれ作製して、エネルギー密度とコストの評価を行った。
(1)単電池の製造
実施例1の正極集電体11および、従来品の正極集電体111をそれぞれ使用して、実施形態1の単電池1と従来品の単電池110を4個ずつ作製した。
従来品の正極集電体111としては、以下の方法により作製したものを用いた。
(1−1)従来品の正極集電体111の作製
ジブチル錫ジアセテート溶液(溶媒:エタノール)と塩化アンチモン溶液(溶媒:エタノール)とを混合し原料液を作製した。なお、ジブチル錫ジアセテートの量は、原料液の全体に対して二酸化錫としての質量が2.5%となるように調整し、塩化アンチモンの量は、前記二酸化錫に対してアンチモンとしての質量が2.5%となるように調整した。
4). Evaluation test 2 (energy density, cost)
The lead storage battery (lead storage battery 50 of Example 5) provided with the positive electrode current collector of the present invention and the lead storage battery 100 (lead storage battery 100 of conventional example 1) provided with the positive electrode current collector 111 of the conventional product were respectively produced. Density and cost were evaluated.
(1) Manufacture of single battery Using the positive electrode current collector 11 of Example 1 and the conventional positive electrode current collector 111, each of the single cell 1 of Embodiment 1 and the conventional single cell 110 is four. Produced.
As the positive electrode current collector 111 of the conventional product, one produced by the following method was used.
(1-1) Preparation of Conventional Positive Electrode Current Collector 111 A dibutyltin diacetate solution (solvent: ethanol) and an antimony chloride solution (solvent: ethanol) were mixed to prepare a raw material solution. The amount of dibutyltin diacetate is adjusted so that the mass as tin dioxide is 2.5% with respect to the whole raw material liquid, and the amount of antimony chloride is the mass as antimony with respect to the tin dioxide. Was adjusted to 2.5%.

原料液を、410℃に加熱された平板状の正極集電体基材の表面に間歇的に噴霧した。噴霧の際には、正極集電体基材の温度が410℃を保つことができるように、噴霧の間隔をあけた。原料液の噴霧により、集電体基材の表面上で熱分解が生じ、二酸化錫膜が形成された集電体基材が得られた。これを従来品の正極集電体111とした。なお、正極集電体基材としては、20mm×70mmの大きさの方形状の平板を用いた。
従来品の正極集電体111について、実施例1の(1)で用いたX線回折装置によりX線回折測定を行った。得られたX線回折パターンの二酸化錫のピークのうち、強度が最大のピークの半値幅は0.93°であった。
The raw material liquid was sprayed intermittently on the surface of a flat plate current collector base material heated to 410 ° C. During spraying, the spray interval was set so that the temperature of the positive electrode current collector substrate could be maintained at 410 ° C. By spraying the raw material liquid, thermal decomposition occurred on the surface of the current collector base material, and a current collector base material on which a tin dioxide film was formed was obtained. This was used as a conventional positive electrode current collector 111. In addition, as a positive electrode electrical power collector base material, the square flat plate of a magnitude | size of 20 mm x 70 mm was used.
The X-ray diffraction measurement was performed on the conventional positive electrode current collector 111 by the X-ray diffractometer used in (1) of Example 1. Of the tin dioxide peaks in the obtained X-ray diffraction pattern, the half-width of the peak having the maximum intensity was 0.93 °.

(1−2)単電池の製造
実施例1の正極集電体11を用いて、図1に示す構造の単電池1を4個作製し、従来品の正極集電体111を用いて、図5に示す単電池110(従来例の単電池110)を4個作製した。
従来例の単電池110の正極集電体111は、β型二酸化鉛層を備えないという点で、図1の単電池1と相違するが、それ以外の構成はおおむね同様であり、図1の単電池1と同様の構成の部分には同じ符号を付している。
図5中、112は正極活物質、113は正極板、114はセパレータ、115は負極活物質、116は負極集電体、117は負極板である。
(1-2) Manufacture of unit cell Four unit cells 1 having the structure shown in FIG. 1 were prepared using the positive electrode current collector 11 of Example 1, and the conventional positive electrode current collector 111 was used. Four unit cells 110 (conventional unit cells 110) shown in FIG.
The positive electrode current collector 111 of the cell 110 of the conventional example is different from the cell 1 of FIG. 1 in that it does not include a β-type lead dioxide layer, but the other configurations are generally the same as in FIG. Parts having the same configuration as the unit cell 1 are denoted by the same reference numerals.
In FIG. 5, 112 is a positive electrode active material, 113 is a positive electrode plate, 114 is a separator, 115 is a negative electrode active material, 116 is a negative electrode current collector, and 117 is a negative electrode plate.

単電池1の正極板10および従来例の単電池110の正極板113を以下の手順により作製した。鉛粉、水、及び硫酸を練り合わせることにより正極活物質ペーストを作製し、この正極活物質ペーストを用いて常法に従って、PbOを主体とする板状の正極活物質を作製した。この正極活物質を各正極集電体に配することによって、正極板をそれぞれ作製した。
負極集電体としては、鉛メッキ(厚さ:20〜30μm)された銅板(厚さ0.1mm)を用いた。負極活物質としては、鉛粉、水、希硫酸、カーボン、硫酸バリウム、リグニン等を練り合わせることにより負極活物質ペーストを作製し、この負極活物質ペーストを用いて常法に従って、海綿状金属鉛を主体とする板状の活物質を用いた。この負極活物質を負極集電体に配することにより負極板を作製した。
セパレータとしては、ガラス繊維をマット状にしたものを用いた。正極板と負極板とをセパレータを介して積層し、電池ケースに収納し、電解液を注入することにより単電池1および従来例の単電池100をそれぞれ製造した。
The positive electrode plate 10 of the unit cell 1 and the positive electrode plate 113 of the unit cell 110 of the conventional example were produced by the following procedure. A positive electrode active material paste was prepared by kneading lead powder, water, and sulfuric acid, and a plate-like positive electrode active material mainly composed of PbO 2 was prepared using this positive electrode active material paste according to a conventional method. A positive electrode plate was produced by arranging this positive electrode active material on each positive electrode current collector.
As the negative electrode current collector, a copper plate (thickness: 0.1 mm) plated with lead (thickness: 20 to 30 μm) was used. As the negative electrode active material, a negative electrode active material paste is prepared by kneading lead powder, water, dilute sulfuric acid, carbon, barium sulfate, lignin, etc., and using this negative electrode active material paste, spongy metallic lead A plate-like active material mainly composed of was used. This negative electrode active material was placed on a negative electrode current collector to produce a negative electrode plate.
As the separator, a glass fiber in a mat shape was used. The positive electrode plate and the negative electrode plate were laminated via a separator, housed in a battery case, and an electrolytic solution was injected to manufacture the unit cell 1 and the unit cell 100 of the conventional example.

(2)鉛蓄電池(組電池)の作製
次に、実施例1の正極集電体11を使用して製造された鉛蓄電池1(単電池1)を4個使用して実施例5の鉛蓄電池50(組電池50)を製造した(図4を参照)。また、従来品の正極集電体101を使用して製造された鉛蓄電池110(単電池110)を4個使用して、従来例1の鉛蓄電池100(組電池100)を製造した(図5を参照)。
まず、各単電池の負極集電体が、隣接する別の単電池の正極集電体の上に載置されるようにして、4つの単電池を直列に積層した。
(2) Production of lead acid battery (assembled battery) Next, the lead acid battery of Example 5 using four lead acid batteries 1 (unit cells 1) manufactured using the positive electrode current collector 11 of Example 1. 50 (assembled battery 50) was manufactured (see FIG. 4). Moreover, the lead storage battery 100 (assembled battery 100) of the prior art example 1 was manufactured using the four lead storage batteries 110 (unit cell 110) manufactured using the positive electrode collector 101 of the conventional product (FIG. 5). See).
First, four single cells were stacked in series so that the negative electrode current collector of each single cell was placed on the positive electrode current collector of another adjacent single cell.

従来例1の鉛蓄電池100では、積層した単電池110の上下に、銅製の端子板118と、絶縁性材料からなる絶縁板119と、金属製の外装体120をそれぞれ配置して積層し、上方からボルト122を挿通させて、下方でナット121を締め付けることにより固定した。この従来例1の鉛蓄電池100には、各単電池110を金属製の外装体120ではさんでナット121締めすることにより、ゲージ圧で100〜400kPa程度の圧力を加えた。従来例1の鉛蓄電池100を構成する各単電池110においては、セパレータ114が圧縮された状態となり、圧縮による反発力によって、ゲージ圧で250kPa前後の圧力で正極活物質112が正極集電体111に押圧され、負極活物質115が負極集電体116に押圧される。   In the lead-acid battery 100 of Conventional Example 1, a copper terminal plate 118, an insulating plate 119 made of an insulating material, and a metal exterior body 120 are respectively disposed on and stacked on the upper and lower sides of the stacked unit cells 110, and the upper The bolts 122 were inserted through the nuts 121, and the nuts 121 were tightened below to fix the bolts. A pressure of about 100 to 400 kPa was applied as a gauge pressure to the lead storage battery 100 of Conventional Example 1 by tightening each nut 110 with a nut 121 sandwiched between metal outer bodies 120. In each unit cell 110 constituting the lead storage battery 100 of Conventional Example 1, the separator 114 is in a compressed state, and the positive electrode active material 112 is converted into a positive electrode current collector 111 at a gauge pressure of about 250 kPa by the repulsive force due to the compression. The negative electrode active material 115 is pressed against the negative electrode current collector 116.

実施例5の鉛蓄電池50では、積層した単電池1を補助枠材51の中に入れて、その上下に銅製の端子板52および軽量の絶縁性材料からなる絶縁板53を配置して、絶縁板53をねじ54により固定した。この鉛蓄電池50にかかっている圧力は、通常の鉛蓄電池と同程度の圧力(20〜40kPa)であった。   In the lead storage battery 50 of the fifth embodiment, the stacked unit cells 1 are placed in the auxiliary frame member 51, and the copper terminal plate 52 and the insulating plates 53 made of a lightweight insulating material are arranged on the upper and lower sides thereof to insulate. The plate 53 was fixed with screws 54. The pressure applied to the lead storage battery 50 was the same level as that of a normal lead storage battery (20 to 40 kPa).

(3)エネルギー密度
実施例5の鉛蓄電池50、及び従来例1の鉛蓄電池100(公称容量はいずれも2.3Ah)に関して0.5A放電時の質量エネルギー密度を比較した。具体的には、従来例1の鉛蓄電池100の0.5A放電時の質量エネルギー密度を1としたときの実施例5の鉛蓄電池50の0.5A放電時の質量エネルギー密度の比を算出し、表2に示した。
(3) Energy density The mass energy density at the time of 0.5 A discharge was compared regarding the lead acid battery 50 of Example 5, and the lead acid battery 100 of the prior art example 1 (both nominal capacity is 2.3 Ah). Specifically, the ratio of the mass energy density at the time of 0.5 A discharge of the lead storage battery 50 of Example 5 when the mass energy density at the time of 0.5 A discharge of the lead storage battery 100 of Conventional Example 1 is set to 1. The results are shown in Table 2.

(4)製造コスト
実施例5の鉛蓄電池50の製造に要するコスト、及び従来例1の鉛蓄電池100の製造に要するコストを試算し、従来例1の鉛蓄電池100の製造コストを1としたときの実施例5の鉛蓄電池50のコストの比を算出して表2に示した。
(4) Manufacturing Cost When the cost required for manufacturing the lead storage battery 50 of Example 5 and the cost required for manufacturing the lead storage battery 100 of Conventional Example 1 are estimated, the manufacturing cost of the lead storage battery 100 of Conventional Example 1 is set to 1. The cost ratio of the lead storage battery 50 of Example 5 was calculated and shown in Table 2.

Figure 2011249223
Figure 2011249223

(5)考察
表2に示す結果から、実施例1の正極集電体10を備える鉛蓄電池50のエネルギー密度は従来品の正極集電体101を備える鉛蓄電池100よりも顕著に高いということがわかった。
また、実施例1の正極集電体10を備える鉛蓄電池50では、従来例1の鉛蓄電池100よりもコストを顕著に低くすることができるということがわかった。この理由は以下のように考えられる。
従来例1の鉛蓄電池100を構成する各単電池110においては、セパレータ114が圧縮された状態となる。この反発力によって、ゲージ圧で250kPa前後の圧力で正極活物質112を正極集電体111に押圧し、また、負極活物質115を負極集電体116に押圧する。この鉛蓄電池100においては、充放電性能を安定させるために、ゲージ圧で100〜400kPa程度の圧力を加えることが必要であり、このような高い圧迫力をかけるために金属製の外装体120が必要となる。
これに対し、本発明の正極集電体を備える鉛蓄電池では、通常の鉛蓄電池と同程度の圧力(20〜40kPa)をかけて固定すればよく、従来品の正極集電体を備える鉛蓄電池のように高い圧迫力をかける必要がないため、高圧迫に必要な重い金属製の外装体、ボルト、およびナットなどが不要であり、このことに起因してコストを顕著に低くすることができたと考えられる。
(5) Discussion From the results shown in Table 2, the energy density of the lead storage battery 50 including the positive electrode current collector 10 of Example 1 is significantly higher than that of the lead storage battery 100 including the conventional positive electrode current collector 101. all right.
Moreover, in the lead storage battery 50 provided with the positive electrode collector 10 of Example 1, it turned out that cost can be remarkably made lower than the lead storage battery 100 of the prior art example 1. FIG. The reason is considered as follows.
In each single battery 110 constituting the lead storage battery 100 of Conventional Example 1, the separator 114 is in a compressed state. By this repulsive force, the positive electrode active material 112 is pressed against the positive electrode current collector 111 and the negative electrode active material 115 is pressed against the negative electrode current collector 116 at a gauge pressure of about 250 kPa. In this lead storage battery 100, in order to stabilize the charge / discharge performance, it is necessary to apply a pressure of about 100 to 400 kPa as a gauge pressure. In order to apply such a high pressing force, the metal exterior body 120 is Necessary.
On the other hand, in the lead acid battery provided with the positive electrode current collector of the present invention, the lead acid battery may be fixed by applying the same pressure (20 to 40 kPa) as that of a normal lead acid battery. Because there is no need to apply high pressure as in the case of, heavy metal exteriors, bolts, nuts, etc. necessary for high pressure are unnecessary, which can significantly reduce costs. It is thought.

1…鉛蓄電池(単電池)
10…正極板
11…正極集電体
12…正極集電体基材
13…二酸化錫膜
14…β型二酸化鉛膜
15…正極活物質
20…負極板
21…負極集電体
22…負極集電体基材
25…負極活物質
50…鉛蓄電池(組電池)
1 ... Lead-acid battery (single cell)
DESCRIPTION OF SYMBOLS 10 ... Positive electrode plate 11 ... Positive electrode collector 12 ... Positive electrode collector base material 13 ... Tin dioxide film 14 ... β-type lead dioxide film 15 ... Positive electrode active material 20 ... Negative electrode plate 21 ... Negative electrode collector 22 ... Negative electrode collector Body base material 25 ... Negative electrode active material 50 ... Lead acid battery (assembled battery)

Claims (3)

二酸化錫を含む二酸化錫膜が表面に形成されたチタンまたはチタン合金製の集電体基材を備える鉛蓄電池用正極集電体であって、
前記二酸化錫膜の表面にはβ型二酸化鉛を含むβ型二酸化鉛膜が形成され、
前記二酸化錫膜のX線回折パターンにおける二酸化錫のピークのうち強度が最大のピークの半値幅Aが1°以下であり、かつ、前記半値幅Aと、前記β型二酸化鉛膜のX線回折パターンにおけるβ型二酸化鉛のピークのうち強度が最大のピークの半値幅Bとの和が1.2°以上、もしくは、
前記半値幅Aが1°より大きく、かつ前記半値幅Aと前記半値幅Bとの和が1.2°以上2.2°以下であることを特徴とする鉛蓄電池用正極集電体。
A positive electrode current collector for a lead storage battery comprising a current collector base material made of titanium or a titanium alloy on which a tin dioxide film containing tin dioxide is formed,
A β-type lead dioxide film containing β-type lead dioxide is formed on the surface of the tin dioxide film,
Of the tin dioxide peaks in the X-ray diffraction pattern of the tin dioxide film, the half-value width A of the peak having the maximum intensity is 1 ° or less, and the half-value width A and the X-ray diffraction of the β-type lead dioxide film Of the β-type lead dioxide peaks in the pattern, the sum of the half-width B of the peak with the maximum intensity is 1.2 ° or more, or
The positive current collector for a lead storage battery, wherein the half-value width A is greater than 1 ° and the sum of the half-value width A and the half-value width B is 1.2 ° or more and 2.2 ° or less.
前記半値幅Aが1°以下であり、かつ、前記半値幅Aと前記半値幅Bとの和が1.2°以上であることを特徴とする請求項1に記載の鉛蓄電池用正極集電体。 2. The positive electrode current collector for a lead storage battery according to claim 1, wherein the half-value width A is 1 ° or less, and the sum of the half-value width A and the half-value width B is 1.2 ° or more. body. 請求項1または請求項2に記載の鉛蓄電池用正極集電体を備えることを特徴とする鉛蓄電池。 A lead storage battery comprising the positive electrode current collector for a lead storage battery according to claim 1.
JP2010123035A 2010-05-28 2010-05-28 Positive electrode current collector for lead-acid storage battery and lead-acid storage battery Pending JP2011249223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010123035A JP2011249223A (en) 2010-05-28 2010-05-28 Positive electrode current collector for lead-acid storage battery and lead-acid storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010123035A JP2011249223A (en) 2010-05-28 2010-05-28 Positive electrode current collector for lead-acid storage battery and lead-acid storage battery

Publications (1)

Publication Number Publication Date
JP2011249223A true JP2011249223A (en) 2011-12-08

Family

ID=45414226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010123035A Pending JP2011249223A (en) 2010-05-28 2010-05-28 Positive electrode current collector for lead-acid storage battery and lead-acid storage battery

Country Status (1)

Country Link
JP (1) JP2011249223A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020005803A1 (en) * 2018-06-25 2020-01-02 Eskra Technical Products, Inc. Bipolar lead acid battery cells with increased energy density

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020005803A1 (en) * 2018-06-25 2020-01-02 Eskra Technical Products, Inc. Bipolar lead acid battery cells with increased energy density
US11050093B2 (en) 2018-06-25 2021-06-29 Eskra Technical Products, Inc. Bipolar lead acid battery cells with increased energy density
JP2021528821A (en) * 2018-06-25 2021-10-21 イスクラ テクニカル プロダクツ,インク. Bipolar lead-acid battery with increased energy density
JP7218004B2 (en) 2018-06-25 2023-02-06 イスクラ テクニカル プロダクツ,インク. Bipolar lead-acid battery cells with increased energy density

Similar Documents

Publication Publication Date Title
EP2313353B1 (en) Method for producing an electrode for lead-acid battery
KR102158241B1 (en) Electrolytic Copper Foil, Current Collector Comprising The Same, Electrode Comprising The Same, Secondary Battery Comprising The Same, and Method for Manufacturing The Same
JP5168904B2 (en) Positive electrode current collector for lead acid battery
JPWO2008114738A1 (en) Lead-acid battery and battery pack
JP2005505102A (en) Current collector structure and method for improving the performance of lead acid batteries
EP1271674B1 (en) Method of manufacturing an electrode active material particle
AU2004326088B2 (en) Grid for lead-acid battery with electroconductive polymer coating
KR101951637B1 (en) Negative electrode for secondary battery, method thereof and lithium secondary batteries fabricated by using the same
JP2007087789A (en) Negative electrode for lithium ion secondary battery and its manufacturing method
US6617071B2 (en) Active material for high power and high energy lead acid batteries and method of manufacture
JP4320536B2 (en) Positive electrode plate for lead acid battery and lead acid battery
JP2011249223A (en) Positive electrode current collector for lead-acid storage battery and lead-acid storage battery
JP2002313332A (en) Control valve type lead-acid battery
JP2003338310A (en) Lead storage battery
WO2000070696A1 (en) Collector for storage battery, storage battery comprising the same, and method for manufacturing the storage battery
JP5073403B2 (en) Lead-acid battery grid and lead-acid battery using the grid
JP2012216352A (en) Positive electrode plate for lead-acid battery and lead-acid battery
JPH0837001A (en) Positive electrode plate for lead-acid battery and manufacture of the electrode plate
JP2012230838A (en) Positive electrode plate for lead-acid storage battery, lead-acid storage battery, and method for manufacturing positive electrode plate for lead-acid storage battery
JP4145061B2 (en) Method for producing electrode for lithium secondary battery
CN116053395A (en) Thermal evaporation tellurium-based protective layer for zinc battery cathode and preparation method thereof
CN117878438A (en) Lead storage battery for energy storage and preparation method thereof
CN115377362A (en) Forming type lead-acid storage battery pole plate and preparation method of lead-acid storage battery
CN116565344A (en) Bipolar plate, bipolar lead-acid battery and preparation method of bipolar plate
CN117525376A (en) Preparation method and application of copper-tin alloy 3D framework