WO2000067805A1 - Cleaning particulate matter and chemical contaminants from hands and elastomeric articles - Google Patents
Cleaning particulate matter and chemical contaminants from hands and elastomeric articles Download PDFInfo
- Publication number
- WO2000067805A1 WO2000067805A1 PCT/US2000/006697 US0006697W WO0067805A1 WO 2000067805 A1 WO2000067805 A1 WO 2000067805A1 US 0006697 W US0006697 W US 0006697W WO 0067805 A1 WO0067805 A1 WO 0067805A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cleaning
- source
- hand
- nebulizer
- gas
- Prior art date
Links
- 238000004140 cleaning Methods 0.000 title claims abstract description 202
- 239000000126 substance Substances 0.000 title claims abstract description 44
- 239000000356 contaminant Substances 0.000 title claims abstract description 24
- 239000013618 particulate matter Substances 0.000 title description 5
- 239000007789 gas Substances 0.000 claims abstract description 121
- 239000002245 particle Substances 0.000 claims abstract description 74
- 239000006199 nebulizer Substances 0.000 claims abstract description 55
- 239000003595 mist Substances 0.000 claims abstract description 32
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims abstract description 26
- 230000003213 activating effect Effects 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims description 18
- 239000012459 cleaning agent Substances 0.000 claims description 15
- 239000011538 cleaning material Substances 0.000 claims description 14
- 238000004891 communication Methods 0.000 claims description 10
- 150000002500 ions Chemical class 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 5
- 239000012190 activator Substances 0.000 claims description 3
- 239000012298 atmosphere Substances 0.000 claims description 3
- 239000006200 vaporizer Substances 0.000 claims description 3
- 210000002381 plasma Anatomy 0.000 description 42
- 239000000243 solution Substances 0.000 description 39
- 238000013459 approach Methods 0.000 description 17
- 244000005700 microbiome Species 0.000 description 15
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 10
- 241000894007 species Species 0.000 description 10
- 230000001954 sterilising effect Effects 0.000 description 9
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 238000010494 dissociation reaction Methods 0.000 description 6
- 230000005593 dissociations Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 238000004659 sterilization and disinfection Methods 0.000 description 6
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 5
- 238000011109 contamination Methods 0.000 description 5
- 229940071106 ethylenediaminetetraacetate Drugs 0.000 description 5
- 239000004310 lactic acid Substances 0.000 description 5
- 235000014655 lactic acid Nutrition 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 210000004907 gland Anatomy 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000033001 locomotion Effects 0.000 description 3
- 238000004377 microelectronic Methods 0.000 description 3
- 150000002825 nitriles Chemical class 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- PXRKCOCTEMYUEG-UHFFFAOYSA-N 5-aminoisoindole-1,3-dione Chemical compound NC1=CC=C2C(=O)NC(=O)C2=C1 PXRKCOCTEMYUEG-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000003749 cleanliness Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000013536 elastomeric material Substances 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229920003051 synthetic elastomer Polymers 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 235000002961 Aloe barbadensis Nutrition 0.000 description 1
- 244000186892 Aloe vera Species 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 235000011399 aloe vera Nutrition 0.000 description 1
- 239000003124 biologic agent Substances 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000000645 desinfectant Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 239000011236 particulate material Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000009428 plumbing Methods 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- -1 potassium and sodium Chemical class 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000001846 repelling effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B7/00—Cleaning by methods not provided for in a single other subclass or a single group in this subclass
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/02—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
- A61L2/14—Plasma, i.e. ionised gases
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/16—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
- A61L2/20—Gaseous substances, e.g. vapours
- A61L2/208—Hydrogen peroxide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2/00—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
- A61L2/16—Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
- A61L2/22—Phase substances, e.g. smokes, aerosols or sprayed or atomised substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L9/00—Disinfection, sterilisation or deodorisation of air
- A61L9/14—Disinfection, sterilisation or deodorisation of air using sprayed or atomised substances including air-liquid contact processes
- A61L9/145—Disinfection, sterilisation or deodorisation of air using sprayed or atomised substances including air-liquid contact processes air-liquid contact processes, e.g. scrubbing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L9/00—Disinfection, sterilisation or deodorisation of air
- A61L9/16—Disinfection, sterilisation or deodorisation of air using physical phenomena
- A61L9/22—Ionisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B5/00—Cleaning by methods involving the use of air flow or gas flow
- B08B5/02—Cleaning by the force of jets, e.g. blowing-out cavities
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2209/00—Aspects relating to disinfection, sterilisation or deodorisation of air
- A61L2209/20—Method-related aspects
- A61L2209/22—Treatment by sorption, e.g. absorption, adsorption, chemisorption, scrubbing, wet cleaning
Definitions
- This invention relates to the cleaning of gloved or ungloved hands and elastomeric articles, and to the measurement of the state of cleanliness.
- the practice of wearing gloves has become increasingly widespread in these and other situations, to protect the workers, to protect the material being handled, and to protect third parties.
- the gloves which are typically latex or a synthetic material, are cleaned and packaged by glove manufacturers or laundries, but may become contaminated with particles during shipping and storage.
- Elastomeric gloves are subject to surface hardening and microcracking. The microcracking allows particulate matter to be created and/or trapped at the microcracks. The particulate matter may later detach from the microcracks and surfaces of the gloves. The gloves may also become contaminated with biological organisms during use.
- the present invention provides an apparatus and method for cleaning gloved and ungloved hands, and other elastomeric articles, in order to reduce the particulate content and surface chemical and biological contaminants to acceptable levels, and for measuring the particulate and/or contaminant content found on the surface of the articles.
- the apparatus may be readily used in clean room, medical, laboratory, food service, and other environments. It is a free-standing, self- contained unit except for a power connection, and does not require plumbing or drain connections. (The apparatus may be battery powered, and in that case does not even require an external power connection.) After cleaning of the article such as gloved or ungloved hands, which usually requires less than 30 seconds, the cleaned article is dry, so that the worker may immediately return to the activity which requires the cleaned article.
- an apparatus has a hand-cleaning volume sized to receive a human hand therein.
- the apparatus comprises a mechanical-cleaning device including a pressurized gas source positioned to direct a flow of pressurized gas into the hand-cleaning volume, a source of pressurized gas in communication with an inlet of the pressurized gas source, and a gas-source vent communicating with the hand-cleaning volume.
- the pressurized gas is an activated gas either in the form of an ionized gas or a plasma gas, but most preferably balanced ionized air.
- the flow of activated gas dislodges particles from the surface of the gloved or ungloved hand, and the activated gas aids in repelling the dislodged particles from the surface of the hand so that they do not redeposit thereon.
- the pressurized gas source may be a gas knife, such as an air knife in the form of a moving sheet of gas that sweeps over the surface of the hand, or a properly positioned set of nozzles that produce a turbulent atmosphere.
- the pressurized gas flow is preferably pulsed to increase the particle dislodging effects.
- the mechanical-cleaning device may include a particle counter in the gas- source vent to count particles dislodged from the gloved or ungloved hand. The particle count is interpreted as an indication of the cleanliness of the hands in respect to particles.
- the pressurized-gas source may also be operated to dry the gloved or ungloved hands after subsequent treatments.
- the apparatus also includes a chemical-cleaning device.
- the chemical- cleaning device removes chemical and/or biological contaminants that may have adhered to the surface of the gloved or ungloved hand during prior use, but whose surface concentration must be reduced.
- the chemical-cleaning device includes a nebulizer operable to emit a cleaning mist into the hand-cleaning volume, a source of a cleaning solution in communication with an inlet of the nebulizer, and a nebulizer vent disposed oppositely from the nebulizer across the hand-cleaning volume.
- the cleaning mist is in an activated state, such as a plasma gas or an ionized gas.
- the cleaning mist is produced by passing a vapor of the cleaning solution through a plasma, to produce a dissociated, activated state in the cleaning mist.
- the activated cleaning mist thereafter passes across the hands received in the hand-cleaning volume.
- the cleaning mist reacts with the chemical contaminants on the surface of the hand, mobilizes these contaminants, and causes them to vaporize and entrain in the flow of cleaning mist for removal from the system.
- the cleaning solution may be selected according to the type of contaminants that are expected in each application. In a typical case, however, organic contaminants are removed using an aqueous cleaning mixture of dissociated hydrogen peroxide, optionally an acid such as citric acid or lactic acid, and n-propyl alcohol. There may be, and preferably are, two or more cleaning solutions that are used sequentially to remove specific chemical contaminants.
- a skin conditioner may also be introduced in those cases where the hands are ungloved.
- Biological agents may be removed by the cleaning mist, and/or a separate biological cleaning device such as an ultraviolet light source may be provided.
- the apparatus is preferably placed in a housing, which has an opening therethrough which permits a person to place a gloved or ungloved hand (or both hands) into the hand-cleaning volume.
- the apparatus preferably includes a negative-pressure source within the housing adjacent to the opening, so that gas within the housing is preferentially drawn into the negative-pressure source rather than escapes through the opening.
- the negative-pressure source may be either the gas-source vent or the nebulizer vent, or a separate vent.
- Figure 1 is a schematic perspective front view of a housed apparatus according to the invention
- Figure 2 is a schematic perspective rear view of the housed apparatus of Figure 1;
- FIG 3 is a schematic perspective rear interior view of the apparatus in the same view as Figure 2, but with the housing removed to reveal the interior components;
- Figure 4 is a schematic interior layout of the hand-cleaning volume and associated apparatus, with the mechanical-cleaning device operating;
- Figure 5 is a schematic interior layout of the hand-cleaning volume and associated apparatus, with the chemical-cleaning device operating;
- Figure 6 is a schematic view of a comb-type ionizer used to produce balanced ionized gas in a pressurized-gas source
- Figure 7 is a schematic view of a glow-discharge plasma source used to activate a nebulized cleaning solution
- Figure 8 is a block flow diagram of a preferred method for practicing the first embodiment of the invention.
- Figure 9 is a schematic depiction of a first apparatus according to a second embodiment of the invention.
- Figure 10 is a schematic depiction of a second apparatus according to the second embodiment of the invention.
- Figure 11 is a schematic depiction of a third apparatus according to the third embodiment of the invention.
- Figure 12 is a block diagram of a method for practicing the second embodiment of the invention.
- Figures 1-8 relate to a first embodiment of the invention.
- Figures 1 and 2 are exterior views of a cleaning apparatus 20 for cleaning gloved or ungloved human hands. Where the hand is ungloved, the exposed human skin is cleaned. Where the hand is gloved, the gloves are preferably made of an elastomeric material such as natural latex or a synthetic elastomer.
- the apparatus 20 includes a housing 22 having an opening 24 therethrough.
- the opening 24 is sized to receive one or (preferably) two human hands and is positioned at a convenient height from the floor for insertion of the hand. In a prototype apparatus 20, the opening 24 is 9 inches high by 12 inches wide in size, and is about 43 inches from the floor.
- a control panel 26 is positioned on the front of the apparatus 20 for access by the user.
- Figure 3 is the same view as Figure 2, but with the housing 22 removed so that the interior components are visible.
- Figures 4 and 5 are layouts of the interior of the apparatus with the housing removed, during different portions of the operating cycle.
- the apparatus 20 has a hand-cleaning volume 28 sized to receive a gloved or ungloved human hand 30 therein, through the opening 24.
- the apparatus 20 comprises a mechanical-cleaning device 32 that dislodges particles from the surface of the gloved or ungloved hand.
- the mechanical-cleaning device 32 may be of any operable type that dislodges particles from the surface of the hand 30. The dislodging of particles is particularly important in some clean-room and medical applications where the hand is gloved.
- elastomeric articles such as gloves typically develop small microcracks at the external surfaces thereof.
- microcracks are found in both natural latex and synthetic elastomers. These microcracks are not so large and deep as to cause the elastomeric glove to fail, and the microcracks are therefore acceptable in many uses of the articles.
- the surface microcracking of the elastomeric glove can lead to the production or retention of particulate material which can later fall from the article and lead to particulate-contamination problems in some environments, such as a clean room manufacturing environment or some medical environments. Some particulate is produced as the elastomeric material itself breaks away (spalls) from the surface.
- Additional particulate may be produced by particles that arise externally and are entrapped and retained within the microcracks as the user flexes the article, and then are released later to fall away from the elastomeric article.
- the mechanical-cleaning device 32 removes particles of both types from the surface of the glove.
- the preferred mechanical-cleaning device 32 includes a pressurized gas source 34 positioned to direct a flow of pressurized gas into the hand-cleaning volume 28.
- the pressurized gas source 34 may be of any operable type.
- the preferred pressurized gas source 34 is a gas knife, preferably an air knife 36.
- the air knife 36 includes a first cylinder 38a mounted at the top of the hand-cleaning volume 28 and thence above the hand 30 and extending transversely thereto, and a second cylinder 38b mounted below the hand-cleaning volume 28 and thence below the hand 30 and extending transversely thereto.
- Each cylinder has an axis extending out of the plane of the drawing in Figures 4 and 5.
- Each cylinder 38a and 38b has nozzles therein, directed generally toward the gloved hand. Air or other gas flowing through the nozzles impinges upon the gloved or ungloved hand, mechanically dislodging loose particles from the glove surface.
- the cylinders 38a and 38b are driven by motors 39 or other types of drives to rotate about their axes, to sweep over the entirety of the top surface of the gloved or ungloved hand and the bottom surface of the gloved or ungloved hand, respectively.
- An array of fixed nozzles may be used instead of or in addition to the air knife in some applications.
- a source of pressurized gas 40 is in communication with an inlet 42 of the pressurized gas source 34.
- the pressurized gas is preferably in an "activated state", meaning that it has been activated by an ionizing field or a plasma. Most preferably, the pressurized gas flowing from the source of pressurized gas 40 is in an ionized state.
- the activated gas may be in a balanced ionized state, meaning that it has approximately equal numbers of positive and negative ions, or in a highly ionized, unbalanced state, meaning that it has unequal numbers of positive and negative ions.
- the balanced ionized state is preferred.
- the source of pressurized gas 40 preferably a source of ionized air, includes a pressurized gas supply 44, such as a pressurized gas bottle, a fan, or a pumped tank.
- the pressurized gas supply 44 may supply gas at a constant pressure. More preferably, however, the pressurized gas supply 44 supplies a gas flow that is pulsed, so that the gas flowing out of the pressurized gas source 34 is pulsed.
- the pulsed gas is found to be more effective in dislodging the particles from the glove surface than is gas flowing at constant pressure.
- the gas pressure supplied to the pressurized gas source 34 is typically from about 30 psi to about 40 psi above atmospheric pressure, optionally pulsed between a maximum pressure of about 30-40 psi above atmospheric pressure and a minimum pressure of atmospheric pressure.
- the mechanical dislodging of particles is further aided by a hand- washing motion and contacting of the two hands.
- the user rubs the hands together in the familiar hand washing movement used when hands are conventionally washed in soap and water, which flexes the gloves and causes particles to be dislodged.
- This movement may be performed during the operation of the pressurized gas source and also, if desired, during the subsequent operation of the chemical cleaning device. The result is a more effective removal of particulate from the glove surface.
- Gas flowing from the source of pressurized gas 40 is activated before it reaches the pressurized gas source 34 by a gas activator 46 of any operable type, but which is here illustrated as a balanced gas ionizer.
- Figure 6 schematically illustrates a comb-type balanced gas ionizer 200 which is preferably used as the gas activator 46.
- the gas to be ionized typically air, flows in a gas flow channel 202 (in the direction out of the plane of the page in Figure 6).
- a comb-type ionizer 204 has a plurality of sharp points 206, spaced about 1/2 inch apart, extending into one side of the gas flow channel 202.
- a conductive plane 208 extends into an opposing side of the gas flow channel.
- An AC voltage of about 5-6 kilovolts is applied to the points 206, producing a corona effect between the points 206 and the ground plane 20.
- a balanced state of ionization is imparted to the gas flowing in the gas flow channel 202.
- the gas may be ionized by any other suitable technique such as a laser or ultraviolet light.
- the activated gas is a plasma, it may be created by a glow discharge in the manner to be discussed subsequently or any other suitable technique.
- the gloved or ungloved hand is not exposed to the ionizing field or the plasma, but instead to the gas that has been activated and flows out of the nozzles in the cylinders 38.
- the hands are in the plasma field. In most cases, the second embodiment will be used with gloved hands rather than ungloved hands.
- a gas-source vent 48 communicates with the hand-cleaning volume 28.
- the gas-source vent 48 draws off the gas flow that is introduced by the mechanical-cleaning device 32.
- a pump 50 typically in the form of an exhaust fan, draws the gas through the vent 48 and into a filter and scrubber 52. Clean gas is exhausted from the filter and scrubber 52, and the particulate waste that was entrained in the gas as a result of impacting the glove is deposited in a waste receptacle 54.
- the waste receptacle 54 is mounted in the apparatus 20 in the form of a drawer that may be removed easily for disposal of the waste (see Figure 3).
- a particle counter/chemical sensor 53 is optionally provided in the exhaust line between the gas-source vent 48 and the filter and scrubber 52.
- the particle counter/chemical sensor 53 may be of any operable type.
- the particle counter/chemical sensor 53 desirably gives particle counts and/or chemical constituents of the vented gas in real time.
- the particle counter/chemical sensor 53 is a laser particle counter in the case of a particle counter.
- Such laser particle counters are known in the art, and are available commercially from Climet Instruments and the Met One Division of Pacific Scientific, for example. Other types of particle counters, such as white light particle counters or air filter systems, may also be used but are less preferred.
- Any type of real-time chemical sensor may be used which is appropriate to the expected type of chemical to be detected.
- the chemical sensor may be selected to measure specific chemical constituents or radioactive species, again depending upon the application. The chemical species to be sensed will depend upon the nature of the industry where the cleaning apparatus 20 is to be used.
- a controller 58 controls the operation of the mechanical
- the controller 58 sends control signals to the pressurized gas supply 44, the gas ionizer 46, the drive of the air knife 36, and the pump 50. It also receives input from, and controls, the optional particle counter/chemical sensor 53.
- the controller 58 is preferably a microcomputer that is programmed to send command signals according to procedures discussed more fully subsequently, and to receive, store, and analyze data.
- the apparatus 20 further includes a chemical-cleaning device 60.
- the chemical-cleaning device 60 removes chemical contaminants that may be adhered to the surface of the gloved or ungloved hand 30 of the user.
- Figure 5 illustrates the apparatus 20 when the chemical-cleaning device 60 is in operation.
- the chemical-cleaning device 60 includes a nebulizer 62 (i.e., vaporizer) operable to emit a cleaning mist into the hand-cleaning volume 28.
- the cleaning mist consists of droplets of the vaporized cleaning solution.
- the droplets are preferably roughly uniformly sized, on the order of from about 1 to about 20 micrometers in diameter.
- the nebulizer 62 preferably is a low-pressure, low- volume ultrasonic nebulizer, such as the commercially available Model SCA2000X made by Stultz.
- the ultrasonic energy introduced by this type of nebulizer also aids in dissociation of the molecules of the vaporized cleaning material, and lowers the electromagnetic energy required to achieve ionization of the molecules.
- a non-ultrasonic nebulizer may be used instead.
- the nebulizer may be a high-pressure, low- volume spray head that establishes ultrasonic waves in the vaporized cleaning material, leading to a higher dissociation and subsequent ionic activity.
- the nebulizer may instead be a spray system such as the IVEK Digispense 800 System.
- the gas that is to be vaporized by the nebulizer 62 is supplied from a pressurized gas source 61 communicating with an inlet 64 of the nebulizer 62.
- the pressurized gas source 61 may be of any operable type, such as a pressure bottle or a compressor-driven system.
- a separate nebulizer is provided for each cleaning solution (although only a single nebulizer is illustrated).
- a commercial nebulizer is typically tuned for the specific fluid to be vaporized into a mist, so that optimal vapor production occurs only for that specific fluid or closely similar fluids. If multiple cleaning solutions are used with substantially different properties, it is usually necessary to provide a separate nebulizer for each of the flows of cleaning solution.
- the nebulizer 62 produces a cleaning mist that may be, and preferably is, activated prior to the time that it reaches the hand-cleaning volume 28. That is, the gloved or ungloved hand is not exposed directly to the plasma or ionizing field, but only to the activated molecules of the cleaning mist after they leave the plasma or ionizing field.
- the cleaning mist may be activated by a plasma or an ionized field.
- the plasma state or the ionized state may be achieved by any operable techniques, but preferably a plasma source 63 as illustrated in Figures 4- 5 and 7. As illustrated in Figure 7, the plasma source 63 is a glow-discharge plasma source which produces a plasma 220 in a gas-flow channel 222.
- the nebulized gas flows through the plasma 220, resulting in activated, dissociated species in the nebulized gas.
- the cleaning mist contains hydrogen peroxide, H 2 O 2 , as it enters the plasma 220. After it leaves the plasma, at least some of the hydrogen peroxide molecules have dissociated to produce hydroxyl (OH) and monatomic oxygen (O) activated species. These species remain dissociated for several seconds, during which time they flow to and over the hand 30.
- the plasma source 63 is preferably located as closely to the hand-cleaning volume 28 as possible, but not so close that the hands actually are within the plasma 220 in this embodiment.
- the dissociated species rapidly react chemical contaminants on the hand 30.
- the glow-discharge plasma source is presently preferred to other types of gas activating devices, as the residence time of the dissociated species in the dissociated state is longer.
- the plasma 220 is produced by the current flow between an electrode 224 charged to about 20-30 kilovolts by a DC pulse circuit, and ground 226.
- the electrode 224 resides in a hydrophobic insulator 228 with access to the gas-flow channel 222 through an aperture 230.
- a dry gas is introduced into the interior of the insulator 228 and flows around the electrode 224 and thence out of the aperture 230.
- At least one source of a cleaning solution is in communication with the inlet 64 of the nebulizer 62.
- a first source 66 of a first cleaning solution and a second source 68 of a second cleaning solution are provided as removable tanks, such as shown in Figure 3.
- No separate source hookups for chemicals are required for the apparatus 20, which may therefore be freestanding in a clean room or other setting (except for an electrical power source, which may be a battery).
- Pumps 70 and 72 pump cleaning solutions from the respective sources 66 and 68 to the inlet 64 of the nebulizer 62.
- the cleaning solutions are not introduced into the nebulizer 62 at the same time, but instead are introduced sequentially as will be described subsequently.
- a wide variety of cleaning solutions may be used, depending upon the specific cleaning requirements. That is, the chemical substances to be removed from the hands in a clean room in the microelectronics industry may be quite different from the chemical substances to be removed from the hands in a hospital operating room.
- the following discussion is provided as illustrative of a presently preferred approach for general cleaning, but the use of the invention is not so limited.
- the first cleaning solution is an aqueous solution of hydrogen peroxide, EDTA (ethylenediaminetetraacetate), and n-propyl alcohol, in de-ionized water.
- the hydrogen peroxide is the primary source of the activated species, as discussed earlier.
- the EDTA chelates ions such as potassium and sodium, which aids in achieving sterilization of the glove.
- the n-propyl alcohol serves as a wetting agent and also promotes penetration of the cleaning mist into the surface of the glove.
- the second cleaning solution is an aqueous solution of hydrogen peroxide, n-propyl alcohol, and citric or lactic acid, in de-ionized water.
- the citric or lactic acid has a synergistic effect when mixed with hydrogen peroxide to achieve sterilization of microorganisms.
- the nebulized first cleaning solution is plasma activated, and the nebulized second cleaning solution is also plasma activated. Particle counting is normally conducted as part of the cleaning of gloves or other elastomeric articles, and chemical analysis is often performed.
- the first cleaning solution is hydrogen peroxide in deionized water.
- the second cleaning solution is a solution of lactic acid in de-ionized water, with the optional addition of n- propyl alcohol.
- the lactic acid serves to neutralize halides and to sterilize microorganisms.
- a hand conditioner such as aloe vera or a glycerine-based conditioner may be added to the second cleaning solution, or introduced to the ungloved hand in a separate step subsequent to the contacting with the second cleaning solution.
- the nebulized first cleaning solution is plasma activated
- the nebulized second cleaning solution is not plasma activated.
- Particle counting is not normally conducted as part of the cleaning of ungloved hands, but chemical analysis is often performed. While the cleaning solutions are intended primarily to remove chemicals from the surfaces, they also may aid in removing particles. Particles are bound to surfaces by a variety of mechanisms, including polar ionic attraction, triboelectric forces, and van der Waals forces. The combination of the balanced ionized air of the air knife, the physical force of the gas flow of the air knife, and the neutralization of ionic attraction by the free radicals of the chemical cleaning solutions is effective in overcoming all of these binding forces and removing particles from the gloved or ungloved hands.
- the cleaning mist emitted from the nebulizer 62 is forced through the hand-cleaning volume 28 by a fan of the nebulizer and past the gloved or ungloved hand 30. It is removed from the hand-cleaning volume 28 by an air current produced by a nebulizer vent 74. The cleaning mist is thereby contacted to the gloved or ungloved hand surface and removed.
- the air current is produced by a pump, which may be the same pump 50 that draws the gas through the gas source vent 48.
- the pump 50 pumps the cleaning mist, which may also carry contaminants removed from the glove, to the filter and scrubber 52.
- the pump 50 and the opening 24 are sized such that the pump 50 creates a slight negative pressure within the hand-cleaning volume 28, as compared with atmospheric pressure external to the cleaning apparatus 20. Atmospheric air is therefore drawn into the opening 24 and thence through the pump 50, so that there is no escape of any of the internal gases—flowing from the gas source 34 or the nebulizer 62 ⁇ into the surrounding air.
- the controller 58 controls the operation of the pumps 70 and 72, the nebulizer 62, and the pressurized gas source 61.
- FIGs 4 and 5 illustrates an embodiment of the invention which measures and cleans the gloves of particulate, and simultaneously sterilizes the gloves of microorganisms present on its outer surface.
- a microorganism sterilizer 80 is disposed within the interior of the housing 22, proximate to the hand-cleaning volume 28 and thence to the gloved or ungloved hand 30.
- the microorganism sterilizer may be of any operable type that is compatible with the particle measurement and cleaning apparatus, such as an illustrated UV (ultraviolet) lamp. Suitable UV lamps are available commercially from Aqua Ultraviolet USA.
- the microorganism sterilizer may be of other types as well, such as an ozone source, or a sterilizing gas introduced through the nebulizer 62 or separately. Another form of sterilization may be accomplished by selection of the vaporized cleaning material. If hydrogen peroxide (H 2 O 2 ) is used as the vaporized cleaning material, the ionizing energy of the activating plasma causes the molecules to dissociate to activated species, which are reactive to oxidize organic species and destroy microorganisms. The use of an ultrasonic nebulizer facilitates the dissociation. The microorganism sterilization may be accomplished either before, simultaneously with, or after the particulate measurement and cleaning.
- H 2 O 2 hydrogen peroxide
- the use of an ultrasonic nebulizer facilitates the dissociation.
- the microorganism sterilization may be accomplished either before, simultaneously with, or after the particulate measurement and cleaning.
- Figure 8 depicts a preferred operating sequence for accomplishing cleaning of the gloves on the gloved hands of the user of the cleaning apparatus 20, where two cleaning solutions are used.
- the gloved or ungloved hands 30 are first inserted into the apparatus 20 through the opening 24, numeral 100.
- the machine may be activated by manual control of the user through the control panel 26 or a foot pedal, or automatically upon insertion by a photocell (not shown).
- the mechanical-cleaning device 32 is operated, numeral 102, to remove particles from the surfaces of the inserted gloves. Step 102 may continue for as long a period as necessary to accomplish a desired mechanical cleaning, but is typically from about 3 seconds to about 10 seconds.
- the optional particle counter/chemical sensor 53 may be operated, step 104, during this period or subsequently, but is typically operated simultaneously with the step 102.
- the mechanical-cleaning step 102 is completed and the mechanical-cleaning device 32 is stopped, numeral 106. Desirably, there is a break in time between the end of step 102 and the start of step 108, as indicated by the stop step 106. However, a brief overlap is permitted between the steps 102 and 108.
- the steps 102 and 108 may not be substantially overlapping in time, however, because the high gas flow rate from the pressurized gas source 34 would disrupt the contact of the nebulized cleaning mist with the glove. The same considerations are applicable for the other "stop" steps discussed herein.
- the chemical-cleaning device 60 is thereafter operated using the first solution provided to the nebulizer 62, numeral 108.
- Step 108 may continue for as long a period as necessary to accomplish a desired chemical cleaning, but is typically from about 3 to about 10 seconds.
- the step 108 is stopped, numeral 110.
- the mechanical-cleaning device 32 is again activated, numeral 112.
- This step blows off any residual first cleaning solution from the glove surface, dries the glove surface, and continues to dislodge any further particles from the glove surface that may have been freed during the chemical-cleaning step 108.
- Step 112 may continue for as long a period as necessary to accomplish a desired chemical cleaning, but is typically from about 3 to about 10 seconds.
- the hands are dry.
- the particle counter/chemical sensor 53 may optionally be operated during or after this step 112.
- the step 112 is stopped, numeral 114.
- the chemical-cleaning device 60 is again operated, numeral 116, but this time the second cleaning solution is provided to the nebulizer 62.
- Step 116 may continue for as long a period as necessary to accomplish a desired chemical cleaning, but is typically from about 3 to about 10 seconds.
- the step 116 is stopped, numeral 118.
- the mechanical-cleaning device 32 is again activated, numeral 120.
- This step blows off any residual second cleaning solution from the glove surface, dries the glove surface, and continues to dislodge any further particles from the glove surface that may have been freed during the chemical-cleaning step 116.
- Step 116 may continue for as long a period as necessary to accomplish a desired chemical cleaning, but is typically from about 3 to about 10 seconds.
- the particle counter/chemical sensor 53 may optionally be operated during or after this step 120, numeral 122. This particle count is a final particle count and any chemical analysis is a final chemical analysis.
- the steps 120 and 122 are stopped, numeral 124.
- steps 100, 108, 110, 116, 118, 120, and 124 are performed.
- a separate step after step 120 may be added in which a skin conditioner is introduced into the hand-cleaning volume.
- a prototype of the apparatus 20, constructed as shown in Figures 1-7, has been built and operated using the approach shown in Figure 8. Tests using the mechanical cleaning device and the activated chemical cleaning device have demonstrated significant reductions in particles and chemical contaminants. New nitrile clean room gloves, for example, demonstrated a typical 38 percent reduction in particles of size equal to or greater than 0.5 micrometers after exposure to the cleaning cycle.
- Figures 9-12 relate to a second embodiment of the invention. Some features are common between the first and second embodiments, and to that extent the description of each is incorporated into the other. For example, this second embodiment is illustrated without a mechanical-cleaning device such as the air knives discussed in relation to the embodiment of Figures 1-8. However, the embodiment of Figures 9-12 may be provided with a mechanical-cleaning device as well.
- Figure 9 illustrates an apparatus 320 for processing an elastomeric article 322, in this case a preferred elastomeric glove.
- the processing of a glove article is presently preferred, but the present invention is operable with other types of articles as well.
- processing encompasses both measuring the properties of the article, and/or modifying the article, as by cleaning the article, and or performing correlations of the results of the measuring with other information.
- the apparatus 320 includes an enclosure 324 having walls 326.
- An interior 328 of the enclosure 324 is gas filled, as distinct from liquid filled. The present approach does not immerse the article into a liquid, which facilitates the measurements, cleaning, and subsequent use of the article.
- a support 330 supports the article 322 at an article support location 332.
- the article support location 332 is generally positioned intermediate between an intake port 334 and an exhaust port 336, but it need not be positioned at a precise location therebetween.
- the support 330 includes a rigid skeleton 370, made of an electrical nonconductor such as a plastic, which slides inside the article 322, in this case the glove to be processed.
- the skeleton 330 allows gaseous communication between the interior of the skeleton and the adjacent interior surface of the article 322, so that the article may be pressure pulsed, as described subsequently.
- the skeleton 370 is supported on a tubular support arm 372, with a closure 374 at the end remote from the skeleton 370.
- the closure 374 closes and seals an access port 376 in the wall 326 of the enclosure 324.
- a gas pressure line 378 communicates at one end with the interior of the support arm 372 through an opening in the closure 374, and at the other end with a gas pressure source 380 that produces a gas pressure of from about 2 inches to about 15 inches of water.
- the gas pressure source 380 may deliver a static pressure, or it may deliver a dynamically varying pressure. Studies performed by the inventors have shown that accelerated and increased dislodging of particulate contaminant from the article 322 is attained by pulsing the gas pressure source 380, and thence the pressure within the article 322, preferably at a frequency of from about 20 to about 2000 Hertz.
- the pulsing was provided by a commercial low-acoustic-range transducer communicating with the gas within the gas pressure source 380 and thence with the interior surface of the article 322 on the skeleton 370.
- the transducer membrane was driven by either a sine wave or a square wave in the indicated frequency range, with an output total amplitude variation of about 9.9 millimeters one way.
- Similar results may be obtained by applying low-acoustic-range pulsing to the gaseous environment within the enclosure 324, so that the article 322 is pulsed exteriorly, as with one or more sonic sources 381 communicating with the interior of the enclosure 324 and operating in a manner like that described above for the pulsing of the gas pressure source 380.
- This pulsing action achieves a mechanical cleaning of the glove to dislodge and remove particulate from its surface. It is comparable in effect with the mechanical-cleaning device discussed in relation to the embodiment of Figures 1-8.
- the glove article 322 is placed over the skeleton 370, and sealed to the support arm 372.
- the support 330 is then inserted into the enclosure 324 so that the closure 374 fits into the port 376 and seals it.
- the skeleton 370 and support arm 372 are dimensioned such that the article 322 is thereby positioned in the article support location 332.
- the gas pressure source 380 is operated to inflate the glove article 322 slightly.
- the combination of the rigid skeleton 370 and the inflation pressure hold the glove article 322 at the article support location 332.
- the particular support 330 described herein is adapted for processing a glove article, the preferred embodiment, and other designs of supports may be used for other types of articles.
- a source 338 of a gaseous cleaning agent is provided in the interior 328 of the enclosure 324 to accomplish chemical cleaning of the article.
- the source 338 of the gaseous cleaning agent is operable to introduce a gaseous flow of the gaseous cleaning agent into the interior 328 of the enclosure 324 to flow past the article support location 332 and to contact the elastomeric article 322 at that article support location 332.
- the chemical cleaning agent in conjunction with the procedures described herein, is operable to dislodge a particulate contaminant from the elastomeric article 322 and to entrain the particulate contaminant in the gaseous flow as it passes by the elastomeric article 322.
- the cleaning agent preferably includes a nebulizer (vaporizer) source 340 of a vaporized cleaning material, which is supplied through a source feed 342.
- the nebulizer source 340 creates fine particles of vaporized cleaning material, preferably from about 20 micrometers to about 50 micrometers in diameter.
- the nebulizer source 340 for this embodiment preferably is a low-pressure, low- volume ultrasonic nebulizer, such as the commercially available Model XL6040 made by Misonix, Inc..
- the ultrasonic energy introduced by this type of nebulizer source also aids in dissociation of the molecules of the vaporized cleaning material, and lowers the electromagnetic energy required to achieve ionization of the molecules in a plasma.
- the nebulizer source 340 may instead be a high- pressure, low-volume spray head that establishes ultrasonic waves in the vaporized cleaning material, leading to a higher dissociation and subsequent ionic activity.
- the cleaning agent is preferably a liquid that flows through the source feed 342, and then vaporizes as it flows from the nebulizer source 340.
- Preferred cleaning agents include aqueous solutions of ethylenediaminetetraacetate (sometimes abbreviated EDTA), isopropyl alcohol (sometimes abbreviated IP A), oxalic acid, and hydrogen peroxide.
- EDTA ethylenediaminetetraacetate
- IP A isopropyl alcohol
- oxalic acid sometimes abbreviated oxalic acid
- hydrogen peroxide hydrogen peroxide.
- Intake air flows into the enclosure 324 through an intake pipe 344 and the intake port 334.
- the intake air first passes through a filter 346, such as a 0.5 micrometer particle filter, and then past the nebulizer source 340.
- the vaporized cleaning material vaporized by the nebulizer source 340 is entrained in the intake air flow, and thence flows into the interior 328 of the enclosure 324.
- the source 338 also includes a weakly ionized plasma source 348 disposed within the interior 328 of the enclosure 324 and proximate to the article support location 332 to create a weakly ionized plasma in the ambient atmosphere adjacent to the article support location 332 and thence to the elastomeric article 322.
- the weakly ionized plasma has a temperature of not greater than 120°F, does not exceed 5 percent ions, and has a recombination time which does not exceed 10 seconds.
- the weakly ionized plasma source includes the vaporized cleaning agent flowing from the nebulizer source 340, and an ionization source that excites the vaporized cleaning agent.
- the preferred ionization source is a set of electrodes 349 contacting the vaporized cleaning agent.
- the ionization electrodes 349 are energized by an AC, a DC, or a pulsed DC voltage sufficient to create a weakly ionized plasma in the vaporized cleaning agent.
- the ionization electrodes 349 are depicted as plates positioned around the article 322, but they may have other operable forms and locations.
- the ionization electrodes may be in a point, bar, ring, strip, or coil form, and may instead be positioned at the intake port 334, at the intake port 334 and after the vaporized cleaning agent has passed the article 322, or as a ring around the interior circumference of the enclosure 324.
- the ionization voltage relative to the ground plate applied through the ionization electrodes 349 is preferably about 1000 volts or less.
- the ionization energy may instead be provided by ultraviolet light, preferably operating in the long wavelength range of about 365 nanometers (nm), the mid wavelength range of about 302 nm, or the short wavelength range of about 254 nm.
- the intensity of the ultraviolet light is preferably in the range of 720-2250 microwatts per square centimeter, measured at distance of 3 inches from the source.
- the air flow and ionizing functions may also be combined and supplied by an ionizing air blower or in-line ionizer, such as those available commercially from Electrostatics, Inc., Harleysville, PA or Ion Systems, Berkeley, CA.
- the glove is within the plasma during the cleaning operation. As discussed in relation to the embodiment of Figures 1-8, the glove or other article being cleaned may be outside the bounds of the plasma, as long as the gas contacting the article has activated species therein.
- the combined action of the vaporized cleaning material and the weakly ionized plasma, as well as the pressure pulsing of the article, surrounding the elastomeric article 322 causes particles to dislodge from the microcracks 360 and the surfaces 362 of the elastomeric article 322.
- the dislodged particles become entrained in the flow of gas from the intake port 334 toward the exhaust port 336, and flow into an exhaust pipe 350.
- a fin 353 in the exhaust pipe 350 provides the pressure differential to create the gas flow from the intake port 334 to the exhaust port 336, which is typically from about 20 liters per second to about 80 liters per second for an area of the intake port 334 of about 144 square inches.
- a particle counter 354 measures the particles in the gaseous flow after the gas flow has passed by the elastomeric article 322.
- the particle counter 354 is located within the exhaust pipe 350, to ensure counting of all of the particles entrained in the gas flow, but it may be positioned so that the gas flow passes the particle counter before the gas flow enters the exhaust port 336.
- the particle counter 354 may be of any operable type.
- the particle counter 354 desirably gives particle counts in real time.
- the particle counter 354 is a laser particle counter. Such laser particle counters are known in the art, and are available commercially from Climet Instruments and the Met One Division of Pacific Scientific, for example.
- FIG. 9 illustrated a case where the glove article is removed from the hand of the user and placed on the skeleton 370 for testing.
- Figure 10 illustrates a case where the user continues to wear the glove during particle measurement and glove cleaning.
- Many of the elements described in relation to Figure 10 are the same as in Figure 9. For those elements, the same reference numerals are used in the embodiment of Figure 10, and the earlier description is incorporated by reference. The primary difference in the embodiment of Figure 10 from that of Figure
- the gland 382 need not provide a hermetic seal or even a tight seal, because the pressure differential between the environment outside of the enclosure 324 and in the interior 328 of the enclosure 324 is small.
- the embodiment of Figure 9 illustrates an important advantage of using the weakly ionized plasma sources 348 described above, rather than conventional high-energy plasmas.
- the user may thrust his hand, protected only by the thin glove article, directly into the weakly ionized plasma produced by the sources 348, which is not generally possible where high-energy sources are used.
- the ionization electrodes 349 are illustrated in Figure 10 in several different forms from the electrodes of Figure 9, although in practice only one type of ionization electrode would normally be used at any time.
- Such ionization electrodes 349 include electrodes 349a at the point of entry 334 of the vaporized cleaning material, filament electrodes 349b adjacent to the article support location 332, a ring electrode 349c extending around the circumference of the enclosure 324, and a point electrode 349d.
- the embodiments of Figures 9 and 10 are operable to measure and reduce particulate matter on the glove, a key concern in applications such as clean rooms. Some other applications, such as medical facilities including hospitals, doctor's offices, and dental offices, require that the glove be sterilized of microorganisms as well.
- Figure 11 illustrates an embodiment of the invention which measures and cleans the gloves of particulate, and simultaneously sterilizes the glove of microorganisms present on its outer surface.
- a microorganism sterilizer is disposed within the interior 328 of the enclosure 324, proximate to the article support location 332.
- the microorganism sterilizer may be of any operable type that is compatible with the particle measurement and cleaning apparatus, such as an illustrated UV (ultraviolet) lamp 84. Suitable UV lamps are available commercially from Aqua Ultraviolet USA.
- the microorganism sterilizer may be of other types as well, such as an ozone source, or a sterilizing gas introduced through the nebulizer source 340 or separately. Another form of sterilization may be accomplished by selection of the vaporized cleaning material.
- the ionizing energy of the weakly ionized plasma causes the molecules to dissociate to water and monatomic oxygen, which is reactive to oxidize organic contaminants.
- the use of an ultrasonic nebulizer facilitates the dissociation.
- the microorganism sterilization may be accomplished either before, simultaneously with, or after the particulate measurement and cleaning.
- This embodiment of Figure 11 allows personnel in medical facilities to re-use gloves in an appropriate manner. Typically, gloves might be reused for multiple procedures with the same patient or procedure, but not reused with different patients. Nevertheless, the present approach would provide an increase in safety to prevent contamination, and an increase in efficiency through decreased glove disposal.
- Figure 12 illustrates a preferred approach for practicing the invention. It is presented in a general form to address a wide variety of possible applications of the present invention. The above discussion is incorporated by reference as to Figure 12.
- the article 322 to be cleaned is provided, numeral 390.
- An operable apparatus to accomplish the cleaning is provided, numeral 392, such as the apparatus 320 described above.
- the article 322 is placed into the apparatus 320, numeral 394.
- the apparatus 320 is operated, numeral 396, to dislodge and remove the particulate from the article.
- the article 322 may also be sterilized, numeral 398.
- the particle count for the article 322 is measured using the particle counter 354, numeral 400.
- the steps 396/398 and 400 are typically performed simultaneously, so that the particle count is measured as a function of time, from the start of cleaning to the end of cleaning.
- the particle count may be correlated with another quantity.
- the manufacturing yields are determined, numeral 402, typically by establishing the fraction of operable products as a function of the attempted products.
- the particle count information from step 400 together with related information gathered with the particle count information, such as time of cleaning, frequency of cleanings, and number of times each article is reused before discarding, is correlated with the manufacturing yields, numeral 404.
- These steps 390-404 are typically repeated each time an article is cleaned, to gather a body of data, as indicated by the recursive loop 406.
- the correlations from step 404 are used to determine article cleaning protocols, numeral 408, such as frequency of cleanings and number of times an article may be reused before it must be discarded.
- steps 402, 404, and 408 may be omitted, and articles may be cleaned several times before discarding.
- the article can be reused only as long as the article is used with a single patient, and not with multiple patients. Even in these environments, correlation procedures may be desirably applied.
- the present invention may be viewed as both a measuring and cleaning/sterilizing technique, and also a tool to gather information used to improve practices.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Plasma & Fusion (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Apparatus For Disinfection Or Sterilisation (AREA)
- Cleaning By Liquid Or Steam (AREA)
- Cleaning In General (AREA)
- Devices For Medical Bathing And Washing (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Processing Of Solid Wastes (AREA)
- Water Treatment By Sorption (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU51220/00A AU5122000A (en) | 1999-05-06 | 2000-05-05 | Cleaning particulate matter and chemical contaminants from hands and elastomericarticles |
CA2373133A CA2373133C (en) | 1999-05-06 | 2000-05-05 | Cleaning particulate matter and chemical contaminants from hands and elastomeric articles |
EP00935814A EP1175229B1 (en) | 1999-05-06 | 2000-05-05 | Cleaning particulate matter and chemical contaminants from hands |
AT00935814T ATE285800T1 (en) | 1999-05-06 | 2000-05-05 | CLEANING PARTICLE SOLIDS AND CHEMICAL CONTAMINANTS FROM HANDS |
DE60017113T DE60017113T2 (en) | 1999-05-06 | 2000-05-05 | CLEANING OF PARTICLE SOLIDS AND CHEMICAL CONTAMINATION OF HANDS |
JP2000616830A JP4536936B2 (en) | 1999-05-06 | 2000-05-05 | Apparatus for cleaning particulates and chemical contaminants from hands and elastomeric articles |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/306,519 | 1999-05-06 | ||
US09/306,519 US6343425B1 (en) | 1999-05-06 | 1999-05-06 | Measurement and cleaning of elastomeric articles having particulate adhered thereto |
US09/564,290 US6706243B1 (en) | 1999-05-06 | 2000-05-03 | Apparatus and method for cleaning particulate matter and chemical contaminants from a hand |
US09/564,290 | 2000-05-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2000067805A1 true WO2000067805A1 (en) | 2000-11-16 |
Family
ID=26975215
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2000/006697 WO2000067805A1 (en) | 1999-05-06 | 2000-05-05 | Cleaning particulate matter and chemical contaminants from hands and elastomeric articles |
Country Status (9)
Country | Link |
---|---|
US (1) | US7008592B2 (en) |
EP (1) | EP1175229B1 (en) |
JP (1) | JP4536936B2 (en) |
AT (1) | ATE285800T1 (en) |
AU (1) | AU5122000A (en) |
CA (1) | CA2373133C (en) |
DE (1) | DE60017113T2 (en) |
ES (1) | ES2235887T3 (en) |
WO (1) | WO2000067805A1 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003084577A1 (en) * | 2002-04-02 | 2003-10-16 | Plasmasol Corporation | System and method for injection of an organic based reagent into weakly ionized gas to generate chemically active species |
WO2003103726A2 (en) | 2001-01-10 | 2003-12-18 | Intecon Systems, Inc. | Denaturing of a biochemical agent using an activated cleaning fluid mist |
EP1642598A2 (en) * | 2002-04-02 | 2006-04-05 | Plasmasol Corporation | System and method for injection of an organic based reagent into weakly ionized gas to generate chemically active species |
NL1033408C2 (en) * | 2007-02-16 | 2008-08-19 | Omve Netherlands B V | Disinfection of e.g. foodstuffs or packaging, comprises exposure to combination of ultrasonic vibration and plasma |
WO2010094304A1 (en) * | 2009-02-17 | 2010-08-26 | Max-Planck-Gesellschaft Zur | Electrode arrangement for generating a non-thermal plasma |
WO2012109556A1 (en) * | 2011-02-11 | 2012-08-16 | Illinois Tool Works Inc. | Electrostatic disinfectant tool |
WO2014135254A1 (en) * | 2013-03-06 | 2014-09-12 | Al-Ko Therm Gmbh | Method and device for cleaning an object |
WO2015032888A1 (en) * | 2013-09-06 | 2015-03-12 | Inp Greifswald E. V. | Hand disinfection device having a plasma and aerosol generator |
US9013312B2 (en) | 2005-06-20 | 2015-04-21 | Biovigil Hygiene Technologies, Llc | Hand cleanliness |
DE102016123703A1 (en) | 2016-12-07 | 2018-06-07 | Krömker Holding GmbH | Method for disinfecting and disinfecting surfaces |
CN110478504A (en) * | 2017-12-29 | 2019-11-22 | 堂美环境治理有限公司 | System for purifying the space of base closed |
US10713925B2 (en) | 2005-06-20 | 2020-07-14 | Biovigil Hygiene Technologies, Llc | Hand cleanliness |
IT201900020374A1 (en) * | 2019-11-05 | 2021-05-05 | A M Instr S R L | DIFFUSION SANITIZATION DEVICE AND SYSTEM |
US11069220B2 (en) | 2017-07-10 | 2021-07-20 | Biovigil Hygiene Technologies, Llc | Hand cleanliness monitoring |
DE102020112847A1 (en) | 2020-05-12 | 2021-11-18 | Krömker Holding GmbH | Disinfection device |
US12125367B2 (en) | 2023-05-30 | 2024-10-22 | Biovigil Hygiene Technologies, Llc | Hand cleanliness monitoring |
Families Citing this family (64)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7029636B2 (en) * | 1999-12-15 | 2006-04-18 | Plasmasol Corporation | Electrode discharge, non-thermal plasma device (reactor) for the pre-treatment of combustion air |
AU2434201A (en) * | 1999-12-15 | 2001-06-25 | Plasmasol Corp. | Segmented electrode capillary discharge, non-thermal plasma apparatus and process for promoting chemical reactions |
US6955794B2 (en) * | 1999-12-15 | 2005-10-18 | Plasmasol Corporation | Slot discharge non-thermal plasma apparatus and process for promoting chemical reaction |
US6923890B2 (en) * | 1999-12-15 | 2005-08-02 | Plasmasol Corporation | Chemical processing using non-thermal discharge plasma |
CA2452939A1 (en) * | 2001-07-02 | 2003-01-16 | Seth Tropper | A novel electrode for use with atmospheric pressure plasma emitter apparatus and method for using the same |
CA2463554A1 (en) * | 2001-11-02 | 2003-05-15 | Plasmasol Corporation | Non-thermal plasma slit discharge apparatus |
US20040050684A1 (en) * | 2001-11-02 | 2004-03-18 | Plasmasol Corporation | System and method for injection of an organic based reagent into weakly ionized gas to generate chemically active species |
SE523511C2 (en) * | 2001-11-26 | 2004-04-27 | Tetra Laval Holdings & Finance | Method and apparatus for sterilizing a packaging material by means of a liquid sterilizing agent |
WO2003080132A1 (en) * | 2002-03-20 | 2003-10-02 | Adiga Kayyani C | Apparatus and method for fine mist sterilization or sanitation using a biocide |
ES2270022T3 (en) * | 2002-04-24 | 2007-04-01 | Steris, Inc. | TREATMENT SYSTEM AND METHOD WITH ACTIVATED OXIDIZING VAPORS. |
WO2005016391A1 (en) * | 2003-01-31 | 2005-02-24 | Steris Inc. | Building decontamination with vaporous hydrogen peroxide |
US7459133B2 (en) * | 2003-03-27 | 2008-12-02 | Tetra Laval Holdings & Finance, Sa | System for automatic/continuous sterilization of packaging machine components |
US7102052B2 (en) * | 2003-04-24 | 2006-09-05 | Steris Inc | Activated vapor treatment for neutralizing warfare agents |
ES2341010T3 (en) * | 2003-04-24 | 2010-06-14 | Steris Inc. | STEAM TREATMENT ACTIVATED TO NEUTRALIZE ARMAMENT AGENTS. |
JP2007518543A (en) * | 2004-01-22 | 2007-07-12 | プラズマゾル・コーポレイション | Modular sterilization system |
CA2553804A1 (en) * | 2004-01-22 | 2005-08-04 | Plasmasol Corporation | Capillary-in-ring electrode gas discharge generator for producing a weakly ionized gas and method for using the same |
US7901618B2 (en) * | 2004-03-23 | 2011-03-08 | Steris LLC | Integrated control and distribution system for the decontamination of large volume convoluted configuration spaces |
US7936275B2 (en) * | 2005-06-20 | 2011-05-03 | Biovigil, Llc | Hand cleanliness |
US20070048176A1 (en) * | 2005-08-31 | 2007-03-01 | Plasmasol Corporation | Sterilizing and recharging apparatus for batteries, battery packs and battery powered devices |
US9034390B2 (en) * | 2006-05-02 | 2015-05-19 | Bioneutral Laboratories Corporation | Anti-microbial composition and method for making and using same |
US20090074881A1 (en) * | 2006-05-02 | 2009-03-19 | Bioneutral Laboratories Corporation Usa | Antimicrobial cidality formulations with residual efficacy, uses thereof, and the preparation thereof |
EP2022331A1 (en) * | 2007-08-02 | 2009-02-11 | Wesso Ag | Disinfectant for reducing the number of bacteria and biofilms |
US8136798B2 (en) | 2008-01-10 | 2012-03-20 | Peter Robert Stewart | Fluid conditioning apparatus |
EP2259720A4 (en) * | 2008-02-25 | 2012-06-06 | Ziehm Imaging Gmbh | Apparatus for measuring, recording and transmitting electrocardiogram measurements |
JP4954951B2 (en) * | 2008-07-17 | 2012-06-20 | 株式会社ワークソリューション | Gloves and sterilization method |
US20100061888A1 (en) * | 2008-09-08 | 2010-03-11 | Advanced Disinfection Technologies, Llc | Magnetically modified aerosol decontamination apparatus and method |
US20110183598A1 (en) * | 2010-01-26 | 2011-07-28 | Holt Alton R | Method and System for Controlling Microbiological Contamination in Buildings |
DE102010051364A1 (en) * | 2010-11-13 | 2012-05-16 | Waldner Laboreinrichtungen Gmbh & Co. Kg | Exhausting apparatus used in laboratory, has loading unit that is electrostatically loaded at limiting surface of working area, for ionization of airflow created by ventilator arrangement |
CA3085086C (en) | 2011-12-06 | 2023-08-08 | Delta Faucet Company | Ozone distribution in a faucet |
DE102012003557B4 (en) | 2012-02-23 | 2023-05-04 | Dräger Safety AG & Co. KGaA | Equipment and procedures for the hygienic preparation of objects |
DE102012003555A1 (en) | 2012-02-23 | 2013-08-29 | Dräger Medical GmbH | Incubator for neonatal care and method for deinfecting same |
US8865066B2 (en) * | 2012-03-13 | 2014-10-21 | Peroxychem Llc | Sterilization method |
US9339572B2 (en) | 2013-03-15 | 2016-05-17 | EP Technologies LLC | Methods and solutions for killing or deactivating spores |
DE102013004543B4 (en) | 2013-03-15 | 2020-06-18 | Al-Ko Therm Gmbh | Ultrasonic nebulizer |
US10220108B2 (en) | 2014-02-28 | 2019-03-05 | Aeroclave, Llc | Decontamination system for on-board a vehicle |
CN103893810B (en) * | 2014-04-17 | 2017-01-04 | 刘晓岳 | For producing the method and apparatus of negative oxygen ion and for the method and apparatus purifying air |
US9913923B2 (en) | 2014-08-21 | 2018-03-13 | Aeroclave, Llc | Decontamination system |
US9662412B2 (en) * | 2015-02-11 | 2017-05-30 | EP Technologies LLC | Plasma vapor chamber and antimicrobial applications thereof |
US10035154B2 (en) | 2015-06-08 | 2018-07-31 | Michael J. Hochbrueckner | Device, system, and method for atomizer nozzle assembly with adjustable impingement |
JP6331034B2 (en) * | 2015-06-09 | 2018-05-30 | パナソニックIpマネジメント株式会社 | Sanitization mist shower device |
WO2017011506A1 (en) | 2015-07-13 | 2017-01-19 | Delta Faucet Company | Electrode for an ozone generator |
US11123446B2 (en) | 2015-07-28 | 2021-09-21 | Gojo Industries, Inc. | Scrubbing device for cleaning, sanitizing or disinfecting |
CA2996310A1 (en) | 2015-08-31 | 2017-03-09 | EP Technologies LLC | Generation of antimicrobial wipes using non-thermal plasma |
WO2017063817A1 (en) | 2015-10-13 | 2017-04-20 | Unilever N.V. | Method and kit for sanitising surfaces |
CA2946465C (en) | 2015-11-12 | 2022-03-29 | Delta Faucet Company | Ozone generator for a faucet |
US20170142962A1 (en) | 2015-11-23 | 2017-05-25 | EP Technologies LLC | Methods and solutions including additives and stabilizers for killing or deactivating spores |
CA3007437C (en) | 2015-12-21 | 2021-09-28 | Delta Faucet Company | Fluid delivery system including a disinfectant device |
US10692704B2 (en) | 2016-11-10 | 2020-06-23 | Gojo Industries Inc. | Methods and systems for generating plasma activated liquid |
RU2670654C9 (en) * | 2016-11-25 | 2018-12-12 | Андрей Александрович Макаров | Method for producing a disinfectant and device for implementation thereof |
KR102006304B1 (en) | 2017-06-08 | 2019-08-01 | 주식회사 에스피텍 | Spraying Apparatus Using Plasma |
US20190060492A1 (en) * | 2017-08-25 | 2019-02-28 | Dabney Patents, L.L.C. | System and method of providing disinfection, decontamination, and sterilization |
US11883550B2 (en) * | 2017-12-29 | 2024-01-30 | Tomi Environmental Solutions, Inc. | Decontamination device and method using nonthermal plasma actuator |
US10398795B2 (en) * | 2017-12-29 | 2019-09-03 | Tomi Environmental Solutions, Inc. | Decontamination device and method using ultrasonic cavitation |
KR101936026B1 (en) * | 2018-11-23 | 2019-01-07 | 김진호 | Apparatus for removing particles using symmetrical gas injection |
US11938243B2 (en) | 2019-03-22 | 2024-03-26 | Zeteo Tech, Inc. | Mobile systems for microwave assisted surface decontamination and decontamination methods |
WO2020198091A1 (en) | 2019-03-22 | 2020-10-01 | Zeteo Tech, Inc. | Microwave assisted methods and systems for surface decontamination |
RU2709217C1 (en) * | 2019-07-04 | 2019-12-18 | Алексей Васильевич Софронов | Method of producing disinfectant solution and device for its implementation |
JP7365691B2 (en) * | 2019-12-12 | 2023-10-20 | 株式会社ワークソリューション | UV irradiation equipment and UV shading unit |
US11426050B2 (en) | 2020-04-28 | 2022-08-30 | Noel Frankel | Water boil cleaning device |
KR102596475B1 (en) * | 2020-06-01 | 2023-10-30 | 제테오 테크, 인코포레이티드 | Microwave-assisted surface decontamination systems and decontamination methods |
KR20230035779A (en) | 2021-09-06 | 2023-03-14 | 주식회사 에스피텍 | Plasma spraying sterilizer and sterilization method using gas/liquid plasma activated by jet plasma |
US11638769B1 (en) | 2021-11-19 | 2023-05-02 | Plasmius, Inc | Device for disinfectant agent application and generation and method of use |
CN114871203A (en) * | 2022-03-28 | 2022-08-09 | 中印恒盛(北京)贸易有限公司 | Method for decontaminating closed environment by using ultrasonic cavitation effect |
KR20240146333A (en) | 2023-03-29 | 2024-10-08 | 주식회사 에스피텍 | Jet plasma spraying sterilizer and sterilization method using mixed micro size droplet gas and liquid mixture |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3067001A (en) * | 1961-07-19 | 1962-12-04 | David W Mccollum | Method and apparatus for sterilizing and applying elastic gloves to the human hand |
US3918987A (en) * | 1973-11-09 | 1975-11-11 | Rudolph J Kopfer | Surgeon hand and arm scrubbing apparatus |
US4670010A (en) * | 1984-03-26 | 1987-06-02 | Giorgio Dragone | Liquid-nebulizing device for the dermatological treatment of the hands |
US4938933A (en) * | 1987-04-13 | 1990-07-03 | Perrot Jean J M V A | Medical and surgical instrument cleaning and disinfecting device |
US5074322A (en) * | 1990-12-06 | 1991-12-24 | Jaw Chin Woei | Structure of sterilizing hand dryer |
US5244629A (en) * | 1990-08-31 | 1993-09-14 | Caputo Ross A | Plasma sterilizing process with pulsed antimicrobial agent pretreatment |
US5522411A (en) * | 1994-06-30 | 1996-06-04 | Johnson; Gloria A. | Hand washing and drying equipment unit |
US5601100A (en) * | 1993-10-28 | 1997-02-11 | Mitsubishi Denki Kabushiki Kaisha | Washing apparatus |
US5727579A (en) * | 1996-05-29 | 1998-03-17 | 144 Limited Partnership | Automatic hand washing and drying apparatus including combined blow drying means and towel dispensing means |
US5863497A (en) * | 1996-03-11 | 1999-01-26 | The Proctor & Gamble Company | Electrostatic hand sanitizer |
US5924148A (en) * | 1998-02-26 | 1999-07-20 | Flowers, Sr.; Stanley E. | Automatic hand washing and drying machine |
Family Cites Families (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3205620A (en) * | 1963-02-12 | 1965-09-14 | American Sterilizer Co | Method and apparatus for cleaning hands and the like |
US3992221A (en) | 1975-10-23 | 1976-11-16 | Vitek, Inc. | Method of treating extensible hydrocarbon articles |
JPS5675158A (en) | 1979-11-27 | 1981-06-22 | Dainippon Printing Co Ltd | Sterilizer |
US4643876A (en) * | 1985-06-21 | 1987-02-17 | Surgikos, Inc. | Hydrogen peroxide plasma sterilization system |
US4624690A (en) * | 1985-06-28 | 1986-11-25 | Markel Industries, Inc. | Apparatus for removing particulates |
DE3604256A1 (en) * | 1985-09-17 | 1987-03-19 | Shafik Dr Med Barsom | Device for disinfecting, cleaning and drying one's hands |
US4704942A (en) * | 1986-08-01 | 1987-11-10 | Barditch Irving F | Charged aerosol |
US5302343A (en) * | 1987-02-25 | 1994-04-12 | Adir Jacob | Process for dry sterilization of medical devices and materials |
US4818488A (en) * | 1987-02-25 | 1989-04-04 | Adir Jacob | Process and apparatus for dry sterilization of medical devices and materials |
US4817800A (en) * | 1987-05-20 | 1989-04-04 | Surgikos, Inc. | Fluid injection system cassette and fluid packaging methods |
CH672253A5 (en) * | 1987-07-08 | 1989-11-15 | Francoise Muller | |
US5178829A (en) | 1989-03-08 | 1993-01-12 | Abtox, Inc. | Flash sterilization with plasma |
JPH02279160A (en) | 1989-03-08 | 1990-11-15 | Abtox Inc | Plasma sterilization method and plasma sterilizer |
US5288460A (en) * | 1989-03-08 | 1994-02-22 | Abtox, Inc. | Plasma cycling sterilizing process |
US5095925A (en) * | 1989-03-13 | 1992-03-17 | Elledge David M | Aseptic cleaning apparatus |
US5135721A (en) * | 1990-01-18 | 1992-08-04 | Net/Tech International, Inc. | Sterilization and coating apparatus |
US5058785A (en) | 1990-06-29 | 1991-10-22 | Successs Builders International | Apparatus and methods for donning and removing gloves |
US5084239A (en) | 1990-08-31 | 1992-01-28 | Abtox, Inc. | Plasma sterilizing process with pulsed antimicrobial agent treatment |
US5184046A (en) | 1990-09-28 | 1993-02-02 | Abtox, Inc. | Circular waveguide plasma microwave sterilizer apparatus |
US5196171A (en) * | 1991-03-11 | 1993-03-23 | In-Vironmental Integrity, Inc. | Electrostatic vapor/aerosol/air ion generator |
KR950701421A (en) * | 1992-04-28 | 1995-03-23 | 레네 와이벨 | Systems and methods for sterilizing air in air drafts |
US5622595A (en) * | 1992-06-16 | 1997-04-22 | Applied Materials, Inc | Reducing particulate contamination during semiconductor device processing |
JPH07136079A (en) * | 1993-11-11 | 1995-05-30 | Mitsubishi Electric Corp | Hand drying device |
US5674450A (en) * | 1994-04-28 | 1997-10-07 | Johnson & Johnson Medical, Inc. | Vapor sterilization using a non-aqueous source of hydrogen peroxide |
US5667753A (en) * | 1994-04-28 | 1997-09-16 | Advanced Sterilization Products | Vapor sterilization using inorganic hydrogen peroxide complexes |
US5516369A (en) * | 1994-05-06 | 1996-05-14 | United Microelectronics Corporation | Method and apparatus for particle reduction from semiconductor wafers |
US5700327A (en) * | 1995-03-10 | 1997-12-23 | Polar Materials, Incorporated | Method for cleaning hollow articles with plasma |
KR0176152B1 (en) * | 1995-05-29 | 1999-04-15 | 김광호 | Particle measurement apparatus and its analysis method in semiconductor fabrication |
IL114097A (en) * | 1995-06-11 | 2000-08-13 | Sizary Mat Purification Ltd | Cleaning system and method |
US5750072A (en) * | 1995-08-14 | 1998-05-12 | Sangster; Bruce | Sterilization by magnetic field stimulation of a mist or vapor |
JP3624495B2 (en) * | 1995-11-15 | 2005-03-02 | 松下電器産業株式会社 | Hand dryer |
US5935339A (en) * | 1995-12-14 | 1999-08-10 | Iowa State University | Decontamination device and method thereof |
US5604993A (en) | 1995-12-28 | 1997-02-25 | Auckerman; Irmgard G. | Glove drying devices and methods |
US5858108A (en) * | 1996-07-15 | 1999-01-12 | Taiwan Semiconductor Manufacturing Company, Ltd | Removal of particulate contamination in loadlocks |
DE19646759C2 (en) * | 1996-11-04 | 2003-01-09 | Schuelke & Mayr Gmbh | Use of an optical brightener in a disinfectant |
WO1998025486A2 (en) | 1996-11-26 | 1998-06-18 | Guzman Joselito S De | Sleeve, gown assembly, gown cuff assembly, and gown and air shower assembly |
US6017414A (en) * | 1997-03-31 | 2000-01-25 | Lam Research Corporation | Method of and apparatus for detecting and controlling in situ cleaning time of vacuum processing chambers |
CA2206623A1 (en) * | 1997-05-30 | 1998-11-30 | 700303 Alberta Ltd. | Apparatus for and method of cleaning hands |
US5882611A (en) * | 1997-06-02 | 1999-03-16 | Ethicon, Inc. | Cassette and delivery system |
US6110292A (en) * | 1997-08-12 | 2000-08-29 | Warren R. Jewett | Oscillating liquid jet washing system |
US5942438A (en) * | 1997-11-07 | 1999-08-24 | Johnson & Johnson Medical, Inc. | Chemical indicator for oxidation-type sterilization processes using bleachable dyes |
US5975094A (en) * | 1997-11-26 | 1999-11-02 | Speedfam Corporation | Method and apparatus for enhanced cleaning of a workpiece with mechanical energy |
US6343425B1 (en) * | 1999-05-06 | 2002-02-05 | Intecon Systems, Inc. | Measurement and cleaning of elastomeric articles having particulate adhered thereto |
-
2000
- 2000-05-05 EP EP00935814A patent/EP1175229B1/en not_active Expired - Lifetime
- 2000-05-05 DE DE60017113T patent/DE60017113T2/en not_active Expired - Lifetime
- 2000-05-05 CA CA2373133A patent/CA2373133C/en not_active Expired - Fee Related
- 2000-05-05 JP JP2000616830A patent/JP4536936B2/en not_active Expired - Fee Related
- 2000-05-05 ES ES00935814T patent/ES2235887T3/en not_active Expired - Lifetime
- 2000-05-05 WO PCT/US2000/006697 patent/WO2000067805A1/en active IP Right Grant
- 2000-05-05 AU AU51220/00A patent/AU5122000A/en not_active Abandoned
- 2000-05-05 AT AT00935814T patent/ATE285800T1/en not_active IP Right Cessation
-
2001
- 2001-11-01 US US10/003,592 patent/US7008592B2/en not_active Expired - Lifetime
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3067001A (en) * | 1961-07-19 | 1962-12-04 | David W Mccollum | Method and apparatus for sterilizing and applying elastic gloves to the human hand |
US3918987A (en) * | 1973-11-09 | 1975-11-11 | Rudolph J Kopfer | Surgeon hand and arm scrubbing apparatus |
US4670010A (en) * | 1984-03-26 | 1987-06-02 | Giorgio Dragone | Liquid-nebulizing device for the dermatological treatment of the hands |
US4938933A (en) * | 1987-04-13 | 1990-07-03 | Perrot Jean J M V A | Medical and surgical instrument cleaning and disinfecting device |
US5244629A (en) * | 1990-08-31 | 1993-09-14 | Caputo Ross A | Plasma sterilizing process with pulsed antimicrobial agent pretreatment |
US5074322A (en) * | 1990-12-06 | 1991-12-24 | Jaw Chin Woei | Structure of sterilizing hand dryer |
US5601100A (en) * | 1993-10-28 | 1997-02-11 | Mitsubishi Denki Kabushiki Kaisha | Washing apparatus |
US5522411A (en) * | 1994-06-30 | 1996-06-04 | Johnson; Gloria A. | Hand washing and drying equipment unit |
US5863497A (en) * | 1996-03-11 | 1999-01-26 | The Proctor & Gamble Company | Electrostatic hand sanitizer |
US5727579A (en) * | 1996-05-29 | 1998-03-17 | 144 Limited Partnership | Automatic hand washing and drying apparatus including combined blow drying means and towel dispensing means |
US5924148A (en) * | 1998-02-26 | 1999-07-20 | Flowers, Sr.; Stanley E. | Automatic hand washing and drying machine |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003103726A2 (en) | 2001-01-10 | 2003-12-18 | Intecon Systems, Inc. | Denaturing of a biochemical agent using an activated cleaning fluid mist |
EP1458450A2 (en) * | 2001-11-01 | 2004-09-22 | Intecon Systems, Inc. | Denaturing of a biochemical agent using an activated cleaning fluid mist |
JP2005519721A (en) * | 2001-11-01 | 2005-07-07 | インテコン システムズ インコーポレイテッド | Method and apparatus for denaturing biochemical substances using active cleaning solution mist |
EP1458450A4 (en) * | 2001-11-01 | 2006-10-04 | Intecon Systems Inc | Denaturing of a biochemical agent using an activated cleaning fluid mist |
EP1642598A2 (en) * | 2002-04-02 | 2006-04-05 | Plasmasol Corporation | System and method for injection of an organic based reagent into weakly ionized gas to generate chemically active species |
EP1642598A3 (en) * | 2002-04-02 | 2007-05-30 | Plasmasol Corporation | System and method for injection of an organic based reagent into weakly ionized gas to generate chemically active species |
WO2003084577A1 (en) * | 2002-04-02 | 2003-10-16 | Plasmasol Corporation | System and method for injection of an organic based reagent into weakly ionized gas to generate chemically active species |
US9013312B2 (en) | 2005-06-20 | 2015-04-21 | Biovigil Hygiene Technologies, Llc | Hand cleanliness |
US11538329B2 (en) | 2005-06-20 | 2022-12-27 | Biovigil Hygiene Technologies, Llc | Hand cleanliness |
US10713925B2 (en) | 2005-06-20 | 2020-07-14 | Biovigil Hygiene Technologies, Llc | Hand cleanliness |
NL1033408C2 (en) * | 2007-02-16 | 2008-08-19 | Omve Netherlands B V | Disinfection of e.g. foodstuffs or packaging, comprises exposure to combination of ultrasonic vibration and plasma |
US9889218B2 (en) | 2009-02-17 | 2018-02-13 | Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. | Electrode arrangement for generating a non-thermal plasma |
WO2010094304A1 (en) * | 2009-02-17 | 2010-08-26 | Max-Planck-Gesellschaft Zur | Electrode arrangement for generating a non-thermal plasma |
EP2886133A1 (en) * | 2011-02-11 | 2015-06-24 | Finishing Brands Holdings Inc. | Electrostatic disinfectant tool |
WO2012109556A1 (en) * | 2011-02-11 | 2012-08-16 | Illinois Tool Works Inc. | Electrostatic disinfectant tool |
WO2014135254A1 (en) * | 2013-03-06 | 2014-09-12 | Al-Ko Therm Gmbh | Method and device for cleaning an object |
US10124080B2 (en) | 2013-09-06 | 2018-11-13 | Leibniz-Institut Fuer Plasmaforschung Und Technologie E.V. | Hand disinfection device having a plasma and aerosol generator |
WO2015032888A1 (en) * | 2013-09-06 | 2015-03-12 | Inp Greifswald E. V. | Hand disinfection device having a plasma and aerosol generator |
DE102016123703A1 (en) | 2016-12-07 | 2018-06-07 | Krömker Holding GmbH | Method for disinfecting and disinfecting surfaces |
WO2018104397A1 (en) | 2016-12-07 | 2018-06-14 | Krömker Holding GmbH | Method for disinfecting and device for disinfecting surfaces |
US11704992B2 (en) | 2017-07-10 | 2023-07-18 | Biovigil Hygiene Technologies, Llc | Hand cleanliness monitoring |
US11069220B2 (en) | 2017-07-10 | 2021-07-20 | Biovigil Hygiene Technologies, Llc | Hand cleanliness monitoring |
CN110478504A (en) * | 2017-12-29 | 2019-11-22 | 堂美环境治理有限公司 | System for purifying the space of base closed |
IT201900020374A1 (en) * | 2019-11-05 | 2021-05-05 | A M Instr S R L | DIFFUSION SANITIZATION DEVICE AND SYSTEM |
WO2021090162A1 (en) * | 2019-11-05 | 2021-05-14 | A.M. Instruments S.R.L. | Sanitizing diffusion device and system |
WO2021228682A1 (en) | 2020-05-12 | 2021-11-18 | Krömker Holding GmbH | Disinfection device |
DE102020112847A1 (en) | 2020-05-12 | 2021-11-18 | Krömker Holding GmbH | Disinfection device |
US12125367B2 (en) | 2023-05-30 | 2024-10-22 | Biovigil Hygiene Technologies, Llc | Hand cleanliness monitoring |
Also Published As
Publication number | Publication date |
---|---|
EP1175229A1 (en) | 2002-01-30 |
US20030035754A1 (en) | 2003-02-20 |
CA2373133C (en) | 2010-07-20 |
EP1175229A4 (en) | 2003-05-21 |
CA2373133A1 (en) | 2000-11-16 |
ATE285800T1 (en) | 2005-01-15 |
US7008592B2 (en) | 2006-03-07 |
JP2003525655A (en) | 2003-09-02 |
JP4536936B2 (en) | 2010-09-01 |
AU5122000A (en) | 2000-11-21 |
EP1175229B1 (en) | 2004-12-29 |
DE60017113T2 (en) | 2006-01-12 |
DE60017113D1 (en) | 2005-02-03 |
ES2235887T3 (en) | 2005-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2373133C (en) | Cleaning particulate matter and chemical contaminants from hands and elastomeric articles | |
US6706243B1 (en) | Apparatus and method for cleaning particulate matter and chemical contaminants from a hand | |
US11712489B2 (en) | Decontamination device and method using ultrasonic cavitation | |
US6969487B1 (en) | Denaturing of a biochemical agent using an activated cleaning fluid mist | |
KR20200096685A (en) | Apparatus and process for focused gas phase application of biocide | |
WO2007103617A2 (en) | Sterilizing apparatus and method | |
WO2003103726A2 (en) | Denaturing of a biochemical agent using an activated cleaning fluid mist | |
US10596289B1 (en) | Pivoting cable holder for multi-function disinfection cabinet | |
JP4188801B2 (en) | Vacuum cleaner and purification method using the same | |
CN111202857A (en) | Plasma medical instrument disinfection and sterilization device | |
KR102283278B1 (en) | Sample Collection Apparatus for Virus Inspection | |
JP2004159508A (en) | Method and apparatus for evaluating removal of microorganism | |
ES2327541T3 (en) | METHOD AND APPARATUS FOR THE STERILIZATION OF AN ARTICLE. | |
CN107875424A (en) | Multi-purpose medical instrument interior structure sterilizer | |
JPH078148A (en) | Method for dumigation in chamber | |
JP2004028532A (en) | Air cleaning method and air shower device using it | |
JP3909110B2 (en) | Portable sterilizer | |
CN213031368U (en) | Plasma medical instrument disinfection and sterilization device | |
DK200700139U3 (en) | Apparatus for sterilizing an element | |
DK200700095U3 (en) | Apparatus for sterilizing an element and removable housing therefor | |
KR20230163061A (en) | Virus Free High Performance Medical Cleaner | |
CN115076839A (en) | Ozone air sterilizer for both people and nobody | |
TWI428118B (en) | Portable air plasma coagulator and sterilizer | |
JP2006043244A (en) | Method and apparatus for sterilizing adhesive bacteria | |
JPH08143012A (en) | Method for sterilization with discharge electric field |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2000935814 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2373133 Country of ref document: CA Ref country code: CA Ref document number: 2373133 Kind code of ref document: A Format of ref document f/p: F |
|
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 2000 616830 Kind code of ref document: A Format of ref document f/p: F |
|
WWP | Wipo information: published in national office |
Ref document number: 2000935814 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWG | Wipo information: grant in national office |
Ref document number: 2000935814 Country of ref document: EP |