WO2000065050A1 - Pollinosis-associated gene 795 - Google Patents

Pollinosis-associated gene 795 Download PDF

Info

Publication number
WO2000065050A1
WO2000065050A1 PCT/JP2000/002734 JP0002734W WO0065050A1 WO 2000065050 A1 WO2000065050 A1 WO 2000065050A1 JP 0002734 W JP0002734 W JP 0002734W WO 0065050 A1 WO0065050 A1 WO 0065050A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
seq
expression level
cells
nucleic acid
Prior art date
Application number
PCT/JP2000/002734
Other languages
French (fr)
Japanese (ja)
Inventor
Takeshi Nagasu
Yuji Sugita
Tomoko Fujishima
Tadahiro Oshida
Masaya Obayashi
Shigemichi Gunji
Izumi Obayashi
Yukiho Imai
Nei Yoshida
Kaoru Ogawa
Keiko Matsui
Eiki Takahashi
Akira Yokoi
Original Assignee
Genox Research, Inc.
Eisai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genox Research, Inc., Eisai Co., Ltd. filed Critical Genox Research, Inc.
Publication of WO2000065050A1 publication Critical patent/WO2000065050A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/136Screening for pharmacological compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Definitions

  • the present invention relates to a gene associated with an allergic disease, in particular, hay fever, a method for testing an allergic disease using an expression of the gene as an index, and a method for screening a candidate therapeutic drug for an allergic disease.
  • Allergic diseases including hay fever, are considered multifactorial diseases. These diseases are caused by the interaction of the expression of many different genes, and the expression of these individual genes is affected by multiple environmental factors. Therefore, it is very difficult to elucidate the specific genes that cause specific diseases.
  • Allergic diseases are thought to be related to the expression of genes having mutations or defects, or to overexpression or reduced expression of specific genes. To understand the role of gene expression in disease, it is necessary to understand how genes are involved in pathogenesis and how external stimuli, such as drugs, alter gene expression.
  • the differential display (DD) method is useful as such a method.
  • the differential display method was first developed in 1992 by Liang and Pardee (Science, 1992, 257: 967-971). By using this method, dozens or more of samples can be screened at a time, and It is possible to detect a gene whose expression has changed. Using such a method to examine genes with mutations or genes whose expression changes with time or environment is expected to provide important information for elucidating pathogenic genes. These genes include those whose expression is affected by environmental factors.
  • hay fever is one of the diseases seen in many people in recent years.
  • the pathogenesis of hay fever may involve several genes whose expression is affected by pollen, one of the environmental factors. Under such circumstances, it has been desired to isolate a gene associated with hay fever. Disclosure of the invention
  • An object of the present invention is to provide a gene associated with an allergic disease, particularly hay fever. Another object of the present invention is to provide a method for detecting an allergic disease and a method for screening a candidate compound for a therapeutic drug for allergic diseases, using the expression of the gene as an index.
  • the inventors of the present invention have proposed a method based on the already established “Fluorescent DD (Fluorescent DD) method” (T. I to et al., 1994, FEBS Lett. 351: 231-236).
  • Fluorescent DD Fluorescent DD
  • the present inventors divided the subjects into a group having a high IgE value for cedar pollen (a group predisposed to cedar pollinosis) and other groups (normal subjects), and determined the expression level of the isolated “795” gene in both groups. As a result of comparative analysis, it was found that the gene showed a significantly lower value in the cedar pollinosis-diseased group as compared with healthy subjects. Furthermore, the results of the analysis of the base sequence As a result, it is a non-splicing form of this viability S vimentin, and the expression pattern of vimentin is significantly lower in the cedar pollinosis predisposition group compared to healthy subjects as in ⁇ 795 '' It revealed that. For this reason, the present inventors have found that it is possible to perform an allergic disease test and a screening of a candidate drug for a therapeutic agent for allergic disease using the expression levels of these genes as indices.
  • the present invention relates to a gene exhibiting a decreased expression level in a person having an allergic predisposition, a method for testing an allergic disease using the expression level of the gene as an index, and a method for screening a candidate compound for a therapeutic drug for allergic disease. . More specifically, the present invention relates to the following nucleic acid molecule, and a test method or a screening method using the nucleic acid molecule as an index.
  • nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO: 24;
  • a nucleic acid molecule functionally equivalent to a nucleic acid molecule consisting of the nucleotide sequence of SEQ ID NO: 24, which is hybridized with a DNA consisting of the nucleotide sequence of SEQ ID NO: 24 under stringent conditions.
  • [3] A vector into which the nucleic acid molecule according to [1] or [2] has been inserted.
  • SEQ ID NO: 24 or the nucleotide sequence of SEQ ID NO: 25 in a biological sample A method for testing an allergic disease, comprising the step of measuring the expression level of a gene comprising the gene and comparing it with a control (in the case of a healthy subject).
  • the biological sample is blood, and the expression level of the gene is measured by measuring a protein comprising the amino acid sequence shown in SEQ ID NO: 26 and Z or a fragment thereof in blood. the method of.
  • step (c) selecting a compound that increases the expression level of the gene measured in step (b) as compared to a control (in the case where no test compound is administered).
  • step (f) selecting a compound that increases the expression level of the gene measured in step (e) as compared to a control (in the case where no test compound is administered).
  • step (e) selecting a compound that increases the expression level of the gene measured in step (d) as compared to a control (in the case where no test compound is administered).
  • step (c) selecting a compound that increases the expression level of the gene measured in step (b) as compared to a control (in the case where no test compound is administered).
  • lymphocytes are prepared from peripheral blood
  • an allergic disease is a general term for diseases associated with allergic reactions. More specifically, it can be defined as identifying the allergen, demonstrating a deep link between exposure to the allergen and the development of the lesion, and demonstrating an immunological mechanism for the lesion.
  • the immunological mechanism means that T cells show an immune response by allergen stimulation.
  • Representative allergic diseases can include bronchial asthma, allergic rhinitis, atopic dermatitis, hay fever, or insect allergy.
  • Allergic diathesis is a genetic factor transmitted from parents to children with allergic diseases. Allergic diseases that occur familially are also called atopic diseases, and the genetic factors that cause them are atopic predisposition.
  • the “nucleic acid molecule” includes DNA and RNA.
  • the “test for allergic disease” in the present invention includes not only a test for a patient who has developed an allergic disease, but also a determination of whether or not a subject who has not developed an allergic disease has an allergic predisposition. Inspections are also included.
  • the expression level of the gene in the present invention is used as a term including either the amount of transcribed mRNA or the amount of a protein that is a translation product based on this mRNA.
  • the present invention relates to a novel gene “795” that is correlated with an IgE production response to cedar pollen of an individual.
  • the nucleotide sequence of the “795” cDNA found by the present inventors is shown in SEQ ID NO: See Figure 24.
  • “795” is based on the base sequence (SEQ ID NO: 1, 1384 bp) of the fragment isolated by the DD method, and is based on the RACE method (Frohman, MA et al .: Pro Natl. Acad. Sci. USA, 85 : 8992, 1988), and the nucleotide sequence at the 5 'side was determined, and finally the nucleotide sequence of 4467 bp (SEQ ID NO: 24) was determined.
  • the nucleotide sequence of “795” (SEQ ID NO: 24) in the present invention was confirmed by a homology search to be a non-slicing form containing exon 1 and exon 2 of vimentin, a known protein. .
  • Vimentin is a constituent protein of vimentin filament which belongs to the type III intermediate filament protein (Mo 1 ⁇ Cell. Biol. 6 / 11,3614-3620,1986). It is thought to form a network that spreads throughout the cytoplasm, dynamically integrating cells. Vimentin has also been confirmed to exist in undifferentiated cells and tumor cells. However, there is no report that vimentin is associated with an allergic disease, and the findings obtained by the present inventors are novel.
  • the nucleic acid molecule of the present invention can hybridize not only with the nucleic acid molecule having the nucleotide sequence shown in SEQ ID NO: 24 but also under stringent conditions with the nucleic acid molecule, and a nucleic acid functionally equivalent to the nucleic acid molecule Including molecules.
  • the stringent condition may be, for example, the following condition. Hybridization conditions can be adjusted according to the chain length of the nucleic acid molecule and the constituent bases.
  • functionally equivalent to “795” means that expression is significantly lower in the atopic predisposing group (powder value for cedar pollen is 3.5 AU / ml or more) than in the non-atopic predisposing group. means. Since nucleic acid molecules that can hybridize under stringent conditions are nucleic acid molecules that are structurally highly homologous, screening under such conditions allows the “795” in the present invention to be screened. A functionally equivalent nucleic acid molecule can be obtained.
  • the nucleic acid molecule of the present invention can be obtained by a known method based on the nucleotide sequence information shown in SEQ ID NO: 24.
  • the vimentin gene can also be obtained by a known method based on the nucleotide sequence that has already been clarified.
  • the desired cDNA can be selected by screening a cDNA library of human T cells with a probe set based on the nucleotide sequence of SEQ ID NO: 24.
  • PCR can be performed using primers set based on the nucleotide sequence shown in SEQ ID NO: 24 to amplify the target gene.
  • a cDNA derived from a non-human animal lymphocyte is used as a screening library or template for PCR, homologues of other species of “795” can be obtained.
  • the nucleotide sequence shown in SEQ ID NO: 24 can also be chemically synthesized.
  • Such molecular genetic techniques include known methods (Sambrook), Fritsch, EF, and Maniatis T. Molecular cloning: A Laboratory Manual (2nd edition). Cold Spring Harbor Laboratory Press, Cold Spring Harbor. ) Can be used for ij.
  • the nucleic acid molecule or vimentin gene of the present invention thus obtained is useful as a diagnostic index for allergic disease or as an index for screening a therapeutic agent for allergic disease.
  • the present invention provides a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO: 24, Relates to a polynucleotide that hybridizes to its complementary strand, the polynucleotide having a chain length of at least 15 nucleotides.
  • a polynucleotide that can hybridize to a given base sequence not only those specifically hybridizing to the nucleotide sequence of SEQ ID NO: 24 but also methods for designing probes and primers capable of hybridizing to an unknown nucleotide sequence similar in structure are known.
  • the polynucleotide having the designed base sequence can be chemically synthesized by a technique such as the dideoxy method.
  • a polynucleotide comprising a required nucleotide sequence can be obtained by cleaving a cDNA clone with an appropriate restriction enzyme. These polynucleotides are useful as probes and primers for detecting and synthesizing the nucleic acid molecule of the present invention.
  • “795” and vimentin genes showed significantly lower expression in the atopic predisposing group (IgE value for cedar pollen was 3.5 AU / ml or more) than in the non-atopic predisposing group. Therefore, using the expression of the “795” gene (that is, including transcription into mRNA and translation into protein) as an index, it is possible to test for allergic diseases and to screen candidate compounds for therapeutic drugs for allergic diseases. Conceivable.
  • cedar pollinosis is particularly preferred as an allergic disease to be a control for examination and treatment.
  • the detection of the expression of the gene of “795” or vimentin in the test for allergic disease can be performed by using a hybridization technique using a nucleic acid that hybridizes to the gene of “795” or vimentin as a probe, or a method using these techniques. It can be carried out by using gene amplification technology using DNA that hybridizes to the gene as a primer.
  • a nucleic acid molecule which specifically hybridizes to “795” or vimentin gene and has a chain length of at least 15 nucleotides is used.
  • “specifically hybridizes” means, under ordinary hybridization conditions, preferably stringent hybridization. Under hybridization conditions, refers to no significant cross-hybridization of DNA and / or RNA encoding other genes.
  • an Express Hybridization Solution manufactured by CLONTECH
  • the probe and transfer membrane are hybridized with 68, and finally washed with 50% in a solution of 0.IX SSC, 0.05% SDS, and then washed with 50%. Can be a gentle condition.
  • nucleic acid molecules used in the test of the present invention may be synthetic or natural.
  • the probe DNA used for hybridization is usually labeled.
  • Labels include, for example, labeling by nick translation using DNA polymerase 1, terminal labeling using polynucleotide kinase, fill-in labeling using cleno-fragment (Berger SL, Kernel AR. (198 7) Guide to Molecular Cloning Techniques, Method in Enzymology, Academic
  • Testing for allergic diseases using the hybridization technology can be performed using, for example, a Northern hybridization method, a dot blot method, a method using a DNA microarray, and the like.
  • an RT-PCR method can be used as a method utilizing the gene amplification technique.
  • the expression level of “795” or vimentin gene can be more accurately quantified by using the PCR amplification monitor method as shown in Example 8 in the gene amplification process.
  • "795" or vimentin It is desirable to measure the expression level of each gene alone. By hybridizing a probe or a primer with a base sequence specifically found in any of the genes as a target, the expression level of each gene can be clarified individually. Alternatively, it is possible to separately measure the expression levels of both using the region found in both, such as exon 1 and exon 2 of the vimentin gene.
  • the base sequence corresponding to the intron does not exist in the transcript that has undergone splicing of the vimentin gene, even if the same region is used as the target base sequence of the primer, the length of the generated amplification product differs. coming out. Further, by setting a probe for the PCR amplification monitoring method in the intron region, the amplification of “795” can be specifically followed. If a common nucleotide sequence is used as a target, the expression level of both can be determined comprehensively.
  • probes that are labeled with different fluorochromes at both ends to cancel each other's fluorescence are used to hybridize to the detection target (DNA or RNA reverse transcript).
  • the detection target DNA or RNA reverse transcript.
  • the two fluorescent dyes separate and the fluorescence is detected. This fluorescence is detected in real time.
  • the number of copies of the target in the target sample is determined by the number of linear cycles of PCR amplification by simultaneously measuring a standard sample whose copy number is known for the target (Holland, PM et al., 1991). Natl. Acad. Sci.
  • the test for an allergic disease of the present invention may be performed by detecting a vimentin protein.
  • the amino acid sequence of vimentin is known (SEQ ID NO: No .: 26).
  • a Western blotting method using an antibody that binds to a vimentin protein an immunoprecipitation method, an ELISA method, or the like can be used.
  • a lysate of T cells a blood sample such as serum or plasma can be used as a sample for protein detection.
  • a whole blood sample containing T cells can be lysed into a sample.
  • the antibody of the vimentin protein in the present invention can be obtained as a polyclonal antibody or a monoclonal antibody using techniques well known to those skilled in the art (Milstein C, eta, 1983, Nature 305 (5934): 537-40). ).
  • a vimentin gene SEQ ID NO: 25
  • a part thereof is inserted into an expression vector, and this is introduced into an appropriate host cell to prepare a transformant. It can be obtained by culturing the transformant to express a recombinant protein, and purifying the expressed recombinant protein from a culture or a culture supernatant.
  • the present invention relates to a polynucleotide comprising a nucleotide sequence represented by SEQ ID NO: 24 or SEQ ID NO: 25, or a nucleotide sequence complementary to a complementary strand thereof, and having a chain length of at least 15 nucleotides.
  • the polynucleotide of the present invention is used as a probe or a primer for detecting a gene used as an index for a test.
  • the expression of “795” or vimentin gene expressed in T cells is decreased in the group of hay fever patients with high IgE specific to pollen antigen. Even in allergic patients who show responsiveness to an antigen other than cedar pollen, expression of ⁇ 795 '' or vimentin gene is reduced while T cell responsiveness to the antigen is enhanced. May be In such cases, decreased expression of these genes corresponds to increased T-cell responsiveness, and thus monitoring of expression of the “795” or vimentin gene will increase the risk of allergic disease. Can be performed. That is, the present invention relates to the use of the polynucleotide in a method for screening a candidate compound for a therapeutic drug for an allergic disease.
  • the method for screening a candidate compound for treating an allergic disease of the present invention can be performed in vivo or in vitro.
  • in vivo screening for example, after administering a candidate drug and stimulating with a pollen antigen to a model animal such as a mouse, T cells are separated from peripheral blood, and the ⁇ 795 '' or vimentin gene The transcript of is measured.
  • lymphocytes are separated from peripheral blood, and the lymphocytes are stimulated in vitro with cedar pollen antigen or the like. T cells are separated from the lymphocytes after the stimulation, and their “795” or viment in gene transcript is measured.
  • “795” or a compound that increases the transcription amount of the vimentin gene is selected.
  • the stimulation with the pollen antigen is performed for the purpose of eliciting an antigen-specific allergic reaction in T cells and determining the therapeutic effect of the candidate compound on it.
  • peripheral blood lymphocytes are collected from hay fever humans or mice or the like, and the peripheral blood lymphocytes are stimulated in vitro with cedar pollen antigen or the like.
  • Candidate compounds are added during in vitro stimulation.
  • T cells are separated from the stimulated peripheral blood lymphocytes, and the transcript of “795” or vimentin gene is measured. As a result of this measurement, “795” or a compound that increases the transcription amount of the vimentin gene is selected.
  • Screening of the candidate compound for treating an allergic disease of the present invention can also be performed using established T cells.
  • established T cells such as Mol t4 cells and Jurkat cells are stimulated in vitro with a lymphocyte stimulator.
  • lymphocyte stimulators include calcium ionophore (A23187), PMA, and phytohemagglutinin (PHA). And so on.
  • lymphocyte stimulators include calcium ionophore (A23187), PMA, and phytohemagglutinin (PHA). And so on.
  • Candidate drugs are added during in vitro stimulation. Thereafter, the transcription amount of “795” or vimentin gene in the established T cells is measured. As a result of this measurement, “795” or a compound that increases the transcription of the vimentin gene is selected.
  • Detection of the gene expression of "795" or vimentin in the screening of candidate compounds for the treatment of allergic diseases is carried out by hybridization using a nucleic acid that hybridizes to "795" or vimentin gene as in the test for allergic diseases of the present invention. It can be carried out by using a technique or a gene amplification technique using a DNA that hybridizes to the gene of the present invention as a primer.
  • a Northern hybridization method for example, a dot blot method, a method using a DNA microarray, or the like can be used.
  • an RT-PCR method can be used as a method utilizing the gene amplification technique.
  • the expression of the “795” gene can be more accurately quantified by using a PCR amplification monitoring method as shown in Example 8 in the gene amplification process.
  • Operations such as separation of lymphocytes and T cells, extraction of RNA from T cells, and synthesis of cDNA can be performed according to known techniques as described in Examples.
  • test compounds used in these screenings include compound preparations synthesized by existing chemical methods such as steroid derivatives, compound preparations synthesized by combinatorial chemistry, and extracts of animal and plant tissues or Examples thereof include a mixture containing a plurality of compounds such as a microorganism culture, and a sample purified therefrom.
  • the compound isolated by the method for screening a candidate compound for a therapeutic drug for an allergic disease of the present invention is a candidate for a drug which improves allergic predisposition to an allergen such as a pollen antigen.
  • the compound isolated by the screening method of the present invention when used as a pharmaceutical, it can be used as a pharmaceutical preparation by a known pharmaceutical production method.
  • pharmacologically acceptable carriers or vehicles saline, vegetable oils, suspensions, (Activators, stabilizers, etc.).
  • Administration will be transdermal, intranasal, transbronchial, intramuscular, intravenous, or oral, depending on the nature of the compound.
  • the dose varies depending on the patient's age, body weight, symptoms, administration method and the like, but those skilled in the art can appropriately select an appropriate dose.
  • FIG. 1 is a diagram showing the antibody titers of cedar pollen-specific IgE antibodies in a total of 18 blood samples from 10 subjects who collected blood.
  • the values of cedar pollen-specific IgE antibodies in each blood sample of subjects A to ⁇ were expressed in AU / ml.
  • the pair before pollen scattering is shown on the left (white column), and the one after scattering is shown on the right (black column).
  • Subjects A and B collected only blood after pollen scattering.
  • FIG. 2 is a graph showing changes in the expression of “795” in a high IgE group and a normal IgE group when classified according to cedar pollen-specific IgE values. Error bars represent standard deviation.
  • FIG. 3 shows the results of measuring the expression level of “795” in hay fever patients. The vertical axis indicates the copy number (copy / ng RNA) of “795”, and the horizontal axis indicates the sample number.
  • FIG. 4 shows the results of measuring the expression level of vimentin in hay fever patients.
  • the vertical axis shows the copy number (copy / ng RNA) of “795”, and the horizontal axis shows the sample number.
  • FIG. 5 is a diagram showing changes in the expression of vimentin in the high IgE group and the normal IgE group when grouped according to cedar pollen-specific IgE values. Error bars represent standard deviation. BEST MODE FOR CARRYING OUT THE INVENTION
  • Fig. 1 shows the measured cedar pollen-specific IgE values before and after pollen scattering in each subject. As shown, most of the 10 subjects had increased serum levels of cedar pollen-specific IgE after pollen exposure. The presence of atopic predisposition was determined by whether the value of the CAP RAST test for cedar pollen-specific IgE was greater than 2. That is, eight subjects A to G and I were regarded as an atopic predisposition group (hereinafter also referred to as “patient”), and two subjects H and; ⁇ were regarded as healthy subjects (hereinafter also referred to as “normal group”). Of the eight subjects with an atopic predisposition, seven exhibited symptoms of allergic rhinitis after pollen dispersal.
  • patient atopic predisposition group
  • normal group healthy subjects
  • ⁇ cells from 10 ml of blood proceed as follows. First, the wall of the syringe was treated with 1 ml of Heparin from Nopo, etc. without any restriction, and blood was collected in a 10 ml syringe containing a final concentration of 50 unit / ml heparin. At this time, two 22G needles were prepared for one blood sample. The injection needle was removed and transferred to a 50 ml centrifuge tube (made of polypropylene). After centrifugation at 1500 rpm for 5 minutes at room temperature, 1.1 ml was collected from the surface as close as possible, and centrifuged at 15000 rpm for 5 minutes and at 4 to collect 1 ml of the supernatant as plasma.
  • the lymphocyte fraction obtained in Example 2 was centrifuged at 1200 rpm for 4 and 5 minutes, and suspended in BSA / PBS at 10 8 per 100 ⁇ 1. The volume was about 20 l. This was transferred to an Eppendorf tube (1.5 ml), and the CD3 microbead solution was added. After that, it was left at 4-10 for 30 minutes (it was not placed on ice at this time). This sample was treated by Magnetic Celso Ichiichi (MACS) (Miltenyi Biotech Inc.) as follows.
  • MCS Magnetic Celso Ichiichi
  • the MS + / RS + column was attached to a Mini MACS or Vario MACS separation unit (without needles). 500 / xl BSA / PBS was gently applied to the column and the buffer was poured. Next, apply the cells labeled with CD3 microbeads to the column. I did it. The column was washed three times with (cell fraction). The column was removed from the separation unit and placed on a tube for collecting the eluate. 1 ml of BSA / PBS was applied to the column, and positive cells were rapidly flushed out using a plunger attached to the column. This was used as the T cell fraction.
  • the obtained T cell fraction was centrifuged at 1200 rpm for 5 minutes at 4.
  • the precipitate was washed twice with BSA / PBS. After the second washing, the cells were suspended in 1 ml, and a part thereof was diluted 2-fold with trypan blue to count the number of cells. Total cell number was approximately 4 ⁇ 10 6 .
  • RNA from T cells was prepared using RNeasy Mini (manufactured by Qiagen) according to the attached manual in principle. All operations were performed at room temperature, wearing gloves. Four volumes of ethanol were added to Posh Buffer RPE. Lysis buffer-RLT was supplemented with 101 / ml 2-mercaptoethanol. The cell suspension was centrifuged at 1000-1200 ⁇ ⁇ ⁇ for 5 minutes, and the supernatant was removed by aspiration. A lysis buffer RLT (containing 2-mercaptoethanol) solution was added to the precipitate. At this stage, lysates of cells in RLT buffer could be stored at -70.
  • RNeasy Mini manufactured by Qiagen
  • the cell lysate had been stored frozen, incubate at 37 for 10-15 minutes, and if insolubles were visible, centrifuge for 3 minutes at maximum speed to collect only the supernatant.
  • the lysate was homogenized with a syringe equipped with a 20 G force teran needle and then treated with Q IAshredder. (That is, usually, 350 1 cell lysate was applied to the Kyaschlets Danitto using a Pitman. This was centrifuged at 1500 rpm for 2 minutes, and the effluent was collected.) 350 il of 70% ethanol was added. Mix well by pipetting.
  • An RNeasy spin column was attached to the attached 2 ml tube, a lysate mixture of cells was applied, centrifuged at 8000 Xg (11500 rpm) for 1 minute, and the effluent was discarded.
  • Posh buffer RW1700 was applied to the column, and the tube was capped for 5 minutes. The mixture was centrifuged at 11,500 rpm for 15 seconds, and the effluent was discarded.
  • Attach the column to a new 2 ml tube and wash with Pash Buffer RPE (containing ethanol) 500 1 was applied to the column, and centrifuged at 11500 15m for 15 seconds, and the effluent was discarded.
  • the wash buffer RPE5001 was applied to the column and centrifuged at maximum speed for 2 minutes.
  • the column was mounted in a new 1.5 ml tube, DEPC-treated water 301 was applied, and the lid was capped and allowed to stand for 10 minutes. Centrifugation was performed at 11500 ⁇ ⁇ ⁇ for 10 minutes to obtain total RNA. Measure the concentration, and if the volume is low, replace the column with a new one and place it in a 5 ml tube. Centrifuge.
  • DNase treatment was performed to remove DNA from total RNA prepared from T cells.
  • Fluorescent differential display F1 uorescent Diferential Display, abbreviated as “DD”) using total RNA prepared from T cells Analysis of the literature (T. I to et al., 1994, FEBS Let t. 351: 231-236).
  • Total RNA prepared from T cells was reverse transcribed to obtain cDNA.
  • Three anchors for the primary DD-PCR reaction CDNA was prepared using 0.2 g each of total RNA for each of the primers.
  • cDNA was prepared using 0.4 g of RNA for each of the three anchor primers. All cDNAs were diluted to a final concentration of 0.4 ng / ⁇ l RNA and used in the experiments.
  • a DD-PCR reaction was performed using cDNA equivalent to 1 ng RNA per reaction. Table 1 shows the composition of the reaction solution.
  • PCR reaction conditions were as follows: 3 cycles at 95, 5 minutes at 40, 5 minutes at 72, 1 cycle, followed by 30 cycles of 94 ⁇ 5 seconds, 2 minutes at 40, 1 minute at 72. 5 min at 72, then continuously at 4
  • the primer pair used is an anchor primer: GT15A (SEQ ID NO: 2), GT15C (SEQ ID NO: 3), and GT15G (SEQ ID NO: 4).
  • a total of 287 reactions were performed by combining 199 and AG 200-287.
  • As an optional primer use 10 nucleosides with a GC content of 50%. Oligomers composed of tides were designed, synthesized and used.
  • a 6% denaturing polyacrylamide gel was prepared, 2.5 / ⁇ 1 samples were applied, and electrophoresed at 40 W for 210 minutes. Thereafter, the gel plate was scanned using Hitachi Fluorescence Image Analyzer -FMBI0 I I, and electrophoresis images were obtained by fluorescence detection.
  • Two DD analyzes were performed using a number of arbitrary primers. Bands that differed before and after pollen dispersal or between the patient and healthy groups were selected and reproducible bands were excised from the gel in two experiments.
  • the band “795” was found by DD analysis using GT15A (SEQ ID NO: 2) as an anchor primer and AG109 (TGTCACGGTT SEQ ID NO: 5) as an arbitrary primer.
  • the gel containing the “795” band was cut out, stored in a TE solution, and heated for 6 minutes (TC, 10 minutes) to elute the DNA from the gel.
  • PCR was performed under the same conditions as DD-PCR for type I, and a DNA fragment of about 180 bp was amplified using GT15A as an anchor primer and AG109 as an optional primer. Invitrogen) was used to obtain a plasmid p795-50 carrying a DNA fragment of about 180 bp.
  • An EST sequence (N62037) homologous to 795 was extracted from dbEST, and then extracted using ABI AutoAssembler.
  • Example 8 Quantification by ABI-7700 The expression amount of “795” was quantified by the TaqMan method using ABI-PRISM7700. This method uses a fluorescent dye to quantitatively detect the PCR-amplified DNA strand in real time.
  • RNA samples before and after cedar pollen scattering were collected from 22 volunteers in the spring of 1998, T cells were prepared, and total RNA was extracted. The expression level of the target gene was quantified using a total of 44 RNA samples.
  • the TaqMan probe T795 was used with its 5 ′ end labeled with FAM (6-carboxyfluorescein) and its 3 ′ end with TARA (6-carboxy-tetramethytri rhodamine).
  • FAM 6-carboxyfluorescein
  • TARA 6-carboxy-tetramethytri rhodamine
  • type III cDNA obtained by reverse transcription of poly T (12 to 18 mer) as a primer from 44 kinds of total RNA was used. The reaction was carried out using a serial dilution of plasmid p795-50 obtained in Example 7 for the standard curve for calculating the copy number. Table 3 shows the composition of the reaction mixture for monitoring PCR amplification.
  • Table 4 shows the number (copy number) of “795” in each sample corrected for the copy number of / 3-actin. For the correction, the average copy of -actin in all samples was obtained, and the copy number of "795" in each sample was divided by the relative value of 0-actin in each sample when it was set to 1.
  • two-way analysis of variance was performed.
  • the grouping was performed before and after scattering of Japanese cedar pollen, or at least 3.5 AU / ml for each specific serum IgE in serum (high IgE group) and other (normal). (IgE group).
  • IgE group For example, in the case of cedar pollen, the number of individuals in each group was 10 in the high IgE group and 12 in the normal IgE group.
  • the test was performed separately for the group showing 200 AU / ml for total IgE and the other groups. Tests for two-way analysis of variance were performed using StatView software (Abacuus Concepts, Inc.).
  • PCR reaction For the second (nested) 5 'RACE-PCR reaction, the attached AP2 Primer (SEQ ID NO: 12: ACTCACTATAGGGCTCGA) A PCR reaction was performed using (GCGGC) and 795- 5R-8 Primer (SEQ ID NO: 13: GAGAGTCTACAAAC CTGTCTGA) specific within “795”.
  • the PCR reaction conditions were as follows: primary: one cycle of “94 at 9 minutes” followed by 43 cycles of “94 at 30 seconds, 55 at 30 seconds, 72 at 3 minutes” After that, one cycle of “5 minutes at 72” was performed for one cycle, and then continuously at 4 minutes.
  • the second is “94 for 3 minutes” for one cycle, followed by “94 for 30 seconds, 60 for 30 seconds, and 72 for 2 minutes” after 15 cycles, and then “72 for 5 minutes. For one cycle and then continuously for four.
  • the first reaction uses AmpliTaq Gold (PERKIN ELMER) and the second reaction uses TaKaRa Ex Taq (TaKaRa), and the reaction solution is prepared from the attached reagent according to the attached manual. Was prepared.
  • the amplified DNA fragment was excised from the gel, cloned into a plasmid vector pCR2.1 (Invitrogen), and a plasmid containing a DNA fragment of about 600 bp was cloned. Obtained.
  • a plasmid DNA the nucleotide sequence of the DNA fragment was determined according to a conventional method. As a result, a further upstream sequence of about 500 bp was obtained. The sequence is shown in SEQ ID NO: 14.
  • RACE analysis was performed using Cap Site cDNA (NIPPON GENE) Human HeLa Cell as type III.
  • Cap Site cDNA NIPPON GENE
  • NIPPON GENE Cap Site cDNA
  • For the primary 5'RACE-PCR reaction use the attached IRC Primer (SEQ ID NO: 15: CAA GGTACGCCACAGCGTATG) t 795-yRl Primer (SEQ ID NO: 16: CG GCAGGTTTCAGCGGGACTTC) specific to "795" was used to perform a PCR reaction.
  • 795-yR2 Primer specific to “795” SEQ ID NO: 18
  • 795-yRl Primer and 795-yR2 Primer are ⁇ 5 'RACE It is designed based on the base sequence obtained from “Recovering and Sequencing Bands Excised by Analysis 1”.
  • the primary PCR reaction conditions were as follows: 1 cycle of 95 minutes for 1 cycle, followed by 35 cycles of 94 seconds for 30 seconds, 60 seconds for 30 seconds, and 72 for 1 minute.
  • TaKaRa Taq (TaKaRa) was used as a Taq enzyme, and glycerol was added to the attached reaction reagent to a final concentration of 5% to prepare reaction solutions.
  • a 1.2% agarose gel was prepared, a 5 / ⁇ sample was applied, and electrophoresed at 100 V constant voltage for 30 minutes. Thereafter, electrophoretic images were obtained by UV transillumination overnight.
  • the amplified DNA fragment was excised from the gel, cloned with plasmid vector pCR2.1 (Invitrogen), and a plasmid containing a DNA fragment of about 1 kbp I got Using a plasmid DNA, the nucleotide sequence of the DNA fragment was determined according to a conventional method. As a result, about 800 bp of the upstream sequence could be obtained.
  • the sequence is shown in SEQ ID NO: 19. From the NCBI BLAST Search, the nucleotide sequence from No. 1 to No. 705 of the sequence shown in SEQ ID NO: 19 is the same as the nucleotide sequence from No. 147 to No.
  • Example 12 As a result of Example 12, it was determined that “795” was a non-splicing form of vimentin. Therefore, the expression amount of “vimentin” was quantified by the TaqMan method using ABI-PRISM7700. As a sample, a total of 44 kinds of total RNA samples as in Example 8 were used to quantify the expression amount of the vimentin gene.
  • PCR amplification quantification method was performed based on the sequence of the vimemt in gene (GenBank accession number: M14144).
  • PCR was performed using peripheral blood Tcell-derived cDNA as type III primer-vimentin2F (GACATTGAGATTGCCACCTACAGZ SEQ ID NO: 20) t vimentinR (GGGTATCAA CCAGAGGGAGTGM / SEQ ID NO: 21).
  • the obtained and amplified 130 bp DNA fragment (SEQ ID NO: 23) was cloned into a plasmid vector (pGEM, Promega).
  • PCR amplification and quantification were performed using vimentinTQ (TCCCTGAACCTGAGGGAAACT MTCTGGA / SEQ ID NO: 22) as a TaqMan probe. Other conditions were the same as in Example 8.
  • Figures 7 and 4 show the numbers (copy numbers) of “795” and vimentin mRNA in each sample, corrected for the copy number of 3-actin. For the correction, the average copy of / 3-actin in all samples was determined, and the copy number of vimentin in each sample was divided by the relative value of -actin in each sample when it was set to 1. In addition, the vimentin mRNA copy numbers before and after pollen scattering were compared for each sample (Table 6).
  • a novel gene having a correlation with a cedar pollen-specific IgE value was provided.
  • the expression of the gene of the present invention as an index it has become possible to carry out a test for whether or not it has an allergic predisposition and a screening for candidate compounds for the treatment of allergic diseases.

Abstract

A novel gene undergoing significantly low expression in subjects showing high cedar pollen-specific IgE levels. This gene has been successfully isolated by preparing T cells from subjects showing different cedar pollen-specific Ig-E levels before and after the pollen-scattering season and searching the gene by the differential display method. It is found out that this gene is usable in examining allergic diseases and screening candidate compounds for remedies for allergic diseases.

Description

明細書 花粉症関連遺伝子、 795 技術分野  Description Pollen allergy-related gene, 795 Technical field
本発明は、 アレルギー疾患、 特に花粉症に関連する遺伝子、 並びに該遺伝子の 発現を指標としたァレルギ一疾患の検査方法およびァレルギ一疾患治療薬候補化 合物のスクリーニング方法に関する。 背景技術  The present invention relates to a gene associated with an allergic disease, in particular, hay fever, a method for testing an allergic disease using an expression of the gene as an index, and a method for screening a candidate therapeutic drug for an allergic disease. Background art
花粉症を含むアレルギー疾患は多因子性の病気(multifactorial diseases)と 考えられている。 これらの病気は多くの異なる遺伝子の発現の相互作用によって 起こり、 これらの個々の遺伝子の発現は、複数の環境要因によって影響を受ける。 このため、 特定の病気を起こす特定の遺伝子を解明することは、 非常に困難であ る。  Allergic diseases, including hay fever, are considered multifactorial diseases. These diseases are caused by the interaction of the expression of many different genes, and the expression of these individual genes is affected by multiple environmental factors. Therefore, it is very difficult to elucidate the specific genes that cause specific diseases.
またアレルギー疾患は、 変異や欠陥を有する遺伝子の発現や、 特定の遺伝子の 過剰発現や発現量の減少が関わっていると考えられている。 病気に関して遺伝子 発現が果たしている役割を解明するためには、遺伝子が発症にどのように関わり、 薬剤などの外的な刺激が遺伝子発現をどのように変化させるのかを理解する必要 がある。  Allergic diseases are thought to be related to the expression of genes having mutations or defects, or to overexpression or reduced expression of specific genes. To understand the role of gene expression in disease, it is necessary to understand how genes are involved in pathogenesis and how external stimuli, such as drugs, alter gene expression.
近年の遺伝子発現の解析技術の発達により、 多くの臨床試料で、 遺伝子の発現 を解析 ·比較することが可能となった。 このような方法としては、 ディファレン シャルディスプレイ(DD)法が有用である。ディファレンシャルディスプレイ法は、 ライアンおよびパディ一(Liang and Pardee)によって 1992 年に最初に開発され た(Science, 1992, 257:967-971)。 この方法を用いることによって、 1回に数十種 類以上のサンプルをスクリーニングすることができ、 それらのサンプル中で発現 が変化した遺伝子を検出することが可能である。 このような方法を用いて、 変異 が生じた遺伝子や、 時間や環境とともに発現が変わるような遺伝子を調べること によって、 病因遺伝子の解明のために重要な情報がもたらされることが期待され る。 これらの遺伝子には、 環境要因によって発現に影響を受けるような遺伝子も 含まれる。 Recent developments in gene expression analysis technology have made it possible to analyze and compare gene expression in many clinical samples. The differential display (DD) method is useful as such a method. The differential display method was first developed in 1992 by Liang and Pardee (Science, 1992, 257: 967-971). By using this method, dozens or more of samples can be screened at a time, and It is possible to detect a gene whose expression has changed. Using such a method to examine genes with mutations or genes whose expression changes with time or environment is expected to provide important information for elucidating pathogenic genes. These genes include those whose expression is affected by environmental factors.
アレルギー疾患の中でも花粉症は、近年多くの人に見られる疾患の一つである。 花粉症の病因には、 環境要因の一つである花粉によって発現が影響を受ける複数 の遺伝子が関わっていると考えられる。 このような事情から、 花粉症に関連する 遺伝子を単離することが望まれていた。 発明の開示  Among allergic diseases, hay fever is one of the diseases seen in many people in recent years. The pathogenesis of hay fever may involve several genes whose expression is affected by pollen, one of the environmental factors. Under such circumstances, it has been desired to isolate a gene associated with hay fever. Disclosure of the invention
本発明は、 アレルギー疾患、 特に花粉症に関連する遺伝子を提供することを課 題とする。 さらに、 本発明は該遺伝子の発現を指標とした、 アレルギー疾患の検 査方法およびアレルギー疾患治療薬候補化合物のスクリーニング方法を提供する ことを課題とする。  An object of the present invention is to provide a gene associated with an allergic disease, particularly hay fever. Another object of the present invention is to provide a method for detecting an allergic disease and a method for screening a candidate compound for a therapeutic drug for allergic diseases, using the expression of the gene as an index.
本発明者らは、 既に確立された 「蛍光 DD (F luorescent DD)法」 (T. I t oら, 199 4, FEBS Let t . 351 : 231-236) の手順に基づき、 複数のヒトの血液から調製した T細胞 RNAサンプルを解析できる DDシステムを新たに開発した。このシステムを 用いて、 本発明者らは花粉症患者を含む複数の被験者について、 花粉飛散の前後 の血液から T細胞を採取し、 スギ花粉特異的 IgE値の異なる被験者間や花粉飛散 前後で発現量が変化する遺伝子のスクリーニングを行い、 新規遺伝子 (「795」 遺 伝子) を単離した。  The inventors of the present invention have proposed a method based on the already established “Fluorescent DD (Fluorescent DD) method” (T. I to et al., 1994, FEBS Lett. 351: 231-236). We developed a new DD system that can analyze T cell RNA samples prepared from. Using this system, the present inventors collected T cells from blood before and after pollen scattering in multiple subjects including pollinosis patients, and expressed T cells between subjects with different cedar pollen-specific IgE values and before and after pollen scattering. We screened for genes with varying amounts and isolated a novel gene (the “795” gene).
本発明者らは、被験者をスギ花粉に対する IgE値の高い群(スギ花粉症素因群) とそれ以外の群 (健常者) に分け、 単離した 「795」 遺伝子の発現量を両群におい て比較解析した結果、 該遺伝子が健常者と比較してスギ花粉症素因群において有 意に低値を示すことを見出した。 更に 「7 9 5」 を構成する塩基配列の解析の結 果、 この遺伝子力 S vimentinの non-splicing formであること、 そして vimentinの発 現パターンが 「7 9 5」 と同様に健常者と比較してスギ花粉症素因群において有 意に低値を示すことを明らかにした。 このため、 本発明者らは、 これらの遺伝子 の発現量を指標として、 ァレルギ一疾患の検査およびァレルギ一疾患治療薬候補 化合物のスクリーニングを行うことが可能であることを見出した。 The present inventors divided the subjects into a group having a high IgE value for cedar pollen (a group predisposed to cedar pollinosis) and other groups (normal subjects), and determined the expression level of the isolated “795” gene in both groups. As a result of comparative analysis, it was found that the gene showed a significantly lower value in the cedar pollinosis-diseased group as compared with healthy subjects. Furthermore, the results of the analysis of the base sequence As a result, it is a non-splicing form of this viability S vimentin, and the expression pattern of vimentin is significantly lower in the cedar pollinosis predisposition group compared to healthy subjects as in `` 795 '' It revealed that. For this reason, the present inventors have found that it is possible to perform an allergic disease test and a screening of a candidate drug for a therapeutic agent for allergic disease using the expression levels of these genes as indices.
すなわち、 本発明は、 アレルギー素因を有する者で発現レベルの低下を示す遺 伝子、 および該遺伝子の発現レベルを指標としたアレルギー疾患の検査方法およ びアレルギー疾患治療薬候補化合物のスクリーニング方法に関する。 より具体的 には、 以下の核酸分子、 並びにこの核酸分子を指標とする検査方法、 あるいはス クリーニング方法に関する。  That is, the present invention relates to a gene exhibiting a decreased expression level in a person having an allergic predisposition, a method for testing an allergic disease using the expression level of the gene as an index, and a method for screening a candidate compound for a therapeutic drug for allergic disease. . More specifically, the present invention relates to the following nucleic acid molecule, and a test method or a screening method using the nucleic acid molecule as an index.
〔 1〕 配列番号: 2 4に記載の塩基配列を含む核酸分子。  [1] a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO: 24;
〔2〕 配列番号: 2 4に記載の塩基配列からなる DNAとストリンジェントな条件 下で八イブリダィズし、 配列番号: 2 4に記載の塩基配列からなる核酸分子 と機能的に同等な核酸分子。  [2] A nucleic acid molecule functionally equivalent to a nucleic acid molecule consisting of the nucleotide sequence of SEQ ID NO: 24, which is hybridized with a DNA consisting of the nucleotide sequence of SEQ ID NO: 24 under stringent conditions.
〔3〕 〔1〕、 または 〔2〕 に記載の核酸分子が挿入されたベクター。  [3] A vector into which the nucleic acid molecule according to [1] or [2] has been inserted.
〔4〕 〔1〕、 または〔2〕 に記載の核酸分子を発現可能に保持する形質転換体。 〔5〕 配列番号: 2 4に記載の塩基配列からなる核酸分子、 またはその相補鎖と ハイブリダィズするポリヌクレオチドであって、 少なくとも 1 5ヌクレオチ ドの鎖長を有するポリヌクレオチド。  [4] A transformant that retains the nucleic acid molecule of [1] or [2] in an expressible manner. [5] A polynucleotide that hybridizes to a nucleic acid molecule consisting of the nucleotide sequence of SEQ ID NO: 24 or a complementary strand thereof, and has a chain length of at least 15 nucleotides.
〔6〕 〔5〕 に記載のポリヌクレオチドからなる 〔1〕 に記載の核酸分子合成用 プライマー。  [6] The primer for nucleic acid molecule synthesis according to [1], comprising the polynucleotide according to [5].
〔7〕 〔5〕 に記載のポリヌクレオチドからなる 〔1〕 に記載の核酸分子検出用 プローブ。  [7] The probe for detecting a nucleic acid molecule of [1], comprising the polynucleotide of [5].
〔8〕 〔5〕 に記載のポリヌクレオチドを用いることを特徴とする、 〔1〕 に記 載の核酸分子の検出方法。  [8] The method for detecting a nucleic acid molecule according to [1], comprising using the polynucleotide according to [5].
〔 9〕 生体試料中の配列番号: 2 4、 または配列番号: 2 5に記載の塩基配列か らなる遺伝子の発現レベルを測定し、 対照 (健常者の場合) と比較する工程 を含む、 アレルギー疾患の検査方法。 [9] SEQ ID NO: 24 or the nucleotide sequence of SEQ ID NO: 25 in a biological sample A method for testing an allergic disease, comprising the step of measuring the expression level of a gene comprising the gene and comparing it with a control (in the case of a healthy subject).
〔1 0〕 生体試料が T細胞であり、 T細胞における遺伝子の発現レベルを、 mRNAを铸型とする RT- PCRによって測定する 〔9〕 に記載の方法。 [10] The method according to [9], wherein the biological sample is a T cell, and the expression level of the gene in the T cell is measured by RT-PCR using mRNA as type III.
〔1 1〕 RT- PCRを PCR増幅モニター法により行う、 〔1 0〕 に記載の方法。[11] The method according to [10], wherein RT-PCR is performed by a PCR amplification monitoring method.
〔1 2〕 T細胞が被験者の末梢血から調製される、 〔9〕 から 〔1 1〕 のい ずれかに記載の方法。 [12] The method according to any one of [9] to [11], wherein T cells are prepared from peripheral blood of the subject.
〔1 3〕 生体試料が血液であり、 血中の配列番号: 2 6に示すアミノ酸配 列からなるタンパク質および Zまたはその断片を測定することによって遺伝 子の発現レベルを測定する 〔9〕 に記載の方法。 [13] The biological sample is blood, and the expression level of the gene is measured by measuring a protein comprising the amino acid sequence shown in SEQ ID NO: 26 and Z or a fragment thereof in blood. the method of.
〔1 4〕 アレルギー疾患がスギ花粉症である、 〔9〕 から 〔1 3〕 のいずれ かに記載の方法。 [14] The method according to any one of [9] to [13], wherein the allergic disease is cedar pollinosis.
〔1 5〕 アレルギー疾患の治療薬候補化合物をスクリーニングする方法で あって、  (15) a method for screening a therapeutic compound candidate compound for an allergic disease,
( a ) 花粉症のモデル動物に被検化合物の投与および花粉抗原による刺激 を行う工程、  (a) administering a test compound to a model animal of hay fever and stimulating it with a pollen antigen;
( b ) 該モデル動物の T細胞における配列番号: 2 4または配列番号: 2 5に記載の塩基配列からなる遺伝子の発現レベルを測定する工程、  (b) measuring the expression level of a gene consisting of the nucleotide sequence of SEQ ID NO: 24 or SEQ ID NO: 25 in T cells of the model animal,
( c ) 対照 (被検化合物非投与の場合) と比較して、 工程 (b ) において 測定される遺伝子の発現レベルを増大させる化合物を選択する工程、 を含む 方法。  (c) selecting a compound that increases the expression level of the gene measured in step (b) as compared to a control (in the case where no test compound is administered).
〔1 6〕 アレルギー疾患の治療薬候補化合物をスクリーニングする方法で あって、  (16) a method for screening a candidate drug for a therapeutic drug for an allergic disease,
( a ) 被検化合物を花粉症のモデル動物に投与する工程、  (a) administering a test compound to a model animal of hay fever,
( b ) 該モデル動物からリンパ球を調製する工程、  (b) preparing lymphocytes from the model animal,
( c ) 該リンパ球を花粉抗原で刺激する工程、 (d) 該抗原刺激を受けたリンパ球から T細胞を分離する工程、 (c) stimulating the lymphocytes with a pollen antigen, (d) separating T cells from the antigen-stimulated lymphocytes,
(e) 該 T細胞における配列番号: 24または配列番号: 25に記載の塩 基配列からなる遺伝子の発現レベルを測定する工程、  (e) measuring the expression level of the gene comprising the base sequence of SEQ ID NO: 24 or SEQ ID NO: 25 in the T cell,
(f ) 対照 (被検化合物非投与の場合) と比較して、 工程 (e) において 測定される遺伝子の発現レベルを増大させる化合物を選択する工程、 を含む 方法。  (f) selecting a compound that increases the expression level of the gene measured in step (e) as compared to a control (in the case where no test compound is administered).
〔17〕 アレルギー疾患の治療薬候補化合物をスクリーニングする方法で あって、  (17) a method for screening a candidate drug for a therapeutic drug for an allergic disease,
(a) 花粉症のモデル動物または花粉症を有するヒトからリンパ球を調製 する工程、  (a) preparing lymphocytes from a hay fever model animal or hay fever;
(b) 被検化合物の存在下、 該リンパ球を花粉抗原で刺激する工程、 ( c ) 該抗原刺激を受けたリンパ球から T細胞を分離する工程、  (b) stimulating the lymphocytes with a pollen antigen in the presence of a test compound; (c) separating T cells from the antigen-stimulated lymphocytes;
(d) 該 T細胞における配列番号: 24または配列番号: 25に記載の塩 基配列からなる遺伝子の発現レベルを測定する工程、  (d) measuring the expression level of the gene comprising the base sequence of SEQ ID NO: 24 or SEQ ID NO: 25 in the T cell,
(e) 対照 (被検化合物非投与の場合) と比較して、 工程 (d) において 測定される遺伝子の発現レベルを増大させる化合物を選択する工程、 を含む 方法。  (e) selecting a compound that increases the expression level of the gene measured in step (d) as compared to a control (in the case where no test compound is administered).
〔18〕 アレルギー疾患の治療薬候補化合物をスクリーニングする方法で あって、  [18] a method for screening a candidate drug for a therapeutic agent for an allergic disease,
(a) 被検化合物の存在下、 株化 T細胞をリンパ球刺激物質で刺激するェ 程、  (a) stimulating established T cells with a lymphocyte stimulating substance in the presence of a test compound,
(b) 株化 T細胞における配列番号: 24または配列番号: 25に記載の 塩基配列からなる遺伝子の発現レベルを測定する工程、  (b) measuring the expression level of the gene consisting of the nucleotide sequence of SEQ ID NO: 24 or SEQ ID NO: 25 in the established T cells,
(c) 対照 (被検化合物非投与の場合) と比較して、 工程 (b) において 測定される遺伝子の発現レベルを増大させる化合物を選択する工程、 を含む 方法。 〔1 9〕 遺伝子の発現レベルを、 mRNAを铸型とする RT- PCRによって測定 する 〔1 5〕 から 〔1 8〕 のいずれかに記載の方法。 (c) selecting a compound that increases the expression level of the gene measured in step (b) as compared to a control (in the case where no test compound is administered). [19] The method according to any one of [15] to [18], wherein the expression level of the gene is measured by RT-PCR using mRNA as type III.
〔2 0〕 T細胞が、 花粉症のモデル動物の末梢血から調製される、 〔1 5〕 に記載の方法。  [20] The method of [15], wherein the T cells are prepared from peripheral blood of a model animal of hay fever.
〔2 1〕 リンパ球が末梢血から調製される、 〔1 6〕 または〔1 7〕 に記載 の方法。  [21] the method of [16] or [17], wherein the lymphocytes are prepared from peripheral blood;
〔2 2〕 アレルギー疾患がスギ花粉症である、 〔1 5〕 から 〔2 1〕 のいず れかに記載の方法。  [22] The method according to any one of [15] to [21], wherein the allergic disease is cedar pollinosis.
本発明において、 アレルギー疾患(al l ergic desease)とはアレルギー反応の関 与する疾患の総称である。 より具体的には、 アレルゲンが同定され、 アレルゲン への曝露と病変の発症に深い結びつきが証明され、 その病変に免疫学的な機序が 証明されることと定義することができる。 ここで、 免疫学的な機序とは、 アレル ゲンの刺激によって T細胞が免疫応答を示すことを意味する。 代表的なアレルギ 一疾患には、 気管支喘息、 アレルギー性鼻炎、 アトピー性皮膚炎、 花粉症、 ある いは昆虫アレルギー等を示すことができる。 アレルギー素因(al lergic diathes i s)とは、 アレルギー疾患を持つ親から子に伝えられる遺伝的な因子である。 家族 性に発症するアレルギー疾患はアトピー性疾患とも呼ばれ、 その原因となる遺伝 的に伝えられる因子がアトピー素因である。  In the present invention, an allergic disease is a general term for diseases associated with allergic reactions. More specifically, it can be defined as identifying the allergen, demonstrating a deep link between exposure to the allergen and the development of the lesion, and demonstrating an immunological mechanism for the lesion. Here, the immunological mechanism means that T cells show an immune response by allergen stimulation. Representative allergic diseases can include bronchial asthma, allergic rhinitis, atopic dermatitis, hay fever, or insect allergy. Allergic diathesis is a genetic factor transmitted from parents to children with allergic diseases. Allergic diseases that occur familially are also called atopic diseases, and the genetic factors that cause them are atopic predisposition.
なお、 本発明における 「核酸分子」 には、 DNAおよび RNA力 S含まれる。 また、 本発明における 「アレルギ一疾患の検査」 には、 アレルギー疾患を発症している 患者に対する検査だけでなく、 アレルギー疾患を発症していない被験者に対して アレルギー素因を有するか否かを判定するための検査も含まれる。 更に本発明に おける遺伝子の発現レベルとは、 転写された mRNAの量と、 この mRNAに基づ く翻訳産物であるタンパク質の量のいずれかを含む用語として用いられる。  In the present invention, the “nucleic acid molecule” includes DNA and RNA. Further, the “test for allergic disease” in the present invention includes not only a test for a patient who has developed an allergic disease, but also a determination of whether or not a subject who has not developed an allergic disease has an allergic predisposition. Inspections are also included. Further, the expression level of the gene in the present invention is used as a term including either the amount of transcribed mRNA or the amount of a protein that is a translation product based on this mRNA.
本発明は、 個体のスギ花粉に対する IgE産生反応に相関する新規な遺伝子 「79 5」 に関する。 本発明者らにより見出された 「795」 cDNAの塩基配列を配列番号: 24に示す。 The present invention relates to a novel gene “795” that is correlated with an IgE production response to cedar pollen of an individual. The nucleotide sequence of the “795” cDNA found by the present inventors is shown in SEQ ID NO: See Figure 24.
「795」 は、 DD法によって単離された断片の塩基配列 (配列番号: 1、 1384 bp) をもとに、 RACE法 (Frohman, M. A. et al.: Pro Natl. Acad. Sci. USA, 85: 8992, 1988)によってその 5'側の塩基配列を決定し、最終的に 4467bp (配列 番号: 24)の塩基配列 を明らかにした遺伝子である。本発明における 「795」 の塩基配列 (配列番号: 24) は、 ホモロジ一サーチの結果、 公知の蛋白質であ る vimentinのェキソン 1およびェキソン 2を含む non- spl icing formであるこ とが確認された。 vimentinは、 III型中間径フィラメントタンパク質に属する、 ビメンチンフィラメントの構成タンパク質である(Mo 1· Cell. Biol.6/11,3614- 362 0,1986)。細胞質全体に広がるネットワークを形成し、細胞を力学的に統合してい ると考えられている。 vimentinは、 未分化の細胞や腫瘍細胞においても存在が確 認されている。 しかし、 vimentinがアレルギー疾患と関連するという報告は無く、 本発明者らが得た知見は新規なものである。  “795” is based on the base sequence (SEQ ID NO: 1, 1384 bp) of the fragment isolated by the DD method, and is based on the RACE method (Frohman, MA et al .: Pro Natl. Acad. Sci. USA, 85 : 8992, 1988), and the nucleotide sequence at the 5 'side was determined, and finally the nucleotide sequence of 4467 bp (SEQ ID NO: 24) was determined. The nucleotide sequence of “795” (SEQ ID NO: 24) in the present invention was confirmed by a homology search to be a non-slicing form containing exon 1 and exon 2 of vimentin, a known protein. . Vimentin is a constituent protein of vimentin filament which belongs to the type III intermediate filament protein (Mo 1 · Cell. Biol. 6 / 11,3614-3620,1986). It is thought to form a network that spreads throughout the cytoplasm, dynamically integrating cells. Vimentin has also been confirmed to exist in undifferentiated cells and tumor cells. However, there is no report that vimentin is associated with an allergic disease, and the findings obtained by the present inventors are novel.
更に本発明者らは、 vimentinの mRNAのコピー数とアレルギー疾患との関連に ついても調査し、 「795」 と同様の発現パターンを示すことを見出した。本発明 の核酸分子は、 配列番号: 24に示す塩基配列を含む核酸分子のみならず、 この 核酸分子とストリンジェントな条件下でハイブリダィズすることができ、 この核 酸分子と機能的に同等な核酸分子を含む。 本発明においてストリンジェントな条 件とは、たとえば次のような条件を示すことができる。ハイブリダィズの条件は、 核酸分子の鎖長や構成塩基に応じて、 調整することができる。  Furthermore, the present inventors also investigated the relationship between the copy number of vimentin mRNA and allergic diseases, and found that the expression pattern was similar to that of “795”. The nucleic acid molecule of the present invention can hybridize not only with the nucleic acid molecule having the nucleotide sequence shown in SEQ ID NO: 24 but also under stringent conditions with the nucleic acid molecule, and a nucleic acid functionally equivalent to the nucleic acid molecule Including molecules. In the present invention, the stringent condition may be, for example, the following condition. Hybridization conditions can be adjusted according to the chain length of the nucleic acid molecule and the constituent bases.
八イブリダィズ条件: Eight ridden conditions:
5 XSSC  5 XSSC
7 %SDS  7% SDS
50〜60で  50-60
洗浄条件: Cleaning conditions:
0. 1 XSSC 0. 1 %SDS 0.1 XSSC 0.1% SDS
60〜70で  60-70
また本発明において、 「79 5」 と機能的に同等とは、 アトピー素因群(スギ花 粉に対する £値が3.5 AU/ml以上) において、 アトピー非素因群よりも有意に 低い発現を示すことを意味する。 ストリンジェントな条件下でハイブリダイズす ることができる核酸分子は、 構造的に相同性の高い核酸分子であることから、 こ のような条件下でスクリーニングすることにより、 本発明における 「79 5」 と 機能的に同等な核酸分子を得ることができる。  Further, in the present invention, functionally equivalent to “795” means that expression is significantly lower in the atopic predisposing group (powder value for cedar pollen is 3.5 AU / ml or more) than in the non-atopic predisposing group. means. Since nucleic acid molecules that can hybridize under stringent conditions are nucleic acid molecules that are structurally highly homologous, screening under such conditions allows the “795” in the present invention to be screened. A functionally equivalent nucleic acid molecule can be obtained.
本発明の核酸分子は、 配列番号: 24に記載した塩基配列情報を基に、 公知の 方法によって得ることができる。また vimentinの遺伝子も、既に明らかにされて いる塩基配列に基づいて、 公知の方法により得ることができる。 たとえば、 ヒト T細胞の cDNAライブラリーを、 配列番号: 24の塩基配列に基づいて設定したプ ローブでスクリーニングすることにより目的とする cDNA を選択することができ る。 あるいは。 配列番号: 24に示す塩基配列に基づいて設定したプライマーに よって PCRを行って、 目的とする遺伝子を増幅することもできる。 スクリーニン グ用のライブラリーや PCRのためのテンプレートとして、 ヒト以外の動物のリン パ球に由来する cDNAを用いれば, 「795」 の他の種におけるホモログを得るこ とができる。 更に, 配列番号: 24に示した塩基配列を化学的に合成することも できる。 このような分子遺伝学的な手法には、 公知の方法 (Sambrook 】., Frits ch, E. F. , and Maniatis T. Molecular cloning : A Laboratory Manual (2nd edition). Cold Spring Harbor Laboratory Press, Cold Spring Harbor. ) を禾 ij 用することができる。  The nucleic acid molecule of the present invention can be obtained by a known method based on the nucleotide sequence information shown in SEQ ID NO: 24. The vimentin gene can also be obtained by a known method based on the nucleotide sequence that has already been clarified. For example, the desired cDNA can be selected by screening a cDNA library of human T cells with a probe set based on the nucleotide sequence of SEQ ID NO: 24. Or. PCR can be performed using primers set based on the nucleotide sequence shown in SEQ ID NO: 24 to amplify the target gene. If a cDNA derived from a non-human animal lymphocyte is used as a screening library or template for PCR, homologues of other species of “795” can be obtained. Furthermore, the nucleotide sequence shown in SEQ ID NO: 24 can also be chemically synthesized. Such molecular genetic techniques include known methods (Sambrook), Fritsch, EF, and Maniatis T. Molecular cloning: A Laboratory Manual (2nd edition). Cold Spring Harbor Laboratory Press, Cold Spring Harbor. ) Can be used for ij.
このようにして得られる本発明の核酸分子、あるいは vimentinの遺伝子は、ァ レルギ一疾患の診断指標として、 あるいはァレルギ一疾患の治療薬をスクリ一二 ングするための指標として有用である。  The nucleic acid molecule or vimentin gene of the present invention thus obtained is useful as a diagnostic index for allergic disease or as an index for screening a therapeutic agent for allergic disease.
あるいは本発明は、 配列番号: 24に記載の塩基配列からなる核酸分子、 また はその相補鎖とハイブリダィズするポリヌクレオチドであって、 少なくとも 1 5 ヌクレオチドの鎖長を有するポリヌクレオチドに関する。 当業者は、 与えられた 塩基配列に対してハイプリダイズすることができるポリヌクレオチドを設計する ことができる。 更に、 配列番号: 2 4の塩基配列に特異的にハイブリダィズする もののみならず、 構造的に類似した未知の塩基配列に対してハイブリダィズする ことができるプローブやプライマーを設計する方法も公知である。 設計された塩 基配列を持つポリヌクレオチドは、 ジデォキシ法等の手法によって化学的に合成 することができる。 あるいは、 cDNAクローンを適当な制限酵素で切断することに よって、 必要な塩基配列からなるポリヌクレオチドを得ることもできる。 これら のポリヌクレオチドは、 本発明の核酸分子の検出や合成のためのプローブやブラ イマ一として有用である。 Alternatively, the present invention provides a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO: 24, Relates to a polynucleotide that hybridizes to its complementary strand, the polynucleotide having a chain length of at least 15 nucleotides. One skilled in the art can design a polynucleotide that can hybridize to a given base sequence. Further, not only those specifically hybridizing to the nucleotide sequence of SEQ ID NO: 24 but also methods for designing probes and primers capable of hybridizing to an unknown nucleotide sequence similar in structure are known. The polynucleotide having the designed base sequence can be chemically synthesized by a technique such as the dideoxy method. Alternatively, a polynucleotide comprising a required nucleotide sequence can be obtained by cleaving a cDNA clone with an appropriate restriction enzyme. These polynucleotides are useful as probes and primers for detecting and synthesizing the nucleic acid molecule of the present invention.
「795」 および vimentin遺伝子は、 アトピー素因群 (スギ花粉に対する IgE値 が 3. 5 AU/ml以上) の方がアトピー非素因群よりも有意に低い発現を示した。 従 つて、 「795」の遺伝子の発現(すなわち mRNAへの転写およびタンパク質への翻訳 を含む) を指標に、 アレルギー疾患の検査およびアレルギー疾患治療薬候補化合 物のスクリーニングを行うことが可能であると考えられる。 本発明において検 査 ·治療の対照となるアレルギー疾患としては、 特にスギ花粉症が好ましい。 本発明におけるアレルギー疾患の検査における 「795」、 あるいは vimentinの遺 伝子の発現の検出は、 「795」、 あるいは vimentin の遺伝子にハイブリダィズする 核酸をプローブとしたハイブリダィゼーシヨン技術、 またはこれらの遺伝子にハ ィブリダイズする DNAをプライマーとした遺伝子増幅技術を利用して行うことが 可能である。  “795” and vimentin genes showed significantly lower expression in the atopic predisposing group (IgE value for cedar pollen was 3.5 AU / ml or more) than in the non-atopic predisposing group. Therefore, using the expression of the “795” gene (that is, including transcription into mRNA and translation into protein) as an index, it is possible to test for allergic diseases and to screen candidate compounds for therapeutic drugs for allergic diseases. Conceivable. In the present invention, cedar pollinosis is particularly preferred as an allergic disease to be a control for examination and treatment. The detection of the expression of the gene of “795” or vimentin in the test for allergic disease according to the present invention can be performed by using a hybridization technique using a nucleic acid that hybridizes to the gene of “795” or vimentin as a probe, or a method using these techniques. It can be carried out by using gene amplification technology using DNA that hybridizes to the gene as a primer.
本発明の検査に用いられるプローブまたはプライマーとしては、 「795」、あるい は vimentinの遺伝子に特異的にハイブリダィズし、 少なくとも 15ヌクレオチド の鎖長を有する核酸分子が用いられる。 ここで 「特異的にハイブリダィズする」 とは、 通常のハイブリダィゼ一シヨン条件下、 好ましくはストリンジェントなハ ィブリダイゼーション条件下で、他の遺伝子をコードする DNAおよび/または RN Aとクロスハイブリダィゼ一シヨンが有意に生じないことを指す。 たとえば、 Exp ress Hybridization Solution (CLONTECH社製) 中でプローブと転写膜を 68でで ハイブリダィゼ一シヨンし、 最終的に 0. IX SSC, 0.05% SDS溶液にて、 50でで 洗浄することにより、 ストリンジェントな条件とすることができる。 As the probe or primer used in the test of the present invention, a nucleic acid molecule which specifically hybridizes to “795” or vimentin gene and has a chain length of at least 15 nucleotides is used. As used herein, “specifically hybridizes” means, under ordinary hybridization conditions, preferably stringent hybridization. Under hybridization conditions, refers to no significant cross-hybridization of DNA and / or RNA encoding other genes. For example, in an Express Hybridization Solution (manufactured by CLONTECH), the probe and transfer membrane are hybridized with 68, and finally washed with 50% in a solution of 0.IX SSC, 0.05% SDS, and then washed with 50%. Can be a gentle condition.
本発明の検査に用いるこれら核酸分子は、 合成されたものでも天然のものでも よい。 また、 ハイブリダィゼ一シヨンに用いるプローブ DNAは、 通常、 標識した ものが用いられる。 標識としては、 例えば、 DNAポリメラーゼ 1を用いるニック トランスレーションによる標識、 ポリヌクレオチドキナーゼを用いる末端標識、 クレノ一フラグメントによるフィルイン末端標識 (Berger SL, Kernel AR. (198 7) Guide to Molecular Cloning Techniques, Method in Enzymology, Academic These nucleic acid molecules used in the test of the present invention may be synthetic or natural. The probe DNA used for hybridization is usually labeled. Labels include, for example, labeling by nick translation using DNA polymerase 1, terminal labeling using polynucleotide kinase, fill-in labeling using cleno-fragment (Berger SL, Kernel AR. (198 7) Guide to Molecular Cloning Techniques, Method in Enzymology, Academic
Press ; Hames BD, Higgins SJ (1985) Genes Probes: A Practical Approach. IRL Press; Sambrook J, Fritsch EF, Maniatis T. (1989) Molecular Cloning: a Laboratory Manual, 2nd Edn. Cold Spring Harbor Laboratory Press), RNA ポリメラーゼを用いる転写による標識 (Melton DA, Krieg, PA, Rebagkiati MR, Maniatis T, Zinn K, Green MR. (1984) Nucleic Acid Res., 12, 7035-7056)、放 射性同位体を用いない修飾ヌクレオチドを DNAに取り込ませる方法 (Kricka LJ.Press; Hames BD, Higgins SJ (1985) Genes Probes: A Practical Approach. IRL Press; Sambrook J, Fritsch EF, Maniatis T. (1989) Molecular Cloning: a Laboratory Manual, 2nd Edn. Cold Spring Harbor Laboratory Press), RNA Labeling by transcription using polymerase (Melton DA, Krieg, PA, Rebagkiati MR, Maniatis T, Zinn K, Green MR. (1984) Nucleic Acid Res., 12, 7035-7056), Modification without radioisotope How to incorporate nucleotides into DNA (Kricka LJ.
(1992) Nonisotopic DNA Probing Techniques. Academic Press) 等が挙げられ る。 (1992) Nonisotopic DNA Probing Techniques. Academic Press).
ハイブリダィゼーシヨン技術を利用したアレルギー疾患の検査は、 例えば、 ノ —ザンハイブリダィゼーシヨン法、 ドットブロット法、 DNAマイクロアレイを用 いた方法などを使用して行うことができる。  Testing for allergic diseases using the hybridization technology can be performed using, for example, a Northern hybridization method, a dot blot method, a method using a DNA microarray, and the like.
一方、 遺伝子増幅技術を利用した方法としては、 例えば、 RT- PCR法を用いるこ とができる。 RT- PCR法においては、遺伝子の増幅過程において実施例 8に示すよ うに PCR増幅モニタ一法を用いれば、 「795」、 あるいは vimentin遺伝子の発現レべ ルをより正確に定量することができる。本発明において「795」、あるいは vimentin 遺伝子の発現レベルは、それぞれ単独で測定することが望ましい。 いずれかの遺 伝子に特異的に見出される塩基配列を標的として、プローブやプライマーをハイ ブリダィズさせることにより、各遺伝子の発現レベルを個別に明らかにすること ができる。 あるいは、 たとえば vimentin遺伝子のェキソン 1とェキソン 2のよう に、両者に共通して見出される領域を利用して、両者の発現レベルを個別に測定 することは可能である。すなわち、 vimentin遺伝子の splicingをうけた転写産物 にはイントロンに相当する塩基配列が存在しないことから、同じ領域をプライマ 一の標的塩基配列として用いても、生成される増幅産物の長さには違いが出る。 更に、 PCR増幅モニター法のためのプローブをイントロンの領域に設定すること によって、 「795」 の増幅を特異的に追跡することもできる。 なお、 両者に共 通する塩基配列を標的として利用すれば、両者の発現レベルを総合的に決定する こともできる。 On the other hand, as a method utilizing the gene amplification technique, for example, an RT-PCR method can be used. In the RT-PCR method, the expression level of “795” or vimentin gene can be more accurately quantified by using the PCR amplification monitor method as shown in Example 8 in the gene amplification process. In the present invention, "795" or vimentin It is desirable to measure the expression level of each gene alone. By hybridizing a probe or a primer with a base sequence specifically found in any of the genes as a target, the expression level of each gene can be clarified individually. Alternatively, it is possible to separately measure the expression levels of both using the region found in both, such as exon 1 and exon 2 of the vimentin gene. In other words, since the base sequence corresponding to the intron does not exist in the transcript that has undergone splicing of the vimentin gene, even if the same region is used as the target base sequence of the primer, the length of the generated amplification product differs. coming out. Further, by setting a probe for the PCR amplification monitoring method in the intron region, the amplification of “795” can be specifically followed. If a common nucleotide sequence is used as a target, the expression level of both can be determined comprehensively.
PCR増幅モニター法においては、 両端に互いの蛍光を打ち消し合う異なった蛍 光色素で標識したプローブを用い、 検出対象 (DNAもしくは RNAの逆転写産物) にハイプリダイズさせる。 PCR反応が進んで Taqポリメラーゼの 5' -3'ェクソヌク レアーゼ(exonuclease)活性により同プローブが分解されると二つの蛍光色素が 離れ、 蛍光が検出されるようになる。 この蛍光の検出をリアルタイムに行う。 検 出対象についてコピー数の明らかな標準試料について同時に測定することにより、 PCR増幅の直線性のあるサイクル数で目的試料中の検出対象のコピー数を決定す る (Holland, P.M. et al., 1991, Proc. Natl. Acad. Sci. USA 88:7276-7280; Livak, K. J. et al., 1995, PCR Methods and Applications 4(6) :357-362; H eid, C. A. et aし, Genome Research 6:986-994; Gibson, E. M. U. et al. , 1 996, Genome Research 6:995-1001)。 PCR増幅モニタ一法においては、 例えば、 A Βί PRISM7700 (パーキンエルマ一社) を用いることができる。  In the PCR amplification monitoring method, probes that are labeled with different fluorochromes at both ends to cancel each other's fluorescence are used to hybridize to the detection target (DNA or RNA reverse transcript). When the PCR proceeds and the probe is degraded by the 5'-3 'exonuclease activity of Taq polymerase, the two fluorescent dyes separate and the fluorescence is detected. This fluorescence is detected in real time. The number of copies of the target in the target sample is determined by the number of linear cycles of PCR amplification by simultaneously measuring a standard sample whose copy number is known for the target (Holland, PM et al., 1991). Natl. Acad. Sci. USA 88: 7276-7280; Livak, KJ et al., 1995, PCR Methods and Applications 4 (6): 357-362; Heid, CA et a, Genome Research 6: 986-994; Gibson, EMU et al., 996, Genome Research 6: 995-1001). In the PCR amplification monitor method, for example, A-PRISM7700 (PerkinElmer) can be used.
また、 本発明のアレルギー疾患の検査は、 vimentinタンパク質を検出すること により行うことも考えられる。 vimentinのアミノ酸配列は、 公知である (配列番 号: 2 6 )。 このような検査方法としては、 例えば、 vimentinタンパク質に結合す る抗体を利用したウエスタンブロッテイング法、 免疫沈降法、 ELI SA法などを利 用することができる。 タンパク質の検出を行うための試料には、 T細胞のライセ ートゃ血清や血漿などの血液試料を用いることができる。 あるいは T細胞を含む 全血試料を溶血させて試料とすることもできる。 In addition, the test for an allergic disease of the present invention may be performed by detecting a vimentin protein. The amino acid sequence of vimentin is known (SEQ ID NO: No .: 26). As such a test method, for example, a Western blotting method using an antibody that binds to a vimentin protein, an immunoprecipitation method, an ELISA method, or the like can be used. A lysate of T cells—a blood sample such as serum or plasma can be used as a sample for protein detection. Alternatively, a whole blood sample containing T cells can be lysed into a sample.
本発明における vimentinタンパク質の抗体は、 当業者に周知の技法を用いて、 ポリクロ一ナル抗体またはモノクローナル抗体として得ることができる (Mi l s t e i n C, e t aし, 1983, Nature 305 (5934): 537-40)。 抗原に用いるタンパク質もし くはその部分ペプチドは、 例えば vimentin遺伝子 (配列番号: 2 5 ) もしくはそ の一部を発現ベクターに組込み、 これを適当な宿主細胞に導入して、 形質転換体 を作成し、 該形質転換体を培養して組み換えタンパク質を発現させ、 発現させた 組み換えタンパク質を培養体または培養上清から精製することにより得ることが できる。  The antibody of the vimentin protein in the present invention can be obtained as a polyclonal antibody or a monoclonal antibody using techniques well known to those skilled in the art (Milstein C, eta, 1983, Nature 305 (5934): 537-40). ). For the protein or its partial peptide used as an antigen, for example, a vimentin gene (SEQ ID NO: 25) or a part thereof is inserted into an expression vector, and this is introduced into an appropriate host cell to prepare a transformant. It can be obtained by culturing the transformant to express a recombinant protein, and purifying the expressed recombinant protein from a culture or a culture supernatant.
本発明におけるアレルギー疾患の検査の結果、 本発明の遺伝子の発現が有意に 低ければ、 被験者は例えばスギ花粉抗原のようなアレルゲンに対する IgE値が高 く、 アレルギー素因を有すると判定することができる。 アレルゲン特異的抗体価 や、 症状などと併せて、 本発明の遺伝子の発現レベルの測定を、 アレルギー疾患 の検査に用いることが可能である。 すなわち本発明は、 配列番号: 2 4または配 列番号: 2 5に記載された塩基配列、 またはその相補鎖に対して相補的な塩基配 列からなり、 少なくとも 1 5ヌクレオチドの鎖長からなるポリヌクレオチドの、 アレルギー疾患の検査における使用に関する。 本発明のポリヌクレオチドは、 検 査の指標とする遺伝子を検出するためのプローブやプライマーとして使用される。  As a result of the test for an allergic disease according to the present invention, if the expression of the gene of the present invention is significantly low, the subject can be determined to have a high IgE value against an allergen such as cedar pollen antigen and have an allergic predisposition. The measurement of the expression level of the gene of the present invention in combination with the allergen-specific antibody titer, symptoms, etc., can be used for testing for allergic diseases. That is, the present invention relates to a polynucleotide comprising a nucleotide sequence represented by SEQ ID NO: 24 or SEQ ID NO: 25, or a nucleotide sequence complementary to a complementary strand thereof, and having a chain length of at least 15 nucleotides. The use of nucleotides in testing for allergic diseases. The polynucleotide of the present invention is used as a probe or a primer for detecting a gene used as an index for a test.
T細胞に発現する 「795」、 あるいは vimentinの遺伝子は、 花粉抗原に対する特 異的 IgEの高い、 花粉症患者群において発現が低下している。 スギ花粉以外の抗 原に対する応答性を示すアレルギー患者においても、 当該抗原に対する T細胞の 応答性の亢進している状態で 「795」、 あるいは vimentinの遺伝子の発現が低下す る可能性がある。 このようなケースではこれらの遺伝子の発現低下が T細胞の応 答性の亢進に対応しており、 従って 「795」、 あるいは vimentinの遺伝子の発現を モニターすることによってァレルギ一疾患治療薬のスクリ一ニングを行うことが できる。 すなわち本発明は、 前記ポリヌクレオチドの、 アレルギー疾患の治療薬 候補化合物のスクリーニング方法における使用に関する。 The expression of “795” or vimentin gene expressed in T cells is decreased in the group of hay fever patients with high IgE specific to pollen antigen. Even in allergic patients who show responsiveness to an antigen other than cedar pollen, expression of `` 795 '' or vimentin gene is reduced while T cell responsiveness to the antigen is enhanced. May be In such cases, decreased expression of these genes corresponds to increased T-cell responsiveness, and thus monitoring of expression of the “795” or vimentin gene will increase the risk of allergic disease. Can be performed. That is, the present invention relates to the use of the polynucleotide in a method for screening a candidate compound for a therapeutic drug for an allergic disease.
本発明のアレルギー疾患治療候補化合物のスクリーニング方法は、 in vivo で 行なうことも in vi t roで行なうこともできる。 in vivoでのスクリーニングにお いては、 例えば、 マウス等のモデル動物に、 候補薬剤の投与および花粉抗原での 刺激を行った後、 末梢血より T細胞を分離し、 「795」、 あるいは vimentin遺伝子 の転写産物を測定する。 あるいは、 マウス等のモデル動物に候補薬剤を投与した 後、末梢血よりリンパ球を分離し、該リンパ球をスギ花粉抗原等で in vi t roで刺 激する。 該刺激後のリンパ球から T細胞を分離し、 その 「795」、 あるいは viment in遺伝子の転写産物を測定する。 これら測定の結果、 「795」、 あるいは vimentin 遺伝子の転写量を増大させる化合物を選択する。 ここで花粉抗原による刺激は、 T 細胞において抗原特異的なアレルギー反応を惹起し、 それに対する候補化合物の 治療効果を判定することを目的として行うものである。  The method for screening a candidate compound for treating an allergic disease of the present invention can be performed in vivo or in vitro. For in vivo screening, for example, after administering a candidate drug and stimulating with a pollen antigen to a model animal such as a mouse, T cells are separated from peripheral blood, and the `` 795 '' or vimentin gene The transcript of is measured. Alternatively, after administering a candidate drug to a model animal such as a mouse, lymphocytes are separated from peripheral blood, and the lymphocytes are stimulated in vitro with cedar pollen antigen or the like. T cells are separated from the lymphocytes after the stimulation, and their “795” or viment in gene transcript is measured. As a result of these measurements, “795” or a compound that increases the transcription amount of the vimentin gene is selected. Here, the stimulation with the pollen antigen is performed for the purpose of eliciting an antigen-specific allergic reaction in T cells and determining the therapeutic effect of the candidate compound on it.
また、 in vi troでのスクリーニングにおいては、 例えば、 花粉症のヒトまたは マウス等から末梢血リンパ球を採取し、 スギ花粉抗原などで、 該末梢血リンパ球 を in vi t roで刺激する。 in vi t ro刺激の際に候補化合物を添加する。 その後、 刺激された末梢血リンパ球から T細胞を分離し、 「795」、 あるいは vimentin遺伝 子の転写産物を測定する。 この測定の結果、 「795」、 あるいは vimentin遺伝子の 転写量を増大させる化合物を選択する。  In the in vitro screening, for example, peripheral blood lymphocytes are collected from hay fever humans or mice or the like, and the peripheral blood lymphocytes are stimulated in vitro with cedar pollen antigen or the like. Candidate compounds are added during in vitro stimulation. Then, T cells are separated from the stimulated peripheral blood lymphocytes, and the transcript of “795” or vimentin gene is measured. As a result of this measurement, “795” or a compound that increases the transcription amount of the vimentin gene is selected.
また、 本発明のアレルギー疾患治療候補化合物のスクリーニングは、 株化 T細 胞を用いて行なうこともできる。 例えば、 Mol t4細胞、 Jurkat細胞などの株化 T 細胞をリンパ球刺激物質で in vi t roで刺激する。 リンパ球刺激物質としては、例 えば、 カルシウムィオノフォア (A23187)、 PMA、 フィ 卜へマグルチニン (PHA) な どが挙げられる。 in vi t ro刺激の際に候補薬剤を添加する。 その後、 該株化 T細 胞における 「795」、 あるいは vimentin遺伝子の転写量を測定する。 この測定の結 果、 「795」、 あるいは vimentin遺伝子の転写を増大させる化合物を選択する。 アレルギー疾患治療候補化合物のスクリーニングにおける 「795」、 あるいは vi mentin の遺伝子発現の検出は、 本発明のアレルギー疾患の検査と同様、 「795」、 あるいは vimentin遺伝子にハイブリダィズする核酸をプローブとしたハイブリダ ィゼーション技術、 または本発明の遺伝子にハイブリダイズする DNAをプライマ ―とした遺伝子増幅技術を利用して行うことが可能である。 Screening of the candidate compound for treating an allergic disease of the present invention can also be performed using established T cells. For example, established T cells such as Mol t4 cells and Jurkat cells are stimulated in vitro with a lymphocyte stimulator. Examples of lymphocyte stimulators include calcium ionophore (A23187), PMA, and phytohemagglutinin (PHA). And so on. Candidate drugs are added during in vitro stimulation. Thereafter, the transcription amount of “795” or vimentin gene in the established T cells is measured. As a result of this measurement, “795” or a compound that increases the transcription of the vimentin gene is selected. Detection of the gene expression of "795" or vimentin in the screening of candidate compounds for the treatment of allergic diseases is carried out by hybridization using a nucleic acid that hybridizes to "795" or vimentin gene as in the test for allergic diseases of the present invention. It can be carried out by using a technique or a gene amplification technique using a DNA that hybridizes to the gene of the present invention as a primer.
ハイブリダィゼーシヨン技術を利用した方法としては、 例えば、 ノーザンハイ ブリダイゼーション法、 ドットブロット法、 DNAマイクロアレイを用いた方法な どを使用して行うことができる。一方、遺伝子増幅技術を利用した方法としては、 RT - PCR法を用いることができる。 RT- PCR法においては、遺伝子の増幅過程におい て実施例 8に示すような PCR増幅モニター法を用いれば、 「795」 遺伝子の発現を より正確に定量することができる。 リンパ球や T細胞の分離、 T細胞からの RNA の抽出、あるいは cDNAの合成などの操作は、実施例に示すような公知の手法にし たがつて実施することができる。  As a method using the hybridization technology, for example, a Northern hybridization method, a dot blot method, a method using a DNA microarray, or the like can be used. On the other hand, as a method utilizing the gene amplification technique, an RT-PCR method can be used. In the RT-PCR method, the expression of the “795” gene can be more accurately quantified by using a PCR amplification monitoring method as shown in Example 8 in the gene amplification process. Operations such as separation of lymphocytes and T cells, extraction of RNA from T cells, and synthesis of cDNA can be performed according to known techniques as described in Examples.
これらスクリーニングに用いる被検化合物としては、 ステロイド誘導体等既存 の化学的方法により合成された化合物標品、 コンビナトリァルケミストリーによ り合成された化合物標品のほか、 動 ·植物組織の抽出物もしくは微生物培養物等 の複数の化合物を含む混合物、またそれらから精製された標品などが挙げられる。 本発明のアレルギー疾患治療薬候補化合物のスクリーニング方法により単離さ れる化合物は、 花粉抗原等のアレルゲンに対するアレルギー素因を改善する薬剤 の候補になる。  The test compounds used in these screenings include compound preparations synthesized by existing chemical methods such as steroid derivatives, compound preparations synthesized by combinatorial chemistry, and extracts of animal and plant tissues or Examples thereof include a mixture containing a plurality of compounds such as a microorganism culture, and a sample purified therefrom. The compound isolated by the method for screening a candidate compound for a therapeutic drug for an allergic disease of the present invention is a candidate for a drug which improves allergic predisposition to an allergen such as a pollen antigen.
本発明のスクリーニング方法により単離される化合物を、 医薬品として用いる 場合には、 公知の製剤学的製造法により製剤化して用いることが可能である。 例 えば、 薬理学上許容される担体または媒体 (生理食塩水、 植物油、 懸濁剤、 界面 活性剤、 安定剤など) とともに患者に投与される。 投与は、 化合物の性質に応じ て、 経皮的、 鼻腔内的、 経気管支的、 筋内的、 静脈内、 または経口的に行われる。 投与量は、 患者の年齢、 体重、 症状、 投与方法などにより変動するが、 当業者で あれば適宜適当な投与量を選択することが可能である。 図面の簡単な説明 When the compound isolated by the screening method of the present invention is used as a pharmaceutical, it can be used as a pharmaceutical preparation by a known pharmaceutical production method. For example, pharmacologically acceptable carriers or vehicles (saline, vegetable oils, suspensions, (Activators, stabilizers, etc.). Administration will be transdermal, intranasal, transbronchial, intramuscular, intravenous, or oral, depending on the nature of the compound. The dose varies depending on the patient's age, body weight, symptoms, administration method and the like, but those skilled in the art can appropriately select an appropriate dose. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 血液を採取した被験者 10人、 計 18の血液試料におけるスギ花粉特異 的 IgE抗体の抗体価を表す図である。 被験者 A〜; ί (試料番号 1〜18) の各血液試 料のスギ花粉特異的 IgE抗体の値を AU/mlで表した。 花粉飛散前を左 (白いカラ ム)、 飛散後を右 (黒いカラム) に対で表した。 被験者 Aおよび Bは、 花粉飛散後 の血液のみ採取した。  FIG. 1 is a diagram showing the antibody titers of cedar pollen-specific IgE antibodies in a total of 18 blood samples from 10 subjects who collected blood. The values of cedar pollen-specific IgE antibodies in each blood sample of subjects A to ί (sample numbers 1 to 18) were expressed in AU / ml. The pair before pollen scattering is shown on the left (white column), and the one after scattering is shown on the right (black column). Subjects A and B collected only blood after pollen scattering.
図 2は、 スギ花粉特異的 IgE値によって群分けした場合の高 IgE群および正常 IgE群における 「795」 の発現変化を示す図である。 エラーバーは標準偏差を表す。 図 3は、 花粉症患者における 「7 9 5」 の発現量の測定結果を示す図である。 縦軸は 「7 9 5」 のコピー数 (copy/ng RNA) を、 横軸は試料番号を示す。  FIG. 2 is a graph showing changes in the expression of “795” in a high IgE group and a normal IgE group when classified according to cedar pollen-specific IgE values. Error bars represent standard deviation. FIG. 3 shows the results of measuring the expression level of “795” in hay fever patients. The vertical axis indicates the copy number (copy / ng RNA) of “795”, and the horizontal axis indicates the sample number.
図 4は、 花粉症患者における vimentinの発現量の測定結果を示す図である。 縦 軸は 「7 9 5」 のコピー数 (copy/ng RNA) を、 横軸は試料番号を示す。  FIG. 4 shows the results of measuring the expression level of vimentin in hay fever patients. The vertical axis shows the copy number (copy / ng RNA) of “795”, and the horizontal axis shows the sample number.
図 5は、 スギ花粉特異的 IgE値によって群分けした場合の高 IgE群および正常 IgE群における vimentinの発現変化を示す図である。 エラ一バーは標準偏差を表 す。 発明を実施するための最良の形態  FIG. 5 is a diagram showing changes in the expression of vimentin in the high IgE group and the normal IgE group when grouped according to cedar pollen-specific IgE values. Error bars represent standard deviation. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を実施例により具体的に説明するが、 本発明はこれら実施例に制 限されるものではない。  Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples.
[実施例 1 ] 10人の成人ポランティアからの血液採取  [Example 1] Blood collection from 10 adult volunteers
花粉飛散前後の T細胞を採取するため、成人ポランティア 10名 (A〜; 0から 10 mlの血液サンプルを、 花粉飛散前および花粉飛散後に採取した。 最初の血液サン プルは、 日本のスギ花粉飛散の季節の前(1997年 1月および 2月)に採取し、 2回 目は日本のスギ花粉飛散後(1997年 3、 4および 5月)に採取した。 ボランティア のうち 8人については、 2つの時期のサンプルを得た。 残る 2名のボランティア に関しては、 花粉飛散後のサンプルのみ入手できた。 これらの血液サンプルの一 部を用いて、 スギ花粉特異的 IgEの量を測定した。 特異的 IgEの測定はペーパー ディスクを固相とする RAST法(radio allergo sorbent test, Wide, L. et, al.: Lancet 2: 1105-1107, 1967) を改良した CAP RAST法 (Pharmacia社) により行 つた。 Pharmacia社製の標準の抗体価を含む血清を用いて、 それを基準にしてそ れぞれの検体の IgE抗体価 (単位は Pharmacia RAST Unit, PRU、 あるいは AU (a rbitrary unit) とも表示する) を決定した。 To collect T cells before and after pollen scattering, 10 adult volunteers (A ~; 0 to 10) ml blood samples were taken before and after pollen dispersal. The first blood sample was collected before the Japanese cedar pollen season (January and February 1997), and the second after the Japanese cedar pollen season (March, April and May 1997). Collected. Eight of the volunteers obtained samples from two periods. For the remaining two volunteers, only samples after pollen dispersal were available. An aliquot of these blood samples was used to determine the amount of cedar pollen-specific IgE. The specific IgE is measured by the CAP RAST method (Pharmacia), which is a modified version of the RAST method (radio allergo sorbent test, Wide, L. et, al .: Lancet 2: 1105-1107, 1967) using a paper disk as a solid phase. I went. Using a serum containing a standard antibody titer manufactured by Pharmacia, and using that as a reference, the IgE antibody titer of each sample (the unit is also indicated as Pharmacia RAST Unit, PRU, or AU (arbitrary unit)) It was determined.
測定された各被験者における花粉飛散前後でのスギ花粉特異的 IgE値を図 1に 示す。 図に示されるように、 10人の被験者の大半で、 花粉被曝後にスギ花粉特異 的 IgEの血清中の濃度が増加した。 アトピー素因を有するかどうかは、 スギ花粉 特異的 IgEの CAP RAST試験の値が 2より大きいかどうかで判断した。すなわち、 被験者 A〜Gおよび Iの 8人の被験者をアトピー素因群(以後「患者」 とも記す)、 被験者 H、 ; ίの 2人を健常者 (以後 「正常群」 とも記す) とした。 8人のアトピー 素因を有する被験者のうち 7人が、 花粉飛散後にアレルギー性鼻炎の症状を示し た。  Fig. 1 shows the measured cedar pollen-specific IgE values before and after pollen scattering in each subject. As shown, most of the 10 subjects had increased serum levels of cedar pollen-specific IgE after pollen exposure. The presence of atopic predisposition was determined by whether the value of the CAP RAST test for cedar pollen-specific IgE was greater than 2. That is, eight subjects A to G and I were regarded as an atopic predisposition group (hereinafter also referred to as “patient”), and two subjects H and; ί were regarded as healthy subjects (hereinafter also referred to as “normal group”). Of the eight subjects with an atopic predisposition, seven exhibited symptoms of allergic rhinitis after pollen dispersal.
[実施例 2] 血液試料からのリンパ球画分の調製  [Example 2] Preparation of lymphocyte fraction from blood sample
血液 10 mlから Τ細胞を調製する場合は、 以下のようにした。 まずノポ社製等 のへパリン 1 mlで注射筒壁を万逼なく処理し、 最終濃度 50 unit/mlのへパリン を含む 10 ml注射筒に採血した。 このとき一人の採血に 22G針を 2本準備した。 注射針をはずし、 50 mlの遠心チューブ (ポリプロピレン製) に移した。 1500 rp m、 室温で 5分間遠心し、 できるだけ表面近くから 1.1 ml を採取し、 15000 rpm で 5分間、 4でで遠心して上清 1 mlを血漿(plasma)として回収した。 血漿を回収 した残りに 3%のデキストラン(ナカライ社製)を含む 0.9% NaClを等量(9 ml) 加え、 静かに数回転倒させて混和した。 その後 30分間室温で静置した。 PRP(Pla telet rich plasma,血小板に富む血漿)を別の 15 ml遠心チューブに移し、 1200 rpm (トミー社製の遠心機で 150Xgに相当する) で 5分間、 室温で遠心した。 遠 心後、 血小板は上清にあった。 沈殿した細胞をギブコ社等から入手した Ca、 Mg 不含の HBSS 5 mlに懸濁した。 これを、 パスツールピペットを用いて Ficol Paqu e (フアルマシア社製)が 5 mlが入ったチューブ(ファルコンチューブ: 2006また は 2059;ポリプロピレン製) 1本に上層した。 1200 ι·ριηで 5分間遠心後、 1500 rpm (Tomy社製の遠心機で 400Xgに相当する) で 30分間室温で遠心した。 その 結果、 顆粒細胞(granulocyte)、 赤血球(erythrocyte)が沈殿し、 フイコール層を 挟んで中間層にリンパ球(lymphocyte)、 単球 (monocyte)、 血小板 (platelet)が含 まれた。 To prepare Τ cells from 10 ml of blood, proceed as follows. First, the wall of the syringe was treated with 1 ml of Heparin from Nopo, etc. without any restriction, and blood was collected in a 10 ml syringe containing a final concentration of 50 unit / ml heparin. At this time, two 22G needles were prepared for one blood sample. The injection needle was removed and transferred to a 50 ml centrifuge tube (made of polypropylene). After centrifugation at 1500 rpm for 5 minutes at room temperature, 1.1 ml was collected from the surface as close as possible, and centrifuged at 15000 rpm for 5 minutes and at 4 to collect 1 ml of the supernatant as plasma. Collect plasma An equal volume (9 ml) of 0.9% NaCl containing 3% dextran (manufactured by Nacalai) was added to the remaining residue, and the mixture was gently inverted several times to mix. Then, it was left still at room temperature for 30 minutes. PRP (Pla teletrich plasma, platelet-rich plasma) was transferred to another 15 ml centrifuge tube, and centrifuged at 1200 rpm (equivalent to 150 Xg in a Tommy centrifuge) for 5 minutes at room temperature. After centrifugation, platelets were in the supernatant. The precipitated cells were suspended in 5 ml of Ca- and Mg-free HBSS obtained from Gibco or the like. This was overlaid on one tube (Falcon tube: 2006 or 2059; made of polypropylene) containing 5 ml of Ficol Paque (Pharmacia) using a Pasteur pipette. After centrifugation at 1200 ι · ριη for 5 minutes, the mixture was centrifuged at 1500 rpm (equivalent to 400 Xg in a Tomy centrifuge) at room temperature for 30 minutes. As a result, granulocytes and erythrocytes precipitated, and lymphocytes (lymphocytes), monocytes (monocytes), and platelets (platelets) were contained in the middle layer with the ficoll layer interposed therebetween.
パスツールピペットで中間層を回収し、 2〜3倍の容量の BSA/PBS(0.5% BSA, 2 mM EDTA in PBS, pH7.2;使用直前に脱気した)を添加し、 1200 rpm, 4でで 5分 間遠心した。 沈殿を回収し、 BSA/PBSで 2回洗浄した。 2回目の洗浄後、 細胞を 5 ml に懸濁し、 その一部をトリパンブルーで 2倍に希釈して細胞数を測定した。 全細胞数は約 IX 107であった。 これをリンパ球画分とした。 Collect the middle layer with a Pasteur pipette, add 2 to 3 volumes of BSA / PBS (0.5% BSA, 2 mM EDTA in PBS, pH 7.2; degas immediately before use), and add 1200 rpm, 4 rpm. And centrifuged at for 5 minutes. The precipitate was collected and washed twice with BSA / PBS. After the second washing, the cells were suspended in 5 ml, and a part thereof was diluted 2-fold with trypan blue, and the number of cells was counted. Total cell number was about IX 10 7. This was used as the lymphocyte fraction.
[実施例 3] リンパ球画分からの T細胞の分離  [Example 3] Separation of T cells from lymphocyte fraction
実施例 2で得たリンパ球画分を 1200 rpmで 4 、 5分間遠心し、 100 ^1あたり 108になるように BSA/PBSに懸濁した。容量は約 20 lになった。 これをエツペン ドルフチューブ (1.5 ml) に移し、 CD3マイクロビーズ液を添加した。 その後、 3 0分間 4〜10でに放置した (このとき氷上には置かなかった)。 この試料をマグネ チックセルソ一夕一(MACS) (Miltenyi Biotech Inc.製)で以下のように処理した。 The lymphocyte fraction obtained in Example 2 was centrifuged at 1200 rpm for 4 and 5 minutes, and suspended in BSA / PBS at 10 8 per 100 ^ 1. The volume was about 20 l. This was transferred to an Eppendorf tube (1.5 ml), and the CD3 microbead solution was added. After that, it was left at 4-10 for 30 minutes (it was not placed on ice at this time). This sample was treated by Magnetic Celso Ichiichi (MACS) (Miltenyi Biotech Inc.) as follows.
MS+/RS+カラムを Mini MACSまたは Vario MACSセパレ一ションュニットに装着 した (針は付けなかった)。 500 /xlの BSA/PBSをカラムに静かにアプライし、 バ ッファーは流し出した。 次に CD3マイクロビーズ標識した細胞をカラムにァプラ ィした。 カラムを で 3回洗浄した (Β細胞画分)。 カラムをセパレ一ショ ンユニットからはずし、 溶出液を集めるチューブ上に置いた。 1 mlの BSA/PBSを カラムにアプライし、 カラム添付のプランジャーを用いポジティブ細胞を急速に 流し出した。 これを T細胞画分とした。 The MS + / RS + column was attached to a Mini MACS or Vario MACS separation unit (without needles). 500 / xl BSA / PBS was gently applied to the column and the buffer was poured. Next, apply the cells labeled with CD3 microbeads to the column. I did it. The column was washed three times with (cell fraction). The column was removed from the separation unit and placed on a tube for collecting the eluate. 1 ml of BSA / PBS was applied to the column, and positive cells were rapidly flushed out using a plunger attached to the column. This was used as the T cell fraction.
得られた T細胞画分について、 1200 rpm, 5分間 4でで遠心した。 沈殿を BSA/P BSで 2回洗浄した。 2回目の洗浄後、細胞を 1 mlに懸濁し、 その一部をトリパン ブルーで 2倍に希釈して細胞数を測定した。 全細胞数は約 4 X 106であった。 The obtained T cell fraction was centrifuged at 1200 rpm for 5 minutes at 4. The precipitate was washed twice with BSA / PBS. After the second washing, the cells were suspended in 1 ml, and a part thereof was diluted 2-fold with trypan blue to count the number of cells. Total cell number was approximately 4 × 10 6 .
[実施例 4 ] T細胞からの全 RNAの調製  [Example 4] Preparation of total RNA from T cells
T細胞からの全 RNAの調製は RNeasy Mini (Qi agen製) を用い、 原則として添 付のマニュアルに従い行った。 操作はすべて手袋を着用して、 室温で行った。 ま たゥォッシュバッファー RPEに 4倍量のエタノールを加えた。 リシスバッファ一 R LTには 10 1/ml の 2-メルカプトエタノールを加えた。細胞浮遊液を 1000〜1200 ι·ρπιで 5分間遠心し、 上清をァスピレーシヨンで除いた。 沈殿に のリシ スバッファー RLT (2-メルカプトエタノールを含む)溶液を加えた。 この段階で、 R LT バッファ一中の細胞のライセ一トは、 - 70でで保存可能であった。 細胞のライ セートを冷凍保存していた場合は、 37でで 10〜15分間ィンキュベ一トして、不溶 物が見えるようなら最大速度で 3分間遠心し、 上清のみを回収した。 このライセ —トを 20Gの力テラン針を付けた注射筒でホモゲナイズ後、 キアシュレツダー(Q IAshredder)で処理した。 (即ち、通常 350 1の細胞のライセートをキアシュレツ ダーュニッ卜にピぺットマンを用いてアプライした。これを 1500 rpmで 2分間遠 心し、 流出液を回収した。) 350 i lの 70%エタノールを加え、 ピペッティングし てよく混ぜた。 RNeasyスピンカラムを添付の 2 mlチューブに装着し、 細胞のラ イセ一ト混合物をアプライし、 8000 Xg(11500 rpm)で 1分間遠心し、 流出液は捨 てた。 ゥォッシュバッファー RW1 700 をカラムにアプライし、 5分間フタをし た形で立てた。 11500 rpmで 15秒間遠心し、 流出液は捨てた。 カラムを新しい 2 ml チューブに装着し、 ゥォッシュバッファー RPE (エタノールを含む) 500 1 をカラムにアプライした後、 11500 卬 mで 15秒間遠心し、 流出液は捨てた。 ゥォ ッシュバッファー RPE 500 1をカラムにアプライし、最大速度で 2分間遠心した。 カラムを新しい 1. 5 mlチューブに装着し、 DEPC処理した水 30 1をアプライし、 フタをして 10分間立てた。 11500 ι·ριηで 10分間遠心し、 全 RNAを得た。 濃度を 測定し、 量が少ないようなら、 再度カラムを新しいし 5 mlチューブに装着し、 D EPC処理した水 30 ^ 1 をアプライし、 フタをして 10分間立て、 11500 i"pmで 10 分間遠心した。 Preparation of total RNA from T cells was performed using RNeasy Mini (manufactured by Qiagen) according to the attached manual in principle. All operations were performed at room temperature, wearing gloves. Four volumes of ethanol were added to Posh Buffer RPE. Lysis buffer-RLT was supplemented with 101 / ml 2-mercaptoethanol. The cell suspension was centrifuged at 1000-1200 ι · ρπι for 5 minutes, and the supernatant was removed by aspiration. A lysis buffer RLT (containing 2-mercaptoethanol) solution was added to the precipitate. At this stage, lysates of cells in RLT buffer could be stored at -70. If the cell lysate had been stored frozen, incubate at 37 for 10-15 minutes, and if insolubles were visible, centrifuge for 3 minutes at maximum speed to collect only the supernatant. The lysate was homogenized with a syringe equipped with a 20 G force teran needle and then treated with Q IAshredder. (That is, usually, 350 1 cell lysate was applied to the Kyaschlets Danitto using a Pitman. This was centrifuged at 1500 rpm for 2 minutes, and the effluent was collected.) 350 il of 70% ethanol was added. Mix well by pipetting. An RNeasy spin column was attached to the attached 2 ml tube, a lysate mixture of cells was applied, centrifuged at 8000 Xg (11500 rpm) for 1 minute, and the effluent was discarded. Posh buffer RW1700 was applied to the column, and the tube was capped for 5 minutes. The mixture was centrifuged at 11,500 rpm for 15 seconds, and the effluent was discarded. Attach the column to a new 2 ml tube and wash with Pash Buffer RPE (containing ethanol) 500 1 Was applied to the column, and centrifuged at 11500 15m for 15 seconds, and the effluent was discarded. The wash buffer RPE5001 was applied to the column and centrifuged at maximum speed for 2 minutes. The column was mounted in a new 1.5 ml tube, DEPC-treated water 301 was applied, and the lid was capped and allowed to stand for 10 minutes. Centrifugation was performed at 11500 ι · ριη for 10 minutes to obtain total RNA. Measure the concentration, and if the volume is low, replace the column with a new one and place it in a 5 ml tube. Centrifuge.
[実施例 5 ] 全 RNAの DNase処理  [Example 5] DNase treatment of total RNA
T細胞から調製した全 RNAから DNAを除くため、 DNase処理を行った。反応は 2 ュニッ卜の DNase (二ツボンジーン社) および 50ュニッ卜の RNaseインヒビター (フアルマシア社) を含む I OO Iの l XDNaseバッファ一 (二ツボンジーン社) 中で行った。これを 37で15分間ィンキュベ一卜した後、等量の PCI (フエノール: クロ口ホルム:イソアミルアルコール = 25 : 24 : 1)を加え、 ポルテックスした。 12 000 rpmで室温、 10分間遠心し、 上層 (水層) を新しい 1. 5 mlチューブに移した。  DNase treatment was performed to remove DNA from total RNA prepared from T cells. The reaction was performed in an IOOI lXDNase buffer (Nitsubon Gene) containing 2 units of DNase (Nitsubon Gene) and 50 units of RNase inhibitor (Pharmacia). After incubating the mixture at 37 for 15 minutes, an equal amount of PCI (phenol: black form: isoamyl alcohol = 25: 24: 1) was added, and the mixture was portexed. The mixture was centrifuged at 12,000 rpm at room temperature for 10 minutes, and the upper layer (aqueous layer) was transferred to a new 1.5 ml tube.
1/10量の 3M酢酸ナトリウム(pH 5. 2)を加え、 2. 5倍量の 100%エタノールおよび エタ沈メイト を加えて、 転倒混和させた。 - 20でで 15分間静置させた後、 1 2000 rpmで 4 :、 15分間遠心し、 上清を除去し、 70%エタノールを加えた。 沈殿 がはがれる程度にタッピングした後、 上清をきれいに除去した。 3分間乾燥させ、 10〜20 1の DDW(DNaseおよび RNase不含) に溶解させた。 濃度を測定し、 使用 まで- 80でに保存した。 One-tenth volume of 3M sodium acetate (pH 5.2) was added, and 2.5 volumes of 100% ethanol and eta-precipitated mate were added and mixed by inversion. After leaving at −20 for 15 minutes, the mixture was centrifuged at 12,000 rpm for 4:15 minutes, the supernatant was removed, and 70% ethanol was added. After tapping to the extent that the precipitate was detached, the supernatant was removed cleanly. Dried for 3 minutes and dissolved in 10-201 DDW (no DNase and RNase). The concentration was measured and stored at -80 until use.
[実施例 6 ] T細胞から調製した全 RNAを用いたディファレンシャルディスプ レイ (DD) 解析  [Example 6] Differential display (DD) analysis using total RNA prepared from T cells
T細胞から調製した全 RNAを用いた蛍光ディファレンシャルディスプレイ (F1 uorescent Di f ferent i al Di splay, 「DD」 と略記する) 解析は文献 (T. I toら, 19 94, FEBS Let t. 351 : 231-236)に記載の方法に準じて行った。 T細胞から調製し た全 RNAを逆転写し、 cDNAを得た。 第一次 DD- PCR反応用には 3種のアンカ一プ ライマーの各々について全 RNAの各 0.2 gを用いて cDNAを調製した。第二次 DD -PCR反応用には、 3種のアンカ一プライマ一の各々について RNA 0.4 gを用い て cDNAを調製した。 いずれの cDNAも、 0.4ng/^l RNA相当の最終濃度に希釈し、 実験に用いた。 1反応あたり 1 ng RNA相当の cDNAを用いて DD- PCR反応を行った。 反応液の組成は表 1の通りである。 Fluorescent differential display (F1 uorescent Diferential Display, abbreviated as “DD”) using total RNA prepared from T cells Analysis of the literature (T. I to et al., 1994, FEBS Let t. 351: 231-236). Total RNA prepared from T cells was reverse transcribed to obtain cDNA. Three anchors for the primary DD-PCR reaction CDNA was prepared using 0.2 g each of total RNA for each of the primers. For the secondary DD-PCR reaction, cDNA was prepared using 0.4 g of RNA for each of the three anchor primers. All cDNAs were diluted to a final concentration of 0.4 ng / ^ l RNA and used in the experiments. A DD-PCR reaction was performed using cDNA equivalent to 1 ng RNA per reaction. Table 1 shows the composition of the reaction solution.
表 1 cDNA(0.4ng/ l RNA相当) 2.5 1  Table 1 cDNA (equivalent to 0.4 ng / l RNA) 2.5 1
任意プライマ一 (2 M) 2.5M1  Optional primer (2 M) 2.5M1
lO AmpliTaq PCRバッファー Ι.ΟβΙ  lO AmpliTaq PCR buffer Ι.ΟβΙ
2.5mM dNTP 0.8U1  2.5mM dNTP 0.8U1
50 H アンカ一プライマー 0.1 1  50 H anchor primer 0.1 1
(GT15A, GT15C, GT15G)  (GT15A, GT15C, GT15G)
Gene Taq (5U/U1) 0.05 1  Gene Taq (5U / U1) 0.05 1
AmpliTaq (5U/ il) 0.05M1  AmpliTaq (5U / il) 0.05M1
dH,0 3.0M1 総量 10.0 1  dH, 0 3.0M1 Total amount 10.0 1
PCRの反応条件は、 「95で3分、 40で 5分、 72で5分」 を 1サイクル、 続いて、 「9 4Π5秒、 40で2分、 72で1分」を 30サイクルの後、 72で 5分、その後連続的に 4で にした。 The PCR reaction conditions were as follows: 3 cycles at 95, 5 minutes at 40, 5 minutes at 72, 1 cycle, followed by 30 cycles of 94Π5 seconds, 2 minutes at 40, 1 minute at 72. 5 min at 72, then continuously at 4
使用したプライマ一対はアンカープライマ一である GT15A (配列番号: 2)、 GT 15C (配列番号: 3)、 および GT15G (配列番号: 4) に対して任意プライマーを それぞれ AG 1〜110、 AG 111〜199、 および AG 200〜287を組み合わせ、 計 287組 の反応をおこなった。 なお、 任意プライマーとしては GC含量 50%の 10ヌクレオ チドからなるオリゴマーを設計し、 合成して用いた。 The primer pair used is an anchor primer: GT15A (SEQ ID NO: 2), GT15C (SEQ ID NO: 3), and GT15G (SEQ ID NO: 4). A total of 287 reactions were performed by combining 199 and AG 200-287. As an optional primer, use 10 nucleosides with a GC content of 50%. Oligomers composed of tides were designed, synthesized and used.
ゲル電気泳動は、 6%変性ポリアクリルアミドゲルを作製し、 2. 5 /^ 1 の試料を アプライし、 40Wで 210分間泳動した。 その後、 日立製蛍光イメージアナライザ -FMBI0 I Iを用いてゲル板をスキャンし、 蛍光検出によって泳動画像を得た。  For gel electrophoresis, a 6% denaturing polyacrylamide gel was prepared, 2.5 / ^ 1 samples were applied, and electrophoresed at 40 W for 210 minutes. Thereafter, the gel plate was scanned using Hitachi Fluorescence Image Analyzer -FMBI0 I I, and electrophoresis images were obtained by fluorescence detection.
[実施例 7 ] D D解析で切り出したバンドの増幅と配列決定  [Example 7] Amplification and sequencing of band cut out by DD analysis
多数の任意プライマ一を用いて 2回の D D解析を行った。 花粉飛散前後または 患者と健常者のグループの間で差のあるバンドを選択し、 2回の実験で再現性の あるバンドをゲルから切り出した。  Two DD analyzes were performed using a number of arbitrary primers. Bands that differed before and after pollen dispersal or between the patient and healthy groups were selected and reproducible bands were excised from the gel in two experiments.
切り出したバンドの 1つ (「795」 と称する) についてさらに解析を進めた。 「7 95」 のバンドはアンカ一プライマーとして GT15A (配列番号: 2 ) を、 任意ブラ イマ一として AG109 (TGTCACGGTT 配列番号: 5 ) を用いた D D解析によって見 出された。  Further analysis was performed on one of the excised bands (referred to as “795”). The band “795” was found by DD analysis using GT15A (SEQ ID NO: 2) as an anchor primer and AG109 (TGTCACGGTT SEQ ID NO: 5) as an arbitrary primer.
「795」 の塩基配列を決定するために、 「795」 のバンドを含むゲルを切り出し、 TE溶液に保存し 6(TC、 10分加温して DNAをゲルから溶出させた。 この TE溶液を 铸型として DD-PCRと同条件で PCRを行い、約 180bpの DNA断片を増幅した。アン カープライマーとして、 GT15Aを、 任意プライマーとして AG109を用いた。 増幅 した DNA断片をプラスミドベクター pCR2. 1 (Invi trogen社)にてクローニングし、 約 180bpの DNA断片を保持するプラスミド p795- 50を得た。 795と相同性のある E STの配列 (N62037) を dbESTから抽出後、 ABI AutoAssembl erを用いて 2つの配 列をアセンブルし 0. 7 kbの配列を得た。 この配列中にプライマ一 (1006-002 : CTGGGCCAGATATTAGATMCGGA 配列番号: 6 ) を作製し、 RACEによる cDNAクロ一 ニングを試みた。 RACEには Marathon cDNA Ampl i f icat i on Ki t (CL0NTECH社)を適 用し、 铸型として Human Leukocyte Marathon-Ready cDNA (CL0NTECH社) を使用 した。 この結果、新たに 685bpの上流配列が得られ、 計 1384 bpの配列となった。 決定された塩基配列を配列番号: 1に示す。  In order to determine the nucleotide sequence of “795”, the gel containing the “795” band was cut out, stored in a TE solution, and heated for 6 minutes (TC, 10 minutes) to elute the DNA from the gel. PCR was performed under the same conditions as DD-PCR for type I, and a DNA fragment of about 180 bp was amplified using GT15A as an anchor primer and AG109 as an optional primer. Invitrogen) was used to obtain a plasmid p795-50 carrying a DNA fragment of about 180 bp. An EST sequence (N62037) homologous to 795 was extracted from dbEST, and then extracted using ABI AutoAssembler. The two sequences were assembled to obtain a 0.7 kb sequence, from which a primer (1006-002: CTGGGCCAGATATTAGATMCGGA SEQ ID NO: 6) was prepared, and cDNA cloning by RACE was attempted. Uses Marathon cDNA Amplif icat i on Kit (CL0NTECH) Human Leukocyte Marathon-Ready cDNA (CL0NTECH) was used as the type I. As a result, a new 685 bp upstream sequence was obtained, resulting in a total of 1384 bp. : Shown in 1.
[実施例 8 ] ABI-7700による定量 ABI- PRISM7700を用いた TaqMan法により、 「795」 の発現量の定量を行った。 こ の方法は PCR増幅された DNA鎖を蛍光色素を用いてリアルタイムに定量検出する システムである。 [Example 8] Quantification by ABI-7700 The expression amount of “795” was quantified by the TaqMan method using ABI-PRISM7700. This method uses a fluorescent dye to quantitatively detect the PCR-amplified DNA strand in real time.
定量のために新たに 1998年春にスギ花粉飛散前 ·後の血液試料を 22名のボラ ンティアから採取し、 T細胞を調製して全 RNAを抽出した。 計 44種の全 RNA試料 を用いて目的の遺伝子の発現量を定量した。  For the purpose of quantification, blood samples before and after cedar pollen scattering were collected from 22 volunteers in the spring of 1998, T cells were prepared, and total RNA was extracted. The expression level of the target gene was quantified using a total of 44 RNA samples.
実施例 1と同様にしてスギ花粉、 ヒノキ花粉、 ャケヒヨウダニ、 およびコナヒ ヨウダニの特異的 IgE値、 並びに総 IgE値を測定した (表 2 )。 In the same manner as in Example 1, specific IgE values and total IgE values of cedar pollen, cypress pollen, Dermatophagoides farinae, and Dermatophagoides farinae were measured (Table 2).
表 2 特異的 IgE (UA/ml) 総 IgE 被 者 血液採取時期 (UA mt)Table 2 Specific IgE (UA / ml) Total IgE Subjects Blood collection timing (UA mt)
A 飛 tt前 300 飛 後 460A Fly TT before 300 after flight 460
B 飛散前 770 飛散後 J. 840B Before scattering 770 After scattering J. 840
C 飛散 15.2 , 450 飛 tt後 330C scattering 15.2, 450 after tt 330
D 飛散前 J. 200 飛敵後 0.81 4 7 120D Before flying J. 200 After flying 0.81 4 7 120
E 飛散前 0. 8 <0.34 30 飛 K後 34 38E Before scattering 0.8 <0.34 30 After K 34 38
F 飛散前 0,39 <0.34 <0.34 26 飛 It後 27F Before flying 0,39 <0.34 <0.34 26 After flying 27
G 飛畋前 "t <0.34 26 飛散後 u.ot . 30G before flying "t <0.34 26 after flying u.ot. 30
H 飛 前 QQ 3fi 220 飛 tt後 7 -a q 1 50H before flight QQ 3fi 220 after tt 7 -a q 1 50
1 飛 tt前 ci 130 飛 tt 34 , 39 q 1001 flight tt before ci 130 flight tt 34, 39 q 100
J 飛散前 •a cc 0 gg 96 後 77 78J Before scattering • a cc 0 gg 96 After 77 78
K 飛 tt前 , 96 飛 it後 no し 飛 tt前 13 飛 K後 18K before flight, after 96 flight it no no before flight tt 13 after flight 18
M 飛》前 J*t J*t 0 36 飛 at後 34 43M Fly Before J * t J * t 0 36 Fly at After 34 43
N 飛《t«$ 0 34 22 N Fei << t «$ 0 34 22
7i M後 73 After 7i M 73
0 飛 tt D 34 ?Q, 180 飛散後 <G 1600 flying tt D 34? Q, 180 after flying <G 160
P 飛散前 Q ^ 280 飛 tt後 0.68 <0.34 4.49 3,02 240P Before scattering Q ^ 280 After tt 0.68 <0.34 4.49 3,02 240
Q 飛 Κλΰ 0.34 <0.34 <0.34 <0.34 < 5.0 飛 tt後 0.34 <0.34 0.34 <0.34 <5.0Q fly Κλΰ 0.34 <0.34 <0.34 <0.34 <5.0 Fly tt 0.34 <0.34 0.34 <0.34 <5.0
R 飛 M前 <0.34 0.34 <0.34 <0.34 53 飛散後 <0.34 <0.34 <0.34 <0.34 62R Before M <0.34 0.34 <0.34 <0.34 53 After scattering <0.34 <0.34 <0.34 <0.34 62
S 飛散 0.34 <0.34 <0.34 <0.34 420 飛 後 <0.34 <0.34 <0.34 <0.34 370S scattering 0.34 <0.34 <0.34 <0.34 420 After flying <0.34 <0.34 <0.34 <0.34 370
, T 飛 tt前 0.34 <0.34 <0.34 <0.34 82 飛 ΙΙΪ後 <0.34 <0.34 <0.34 <0.34 62 u 飛 ΜΙΙΰ 0.34 <0.34 0.34 <0.34 18 飛 tt後 <0.34 <0.34 <0.34 0.34 16, T before tt 0.34 <0.34 <0.34 <0.34 82 after <0.34 <0.34 <0.34 <0.34 62 u 0.34 <0.34 0.34 <0.34 18 after tt <0.34 <0.34 <0.34 0.34 16
V 飛 ΜΚΐ 0.34 <0.34 0.79 0.81 180 飛 It後 <0.34 0.34 0.78 0.9 160 実施例 7において決定した DDバンドの塩基配列を基にしてプライマー P795F(G ACACAAGTATTTGCTAACATCCGTTZ配列番号: 7)、 P795R (TGTGAGGTATGCTTGTAGCTTTA AMZ配列番号: 8)、 および TaqManプローブ T795 (TAATATCTGGCCCAGACTTGAGAA GTAGGTAATGTAAAAATZ配列番号: 9) を設計、 合成し定量反応に用いた。 TaqMan プローブ T795は 5' 端を FAM(6- carboxyfluorescein)で、 3' 端を TA RA(6- car boxy- tetramethy卜 rhodamine)で蛍光標識して用いた。 铸型には 44種の全 RNAか らポリ T(12〜18マー)をプライマ一として逆転写した cDNAを用いた。コピー数を 算出する標準曲線のために実施例 7で得たプラスミド p795- 50の段階希釈液を铸 型として反応を行った。 PCR増幅のモニタリングのための反応液の組成は表 3に 示した。 また、 試料中の cDNA濃度の差を補正するため、 β -ァクチン actin) 遺伝子について同様の定量解析を行い、それら遺伝子のコピー数を基に補正して、 目的遺伝子 (795) のコピー数を算出した。 V Fly ΜΚΐ 0.34 <0.34 0.79 0.81 180 Fly After It <0.34 0.34 0.78 0.9 160 Based on the nucleotide sequence of the DD band determined in Example 7, primers P795F (G ACACAAGTATTTGCTAACATCCGTTZ SEQ ID NO: 7), P795R (TGTGAGGTATGCTTGTAGCTTTA AMZ SEQ ID NO: 8), and TaqMan probe T795 (TAATATCTGGCCCAGACTTGAGAA GTAGGTAATGTAAAAATZ SEQ ID NO: 9) Were synthesized and used for the quantitative reaction. The TaqMan probe T795 was used with its 5 ′ end labeled with FAM (6-carboxyfluorescein) and its 3 ′ end with TARA (6-carboxy-tetramethytri rhodamine). For type III, cDNA obtained by reverse transcription of poly T (12 to 18 mer) as a primer from 44 kinds of total RNA was used. The reaction was carried out using a serial dilution of plasmid p795-50 obtained in Example 7 for the standard curve for calculating the copy number. Table 3 shows the composition of the reaction mixture for monitoring PCR amplification. In addition, in order to correct the difference in cDNA concentration in the sample, the same quantitative analysis was performed for the β-actin) gene, and the copy number of the target gene (795) was calculated based on the correction based on the copy number of those genes. did.
表 3  Table 3
ABI-PRISM 7700の反応組成 ( 1ゥエルあたりの反応量)  Reaction composition of ABI-PRISM 7700 (reaction volume per 1 ゥ)
滅菌蒸留水 25.66 ( U ) Sterile distilled water 25.66 (U)
10x TaqMan ノ ッファー A 5  10x TaqMan Coffer A 5
25mM MgCl2 7 25mM MgCl 2 7
dATP( 10mM) 1.2  dATP (10mM) 1.2
dCTP( lOmM) 1.2  dCTP (10mM) 1.2
dGTP(lOmM) 1.2  dGTP (lOmM) 1.2
dUTP(lOmM) 1.2  dUTP (lOmM) 1.2
Forward Primer ( 100 M) 0.15  Forward Primer (100 M) 0.15
Reverse Primer ( 100 H) 0.15  Reverse Primer (100 H) 0.15
795 TaqMan プロ一ブ(6.7 M) 1.49  795 TaqMan probe (6.7 M) 1.49
AmpliTaq Gold (5U/ L) 0.25 AmpErase UNG (1U/ L) 0.5 AmpliTaq Gold (5U / L) 0.25 AmpErase UNG (1U / L) 0.5
テンプレート溶液 5  Template solution 5
総量 50  Total 50
/3-ァクチンのコピー数で補正した各試料中の 「795」 の存在数 (コピー数) を 表 4に示す。補正は全試料における -ァクチンの平均コピーを求め、それを 1と したときの各試料中の 0 -ァクチンの相対値で各試料中の 「795」 のコピー数を除 した。 Table 4 shows the number (copy number) of “795” in each sample corrected for the copy number of / 3-actin. For the correction, the average copy of -actin in all samples was obtained, and the copy number of "795" in each sample was divided by the relative value of 0-actin in each sample when it was set to 1.
表 4 Table 4
ABI7700による定量恤 (copy/ngRNA) beta— actin補正 data ABI7700 quantitative shirt (copy / ngRNA) beta—actin correction data
Figure imgf000028_0001
この値を用いて二元配置分散分析を行った。 群分けは、 スギ花粉飛散前と後、 または血清中の各特異的 IgEについて 2回の測定のうち 1回でも 3. 5 AU/ml以上 を示した群 (高 IgEグループ) とそれ以外 (正常 IgEグループ) の 2つの要因に わけて検定した。 各グループの人数は、 たとえばスギ花粉の場合、 高 IgEグルー プ 1 0人:正常 IgEグループ 1 2人であった。 また、 総 IgEについて 200 AU/ml を示した群とそれ以外の群に分けて検定した。二元配置分散分析の検定は StatVi ewソフトウェア (Abacuus Concepts, Inc. ) を用いて行った。
Figure imgf000028_0001
Using this value, two-way analysis of variance was performed. The grouping was performed before and after scattering of Japanese cedar pollen, or at least 3.5 AU / ml for each specific serum IgE in serum (high IgE group) and other (normal). (IgE group). For example, in the case of cedar pollen, the number of individuals in each group was 10 in the high IgE group and 12 in the normal IgE group. The test was performed separately for the group showing 200 AU / ml for total IgE and the other groups. Tests for two-way analysis of variance were performed using StatView software (Abacuus Concepts, Inc.).
その結果、 スギ花粉に対する IgE値で群分けすると、 「795」 の発現は高 IgEグ ループにおいて正常 IgEグループよりも有意に低いことが示された(表 5、図 2 )。 飛散前後のデータを合わせた場合の高 IgEグループおよび正常 IgEグループにお ける 795の発現量はそれぞれ 948· 9± 1 196. 7および 2743. 5 ± 2769. 9コピー/ ng RNA (平均士標準偏差)であった。 スギ花粉以外に対する IgE値で群分けしてもこ のような差は認められなかつた。  The results showed that expression of “795” was significantly lower in high IgE groups than in normal IgE groups when grouped by IgE value for cedar pollen (Table 5, FIG. 2). The combined expression levels of 795 in the high IgE group and the normal IgE group when the data before and after the scattering were combined were 9948 ± 1 196.7 and 274.3 5 ± 2769.9 copies / ng RNA (mean standard deviation, respectively). )Met. No such difference was observed even when grouping by IgE value for non-cedar pollen.
表 5  Table 5
795  795
Figure imgf000029_0001
Figure imgf000029_0001
[実施例 9 ] 5' RACE法による解析 1  [Example 9] Analysis by 5 'RACE method 1
Marahon-Ready cDNA (CL0NTECH社) Bone Marrow を铸型として、 5'RACE解析を 行った。 第一次 5'RACE- PCR反応用には添付の API Pr imer (配列番号 1 0 : CCAT CCTAATACGACTCACTATAGGGC) t 「795」 内に特異的な 795-R1 Pr imer (配列番号 1 1 : TGCCAGAATGTCTGTATCTACAT)を用いて PCR反応を行った。 第二次 (nes ted) 5' RACE-PCR反応用には、 添付の AP2 Pr imer (配列番号 1 2 : ACTCACTATAGGGCTCGA GCGGC)と 「795」 内に特異的な 795- 5R- 8 Pr imer (配列番号 1 3 : GAGAGTCTACAAAC CTGTCTGA)を用いて PCR反応を行った。 PCRの反応条件は、 第一次が、 「9 4で 9 分」 を 1サイクル、 続いて、 「9 4で3 0秒、 5 5で 3 0秒、 7 2で 3分」 を 43 サイクルの後 「7 2で 5分」 を 1サイクル、 その後連続的に 4でにした。 第二次 は、 「94で3分」 を 1サイクル、 続いて、 「94で3 0秒、 6 0で3 0秒、 7 2で 2 分」 を 1 5サイクルの後 「7 2で 5分」 を 1サイクル、 その後連続的に 4でにし た。 Taq酵素として、 第一次反応は Ampl iTaq Go ld (PERKIN ELMER社)、 第二次 反応は TaKaRa Ex Taq (TaKaRa社)を使用し、添付の反応試薬から添付のマ二ユア ルに従って、 反応液を調製した。 Marahon-Ready cDNA (CL0NTECH) Bone Marrow was used as type III for 5'RACE analysis. For the primary 5 'RACE-PCR reaction, use the attached API Primer (SEQ ID NO: 10: CCAT CCTAATACGACTCACTATAGGGC) t 795-R1 Primer (SEQ ID NO: 11: TGCCAGAATGTCTGTATCTACAT) specific to "795" PCR reaction was performed. For the second (nested) 5 'RACE-PCR reaction, the attached AP2 Primer (SEQ ID NO: 12: ACTCACTATAGGGCTCGA) A PCR reaction was performed using (GCGGC) and 795- 5R-8 Primer (SEQ ID NO: 13: GAGAGTCTACAAAC CTGTCTGA) specific within “795”. The PCR reaction conditions were as follows: primary: one cycle of “94 at 9 minutes” followed by 43 cycles of “94 at 30 seconds, 55 at 30 seconds, 72 at 3 minutes” After that, one cycle of “5 minutes at 72” was performed for one cycle, and then continuously at 4 minutes. The second is “94 for 3 minutes” for one cycle, followed by “94 for 30 seconds, 60 for 30 seconds, and 72 for 2 minutes” after 15 cycles, and then “72 for 5 minutes. For one cycle and then continuously for four. As the Taq enzyme, the first reaction uses AmpliTaq Gold (PERKIN ELMER) and the second reaction uses TaKaRa Ex Taq (TaKaRa), and the reaction solution is prepared from the attached reagent according to the attached manual. Was prepared.
ゲル電気泳動は、 1. 5%ァガロースゲルを作製し、 5 /^ 1の試料をアプライし、 1 00V定電圧で 30分間泳動した。その後、 UVトランスイルミネー夕によって泳動画 像を得た。  For gel electrophoresis, a 1.5% agarose gel was prepared, 5 / ^ 1 samples were applied, and electrophoresis was performed at 100 V constant voltage for 30 minutes. Thereafter, electrophoretic images were obtained by UV transillumination.
[実施例 1 0 ] 5' RACE解析で切り出したバンドの回収と配列決定 1  [Example 10] Collection and sequencing of a band excised by 5 'RACE analysis 1
5' RACE解析で得られたバンドの塩基配列を決定するため、増幅した DNA断片を ゲルから切り出しプラスミドベクター pCR2. 1 (Invi trogen社)にてクローニング し、 約 600bpの DNA断片を保持するプラスミドを得た。 プラスミド DNAを用いて 常法に従い DNA断片の塩基配列を決定した。 その結果、 更に上流の配列約 500bp を得ることができた。 配列を配列番号: 1 4に示す。  In order to determine the nucleotide sequence of the band obtained by 5 'RACE analysis, the amplified DNA fragment was excised from the gel, cloned into a plasmid vector pCR2.1 (Invitrogen), and a plasmid containing a DNA fragment of about 600 bp was cloned. Obtained. Using a plasmid DNA, the nucleotide sequence of the DNA fragment was determined according to a conventional method. As a result, a further upstream sequence of about 500 bp was obtained. The sequence is shown in SEQ ID NO: 14.
[実施例 1 1 ] 5' RACE法による解析 2  [Example 1 1] Analysis by 5 'RACE method 2
Cap Si te cDNA (NIPPON GENE社) Human HeLa Cel l を铸型として、 5,RACE解析 を行った。 第一次 5'RACE- PCR反応用には添付の IRC Pr imer (配列番号 1 5 : CAA GGTACGCCACAGCGTATG) t 「795」 内に特異的な 795- yRl Pr imer (配列番号 1 6 : CG GCAGGTTTCAGCGGGACTTC) を用いて PCR反応を行った。 第二次 (nes ted) 5'RACE-PC R反応用には、添付の 2RC Pr imer (配列番号 1 7 : GTACGCCACAGCGTATGATGC) t 「7 95」 内に特異的な 795- yR2 Primer (配列番号 1 8 : GAAAGTTTGGAGGACTGGCTCTCA) を用いて PCR反応を行った。 795-yRl Primer及び 795- yR2 Pr imerは、 「5' RACE 解析で切り出したバンドの回収と配列決定 1」 から得られた塩基配列を基に設計 したものである。 PCRの反応条件は、 第一次が、 「9 5で 5分」 を 1サイクル、 続 いて、 「94で 3 0秒、 6 0で3 0秒、 7 2で 1分」 を 3 5サイクルの後「7 2° 5分」 を 1サイクル、 その後連続的に 4でにした。 第二次は、 「9 5で 5分」 を 1 サイクル、 続いて、 「94で3 0秒、 6 0で 3 0秒、 7 2で 1分」 を 3 0サイクル の後 「7 2で 5分」 を 1サイクル、 その後連続的に 4でにした。 両反応とも、 Taq 酵素として TaKaRa Taq (TaKaRa社)を使用し、添付の反応試薬に glycerolを最終 濃度 5 %になるよう加えて反応液を調製した。 5, RACE analysis was performed using Cap Site cDNA (NIPPON GENE) Human HeLa Cell as type III. For the primary 5'RACE-PCR reaction, use the attached IRC Primer (SEQ ID NO: 15: CAA GGTACGCCACAGCGTATG) t 795-yRl Primer (SEQ ID NO: 16: CG GCAGGTTTCAGCGGGACTTC) specific to "795" Was used to perform a PCR reaction. For the second (nested) 5'RACE-PC R reaction, the attached 2RC Primer (SEQ ID NO: 17: GTACGCCACAGCGTATGATGC) t 795-yR2 Primer specific to “795” (SEQ ID NO: 18) : GAAAGTTTGGAGGACTGGCTCTCA). 795-yRl Primer and 795-yR2 Primer are `` 5 'RACE It is designed based on the base sequence obtained from “Recovering and Sequencing Bands Excised by Analysis 1”. The primary PCR reaction conditions were as follows: 1 cycle of 95 minutes for 1 cycle, followed by 35 cycles of 94 seconds for 30 seconds, 60 seconds for 30 seconds, and 72 for 1 minute. After that, “72 ° 5 minutes” was performed for one cycle, and then continuously reduced to 4. The second one is "95 at 5 minutes" for one cycle, followed by "94 at 30 seconds, 60 at 30 seconds, 72 at 1 minute" at 30 cycles, and then "72 at 5 minutes". Minutes ”for one cycle and then continuously for four. In both reactions, TaKaRa Taq (TaKaRa) was used as a Taq enzyme, and glycerol was added to the attached reaction reagent to a final concentration of 5% to prepare reaction solutions.
ゲル電気泳動は、 1.2%ァガロースゲルを作製し、 5 /^の試料をアプライし、 1 00V定電圧で 30分間泳動した。その後、 UVトランスイルミネ一夕によって泳動画 像を得た。  For gel electrophoresis, a 1.2% agarose gel was prepared, a 5 / ^ sample was applied, and electrophoresed at 100 V constant voltage for 30 minutes. Thereafter, electrophoretic images were obtained by UV transillumination overnight.
[実施例 1 2] 5' RACE解析で切り出したバンドの回収と配列決定 2  [Example 1 2] Collection and sequencing of band excised by 5 'RACE analysis 2
5' RACE解析で得られたバンドの塩基配列を決定するため、増幅した DNA断片を ゲルから切り出しプラスミドベクタ一 pCR2.1 (Invitrogen社)にてクローニング し、 約 1 kbpの DNA断片を保持するプラスミドを得た。 プラスミド DNAを用いて 常法に従い DNA断片の塩基配列を決定した。 その結果、 更に上流の配列約 800 bp を得ることができた。 配列を配列番号: 1 9に示す。 NCBI BLAST Searchから、 配列番号: 1 9に示した配列の 1番から 7 0 5番までの塩基配列が Human viment in gene (Accession No.MU144)の 1 4 7番から 8 54番の塩基配列と 9 9 %— 致していることが判明した。この領域は Human vimentin geneの exon 1に相当す る。 また、 「7 9 5」 (配列番号: 1) の 2 7番から 8 8番の塩基配列は Human vi mentin geneの 8 5 5番から 9 1 6番の塩基配列と 1 0 0 %—致しており、 この 領域は Human vimentin geneの exon 2に相当する。 以上のことから、 「7 9 5」 は Human viment in gene (D ηοπ-spl icing formであること力 s明らかになった。  In order to determine the base sequence of the band obtained by 5 'RACE analysis, the amplified DNA fragment was excised from the gel, cloned with plasmid vector pCR2.1 (Invitrogen), and a plasmid containing a DNA fragment of about 1 kbp I got Using a plasmid DNA, the nucleotide sequence of the DNA fragment was determined according to a conventional method. As a result, about 800 bp of the upstream sequence could be obtained. The sequence is shown in SEQ ID NO: 19. From the NCBI BLAST Search, the nucleotide sequence from No. 1 to No. 705 of the sequence shown in SEQ ID NO: 19 is the same as the nucleotide sequence from No. 147 to No. 854 of Human viment in gene (Accession No. MU144). 9 9%-found to be This region corresponds to exon 1 of the human vimentin gene. In addition, the nucleotide sequence from No. 27 to 88 in “795” (SEQ ID NO: 1) is 100% identical to the nucleotide sequence from No. 85 to 91 in the Human vimentin gene. This region corresponds to exon 2 of the human vimentin gene. From the above, it was clarified that “795” is a human viment in gene (D ηοπ-splicing form).
[実施例 1 3] ABI-7700による vimentinの定量  [Example 13] Quantification of vimentin by ABI-7700
実施例 1 2の結果、 「7 9 5」 が vimentinの non-splicing formであることが判 明したので、 ABI- PRISM7700を用いた TaqMan法により、 「vimentin」 の発現量の 定量を行った。 試料には、 実施例 8と同じ計 44種の全 RNA試料を用い、 vimentin 遺伝子の発現量を定量した。 As a result of Example 12, it was determined that “795” was a non-splicing form of vimentin. Therefore, the expression amount of “vimentin” was quantified by the TaqMan method using ABI-PRISM7700. As a sample, a total of 44 kinds of total RNA samples as in Example 8 were used to quantify the expression amount of the vimentin gene.
すなわち、 vimentinの発現量を測定するために、 vimemt in遺伝子(GenBank a cssecion number: M14144)の配列を基に PCR増幅定量法を行った。コピー数を算 出する標準曲線のためには、 末梢血 Tcell由来 cDNAを铸型としてプライマ一 vim entin2F (GACATTGAGATTGCCACCTACAGZ配列番号: 20) t vimentinR (GGGTATCAA CCAGAGGGAGTGM/配列番号: 2 1) を用いて PCRを行い、 増幅した 130bpの DNA 断片 (配列番号: 23) をプラスミドベクタ一 (pGEM、 Promega) にクローニング したものを用いた。 TaqManプロ一ブとして vimentinTQ (TCCCTGAACCTGAGGGAAACT MTCTGGA/配列番号: 22) を用いて PCR増幅定量を行った。 その他の条件は、 実施例 8に順じた。  That is, in order to measure the expression level of vimentin, a PCR amplification quantification method was performed based on the sequence of the vimemt in gene (GenBank accession number: M14144). For the standard curve for calculating the copy number, PCR was performed using peripheral blood Tcell-derived cDNA as type III primer-vimentin2F (GACATTGAGATTGCCACCTACAGZ SEQ ID NO: 20) t vimentinR (GGGTATCAA CCAGAGGGAGTGM / SEQ ID NO: 21). The obtained and amplified 130 bp DNA fragment (SEQ ID NO: 23) was cloned into a plasmid vector (pGEM, Promega). PCR amplification and quantification were performed using vimentinTQ (TCCCTGAACCTGAGGGAAACT MTCTGGA / SEQ ID NO: 22) as a TaqMan probe. Other conditions were the same as in Example 8.
)3-ァクチンのコピー数で補正した各試料中の「795」および vimentinの mRNA 存在数(コピー数) を図 3および図 4に示す。補正は全試料における /3-ァクチン の平均コピーを求め、それを 1としたときの各試料中の -ァクチンの相対値で各 試料中の vimentinのコピー数を除した。 また、 各試料について花粉飛散時期の前 後での vimentinの mRNAコピー数を比較した (表 6 ) 3) Figures 7 and 4 show the numbers (copy numbers) of “795” and vimentin mRNA in each sample, corrected for the copy number of 3-actin. For the correction, the average copy of / 3-actin in all samples was determined, and the copy number of vimentin in each sample was divided by the relative value of -actin in each sample when it was set to 1. In addition, the vimentin mRNA copy numbers before and after pollen scattering were compared for each sample (Table 6).
表 6 被験者 皿 'ft?*¾t時 « VimennnTable 6 Subjects Dish 'ft? * ¾t time «Vimennn
A 飛散前 23490 A Before scattering 23490
飛散後 21422 After splash 21422
B 飛散前 28694 B Before scattering 28694
飛散後 17514 After scattering 17514
C 飛散前 C before scattering
飛散後 11738 After dispersal 11738
D 飛散前 D Before flying
飛散後 28204 After scattering 28204
E 飛散前 15786 E Before scattering 15786
飛散後 19915 After scattering 19915
F 飛散前 12418 F before scattering 12418
飛散後 13918 After scattering 13918
G 飛散前 15541 G before scattering 15541
飛散後 24084 After dispersal 24084
H 飛散前 9929 H before scattering 9929
飛散後 13705 After scattering 13705
1 飛散前 11444 飛散後 150701 Before scattering 11444 After scattering 15070
J 飛散前 17209 J before scattering 17209
飛散後 17115 After scattering 17115
K 飛散前 18820 K before scattering 18820
飛散後 29933 し 飛散前 30045  After the scattering 29933 and before the scattering 30045
飛散後 28765 After the flight 28765
M 飛散前 8656 M before scattering 8656
飛散後 18726 After the splash 18726
N 飛散前 28539 N Before scattering 28539
飛散後 37083 After flying 37083
0 飛散前 29275 0 Before flying 29275
飛散後 37180 After scattering 37180
P 飛敗前 10025 P Before defeat 10025
飛散後 46528 After scattering 46528
Q 飛敗前 9380 Q Before defeat 9380
飛散後 35837 After dispersal 35837
R 飛散前 20140 R before scattering 20140
飛散後 37470 After scattering 37470
S 飛散前 20684 S before scattering 20684
飛散後 17540 After scattering 17540
T 飛散前 31133 T before scattering 31133
飛散後 16784 u 飛散前 22042 飛散後 17293 After scattering 16784 u Before scattering 22042 After scattering 17293
V 飛散前 24070 V Before scattering 24070
飛散後 21408 これらの結果に基づき 「7 9 5」 と同様に、 この値を用いて二元配置分散分析 を行った。 群分けは、 スギ花粉飛散前と後、 または血清中の各特異的 IgEについ て 2回の測定のうち 1回でも 3. 5 AU/ml以上を示した群 (高 IgEグループ) とそ れ以外 (正常 IgEグループ) の 2つの要因にわけて検定した。 二元配置分散分析 の検定は StatVi ewソフトウェア (Abacuus Concept s, Inc. ) を用いて行った。 その結果、 スギ花粉に対する IgE値で群分けすると、 vimentinの発現は、 「7 9 5」 と同様に高 IgEグループ (平均土標準偏差 =17328±5067) において正常 IgE グループ (24889±9831) よりも有意に低い (p=0.0059) ことが示された (表 7、 および図 5 )。 After dispersion 21408 Based on these results, a two-way analysis of variance was performed using these values, similar to “795”. The groups were divided into groups before and after scattering of Japanese cedar pollen, or a group showing 3.5 AU / ml or more for at least one of the two specific IgE measurements in serum (high IgE group) and others (Normal IgE group). Two-way analysis of variance was tested using StatView software (Abacuus Concepts, Inc.). As a result, when grouped by IgE value for cedar pollen, the expression of vimentin was higher in the high IgE group (mean soil standard deviation = 17328 ± 5067) than in the normal IgE group (24889 ± 9831), as in “795” It was shown to be significantly lower (p = 0.0059) (Table 7, and FIG. 5).
表 7  Table 7
Figure imgf000034_0001
産業上の利用の可能性
Figure imgf000034_0001
Industrial applicability
本発明により、 スギ花粉特異的 IgE値と相関を示す新規遺伝子が提供された。 本発明の遺伝子の発現を指標に、 アレルギー素因を有するか否かの検査およびァ レルギ一疾患治療薬候補化合物のスクリーニングを行うことが可能となった。  According to the present invention, a novel gene having a correlation with a cedar pollen-specific IgE value was provided. Using the expression of the gene of the present invention as an index, it has become possible to carry out a test for whether or not it has an allergic predisposition and a screening for candidate compounds for the treatment of allergic diseases.

Claims

請求の範囲 配列番号: 2 4に記載の塩基配列を含む核酸分子。 Claims A nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO: 24.
配列番号: 2 4に記載の塩基配列からなる DNAとストリンジェン卜な条件下 でハイブリダィズし、 配列番号: 2 4に記載の塩基配列からなる核酸分子と 機能的に同等な核酸分子。 A nucleic acid molecule which hybridizes with a DNA consisting of the nucleotide sequence of SEQ ID NO: 24 under stringent conditions and is functionally equivalent to a nucleic acid molecule consisting of the nucleotide sequence of SEQ ID NO: 24.
請求項 1、 または請求項 2に記載の核酸分子が挿入されたベクター。 A vector into which the nucleic acid molecule according to claim 1 or 2 has been inserted.
請求項 1、 または請求項 2に記載の核酸分子を発現可能に保持する形質転換 体。 A transformant that retains the nucleic acid molecule according to claim 1 or 2 in an expressible manner.
配列番号: 2 4に記載の塩基配列からなる核酸分子、 またはその相補鎖とハ イブリダィズするポリヌクレオチドであって、 少なくとも 1 5ヌクレオチド の鎖長を有するポリヌクレオチド。 A polynucleotide that hybridizes with a nucleic acid molecule consisting of the nucleotide sequence of SEQ ID NO: 24 or a complementary strand thereof, and has a chain length of at least 15 nucleotides.
請求項 5に記載のポリヌクレオチドからなる請求項 1に記載の核酸分子合成 用プライマー。 A primer for nucleic acid molecule synthesis according to claim 1, comprising the polynucleotide according to claim 5.
請求項 5に記載のポリヌクレオチドからなる請求項 1に記載の核酸分子検出 用プローブ。 A probe for detecting a nucleic acid molecule according to claim 1, comprising the polynucleotide according to claim 5.
請求項 5に記載のポリヌクレオチドを用いることを特徴とする、 請求項 1に 記載の核酸分子の検出方法。 The method for detecting a nucleic acid molecule according to claim 1, wherein the polynucleotide according to claim 5 is used.
生体試料中の配列番号: 2 4、 または配列番号: 2 5に記載の塩基配列から なる遺伝子の発現レベルを測定し、 対照 (健常者の場合) と比較する工程を 含む、 アレルギー疾患の検査方法。A method for testing an allergic disease, comprising the step of measuring the expression level of a gene consisting of the nucleotide sequence of SEQ ID NO: 24 or SEQ ID NO: 25 in a biological sample and comparing it with a control (in the case of a healthy subject) .
. 生体試料が T細胞であり、 T 細胞における遺伝子の発現レベルを、 mRNA を铸型とする RT- PCRによって測定する請求項 9に記載の方法。 10. The method according to claim 9, wherein the biological sample is a T cell, and the expression level of the gene in the T cell is measured by RT-PCR using mRNA as a type.
. RT- PCRを PCR増幅モニタ一法により行う、 請求項 1 0に記載の方法。. T細胞が被験者の末梢血から調製される、 請求項 9から 1 1のいずれかに 記載の方法。 The method according to claim 10, wherein the RT-PCR is performed by a PCR amplification monitor method. The method according to any one of claims 9 to 11, wherein the T cells are prepared from peripheral blood of a subject.
3. 生体試料が血液であり、血中の配列番号: 2 6に示すアミノ酸配列からな るタンパク質および/またはその断片を測定することによって遺伝子の発現 レベルを測定する請求項 9に記載の方法。 3. The method according to claim 9, wherein the biological sample is blood, and the expression level of the gene is measured by measuring a protein comprising the amino acid sequence shown in SEQ ID NO: 26 and / or a fragment thereof in blood.
4. アレルギー疾患がスギ花粉症である、請求項 9から 1 3のいずれかに記載 の方法。 4. The method according to claim 9, wherein the allergic disease is cedar pollinosis.
5. アレルギー疾患の治療薬候補化合物をスクリーニングする方法であって、5. A method for screening a candidate compound for a therapeutic drug for an allergic disease,
(a) 花粉症のモデル動物に被検化合物の投与および花粉抗原による刺激 を行う工程、 (a) administering a test compound to a model animal of hay fever and stimulating with a pollen antigen,
(b) 該モデル動物の T細胞における配列番号: 24または配列番号: 2 5に記載の塩基配列からなる遺伝子の発現レベルを測定する工程、  (b) measuring the expression level of a gene consisting of the nucleotide sequence of SEQ ID NO: 24 or SEQ ID NO: 25 in T cells of the model animal,
( c ) 対照 (被検化合物非投与の場合) と比較して、 工程 (b) において 測定される遺伝子の発現レベルを増大させる化合物を選択する工程、 を含む 方法。  (c) selecting a compound that increases the expression level of the gene measured in step (b) as compared to a control (in the case where the test compound is not administered).
6. アレルギー疾患の治療薬候補化合物をスクリーニングする方法であって、6. A method for screening a candidate drug for treating an allergic disease, comprising:
(a) 被検化合物を花粉症のモデル動物に投与する工程、 (a) administering a test compound to a model animal of hay fever,
( b ) 該モデル動物からリンパ球を調製する工程、  (b) preparing lymphocytes from the model animal,
( c ) 該リンパ球を花粉抗原で刺激する工程、  (c) stimulating the lymphocytes with a pollen antigen,
(d) 該抗原刺激を受けたリンパ球から T細胞を分離する工程、  (d) separating T cells from the antigen-stimulated lymphocytes,
(e) 該 T細胞における配列番号: 24または配列番号: 2 5に記載の塩 基配列からなる遺伝子の発現レベルを測定する工程、  (e) measuring the expression level of the gene comprising the base sequence of SEQ ID NO: 24 or SEQ ID NO: 25 in the T cell,
( f ) 対照 (被検化合物非投与の場合) と比較して、 工程 (e) において 測定される遺伝子の発現レベルを増大させる化合物を選択する工程、 を含む 方法。  (f) selecting a compound that increases the expression level of the gene measured in step (e) as compared to a control (in the case where the test compound is not administered).
7. アレルギー疾患の治療薬候補化合物をスクリーニングする方法であって、 ( a ) 花粉症のモデル動物または花粉症を有するヒトからリンパ球を調製 する工程、 (b) 被検化合物の存在下、 該リンパ球を花粉抗原で刺激する工程、7. A method for screening a candidate compound for a therapeutic agent for an allergic disease, comprising: (a) preparing lymphocytes from a hay fever model animal or a human having hay fever; (b) stimulating the lymphocytes with a pollen antigen in the presence of a test compound,
(c) 該抗原刺激を受けたリンパ球から T細胞を分離する工程、 (c) separating T cells from the antigen-stimulated lymphocytes,
(d) 該 T細胞における配列番号: 24または配列番号: 25に記載の塩 基配列からなる遺伝子の発現レベルを測定する工程、  (d) measuring the expression level of the gene comprising the base sequence of SEQ ID NO: 24 or SEQ ID NO: 25 in the T cell,
(e) 対照 (被検化合物非投与の場合) と比較して、 工程 (d) において 測定される遺伝子の発現レベルを増大させる化合物を選択する工程、 を含む 方法。  (e) selecting a compound that increases the expression level of the gene measured in step (d) as compared to a control (in the case where no test compound is administered).
18. アレルギー疾患の治療薬候補化合物をスクリーニングする方法であって、 18. A method for screening a candidate drug for treating an allergic disease, comprising:
(a) 被検化合物の存在下、 株化 T細胞をリンパ球刺激物質で刺激するェ 程、 (a) stimulating established T cells with a lymphocyte stimulating substance in the presence of a test compound,
(b) 株化 T細胞における配列番号: 24または配列番号: 25に記載の 塩基配列からなる遺伝子の発現レベルを測定する工程、  (b) measuring the expression level of the gene consisting of the nucleotide sequence of SEQ ID NO: 24 or SEQ ID NO: 25 in the established T cells,
(c) 対照 (被検化合物非投与の場合) と比較して、 工程 (b) において 測定される遺伝子の発現レベルを増大させる化合物を選択する工程、 を含む 方法。  (c) selecting a compound that increases the expression level of the gene measured in step (b) as compared to a control (in the case where no test compound is administered).
19. 遺伝子の発現レベルを、 mRNAを铸型とする RT- PCRによって測定する請求 項 15〜18〕 のいずれかに記載の方法。  19. The method according to any one of claims 15 to 18, wherein the expression level of the gene is measured by RT-PCR using mRNA as type II.
20. T細胞が、 花粉症のモデル動物の末梢血から調製される、 請求項 15に記 載の方法。  20. The method according to claim 15, wherein the T cells are prepared from peripheral blood of a model animal of hay fever.
21. リンパ球が末梢血から調製される、請求項 16または 17に記載の方法。 22. アレルギー疾患がスギ花粉症である、請求項 15から 21のいずれかに記 載の方法。  21. The method of claim 16 or 17, wherein the lymphocytes are prepared from peripheral blood. 22. The method according to any one of claims 15 to 21, wherein the allergic disease is cedar pollinosis.
PCT/JP2000/002734 1999-04-27 2000-04-26 Pollinosis-associated gene 795 WO2000065050A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/120494 1999-04-27
JP12049499 1999-04-27

Publications (1)

Publication Number Publication Date
WO2000065050A1 true WO2000065050A1 (en) 2000-11-02

Family

ID=14787596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/002734 WO2000065050A1 (en) 1999-04-27 2000-04-26 Pollinosis-associated gene 795

Country Status (1)

Country Link
WO (1) WO2000065050A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11332567A (en) * 1998-05-22 1999-12-07 Dai Ichi Seiyaku Co Ltd Judgment of atopic predisposition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11332567A (en) * 1998-05-22 1999-12-07 Dai Ichi Seiyaku Co Ltd Judgment of atopic predisposition

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HOLROYD KENNETH J. ET AL.: "Asthma and bronchial hyperresponsiveness linked to the XY long arm pseudoautosomal region", GENOMICS, vol. 52, no. 2, 1 September 1998 (1998-09-01), pages 233 - 235, XP002930133 *
HONORE B. ET AL.: "Nucleotide sequence of cDNA covering the complete coding part of the human vimentin gene", NUCLEIC ACIDS RESEARCH, vol. 18, no. 22, 25 November 1990 (1990-11-25), pages 6692, XP002930137 *
KUZUSHI HONDA: "Sugi kafun sho no meneki idengaku teki kaiseki HLA to rensa shita sugi kafun kogen ni taisuru meneki yokusei idenshi no shoumei to to kaiseki", FUKUOKA IGAKU ZASSHI, vol. 80, no. 1, 25 January 1989 (1989-01-25), pages 28 - 37, XP002946664 *
MITSURU MUNAKATA: "beta-Adrenalin juyotai idenshi", MITSURU MUNAKATA, vol. 30, no. 3, 10 March 1998 (1998-03-10), pages 863 - 867, XP002946665 *
TAKABAYASHI AKIRA ET AL.: "Novel polymorphism in the 5'-untranslated region of the interleukin-4 gene", JOURNAL OF HUMAN GENETICS, vol. 44, no. 5, 1999, pages 352 - 353, XP002930134 *

Similar Documents

Publication Publication Date Title
EP1260816A1 (en) Method of examining allergic diseases
WO2000020575A1 (en) Pollinosis-associated gene
JPWO2002050269A1 (en) Testing methods for allergic diseases
US20040197786A1 (en) Method of examining steroid resnponsiveness
JPWO2004005509A1 (en) Methods for testing allergic diseases and drugs for treatment
WO2000065046A1 (en) Pollinosis-associated gene 373
WO2000065050A1 (en) Pollinosis-associated gene 795
EP4036233A1 (en) Method for detecting brain tumor
US6986990B1 (en) Pollen allergy-related gene 513
US20040234969A1 (en) Mehtod for examining steroid-responsiveness
WO2000073440A1 (en) Pollinosis-associated gene 787
WO2000073435A1 (en) Pollinosis-associated gene 441
WO2000073439A1 (en) Pollinosis-associated gene 465
WO2000065045A1 (en) Pollinosis-associated gene 419
WO2000065051A1 (en) Pollinosis-associated gene 627
KR101889072B1 (en) Verification of large deletion of SPG4 gene associated Hereditary spastic paraplegia(HSP) using digital PCR
WO2000065048A1 (en) Pollinosis-associated gene 581
JP2005102694A (en) Group of genes differentially expressed in peripheral blood cells and diagnostic method and assay method using the same
JPWO2002024903A1 (en) Testing methods for allergic diseases
JPWO2003072778A1 (en) Testing method for allergic diseases
JPWO2003010310A1 (en) Testing methods for allergic diseases
US20040058351A1 (en) Method of examining for allergic disease
JPWO2002026962A1 (en) Testing methods for allergic diseases
JP2002095500A (en) Method for examining allergic disease
CN113943795A (en) Probe set for detecting noise-related deafness gene and kit thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 614386

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase