WO2000059087A1 - Unite de commande a tolerance temporelle - Google Patents

Unite de commande a tolerance temporelle Download PDF

Info

Publication number
WO2000059087A1
WO2000059087A1 PCT/AU1999/000211 AU9900211W WO0059087A1 WO 2000059087 A1 WO2000059087 A1 WO 2000059087A1 AU 9900211 W AU9900211 W AU 9900211W WO 0059087 A1 WO0059087 A1 WO 0059087A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay
tolerance
control unit
switches
output signals
Prior art date
Application number
PCT/AU1999/000211
Other languages
English (en)
Inventor
Boonkoom Boonyasopath
Original Assignee
Sexton, James, Robert
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sexton, James, Robert filed Critical Sexton, James, Robert
Priority to PCT/AU1999/000211 priority Critical patent/WO2000059087A1/fr
Priority to AU30196/99A priority patent/AU3019699A/en
Publication of WO2000059087A1 publication Critical patent/WO2000059087A1/fr

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/125Discriminating pulses
    • H03K5/1252Suppression or limitation of noise or interference
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B9/00Safety arrangements
    • G05B9/02Safety arrangements electric
    • G05B9/03Safety arrangements electric with multiple-channel loop, i.e. redundant control systems

Definitions

  • This invention relates to an electric or electronic controller unit and more particularly to control units using parallel control circuits.
  • Parallel control circuits are used to control processes in a wide range of industries and are provided to use inputs from a process or device being controlled and to provide outputs for control of that process or device.
  • the parallel circuits ensure that if one control circuit fails then the other control circuit can continue to control or the fact that one of the control circuits has failed can be noted.
  • the invention is said to reside in an electric or electronic time tolerance control unit for control devices incorporating two or more parallel control circuits, the time tolerance control unit incorporating an output compare circuit which includes a time tolerance circuit whereby a selected time delay is provided before an error signal is generated or a specific action is activated if one of the control circuits provides an output signal different than that of another of the control circuits.
  • the output compare circuit includes an array of relay switches in series with a tolerance relay and a capacitor charged by current flow through the output compare circuit and in parallel with a relay coil of the tolerance relay, the array of relay switches including pairs of relay switches in series operated by corresponding output signals, the pairs of relay switches providing a continuous current path to the relay coil of the tolerance relay provided the output signals are the same and wherein if the continuous current path is broken by a different corresponding output signals the capacitor provides current to hold the relay coil of the tolerance relay closed for the selected time delay.
  • the output compare circuit may include an array of relay switches in series with a tolerance relay, a capacitor charged by current flow through the output compare circuit and in parallel with a relay coil of the tolerance relay, the array of relay switches including a relay switch operated by each corresponding output signal, each relay switch having a normally open and a normally closed position and the relay switches providing a continuous current path to the relay coil of the tolerance relay provided the output signals are the same and wherein if the continuous current path is broken by a different corresponding output signals the capacitor provides current to hold the relay coil of the tolerance relay closed for the selected time delay.
  • the relay switches can be self checking in case the pole of one of the relay switches sticks to a terminal.
  • a short circuit path may be provided if the time delay is exceeded, the short circuit path including a normally closed relay switch operated by the relay coil of the tolerance relay and held open while current is supplied to the tolerance relay.
  • each pair of relay switches may be provided by separate relay switches in the same relay assembly operated by their respective magnetic coils or they may be the normally opened and normally closed positions of a single relay switch.
  • the relay coil of the tolerance relay may be adapted to provide a warning signal or a resetting function of the working process if the relay is opened.
  • the pairs of relay switches operated by corresponding output signals may include a normally open and a normally closed relay switch in parallel for each corresponding output relay.
  • the array of relay switches operated by corresponding output signals may include a relay switch with a normally open and a normally closed position whereby the normally opened position is connected to normally opened position of the comparing relay switch and the normally closed position is connected to normally closed position of the comparing relay switch.
  • the array of relay switches may be provided for only one of the outputs of the control units. Alternatively arrays of paired relays switches may be provided for each of the outputs of the control units and wherein the arrays of relay switches are in series.
  • the invention may be said to reside in a method of comparing output signals from parallel control circuits to detect a malfunction in one or more of the control circuits, the method including the step of comparing the output signals and if there is a difference allowing a selected time delay before providing a error signal whereby to allow for minor temporal differences in control signals.
  • the step of comparing the output signals includes the step of holding a relay coil closed for the selected time delay by providing current from a capacitor in parallel with the relay coil.
  • the invention is said to reside in an electronic or electric safety control which includes two or more control circuits and an output compare control circuit which is made up of one or more pairs of magnetic relay poles and a capacitor.
  • an electric or electronic control will if there is a difference or inconsistency in sending out or stopping of the output signals being compared in the output compare circuit beyond a designated time tolerance there will be for instance a locking out procedure whereby a fuse will break.
  • the locking out procedure may stop the power to the control circuits or to the output circuits or other selected circuits.
  • the error signal generated may be for the activation of a warning signal or the resetting of the electronic control circuits.
  • the magnetic relays and capacitors may be provided by an integrated circuit which acts as a number of relays and a capacitor.
  • control units may be used in a number of industrial processes and devices such as burners or furnaces and temperature controllers, timers or manufacturing processes.
  • apparatus according to this invention may be used in vehicles, in ships and the like.
  • the control circuits may be relay assemblies whereby outputs are switched on in the selected manner depending upon selected inputs or they may be programmable logic control circuits or similar devices.
  • the output compare circuit may include a matrix of relays whereby the number of relay circuits is determined by the number of control circuits and the number of output control signals. For instance if there is two control circuits and three output controls then there may be six relays.
  • the time tolerance control arrangement of the present invention may be placed on that output only.
  • Figure 1 shows a first embodiment of a time tolerance control unit according to the present invention
  • Figure 2 shows an alternative embodiment of a time tolerance control unit according to this invention
  • Figure 3 shows an alternative embodiment of the output compare circuit of the invention
  • Figure 4 shows an alternative embodiment of the output compare circuit of the invention.
  • FIG. 5 shows an further alternative embodiment of the output compare circuit of the invention
  • FIG. 1 of the drawings there is illustrated a first embodiment of a time tolerance control unit of the present invention within a control unit.
  • the item of equipment or process which is being controlled is not illustrated.
  • the control unit 1 has a number of inputs 2, 3 and 4 from the device or process being controlled and a number of outputs 6, 7 and 8 to control the process or unit. It will be realised that there may be a different number of inputs or outputs depending upon the parameters being monitored and the parts of the process or device to be controlled.
  • Within the control unit 1 there is a first control circuit 10 and a second control circuit 20. These control circuits 10 and 20 are operated in parallel. The same inputs are supplied into each control circuit and provided no problem exists with each control circuit then the same output from each control circuit should be provided.
  • Power to the control unit is supplied by power supply 30. Power is supplied through a fuse 31 to a start switch 32. Power is also supplied continuously to an output compare circuit 40.
  • relay 33 When start switch 32 is depressed then power is supplied to the coil of a magnetic relay 33 which in turn causes the relay switch poles 33A of the relay 33 to close and hold on power supply to the relay 33 and the control circuits 10 and 20. It is to be noted that the electrical supply switched by relay 33 and relay switch 33A may be transformed in terms of voltage or current before being supplied to the control circuits 10 and 20.
  • the control circuits 10 or 20 may be of a similar form or of a different form but they both should be set to have the same process or program to send out or to stop sending out an output signal to the outputs 6, 7 and 8.
  • the output signals 11 , 12 and 13 from control circuit 10 are passed to the magnetic coils of relays 14, 15 and 16 respectively.
  • the output signals 21 , 22 and 23 from control circuit 20 are passed to magnetic coils of relays 24, 25 and 26.
  • a first set of switches 14A, 15A and 16A activated by relay coils 14, 15 and 16 are provided to switch power to outputs 6, 7 and 8 respectively.
  • a second set of output switches 24A, 25A and 26A are provided to correspond to the magnetic coils 24, 25 and 26 respectively and placed in series with the switches 14A, 15A and 16A respectively.
  • a power from power line 45 must therefore be switched by the relay switches 14A and 24A positioned in series to provide an output on line 6 and similarly relay poles 15A and 25A and 16A and 26A must both be switched on at the same time to provide respective outputs 7 and 8.
  • relay poles 14A, 15A and 16A and 24A, 25A and 26A are normally open and only closed when their respective relay coils 14, 15, 16 and 24, 25 and 26 are switched.
  • relays may be normally closed and opened as part of the controlling process.
  • control circuits 10 and 20 may operate at a very short time such as a fraction of a second after the other of the control circuit and this time difference may be acceptable or unacceptable.
  • relay switches 14B and 14C in parallel corresponding to relay coil 14 and relay switch 14A.
  • Switch poles 14B are normally closed and switch poles 14C are normally opened.
  • Switch poles 14B and 14C may be provided by separate relay switches in the same relay assembly operated by magnetic coil 14 or they may be the normally opened and normally closed positions of a single relay switch.
  • switch poles 24B and 24C relate to magnetic pole 24 and relay switch 24A.
  • Relay switch poles 15B and 15C are related to magnetic coil 15 and relay poles 25B and 25C relate to magnetic coil 25.
  • each pair may be provided by separate relay switches in the same relay assembly operated by their respective magnetic coils or they may be the normally opened and normally closed positions of a single relay switch.
  • a magnetic coil 50 of a relay is connected through the normally closed relays 14B, 24B, 15B and 25B to the fuse 31 so that power is supplied continuously to the relay 50.
  • the relay coil 50 has a capacitor 52 in parallel with it.
  • the time tolerance circuit shown in Figure 1 will allow continuous electrical supply to relay coil 50 and capacitor 52 but if a fault occurs in control circuit 10 or control circuit 20 the comparison poles within the output compare circuit 40 will not operate simultaneously and power will not be supplied to relay coil 50.
  • the capacitor 52 will supply power to the relay coil 50 for a selected time to hold the power supply to the control unit 1 on if there is a less than significant fault and the relevant relay switch activates within that time.
  • coil 50 will cause its corresponding switch poles 50A which are connected across the power supply after the switch to change from a normally closed to an open position which will in effect short circuit the system and blow the fuse 31 and which will stop the electrical power supply to the control circuits 10 and 20 or to the output or other end circuits in order to lock out the whole process being controlled.
  • power is continuously supplied from power supply 30 to the coil 50 through the fuse 31 provided the various relays within the output compare circuit 40 are in their normal operating positions. Power to the coil
  • relay poles 50A which enables relay coil 61 to be activated which closes normally open relay 61 A so that power is supplied to relay coil 65 and to the control circuits 10 and 20. Once power is supplied to the relay coil 65 then relay switch poles 65A which are normally opened are closed which continuously supplies power to the circuit so the switch 60 does not have to be held closed.
  • the system will continue to operate in this fashion until there is a discrepancy in the control circuit 10 or control circuit 20 which will cause the pairs of relays 14B and 14C, 24B and 24C, or 15B, 15C, 25B and 25C to stop power supply to the relay coil 50 and unless the power is resupplied within the time tolerance provided by the capacitor 52 which holds the relay coil 50 closed for a selected period of time then relay switch poles 50A are opened and power is no longer supplied to relay coil 61. This will open switch 61 A so that power is no longer supplied to the control circuits and a relay coil 65 and hence switch 65A is also opened.
  • the relay coil 65 may also shift a pole of a safety relay to activate a warning signal or to reset the process or device being controlled.
  • Figure 3 shows an embodiment of the time tolerance unit 70 in which all of the outputs from the parallel control circuits 10 and 20 are compared.
  • relay switches 14B and 14C corresponding to relay 14
  • relay switches 24B and 24C corresponding to relay 24
  • relay switches 15B and 15C corresponding to relay 15
  • relay switches 25B and 25C corresponding to relay 25
  • relay switches 16B and 16C corresponding to relay 16 and relay switches
  • Bridges 71 and 72 are provided between the sets of pairs.
  • each pair of relay switches may be provided by separate relay switches in the same relay assembly operated by their respective magnetic coils or they may be the normally opened and normally closed positions of a single relay switch.
  • any one of the outputs of the first control circuit differs from its corresponding output of the second control circuit then power will not be supplied to the relay coil 50. It may be considered that in this embodiment all of the outputs are critical outputs and all need to be monitored.
  • each pair of relay switches may be provided by separate relay switches in the same relay assembly operated by their respective magnetic coils or they may be the normally opened and normally closed positions of a single relay switch.
  • the relay switches 15B and 25B are in series and relay switches 15C and 25C are in series and relay switches 15B and 25B are in parallel with relay switches 15C and 25C. If the output 12 of the first control circuit differs from its corresponding output 22 of the second control circuit (see Figure 1) then power will not be supplied to the relay coil 50. It may be considered that only outputs 12 and 22 are critical outputs and need to be monitored.
  • FIG 5 shows an alternative embodiment of the output compare circuit of the present invention.
  • the time tolerance control unit 90 has an array of relay switches 14, 24, 15 and 25 in series with the relay coil 50.
  • the capacitor 52 is in parallel with the relay coil 50.
  • Each relay switch 14D&E, 24D&E, 15D&E and 25D&E is a single relay switch which has a normally closed position 14D, 24D, 15D and 25D and a normally open position 14E, 24E, 15E and 25E respectively.
  • Each relay switch 14D&E, 24D&E, 15D&E and 25D&E is operated by its respective relay coil 14, 24, 15 and 25 (see FIG 1 ).
  • relay coils 14 and 24 will act the same and relay switches 14D and 24D will stay closed and current can flow through to the relay coil 50 provided relay coils 15 and 25 are also working in unison. It will be seen that if any one of the coils is not activated or is activated at a different time from its corresponding coil then current will not flow to the relay coil 50.
  • the time tolerance control unit of the present invention therefore generally is a device which monitors output signals from a program or from a working process in accordance with input signals and an analysis of those input signals in the control unit.
  • the control unit has at least two control circuits which sends out or stops sending out their output signals simultaneously with one another. At least one of the output signals from each control circuit is compared in an output compare circuit. If there is any time difference from each comparing output signal beyond the design time tolerance there is a locking out of the working process, an activation of a device to send out a warning signal or a resetting of the working process.
  • the apparatus has the advantage that it significantly reduces the chances of damage occurring to property and or loss of human life and it makes the operator of machinery or equipment fitted with the device aware of misoperation or faults immediately before further fault , damage or disaster can occur. It can reduce waste and production manufacturing processes if a fault occurs.
  • the beyond time tolerance detected by the output compare circuit can activate a warning signal such as a pilot lamp buzzer, etc
  • the magnetic relays can be replaced by electronic devices such as an operational amplifier specific integrated circuits or the like and some details of the circuit can be changed such as the output control circuit only being activated after power has been supplied to the circuit.
  • the output relay switch poles for each output may be in parallel rather than series.

Abstract

L'invention se rapporte à une unité de commande électrique ou électronique à tolérance temporelle, qui est conçue pour des dispositifs de commande comprenant au moins deux circuits de commande (10, 20) parallèles ou redondants. Ladite unité de commande à tolérance temporelle comporte un circuit (40) de comparaison de sorties qui comprend un circuit à tolérance temporelle permettant l'introduction d'un retard sélectionné avant qu'un signal d'erreur soit généré ou qu'une action spécifique soit déclenchée si l'un des circuits de commande délivre un signal de sortie différent de celui d'un autre circuit de commande. Il est possible de moduler cette tolérance temporelle en modifiant la capacité d'un condensateur (52) qui est monté en parallèle avec une bobine de relais (50) d'un relais tolérant. Le dispositif peut être mis en oeuvre avec des relais électromécaniques ou des circuits à semi-conducteurs.
PCT/AU1999/000211 1999-03-26 1999-03-26 Unite de commande a tolerance temporelle WO2000059087A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/AU1999/000211 WO2000059087A1 (fr) 1999-03-26 1999-03-26 Unite de commande a tolerance temporelle
AU30196/99A AU3019699A (en) 1999-03-26 1999-03-26 Time tolerance control unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/AU1999/000211 WO2000059087A1 (fr) 1999-03-26 1999-03-26 Unite de commande a tolerance temporelle

Publications (1)

Publication Number Publication Date
WO2000059087A1 true WO2000059087A1 (fr) 2000-10-05

Family

ID=3764574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AU1999/000211 WO2000059087A1 (fr) 1999-03-26 1999-03-26 Unite de commande a tolerance temporelle

Country Status (2)

Country Link
AU (1) AU3019699A (fr)
WO (1) WO2000059087A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2835325A1 (fr) * 2002-01-29 2003-08-01 Siemens Ag Arrangement de circuit et procede pour un systeme electronique destine a l'emission temporisee d'un signal de commutation
WO2011023215A1 (fr) * 2009-08-31 2011-03-03 Continental Automotive Gmbh Circuit de commande pour commande de signal de sortie
US8325455B2 (en) 2007-04-05 2012-12-04 Georgia Tech Research Corporation Voltage surge and overvoltage protection with RC snubber current limiter
US8488285B2 (en) 2005-10-24 2013-07-16 Georgia Tech Research Corporation Active current surge limiters with watchdog circuit
US8582262B2 (en) 2005-01-31 2013-11-12 Georgia Tech Research Corporation Active current surge limiters with disturbance sensor and multistage current limiting
DE102013220842A1 (de) * 2013-10-15 2015-04-16 Continental Automotive Gmbh Verfahren zum Schalten eines Zyklus in einer Leistungstransistorschaltung
US9270170B2 (en) 2011-04-18 2016-02-23 Innovolt, Inc. Voltage sag corrector using a variable duty cycle boost converter
US9299524B2 (en) 2010-12-30 2016-03-29 Innovolt, Inc. Line cord with a ride-through functionality for momentary disturbances

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2146196A1 (de) * 1970-09-15 1972-03-16 Elliott Bros Wählschaltung für dreikanalige redundante Vorrichtungen
US4186420A (en) * 1978-08-25 1980-01-29 Otis Elevator Company Accurate, fail-safe relay timer
SU714555A2 (ru) * 1978-04-25 1980-02-05 Ростовский-на-Дону институт инженеров железнодорожного транспорта Устройство дл проверки исправности аппаратуры дискретной автоматики
SU1115155A1 (ru) * 1983-06-23 1984-09-23 Ордена Октябрьской Революции Всесоюзный Государственный Проектно-Изыскательский И Научно-Исследовательский Институт Энергетических Систем И Электрических Сетей "Энергосетьпроект" Устройство дл резервировани отключени короткого замыкани при отказе выключател высшего или ( @ ) среднего напр жени автотрансформатора
US5185693A (en) * 1989-11-27 1993-02-09 Olin Corporation Method and apparatus for providing backup process control

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2146196A1 (de) * 1970-09-15 1972-03-16 Elliott Bros Wählschaltung für dreikanalige redundante Vorrichtungen
SU714555A2 (ru) * 1978-04-25 1980-02-05 Ростовский-на-Дону институт инженеров железнодорожного транспорта Устройство дл проверки исправности аппаратуры дискретной автоматики
US4186420A (en) * 1978-08-25 1980-01-29 Otis Elevator Company Accurate, fail-safe relay timer
SU1115155A1 (ru) * 1983-06-23 1984-09-23 Ордена Октябрьской Революции Всесоюзный Государственный Проектно-Изыскательский И Научно-Исследовательский Институт Энергетических Систем И Электрических Сетей "Энергосетьпроект" Устройство дл резервировани отключени короткого замыкани при отказе выключател высшего или ( @ ) среднего напр жени автотрансформатора
US5185693A (en) * 1989-11-27 1993-02-09 Olin Corporation Method and apparatus for providing backup process control

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Derwent World Patents Index; Class X13, AN 1980-J4422C *
DATABASE WPI Derwent World Patents Index; Class X13, AN 1985-097471 *
Electronic circuits manual (John Markus), 1971, pp. 679, "One shot relay driver", pp. 703, "Sweep control relay turn-on time", pp. 862, "Cost-cutting relay delay". *
LEVINS D. ET AL.: "120 Volt 10 Ampere solid state power controller", PROCEEDINGS OF THE 26TH INTERSOCIETY ENERGY CONVERSION ENGINEERING CONFERENCE, IEEE,, vol. 1, PISCATAWAY, N.J. USA, pages 110 - 115 *
MENEZES ET AL.: "Multi-processor interconnection networks", QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL,, vol. 8, no. 5, September 1992 (1992-09-01) - October 1992 (1992-10-01), pages 485 - 500 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10203373B4 (de) * 2002-01-29 2007-04-12 Siemens Ag Schaltungsanordnung und Verfahren für ein elektronisches System zur zeitverzögerten Ausgabe eines Schaltsignals
FR2835325A1 (fr) * 2002-01-29 2003-08-01 Siemens Ag Arrangement de circuit et procede pour un systeme electronique destine a l'emission temporisee d'un signal de commutation
US8587913B2 (en) 2005-01-31 2013-11-19 Georgia Tech Research Corporation Active current surge limiters with voltage detector and relay
US8766481B2 (en) 2005-01-31 2014-07-01 Georgia Tech Research Corporation Reduction of inrush current due to voltage sags with switch and shunt resistance
US8643989B2 (en) 2005-01-31 2014-02-04 Georgia Tech Research Corporation Active current surge limiters with inrush current anticipation
US8582262B2 (en) 2005-01-31 2013-11-12 Georgia Tech Research Corporation Active current surge limiters with disturbance sensor and multistage current limiting
US9065266B2 (en) 2005-10-24 2015-06-23 Georgia Tech Research Corporation Reduction of inrush current due to voltage sags by an isolating current limiter
US9048654B2 (en) 2005-10-24 2015-06-02 Georgia Tech Research Corporation Reduction of inrush current due to voltage sags by impedance removal timing
US8488285B2 (en) 2005-10-24 2013-07-16 Georgia Tech Research Corporation Active current surge limiters with watchdog circuit
US8335067B2 (en) 2007-04-05 2012-12-18 Georgia Tech Research Corporation Voltage surge and overvoltage protection with sequenced component switching
US8593776B2 (en) 2007-04-05 2013-11-26 Georgia Tech Research Corporation Voltage surge and overvoltage protection using prestored voltage-time profiles
US8411403B2 (en) 2007-04-05 2013-04-02 Georgia Tech Research Corporation Voltage surge and overvoltage protection with current surge protection
US8335068B2 (en) 2007-04-05 2012-12-18 Georgia Tech Research Corporation Voltage surge and overvoltage protection using prestored voltage-time profiles
US8325455B2 (en) 2007-04-05 2012-12-04 Georgia Tech Research Corporation Voltage surge and overvoltage protection with RC snubber current limiter
US9071048B2 (en) 2007-04-05 2015-06-30 Georgia Tech Research Corporation Voltage surge and overvoltage protection by distributed clamping device dissipation
WO2011023215A1 (fr) * 2009-08-31 2011-03-03 Continental Automotive Gmbh Circuit de commande pour commande de signal de sortie
US9299524B2 (en) 2010-12-30 2016-03-29 Innovolt, Inc. Line cord with a ride-through functionality for momentary disturbances
US9270170B2 (en) 2011-04-18 2016-02-23 Innovolt, Inc. Voltage sag corrector using a variable duty cycle boost converter
DE102013220842A1 (de) * 2013-10-15 2015-04-16 Continental Automotive Gmbh Verfahren zum Schalten eines Zyklus in einer Leistungstransistorschaltung
US9438222B2 (en) 2013-10-15 2016-09-06 Continental Automotive Gmbh Method, control unit and switching device for switching a cycle in a power transistor circuit
DE102013220842B4 (de) * 2013-10-15 2021-06-17 Vitesco Technologies GmbH Verfahren zum Schalten eines Zyklus in einer Leistungstransistorschaltung

Also Published As

Publication number Publication date
AU3019699A (en) 2000-10-16

Similar Documents

Publication Publication Date Title
EP3396692B1 (fr) Système de relais électrique avec détection des défaillances
JP4740504B2 (ja) 安全スイッチング装置およびシステム
US4618906A (en) Hybrid solid state/mechanical switch with failure protection
US20150015089A1 (en) Safety Switching Apparatus With Switching Element In The Auxiliary Contact Current Path
US7610107B2 (en) Control system having verification module
WO2000059087A1 (fr) Unite de commande a tolerance temporelle
CN109565250B (zh) 软启动器、运行方法和开关系统
CN101494135B (zh) 继电器电路
US6809911B2 (en) Safety switching device for safely switching off an electrical load
WO2020110652A1 (fr) Dispositif de commande de frein électromagnétique et dispositif de commande
DK158176B (da) Kontaktindretning
ATE195608T1 (de) Sicherheitsrelais
US6683771B2 (en) Electrical energy distribution system and contactor for such a system
JP4176186B2 (ja) 機械等を起動するための回路及び起動を制御する方法
US4330810A (en) Safety switching device
US20180350541A1 (en) Modular safety relay circuit for the safe switching on and/or off of at least one machine
JP7392009B2 (ja) 電気機械システムの指示設備
JPH02129826A (ja) リレー
JP2024037163A (ja) リレー装置および少なくとも1つのリレー装置を備えた安全スイッチ装置
US20210216393A1 (en) Protection Against Internal Faults In Burners
US7579719B2 (en) Protector suitable for cascade connections and corresponding method for safety-conditioned switching
WO2016007164A1 (fr) Appareil et procédé de commande de circuiterie de commutation
RU1815619C (ru) Устройство дл управлени исполнительными механизмами
SU720448A2 (ru) Устройство дл сигнализации
SU1665355A1 (ru) Многозвенный стабилизатор тока с защитой

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: CA

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase