WO2000057989A1 - Filter cartridge - Google Patents

Filter cartridge Download PDF

Info

Publication number
WO2000057989A1
WO2000057989A1 PCT/JP2000/001999 JP0001999W WO0057989A1 WO 2000057989 A1 WO2000057989 A1 WO 2000057989A1 JP 0001999 W JP0001999 W JP 0001999W WO 0057989 A1 WO0057989 A1 WO 0057989A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
filter
fiber
band
melt
Prior art date
Application number
PCT/JP2000/001999
Other languages
French (fr)
Japanese (ja)
Inventor
Osamu Yamaguchi
Shigenori Fukuda
Original Assignee
Chisso Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corporation filed Critical Chisso Corporation
Priority to DE10084397T priority Critical patent/DE10084397T1/en
Priority to JP2000607734A priority patent/JP4604351B2/en
Priority to KR1020017012412A priority patent/KR20010110463A/en
Publication of WO2000057989A1 publication Critical patent/WO2000057989A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • B01D39/163Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin sintered or bonded

Definitions

  • the present invention relates to a filter cartridge for liquid filtration, more specifically, a band-shaped nonwoven fabric (hereinafter, abbreviated as a band-shaped melt-pro-nonwoven fabric) made of melt-produced thermoplastic fiber (hereinafter, abbreviated as a melt-pro-fiber), or melt-blown.
  • a nonwoven fabric hereinafter, abbreviated as a belt-shaped melt-blown nonwoven fabric formed by laminating and bonding at least one layer each of a nonwoven fiber aggregate made of thermoplastic fibers and a long-fiber nonwoven fiber aggregate into a perforated tube
  • the present invention relates to a filter that can be wound around a filter in a tubular shape by traversing.
  • filter cartridges in which filter media can be easily replaced, are used to remove suspended particles in industrial liquid raw materials and to remove cake flowing out of a cake filtration device. It is used in a wide range of industrial fields such as industrial water purification.
  • filter-cartridge structures have been proposed. Among them, the most typical is a wound filter and a cartridge. This is a cylindrical cartridge that is made by winding a spun yarn as a filter material around a perforated cylindrical core in a twill shape, and then fluffing the spun yarn. It's being used. Other than that, there is a non-woven fabric laminated filter cartridge. This is a cylindrical filter cartridge made by winding several types of nonwovens, such as carding nonwovens, into a perforated cylindrical core and stepwise concentrically winding them. Has been
  • the method of collecting particles in a wound-type filler cartridge is based on the spun yarn. Particles are collected by the fluff, and the particles are trapped in the gap between the spun yarns.However, it is difficult to adjust the size and shape of the fluff and the gap, so the size and amount of particles that can be collected are limited. There is a disadvantage that there is.
  • spun yarn is made from short fibers, there is a disadvantage that constituent fluids of the spun yarn fall off when a fluid flows through the filter force cartridge.
  • a small amount of a surfactant is often applied to the surface of the spinning machine in order to prevent the short fibers from being attached to the spinning machine due to static electricity or the like. Filter made from spun yarn coated with such a surfactant
  • Filtering the liquid with a cartridge may adversely affect the cleanliness of the liquid, including bubbling of the liquid, an increase in TOC (total organic carbon), COD (chemical oxygen demand), and electrical conductivity. Further, as described above, since spun yarn is made by spinning short fibers, it requires at least two steps of spinning short fibers and spinning, and as a result, the price may increase.
  • a so-called non-woven laminated filter cartridge which has a structure in which a wide non-woven fabric is wound around a perforated tubular body as it is, is called a non-woven laminated filter cartridge.
  • Non-woven fabrics are produced by entanglement of short fibers with a carding machine or air laid machine, followed by heat treatment with a hot air heater or heating roll, if necessary, or by a direct method such as melt blow method or spun bond method. Often done by non-woven fabric.
  • any machine used for nonwoven fabric production such as a card machine, an air laid machine, a hot air heater, a heating roll, a melt blow machine, a spun bond machine, etc.
  • uneven nonwoven fabric properties such as basis weight in the machine width direction. This can result in poor quality filter cartridges or higher manufacturing costs if advanced manufacturing techniques are used to eliminate unevenness.
  • Japanese Utility Model Publication No. 6-777067 has a porosity.
  • a filter cartridge has been proposed in which a filter material, which is squeezed and squeezed while twisting a tape-shaped paper while restricting its diameter to about 3 mm, is closely wound around a porous inner cylinder.
  • This method has the advantage that the winding bit of the winding can be increased outward from the porous inner cylinder.
  • Japanese Unexamined Patent Publication (Kokai) No. Hei 11-1543 discloses a method of cutting a cellulose spunbond non-woven fabric into a band-shaped body on a bobbin having a large number of fine holes and twisting the narrow hole through a narrow hole.
  • Fil Yuichi has been proposed in which the added string is wound.
  • mechanical strength is higher than that of a conventional tissue filter made of refined soft cellulose knives made of thin cellulose paper and wound in a roll, and there is no dissolution by water or elution of binder. It is thought that we can make Phil Yuichi.
  • the cellulose spunbonded nonwoven fabric used for this filter has a paper-like form, so it is too rigid, and the conventional thread-wound filter traps particles with its fluff. It is difficult to expect the collection of particles by the filtration material itself.
  • cellulose 'spunbond nonwoven fabric has a paper-like form and therefore easily swells in the liquid.Swelling reduces the strength of the filter, changes the filtration accuracy, deteriorates liquid permeability, reduces filtration life, etc. Problems can arise.
  • the bonding of fiber intersections of cellulose spunbonded nonwoven fabrics is often performed by chemical treatment or the like, but the bonding is often inadequate, causing a change in filtration accuracy or fiber. It often causes debris to fall off, making it difficult to obtain stable filtration performance.
  • Japanese Patent Publication No. Hei 4-45810 discloses a slit nonwoven fabric composed of a conjugate fiber in which 10% by weight or more of the constituent fibers is divided into 0.5 denier or less. Wound on the core tube so that the fiber density is 0.18 to 0.30 (g / cm 3 ) Phil Yuichi has been suggested.
  • this method it is said that fine particles in liquid can be captured by fibers with small fineness.
  • physical stress such as high-pressure water to divide the composite fiber, and it is difficult to uniformly divide the entire nonwoven fabric by high-pressure water.
  • the strength of the non-woven fabric may decrease due to the physical stress used during splitting, so the strength of the manufactured filter will decrease and it will be easily deformed during use, or the porosity of the filter will change Liquid permeability may be reduced.
  • the strength of the nonwoven fabric is low, it is difficult to adjust the tension when wound around the porous core tube, so that it may be difficult to finely adjust the porosity.
  • the spinning technology required to produce easily splittable fibers and the increase in operating costs during production increase the cost of manufacturing filters. It can be used in some fields where a high level of filtration performance is required, such as industry.However, pool water filtration It seems that it is difficult to use for applications that require.
  • a non-woven fiber aggregate made of melt-pro fibers, or a non-woven fiber aggregate made of melt-blown fibers and a long-fiber non-woven fiber aggregate are wrapped in a perforated cylindrical body.
  • the present inventors have found that it is possible to obtain a cylindrical filter cartridge excellent in liquid permeability, filtration life, stability of filtration accuracy, and the like by using the filter cartridge wound around the present invention, and arrived at the present invention. Disclosure of the invention
  • the present invention has the following configuration.
  • a filament cartridge comprising a band-shaped nonwoven fabric made of melt-blown thermoplastic fiber wound around a perforated cylindrical body in a twill pattern.
  • a belt-shaped nonwoven fabric obtained by laminating and joining at least one layer each of a nonwoven fiber aggregate made of melt-processed thermoplastic fiber and a long fiber nonwoven fiber aggregate is perforated.
  • the melt-blown thermoplastic fiber is a mixed fiber or a composite fiber comprising a low melting point resin and a high melting point resin, and the melting point difference between the two resins is 10 ° C or more.
  • thermoplastic fiber constituting the long-fiber nonwoven fiber aggregate is a heat-adhesive conjugate fiber comprising a low-melting resin and a high-melting resin, and a difference in melting point between the two resins is 1 ° C or more.
  • the slit width of the band-shaped nonwoven fabric is 0.5 cm or more, and the product of the slit width (cm) and the basis weight (g / m 2 ) is 200 or less (1) to (5).
  • FIG. 1 illustrates a state in which the nonwoven fabric is wound in a paste shape.
  • FIG. 2 is an explanatory diagram showing the state of particle collection by an emboss pattern of a long-fiber nonwoven fabric.
  • FIG. 3 is an explanatory view showing a state in which the long continuous fiber nonwoven fabric is wound as it is without processing.
  • FIG. 4 is an explanatory diagram showing a state in which the belt-shaped long-fiber nonwoven fabric is wound while being twisted.
  • FIG. 5 is an explanatory view showing a state in which the long nonwoven fabric band is passed through small holes to be bundled, and then wound.
  • FIG. 6 is a view showing a state in which the band-shaped long-fiber nonwoven fabric is processed into a pleated material using a pleated guide.
  • FIG. 7 is a cross-sectional view showing an example of a fold forming guide used in the present invention.
  • FIG. 8 is a cross-sectional view showing an example of a fold forming guide used in the present invention.
  • FIG. 9 is an explanatory diagram illustrating an example of a cross-sectional shape of a non-parallel pleat.
  • FIG. 10 is an explanatory diagram showing an example of the cross-sectional shape of a pleated parallel fold.
  • FIG. 11 is an explanatory view showing a positional relationship between a fold forming guide, a narrow rectangular hole, and a small hole.
  • FIG. 12 is a partially cutaway perspective view showing an example of a fold according to the present invention.
  • FIG. 13 is a perspective view of a file cartridge according to the present invention.
  • FIG. 14 is a cross-sectional view of a fill-in-a-box as per the present invention.
  • FIG. 15 is a conceptual diagram of a spunbond nonwoven fabric.
  • FIG. 16 is a conceptual diagram of a short fiber nonwoven fabric.
  • the melt blown fiber used in the present invention is a fiber obtained by a melt-pro method. It is a fiber.
  • the melt blow method is a method in which a molten thermoplastic resin extruded from a spinning hole is sprayed onto a collecting compartment or the like by a high-temperature, high-speed gas blown from the periphery of the spinning hole to obtain a fibrous web. 3, 5, 32, 800.
  • thermoplastic fiber used in the present invention any thermoplastic resin that can be melt-spun can be used.
  • examples include polypropylene, low-density polyethylene, high-density polyethylene, linear low-density polyethylene, and copolymerized polypropylene (for example, propylene as the main component, and binary with ethylene, butene-11, 4-methylpentene-11, etc.).
  • low-melting polyesters obtained by copolymerizing the acid component with terephthalic acid in addition to terephthalic acid, and polyolefin-based resins such as polyolefin resin, etc.
  • Polyester resin such as polyester resin, nylon 6, nylon 66, etc., polystyrene resin (atactic polystyrene, syndiotactic polystyrene), polyurethane elastomer, polyester elastomer, polytetrafluoroethylene Etc.
  • Thermoplastic Resin can be presented.
  • a functional resin can be used, for example, by using a biodegradable resin such as lactic acid-based polyester to make the filter cartridge biodegradable.
  • a resin that can be polymerized with a metallocene catalyst such as a polyolefin-based resin or a polystyrene-based resin
  • using a resin polymerized with a metallocene catalyst can improve nonwoven fabric strength, improve chemical resistance, reduce production energy, etc. This is preferable because the properties of the meta-mouth resin are utilized in the filter cartridge.
  • These resins may be blended and used to adjust the thermal adhesiveness and rigidity of the long-fiber nonwoven fabric.
  • polyolefin resins such as polypropylene are preferable from the viewpoint of chemical resistance and price, and they are used for liquids at relatively high temperatures.
  • a polyester resin, a polyamide resin, or a syndiotactic polystyrene resin is preferable.
  • the melt blown fiber used in the present invention may be composed of two components, a low melting point resin and a high melting point resin having a melting point difference of 10 ° C. or more.
  • a resin of three or more components as long as the effect is not impaired.
  • the flow start temperature is regarded as the melting point.
  • each fiber may be a two-component composite fiber having a cross-sectional shape such as a sheath-core type or a side-by-side type, or a two-component resin may be alternately applied from each hole of a melt blow nozzle.
  • the fibers may be discharged to form a mixed state.
  • the combination of the low melting point resin and the high melting point resin of the composite fiber is not particularly limited as long as the melting point difference is 10 ° C or more, preferably 15 ° C or more, and linear low-density polyethylene / polypropylene, High-density polyethylene / polypropylene, low-density polyethylene / polypropylene, copolymer of propylene with other polyolefins / polypropylene, linear low-density polyethylene, high-density polyethylene, low-density polyethylene / high-density polyethylene, various polyethylenes Thermoplastic polyester, propylene thermoplastic polyester, copolymerized polyester / thermoplastic polyester, polyethylene / nylon 6, polypropylene / nylon 6, nylon 6 / nylon 66, nylon 6 / thermoplastic polyester, etc.
  • the use of a combination of linear low-density polyethylene Z polypropylene is preferable because the rigidity and porosity of the long-fiber nonwoven fabric can be easily adjusted in the process of fusing the fiber intersections during the production of the nonwoven fabric.
  • a low-melting-point polyester / polyethylene terephthalate combination obtained by copolymerizing terephthalic acid and isophthalic acid with ethylene glycol can also be suitably used.
  • the average fiber diameter of the melt-pro fibers used in the present invention varies depending on the use of the filter and the type of resin, and is generally unpredictable. Is desirable. When the fineness is less than 0.5 ⁇ m, the filter of the present invention is used. Although it can theoretically be used for a cartridge, it is actually difficult to manufacture. On the other hand, if the fiber diameter exceeds 100 ⁇ m, the formation of the nonwoven fabric may become uneven when the nonwoven fabric is used later. If the average fiber diameter exceeds 50 ⁇ m, adjacent fibers may be fused together. However, there is no particular problem as long as the effect of the present invention is not impaired.
  • melt-blown fibers do not necessarily have to have a circular cross section, and may have an irregular cross-sectional shape.
  • the collection of fine particles increases as the surface area of the filter increases, so that it is possible to obtain the same liquid-permeability and high-precision filter cartridge than in the case of using a fiber having a circular cross section.
  • melt-blown fibers are made hydrophilic to improve the liquid permeability when used in aqueous liquids. Is preferred.
  • melt-blown fibers are usually bonded at a weak point due to the residual heat of the fibers themselves when they are sprayed onto the collecting conveyor net, etc., but then the heat bonding is further strengthened by appropriate heat treatment. Is also good.
  • the methods include thermocompression bonding using a device such as a hot embossing hole and a hot flat calender roll, and heat treatment such as a hot air circulation type, a heat through air type, an infrared heater type, and a vertical hot air jet type. You can use the machine. Above all, a method using a heat-through-air heat treatment machine is preferable because the production speed can be improved, the productivity is good, and the cost can be reduced.
  • the first nonwoven fabric used in the present invention is a meltblown nonwoven fabric.
  • the melt-blown non-woven fabric is an excellent non-woven fabric in terms of microfiltration, but has the disadvantage that the strength of the non-woven fabric is weaker than other non-woven fabrics.
  • the temporal change of the particle size is large. See Comparative Example 4 described later).
  • the filtration life is improved by winding the filter in a twill shape on a perforated cylindrical body (Example 1). Simply increasing the life of the filtration may be considered to increase the porosity of the filter, but doing so is not preferable because the strength of the filter is reduced and the filtration accuracy is reduced.
  • a nonwoven fabric made by laminating a nonwoven fiber aggregate consisting of thermoplastic fibers melt-blown to withstand a high filtration pressure with a long-fiber nonwoven fiber aggregate, and bonding both together that is, a strip-shaped laminated meltblown nonwoven fabric
  • the non-woven fiber aggregate referred to here is a concept that includes a nonwoven fabric where fiber intersections are bonded and a fiber aggregate where the fibers are entangled differently but not bonded. is there.
  • Non-woven fiber aggregates instead of non-woven fabrics are used as ribbon-shaped melt-melt openings.
  • the term "bonding" is preferably a bonding of fiber intersections by thermal bonding.
  • the long-fiber nonwoven fabric used in the present invention is a long-fiber nonwoven fabric obtained by a spun bond method or the like.
  • the long fibers obtained by the spun bond method are dispersed on the collection conveyor to form long fibers.
  • Any kind of thermoplastic resin that can be melt-spinnable can be used for the long fiber as in the case of the melt-pro-fibre described above, and the two components can be formed into a composite fiber or a mixed fiber, similarly to the melt-pro-fibre. .
  • This resin may be the same as or different from the melt-pro-fiber, but it may be the same as the melt-blown resin (or its low-melting resin if two components are used in the melt-blown nonwoven).
  • the use of a resin having high compatibility is desirable because the fiber intersection is stably bonded when the resin is bonded to the meltblown fiber in a later step.
  • the long-fiber nonwoven fabric made by the spunbonding method or the like has the same fiber direction as the machine direction. It will be small.
  • the fiber direction is not constant as shown in Fig. 16, so the holes formed by the fibers 27 have a shape close to a circle or square. Even if the porosity is the same as that of the long-fiber nonwoven fabric made by the spunbonding method or the like, the maximum passing particle diameter 26 is large.
  • the water permeability of the filter medium is almost determined by the porosity when the fiber diameter is the same, a filter with excellent water permeability can be obtained by using a long-fiber nonwoven fabric made by the spun bond method or the like. This effect closes the pores of filter media such as adhesive Use of a cellulose spunbond nonwoven fabric is not preferable because a small binder is used when the binder is used. In addition, the use of cellulose spunbonded nonwoven fabrics reduces the strength of the nonwoven fabrics, so that when the filtration pressure is increased due to clogging of the filler, the pores composed of fibers are easily deformed. There is.
  • the fiber diameter of the long fibers varies depending on the use of the filter cartridge and the type of the resin, so that it is generally difficult to specify a single fiber fineness of 0.6 dtex to 1 dtex.
  • a range of 0 dtex is desirable. If the fineness exceeds 100 dtex, the strength of the nonwoven fabric will decrease when a laminated nonwoven fabric is formed later. Conversely, it is considered that there is no problem in the use of the present invention even if the single yarn fineness is less than 0.6 dtex, but when spinning a fiber having a fineness smaller than 0.6 dtex by the current spunbonding method. The production efficiency is reduced, is not practical.
  • cross-sectional shape of the long fiber is not necessarily required to be a circular cross-section, and may be an irregular cross-sectional shape.
  • the method of laminating is not particularly limited, and the melt-blown nonwoven fiber aggregate and the long-fiber nonwoven fiber aggregate may be manufactured in separate steps by an appropriate method, and then they may be laminated.
  • the thermoplastic resin may be directly melt-blown and laminated on the long-fiber nonwoven fabric or long-fiber web.
  • two layers of melt blown fiber / long fiber, or three layers of long fiber / melt blown fiber / long fiber, or two types of melt-blown non-woven fabrics having different fiber diameters can be used. Examples include three layers of long fibers or four layers of long fibers / melt blown fibers / melt blown fibers, but are not limited thereto.
  • the upper limit of the number of layers is not particularly limited, but an increase in the number of layers increases the manufacturing cost, and a corresponding effect is required.
  • the laminated nonwoven fabric or web is combined to form a laminated meltblown nonwoven fabric.
  • the bonding method include thermal bonding and chemical bonding, but thermal bonding is preferred, which has excellent chemical resistance and does not cause outflow of low molecular components.
  • the method of performing this heat bonding include a method of thermocompression bonding using a device such as a hot embossing nozzle, a heat flat calendar roll, a hot air circulation type, a heat through air type, an infrared heater type, a vertical hot air jet type, etc. And a method using a heat treatment machine.
  • the method using a hot embossing nozzle is preferable because the production speed of the nonwoven fabric can be improved, the productivity is high, and the cost is low.
  • the nonwoven fabric made by the method using the hot embossed mouth has a part 1 with strong thermocompression bonding by emboss pattern and a part 2 with only weak thermocompression bonding without embossing pattern And exists. As a result, a large number of particles 3 and 4 can be collected in the part 1 where strong thermocompression bonding is performed.
  • part 2 where only weak thermocompression bonding is performed, some of the particles are collected, but the remaining particles can pass through the non-woven fabric and move to the next layer, so that the A filtering structure is preferable.
  • the area of the emboss pattern is 5 to 25%.
  • air permeability of the Merutopuro one nonwoven or laminate meltblown nonwoven 1 ⁇ 5 0 0 cm 3 / cm 2 / range of sec is desirable. If the air permeability is less than 1 cm 3 / cm 2 Z seconds, the liquid permeability of the non-woven fabric will be extremely poor, and the liquid permeability of the manufactured film may be poor. Conversely, if the air permeability is greater than 500 cm 3 / cm 2 / sec, spunbonded nonwoven fabric, short fiber nonwoven fabric, etc. can be substituted without using melt-processed nonwoven fabric, which is generally lower. Because it is costly, the value of using melt-pro-woven is reduced.
  • the weight per unit area of the melt-produced nonwoven fabric or the laminated melt-produced nonwoven fabric is preferably 5 to 200 g / m 2 . If this value is less than 5 g / m 2 , the non-woven fabric becomes uneven due to the reduced amount of fiber, or the strength of the non-woven fabric decreases, or the heat at the fiber intersection as described above. Joining may be difficult. On the other hand, if the value is more than 200 g / m 2 , the rigidity of the nonwoven fabric becomes too large, and it may be difficult to wind the nonwoven fabric around the perforated tubular body later.
  • the melt-produced nonwoven fabric or the laminated meltblown nonwoven fabric is formed into a belt shape.
  • a method of directly forming a band-shaped non-woven fabric by adjusting the spinning width can be used, but a method of slitting a wide-width non-woven fabric into a band is preferable because an inexpensive and uniform product can be obtained.
  • the slit width at this time varies depending on the basis weight of the nonwoven fabric used, but is preferably 0.5 cm or more. If the width is smaller than 5 cm, the nonwoven fabric may be cut at the time of slitting, and it may be difficult to adjust the tension when winding the band-shaped nonwoven fabric later in a twill shape.
  • the upper limit of the slit width differs depending on the basis weight, and the value of the slit width X basis weight is preferably 200 cm ⁇ g / m 2 or less. If this value exceeds 200 cmg / m2, the rigidity of the nonwoven fabric becomes too strong, and it becomes difficult to wind the nonwoven fabric around the perforated tubular body later, and the amount of fibers increases. It can be difficult to wind tightly because it is too long.
  • the preferable ranges of the basis weight and the nonwoven fabric width are the same as in the case where the band is formed by slitting.
  • band-shaped nonwoven fabric The belt-shaped melt-pro nonwoven fabric or laminated melt-produced nonwoven fabric (hereinafter abbreviated as “band-shaped nonwoven fabric”) may be processed by a method described later and then wound in a twill shape. It may be wound as it is without.
  • Figure 3 shows an example of the manufacturing method in this case.
  • the winder used for a normal wound filter or cartridge can be used for the winding machine.
  • the supplied nonwoven fabric 5 passes through a traverse guide 6 having a narrow hole that moves while traversing, and then is wound up on a perforated cylindrical body 8 attached to a bobbin 7 to fill a cartridge 9.
  • the filters created by this method will be very dense, and will be a very accurate filter. However, in this method, it is difficult to adjust the filtration accuracy by changing the manufacturing conditions.
  • Fig. 4 shows an example of the manufacturing method.
  • a winder used for a normal thread-wound fill cartridge can be used for the winding machine.
  • the traverse guide 10 preferably has a larger pore diameter than that shown in FIG.
  • the number of twists at this time is preferably in the range of 50 to 100 times per lm of the band-shaped nonwoven fabric. If this value is less than 50 times, the effect of adding twist is hardly obtained. On the other hand, if the value is more than 100 times, the produced filter-cartridge becomes inferior in liquid permeability, which is not preferable.
  • the above-mentioned band-shaped nonwoven fabric is bundled by an appropriate method and then wound around a perforated cylindrical body.
  • the band-shaped nonwoven fabric may be simply bundled through small holes or the like, or the band-shaped nonwoven fabric may be preformed into a pleated shape through small holes or the like after being preformed with a fold forming guide. You may.
  • the winding pattern can be changed by adjusting the ratio of the traverse guide traverse speed to the bobbin rotation speed, so that filter cartridges with various performances can be made from the same type of nonwoven fabric. it can.
  • FIG. 5 shows an example of a manufacturing method in which a small hole is simply passed through as a method of converging a band-shaped nonwoven fabric.
  • the winder used for the ordinary thread-wound fill cartridge can be used for the winding machine.
  • the band-shaped nonwoven fabric is bundled by making the holes of the traverse guide 11 small.
  • a small hole guide may be provided on the yarn path before the traverse guide 11.
  • the diameter of the small holes depends on the basis weight and width of the band-shaped nonwoven fabric used, but is preferably in the range of 3 mm to 10 mm. If the diameter is smaller than 3 mm, the friction between the band-shaped nonwoven fabric and the small holes increases, and the winding tension becomes too high. If this value is larger than 10 mm, the convergence size of the band-shaped nonwoven fabric becomes unstable.
  • Fig. 6 shows a partially cutaway perspective view of an example of a manufacturing method in the case of preforming the cross-sectional shape of the band-shaped nonwoven fabric with the fold forming guide and then processing it into a fold through small holes.
  • a winder used for a normal thread-fill type cartridge can be used for the winding machine.
  • the band-shaped nonwoven fabric 5 is preformed into a cross-sectional shape through a fold forming guide 16, and then formed into a pleated material 15 through a small hole 14.
  • it is taken in the direction of A and wound up into a perforated cylindrical body through a traverse guide, it becomes a filter cartridge.
  • the fold formation guide is usually made by processing a round bar with an outer diameter of about 3 mm to 10 mm, and then applying a fluororesin process to the surface to prevent friction with the nonwoven fabric.
  • An example of the shape is shown in Figs.
  • the plication guide 16 consists of an external control guide 12 and an internal control guide 13.
  • the shape of the fold forming guide 16 is not particularly limited, but is preferably a shape in which the cross-sectional shape of the fold formed from this guide is converged so that the folds are not parallel.
  • FIGS. 9A, 9B, and 9C One example of the cross-sectional shape of the pleated material thus produced is shown in FIGS. 9A, 9B, and 9C, but is not limited thereto.
  • the formation of folds that are converged so that at least a portion of the folds are non-parallel is the most preferred embodiment of the present invention.
  • the filtration pressure is applied to the pleats in a direction perpendicular to the arrow as shown by the arrow, the shape retention force of the pleats is strong, and the filtration function of the original pleats can be maintained.
  • the cross-sectional shape of the folds is non-parallel due to the superior ability to suppress the pressure drop of the fill cartridge compared to the case where the folds are parallel.
  • the number of guides is not necessarily one, but if several pieces of guides of different shapes and sizes are arranged in series to gradually change the cross-sectional shape of the band-shaped nonwoven fabric, pleated materials Since the cross-sectional shape becomes constant depending on the place, it is preferable because there is no unevenness in quality.
  • the final number of the pleated material is preferably 4 to 50, more preferably? ⁇ 45.
  • the number of folds is less than 4, the effect of expanding the filtration area by providing folds is poor.
  • the number of folds exceeds 50, the folds become too small, making it difficult to produce, and easily affecting the filtration function.
  • the number of pleats is further reduced by passing through a narrower rectangular hole 18. It can be deformed to be numerous and the pleats can be made non-parallel at random.
  • the cross-sectional shape of the folds can be fixed by heating the folds 15 after passing through the small holes 14 with hot air or infrared rays. This step is not always necessary, but if the cross-sectional shape of the pleated material is complicated, or if a highly rigid band-shaped nonwoven fabric is used, the cross-sectional shape may collapse from the designed shape. However, it is preferable to perform such heating processing.
  • the cross-sectional area of the band-shaped nonwoven fabric bundle is the minimum area of an oval shape 19 containing the band-like nonwoven fabric bundle 24 ⁇ Defines the area of a polygon that is within degrees. Then, the band-shaped nonwoven fabric bundle is cut into a predetermined length, for example, 100 times the square root of the cross-sectional area, and is defined by the following equation.
  • the porosity of the banded nonwoven fabric bundle defined by this formula is preferably 60 to 95%, more preferably 85 to 92%.
  • this value By setting this value to 60% or more, the band-shaped nonwoven fabric bundle can be prevented from becoming unnecessarily dense, and the pressure loss when used as a filler can be sufficiently suppressed. In a bundle Particle collection efficiency can be further improved. Further, by setting this value to 95% or less, it becomes easy to wind later, and when used as a filter cartridge, the deformation of the filter medium due to the load pressure can be further reduced. Examples of the method of adjusting this include adjusting the winding tension and adjusting the guide shape such as a fold forming guide.
  • the band-shaped nonwoven fabric bundle when producing the band-shaped nonwoven fabric bundle, granular activated carbon, an ion exchange resin or the like may be mixed and processed as long as the effects of the present invention are not impaired.
  • the band-shaped nonwoven fabric in order to fix the granular activated carbon or the ion exchange resin, the band-shaped nonwoven fabric may be adhered with a suitable binder before being bundled or added to the folds, or after being processed. After mixing ion-exchange resin and the like, heating may be performed to thermally bond with the constituent fibers of the band-shaped nonwoven fabric.
  • the band-shaped nonwoven fabric bundle produced by the above-described method is not necessarily required to be a continuous process if it is devised so that the cross-sectional shape does not collapse. May be wound up.
  • a perforated cylindrical body having a diameter of about 100 to 40 mm and a length of about 100 to 100 mm is mounted on the bobbin of this winder, and the winder is attached to the end of the perforated cylindrical body. Fix the band-shaped non-woven fabric (or band-shaped non-woven fabric bundle) through the yarn path.
  • the perforated cylindrical body serves as the core material of the filter cartridge, and its material and shape are not particularly limited unless it has strength enough to withstand the external pressure during filtration and the pressure loss is not extremely high.
  • the speed may be set to 1000 to 200 rpm, and the winding speed may be adjusted while adjusting the feeding speed and applying tension.
  • the porosity of the filter cartridge can be changed by the tension at this time.
  • the porosity of the inner layer can be increased by adjusting the tension at the time of winding, and the porosity can be increased as the middle layer and the outer layer are wound.
  • a filter cartridge having an ideal filtration structure can be provided.
  • the filtration accuracy can also be changed by adjusting the ratio of the traverse cam traverse speed to the bobbin rotation speed to change the winding pattern.
  • the pattern can be attached by using a conventional thread-wound filter, which is already known, and the pattern can be expressed by the number of winds when the filter length is constant.
  • the interval 20 between a certain yarn (in the case of the present invention, a band-shaped nonwoven fabric) and the yarn wound on the layer immediately below it is large, the filtration accuracy becomes coarse, and conversely, when it is small, the filtration accuracy becomes fine.
  • the band-shaped nonwoven fabric is wound to an outer diameter of about 1.5 to 3 times the outer diameter of the perforated tubular body 8 to form a fill-in-one-tridge shape. This may be used as it is as the filter cartridge 9 or it may be attached to the end face of the filter by attaching a gasket of foamed polyethylene of about 3 mm in thickness to the nozzle. You may increase the sex.
  • the porosity of the thus-filled film is preferably in the range of 65 to 85%. If this value is less than 65%, the fiber density becomes too high and the liquid permeability decreases. Conversely, if this value is greater than 85%, the filter-cartridge strength is reduced, and problems such as deformation of the filter at high filtration pressure tend to occur.
  • the liquid permeability can be improved.
  • the number of cuts is preferably about 5 to 100 per 10 cm of the band-shaped nonwoven fabric, and when a hole is formed, the ratio of the area of the opening is preferably about 10 to 80%.
  • the filtration performance can be adjusted by using a plurality of strip-shaped nonwoven fabrics when winding or by winding the nonwoven fabric together with other yarns such as spun yarns.
  • the band-shaped nonwoven fabric 5 is wound around the perforated tubular body 8 by traversing to a certain diameter to form an inner layer 21. Subsequently, a wide nonwoven fabric is formed.
  • a microfiltration layer 22 is formed by winding around the inner layer to form a microfiltration layer 22. Subsequently, a band-shaped nonwoven fabric 5 is wrapped around the inner layer again by traversing to form an outer layer 23, and the nonwoven fabric is wound. You can also make a bridge at Phil in the evening. If not put wind-wide nonwoven fabric of Ri to wind-shape may particle maximum outflow diameter when made coarse accuracy of the filter cartridge by widening the yarn spacing becomes extremely large force 5, wide non When the woven fabric is wound in a wound form, the maximum particle outflow system can be fine-tuned as necessary.
  • Example 1 Example 1
  • the nonwoven fabric was cut out so that the area of the nonwoven fabric became 6 25 cm 2 , the weight was measured, and the weight was converted into the weight per square meter to obtain the basis weight (g / m 2 ).
  • the thickness of the cut nonwoven fabric was arbitrarily measured at 10 points, and the average of 8 points excluding the maximum value and the minimum value was defined as the thickness (m) of the nonwoven fabric.
  • the fiber diameter was measured at random, and the average value was defined as the fiber diameter ( ⁇ m ) of the nonwoven fabric.
  • the fineness (dtex) is calculated by using the obtained fiber diameter and the density (g / cubic centimeter) of the nonwoven fabric raw material resin as follows. Asked from. In the case where two or more components were used, the weight average value of the density of each component was used.
  • the air permeability of the nonwoven fabric before slitting was measured at 20 points for each nonwoven fabric according to the JISL 1106-A method, and the average value was determined. (Unit: cm 3 Z cm 2 / sec)
  • the cross-sectional shape of the pleats After fixing the cross-sectional shape of the pleats with an adhesive, it was cut at five locations at arbitrary positions, and the cross-section was photographed with a microscope. From the photograph, the number of folds in the band-shaped nonwoven fabric was counted as one for both the mountain fold and the valley fold, and one half of the average number of the cut five points was taken as the number of folds.
  • the cross-section was cut at five arbitrary positions, and the cross-section was photographed with a microscope. The photograph was image-analyzed to determine the cross-sectional area of the band-shaped nonwoven fabric bundle. A band-shaped nonwoven fabric bundle at another location was cut to a length of 10 cm, and the porosity was calculated from the weight and the cross-sectional area obtained earlier using the following equation.
  • Porosity of filter / cartridge The outer diameter, inner diameter, length, and weight of the filter cartridge were measured, and the porosity was determined using the following equation.
  • the outer diameter of the perforated tubular body is used for the inner diameter value, and the weight value is calculated by subtracting the weight of the perforated tubular body from the weight of the filter. The subtracted value was used.
  • test powder I (abbreviated as JIS 8; median diameter: 6.6 to 8.6 ⁇ m) and seven types (abbreviated as JIS 7) specified in JISZ8901
  • JIS 8 The mixture obtained by continuously adding 0.4 g / min per minute of a cake obtained by mixing the mixture of 27 to 31) at a weight ratio of 1: 1, collecting the undiluted solution and the filtrate 5 minutes after the start of the addition, and adjusting to a predetermined magnification After dilution, the number of particles contained in each liquid was measured with a light-blocking particle detector to calculate the initial collection efficiency at each particle size. Further, by interpolating the values, a particle size showing a trapping efficiency of 80% was obtained.
  • the cake was further added, and when the pressure loss of the fill cartridge reached 0.2 MPa, the stock solution and the filtrate were collected in the same manner, and the collected particle size at 0.2 MPa was measured. I asked. The time from the start of the addition of the cake to reaching 0.2 MPa was defined as the filtration life. If the pressure difference did not reach 0.2 MPa even when the filtration life reached 1000 minutes, the measurement was stopped at that point.
  • melt-pro nonwoven fabric As a melt-pro nonwoven fabric, the basis weight is 20 gZm 2 , the average fiber diameter is 3 m, the thickness is 200 m, the air permeability is 37 cm 3 / cm 2 / sec, and the fiber intersection is weakly adhered due to the residual heat of spinning.
  • a polypropylene meltblown nonwoven fabric was used.
  • the perforated cylindrical body is 30 mm in inner diameter, 34 mm in outer diameter, 250 mm in length, and is injection molded from polypropylene with 180 holes of 6 mm square. Product was used.
  • the meltblown nonwoven fabric was slit to a width of 50 mm to obtain a belt-like nonwoven fabric.
  • the band-shaped nonwoven fabric is wound around the perforated tubular body without focusing, etc., and the winding number is adjusted so that the interval between the band-shaped nonwoven fabrics becomes 0 mm at the initial spindle speed of 150 rpm. Then, it was wound up to an outer diameter of 62 mm on a perforated cylindrical body to obtain a cylindrical filter cartridge 9 as shown in FIG.
  • a fill cartridge was obtained in the same manner as in Example 1 except that the number of winds was changed so that the interval between the band-shaped nonwoven fabrics was 1 mm. However, the filtration performance of the filter was not much different from that of the filter shown in Example 1. The reason why there was no difference from the file shown in Example 1 is probably because the band-shaped nonwoven fabric was not bundled and the influence of the number of winds did not occur.
  • Example 2 The same band-shaped nonwoven fabric and perforated tubular body as in Example 1 were used. A guide with a circular hole with a diameter of 5 mm is installed in the yarn path up to the winder to make the belt-shaped nonwoven fabric approximately 5 m in diameter. m, and wound around a perforated cylindrical body in the same manner as in Example 1 to obtain a cylindrical filter. The filtration performance of this filter was almost the same as the filter shown in Example 1.
  • a cylindrical filter cartridge was obtained in the same manner as in Example 3 except that the number of winds was adjusted so that the interval between the band-shaped nonwoven fabrics was 1 mm.
  • This filter had lower accuracy, better water permeability, and longer filtration life than the filter shown in Example 3.
  • Example 3 Except that the number of winds was adjusted so that the interval between the belt-shaped nonwoven fabrics was 2 mm, a cylindrical fill strip was obtained in the same manner as in Example 3. This filter was a coarser filter than the filter shown in Example 4.
  • a cylindrical filter cartridge was obtained in the same manner as in Example 3 except that the number of winds was adjusted so that the interval between the band-shaped nonwoven fabrics was 2 mm.
  • This filter was a coarser filter than the filter shown in Example 5.
  • Example 2 The same nonwoven fabric as in Example 1 was used as the meltblown nonwoven fabric.
  • a polypropylene spunbonded nonwoven fabric having a basis weight of 22 g / m, a thickness of 200 ⁇ m, a fineness of 2 dtex, and a fiber intersection hot-pressed with a hot embossing roll was used as the long-fiber nonwoven fabric.
  • Each one of the melt-blown nonwoven fabric and the long-fiber nonwoven fabric was overlapped, and the nonwoven fabric intersection was adhered with an enboss roll to produce a laminated melt-blown nonwoven fabric.
  • This laminated melt blown nonwoven fabric was slit into a width of 50 mm to obtain a belt-shaped nonwoven fabric.
  • a cylindrical filter cartridge was obtained in the same manner as in Example 4.
  • the initial collection particle size of this filter was similar to that of Example 4 shown in Example 4, but was excellent with little change in accuracy.
  • Example 2 The same nonwoven fabric used in Example 1 was used as the meltblown nonwoven fabric .
  • the long-fiber nonwoven fabric a polypropylene spanbond nonwoven fabric having a basis weight of 22 g / m 2 , a thickness of 200 ⁇ m, and a fineness of 2 dtex, and having a fiber intersection thermocompression-bonded with a hot boss opening was used. . These were superposed in the order of long-fiber nonwoven fabric / melt-pro-nonwoven fabric / long-fiber nonwoven fabric, and the nonwoven fabric intersections were bonded with embossing rolls to produce a laminated melt-blown nonwoven fabric.
  • This laminated melt-produced nonwoven fabric was slit to a width of 50 mm to obtain a belt-shaped nonwoven fabric.
  • a cylindrical fill cartridge was obtained in the same manner as in Example 4.
  • the initial collection particle size of this filter was similar to that of the filter shown in Example 4, the change in accuracy was much smaller than that of the filter shown in Example 7 and was excellent.
  • melt nonwoven fabric Two types were used as the melt nonwoven fabric, the same as the nonwoven fabric used in Example 1, and the same nonwoven fabric as in Example 1 except that the average fiber diameter was changed.
  • long-fiber nonwoven fabric a polypropylene spunbond nonwoven fabric with a basis weight of 22 g / thickness of 200 m, a fineness of 2 dtex, and a fiber intersection point which is thermocompression-bonded with a hot embossed mouth was used. .
  • a cylindrical filter cartridge was obtained in the same manner as in Example 8 except that the raw material resin of the melt-blown nonwoven fabric and the long-fiber nonwoven fabric was nylon 66. This filter exhibited almost the same filtration performance as the filter of Example 8.
  • Example 1 1 A cylindrical fill cartridge was obtained in the same manner as in Example 8 except that the raw material resin of the melt-blown nonwoven fabric and the long-fiber nonwoven fabric was polyethylene terephthalate. This filter exhibited almost the same filtration performance as the filter of Example 8.
  • a cylindrical melt force cartridge was obtained in the same manner as in Example 8 except that the laminated melt-blown nonwoven fabric was slit to a width of 10 mm and the number of windings was adjusted so that the yarn interval was 1 mm.
  • the performance of this fill was the same as that of Example 8. However, the time required for winding was longer than that of the filter shown in Example 4.
  • a cylindrical filter cartridge was obtained in the same manner as in Example 8, except that the laminated melt-produced nonwoven fabric was slit to a width of 100 mm and the number of windings was adjusted so that the yarn interval became 0 mm.
  • This filter 1 was a filter having a higher accuracy than the filter shown in the eighth embodiment. The reason why the accuracy of the filling was low even though the yarn spacing was 0 mm was because the banded nonwoven fabric became extremely thick.
  • a melt-blown non-woven fabric that uses nozzles that can alternately discharge different resins for each hole, a high-density polyethylene for the low-melting component, and a mixed-melt non-woven fabric that uses a high-melting-point component of polypropylene at a weight ratio of 5: 5 did.
  • the same nonwoven fabric as the filter shown in Example 7 was used for the long-fiber nonwoven fabric.
  • a cylindrical fill cartridge was obtained in the same manner as in Example 8. This filter was a finer filter than Example 8, and was an excellent filter with little change in accuracy.
  • Example 14 Except that linear low-density polyethylene (melting point 125 ° C) was used as the low-melting point component, a cylindrical-shaped filler was obtained in the same manner as in Example 14.
  • This filter has the same filtering accuracy as the filter shown in Example 14 and has the same filtering accuracy. They had better water permeability than the fil of Example 14 shown in Example 14.
  • Example 8 The same nonwoven fabric as in Example 1 was used as the melt-produced nonwoven fabric.
  • a sheath-core composite fiber having a low-melting-point component of high-density polyethylene and a high-melting-point component of polypropylene having a weight ratio of 5: 5 was used as the constituent fibers of the long-fiber nonwoven fabric.
  • a cylindrical fill cartridge was obtained in the same manner as in Example 8.
  • This filter was a filter having the same filtration accuracy as the filter shown in Example 8, and the change in accuracy was smaller than that of the filter shown in Example 8.
  • Example 15 The same nonwoven fabric used in Example 15 was used as the meltblown nonwoven fabric.
  • the same long-fiber nonwoven fabric as that of Example 16 was used.
  • a cylindrical filter cartridge was obtained in the same manner as in Example 8. This filter has the same filtration accuracy as the filters shown in Examples 15 and 16 and has less change in accuracy than the filters shown in Examples 15 and 16. Was.
  • a cylindrical filter cartridge was obtained in the same manner as in Example 16 except that a strong linear pressure was applied during winding of the filter cartridge to make the porosity of the filter 63%. Although the filtration performance of this filter was superior to that of the comparative example described later, the filter had a larger initial pressure loss and a shorter filtration life than the filter of Example 16. This is probably because the porosity was low and the fiber density was too high.
  • a cylindrical filter cartridge was obtained in the same manner as in Example 16 except that the filter porosity was set to 88% by winding the band-shaped nonwoven fabric bundle with extremely low tension. Although the filtration performance of this filter was superior to the filter shown in the comparative example described later, the filter had a shorter filtration life than the filter of Example 16. The reason is that the filter porosity is high, This is probably because the filter medium was squeezed and the pressure loss increased rapidly.
  • Example 16 I got a Phil Yuichi cartridge.
  • the filtration performance of this filter was higher than that of the comparative example described later.
  • the initial pressure loss was higher than that of the filter shown in Example 16 and the filtration life was shorter. This is probably because the porosity of the banded nonwoven fabric bundle was low and the fiber density was too high.
  • a cylindrical filter cartridge was obtained in the same manner as in Example 16 except that the thermocompression bonding method at the fiber intersection was changed from a hot embossing roll to a hot air circulation type heating device. This filter had the same performance as the filter shown in Example 16.
  • Example 23
  • a cylindrical filter cartridge was obtained in the same manner as in Example 16 except that the band-shaped nonwoven fabric was not bundled, but instead twisted 100 times per lm.
  • This filter was a filter having the same performance as the filter 1 shown in Example 8.
  • Example 2 4
  • the band-shaped nonwoven fabric was processed into a cross-sectional shape as shown in FIG. 9 (A) to obtain a pleated material having four folds. Except that the folds were used in place of the bundled nonwoven, In the same manner as in Example 16, a cylindrical filter cartridge was obtained.
  • This filter has the same level of accuracy as the filter shown in the embodiment 16, but the change in accuracy is smaller than that of the filter shown in the embodiment 16.
  • the band-shaped nonwoven fabric was processed into a cross-sectional shape as shown in FIG. 8 (A) to obtain a pleated material having seven folds.
  • a cylindrical filter cartridge was obtained in the same manner as in Example 16 except that the pleated material was used.
  • This filter 1 had the same initial collection particle size as the filter 1 shown in Example 16 but had little change in accuracy.
  • the band-shaped nonwoven fabric was processed into a cross-sectional shape as shown in FIG. 8 (C) to obtain a pleated material having 15 folds.
  • a cylindrical fill cartridge was obtained in the same manner as in Example 16 except that the pleated material was used.
  • This filter had the same initial collection particle size as the filter shown in Example 16 but had little change in accuracy and little pressure loss.
  • a cylindrical filter was obtained in the same manner as in Example 16 except that the number of folds in the band-shaped nonwoven fabric was changed to 41.
  • This filter had the same initial collection particle size as the filter shown in Example 16 but the change in accuracy was even smaller and the pressure loss was smaller than that of the filter shown in Example 25. Was something.
  • Comparative Example 2 A cylindrical filter force cartridge was obtained in the same manner as in Example 3 except that one kind of filter paper specified in JISP 3801, which was cut to a width of 50 mm, was used instead of the band-shaped nonwoven fabric.
  • the initial collection particle size of this filter was coarser than that of the filter shown in Example 3 and was about the same as that of the filter shown in Example 5, but the initial pressure loss was large, and However, the trapped particle size at the time of pressure rise also changed greatly from the initial stage. Furthermore, the filtration life was extremely short. Also, in the initial filtrate, the filter medium was found to fall off.
  • Polypropylene and fineness 4 consisting of a high density polyethylene dtex, 8 split web of at type split short fibers card machine, fibers divided and fiber entanglement is the basis weight 2 2 g / m 2 divided by the high-pressure water working short fibers
  • a non-woven fabric was obtained. Observation of this nonwoven fabric with an electron microscope and image analysis showed that 50% by weight of all the fibers were divided into a fineness of 0.5 dtex.
  • a cylindrical fill cartridge was obtained in the same manner as in Example 3 except that this nonwoven fabric was cut to a width of 50 mm and used instead of the band-shaped nonwoven fabric. This fill filter was coarser than the filter filter shown in Example 3, and the change in accuracy was large. In addition, some bubbling was seen in the initial filtrate, and fiber shedding was also observed.
  • Example 1 The melt-blown nonwoven fabric used in Example 1 was slit to a width of 25 cm, and was wound around a perforated tubular body at a linear pressure of 1.5 kg / m as shown in Fig. 1 to form a cylindrical filter. Evening cartridge was obtained. Although the initial collection particle size of this filter was almost the same as that of Example 1, the collection particle size at 0.2 MPa was large. Also, the filtration life was slightly shorter than that of Example 1.
  • Example 6 3 83 15 0.007 20 80 ⁇ ⁇ Hex Example 7 1 82 7 0.025 8.4 20 ⁇ ⁇ Lol Example 8 1 82 7 0. 025 7-7 21 ⁇ ⁇
  • the filter cartridge of the present invention while maintaining the excellent filtration accuracy, which is an advantage of the melt-blown nonwoven fabric, changes over time in the filtration ability based on the weakness of the fiber strength, which is its weak point, in a Taya shape.
  • This is a filter in which the non-woven fabric unevenness is reduced by winding a band-shaped non-woven fabric into a twill shape.
  • the filtering pressure in the vertical direction of the fold is lower than that of the pleated material that is parallel. Since it is hard to receive, the folds can be stably maintained without being crushed, and the filtration performance can be maintained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtering Materials (AREA)

Abstract

A filter cartridge which comprises a porous cylindrical body and, wound cylindrically in a twill manner around it, a strap of non-woven fabric comprising melt blown thermoplastic fibers or a strap of non-woven fabric prepared by laminating at least one layer of a collection of non-woven fibers comprising melt blown thermoplastic fibers and at least one layer of a collection of non-woven long fibers and bonding them together. The filter cartridge is excellent in liquid permeability, filtration life, the stability in precision of filtration and the like.

Description

明 細 書 フィルター力一トリッジ 技術分野  Description Filter technology
本発明は、 液体濾過用フィル夕一カートリッジ、 詳しくはメルトプロ一された 熱可塑性繊維 (以下メルトプロ一繊維と略する) からなる帯状の不織布 (以下帯 状メルトプロ一不織布と略する) 、 あるいはメルトブローされた熱可塑性繊維か らなる不織繊維集合体と長繊維不織繊維集合体とを少なくとも各 1層ずつ積層し て結合した帯状の不織布 (以下帯状積層メルトブロー不織布と略する) を、 有孔 筒状体の周りに綾振りで筒状に巻き付けたフィルタ一力一トリッジに関する。  The present invention relates to a filter cartridge for liquid filtration, more specifically, a band-shaped nonwoven fabric (hereinafter, abbreviated as a band-shaped melt-pro-nonwoven fabric) made of melt-produced thermoplastic fiber (hereinafter, abbreviated as a melt-pro-fiber), or melt-blown. A nonwoven fabric (hereinafter, abbreviated as a belt-shaped melt-blown nonwoven fabric) formed by laminating and bonding at least one layer each of a nonwoven fiber aggregate made of thermoplastic fibers and a long-fiber nonwoven fiber aggregate into a perforated tube The present invention relates to a filter that can be wound around a filter in a tubular shape by traversing.
現在、 流体を浄化するためのさまざまなフィルターが開発、 生産されている。 中でも、 濾材の交換が容易であるカートリッジ型のフィル夕一 (以下フィルタ一 カートリッジと略す) は、 工業用液体原料中の懸濁粒子の除去、 ケ一ク濾過装置 から流出したケ一クの除去、 工業用水の浄化など産業上の幅広い分野で使用され ている。 At present, various filters for purifying fluids are being developed and manufactured. Above all, cartridge type filters (hereinafter abbreviated as filter cartridges), in which filter media can be easily replaced, are used to remove suspended particles in industrial liquid raw materials and to remove cake flowing out of a cake filtration device. It is used in a wide range of industrial fields such as industrial water purification.
フィルタ一カートリッジの構造は従来からいくつかの種類が提案されている。 中でも最も典型的なのは糸巻き型フィルタ一力一トリッジである。 これは濾材と なる紡績糸を有孔円筒状のコアに綾状に巻き付けた後、 紡績糸を毛羽立たせて作 られる円筒形状のフィル夕一カートリッジであり、 製造が容易で安価なことから 古くから利用されている。 それ以外には不織布積層型フィルタ一カートリッジが ある。 これは有孔円筒状のコアにカーディング不織布などの不織布を数種類、 段 階的に同心円状に巻回して作られる円筒形状のフィルターカートリッジであり、 最近の不織布製造技術の発達により数種が実用化されている。  Several types of filter-cartridge structures have been proposed. Among them, the most typical is a wound filter and a cartridge. This is a cylindrical cartridge that is made by winding a spun yarn as a filter material around a perforated cylindrical core in a twill shape, and then fluffing the spun yarn. It's being used. Other than that, there is a non-woven fabric laminated filter cartridge. This is a cylindrical filter cartridge made by winding several types of nonwovens, such as carding nonwovens, into a perforated cylindrical core and stepwise concentrically winding them. Has been
しかしながら、 これらのフィルタ一力一トリッジにもいくつかの欠点がある。 例えば、 糸卷き型フィル夕一カートリッジの粒子捕集方法は、 紡績糸から発生す る毛羽で粒子を捕集し、 また、 紡績糸同士の間隙に粒子をからめ取るというもの であるが、 毛羽および間隙の大きさや形の調整が難しいため、 捕集できる粒子の 大きさや量に限界があるという欠点がある。 また、 紡績糸は短繊維から作られる ため、 フィルター力一トリッジに流体が流れると紡績糸の構成繊維が脱落すると いう欠点がある。 さらには、 紡績糸を製造する際には、 原料となる短繊維が紡績 機に静電気等の原因で付着することを防ぐため、 表面に微量の界面活性剤を塗布 することが多い。 このような界面活性剤を塗布した紡績糸から作られたフィルタHowever, these filters have several disadvantages. For example, the method of collecting particles in a wound-type filler cartridge is based on the spun yarn. Particles are collected by the fluff, and the particles are trapped in the gap between the spun yarns.However, it is difficult to adjust the size and shape of the fluff and the gap, so the size and amount of particles that can be collected are limited. There is a disadvantage that there is. In addition, since spun yarn is made from short fibers, there is a disadvantage that constituent fluids of the spun yarn fall off when a fluid flows through the filter force cartridge. Furthermore, when producing spun yarn, a small amount of a surfactant is often applied to the surface of the spinning machine in order to prevent the short fibers from being attached to the spinning machine due to static electricity or the like. Filter made from spun yarn coated with such a surfactant
—カートリッジで液体を濾過した場合、 液の泡立ち、 T O C (全有機炭素量) 、 C O D (化学的酸素要求量) 、 電気伝導度の増加など液の清浄度に悪影響を与え ることがある。 また、 紡績糸は先述したように短繊維を紡績して作るため、 短繊 維の紡糸、 紡績という少なくとも 2段階の工程を要するため、 結果として価格が 高くなることがある。 — Filtering the liquid with a cartridge may adversely affect the cleanliness of the liquid, including bubbling of the liquid, an increase in TOC (total organic carbon), COD (chemical oxygen demand), and electrical conductivity. Further, as described above, since spun yarn is made by spinning short fibers, it requires at least two steps of spinning short fibers and spinning, and as a result, the price may increase.
また、 図 1に示すような、 有孔筒状体の周りに広幅の不織布をそのままのり巻 き状に巻き付けた構造のフィル夕一、 いわゆる不織布積層型フィルターカートリ ッジは、 その性能が不織布によって決まる。 不織布の製造は、 短繊維をカード機 やエアレイ ド機で交絡させた後、 必要に応じて熱風加熱機や加熱ロールなどで熱 処理をして作る方法、 あるいはメルトブロー法、 スパンボンド法などの直接不織 布にする方法により行なわれることが多い。 しかし、 カード機、 エアレイ ド機、 熱風加熱機、 加熱ロール、 メルトブロー機、 スパンボンド機など不織布製造に使 われるいずれの機械も機械幅方向で目付などの不織布物性のむらが生じることが 多い。 そのためにフィルターカートリッジが品質不良となったり、 あるいはむら をなくすために高度な製造技術を使用すると製造コストが高くなることがある。 また、 不織布積層型フィルターカートリッジには 1品種につき 2〜6種類程度の 不織布を使用する必要があり、 さらにはフィルタ一力一トリッジの品種に応じて 異なる不織布を使用する必要があるため、 そのことによっても製造コストが高く なることがある。  Also, as shown in Fig. 1, a so-called non-woven laminated filter cartridge, which has a structure in which a wide non-woven fabric is wound around a perforated tubular body as it is, is called a non-woven laminated filter cartridge. Decided. Non-woven fabrics are produced by entanglement of short fibers with a carding machine or air laid machine, followed by heat treatment with a hot air heater or heating roll, if necessary, or by a direct method such as melt blow method or spun bond method. Often done by non-woven fabric. However, any machine used for nonwoven fabric production, such as a card machine, an air laid machine, a hot air heater, a heating roll, a melt blow machine, a spun bond machine, etc., often has uneven nonwoven fabric properties such as basis weight in the machine width direction. This can result in poor quality filter cartridges or higher manufacturing costs if advanced manufacturing techniques are used to eliminate unevenness. In addition, it is necessary to use about 2 to 6 types of non-woven fabric for each type of non-woven fabric laminated filter cartridge.Furthermore, it is necessary to use different non-woven fabrics for each type of filter. May also increase manufacturing costs.
そのような従来のフィル夕一力一トリッジの問題点を解決するため、 いくつか の方法が提案されている。 例えば実公平 6— 7 7 6 7号公報には、 多孔性を有す るテープ状の紙に撚りを加えながら押し潰して絞り込みその直径を 3 mm程度に 規制した濾過素材を、 多孔性内筒に密接綾で巻回した形のフィルタ一カートリッ ジが提案されている。 この方法には卷回の卷きビツチを多孔性内筒より外に向か うに従って大きくすることができるという特長がある。 しかし、 濾過素材を押し 潰して絞り込む必要があり、 そのため粒子の捕集は主として濾過素材の巻きピッ チ間で行われるので、 従来の紡績糸を使用した糸巻き型フィル夕一がその毛羽で 粒子を捕集していたような、 濾過素材そのものによる粒子捕集が期待しにくい。 それにより、 フィル夕一が表面閉塞して濾過ライフが短くなつたり、 あるいは通 液性に劣ることがある。 Several methods have been proposed to solve such problems of the conventional fill cartridge. For example, Japanese Utility Model Publication No. 6-777067 has a porosity. A filter cartridge has been proposed in which a filter material, which is squeezed and squeezed while twisting a tape-shaped paper while restricting its diameter to about 3 mm, is closely wound around a porous inner cylinder. This method has the advantage that the winding bit of the winding can be increased outward from the porous inner cylinder. However, it is necessary to squeeze the filter material to narrow it down.Therefore, the collection of particles is mainly carried out between the pitches of the filter material. It is difficult to expect the collection of particles by the filtration material itself, as was the case. As a result, the surface of the filter may be clogged and the filtration life may be shortened, or the permeability may be poor.
別の方法として、 特開平 1一 1 1 5 4 2 3号公報には、 細孔の多細穿設された ボビンに、 セルロース ·スパンボンド不織布を帯状体に裁断して狭孔を通し撚り を加えたひも状体を卷回させた形のフィル夕一が提案されている。 この方法を使 えば従来の針葉樹ノ レブを精製したひ—セルロースを薄葉紙にしてそれをロール 状に巻き付けた口一ルティッシュフィルタ一に比べて機械強度が高く、 水による 溶解やバインダの溶出がないフィル夕一を作ることが出来ると考えられる。 しか しながら、 このフィルタ一に利用されるセルロース 'スパンボンド不織布は、 紙 状の形態をしているため剛性がありすぎ、 従来の糸卷き型フィルターがその毛羽 で粒子を捕集していたような、 濾過素材そのものによる粒子捕集が期待しにくい 。 また、 セルロース 'スパンボンド不織布は紙状の形態をしているため液中で膨 潤し易く、 膨潤によりフィルタ一強度の減少、 濾過精度の変化、 通液性の悪化、 濾過ライフの減少などさまざまな問題が生じる可能性がある。 また、 セルロース •スパンボンド不織布の繊維交点の接着は化学的な処理などで行われることが多 いが、 その接着は不十分になることが多く、 濾過精度の変化の原因となったり、 あるいは繊維屑の脱落の原因となることが多いため、 安定した濾過性能を得るこ とが難しい。  As another method, Japanese Unexamined Patent Publication (Kokai) No. Hei 11-1543 discloses a method of cutting a cellulose spunbond non-woven fabric into a band-shaped body on a bobbin having a large number of fine holes and twisting the narrow hole through a narrow hole. Fil Yuichi has been proposed in which the added string is wound. By using this method, mechanical strength is higher than that of a conventional tissue filter made of refined soft cellulose knives made of thin cellulose paper and wound in a roll, and there is no dissolution by water or elution of binder. It is thought that we can make Phil Yuichi. However, the cellulose spunbonded nonwoven fabric used for this filter has a paper-like form, so it is too rigid, and the conventional thread-wound filter traps particles with its fluff. It is difficult to expect the collection of particles by the filtration material itself. In addition, cellulose 'spunbond nonwoven fabric has a paper-like form and therefore easily swells in the liquid.Swelling reduces the strength of the filter, changes the filtration accuracy, deteriorates liquid permeability, reduces filtration life, etc. Problems can arise. In addition, the bonding of fiber intersections of cellulose spunbonded nonwoven fabrics is often performed by chemical treatment or the like, but the bonding is often inadequate, causing a change in filtration accuracy or fiber. It often causes debris to fall off, making it difficult to obtain stable filtration performance.
別の方法として、 特閧平 4— 4 5 8 1 0号公報には、 構成繊維の 1 0重量%以 上が 0 . 5デニール以下に分割されている複合繊維からなるスリツト不織布を、 多孔性芯筒上に繊維密度が 0 . 1 8〜 0 . 3 0 ( g/ c m3 ) となるように巻き 付けたフィル夕一が提案されている。 この方法を利用すると、 繊度の小さい繊維 によって液体中の細かな粒子を捕捉できるとされている。 しかしながら、 複合繊 維を分割させるために高圧水などの物理的応力を使用する必要があり、 高圧水加 ェでは不織布全体にわたって均一に分割させることが難しい。 均一に分割されな い場合、 不織布中のよく分割された箇所と分割が不十分な箇所とで捕集粒子径に 差が生じるため、 濾過精度が粗くなる可能性がある。 また、 分割する際に用いる 物理的応力により不織布強度が低下することがあるため、 作られたフィルタ一の 強度が低下して使用中に変形しやすくなつたり、 あるいはフィル夕一の空隙率が 変化して通液性が低下する可能性がある。 更には不織布強度が小さいと、 多孔性 芯筒上に巻き付ける際の張力の調整が難しくなるため、 微妙の空隙率の調整が難 しくなることがある。 さらには、 易分割繊維を作るために要求される紡糸技術や 製造時の運転コストの増大によりフィルターの製造コストが高くなるため、 先述 したような濾過性能上の課題を解決すれば製薬工業や電子工業のような高度の濾 過性能が要求される分野の一部には使用できると考えられるが、 プール水の濾過 ゃメツキ工業用のメツキ液の濾過のようにフィル夕一が安価であることが求めら れる用途には使用が難しいと思われる。 As another method, Japanese Patent Publication No. Hei 4-45810 discloses a slit nonwoven fabric composed of a conjugate fiber in which 10% by weight or more of the constituent fibers is divided into 0.5 denier or less. Wound on the core tube so that the fiber density is 0.18 to 0.30 (g / cm 3 ) Phil Yuichi has been suggested. By using this method, it is said that fine particles in liquid can be captured by fibers with small fineness. However, it is necessary to use physical stress such as high-pressure water to divide the composite fiber, and it is difficult to uniformly divide the entire nonwoven fabric by high-pressure water. If it is not uniformly divided, there is a difference in the collection particle diameter between a well-divided portion and an insufficiently-divided portion in the nonwoven fabric, so that filtration accuracy may be coarse. In addition, the strength of the non-woven fabric may decrease due to the physical stress used during splitting, so the strength of the manufactured filter will decrease and it will be easily deformed during use, or the porosity of the filter will change Liquid permeability may be reduced. Further, when the strength of the nonwoven fabric is low, it is difficult to adjust the tension when wound around the porous core tube, so that it may be difficult to finely adjust the porosity. Furthermore, the spinning technology required to produce easily splittable fibers and the increase in operating costs during production increase the cost of manufacturing filters. It can be used in some fields where a high level of filtration performance is required, such as industry.However, pool water filtration It seems that it is difficult to use for applications that require.
前記課題を解決するために検討した結果、 メルトプロ一繊維からなる不織繊維 集合体、 またはメルトブロー繊維からなる不織繊維集合体と長繊維不織繊維集合 体を、 有孔筒状体に綾状に卷き付けたフィルタ一カートリッジにより、 通液性、 濾過ライフ、 濾過精度の安定性等に優れた筒状フィル夕一カートリッジを得るこ とが可能であることを見出し、 本発明に到達した。 発明の開示  As a result of studying to solve the above problem, a non-woven fiber aggregate made of melt-pro fibers, or a non-woven fiber aggregate made of melt-blown fibers and a long-fiber non-woven fiber aggregate, are wrapped in a perforated cylindrical body. The present inventors have found that it is possible to obtain a cylindrical filter cartridge excellent in liquid permeability, filtration life, stability of filtration accuracy, and the like by using the filter cartridge wound around the present invention, and arrived at the present invention. Disclosure of the invention
本発明は下記の構成を有する。  The present invention has the following configuration.
( 1 ) メルトブローされた熱可塑性繊維からなる帯状の不織布を、 有孔筒状体 に綾状に巻き付けてなるフィル夕一カートリッジ。  (1) A filament cartridge comprising a band-shaped nonwoven fabric made of melt-blown thermoplastic fiber wound around a perforated cylindrical body in a twill pattern.
( 2 ) メルトプロ一された熱可塑性繊維からなる不織繊維集合体と、 長繊維不 織繊維集合体とを少なくとも各 1層ずつ積層して結合した帯状の不織布を、 有孔 筒状体に綾状に巻き付けてなるフィル夕一力一トリッジ。 (2) A belt-shaped nonwoven fabric obtained by laminating and joining at least one layer each of a nonwoven fiber aggregate made of melt-processed thermoplastic fiber and a long fiber nonwoven fiber aggregate is perforated. A fill-filled ridge that is wrapped in a twill shape around a cylindrical body.
(3) 該メルトブローされた熱可塑性繊維が低融点樹脂と高融点樹脂からなり 、 それらの両樹脂の融点差が 10°C以上である、 混繊若しくは複合繊維である ( (3) The melt-blown thermoplastic fiber is a mixed fiber or a composite fiber comprising a low melting point resin and a high melting point resin, and the melting point difference between the two resins is 10 ° C or more.
1) 若しくは (2) 項に記載のフィル夕一カートリッジ。 1) or 1st fill cartridge as described in (2).
( 4 ) 該長繊維不織繊維集合体を構成する熱可塑性繊維が低融点樹脂と高融点 樹脂からなり、 それらの両樹脂の融点差が 1 o°c以上である熱接着性複合繊維で ある (2) 項に記載のフィル夕一力一トリッジ。  (4) The thermoplastic fiber constituting the long-fiber nonwoven fiber aggregate is a heat-adhesive conjugate fiber comprising a low-melting resin and a high-melting resin, and a difference in melting point between the two resins is 1 ° C or more. (2) Phil's power cartridge as described in paragraph (2).
(5) 該低融点樹脂が、 線状低密度ポリエチレンであり、 該高融点樹脂がポリ プロピレンである (3) 若しくは (4) 項に記載のフィル夕一カートリッジ。 (5) The filler cartridge according to (3) or (4), wherein the low-melting resin is a linear low-density polyethylene, and the high-melting resin is polypropylene.
(6) 該不織布の通気度が 1〜500 cm3/cm2/s e cの範囲である ( 1 ) 〜 (5) 項に記載のフィル夕一力一トリヅジ。 (6) The filter according to (1) to (5), wherein the air permeability of the nonwoven fabric is in the range of 1 to 500 cm 3 / cm 2 / sec.
(7) 該不織布の結合が、 熱エンボスロールで熱圧着されている ( 1) 〜 (5 ) 項に記載のフィル夕一カートリッジ。  (7) The filler cartridge according to any one of (1) to (5), wherein the bonding of the nonwoven fabric is thermocompression-bonded with a hot embossing roll.
(8) 該不織布の結合が、 熱風で熱接着されている (2) 項に記載のフィル夕 一力一トリッジ。  (8) The filler according to item (2), wherein the bond of the nonwoven fabric is heat-bonded with hot air.
(9) 該帯状の不織布に捻りが加えられた ( 1) 〜 (5) 項に記載のフィルタ 一力一トリッジ。  (9) The filter according to any one of (1) to (5), wherein the band-shaped nonwoven fabric is twisted.
( 10) 該フィル夕一力一トリッジの空隙率が 65 - 85 %である ( 1) 〜 ( 5) 項に記載のフィル夕一カートリッジ。  (10) The fill cartridge according to any one of (1) to (5), wherein the porosity of the fill cartridge is 65 to 85%.
( 1 1) 該帯状の不織布を 4〜 50のひだを有するひだ状物とし、 有孔筒状体 に綾状に巻き付けた ( 1) 〜 (5) 項に記載のフィル夕一カートリッジ。  (11) The filter cartridge according to any one of (1) to (5), wherein the band-shaped nonwoven fabric is a pleated material having 4 to 50 folds, and is wound around a perforated tubular body in a twill shape.
( 12) 該ひだ状物のひだの少なくとも一部が非平行である ( 1 1) 項に記載 のフィル夕一カートリッジ。  (12) The fill cartridge according to (11), wherein at least a part of the fold of the fold is non-parallel.
( 13) 該ひだ状物の空隙率が 60~ 95%である ( 1 1) 項に記載のフィル 夕一力一トリッジ。  (13) The filter according to (11), wherein the porosity of the pleated material is 60 to 95%.
( 14) 該帯状の不織布のスリット幅が 0. 5 c m以上であり、 スリット幅 ( cm) と目付 (g/m2) の積が 200以下である ( 1) 〜 (5) 項に記載のフ ィル夕一カートリヅジ。 図面の簡単な説明 (14) The slit width of the band-shaped nonwoven fabric is 0.5 cm or more, and the product of the slit width (cm) and the basis weight (g / m 2 ) is 200 or less (1) to (5). File evening cartridge. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 不織布がのり巻き状に卷かれた状態を図示したものである。  FIG. 1 illustrates a state in which the nonwoven fabric is wound in a paste shape.
図 2は、 長繊維不織布のエンボスパターンによる粒子捕集状況を示す説明図 である。  FIG. 2 is an explanatory diagram showing the state of particle collection by an emboss pattern of a long-fiber nonwoven fabric.
図 3は、 帯状長繊維不織布を加工せずにそのまま巻き付ける様子を示す説明 図である。  FIG. 3 is an explanatory view showing a state in which the long continuous fiber nonwoven fabric is wound as it is without processing.
図 4は、 帯状長繊維不織布に捻りを加えながら巻き付ける様子を示す説明図 である。  FIG. 4 is an explanatory diagram showing a state in which the belt-shaped long-fiber nonwoven fabric is wound while being twisted.
図 5は、 帯状長繊維不織布を小孔に通して集束させてから巻き付ける様子を 示す説明図である。  FIG. 5 is an explanatory view showing a state in which the long nonwoven fabric band is passed through small holes to be bundled, and then wound.
図 6は、 帯状長繊維不織布をひだ形成ガイ ドでひだ状物に加工する様子を示 した図面である。  FIG. 6 is a view showing a state in which the band-shaped long-fiber nonwoven fabric is processed into a pleated material using a pleated guide.
図 7は、 本発明で用いられるひだ形成ガイ ドの一例を示す断面図である。 図 8は、 本発明で用いられるひだ形成ガイ ドの一例を示す断面図である。 図 9は、 ひだが非平行なひだ状物の断面形状の一例を示す説明図である。 図 1 0は、 ひだが平行なひだ状物の断面形状の一例を示す説明図である。 図 1 1は、 ひだ形成ガイ ド、 狭矩形孔、 小孔の位置関係を示す説明図である 図 1 2は、 本発明に係るひだ状物の一例を示す一部切り欠き斜視図である。 図 1 3は、 本発明に係るフィル夕一力一トリヅジの斜視図である。  FIG. 7 is a cross-sectional view showing an example of a fold forming guide used in the present invention. FIG. 8 is a cross-sectional view showing an example of a fold forming guide used in the present invention. FIG. 9 is an explanatory diagram illustrating an example of a cross-sectional shape of a non-parallel pleat. FIG. 10 is an explanatory diagram showing an example of the cross-sectional shape of a pleated parallel fold. FIG. 11 is an explanatory view showing a positional relationship between a fold forming guide, a narrow rectangular hole, and a small hole. FIG. 12 is a partially cutaway perspective view showing an example of a fold according to the present invention. FIG. 13 is a perspective view of a file cartridge according to the present invention.
図 1 4は、 本発明に係るフィル夕一力一トリヅジの横断面図である。  FIG. 14 is a cross-sectional view of a fill-in-a-box as per the present invention.
図 1 5は、 スパンボンド不織布の概念図である。  FIG. 15 is a conceptual diagram of a spunbond nonwoven fabric.
図 1 6は、 短繊維不織布の概念図である。  FIG. 16 is a conceptual diagram of a short fiber nonwoven fabric.
符号の説明を以下に行う。  The description of the reference numerals is given below.
1 エンボスパターンによる強い熱圧着がある部分  1 Area with strong thermocompression bonding by emboss pattern
2 エンボスパターンされてなく弱い熱圧着のみがある部分  2 Part with only weak thermocompression bonding without emboss pattern
3 粒子  3 particles
4 エンボスパターンされてなく弱い熱圧着のみがある部分を通過した粒子 5 帯状長繊維不織布もしくはその集束物 4 Particles that have passed through a part with only weak thermocompression bonding without emboss pattern 5 Strip-shaped long-fiber nonwoven fabric or its bundle
6 細幅孔のトラバースガイ ド  6 Narrow hole traverse guide
7 ボビン  7 bobbins
8 有孔筒状体  8 Perforated cylindrical body
9 フィルターカートリッジ  9 Filter cartridge
1 0 トラバースガイ ド  1 0 Traverse Guide
1 1 トラバースガイ ド  1 1 Traverse Guide
1 2 外部規制ガイ ド  1 2 External Regulation Guide
1 3 内部規制ガイ ド  1 3 Internal Regulation Guide
1 4 小孔  1 4 Small hole
1 5 ひだ状物  1 5 folds
1 6 ひだ形成ガイ ド  16 Fold formation guide
1 7 櫛形のひだ形成ガイ ド  1 7 Comb-shaped fold formation guide
1 8 狭矩形孔  1 8 Narrow rectangular hole
1 9 帯状長繊維不織布集束物を内包する最小面積の卵形  1 9 Oval shape with minimum area containing bundled long-fiber nonwoven fabric bundle
2 0 ある帯状長繊維不織布集束物とその 1つ下の層に巻かれた帯状長繊維不 織布集束物との間隔  20 0 Spacing between a certain bundle of long-fiber non-woven fabric bundle and one of the bundle of long-fiber non-woven fabric wound on the layer below
2 1 内層  2 1 Inner layer
2 2 精密濾過層  2 2 Microfiltration layer
2 3 外層  2 3 Outer layer
2 4 帯状長繊維不織布集束物  2 4 Banded long-fiber nonwoven fabric bundle
2 5 スパンボンド不織布を構成する長繊維  2 5 Long fibers constituting spunbond nonwoven fabric
2 6 粒子  2 6 particles
2 7 短繊維不織布を構成する短繊維 発明を実施するための最良の形態  2 7 Short fibers constituting short fiber non-woven fabric Best mode for carrying out the invention
以下、 本発明の態様を具体的に説明する。  Hereinafter, embodiments of the present invention will be described specifically.
本発明に使用されるメルトブロー繊維とは、 メルトプロ一法により得られる繊 維のことのである。 メルトブロー法とは紡糸孔より押し出された溶融した熱可塑 性樹脂を、 紡糸孔の周囲より吹き出される高温高速気体により捕集コンペァネッ ト等に吹き付け、 繊維ウェブを得る方法であり、 例えば米国特許第 3, 5 3 2 , 8 0 0号に開示されている。 The melt blown fiber used in the present invention is a fiber obtained by a melt-pro method. It is a fiber. The melt blow method is a method in which a molten thermoplastic resin extruded from a spinning hole is sprayed onto a collecting compartment or the like by a high-temperature, high-speed gas blown from the periphery of the spinning hole to obtain a fibrous web. 3, 5, 32, 800.
本発明に用いられる熱可塑性繊維には、 溶融紡糸が可能なあらゆる熱可塑性樹 脂を使用することができる。 その例として、 ポリプロピレン、 低密度ポリエチレ ン、 高密度ポリエチレン、 線状低密度ポリエチレン、 共重合ポリプロピレン (例 えば、 プロピレンを主体として、 エチレン、 ブテン一 1 , 4—メチルペンテン一 1等との二元または多元共重合体) 等をはじめとするポリオレフイン系樹脂、 ポ リエチレンテレフ夕レート、 ポリブチレンテレフ夕レート、 酸成分をテレフタル 酸以外にィソフタル酸をも加えて共重合したこれらの低融点ポリエステルをはじ めとするポリエステル系樹脂、 ナイロン 6、 ナイロン 6 6などのポリアミ ド系樹 脂、 ポリスチレン系樹脂 (ァタクチックポリスチレン、 シンジオタクチックポリ スチレン) 、 ポリウレタンエラストマ一、 ポリエステルエラストマ一、 ポリテト ラフルォロエチレン等の熱可塑性樹脂が提示できる。 また、 乳酸系ポリエステル などの生分解性樹脂を使用してフィルターカートリッジに生分解性を持たせるな ど、 機能性の樹脂を使用することもできる。 また、 ポリオレフイン系樹脂やポリ スチレン系樹脂などメタロセン触媒で重合できる樹脂を使用する場合、 メタロセ ン触媒で重合した樹脂を使用すれば、 不織布強度の向上、 耐薬品性の向上、 生産 エネルギーの減少などメタ口セン樹脂の特性がフィルタ一カートリッジに活かさ れるために好ましい。 また、 長繊維不織布の熱接着性や剛性を調整するためにこ れらの樹脂をブレンドして使用しても良い。 これらの中でも、 フィルタ一カート リッジを常温の水系の液の濾過に使用する場合には耐薬品性と価格の点からポリ プロピレンをはじめとするポリオレフイン系樹脂が好ましく、 比較的高温の液に 使用する場合にはポリエステル系樹脂、 ポリアミ ド系樹脂、 或いはシンジオタク チックポリスチレン樹脂が好ましい。  As the thermoplastic fiber used in the present invention, any thermoplastic resin that can be melt-spun can be used. Examples include polypropylene, low-density polyethylene, high-density polyethylene, linear low-density polyethylene, and copolymerized polypropylene (for example, propylene as the main component, and binary with ethylene, butene-11, 4-methylpentene-11, etc.). Or low-melting polyesters obtained by copolymerizing the acid component with terephthalic acid in addition to terephthalic acid, and polyolefin-based resins such as polyolefin resin, etc. Polyester resin such as polyester resin, nylon 6, nylon 66, etc., polystyrene resin (atactic polystyrene, syndiotactic polystyrene), polyurethane elastomer, polyester elastomer, polytetrafluoroethylene Etc. Thermoplastic Resin can be presented. In addition, a functional resin can be used, for example, by using a biodegradable resin such as lactic acid-based polyester to make the filter cartridge biodegradable. Also, when using a resin that can be polymerized with a metallocene catalyst, such as a polyolefin-based resin or a polystyrene-based resin, using a resin polymerized with a metallocene catalyst can improve nonwoven fabric strength, improve chemical resistance, reduce production energy, etc. This is preferable because the properties of the meta-mouth resin are utilized in the filter cartridge. These resins may be blended and used to adjust the thermal adhesiveness and rigidity of the long-fiber nonwoven fabric. Among these, when filter cartridges are used for filtration of aqueous liquids at room temperature, polyolefin resins such as polypropylene are preferable from the viewpoint of chemical resistance and price, and they are used for liquids at relatively high temperatures. In this case, a polyester resin, a polyamide resin, or a syndiotactic polystyrene resin is preferable.
また、 本発明で使用するメルトブロー繊維は、 融点差が 1 0 °C以上である低融 点樹脂と高融点樹脂の 2成分からなるものであってもよい。 もちろん、 本発明の 効果を妨げない範囲であれば 3成分以上の樹脂からなるものであってもよい。 な お、 融点が存在しない樹脂の場合には流動開始温度を融点と見なす。 メルトプロ 一繊維を 2成分とする方法としては、 各繊維を鞘芯型や並列型などの断面形状を もつ 2成分複合繊維としてもよいし、 メルトブローノズルの各孔から 2成分の樹 脂を交互に吐出させて混繊状態にしてもよい。 これらの具体的な方法は例えば特 開平 7— 8 2 6 4 9号公報、 特開平 4一 1 2 6 5 0 8号公報などに開示されてい る。 繊維接合点の熱接着が安定すると、 フィル夕一カートリッジとして使用する 場合、 濾過圧力や通水量が上がった際に繊維接合点付近で捉えられた粒子が流出 する可能性が小さくなり、 またフィルタ一カートリッジの変形が小さくなり、 さ らには濾液中に含まれた物質によって仮に繊維が劣化した場合にも繊維が脱落す る確率が小さくなるために好ましい。 Further, the melt blown fiber used in the present invention may be composed of two components, a low melting point resin and a high melting point resin having a melting point difference of 10 ° C. or more. Of course, of the present invention It may be composed of a resin of three or more components as long as the effect is not impaired. In the case of a resin having no melting point, the flow start temperature is regarded as the melting point. As a method of using one melt fiber as two components, each fiber may be a two-component composite fiber having a cross-sectional shape such as a sheath-core type or a side-by-side type, or a two-component resin may be alternately applied from each hole of a melt blow nozzle. The fibers may be discharged to form a mixed state. Specific examples of these methods are disclosed in, for example, Japanese Patent Application Laid-Open No. Hei 7-82649, Japanese Patent Application Laid-Open No. H11-256008, and the like. When the thermal bonding at the fiber junction is stable, when used as a filter cartridge, the possibility of particles trapped near the fiber junction flowing out when the filtration pressure or water flow increases is reduced, and the filter This is preferable because the deformation of the cartridge is reduced and the probability that the fiber is dropped is reduced even if the fiber is deteriorated by a substance contained in the filtrate.
この複合繊維の低融点樹脂と高融点樹脂の組み合わせは、 融点差 1 0 °C以上好 ましくは 1 5 °C以上あれば特に限定されるものではなく、 線状低密度ポリエチレ ン /ポリプロピレン、 高密度ポリェチレン /ポリプロピレン、 低密度ポリエチレ ン /ポリプロピレン、 プロピレンと他のひ一ォレフィンとの共重合体/ポリプロ ピレン、 線状低密度ポリエチレンノ高密度ポリエチレン、 低密度ポリエチレン/ 高密度ポリエチレン、 各種のポリエチレンノ熱可塑性ポリエステル、 ポリプロピ レンノ熱可塑性ポリエステル、 共重合ポリエステル/熱可塑性ポリエステル、 各 種のポリエチレン/ナイロン 6、 ポリプロピレン/ナイロン 6、 ナイロン 6 /ナ ィロン 6 6、 ナイロン 6 /熱可塑性ポリエステルなどをあげることができる。 中 でも線状低密度ポリェチレン Zポリプロピレンの組み合わせを用いると、 長繊維 不織布の剛性や空隙率の調整を不織布製造時の繊維交点の融着の工程で容易に調 節ができるために好ましい。 また、 比較的高温の液に使用する場合にはエチレン グリコールに対してテレフタル酸とイソフタル酸を共重合した低融点ポリエステ ル /ポリエチレンテレフ夕レートの組合せも好適に用いることができる。  The combination of the low melting point resin and the high melting point resin of the composite fiber is not particularly limited as long as the melting point difference is 10 ° C or more, preferably 15 ° C or more, and linear low-density polyethylene / polypropylene, High-density polyethylene / polypropylene, low-density polyethylene / polypropylene, copolymer of propylene with other polyolefins / polypropylene, linear low-density polyethylene, high-density polyethylene, low-density polyethylene / high-density polyethylene, various polyethylenes Thermoplastic polyester, propylene thermoplastic polyester, copolymerized polyester / thermoplastic polyester, polyethylene / nylon 6, polypropylene / nylon 6, nylon 6 / nylon 66, nylon 6 / thermoplastic polyester, etc. Can be. Among them, the use of a combination of linear low-density polyethylene Z polypropylene is preferable because the rigidity and porosity of the long-fiber nonwoven fabric can be easily adjusted in the process of fusing the fiber intersections during the production of the nonwoven fabric. In addition, when used in a liquid having a relatively high temperature, a low-melting-point polyester / polyethylene terephthalate combination obtained by copolymerizing terephthalic acid and isophthalic acid with ethylene glycol can also be suitably used.
本発明に使用されるメルトプロ一繊維の平均繊維径は、 フィル夕一力一トリッ ジの用途や樹脂の種類によって異なるので一概には規定しがたいが、 0 . 5〜 1 0 0 0〃mの範囲が望ましい。 繊度が 0 . 5〃m未満の場合、 本発明のフィル夕 一力一トリッジに使用することは理論的には可能だが、 実際には製造が困難であ る。 一方、 繊維径が 1 0 0 0〃mを超えると、 後に不織布とした場合に繊維径ゃ 不織布の地合にむらができることがある。 なお、 平均繊維径が 5 0〃mを超える と隣接する繊維同士が融着することがあるが、 本発明の効果を妨げない範囲であ れば特に問題とはならない。 The average fiber diameter of the melt-pro fibers used in the present invention varies depending on the use of the filter and the type of resin, and is generally unpredictable. Is desirable. When the fineness is less than 0.5 μm, the filter of the present invention is used. Although it can theoretically be used for a cartridge, it is actually difficult to manufacture. On the other hand, if the fiber diameter exceeds 100 μm, the formation of the nonwoven fabric may become uneven when the nonwoven fabric is used later. If the average fiber diameter exceeds 50 μm, adjacent fibers may be fused together. However, there is no particular problem as long as the effect of the present invention is not impaired.
また、 メルトブロー繊維はかならずしも円形断面である必要はなく、 異型断面 形状であってもよい。 その場合、 微小粒子の捕集はフィルタ一の表面積が大きい ほど多くなるため、 円形断面の繊維を使う場合よりも同一の通液性で高精度のフ ィル夕一カートリッジを得ることができる。  In addition, the melt-blown fibers do not necessarily have to have a circular cross section, and may have an irregular cross-sectional shape. In that case, the collection of fine particles increases as the surface area of the filter increases, so that it is possible to obtain the same liquid-permeability and high-precision filter cartridge than in the case of using a fiber having a circular cross section.
また、 メルトプロ一繊維の原料樹脂にポリビニルアルコールなどの親水性樹脂 を混ぜたり、 あるいはプラズマ加工するなどして、 メルトブロー繊維を親水化す ると、 水系の液に使用する場合には通液性が向上するので好ましい。  In addition, by mixing a hydrophilic resin such as polyvinyl alcohol with the raw resin of the melt-pro fibers or by plasma processing, the melt-blown fibers are made hydrophilic to improve the liquid permeability when used in aqueous liquids. Is preferred.
また、 通常メルトブロー繊維は、 捕集コンベアネット等に吹き付けられた時点 で繊維自身の持つ余熱により繊維交点が弱く接合しているが、 その後に適当な熱 処理をして熱接合をさらに強くしてもよい。 その方法としては、 熱エンボス口一 ル、 熱フラットカレンダーロールのような装置を使って熱圧着する方法や熱風循 環型、 熱スルーエアー型、 赤外線ヒータ一型、 上下方向熱風噴出型などの熱処理 機を使う方法等をあげることができる。 中でも熱スルーエアー型熱処理機を使う 方法は、 製造速度の向上ができ、 生産性が良く、 コストを安価にでき好ましい。 一方、 本発明で使用する第一の不織布はメルトブロー不織布である。 メルトブ 口一不織布は先述したように精密濾過と言う点では優れた不織布では有るが他の 不織布と比べると不織布強力が弱いという欠点が有り、 そのため経時変化により 濾過性能が低下する (捕捉する粒子の粒径の絰時変化が大である。 後述する比較 例 4を参照) 。 その点においては有孔筒状体に綾状に卷き付けることにより濾過 ライフは改善されている (実施例 1 ) 。 単に、 濾過ライフを延ばそうとする場合 フィルターの空隙率を増大させることが考えられるが、 そうすることによりフィ ル夕一強度が低下し、 濾過精度が低下するために好ましくない。  In addition, the melt-blown fibers are usually bonded at a weak point due to the residual heat of the fibers themselves when they are sprayed onto the collecting conveyor net, etc., but then the heat bonding is further strengthened by appropriate heat treatment. Is also good. The methods include thermocompression bonding using a device such as a hot embossing hole and a hot flat calender roll, and heat treatment such as a hot air circulation type, a heat through air type, an infrared heater type, and a vertical hot air jet type. You can use the machine. Above all, a method using a heat-through-air heat treatment machine is preferable because the production speed can be improved, the productivity is good, and the cost can be reduced. On the other hand, the first nonwoven fabric used in the present invention is a meltblown nonwoven fabric. As described above, the melt-blown non-woven fabric is an excellent non-woven fabric in terms of microfiltration, but has the disadvantage that the strength of the non-woven fabric is weaker than other non-woven fabrics. The temporal change of the particle size is large.See Comparative Example 4 described later). In this respect, the filtration life is improved by winding the filter in a twill shape on a perforated cylindrical body (Example 1). Simply increasing the life of the filtration may be considered to increase the porosity of the filter, but doing so is not preferable because the strength of the filter is reduced and the filtration accuracy is reduced.
しかし、 メルトブロー不織布の特徴である濾過精度を維持したまま、 更に大き な濾過圧力にも耐えるためにメルトブローされた熱可塑性繊維からなる不織繊維 集合体を長繊維不織繊維集合体と積層し、 両者を結合させてなる不織布 (即ち、 帯状積層メルトブロー不織布) という本発明で使用する第二の不織布がある。 こ こで言う不織繊維集合体とは、 繊維交点が接着された不織布と、 繊維同士が違い に絡まっている場合はあっても接着はされていない繊維集合体 (ゥヱブ) を含め た概念である。 不織布としないで不織繊維集合体としたのは帯状積層メルトブ口 —不織布を製造する際に、 異種の不織繊維集合体を構成する繊維間での結合のみ ならず、 同種の不織繊維集合体を構成する繊維間の結合も行なわれるため、 予め 不織布にしておくことは必ずしも必要ではないためである。 尚、 ここで結合とは 好ましくは熱接着による繊維交点の結合である。 However, while maintaining the filtration accuracy characteristic of melt-blown nonwoven fabric, A nonwoven fabric made by laminating a nonwoven fiber aggregate consisting of thermoplastic fibers melt-blown to withstand a high filtration pressure with a long-fiber nonwoven fiber aggregate, and bonding both together (that is, a strip-shaped laminated meltblown nonwoven fabric) There is a second nonwoven fabric used in the invention. The non-woven fiber aggregate referred to here is a concept that includes a nonwoven fabric where fiber intersections are bonded and a fiber aggregate where the fibers are entangled differently but not bonded. is there. Non-woven fiber aggregates instead of non-woven fabrics are used as ribbon-shaped melt-melt openings. When manufacturing non-woven fabrics, not only the bonding between the fibers constituting different types of non-woven fiber aggregates, but also the same type of non-woven fiber aggregates This is because the bonding between the fibers constituting the body is also performed, and it is not always necessary to make a nonwoven fabric in advance. Here, the term "bonding" is preferably a bonding of fiber intersections by thermal bonding.
本発明に使用される長繊維不織布は、 スパンボンド法などにより得られた長繊 維不織布である。 スパンボンド法で得られた長繊維は捕集コンベア上で分散し て長繊維ゥヱブとなる。 この長繊維にも先述したメルトプロ一繊維と同様に溶融 紡糸可能なあらゆる熱可塑性樹脂を使用することができ、 メルトプロ一繊維と同 様に 2成分を複合繊維あるいは混繊の形にすることができる。 この樹脂はメルト プロ一繊維と同じ成分にしても構わないし、 異なる成分にしても構わないが、 メ ルトブ口一繊維の樹脂 (メルトブロー不織布に 2成分を使用する場合にはその低 融点樹脂) と相溶性の高い樹脂を使用すると、 後の工程でメルトブロー繊維と結 合する際に繊維交点が安定して接着するために望ましい。  The long-fiber nonwoven fabric used in the present invention is a long-fiber nonwoven fabric obtained by a spun bond method or the like. The long fibers obtained by the spun bond method are dispersed on the collection conveyor to form long fibers. Any kind of thermoplastic resin that can be melt-spinnable can be used for the long fiber as in the case of the melt-pro-fibre described above, and the two components can be formed into a composite fiber or a mixed fiber, similarly to the melt-pro-fibre. . This resin may be the same as or different from the melt-pro-fiber, but it may be the same as the melt-blown resin (or its low-melting resin if two components are used in the melt-blown nonwoven). The use of a resin having high compatibility is desirable because the fiber intersection is stably bonded when the resin is bonded to the meltblown fiber in a later step.
スパンボンド法などにより作られた長繊維不織布は図 1 5に示すように繊維方 向が機械方向に揃っているため、 繊維 2 5で構成される孔が細長くなり、 最大通 過粒子 2 6が小さいものとなる。 それに対して、 カード法等で得られた短繊維か らなる不織布の場合、 図 1 6に示すように繊維方向が一定ではないので、 繊維 2 7で構成される孔は円あるいは正方形に近い形となり、 スパンボンド法などによ り作られた長繊維不織布と開孔率が同じであっても、 最大通過粒子径 2 6が大き いものとなる。 濾材の通水性は繊維径が同じであれば開孔率でほぼ決まるため、 スパンボンド法などにより作られた長繊維不織布を使うことにより、 通水性に優 れたフィルターが得られるのである。 この効果は接着剤など濾材の孔を塞ぐよう なバインダーを使用した場合には小さくなるため、 セルローススパンボンド不織 布の使用は好ましくない。 また、 セルローススパンボンド不織布を使用すると、 不織布の強度が弱くなるため、 フィル夕一の目詰まり等の原因で濾過圧力が上が つた場合には繊維で構成される孔が変形し易くなるという問題がある。 As shown in Fig. 15, the long-fiber nonwoven fabric made by the spunbonding method or the like has the same fiber direction as the machine direction. It will be small. On the other hand, in the case of a nonwoven fabric made of short fibers obtained by the card method, etc., the fiber direction is not constant as shown in Fig. 16, so the holes formed by the fibers 27 have a shape close to a circle or square. Even if the porosity is the same as that of the long-fiber nonwoven fabric made by the spunbonding method or the like, the maximum passing particle diameter 26 is large. Since the water permeability of the filter medium is almost determined by the porosity when the fiber diameter is the same, a filter with excellent water permeability can be obtained by using a long-fiber nonwoven fabric made by the spun bond method or the like. This effect closes the pores of filter media such as adhesive Use of a cellulose spunbond nonwoven fabric is not preferable because a small binder is used when the binder is used. In addition, the use of cellulose spunbonded nonwoven fabrics reduces the strength of the nonwoven fabrics, so that when the filtration pressure is increased due to clogging of the filler, the pores composed of fibers are easily deformed. There is.
また、 本発明で長繊維を使用する場合の長繊維の繊維径は、 フィルタ一カート リヅジの用途や樹脂の種類によって異なるので一概には規定しがたい力 単糸繊 度 0 . 6 d t e x〜 1 0 0 d t e xの範囲が望ましい。 繊度が 1 0 0 d t e xを 越えると、 後に積層不織布とした場合に不織布強度が小さくなる。 逆に、 単糸繊 度 0 . 6 d t e x未満であっても本発明の使用には問題ないと考えられるが、 現 行のスパンボンド法で 0 . 6 d t e xより小さい繊度の繊維を紡糸する場合には 、 生産効率が低下し、 実用的でない。  In the case where the long fibers are used in the present invention, the fiber diameter of the long fibers varies depending on the use of the filter cartridge and the type of the resin, so that it is generally difficult to specify a single fiber fineness of 0.6 dtex to 1 dtex. A range of 0 dtex is desirable. If the fineness exceeds 100 dtex, the strength of the nonwoven fabric will decrease when a laminated nonwoven fabric is formed later. Conversely, it is considered that there is no problem in the use of the present invention even if the single yarn fineness is less than 0.6 dtex, but when spinning a fiber having a fineness smaller than 0.6 dtex by the current spunbonding method. The production efficiency is reduced, is not practical.
また、 長繊維の断面形状はかならずしも円形断面である必要はなく、 異型断面 形状であってもよい。  Further, the cross-sectional shape of the long fiber is not necessarily required to be a circular cross-section, and may be an irregular cross-sectional shape.
次に、 本発明の帯状不織布に帯状積層メルトブロー不織布を使う場合に、 メル トブローされた熱可塑性繊維からなる不織繊維集合体と、 長繊維不織繊維集合体 とを少なくとも各 1層ずつ積層して結合する方法について説明する。  Next, when a band-shaped laminated melt-blown non-woven fabric is used for the band-shaped non-woven fabric of the present invention, at least one layer of each of a non-woven fiber aggregate made of melt-blown thermoplastic fiber and a long-fiber non-woven fiber aggregate is laminated. A method of combining the two will be described.
まず、 積層する方法について説明する。 積層する方法は特に限定されるもので はなく、 適当な方法でメルトブロー不織繊維集合体と長繊維不織繊維集合体とを 別々の工程で製造してその後にそれらを重ね合わせても良いし、 長繊維不織布あ るいは長繊維ゥヱブの上に熱可塑性樹脂を直接メルトブローして積層させても良 い。 積層する組合せとしてはメルトブロー繊維/長繊維の 2層、 あるいは長繊維 /メルトブロー繊維/長繊維の 3層、 あるいは異なる繊維径のメルトブロー不織 布を 2種使ってメルトプロ一繊維/メルトブ口一繊維/長繊維の 3層、 あるいは 長繊維/メルトブロー繊維/メルトブロー繊維ノ長繊維の 4層などを例示できる がこれらに限定されるものではない。 この層数の上限は特に限定されるものでは ないが、 層数が増えると製造コストが高くなるため、 それに見合った効果が必要 とされる。  First, a method of stacking will be described. The method of laminating is not particularly limited, and the melt-blown nonwoven fiber aggregate and the long-fiber nonwoven fiber aggregate may be manufactured in separate steps by an appropriate method, and then they may be laminated. Alternatively, the thermoplastic resin may be directly melt-blown and laminated on the long-fiber nonwoven fabric or long-fiber web. As a combination to be laminated, two layers of melt blown fiber / long fiber, or three layers of long fiber / melt blown fiber / long fiber, or two types of melt-blown non-woven fabrics having different fiber diameters can be used. Examples include three layers of long fibers or four layers of long fibers / melt blown fibers / melt blown fibers, but are not limited thereto. The upper limit of the number of layers is not particularly limited, but an increase in the number of layers increases the manufacturing cost, and a corresponding effect is required.
次に、 積層された不織布あるいはウェブを結合して積層メルトブロー不織布と 丄 する方法について説明する。 結合する方法としては、 熱接着あるいは化学接着な どを例示できるが、 耐薬品性にすぐれかつ低分子成分の流出等のない熱接着が好 ましい。 この熱接着をする方法としては、 熱エンボス口一ル、 熱フラットカレン ダーロールのような装置を使って熱圧着する方法や熱風循環型、 熱スルーエア一 型、 赤外線ヒーター型、 上下方向熱風噴出型などの熱処理機を使う方法等を挙げ ることができる。 中でも熱エンボス口一ルを使う方法は、 不織布の製造速度の向 上ができ、 生産性が良く、 コストを安価にでき好ましい。 さらに、 図 2に示すよ うに、 熱エンボス口一ルを使う方法でつくられた不織布は、 エンボスパターンに よる強い熱圧着がある部分 1と、 エンボスパターンされてなく弱い熱圧着のみが ある部分 2とが存在する。 このことにより、 強い熱圧着がある部分 1では多くの 粒子 3, 4を捕集することができる。 一方、 弱い熱圧着のみがある部分 2では粒 子の一部は捕集されるが、 残りの粒子は不織布を通過して次の層に移動すること ができるので、 濾材の内部まで利用した深層濾過構造となり好ましい。 この場合 、 エンボスパターンの面積は 5 ~ 2 5 %とすることが望ましい。 この面積を 5 % 以上とすることにより、 先述したような繊維交点の熱接合による効果を向上させ ることができ、 2 5 %以下とすることにより不織布の剛性を抑えることができ、 あるいは粒子が不織布を通過するのを容易にすることができる。 Next, the laminated nonwoven fabric or web is combined to form a laminated meltblown nonwoven fabric. Explain how to do this. Examples of the bonding method include thermal bonding and chemical bonding, but thermal bonding is preferred, which has excellent chemical resistance and does not cause outflow of low molecular components. Examples of the method of performing this heat bonding include a method of thermocompression bonding using a device such as a hot embossing nozzle, a heat flat calendar roll, a hot air circulation type, a heat through air type, an infrared heater type, a vertical hot air jet type, etc. And a method using a heat treatment machine. Among them, the method using a hot embossing nozzle is preferable because the production speed of the nonwoven fabric can be improved, the productivity is high, and the cost is low. Furthermore, as shown in Figure 2, the nonwoven fabric made by the method using the hot embossed mouth has a part 1 with strong thermocompression bonding by emboss pattern and a part 2 with only weak thermocompression bonding without embossing pattern And exists. As a result, a large number of particles 3 and 4 can be collected in the part 1 where strong thermocompression bonding is performed. On the other hand, in part 2 where only weak thermocompression bonding is performed, some of the particles are collected, but the remaining particles can pass through the non-woven fabric and move to the next layer, so that the A filtering structure is preferable. In this case, it is desirable that the area of the emboss pattern is 5 to 25%. By setting this area to 5% or more, the effect of the thermal bonding at the fiber intersection as described above can be improved, and by setting the area to 25% or less, the rigidity of the nonwoven fabric can be suppressed, or particles can be reduced. It can be easier to pass through the nonwoven.
また、 メルトプロ一不織布あるいは積層メルトブロー不織布の通気度は、 1〜 5 0 0 c m3 / c m2 /秒の範囲が望ましい。 通気度が 1 c m3 / c m2 Z秒よりも 小さくなると、 不織布の通液性が極端に悪くなるため、 製造されたフィル夕一力 ートリツジの通液性が悪くなることがある。 逆に、 通気度が 5 0 0 c m3 / c m2 /秒よりも大きいと、 メルトプロ一不織布を使用しなくてもスパンボンド不織布 、 短繊維不織布などで代用が可能となり、 その方が一般には低コストであるので メルトプロ一不織布を使う意味が小さくなる。 Further, air permeability of the Merutopuro one nonwoven or laminate meltblown nonwoven, 1~ 5 0 0 cm 3 / cm 2 / range of sec is desirable. If the air permeability is less than 1 cm 3 / cm 2 Z seconds, the liquid permeability of the non-woven fabric will be extremely poor, and the liquid permeability of the manufactured film may be poor. Conversely, if the air permeability is greater than 500 cm 3 / cm 2 / sec, spunbonded nonwoven fabric, short fiber nonwoven fabric, etc. can be substituted without using melt-processed nonwoven fabric, which is generally lower. Because it is costly, the value of using melt-pro-woven is reduced.
また、 メルトプロ一不織布あるいは積層メルトプロ一不織布の目付、 すなわち 不織布単位面積当たり重量は、 5〜2 0 0 g/m2が好ましい。 この値が 5 g/ m2よりも小さくなると、 繊維量が少なくなるために、 不織布のむらが大きくな つたり、 あるいは不織布の強度が低下し、 あるいは先述したような繊維交点の熱 接合が難しくなることがある。 一方、 この値が 2 0 0 g/m2よりも大きくなる と、 不織布の剛性が大きくなりすぎるために、 後に有孔筒状体に綾状に巻き付け ることが困難になることもある。 The weight per unit area of the melt-produced nonwoven fabric or the laminated melt-produced nonwoven fabric is preferably 5 to 200 g / m 2 . If this value is less than 5 g / m 2 , the non-woven fabric becomes uneven due to the reduced amount of fiber, or the strength of the non-woven fabric decreases, or the heat at the fiber intersection as described above. Joining may be difficult. On the other hand, if the value is more than 200 g / m 2 , the rigidity of the nonwoven fabric becomes too large, and it may be difficult to wind the nonwoven fabric around the perforated tubular body later.
次にこのメルトプロ一不織布あるいは積層メルトブロー不織布を帯状にする。 帯状にするには、 紡糸幅を調節して直接帯状の不織布を作る方法も使用できるが 、 広い幅の不織布を帯状にスリットする方法が安価でかつ均一な製品を得られる ために好ましい。 この時のスリット幅は、 使用する不織布の目付によっても異な るが、 0 . 5 c m以上が好ましい。 この幅が 5 c mよりも小さくなると、 スリツ ト時に不織布が切断する恐れがあり、 また、 後に帯状不織布を綾状に卷き取る際 の張力の調整が難しくなり、 また、 同じ空隙率のフィルターを作る場合には巻き 取り時間が長くなり生産性が低下する。 一方、 スリット幅の上限は目付によって 異なり、 スリット幅 X目付の値が 2 0 0 c m · g/m2以下であることが好まし い。 この値が 2 0 0 c m · g/m2を越えると、 不織布の剛性が強くなりすぎる ために、 後に有孔筒状体に綾状に巻き付けにく くなり、 さらには繊維量が多くな りすぎるために密に巻き付けることが難しくなることもある。 なお、 紡糸幅を調 節して直接帯状の不織布を作る場合にも、 好ましい目付および不織布幅の範囲は スリツトして帯状にする場合と同じである。 Next, the melt-produced nonwoven fabric or the laminated meltblown nonwoven fabric is formed into a belt shape. In order to form a band, a method of directly forming a band-shaped non-woven fabric by adjusting the spinning width can be used, but a method of slitting a wide-width non-woven fabric into a band is preferable because an inexpensive and uniform product can be obtained. The slit width at this time varies depending on the basis weight of the nonwoven fabric used, but is preferably 0.5 cm or more. If the width is smaller than 5 cm, the nonwoven fabric may be cut at the time of slitting, and it may be difficult to adjust the tension when winding the band-shaped nonwoven fabric later in a twill shape. If it is made, the winding time will be longer and the productivity will be lower. On the other hand, the upper limit of the slit width differs depending on the basis weight, and the value of the slit width X basis weight is preferably 200 cm · g / m 2 or less. If this value exceeds 200 cmg / m2, the rigidity of the nonwoven fabric becomes too strong, and it becomes difficult to wind the nonwoven fabric around the perforated tubular body later, and the amount of fibers increases. It can be difficult to wind tightly because it is too long. In the case where a band-shaped nonwoven fabric is directly produced by adjusting the spinning width, the preferable ranges of the basis weight and the nonwoven fabric width are the same as in the case where the band is formed by slitting.
このようにして作られた帯状のメルトプロ一不織布あるいは積層メルトプロ一 不織布 (以後、 帯状不織布と略する) を、 後述するような方法で加工してから綾 状に卷き付けても良いが、 加工せずにそのまま卷き付けてもよい。 この場合の製 造法の一例を図 3に示す。 巻き取り機には通常の糸卷き型フィルタ一カートリッ ジに使われるワインダ一を使用できる。 供給された帯状不織布 5は、 綾振りをし ながら動く細幅孔のトラバースガイ ド 6を通った後、 ボビン 7に取り付けられた 有孔筒状体 8に卷き取られてフィル夕一カートリッジ 9となる。 この方法で作ら れたフィルタ一力一トリヅジは非常に密になるため、 精度の細かいフィル夕一力 —トリッジとなる。 ただし、 この方法では製造条件を変更して濾過精度を調整す ることが難しい。  The belt-shaped melt-pro nonwoven fabric or laminated melt-produced nonwoven fabric (hereinafter abbreviated as “band-shaped nonwoven fabric”) may be processed by a method described later and then wound in a twill shape. It may be wound as it is without. Figure 3 shows an example of the manufacturing method in this case. The winder used for a normal wound filter or cartridge can be used for the winding machine. The supplied nonwoven fabric 5 passes through a traverse guide 6 having a narrow hole that moves while traversing, and then is wound up on a perforated cylindrical body 8 attached to a bobbin 7 to fill a cartridge 9. Becomes The filters created by this method will be very dense, and will be a very accurate filter. However, in this method, it is difficult to adjust the filtration accuracy by changing the manufacturing conditions.
一方、 この帯状不織布に捻りを加えてから巻き取ることもできる。 この場合の 製造法の一例を図 4に示す。 この場合にも巻き取り機には通常の糸巻き型フィル 夕一力一卜リッジに使われるワインダーを使用できる。 帯状不織布は捻りによつ て見かけ上太くなるため、 トラバースガイ ド 1 0は図 3に示したのものよりも孔 径の大きなものが好ましい。 帯状不織布に捻りを加えると、 単位長さ当たりの捻 りの数、 あるいは捻る強さによって不織布の見かけの空隙率を変化させることが できるので、 濾過精度を調整することができる。 この時の捻りの数は、 帯状不織 布 l mあたり 5 0 ~ 1 0 0 0回の範囲が好ましい。 この値が 5 0回よりも小さく なると、 捻りを加える効果がほとんど得られない。 また、 この値が 1 0 0 0回よ りも多くなると、 作られたフィルタ一カートリッジが通液性に劣るものとなるた め好ましくない。 On the other hand, it is also possible to twist the band-shaped nonwoven fabric and then wind it up. In this case Fig. 4 shows an example of the manufacturing method. Also in this case, a winder used for a normal thread-wound fill cartridge can be used for the winding machine. Since the band-shaped nonwoven fabric becomes apparently thick due to twisting, the traverse guide 10 preferably has a larger pore diameter than that shown in FIG. When the twist is applied to the belt-shaped nonwoven fabric, the apparent porosity of the nonwoven fabric can be changed by the number of twists per unit length or the twisting strength, so that the filtration accuracy can be adjusted. The number of twists at this time is preferably in the range of 50 to 100 times per lm of the band-shaped nonwoven fabric. If this value is less than 50 times, the effect of adding twist is hardly obtained. On the other hand, if the value is more than 100 times, the produced filter-cartridge becomes inferior in liquid permeability, which is not preferable.
また、 先述した帯状不織布を、 適当な方法で集束させてから有孔筒状体に巻き 付けると、 さらに好ましい。 その方法としては、 帯状の不織布を単に小孔等を通 して集束させてもよいし、 帯状不織布をひだ形成ガイ ドで断面形状を予備成形し た後に小孔等を通してひだ状物に加工してもよい。 この方法を使用すると、 トラ バースガイ ドの綾振り速度とボビンの回転速度の比率を調節して、 卷パターンを 変更できるので、 同じ種類の帯状不織布からさまざまな性能のフィルタ一カート リッジを作ることができる。  It is further preferable that the above-mentioned band-shaped nonwoven fabric is bundled by an appropriate method and then wound around a perforated cylindrical body. As a method, the band-shaped nonwoven fabric may be simply bundled through small holes or the like, or the band-shaped nonwoven fabric may be preformed into a pleated shape through small holes or the like after being preformed with a fold forming guide. You may. By using this method, the winding pattern can be changed by adjusting the ratio of the traverse guide traverse speed to the bobbin rotation speed, so that filter cartridges with various performances can be made from the same type of nonwoven fabric. it can.
帯状不織布を集束させる方法として単に小孔を通す場合の製造法の一例を図 5 に示す。 この場合にも巻き取り機には通常の糸巻き型フィル夕一力一トリッジに 使われるワインダーを使用できる。 図 5ではトラバースガイ ド 1 1の孔を小孔に することによって帯状不織布を集束させているが、 トラバースガイ ド 1 1よりも 手前の糸道に小孔のガイ ドを設けてもかまわない。 小孔の直径は、 使用する帯状 不織布の目付や幅にもよるが、 3 mm〜 1 0 mmの範囲が好ましい。 この直径が 3 mmよりも小さくなると帯状不織布と小孔との摩擦が大きくなって巻き取り張 力が高くなりすぎる。 また、 この値が 1 0 mmよりも大きくなると、 帯状不織布 の集束サイズが安定しなくなる。  FIG. 5 shows an example of a manufacturing method in which a small hole is simply passed through as a method of converging a band-shaped nonwoven fabric. In this case as well, the winder used for the ordinary thread-wound fill cartridge can be used for the winding machine. In FIG. 5, the band-shaped nonwoven fabric is bundled by making the holes of the traverse guide 11 small. However, a small hole guide may be provided on the yarn path before the traverse guide 11. The diameter of the small holes depends on the basis weight and width of the band-shaped nonwoven fabric used, but is preferably in the range of 3 mm to 10 mm. If the diameter is smaller than 3 mm, the friction between the band-shaped nonwoven fabric and the small holes increases, and the winding tension becomes too high. If this value is larger than 10 mm, the convergence size of the band-shaped nonwoven fabric becomes unstable.
次に、 帯状不織布をひだ形成ガイ ドで断面形状を予備成形した後に小孔等を通 してひだ状物に加工する場合の製造法の一例の一部切り欠き斜視図を図 6に示す lb Next, Fig. 6 shows a partially cutaway perspective view of an example of a manufacturing method in the case of preforming the cross-sectional shape of the band-shaped nonwoven fabric with the fold forming guide and then processing it into a fold through small holes. lb
。 この場合にも巻き取り機には通常の糸巻き型フィル夕一カートリッジに使われ るワインダーを使用できる。 この方法を採る場合、 帯状不織布 5はひだ形成ガイ ド 1 6を通って断面形状が予備成形され、 続いて小孔 1 4を通ってひだ状物 1 5 となり、 そのひだ状物 1 5を図の Aの方向に引き取り、 トラバースガイ ドを通し て有孔筒状体に巻き取るとフィルタ一カートリッジとなる。 . In this case as well, a winder used for a normal thread-fill type cartridge can be used for the winding machine. When this method is adopted, the band-shaped nonwoven fabric 5 is preformed into a cross-sectional shape through a fold forming guide 16, and then formed into a pleated material 15 through a small hole 14. When it is taken in the direction of A and wound up into a perforated cylindrical body through a traverse guide, it becomes a filter cartridge.
次に、 前記ひだ形成ガイ ドついて説明する。 ひだ形成ガイ ドは通常外径 3 mm 〜 1 0 mm程度の丸棒を加工したものの表面に不織布との摩擦を防ぐためのフッ 素樹脂加工をほどこして作る。 その形状の 1例を図 7〜 8に示す。 ここに挙げた 例では、 ひだ形成ガイ ド 1 6は外部規制ガイ ド 1 2と内部規制ガイ ド 1 3からな る。 このひだ形成ガイ ド 1 6の形状は特に限定されないが、 このガイ ドから作ら れるひだ状物の断面形状がひだが平行とならないように集束されたものになる形 であれば好ましい。 そのようにして作られたひだ状物の断面形状の 1例を図 9 ( A) ( B ) ( C ) に示すが、 これらに限定されるものではない。 本発明のこれら の態様において、 ひだの少なくとも一部が非平行になるように集束されたひだ状 物を形成させたものは、 本発明の最も好ましい態様である。 すなわち、 図 9の断 面形状のようにひだの一部が非平行となっている場合には、 図 1 0 ( A) ( B ) に示すようにひだのほとんどが平行である場合に比べて、 濾過圧力がひだに矢印 のように垂直な方向からかかつた時でもひだ状物の形状保持力が強く、 本来のひ だ形状としての濾過機能を保持することができる。 つまり、 ひだが非平行の場合 はひだが平行である場合と比較してフィル夕一カートリッジの圧力損失を抑える 能力に優れているため、 ひだ状物の断面形状はひだが非平行であることは特に好 ましい。 なお、 ガイ ドは必ずしも 1つである必要はなく、 形や大きさの異なる数 個のガイ ドを直列に並べることによって帯状不織布の断面形状を徐々に変えてい くようにすれば、 ひだ状物の断面形状が場所によって一定となるために品質のむ らが無くなり好ましい。  Next, the fold formation guide will be described. The fold formation guide is usually made by processing a round bar with an outer diameter of about 3 mm to 10 mm, and then applying a fluororesin process to the surface to prevent friction with the nonwoven fabric. An example of the shape is shown in Figs. In the example given here, the plication guide 16 consists of an external control guide 12 and an internal control guide 13. The shape of the fold forming guide 16 is not particularly limited, but is preferably a shape in which the cross-sectional shape of the fold formed from this guide is converged so that the folds are not parallel. One example of the cross-sectional shape of the pleated material thus produced is shown in FIGS. 9A, 9B, and 9C, but is not limited thereto. In these embodiments of the present invention, the formation of folds that are converged so that at least a portion of the folds are non-parallel is the most preferred embodiment of the present invention. In other words, when some of the folds are non-parallel as in the cross-sectional shape in Fig. 9, compared to when the folds are almost parallel as shown in Figs. 10 (A) and (B). Even when the filtration pressure is applied to the pleats in a direction perpendicular to the arrow as shown by the arrow, the shape retention force of the pleats is strong, and the filtration function of the original pleats can be maintained. In other words, when the folds are non-parallel, the cross-sectional shape of the folds is non-parallel due to the superior ability to suppress the pressure drop of the fill cartridge compared to the case where the folds are parallel. Especially preferred. The number of guides is not necessarily one, but if several pieces of guides of different shapes and sizes are arranged in series to gradually change the cross-sectional shape of the band-shaped nonwoven fabric, pleated materials Since the cross-sectional shape becomes constant depending on the place, it is preferable because there is no unevenness in quality.
本発明において、 帯状不織布をひだ状物としてから有孔筒状体に巻き付ける場 合、 ひだ状物の最終的なひだ数は、 4〜5 0個、 より好ましくは?〜 4 5個であ る。 ひだ数が 4個未満では、 ひだ付与による濾過面積拡大による効果に乏しい。 一方、 ひだ数が 5 0個を超えると、 ひだが小さくなりすぎて製造困難であり、 か つ濾過機能低下への影響が生じやすくなる。 In the present invention, when the band-shaped nonwoven fabric is wound into a perforated tubular body after being formed into a pleated material, the final number of the pleated material is preferably 4 to 50, more preferably? ~ 45. When the number of folds is less than 4, the effect of expanding the filtration area by providing folds is poor. On the other hand, when the number of folds exceeds 50, the folds become too small, making it difficult to produce, and easily affecting the filtration function.
また、 例えば図 1 1に示すような櫛形のひだ形成ガイ ド 1 7を用いて帯状不織 布に多数のひだを付与した後、 より狭い矩形孔 1 8を通過させることでさらにひ だ数が数多くなるよう変形させ、 かつひだをアトランダムな非平行とすることが できる。  Also, for example, after applying a large number of pleats to the band-shaped nonwoven fabric using a comb-shaped pleat formation guide 17 as shown in FIG. 11, the number of pleats is further reduced by passing through a narrower rectangular hole 18. It can be deformed to be numerous and the pleats can be made non-parallel at random.
また、 先述した小孔 1 4を通した後のひだ状物 1 5を、 熱風あるいは赤外線ヒ 一夕一等で加熱加工することにより、 ひだ状物の断面形状を固定化することがで きる。 この工程は必ずしも必要ではないが、 ひだ状物の断面形状を複雑にしたり 、 あるいは帯状不織布として剛性が高いものを使用する場合には、 断面形状が設 計した形から崩れてしまうことがあるため、 このような加熱加工をすることが好 ましい。  In addition, the cross-sectional shape of the folds can be fixed by heating the folds 15 after passing through the small holes 14 with hot air or infrared rays. This step is not always necessary, but if the cross-sectional shape of the pleated material is complicated, or if a highly rigid band-shaped nonwoven fabric is used, the cross-sectional shape may collapse from the designed shape. However, it is preferable to perform such heating processing.
次に、 本発明で使用される集束された帯状不織布、 あるいはひだ状物 (以下、 あわせて帯状不織布集束物と略する) の空隙率について説明する。 まず、 帯状不 織布集束物の断面積は、 図 1 2に示すように、 帯状不織布集束物 2 4を内包する 最小面積の卵形 1 9 (卵形とはその各内角それぞれがすべて 1 8◦度以内である 多角形を意味する) の面積と定義する。 そして帯状不織布集束物を所定の長さ、 例えば断面積の平方根の 1 0 0倍の長さに切断し、 次式で定義する。  Next, the porosity of the bundled nonwoven fabric or pleated material used in the present invention (hereinafter collectively referred to as a bundle of nonwoven fabrics) will be described. First, as shown in Fig. 12, the cross-sectional area of the band-shaped nonwoven fabric bundle is the minimum area of an oval shape 19 containing the band-like nonwoven fabric bundle 24 ◦ Defines the area of a polygon that is within degrees. Then, the band-shaped nonwoven fabric bundle is cut into a predetermined length, for example, 100 times the square root of the cross-sectional area, and is defined by the following equation.
(帯状不織布集束物の見かけ体積) 二 (帯状不織布集束物の断面積 X帯状不織 布集束物の切断長)  (Apparent volume of banded nonwoven fabric bundle) 2 (Cross-sectional area of banded nonwoven fabric bundle X cutting length of banded nonwoven fabric bundle)
(帯状不織布集束物の真体積) = (切断した帯状不織布集束物の重量) / (帯 状不織布集束物の原料の密度)  (True volume of banded nonwoven fabric bundle) = (weight of cut banded nonwoven fabric bundle) / (density of raw material of banded nonwoven fabric bundle)
(帯状不織布集束物の空隙率) = { 1一 (帯状不織布集束物の真体積) / (帯 状不織布集束物の見かけ体積) } X 1 0 0 ( %)  (Voidage of the banded nonwoven fabric bundle) = {11 (true volume of the banded nonwoven fabric bundle) / (apparent volume of the banded nonwoven fabric bundle)} X 100 (%)
この式で定義された帯状不織布集束物の空隙率は 6 0〜 9 5 %が好ましく、 よ り好ましくは 8 5 〜 9 2 %である。 この値を 6 0 %以上とすることにより、 帯状 不織布集束物が必要以上に密になることを抑え、 フィル夕一力一トリッジとして 使用したときの圧力損失を十分抑えることができ、 あるいは帯状不織布集束物中 の粒子捕集効率をより向上させることができる。 また、 この値を 9 5 %以下とす ることにより、 後での巻き付けが容易となり、 またフィルタ一カートリッジとし て使用したときにその負荷圧力による濾材の変形をより小さくすることができる 。 これを調整する方法の例として、 卷き取り張力の調整、 ひだ形成ガイ ドなどの ガイ ド形状の調整が挙げられる。 The porosity of the banded nonwoven fabric bundle defined by this formula is preferably 60 to 95%, more preferably 85 to 92%. By setting this value to 60% or more, the band-shaped nonwoven fabric bundle can be prevented from becoming unnecessarily dense, and the pressure loss when used as a filler can be sufficiently suppressed. In a bundle Particle collection efficiency can be further improved. Further, by setting this value to 95% or less, it becomes easy to wind later, and when used as a filter cartridge, the deformation of the filter medium due to the load pressure can be further reduced. Examples of the method of adjusting this include adjusting the winding tension and adjusting the guide shape such as a fold forming guide.
また該帯状不織布集束物を作るときに、 本発明の効果を妨げない範囲で粒状活 性炭やイオン交換樹脂などを混在させて加工しても良い。 その場合に粒状活性炭 やイオン交換樹脂などを固定するには、 帯状不織布を集束あるいはひだ状物に加 ェする前、 あるいは加工した後に適当なバインダーなどで接着しても良いし、 粒 状活性炭やイオン交換樹脂などを混在させた後に加熱して帯状不織布の構成繊維 と熱接着しても良い。  Further, when producing the band-shaped nonwoven fabric bundle, granular activated carbon, an ion exchange resin or the like may be mixed and processed as long as the effects of the present invention are not impaired. In such a case, in order to fix the granular activated carbon or the ion exchange resin, the band-shaped nonwoven fabric may be adhered with a suitable binder before being bundled or added to the folds, or after being processed. After mixing ion-exchange resin and the like, heating may be performed to thermally bond with the constituent fibers of the band-shaped nonwoven fabric.
次に、 先述した方法で作られた帯状不織布集束物は、 断面形状が崩れないよう に工夫をすれば、 必ずしも連続工程にする必要はなく、 一度適当なボビンに卷ぃ ておき、 後にワインダ一で巻き取ってもよい。  Next, the band-shaped nonwoven fabric bundle produced by the above-described method is not necessarily required to be a continuous process if it is devised so that the cross-sectional shape does not collapse. May be wound up.
次に、 帯状不織布の卷き取り方法について説明する。 このワインダ一のボビン に、 直径約 1 0〜 4 0 mm、 長さ 1 0 0〜 1 0 0 0 mm程度の有孔筒状体を装着 し、 有孔筒状体の端部にワインダ一の糸道を通した帯状不織布 (あるいは帯状不 織布集束物) を固定する。 有孔筒状体はフィルターカートリッジの芯材の役目を するものであり、 その材質や形状は、 濾過時の外圧に耐えられる強度を持ち、 圧 力損失が著しく高くなければ特に限定されるものではなく、 例えば、 通常のフィ ル夕一力一トリッジに使用されている芯材のようにポリエチレン、 ポリプロピレ ンを網型の筒状に加工した射出成形品でもよく、 また、 セラミックやステンレス 等を同様に加工したものでも差し支えない。 あるいは、 有孔筒状体としてひだ折 り加工したフィルターカートリッジゃ不織布卷回型のフィルタ一力一トリッジな ど他のフィル夕一力一トリッジを使用してもよい。 ワインダ一の糸道はボビンに 平行に設置されたトラバースカムによって綾状に振られるため、 有孔筒状体には 帯状不織布が綾状に振られて巻き付けられる。 その時の巻き付け条件も通常の糸 卷き型フィル夕一カートリッジ製造時に準じて設定すれば良く、 例えばボビン初 速 1 0 0 0〜2 0 0 0 r p mにし、 繰り出し速度を調節して張力をかけながら巻 き付ければよい。 なお、 この時の張力によってもフィルタ一カートリッジの空隙 率を変えることができる。 さらに巻き付け時の張力を調整して内層の空隙率を密 にし、 中層、 外層と卷き付けるにつれて空隙率を粗くすることができる。 特に帯 状不織布をひだ状物としてから有孔筒状体に巻き付ける場合には、 ひだ状物が具 備するひだ形成による深層濾過構造と併せて外層、 中層、 内層で形成される粗密 構造差により理想的な濾過構造をもつフィル夕一カートリッジが提供できる。 ま た、 濾過精度は、 トラバースカムの綾振り速度とボビンの回転速度の比率を調整 して巻き付けパターンを変えることによつても変更することができる。 そのパ夕 —ンの付け方はすでに公知である通常の糸巻き型フィルタ一力一トリッジの方法 を使用でき、 フィルターの長さが一定の場合にはそのパターンをワインド数で表 すことができる。 なお、 ある糸 (本発明の場合は帯状不織布) とその 1つ下の層 に卷かれた糸との間隔 2 0が広い場合には濾過精度は粗くなり、 逆に狭い場合に は細かくなる。 これらの方法により帯状不織布を有孔筒状体 8の外径の 1 . 5倍 〜 3倍程度の外径まで巻き付けてフィル夕一力一トリッジ形状にする。 これをそ のままフィルタ一カートリッジ 9として使用しても良いし、 端面に厚さ 3 mm程 度の発泡ポリエチレンのガスケットを貼り付けるなどしてフィル夕一力一トリッ ジ端面のノヽウジングとの密着性を上げても良い。 Next, a method for winding the band-shaped nonwoven fabric will be described. A perforated cylindrical body having a diameter of about 100 to 40 mm and a length of about 100 to 100 mm is mounted on the bobbin of this winder, and the winder is attached to the end of the perforated cylindrical body. Fix the band-shaped non-woven fabric (or band-shaped non-woven fabric bundle) through the yarn path. The perforated cylindrical body serves as the core material of the filter cartridge, and its material and shape are not particularly limited unless it has strength enough to withstand the external pressure during filtration and the pressure loss is not extremely high. For example, an injection-molded product obtained by processing polyethylene or polypropylene into a net-like cylindrical shape like the core material used for ordinary filter cartridges, or ceramic or stainless steel, etc. It is not a problem if processed into Alternatively, another filter such as a filter cartridge which has been folded as a perforated cylindrical body and a non-woven wound type filter such as a filter may be used. Since the yarn path of the winder is traversed by a traverse cam installed parallel to the bobbin, a band-shaped nonwoven fabric is wrapped around the perforated tubular body in a traversing manner. The winding conditions at that time may be set according to the time of manufacture of a normal thread-wound fill cartridge. The speed may be set to 1000 to 200 rpm, and the winding speed may be adjusted while adjusting the feeding speed and applying tension. The porosity of the filter cartridge can be changed by the tension at this time. Furthermore, the porosity of the inner layer can be increased by adjusting the tension at the time of winding, and the porosity can be increased as the middle layer and the outer layer are wound. In particular, when the band-shaped nonwoven fabric is wound into a perforated cylindrical body after being formed into a pleated material, due to the difference in density between the outer layer, the middle layer, and the inner layer, together with the deep filtration structure formed by the pleated material provided by the pleated material. A filter cartridge having an ideal filtration structure can be provided. The filtration accuracy can also be changed by adjusting the ratio of the traverse cam traverse speed to the bobbin rotation speed to change the winding pattern. The pattern can be attached by using a conventional thread-wound filter, which is already known, and the pattern can be expressed by the number of winds when the filter length is constant. In addition, when the interval 20 between a certain yarn (in the case of the present invention, a band-shaped nonwoven fabric) and the yarn wound on the layer immediately below it is large, the filtration accuracy becomes coarse, and conversely, when it is small, the filtration accuracy becomes fine. By these methods, the band-shaped nonwoven fabric is wound to an outer diameter of about 1.5 to 3 times the outer diameter of the perforated tubular body 8 to form a fill-in-one-tridge shape. This may be used as it is as the filter cartridge 9 or it may be attached to the end face of the filter by attaching a gasket of foamed polyethylene of about 3 mm in thickness to the nozzle. You may increase the sex.
このようにしてできたフィル夕一の空隙率は 6 5〜8 5 %の範囲であることが 好ましい。 この値が 6 5 %よりも小さくなると、 繊維密度が高くなりすぎるため に通液性が低下してくる。 逆に、 この値が 8 5 %よりも大きくなると、 フィルタ —カートリッジ強度が低下し、 濾過圧力が高い場合にフィルタ一力一トリッジが 変形するなどの問題が生じ易くなる。  The porosity of the thus-filled film is preferably in the range of 65 to 85%. If this value is less than 65%, the fiber density becomes too high and the liquid permeability decreases. Conversely, if this value is greater than 85%, the filter-cartridge strength is reduced, and problems such as deformation of the filter at high filtration pressure tend to occur.
なお、 帯状不織布に切れ目を入れたり穴を開けたりすることによって、 通液性 を改善することができる。 この場合、 切れ目の数は帯状不織布 1 0 c m当たりで 5〜1 0 0個程度が好ましく、 穴を開ける場合には開孔部面積の割合を 1 0〜8 0 %程度にするのが好ましい。 巻き取るときの帯状不織布の本数を複数としたり 、 あるいは紡績糸など他の糸と併せて巻き付かせることでも、 濾過性能を調整す ることができる。 また、 図 1 4に示すように、 有孔筒状体 8に帯状不織布 5をあ る程度の径になるまで綾振りで巻き付けて内層 2 1を形成し、 続いて幅広の不織 布をその内層の周りにのり卷き状に卷きつけて精密濾過層 2 2を形成し、 続いて その周りに帯状不織布 5を再び綾振りで巻き付けて外層 2 3を形成し、 不織布を 卷き込んだ形でのフィル夕一力一トリッジを作ることもできる。 幅広不織布をの り卷き状に卷き付けない場合には、 糸間隔を広くして粗い精度のフィルターカー トリッジを作った時に粒子最大流出径が極端に大きくなる場合がある力5、 幅広不 織布をのり卷き状に巻き付けると、 粒子最大流出系を必要に応じて微調整するこ とが出来る。 実施例 In addition, by making a cut or making a hole in the belt-shaped nonwoven fabric, the liquid permeability can be improved. In this case, the number of cuts is preferably about 5 to 100 per 10 cm of the band-shaped nonwoven fabric, and when a hole is formed, the ratio of the area of the opening is preferably about 10 to 80%. The filtration performance can be adjusted by using a plurality of strip-shaped nonwoven fabrics when winding or by winding the nonwoven fabric together with other yarns such as spun yarns. Can be Further, as shown in FIG. 14, the band-shaped nonwoven fabric 5 is wound around the perforated tubular body 8 by traversing to a certain diameter to form an inner layer 21. Subsequently, a wide nonwoven fabric is formed. A microfiltration layer 22 is formed by winding around the inner layer to form a microfiltration layer 22. Subsequently, a band-shaped nonwoven fabric 5 is wrapped around the inner layer again by traversing to form an outer layer 23, and the nonwoven fabric is wound. You can also make a bridge at Phil in the evening. If not put wind-wide nonwoven fabric of Ri to wind-shape may particle maximum outflow diameter when made coarse accuracy of the filter cartridge by widening the yarn spacing becomes extremely large force 5, wide non When the woven fabric is wound in a wound form, the maximum particle outflow system can be fine-tuned as necessary. Example
以下に実施例、 比較例により、 本発明を更に詳細に説明するが本発明はこれら の実施例に限定されるものではない。 なお、 各例において濾過材の物性や濾過性 能等の評価は以下に記載する方法で行つた。  Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. In each example, evaluation of physical properties, filtration performance, and the like of the filtering material was performed by the methods described below.
織 の ί≡Ι 7HS  Weave HS 7HS
不織布の面積が 6 2 5 c m2となるように不織布を切り取り、 その重量を測定 して 1平方メートル当たりの重量に換算して目付 (g/m2 ) とした。 また、 切 り取った不織布の厚さを任意に 1 0点測定し、 その最大値と最小値を除いた 8点 の平均を不織布の厚さ ( m) とした。 なお、 本発明の不織布として積層メルト ブロー不織布を使用する場合、 製造方法によっては積層する前のそれぞれの層の 目付を計算することができないため、 その時は樹脂吐出量と機械幅および生産速 度から計算した理論値を使用した。 The nonwoven fabric was cut out so that the area of the nonwoven fabric became 6 25 cm 2 , the weight was measured, and the weight was converted into the weight per square meter to obtain the basis weight (g / m 2 ). The thickness of the cut nonwoven fabric was arbitrarily measured at 10 points, and the average of 8 points excluding the maximum value and the minimum value was defined as the thickness (m) of the nonwoven fabric. When a laminated melt-blown non-woven fabric is used as the non-woven fabric of the present invention, the basis weight of each layer before lamination cannot be calculated depending on the manufacturing method. The calculated theoretical values were used.
不織布の繃維择あるいは繊瘃 Nonwoven fabric or textile
不織布あるいは積層前のゥェブから無作為に 5箇所サンプリングしてそれらを 走査型電子顕微鏡で撮影し、 1箇所につきメルトブロー繊維の場合は 1 0 0本、 その他の繊維の場合は 2 0本の繊維を無作為に選んでそれらの繊維径を測定し、 その平均値をその不織布の繊維径 (〃m) とした。 また、 繊度 (d t e x ) は得 られた繊維径と不織布原料樹脂の密度 (g/立方センチメートル) を使って次式 から求めた。 なお、 2成分以上使用している場合には、 その密度は各成分の密度 の重量平均値を使用した。 Five samples were randomly sampled from the nonwoven fabric or the web before lamination, photographed with a scanning electron microscope, and 100 fibers for melt-blown fibers and 20 fibers for other fibers were sampled. The fiber diameter was measured at random, and the average value was defined as the fiber diameter (〃 m ) of the nonwoven fabric. The fineness (dtex) is calculated by using the obtained fiber diameter and the density (g / cubic centimeter) of the nonwoven fabric raw material resin as follows. Asked from. In the case where two or more components were used, the weight average value of the density of each component was used.
(繊度) = 7Γ (繊維径) 2 X (密度) / 4 0 0 (Fineness) = 7Γ (fiber diameter) 2 X (density) / 400
不織,布の ¾気 Non-woven fabric
スリットする前の不織布の通気度を J I S L 1 0 9 6— A法に準拠して各 不織布につき 2 0点測定して、 その平均値を求めた。 (単位 c m3 Z c m2 /秒) ひだ状物のひだ数 The air permeability of the nonwoven fabric before slitting was measured at 20 points for each nonwoven fabric according to the JISL 1106-A method, and the average value was determined. (Unit: cm 3 Z cm 2 / sec)
ひだ状物の断面形状を接着剤で固定した後、 任意の位置で 5箇所切断し、 その 断面を顕微鏡で写真撮影した。 その写真から帯状不織布の折り目の数を山折りま たは谷折りのいずれの場合も 1つとして数え、 切断した 5箇所の平均数の 2分の 1をひだ数とした。  After fixing the cross-sectional shape of the pleats with an adhesive, it was cut at five locations at arbitrary positions, and the cross-section was photographed with a microscope. From the photograph, the number of folds in the band-shaped nonwoven fabric was counted as one for both the mountain fold and the valley fold, and one half of the average number of the cut five points was taken as the number of folds.
帯状不織布集亩物の断而穑 ^ m 不 織布 の 亩 m m m ^ m
帯状不織布集束物の断面形状を接着剤で固定した後、 任意の位置で 5箇所切断 し、 その断面を顕微鏡で写真撮影した。 その写真を画像解析して帯状不織布集束 物の断面積を求めた。 また、 これとは別の箇所の帯状不織布集束物を長さ 1 0 c mに切断し、 その重量と先に求めた断面積とから次式を使って空隙率を求めた。  After fixing the cross-sectional shape of the band-shaped nonwoven fabric bundle with an adhesive, the cross-section was cut at five arbitrary positions, and the cross-section was photographed with a microscope. The photograph was image-analyzed to determine the cross-sectional area of the band-shaped nonwoven fabric bundle. A band-shaped nonwoven fabric bundle at another location was cut to a length of 10 cm, and the porosity was calculated from the weight and the cross-sectional area obtained earlier using the following equation.
(帯状不織布集束物の見かけ体積) 二 (帯状不織布集束物の断面積 X帯状不織 布集束物の切断長)  (Apparent volume of banded nonwoven fabric bundle) 2 (Cross-sectional area of banded nonwoven fabric bundle X cutting length of banded nonwoven fabric bundle)
(帯状不織布集束物の真体積) = (帯状不織布集束物の重量) / (帯状不織布 集束物の原料の密度)  (True volume of banded nonwoven fabric bundle) = (weight of banded nonwoven fabric bundle) / (density of raw material of banded nonwoven fabric bundle)
(帯状不織布集束物の空隙率) 二 { 1一 (帯状不織布集束物の真体積) / (帯 状不織布集束物の見かけ体積) } X 1 0 0 ( % )  (Void ratio of banded nonwoven fabric bundle) 2 {1 1 (True volume of banded nonwoven fabric bundle) / (apparent volume of banded nonwoven fabric bundle)} X 100 (%)
糸間隔 Thread spacing
表層にある帯状不織布集束物 (あるいは帯状不織布、 紡績糸など以下の実施例 において有孔筒状体に巻き付けられたもの) と隣接する帯状不織布集束物との間 隔 (図 1 3の 2 0に示す) を 1つのフィル夕一カートリッジにっき 1 0箇所測定 し、 その平均を糸間隔とした。  The distance between the bundle of band-shaped nonwoven fabric on the surface layer (or the band-shaped nonwoven fabric, spun yarn, etc., which is wound around a perforated cylindrical body in the following examples) and the bundle of adjacent band-shaped nonwoven fabric (see FIG. 13-20). ) Were measured at 10 points on one fill cartridge and the average was taken as the yarn spacing.
フィルタ一カートリッジの^隙率 フィルターカート リッジの外径、 内径、 長さ、 重量を測定し、 次式を使って空 隙率を求めた。 なお、 濾材そのものの空隙率を求めるため、 内径の値には有孔筒 状体の外径を使用し、 重量の値にはフィル夕一力一トリッジの重量から有孔筒状 体の重量を引いた値を用いた。 Porosity of filter / cartridge The outer diameter, inner diameter, length, and weight of the filter cartridge were measured, and the porosity was determined using the following equation. In order to determine the porosity of the filter media itself, the outer diameter of the perforated tubular body is used for the inner diameter value, and the weight value is calculated by subtracting the weight of the perforated tubular body from the weight of the filter. The subtracted value was used.
(フィル夕一の見かけ体積) 二 π { (フィルターの外径) 2— (フィルターの 内径) 2 } (フィル夕一長さ) / 4 (Apparent volume of the filter) 2 π {(outer diameter of the filter) 2 — (inner diameter of the filter) 2 } (length of the filter) / 4
(フィルターの真体積) = (フィル夕一の重量) / (フィル夕一の原料の密度 (True volume of filter) = (Weight of Fill Yuichi) / (Density of Fill Yuichi ingredients)
) )
(フィル夕一の空隙率) = { 1一 (フィル夕一の真体積) /フィルタ一の見か け体積) } 1 0 0 ( % )  (Porosity of Fill 1) = {11-1 (True volume of Fill 1) / Apparent volume of Filter 1) 1 100 (%)
wm ^ ネ τι期 カ捐牛、 滤渦ライフ wm ^ Ne τι term mosquito cattle, 、 vortex life
循環式濾過性能試験機のノヽウジングにフィルターカートリッジ 1つを取り付け 、 ポンプで流量を毎分 3 0リットルに調節して通水循環する。 このときのフィル 夕一カートリッジ前後の圧力損失を初期圧力損失とした。 次に循環している水に Attach one filter cartridge to the nozzle of the circulation type filtration performance tester and adjust the flow rate to 30 liters per minute with a pump to circulate water. The pressure loss before and after the fill cartridge at this time was defined as the initial pressure loss. Next to the circulating water
J I S Z 8 9 0 1に定められた試験用粉体 Iの 8種 ( J I S 8種と略す。 中 位径: 6 . 6〜8 . 6〃m) と同 7種 ( J I S 7種と略す。 中位径: 2 7〜3 1 ) を重量比 1 : 1で混合したケーキを毎分 0 . 4 g /分で連続添加し、 添加 開始から 5分後に原液と濾液を採取し、 所定の倍率に希釈した後にそれぞれの液 に含まれる粒子の数を光遮断式粒子検出器で計測して各粒径における初期捕集効 率を算出した。 さらにその値を内挿して、 捕集効率 8 0 %を示す粒径を求めた。 また、 さらに続けてケーキを添加し、 フィル夕一カートリッジの圧力損失が 0 . 2 M P aに達したときにも同様に原液と濾液を採取して、 0 . 2 M P a時の捕集 粒径を求めた。 また、 ケーキ添加開始から 0 . 2 M P aに達するまでの時間を濾 過ライフとした。 なお、 濾過ライフが 1 0 0 0分に達しても差圧が 0 . 2 M P a に達しない場合にはその時点で測定を中断した。 Eight types of test powder I (abbreviated as JIS 8; median diameter: 6.6 to 8.6〃m) and seven types (abbreviated as JIS 7) specified in JISZ8901 The mixture obtained by continuously adding 0.4 g / min per minute of a cake obtained by mixing the mixture of 27 to 31) at a weight ratio of 1: 1, collecting the undiluted solution and the filtrate 5 minutes after the start of the addition, and adjusting to a predetermined magnification After dilution, the number of particles contained in each liquid was measured with a light-blocking particle detector to calculate the initial collection efficiency at each particle size. Further, by interpolating the values, a particle size showing a trapping efficiency of 80% was obtained. Further, the cake was further added, and when the pressure loss of the fill cartridge reached 0.2 MPa, the stock solution and the filtrate were collected in the same manner, and the collected particle size at 0.2 MPa was measured. I asked. The time from the start of the addition of the cake to reaching 0.2 MPa was defined as the filtration life. If the pressure difference did not reach 0.2 MPa even when the filtration life reached 1000 minutes, the measurement was stopped at that point.
ネ 71期滤液の洵, および繊維 茲 The 71st period of liquid and fiber
循環式濾過性能試験機のノヽウジングにフィルターカートリッジ 1つを取り付け 、 ポンプで流量を毎分 1 0リットルに調節してイオン交換水を通水する。 初期濾 液を 1リットル採取し、 そのうち 2 5立方センチメートルを比色びんに採取して 激しく攪拌し、 攪拌停止 1 0秒後に泡立ちを見た。 そして、 泡の体積 (液面から 泡の頂点までの体積) が 1 0立方センチメートル以上ある場合を X、 1 0立方セ ンチメ一トル未満でかつ直径 1 mm以上の泡が 5個以上見られる場合を△、 直径 l mm以上の泡が 5個未満の場合を〇、 として泡立ちを判定した。 また、 初期濾 液 5 0 0立方センチメートルを孔径 0 . 8〃ιηの二トロセルロース濾紙に通し、 濾紙 1平方センチメートルあたりに長さ l mm以上の繊維が 4個以上ある場合を x、 1〜3個の場合を八、 0個の場合を〇、 として繊維脱落を判定した。 Attach one filter cartridge to the nozzle of the circulating filtration performance tester, and adjust the flow rate to 10 liters per minute with a pump to pass ion-exchanged water. Initial filtration One liter of the solution was sampled, and 25 cubic centimeters of the solution were sampled in a colorimetric bottle, stirred vigorously, and foaming was observed 10 seconds after the stirring was stopped. If the volume of the foam (the volume from the liquid surface to the top of the foam) is at least 10 cubic centimeters, X is the case where less than 10 cubic centimeters and at least 5 bubbles with a diameter of 1 mm or more are observed. Δ, when less than 5 bubbles having a diameter of l mm or more were Δ, and foaming was determined as Δ. Also, pass 500 m3 of the initial filtrate through a dinitrocellulose filter paper having a pore diameter of 0.8〃ιη, and if there are four or more fibers with a length of l mm or more per square centimeter of the filter paper, x, 1-3 The case was determined to be 8, and the case of 0 was determined to be 〇, and fiber detachment was determined.
実施例 1 Example 1
メルトプロ一不織布として、 目付 2 0 gZm2、 平均繊維径 3 m、 厚さ 2 0 0〃m、 通気度 3 7 c m3 / c m2 /秒で、 紡糸の余熱により繊維交点が弱く接着 しているポリプロピレン製メルトブロー不織布を使用した。 また、 有孔筒状体と して、 内径 3 0 mm、 外径 3 4 mm、 長さ 2 5 0 mmであり、 6 mm角の穴が 1 8 0個開けられているポリプロピレン製の射出成型品を使用した。 そのメルトブ ロー不織布を幅 5 0 mmにスリットして帯状不織布とした。 そして、 ワインダ一 を使用して帯状不織布を集束等せずそのまま有孔筒状体に巻き付けて、 スピンド ル初速 1 5 0 0 r p mで、 帯状不織布の間隔が 0 mmとなるようにワインド数を 調整して有孔筒状体に外径 6 2 mmになるまで卷き取り、 図 1 3に示すような円 筒状フィルターカートリッジ 9を得た。 As a melt-pro nonwoven fabric, the basis weight is 20 gZm 2 , the average fiber diameter is 3 m, the thickness is 200 m, the air permeability is 37 cm 3 / cm 2 / sec, and the fiber intersection is weakly adhered due to the residual heat of spinning. A polypropylene meltblown nonwoven fabric was used. The perforated cylindrical body is 30 mm in inner diameter, 34 mm in outer diameter, 250 mm in length, and is injection molded from polypropylene with 180 holes of 6 mm square. Product was used. The meltblown nonwoven fabric was slit to a width of 50 mm to obtain a belt-like nonwoven fabric. Then, using a winder, the band-shaped nonwoven fabric is wound around the perforated tubular body without focusing, etc., and the winding number is adjusted so that the interval between the band-shaped nonwoven fabrics becomes 0 mm at the initial spindle speed of 150 rpm. Then, it was wound up to an outer diameter of 62 mm on a perforated cylindrical body to obtain a cylindrical filter cartridge 9 as shown in FIG.
実施例 2 Example 2
ワインド数を変更して帯状不織布の間隔が 1 mmとなるようにした他はすべて 実施例 1と同じ方法でフィル夕一カートリッジを得た。 しかし、 そのフィルター の濾過性能は実施例 1で示したフィル夕一と大差なかった。 実施例 1で示したフ ィル夕一と差がなかったのは、 帯状不織布を集束等していないために、 ワインド 数の影響がでなかったためと考えられる。  A fill cartridge was obtained in the same manner as in Example 1 except that the number of winds was changed so that the interval between the band-shaped nonwoven fabrics was 1 mm. However, the filtration performance of the filter was not much different from that of the filter shown in Example 1. The reason why there was no difference from the file shown in Example 1 is probably because the band-shaped nonwoven fabric was not bundled and the influence of the number of winds did not occur.
実施例 3 Example 3
帯状不織布、 有孔筒状体は実施例 1と同じものを使用した。 そして、 ワインダ 一までの糸道に直径 5 mmの円形孔のガイ ドを設置して帯状不織布を直径約 5 m mに集束させ、 実施例 1と同様に有孔筒状体に卷き取って円筒状フィルタ一力一 トリッジを得た。 このフィルターの濾過性能はほぼ実施例 1で示したフィルター と同じであった。 The same band-shaped nonwoven fabric and perforated tubular body as in Example 1 were used. A guide with a circular hole with a diameter of 5 mm is installed in the yarn path up to the winder to make the belt-shaped nonwoven fabric approximately 5 m in diameter. m, and wound around a perforated cylindrical body in the same manner as in Example 1 to obtain a cylindrical filter. The filtration performance of this filter was almost the same as the filter shown in Example 1.
実施例 4 Example 4
帯状不織布の間隔が 1 mmとなるようにワインド数を調整した他は、 すべて実 施例 3と同じ方法で、 円筒状フィルターカートリッジを得た。 このフィル夕一は 実施例 3で示したフィルタ一よりも精度が粗く、 通水性がよく、 濾過ライフが長 いフィルタ一となった。  A cylindrical filter cartridge was obtained in the same manner as in Example 3 except that the number of winds was adjusted so that the interval between the band-shaped nonwoven fabrics was 1 mm. This filter had lower accuracy, better water permeability, and longer filtration life than the filter shown in Example 3.
実施例 5 Example 5
帯状不織布の間隔が 2 mmとなるようにワインド数を調整した他は、 すべて実 施例 3と同じ方法で、 円筒状フィル夕一力一トリヅジを得た。 このフィルタ一は 実施例 4で示したフィルターよりもさらに粗いフィル夕一となった。  Except that the number of winds was adjusted so that the interval between the belt-shaped nonwoven fabrics was 2 mm, a cylindrical fill strip was obtained in the same manner as in Example 3. This filter was a coarser filter than the filter shown in Example 4.
実施例 6 Example 6
帯状不織布の間隔が 2 mmとなるようにワインド数を調整した他は、 すべて実 施例 3と同じ方法で、 円筒状フィルターカートリッジを得た。 このフィル夕一は 実施例 5で示したフィルターよりもさらに粗いフィル夕一となった。  A cylindrical filter cartridge was obtained in the same manner as in Example 3 except that the number of winds was adjusted so that the interval between the band-shaped nonwoven fabrics was 2 mm. This filter was a coarser filter than the filter shown in Example 5.
実施例 7 Example 7
メルトブロー不織布として実施例 1と同じ不織布を使用した。 また、 長繊維不 織布として、 目付 2 2 g/m\ 厚さ 2 0 0〃m、 繊度 2 d t e xであり、 繊維 交点が熱エンボスロールで熱圧着されたポリプロピレン製スパンボンド不織布を 使用した。 そのメルトブロー不織布と長繊維不織布の各 1枚を重ね合わせ、 ェン ボスロールで不織布交点を接着させて積層メルトブロー不織布を作った。 この積 層メルトブロー不織布を幅 5 0 mmにスリットして帯状不織布とした。 その他は すべて実施例 4と同様の方法で円筒状フィルタ一カートリッジを得た。 このフィ ル夕一の初期捕集粒径は実施例 4で示したフィル夕一と同程度のものであつたが 、 精度変化が少ないすぐれたものであった。  The same nonwoven fabric as in Example 1 was used as the meltblown nonwoven fabric. In addition, a polypropylene spunbonded nonwoven fabric having a basis weight of 22 g / m, a thickness of 200 μm, a fineness of 2 dtex, and a fiber intersection hot-pressed with a hot embossing roll was used as the long-fiber nonwoven fabric. Each one of the melt-blown nonwoven fabric and the long-fiber nonwoven fabric was overlapped, and the nonwoven fabric intersection was adhered with an enboss roll to produce a laminated melt-blown nonwoven fabric. This laminated melt blown nonwoven fabric was slit into a width of 50 mm to obtain a belt-shaped nonwoven fabric. In all other respects, a cylindrical filter cartridge was obtained in the same manner as in Example 4. The initial collection particle size of this filter was similar to that of Example 4 shown in Example 4, but was excellent with little change in accuracy.
実施例 8 Example 8
メルトブロー不織布として実施例 1で使用した不織布と同じ不織布を使用 。 また、 長繊維不織布として、 目付 2 2 g/m2、 厚さ 2 0 0〃m、 繊度 2 d t e xであり、 繊維交点が熱ェンボス口一ルで熱圧着されたポリプロピレン製スパ ンボンド不織布を使用した。 それを長繊維不織布/メルトプロ一不織布/長繊維 不織布の順に重ね合わせ、 エンボスロールで不織布交点を接着させて積層メルト ブロー不織布を作った。 この積層メルトプロ一不織布を幅 5 0 mmにスリツ卜し て帯状不織布とした。 その他はすべて実施例 4と同様の方法で円筒状フィル夕一 力一トリッジを得た。 このフィル夕一の初期捕集粒径は実施例 4で示したフィル 夕一と同程度のものであつたが、 精度変化が実施例 7で示したフィルタ一よりも さらに少ないすぐれたものであった。 The same nonwoven fabric used in Example 1 was used as the meltblown nonwoven fabric . As the long-fiber nonwoven fabric, a polypropylene spanbond nonwoven fabric having a basis weight of 22 g / m 2 , a thickness of 200 μm, and a fineness of 2 dtex, and having a fiber intersection thermocompression-bonded with a hot boss opening was used. . These were superposed in the order of long-fiber nonwoven fabric / melt-pro-nonwoven fabric / long-fiber nonwoven fabric, and the nonwoven fabric intersections were bonded with embossing rolls to produce a laminated melt-blown nonwoven fabric. This laminated melt-produced nonwoven fabric was slit to a width of 50 mm to obtain a belt-shaped nonwoven fabric. In all other respects, a cylindrical fill cartridge was obtained in the same manner as in Example 4. Although the initial collection particle size of this filter was similar to that of the filter shown in Example 4, the change in accuracy was much smaller than that of the filter shown in Example 7 and was excellent. Was.
実施例 9 Example 9
メルトブ口一不織布として実施例 1で使用した不織布と同じ不織布と、 平均繊 維径を とした他は実施例 1と同じ不織布の 2種類を使用した。 また、 長繊 維不織布として、 目付 2 2 g/ 厚さ 2 0 0〃m、 繊度 2 d t e xであり、 繊維交点が熱ェンボス口一ルで熱圧着されたポリプロピレン製スパンボンド不織 布を使用した。 それを長繊維不織布/平均繊維径 5〃mのメルトブロー不織布/ 平均繊維径 3 のメルトプロ一不織布/長繊維不織布の順に重ね合わせ、 ェン ボスロールで不織布交点を接着させて積層メルトブロー不織布を作成した。 この 積層メルトブロー不織布を幅 5 0 mmにスリツ卜して帯状不織布とした。 その他 はすべて実施例 4と同様の方法で円筒状フィルターカートリッジを得た。 このフ ィル夕一の初期捕集粒径は実施例 4で示したフィルタ一と同程度のものであった が、 精度変化が実施例 8で示したフィル夕一よりもさらに少なく、 すぐれたもの であった。 また、 濾過ライフも実施例 8で示したフィル夕一より長いものとなつ た。  Two types of nonwoven fabric were used as the melt nonwoven fabric, the same as the nonwoven fabric used in Example 1, and the same nonwoven fabric as in Example 1 except that the average fiber diameter was changed. In addition, as the long-fiber nonwoven fabric, a polypropylene spunbond nonwoven fabric with a basis weight of 22 g / thickness of 200 m, a fineness of 2 dtex, and a fiber intersection point which is thermocompression-bonded with a hot embossed mouth was used. . These were superposed in the order of long-fiber nonwoven fabric / melt-blown nonwoven fabric with an average fiber diameter of 5 μm / melt-pro-nonwoven fabric with an average fiber diameter of 3 / long-fiber nonwoven fabric, and the nonwoven fabric intersection was adhered with an enboss roll to produce a laminated melt-blown nonwoven fabric. This laminated melt blown nonwoven fabric was slit to a width of 50 mm to obtain a belt-shaped nonwoven fabric. In all other respects, a cylindrical filter cartridge was obtained in the same manner as in Example 4. The initial collection particle size of this filter was similar to that of the filter shown in Example 4, but the change in accuracy was even smaller than that of the filter shown in Example 8 and was excellent. It was a thing. In addition, the filtration life was longer than the filter shown in Example 8.
実施例 1 0 Example 10
メルトブロー不織布、 および長繊維不織布の原料樹脂をナイロン 6 6にした他 はすべて実施例 8と同じ方法で、 円筒状フィルターカートリッジを得た。 このフ ィルターは実施例 8のフィルタ一とほぼ同程度の濾過性能を示した。  A cylindrical filter cartridge was obtained in the same manner as in Example 8 except that the raw material resin of the melt-blown nonwoven fabric and the long-fiber nonwoven fabric was nylon 66. This filter exhibited almost the same filtration performance as the filter of Example 8.
実施例 1 1 メルトブロー不織布、 および長繊維不織布の原料樹脂をポリエチレンテレフ夕 レートにした他はすべて実施例 8と同じ方法で、 円筒状フィル夕一カートリッジ を得た。 このフィルターは実施例 8のフィルタ一とほぼ同程度の濾過性能を示し た。 Example 1 1 A cylindrical fill cartridge was obtained in the same manner as in Example 8 except that the raw material resin of the melt-blown nonwoven fabric and the long-fiber nonwoven fabric was polyethylene terephthalate. This filter exhibited almost the same filtration performance as the filter of Example 8.
実施例 1 2 Example 1 2
積層メルトブロー不織布を幅 1 0 mmにスリッ トし、 さらに糸間隔が 1 mmと なるようワインド数を調整した他は全て実施例 8と同じ方法で、 円筒状フィル夕 —力一トリッジを得た。 このフィル夕一は実施例 8と同程度の性能のフィル夕一 になった。 しかしながら、 巻き取りに要した時間は実施例 4で示したフィルター の時よりも長くなつた。  A cylindrical melt force cartridge was obtained in the same manner as in Example 8 except that the laminated melt-blown nonwoven fabric was slit to a width of 10 mm and the number of windings was adjusted so that the yarn interval was 1 mm. The performance of this fill was the same as that of Example 8. However, the time required for winding was longer than that of the filter shown in Example 4.
実施例 1 3 Example 13
積層メルトプロ一不織布を幅 1 0 0 mmにスリヅトし、 さらに糸間隔が 0 mm となるようワインド数を調整した他は全て実施例 8と同じ方法で、 円筒状フィル 夕一カートリッジを得た。 このフィルタ一は実施例 8で示したフィル夕一よりも 精度の粗いフィル夕一となつた。 糸間隔を 0 mmにしたにもかかわらず精度の粗 いフィル夕一となったのは、 帯状不織布集束物が極度に太くなつたためである。 実施例 1 4  A cylindrical filter cartridge was obtained in the same manner as in Example 8, except that the laminated melt-produced nonwoven fabric was slit to a width of 100 mm and the number of windings was adjusted so that the yarn interval became 0 mm. This filter 1 was a filter having a higher accuracy than the filter shown in the eighth embodiment. The reason why the accuracy of the filling was low even though the yarn spacing was 0 mm was because the banded nonwoven fabric became extremely thick. Example 14
メルトブロー不織布として、 1ホール毎に交互に異なる樹脂を吐出できるノズ ルを使用し、 低融点成分に高密度ポリエチレン、 高融点成分にポリプロピレンを 重量比 5 : 5で使用した混繊メルトプロ一不織布を使用した。 一方、 長繊維不織 布は実施例 7で示したフィルターと同じ不織布を使用した。 その他はすべて実施 例 8と同じ方法で、 円筒状フィル夕一カートリッジを得た。 このフィル夕一は実 施例 8よりも精度の細かいフィル夕一となり、 精度変化が少ない優れたフィルタ 一となつた。  A melt-blown non-woven fabric that uses nozzles that can alternately discharge different resins for each hole, a high-density polyethylene for the low-melting component, and a mixed-melt non-woven fabric that uses a high-melting-point component of polypropylene at a weight ratio of 5: 5 did. On the other hand, the same nonwoven fabric as the filter shown in Example 7 was used for the long-fiber nonwoven fabric. In all other respects, a cylindrical fill cartridge was obtained in the same manner as in Example 8. This filter was a finer filter than Example 8, and was an excellent filter with little change in accuracy.
実施例 1 5 Example 15
低融点成分として線状低密度ポリエチレン (融点 125°C) を用いた他はすべて 実施例 1 4と同じ方法で、 円筒状フィル夕一力一トリッジを得た。 このフィルタ 一は実施例 1 4で示したフィル夕一と同程度の濾過精度のフィルターとなり、 さ らには実施例 1 4で示したフィル夕一よりも通水性に優れていた。 Except that linear low-density polyethylene (melting point 125 ° C) was used as the low-melting point component, a cylindrical-shaped filler was obtained in the same manner as in Example 14. This filter has the same filtering accuracy as the filter shown in Example 14 and has the same filtering accuracy. They had better water permeability than the fil of Example 14 shown in Example 14.
実施例 1 6 Example 16
メルトプロ一不織布として、 実施例 1と同じものを使用した。 そして、 長繊維 不織布の構成繊維として、 低融点成分が高密度ポリエチレン、 高融点成分がポリ プロピレンで重量比 5 : 5である鞘芯型複合繊維を用いた。 その他はすべて実施 例 8と同じ方法で、 円筒状フィル夕一カートリッジを得た。 このフィル夕一は実 施例 8で示したフィルターと同程度の濾過精度のフィルターとなり、 さらには実 施例 8で示したフィルタ一よりも精度変化が少なかった。  The same nonwoven fabric as in Example 1 was used as the melt-produced nonwoven fabric. As the constituent fibers of the long-fiber nonwoven fabric, a sheath-core composite fiber having a low-melting-point component of high-density polyethylene and a high-melting-point component of polypropylene having a weight ratio of 5: 5 was used. In all other respects, a cylindrical fill cartridge was obtained in the same manner as in Example 8. This filter was a filter having the same filtration accuracy as the filter shown in Example 8, and the change in accuracy was smaller than that of the filter shown in Example 8.
実施例 1 7 Example 17
メルトブロー不織布として、 実施例 1 5で使用した不織布と同じものを使用し た。 そして、 長繊維不織布として、 実施例 1 6と同じものを使用した。 その他は すべて実施例 8と同じ方法で、 円筒状フィルタ一カートリッジを得た。 このフィ ル夕一は実施例 1 5および 1 6で示したフィルターと同程度の濾過精度のフィル 夕一となり、 さらには実施例 1 5および 1 6で示したフィル夕一よりも精度変化 が少なかった。  The same nonwoven fabric used in Example 15 was used as the meltblown nonwoven fabric. The same long-fiber nonwoven fabric as that of Example 16 was used. In all other respects, a cylindrical filter cartridge was obtained in the same manner as in Example 8. This filter has the same filtration accuracy as the filters shown in Examples 15 and 16 and has less change in accuracy than the filters shown in Examples 15 and 16. Was.
実施例 1 8 Example 18
フィルターカートリッジ卷き取り時に強い線圧をかけて、 フィル夕一空隙率を 6 3 %にした他は、 すべて実施例 1 6と同じ方法で円筒状フィルターカートリッ ジを得た。 このフィル夕一の濾過性能は、 後述する比較例よりは優れていたが、 実施例 1 6のフィルタ一よりも初期圧力損失が大きくかつ濾過ライフの短いフィ ルターとなった。 この理由は、 フィル夕一空隙率が低く、 繊維密度が大きくなり すぎたためと考えられる。  A cylindrical filter cartridge was obtained in the same manner as in Example 16 except that a strong linear pressure was applied during winding of the filter cartridge to make the porosity of the filter 63%. Although the filtration performance of this filter was superior to that of the comparative example described later, the filter had a larger initial pressure loss and a shorter filtration life than the filter of Example 16. This is probably because the porosity was low and the fiber density was too high.
実施例 1 9 Example 19
帯状不織布集束物を極端に低張力で巻き取ることにより、 フィルター空隙率を 8 8 %にした他は、 すべて実施例 1 6と同じ方法で円筒状フィルタ一カートリッ ジを得た。 このフィルターの濾過性能は、 後述する比較例で示したフィルタ一よ りは優れていたが、 実施例 1 6のフィル夕一よりも濾過ライフの短いフィルター となった。 この理由は、 フィルター空隙率が高いために、 濾過圧力が高くなると 濾材が圧搾されて、 急激に圧力損失が上昇するためと考えられる。 A cylindrical filter cartridge was obtained in the same manner as in Example 16 except that the filter porosity was set to 88% by winding the band-shaped nonwoven fabric bundle with extremely low tension. Although the filtration performance of this filter was superior to the filter shown in the comparative example described later, the filter had a shorter filtration life than the filter of Example 16. The reason is that the filter porosity is high, This is probably because the filter medium was squeezed and the pressure loss increased rapidly.
実施例 2 0 Example 20
ワインダ一の糸道に設置する円形孔のガイ ドの直径を 1 mmにすることにより 、 帯状不織布集束物の空隙率を 5 8 %にした他は、 すべて実施例 1 6と同じ方法 で円筒状フィル夕一カートリッジを得た。 このフィル夕一の濾過性能は、 後述す る比較例よりは優れていた力 実施例 1 6で示したフィル夕一よりも初期圧力損 失が高くかつ濾過ライフの短いフィル夕一となった。 この理由は、 帯状不織布集 束物の空隙率が低く、 繊維密度が高くなりすぎたためと考えられる。  Except that the diameter of the guide of the circular hole set in the wind path of the winder was set to 1 mm, the porosity of the banded nonwoven fabric bundle was set to 58%, and all were cylindrical in the same manner as in Example 16 I got a Phil Yuichi cartridge. The filtration performance of this filter was higher than that of the comparative example described later. The initial pressure loss was higher than that of the filter shown in Example 16 and the filtration life was shorter. This is probably because the porosity of the banded nonwoven fabric bundle was low and the fiber density was too high.
実施例 2 1 Example 2 1
ワインダ一の糸道に設置する円形孔のガイ ドの直径を 1 0 mmにし、 さらに帯 状不織布集束物を極端に低張力で巻き取ることにより、 帯状不織布集束物の空隙 率を 9 7 %にした他は、 すべて実施例 1 6と同じ方法で円筒状フィルターカート リッジを得た。 このフィルターの濾過性能は、 後述する比較例で示したフィル夕 —よりは優れていたが、 実施例 1 6で示したフィル夕一よりも濾過ライフの短い フィルターとなった。 この理由は、 帯状不織布集束物の空隙率が高いために、 濾 過圧力が高くなると濾材が圧搾されて、 急激に圧力損失が上昇するためと考えら れる。  By setting the diameter of the guide of the circular hole installed in the wind path of the winder to 10 mm, and winding the banded non-woven fabric bundle with extremely low tension, the porosity of the banded non-woven fabric bundle is reduced to 97%. A cylindrical filter cartridge was obtained in the same manner as in Example 16 except for the above. Although the filtration performance of this filter was superior to the filter shown in Comparative Example described later, the filter had a shorter filtration life than the filter shown in Example 16. It is considered that the reason for this is that, because the porosity of the banded nonwoven fabric bundle is high, when the filtration pressure increases, the filter medium is squeezed, and the pressure loss rapidly increases.
実施例 2 2 Example 22
繊維交点の熱圧着方法を熱エンボスロールから熱風循環式加熱装置に変更した 他はすべて実施例 1 6と同じ方法で、 円筒状フィルタ一カートリッジを得た。 こ のフィルタ一は実施例 1 6で示したフィルターと同程度の性能を有していた。 実施例 2 3  A cylindrical filter cartridge was obtained in the same manner as in Example 16 except that the thermocompression bonding method at the fiber intersection was changed from a hot embossing roll to a hot air circulation type heating device. This filter had the same performance as the filter shown in Example 16. Example 23
帯状不織布を集束せず、 代わりに l mあたり 1 0 0回の捻りを加えた他はすべ て実施例 1 6と同じ方法で、 円筒状フィルターカートリッジを得た。 このフィル 夕一は実施例 8で示したフィルタ一と同程度の性能のフィルターとなった。 実施例 2 4  A cylindrical filter cartridge was obtained in the same manner as in Example 16 except that the band-shaped nonwoven fabric was not bundled, but instead twisted 100 times per lm. This filter was a filter having the same performance as the filter 1 shown in Example 8. Example 2 4
帯状不織布を図 9 ( A ) に示すような断面形状に加工して、 ひだ数 4のひだ状 物を得た。 そのひだ状物を集束した帯状不織布の代わりに用いた他は、 すべて実 施例 1 6と同じ方法で、 円筒状フィルターカートリッジを得た。 このフィルタ一 は実施例 1 6で示したフィルターと同程度の精度だが、 精度変化は実施例 1 6で 示したフィルタ一と比較して少なくなつた。 The band-shaped nonwoven fabric was processed into a cross-sectional shape as shown in FIG. 9 (A) to obtain a pleated material having four folds. Except that the folds were used in place of the bundled nonwoven, In the same manner as in Example 16, a cylindrical filter cartridge was obtained. This filter has the same level of accuracy as the filter shown in the embodiment 16, but the change in accuracy is smaller than that of the filter shown in the embodiment 16.
実施例 2 5 Example 2 5
帯状不織布を図 8 ( A) に示すような断面形状に加工して、 ひだ数 7のひだ状 物を得た。 そのひだ状物を用いた他は、 すべて実施例 1 6と同じ方法で、 円筒状 フィル夕一カートリッジを得た。 このフィルタ一は実施例 1 6で示したフィル夕 一と同程度の初期捕集粒径であつたが、 精度の変化は少なかった。  The band-shaped nonwoven fabric was processed into a cross-sectional shape as shown in FIG. 8 (A) to obtain a pleated material having seven folds. A cylindrical filter cartridge was obtained in the same manner as in Example 16 except that the pleated material was used. This filter 1 had the same initial collection particle size as the filter 1 shown in Example 16 but had little change in accuracy.
実施例 2 6 Example 26
帯状不織布を図 8 ( C ) に示すような断面形状に加工して、 ひだ数 1 5のひだ 状物を得た。 そのひだ状物を用いた他は、 すべて実施例 1 6と同じ方法で、 円筒 状フィル夕一カートリッジを得た。 このフィル夕一は実施例 1 6で示したフィル 夕一と同程度の初期捕集粒径であつたが、 精度の変化は少なく、 かつ圧力損失も 少ないものであった。  The band-shaped nonwoven fabric was processed into a cross-sectional shape as shown in FIG. 8 (C) to obtain a pleated material having 15 folds. A cylindrical fill cartridge was obtained in the same manner as in Example 16 except that the pleated material was used. This filter had the same initial collection particle size as the filter shown in Example 16 but had little change in accuracy and little pressure loss.
実施例 2 7 Example 2 7
帯状不織布のひだ数を 4 1にした他は全て実施例 1 6と同じ方法で、 円筒状フ ィル夕一力一トリッジを得た。 このフィルタ一は実施例 1 6で示したフィルター と同程度の初期捕集粒径であつたが、 精度の変化は実施例 2 5で示したフィル夕 —よりもさらに少なく、 かつ圧力損失も少ないものであった。  A cylindrical filter was obtained in the same manner as in Example 16 except that the number of folds in the band-shaped nonwoven fabric was changed to 41. This filter had the same initial collection particle size as the filter shown in Example 16 but the change in accuracy was even smaller and the pressure loss was smaller than that of the filter shown in Example 25. Was something.
比較例 1 Comparative Example 1
帯状不織布の代わりに繊度 3 d t e xの繊維を紡績した直径 2 mmのポリプロ ピレン製紡績糸を使用し、 糸間隔を 0 mmにした他は、 すべて実施例 3と同様の 方法で円筒状フィル夕一力一トリッジを得た。 このフィル夕一力一トリッジは初 期捕集粒径が実施例 3で示したフィル夕一よりもかなり粗くなり、 実施例 6で示 したフィルタ一と同程度になった。 しかしながら、 実施例 6で示したフィル夕一 よりも濾過ライフが短くなり、 精度変化も大きかった。 また、 初期濾液には泡立 ちがあり、 濾材の脱落も見られた。  Instead of the band-shaped nonwoven fabric, a 2 mm diameter polypropylene spun yarn spun from 3 dtex fiber was used, and the thread spacing was set to 0 mm. I got a force bridge. The initial collection particle size of this filter was much coarser than that of the filter shown in Example 3 and was almost the same as that of the filter shown in Example 6. However, the filtration life was shorter and the precision change was larger than in the case of the fill shown in Example 6. In addition, the initial filtrate had foaming, and the filter medium was also found to fall off.
比較例 2 帯状不織布の代わりに幅 5 0 mmに切断した J I S P 3 8 0 1に定められ た濾紙 1種を使用した他はすべて実施例 3と同様の方法で円筒状フィルター力一 トリッジを得た。 このフィル夕一力一トリッジは初期捕集粒径が実施例 3で示し たフィルタ一よりも粗く、 実施例 5で示したフィルタ一と同程度になったが、 初 期圧力損失が大きく、 また、 圧力上昇時の捕集粒径も初期と大きく変わっていた 。 さらには濾過ライフが極端に短かった。 また、 初期濾液には濾材の脱落が見ら れた。 Comparative Example 2 A cylindrical filter force cartridge was obtained in the same manner as in Example 3 except that one kind of filter paper specified in JISP 3801, which was cut to a width of 50 mm, was used instead of the band-shaped nonwoven fabric. The initial collection particle size of this filter was coarser than that of the filter shown in Example 3 and was about the same as that of the filter shown in Example 5, but the initial pressure loss was large, and However, the trapped particle size at the time of pressure rise also changed greatly from the initial stage. Furthermore, the filtration life was extremely short. Also, in the initial filtrate, the filter medium was found to fall off.
比較例 3 Comparative Example 3
ポリプロピレンと高密度ポリエチレンとからなる繊度 4 d t e x、 8分割タイ プの分割短繊維をカード機でウェブ化し、 高圧水加工で繊維分割および繊維交絡 をさせて目付 2 2 g/m2の分割短繊維不織布を得た。 この不織布を電子顕微鏡で 観察し、 画像解析した結果、 全繊維のうち 5 0重量%が繊度 0 . 5 d t e xに分 割されていた。 この不織布を幅 5 0 mmに切断して帯状不織布の代わりに用いた 他は、 すべて実施例 3と同様の方法で円筒状フィル夕一カートリッジを得た。 こ のフィル夕一は実施例 3で示したフィルタ一よりも粗いフィル夕一となり、 精度 の変化も大きかった。 また、 初期濾液には若干の泡立ちが見られ、 繊維の脱落も 見られた。 Polypropylene and fineness 4 consisting of a high density polyethylene dtex, 8 split web of at type split short fibers card machine, fibers divided and fiber entanglement is the basis weight 2 2 g / m 2 divided by the high-pressure water working short fibers A non-woven fabric was obtained. Observation of this nonwoven fabric with an electron microscope and image analysis showed that 50% by weight of all the fibers were divided into a fineness of 0.5 dtex. A cylindrical fill cartridge was obtained in the same manner as in Example 3 except that this nonwoven fabric was cut to a width of 50 mm and used instead of the band-shaped nonwoven fabric. This fill filter was coarser than the filter filter shown in Example 3, and the change in accuracy was large. In addition, some bubbling was seen in the initial filtrate, and fiber shedding was also observed.
比較例 4 Comparative Example 4
実施例 1で使われたメルトブロー不織布を 2 5 c m幅にスリットし、 図 1に示 すように有孔筒状体にのり巻き状に線圧 1 . 5 k g/mで巻き付けて円筒状フィ ル夕一カートリッジを得た。 このフィルターの初期捕集粒径は実施例 1と同程度 であったが、 0 . 2 M P a時捕集粒径が大きかった。 また、 濾過ライフも実施例 1と比較してやや短かった。  The melt-blown nonwoven fabric used in Example 1 was slit to a width of 25 cm, and was wound around a perforated tubular body at a linear pressure of 1.5 kg / m as shown in Fig. 1 to form a cylindrical filter. Evening cartridge was obtained. Although the initial collection particle size of this filter was almost the same as that of Example 1, the collection particle size at 0.2 MPa was large. Also, the filtration life was slightly shorter than that of Example 1.
実施例及び比較例の結果は表 1、 表 2及び、 表 3に示す。 表 1 The results of the examples and comparative examples are shown in Tables 1, 2 and 3. table 1
Figure imgf000033_0001
/57989
Figure imgf000033_0001
/ 57989
32 表 2
Figure imgf000034_0001
57989
32 Table 2
Figure imgf000034_0001
57989
33  33
表 3  Table 3
卷き上げ 濂過性能  Winding performance
フィルタ一  Filter
糸間隔 初期捕集 初期圧力 0.2 Pa時  Yarn interval Initial collection Initial pressure 0.2 Pa
»過ライフ 泡立ち 繊維脱落 空隙率 粒径 損失 捕集粒径  »Over-life Foaming Fiber falling off Porosity Particle size Loss Collected particle size
(mm) (%) (μ m) (ΜΡβ) (β m) (分)  (mm) (%) (μm) (ΜΡβ) (βm) (min)
実施例 1 0 78 2. 5 0. 075 4 13 〇 〇 Example 1 0 78 2.50. 075 4 13 〇 〇
¾¾例 2 1 78 2. 5 0. 075 4 13 〇 〇 実施例 3 0 78 2. 5 0. 075 4 13 〇 〇 実施例 4 1 82 7 0. 025 9 19 〇 〇 実施例 5 2 83 9 0. 01 5 12 25 〇 〇 ハ ¾¾Example 2 1 78 2.50 .075 413 〇 〇 Example 3 0 78 2.5 0 .075 413 〇 〇 Example 4 1 82 7 0 .025 9 19 〇 〇 Example 5 2 83 9 0 01 5 12 25 〇 〇 C
実施例 6 3 83 15 0. 007 20 80 〇 〇 奚施例 7 1 82 7 0. 025 8. 4 20 〇 〇 笑施例 8 1 82 7 0. 025 7 - 7 21 〇 〇 Example 6 3 83 15 0.007 20 80 〇 〇 Hex Example 7 1 82 7 0.025 8.4 20 〇 〇 Lol Example 8 1 82 7 0. 025 7-7 21 〇 奚
¾S例 9 1 82 7 0. 025 7. 3 25 〇 〇 実施例 10 1 82 7 0. 023 7. 7 20 〇 〇 施例 1 1 1 82 7 0. 023 7. 7 20 〇 〇 ¾S example 9 1 82 7 0.025 7.32 25 〇 実 施 Example 10 1 82 7 0.02 7.27 20 〇 〇 Example 1 1 1 82 7 0.023 7.20 20 〇 〇
1 2 1 82 6. 5 0. 027 7. 2 18 〇 〇 Μ Ϊ 13 1 82 10 0. 01 9 1 1 30 〇 〇 笑 3S例 1 1 82 7 0. 025 7. 3 21 〇 〇 笑 M例 15 1 82 7 0. 023 7. 3 21 〇 〇 喜 ハ  1 2 1 82 6.5 0.027 7.2 18 〇 〇 Μ Ϊ 13 1 82 10 0.01 9 1 1 30 〇 笑 3S example 1 1 82 7 0. 025 7. 3 21 〇 M M example 15 1 82 7 0. 023 7. 3 21
¾¾例 1 6 1 82 7 0. 025 7. 4 21 〇 〇 実施例 17 1 82 7 0. 025 7. 2 22 〇 〇 ¾¾Example 1 6 1 82 7 0.025 7.42 21 〇 〇 Example 17 1 82 7 0.02 7.22 22 〇 実 施
H¾例 18 1 63 6. 5 0. 035 7. 2 1 2 〇 〇 実施例 19 1 88 8 0 022 8, 8 1 5 〇 〇 笑 JE例 20 1 78 6. 4 0. 035 7 0 1 1 〇H¾ 18 1 63 6.5 0. 035 7. 2 1 2 〇 実 施 Example 19 1 88 8 0 022 8, 8 1 5 〇 〇 LOL JE example 20 1 78 6.4 0.035 7 0 1 1 〇
¾例 21 1 0 0. 022 8. 8 丄 リ  ¾Example 21 1 0 0.022 8.8 8
ΛΒ^Ί 1 82 7 0. 025 7. 7 21 〇 o 実施例 23 1 82 7 0. 025 7. 4 22 〇 〇 宾施例 24 1 82 7 0 033 7. 5 1 9 〇 〇 実施例 25 1 82 7 0. 023 7. 4 23 〇 〇 実細 26 1 82 7 0. 01 8 7. 3 25 〇 〇 其細 27 1 82 6 0. 021 6. 3 25 〇 o 比 ft例 1 0 76 16 0. 006 22 50 X X 比較例 2 0 72 10 0. 024 14 1 8 〇 X 比較例 3 0 77 9. 2 0, 01 1 1 3 20 Δ X 比較例 4 80 3 0. 063 6 12 〇 〇 産業上の利用可能性 ΛΒ ^ Ί 1 82 7 0.025 7.72 1〇 o Example 23 1 82 7 0.025 7.4 22 〇 〇 Example 24 1 82 7 0 033 7.5 5 9 〇 〇 Example 25 1 82 7 0. 023 7.4 23 〇 〇 Fine 26 1 82 7 0.01 8 7.325 25 〇 細 27 1 82 6 0. 021 6.3 25 〇 o Ratio ft Example 1 0 76 16 0 006 22 50 XX Comparative Example 2 0 72 10 0.024 14 1 8 〇 X Comparative Example 3 0 77 9.20, 01 1 1 3 20 ΔX Comparative Example 4 80 3 0. 063 6 12 〇. Industrial applicability
本発明のフィル夕一カートリッジは、 上述したように、 メルトブロー不織布の 長所である濾過精度の優秀さを維持したまま、 その弱点である繊維強度の弱さに 基づく濾過能力の経時変化を、 綾状に捲回させることにより、 或いは長繊維不織 繊維集合体と貼り合せた不織布とした後綾状に捲回させることにより低減させ、 また、 不織布をのり巻き状に卷くことにより発生する幅方向の不織布むらを帯状 の不織布を綾状に捲回することにより低減させたフィルターである。  As described above, the filter cartridge of the present invention, while maintaining the excellent filtration accuracy, which is an advantage of the melt-blown nonwoven fabric, changes over time in the filtration ability based on the weakness of the fiber strength, which is its weak point, in a Taya shape. Or a non-woven fabric bonded to a long-fiber non-woven fiber aggregate, and then reduced by winding in a twill shape. This is a filter in which the non-woven fabric unevenness is reduced by winding a band-shaped non-woven fabric into a twill shape.
従って、 従来の糸巻き型フィルターカートリッジと比べて、 細かい粒子まで捕 捉でき、 濾過ライフが長く、 初期捕集粒径の変化がほとんど見られず、 圧力損失 が低いものである。 また、 ひだの少なくとも一部が非平行となるように集束させ た帯状不織布のひだ状物を使用した場合には、 ひだが平行なひだ状物に比較して もひだと垂直方向の濾過圧力を受けにくいのでひだ状物が潰れることなく安定し て濾過性能を維持することができる。  Therefore, compared to the conventional thread-wound filter cartridge, fine particles can be captured, the filtration life is long, the change in the initial collection particle size is hardly observed, and the pressure loss is low. In addition, when a pleated material of a band-shaped nonwoven fabric that is bundled so that at least a part of the fold is non-parallel is used, the filtering pressure in the vertical direction of the fold is lower than that of the pleated material that is parallel. Since it is hard to receive, the folds can be stably maintained without being crushed, and the filtration performance can be maintained.

Claims

請 求 の 範 囲 The scope of the claims
1 . メルトプロ一された熱可塑性繊維からなる帯状の不織布を、 有孔筒状体に 綾状に巻き付けてなるフィルタ一カートリッジ。 1. A filter cartridge formed by winding a belt-shaped nonwoven fabric made of melt-processed thermoplastic fiber around a perforated cylindrical body in a twill shape.
2 . メルトブローされた熱可塑性繊維からなる不織繊維集合体と、 長繊維不織 繊維集合体とを少なくとも各 1層ずつ積層して結合した帯状の不織布を、 有孔筒 状体に綾状に巻き付けてなるフィルタ一カートリッジ。  2. A band-shaped nonwoven fabric formed by laminating and joining at least one layer each of a non-woven fiber aggregate made of melt-blown thermoplastic fibers and a long-fiber non-woven fiber aggregate into a perforated cylindrical body in a twill shape. One filter cartridge wound.
3 . 該メルトプロ一された熱可塑性繊維が、 低融点樹脂と高融点樹脂からなり 、 それらの両樹脂の融点差が 1 o °c以上である混繊若しくは複合繊維である請求 項 1若しくは 2に記載のフィルタ一カートリッジ。  3. The melt-processed thermoplastic fiber is a mixed fiber or a composite fiber comprising a low-melting resin and a high-melting resin, wherein the difference between the melting points of both resins is 1 ° C. or more. A filter-cartridge as described.
4 . 該長繊維不織繊維集合体を構成する熱可塑性繊維が低融点樹脂と高融点樹 脂からなり、 それらの両樹脂の融点差が 1 0 °C以上である熱接着性複合繊維であ る請求項 2に記載のフィルタ一力一トリッジ。  4. The thermoplastic fiber constituting the long-fiber non-woven fiber aggregate is a heat-adhesive conjugate fiber comprising a low-melting resin and a high-melting resin, and a difference in melting point between the two resins is 10 ° C or more. 3. The filter according to claim 2, wherein
5 . 該低融点樹脂が、 線状低密度ポリエチレンであり、 該高融点樹脂がポリプ ロビレンである請求項 3若しくは 4に記載のフィル夕一カートリッジ。  5. The filler cartridge according to claim 3, wherein the low-melting resin is a linear low-density polyethylene, and the high-melting resin is polyvinylene.
6 - 該不織布の通気度が 1〜5 0 0 c mV c mV s e cの範囲である請求項 1〜5に記載のフィルタ一カートリッジ。  6-The filter cartridge according to any one of claims 1 to 5, wherein the air permeability of the nonwoven fabric is in the range of 1 to 500 cmVcmmVsec.
7 . 該不織布の結合が、 熱エンボスロールで熱圧着されている請求項 1〜5に 記載のフィルターカートリヅジ。  7. The filter cartridge according to any one of claims 1 to 5, wherein the bonding of the nonwoven fabric is thermocompression-bonded with a hot embossing roll.
8 . 該不織布の結合が、 熱風で熱接着されている請求項 2に記載のフィル夕一 力一トリッジ。  8. The fill cartridge according to claim 2, wherein the bond of the nonwoven fabric is heat-bonded with hot air.
9 . 該帯状の不織布に捻りが加えられた請求項 1〜5に記載のフィルタ一力一 卜リッジ。  9. The filter cartridge according to claim 1, wherein the band-shaped nonwoven fabric is twisted.
1 0 . 該フィルタ一カートリッジの空隙率が 6 5〜8 5 %である請求項 1〜5 に記載のフィルタ一カートリッジ。  10. The filter cartridge according to claim 1, wherein the porosity of the filter cartridge is 65 to 85%.
1 1 . 該帯状の不織布を 4〜 5 0のひだを有するひだ状物とし、 有孔筒状体に 綾状に卷き付けた請求項 1〜5に記載のフィルタ一カートリッジ。  The filter cartridge according to any one of claims 1 to 5, wherein the band-shaped nonwoven fabric is a pleated material having 4 to 50 folds, and is wound around the perforated tubular body in a twill shape.
1 2 . 該ひだ状物のひだの少なくとも一部が非平行である請求項 1 1に記載の フィル夕一力一トリッジ。 12. The method of claim 11, wherein at least a portion of the folds of the fold are non-parallel. Phil Evening Power Bridge.
13. 該ひだ状物の空隙率が 60〜95%である請求項 1 1に記載のフィル夕 —力一トリッジ。  13. The filter of claim 11, wherein the porosity of the pleats is 60-95%.
14. 該帯状の不織布のスリット幅が 0. 5 c m以上であり、 スリット幅 ( c m) と目付 (g/m2) の積が 200以下である請求項 1〜5に記載のフィルタ —力一トリッジ。 14. The filter according to any one of claims 1 to 5, wherein a slit width of the band-shaped nonwoven fabric is 0.5 cm or more, and a product of a slit width (cm) and a basis weight (g / m 2 ) is 200 or less. Tridge.
PCT/JP2000/001999 1999-03-30 2000-03-30 Filter cartridge WO2000057989A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE10084397T DE10084397T1 (en) 1999-03-30 2000-03-30 filter cartridge
JP2000607734A JP4604351B2 (en) 1999-03-30 2000-03-30 Filter cartridge
KR1020017012412A KR20010110463A (en) 1999-03-30 2000-03-30 Filter cartridge

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8879299 1999-03-30
JP11/88792 1999-03-30

Publications (1)

Publication Number Publication Date
WO2000057989A1 true WO2000057989A1 (en) 2000-10-05

Family

ID=13952710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/001999 WO2000057989A1 (en) 1999-03-30 2000-03-30 Filter cartridge

Country Status (4)

Country Link
JP (1) JP4604351B2 (en)
KR (1) KR20010110463A (en)
DE (1) DE10084397T1 (en)
WO (1) WO2000057989A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157359A1 (en) * 2011-05-18 2012-11-22 株式会社クレハ Biodegradable aliphatic polyester fabric having excellent microbial adhesion
WO2018037436A1 (en) * 2016-08-26 2018-03-01 株式会社ロキテクノ Tubular filter
CN108273313A (en) * 2018-04-03 2018-07-13 山西福特沃德科技有限公司 Line cotton mixes filter core
JP2020080755A (en) * 2018-11-27 2020-06-04 株式会社田中 Weed prevention member for drain pipe and drain port combined with the weed prevention member

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100950279B1 (en) * 2009-09-23 2010-03-31 윤용철 Plastic sheet for filter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0313920A2 (en) * 1987-10-30 1989-05-03 Takano Corporation Method of making filter body formed of cellulose-spinbanded non-woven cloth
JPH0518614U (en) * 1991-08-20 1993-03-09 ダイワボウ・クリエイト株式会社 Cartridge Filter
JPH08257325A (en) * 1995-03-23 1996-10-08 Chisso Corp Cartridge filter and production thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03278810A (en) * 1990-03-29 1991-12-10 Japan Vilene Co Ltd Cartridge filter
JPH052715U (en) * 1991-06-28 1993-01-19 ダイワボウ・クリエイト株式会社 Cartridge Filter
JP3272928B2 (en) * 1995-11-28 2002-04-08 日本バイリーン株式会社 Filter media
JP3644812B2 (en) * 1997-12-05 2005-05-11 日本バイリーン株式会社 Cylindrical filter
JP3668368B2 (en) * 1997-12-17 2005-07-06 日本バイリーン株式会社 Manufacturing method of cylindrical filter
WO2000030730A1 (en) * 1998-11-25 2000-06-02 Chisso Corporation Filter cartridge

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0313920A2 (en) * 1987-10-30 1989-05-03 Takano Corporation Method of making filter body formed of cellulose-spinbanded non-woven cloth
JPH0518614U (en) * 1991-08-20 1993-03-09 ダイワボウ・クリエイト株式会社 Cartridge Filter
JPH08257325A (en) * 1995-03-23 1996-10-08 Chisso Corp Cartridge filter and production thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157359A1 (en) * 2011-05-18 2012-11-22 株式会社クレハ Biodegradable aliphatic polyester fabric having excellent microbial adhesion
WO2018037436A1 (en) * 2016-08-26 2018-03-01 株式会社ロキテクノ Tubular filter
CN109641164A (en) * 2016-08-26 2019-04-16 洛奇科技株式会社 Cartridge filter
JPWO2018037436A1 (en) * 2016-08-26 2019-06-20 株式会社ロキテクノ Tubular filter
CN109641164B (en) * 2016-08-26 2021-07-16 洛奇科技株式会社 Cylindrical filter
TWI753937B (en) * 2016-08-26 2022-02-01 日商洛奇科技股份有限公司 Cartridge filter
CN108273313A (en) * 2018-04-03 2018-07-13 山西福特沃德科技有限公司 Line cotton mixes filter core
CN108273313B (en) * 2018-04-03 2023-10-20 山西福特沃德科技有限公司 Cotton mixed filter core of line
JP2020080755A (en) * 2018-11-27 2020-06-04 株式会社田中 Weed prevention member for drain pipe and drain port combined with the weed prevention member

Also Published As

Publication number Publication date
KR20010110463A (en) 2001-12-13
DE10084397T1 (en) 2002-03-14
JP4604351B2 (en) 2011-01-05

Similar Documents

Publication Publication Date Title
KR100875842B1 (en) Filter cartridge
WO1998013123A1 (en) High-precision filter
JP5823205B2 (en) Cartridge filter
WO2018021426A1 (en) Backflushable depth filter
JP3580252B2 (en) Filter cartridge
JPH09117624A (en) Filter
WO2000057989A1 (en) Filter cartridge
JP4164989B2 (en) Filter cartridge
TW585947B (en) Filter cartridge and process for producing the same
JP5836191B2 (en) Cylindrical filter
JP5836190B2 (en) Cylindrical filter
JP3436178B2 (en) Filter cartridge
JP2001321620A (en) Cylindrical filter
JP3861520B2 (en) Cylindrical filter
JP2001300224A (en) Filter cartridge
JP6173670B2 (en) Filter and manufacturing method thereof
JP2001321622A (en) Filter cartridge
JP4464433B2 (en) Cylindrical filter
JP3660055B2 (en) Cartridge filter and manufacturing method thereof
JP2001096110A (en) Cylindrical filter
JP3712464B2 (en) Cartridge filter and manufacturing method thereof
JP2000279725A (en) Filter cartridge
JP3373877B2 (en) Nonwoven fabric having pore diameter gradient and method for producing the same
JP3861511B2 (en) Cylindrical filter
JP2001000812A (en) Filter cartridge

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE JP KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 09937128

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2000 607734

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020017012412

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020017012412

Country of ref document: KR

RET De translation (de og part 6b)

Ref document number: 10084397

Country of ref document: DE

Date of ref document: 20020314

WWE Wipo information: entry into national phase

Ref document number: 10084397

Country of ref document: DE