JP3272928B2 - Filter media - Google Patents

Filter media

Info

Publication number
JP3272928B2
JP3272928B2 JP33119995A JP33119995A JP3272928B2 JP 3272928 B2 JP3272928 B2 JP 3272928B2 JP 33119995 A JP33119995 A JP 33119995A JP 33119995 A JP33119995 A JP 33119995A JP 3272928 B2 JP3272928 B2 JP 3272928B2
Authority
JP
Japan
Prior art keywords
nonwoven fabric
filter medium
pressure
fibers
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33119995A
Other languages
Japanese (ja)
Other versions
JPH09150023A (en
Inventor
貴 常盤
均 小林
悦郎 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Vilene Co Ltd
Original Assignee
Japan Vilene Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Vilene Co Ltd filed Critical Japan Vilene Co Ltd
Priority to JP33119995A priority Critical patent/JP3272928B2/en
Publication of JPH09150023A publication Critical patent/JPH09150023A/en
Application granted granted Critical
Publication of JP3272928B2 publication Critical patent/JP3272928B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 この出願発明は濾材、とく
にプリーツ型カートリッジフィルタやディプス型カート
リッジフィルタなどに使用される濾材及びその製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a filter medium, particularly a filter medium used for a pleated type cartridge filter, a depth type cartridge filter and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】 従来、プリーツ型カートリッジフィル
タに使用される濾材あるいは、ディプス型カートリッジ
フィルタの濾過精度を決定する内層に使用される濾材に
は、微細な粒子の捕集が可能なように、メルトブロー不
織布を加熱加圧処理した平均孔径の小さい緻密な濾材が
使用されている。これらの濾材は直径数ミクロンオーダ
ーの粒子をほぼ100%捕集する能力が得られるもの
の、目詰まりが生じやすく濾材寿命が短いという欠点が
あった。これに対して、繊維径の異なるメルトブロー不
織布を積層し、加熱加圧処理した粗密構造を有する濾材
が提案された。この濾材は同一の繊維径のものを加熱加
圧処理したものに比べると濾過寿命が若干延びるが、加
熱加圧処理によりいずれの繊維径のメルトブロー不織布
もかなり緻密化が進んでいるため、結局目詰まりしやす
く、十分な濾過寿命が得られなかった。また、上記の加
熱加圧処理した緻密な濾材に、加熱加圧処理前のメルト
ブロー不織布を積層一体化して、粗密構造の濾材とする
ことも試みられた。しかし、緻密な濾材とメルトブロー
不織布とを接着剤などを用いて一体化すると、接着剤に
より緻密な濾材の開孔が塞がれるため、通液抵抗が大き
くなるうえに、濾過寿命も短くなるという問題と、処理
液中に接着剤が流出するという問題があった。また、加
熱加圧処理による繊維接着で緻密な濾材とメルトブロー
不織布とを一体化する方法では、緻密な濾材を作製する
際に用いた加圧条件より小さい加圧条件では両者がうま
く一体化(接合)せず、プリーツ加工などを施すとすぐ
に層間剥離するという問題があり、一方加圧条件を同等
以上に大きくすると多少の粗密差は生じるものの、どち
らの層も緻密化してしまうため、濾過寿命を十分に長く
することができなかった。
2. Description of the Related Art Conventionally, a filter medium used for a pleated type cartridge filter or a filter medium used for an inner layer which determines the filtration accuracy of a depth type cartridge filter is formed by melt-blowing so that fine particles can be collected. A dense filter medium having a small average pore diameter obtained by heating and pressing a nonwoven fabric is used. Although these filter media can obtain almost 100% of particles having a diameter on the order of several microns, they have a drawback that clogging easily occurs and the life of the filter media is short. On the other hand, there has been proposed a filter medium having a close-packed structure obtained by laminating melt-blown nonwoven fabrics having different fiber diameters and subjecting them to heat and pressure treatment. This filter medium has a slightly longer filter life than that obtained by heat and pressure treatment of the same fiber diameter.However, the melt blown nonwoven fabric of any fiber diameter has been considerably densified by the heat and pressure treatment. It was easily clogged, and a sufficient filtration life was not obtained. Further, attempts have been made to obtain a filter medium having a coarse-dense structure by laminating and integrating a melt-blown nonwoven fabric before the heat-press processing on the dense filter medium subjected to the heat-press processing. However, when the dense filter medium and the melt-blown nonwoven fabric are integrated using an adhesive or the like, the adhesive closes the openings of the dense filter medium, increasing the liquid flow resistance and shortening the filtration life. There is a problem and a problem that the adhesive flows out into the processing solution. Also, in the method of integrating the dense filter medium and the melt-blown nonwoven fabric by fiber bonding by heating and pressurizing treatment, the two are well integrated under the pressing conditions smaller than the pressing conditions used for producing the dense filter medium (joining). ), There is a problem that delamination occurs immediately when pleating or the like is applied. On the other hand, if the pressing condition is increased to the same level or more, a slight difference in density occurs, but both layers are densified. Couldn't be long enough.

【0003】[0003]

【発明が解決しようとする課題】 この出願発明者等
は、これらの問題点について検討した結果、不織布を一
定時間加熱した後に、加圧または加熱加圧することによ
り、予め加熱加圧処理を行っている不織布Bの加熱加圧
処理の加圧条件よりも小さい圧力条件でも、不織布Aと
予め加熱加圧処理を行っている不織布Bとを繊維接着に
より一体化できることを見いだし、この出願発明を完成
したものであり、数ミクロンオーダーの粒子を捕集する
能力があり、かつ濾過寿命の長い、平均繊維径0.1〜
10μm程度の微細繊維からなる2以上の異なる密度の
不織布が一体化された粗密構造を有する濾材を提供する
ことを目的とする。
SUMMARY OF THE INVENTION As a result of studying these problems, the inventors of the present application have conducted a heating and pressurizing treatment in advance by heating a nonwoven fabric for a certain period of time and then pressurizing or heating and pressing. It has been found that the nonwoven fabric A can be integrated with the nonwoven fabric B that has been previously subjected to the heat and pressure treatment by fiber bonding even under a pressure condition smaller than the pressure condition of the heating and pressurizing treatment of the nonwoven fabric B, and the present invention has been completed. It has the ability to collect particles of the order of several microns, has a long filtration life, and has an average fiber diameter of 0.1 to
It is an object of the present invention to provide a filter medium having a close-packed structure in which two or more non-woven fabrics of different densities composed of fine fibers of about 10 μm are integrated.

【0004】[0004]

【課題を解決するための手段】 この出願発明は、平均
繊維径0.1〜10μmの繊維からなる不織布Aと、平
均繊維径0.1〜10μmの繊維からなる不織布を加熱
加圧処理した不織布Bとを積層し、加熱後、不織布Bの
加熱加圧処理の加圧条件よりも小さい圧力条件で加圧処
理されることにより不織布Aと不織布Bとを一体化した
粗密構造を有する濾材に関する。
Means for Solving the Problems The present invention relates to a non-woven fabric A made of a fiber having an average fiber diameter of 0.1 to 10 μm and a non-woven fabric made by heating and pressing a non-woven fabric made of a fiber having an average fiber diameter of 0.1 to 10 μm. B and a non-woven fabric B. The present invention relates to a filter medium having a close-packed structure in which non-woven fabric A and non-woven fabric B are integrated by performing a pressure treatment under a pressure condition smaller than the heating and pressure treatment condition of non-woven fabric B after laminating B and heating.

【0005】[0005]

【発明の実施の形態】 不織布Aは、メルトブロー不織
布あるいは、分割性繊維を主体とする水流絡合不織布が
好ましく、構成する繊維の平均繊維径が0.1〜10μ
m、とくには0.5〜5μmであることが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The nonwoven fabric A is preferably a melt-blown nonwoven fabric or a hydroentangled nonwoven fabric mainly composed of splittable fibers, and the average fiber diameter of the constituting fibers is 0.1 to 10 μm.
m, particularly preferably 0.5 to 5 μm.

【0006】メルトブロー不織布はメルトブロー法によ
って製造される不織布で平均繊維径が細く、平均孔径の
小さなものが得やすいのでとくによい。メルトブロー不
織布は、ポリプロピレン繊維、ポリエチレン繊維などの
ポリオレフィン系繊維、ポリエステル系繊維、ポリアミ
ド系繊維などの熱可塑性繊維からなるものが使用できる
が、薬品耐性などに優れたポリオレフィン系繊維からな
るものが望ましい。
[0006] Melt blown nonwoven fabric is a nonwoven fabric produced by a melt blow method, which is particularly preferable because it has a small average fiber diameter and a small average pore diameter. As the melt-blown nonwoven fabric, those made of thermoplastic fibers such as polyolefin fibers such as polypropylene fibers and polyethylene fibers, polyester fibers, and polyamide fibers can be used, and those made of polyolefin fibers having excellent chemical resistance and the like are desirable.

【0007】分割性繊維を主体とする水流絡合不織布
は、水流による絡合工程で分割性繊維が分割されて、分
割後の繊維径が0.1〜10μm程度となるものが望ま
しい。分割性繊維としては、ポリプロピレン/ポリエチ
レン、ポリプロピレン/ポリエステル、ポリアミド/ポ
リエステルなどの樹脂成分を組合わせた繊維が使用でき
るが、とくに、薬品耐性などに優れたポリプロピレン/
ポリエチレンの樹脂成分を組合わせた分割性繊維が望ま
しい。
[0007] The hydroentangled non-woven fabric mainly composed of splittable fibers is preferably one in which splittable fibers are split in an entangling step by a water flow and the fiber diameter after splitting is about 0.1 to 10 µm. As the splittable fibers, fibers in which resin components such as polypropylene / polyethylene, polypropylene / polyester, and polyamide / polyester are combined can be used. In particular, polypropylene / polypropylene having excellent chemical resistance and the like can be used.
A splittable fiber obtained by combining a resin component of polyethylene is desirable.

【0008】不織布Aの積層接着前の目付は20〜10
0g/m2、より好ましくは30〜80g/m2 の範囲
にあることが望ましく、また見かけ密度は0.01〜
0.25g/cm3が好ましく、とくに、0.02〜
0.2g/cm3の範囲にあることが望ましい。
The basis weight of the nonwoven fabric A before lamination is 20 to 10
0 g / m 2, more preferably it is desirable in the range of 30 to 80 g / m 2, also apparent density 0.01
0.25 g / cm 3 is preferred, and
It is desirable to be in the range of 0.2 g / cm 3 .

【0009】不織布Bは、平均繊維径0.1〜10μm
の繊維からなる不織布を加熱加圧処理して緻密化した不
織布であり、メルトブロー不織布あるいは、分割性繊維
を主体とする水流絡合不織布が好ましい。メルトブロー
不織布は製造工程において繊維が強い延伸を受けていな
いため、加熱加圧処理により緻密化して、小さい平均孔
径のものが得やすいのでとくによい。
The nonwoven fabric B has an average fiber diameter of 0.1 to 10 μm
This is a nonwoven fabric obtained by densifying a nonwoven fabric made of the above-mentioned fibers by heating and pressing, and a melt-blown nonwoven fabric or a hydroentangled nonwoven fabric mainly composed of splittable fibers is preferable. The melt-blown nonwoven fabric is particularly good because the fibers are not subjected to strong stretching in the manufacturing process, so that the fibers can be densified by heating and pressing to easily obtain a small average pore size.

【0010】加熱加圧条件としては、使用する繊維の種
類によって異なるが、例えばポリプロピレン系の繊維の
場合であれば、温度40〜100℃、より好ましくは5
0〜80℃の加熱条件で、線圧30〜300kg/c
m、より好ましくは50〜200kg/cmの加圧条件
であることが望ましい。
The heating and pressurizing conditions vary depending on the type of fiber used. For example, in the case of polypropylene fiber, the temperature is 40 to 100 ° C., preferably 5 to 100 ° C.
Under heating conditions of 0 to 80 ° C, linear pressure of 30 to 300 kg / c
m, more preferably 50 to 200 kg / cm.

【0011】不織布Bの積層接着前の目付は20〜10
0g/m2 、より好ましくは30〜80g/m2 の範囲
にあることが望ましく、また見かけ密度は0.4〜0.
7g/cm3が好ましく 、とくに、0.45〜0.65
g/cm3の範囲にあることが望ましい。なお、特に高
い濾過精度が要求されるプリーツ型カートリッジフィル
タに使用される濾材については、不織布Aと不織布Bの
平均繊維径は同じか、または、ほぼ同じであることが望
ましい。
The basis weight of the non-woven fabric B before lamination is 20 to 10
0 g / m 2, more preferably it is desirable in the range of 30 to 80 g / m 2, also the apparent density from 0.4 to 0.
7 g / cm 3 is preferred, and in particular, 0.45 to 0.65
g / cm 3 . The average fiber diameter of the nonwoven fabric A and the nonwoven fabric B is desirably the same or almost the same for a filter medium used for a pleated cartridge filter that requires particularly high filtration accuracy.

【0012】不織布Aと不織布Bとを積層して加熱後、
加圧する処理条件は、不織布を構成する繊維の種類によ
って異なるが、例えば、ポリプロピレン系繊維からなる
場合には、加熱条件は温度40〜100℃が好ましく、
とくに、50〜80℃の範囲にあることが望ましく、ま
た加熱時間が10〜60秒、より好ましくは10〜40
秒の範囲にあることが望ましい。上記の加熱の後に行わ
れる加圧の条件は、不織布Bを製造する際の圧力条件よ
りも低くする必要があり、線圧5〜50kg/cm、好
ましくは10〜30kg/cmが望ましい。加圧条件が
不織布Bを製造する際の圧力条件よりも高くなると、得
られる濾材が緻密になりすぎる。なお加圧処理は加熱加
圧処理であってもよい。
After laminating nonwoven fabric A and nonwoven fabric B and heating,
The processing conditions for pressurization vary depending on the type of the fiber constituting the nonwoven fabric. For example, when the nonwoven fabric is made of a polypropylene-based fiber, the heating condition is preferably a temperature of 40 to 100 ° C,
In particular, the heating temperature is desirably in the range of 50 to 80 ° C, and the heating time is 10 to 60 seconds, more preferably 10 to 40 seconds.
Desirably in the range of seconds. The condition of the pressure applied after the above-mentioned heating needs to be lower than the pressure condition at the time of producing the nonwoven fabric B, and the linear pressure is desirably 5 to 50 kg / cm, preferably 10 to 30 kg / cm. If the pressure condition is higher than the pressure condition at the time of producing the nonwoven fabric B, the obtained filter medium becomes too dense. Note that the pressure treatment may be a heating and pressure treatment.

【0013】得られる濾材の目付は40〜200g/m
2、好ましくは60〜160g/m2、見かけ密度は0.
2〜0.6g/cm3、好ましくは0.3〜0.5g/
cm3の範囲にあることが望ましい。
The basis weight of the obtained filter medium is 40 to 200 g / m.
2 , preferably 60 to 160 g / m 2 , and an apparent density of 0.
2 to 0.6 g / cm 3 , preferably 0.3 to 0.5 g / cm 3
It is desirably in the range of cm 3 .

【0014】この出願発明の濾材は、不織布を一定時間
加熱した後に、加圧または加熱加圧するため、予め加熱
加圧処理した不織布Bの加熱加圧処理の加圧条件よりも
小さい圧力条件でも、不織布Aと不織布Bとを繊維接着
により一体化できる。このため、不織布Aには小さい圧
力しか加わらないので不織布Aはあまり緻密化されず、
不織布Bと比較すると粗な状態となり、粗密差のある構
造の濾材が得られる。
Since the filter medium of the present invention is heated or pressurized after heating the nonwoven fabric for a certain period of time, even under a pressure condition smaller than the pressurization condition of the heating and pressurizing process of the nonwoven fabric B previously heated and pressurized, The nonwoven fabric A and the nonwoven fabric B can be integrated by fiber bonding. For this reason, since only a small pressure is applied to the nonwoven fabric A, the nonwoven fabric A is not very densified,
Compared with the nonwoven fabric B, the filter material is in a rough state, and a filter medium having a structure with a difference in density is obtained.

【0015】以下、具体的に実施例によりこの出願発明
を説明する。
Hereinafter, the present invention will be described specifically with reference to examples.

【実施例】【Example】

実施例1 メルトブローン法により、目付40g/m2、厚み0.
70mm、密度0.057g/cm3、平均繊維径1.
7μmのポリプロピレン製メルトブロー不織布1を作製
した。この不織布1を、表面温度60℃の加圧ロールに
より、線圧200kg/cmの条件で加熱加圧処理し
て、目付40g/m2、厚み0.06mm、密度0.6
3g/cm3の不織布2を作製した。また、不織布1と
不織布2を積層したものを、100℃で約30秒間予備
加熱した直後に、表面温度100℃の加圧ロールにより
線圧20kg/cmで加圧し、目付80g/m2、厚み
0.20mm、密度0.40g/cm3、平均孔径1.
0μmの濾材を作製した。
Example 1 By a melt blown method, a basis weight of 40 g / m 2 and a thickness of 0.
70 mm, density 0.057 g / cm 3 , average fiber diameter 1.
A 7 μm polypropylene melt-blown nonwoven fabric 1 was produced. The nonwoven fabric 1 is heated and pressed by a pressure roll having a surface temperature of 60 ° C. under a condition of a linear pressure of 200 kg / cm to obtain a basis weight of 40 g / m 2 , a thickness of 0.06 mm, and a density of 0.6.
Non-woven fabric 2 of 3 g / cm 3 was produced. Immediately after the nonwoven fabric 1 and the nonwoven fabric 2 were preheated at 100 ° C. for about 30 seconds, they were pressed at a linear pressure of 20 kg / cm with a pressure roll having a surface temperature of 100 ° C. to obtain a basis weight of 80 g / m 2 and a thickness of 80 g / m 2 . 0.20 mm, density 0.40 g / cm 3 , average pore size 1.
A 0 μm filter medium was produced.

【0016】比較例1 実施例1の不織布1を2枚積層したものを、表面温度6
0℃の加圧ロールにより、線圧100kg/cmの条件
で加熱加圧処理して、目付80g/m2、厚み0.13
mm、密度0.62g/cm3、平均孔径1.0μmの
濾材を作製した。
COMPARATIVE EXAMPLE 1 Two non-woven fabrics 1 of Example 1 were laminated at a surface temperature of 6
It was heated and pressed by a pressure roll at 0 ° C. under the condition of a linear pressure of 100 kg / cm to give a basis weight of 80 g / m 2 and a thickness of 0.13.
A filter medium having a diameter of 1.0 mm, a density of 0.62 g / cm 3 and an average pore diameter of 1.0 μm was prepared.

【0017】比較例2 実施例1の不織布1を、表面温度60℃の加圧ロールに
より、線圧50kg/cmの条件で加熱加圧処理して、
目付40g/m2、厚み0.08mm、密度0.50g
/cm3の不織布3を作製した。実施例1の不織布1と
不織布3を積層したものを、表面温度60℃の加圧ロー
ルにより、線圧50kg/cmの条件で加熱加圧処理し
て、目付80g/m2、厚み0.14mm、密度0.5
7g/cm3、平均孔径1.1μmの濾材を作製した。
Comparative Example 2 The nonwoven fabric 1 of Example 1 was heated and pressed by a pressing roll having a surface temperature of 60 ° C. under the condition of a linear pressure of 50 kg / cm.
40g / m 2 , thickness 0.08mm, density 0.50g
/ Cm 3 of nonwoven fabric 3 was produced. A laminate of the nonwoven fabric 1 and the nonwoven fabric 3 of Example 1 was heated and pressed by a pressure roll having a surface temperature of 60 ° C. under the condition of a linear pressure of 50 kg / cm to obtain a basis weight of 80 g / m 2 and a thickness of 0.14 mm. , Density 0.5
A filter medium having 7 g / cm 3 and an average pore diameter of 1.1 μm was prepared.

【0018】実施例2 ポリプロピレン成分とポリエチレン成分とからなる8分
割可能な分割繊維(繊度2デニール、繊維長45mm)
100重量%からなる繊維ウェブを、水流絡合処理し、
目付60g/m2、厚み0.34mm、密度0.18g
/cm3、平均繊維径3.5μmの不織布4を作製し
た。この不織布4を、表面温度60℃の加圧ロールによ
り、線圧200kg/cmの条件で加熱加圧処理して、
目付60g/m2、厚み0.12mm、密度0.50g
/cm3の不織布5を作製した。また、不織布4と不織
布5を積層したものを100℃で約30秒間予備加熱し
た直後に、表面温度100℃の加圧ロールにより線圧2
0kg/cmで加圧し、目付120g/m2、厚み0.
33mm、密度0.36g/cm3、平均孔径2.3μ
mの濾材を作製した。
Example 2 Splittable fiber composed of a polypropylene component and a polyethylene component, which can be divided into eight (denier 2 denier, fiber length 45 mm)
100% by weight of a fibrous web is subjected to a hydroentanglement treatment,
Weight 60g / m 2 , thickness 0.34mm, density 0.18g
/ Cm 3 , and a nonwoven fabric 4 having an average fiber diameter of 3.5 μm. This nonwoven fabric 4 is heated and pressed by a pressure roll having a surface temperature of 60 ° C. under a linear pressure of 200 kg / cm.
Basis weight 60g / m 2 , thickness 0.12mm, density 0.50g
/ Cm 3 of nonwoven fabric 5 was produced. Immediately after pre-heating the non-woven fabric 4 and the non-woven fabric 5 at 100 ° C. for about 30 seconds, a linear pressure of 2 was applied by a pressure roll having a surface temperature of 100 ° C.
It is pressurized at 0 kg / cm, and has a basis weight of 120 g / m 2 and a thickness of 0.
33 mm, density 0.36 g / cm 3 , average pore size 2.3 μ
m were prepared.

【0019】比較例3 実施例2の不織布4を2枚積層したものを、表面温度6
0℃の加圧ロールにより、線圧100kg/cmの条件
で加熱加圧処理して、目付120g/m2、厚み0.2
2mm、密度0.55g/cm3、平均孔径2.2μm
の濾材を作製した。
COMPARATIVE EXAMPLE 3 Two nonwoven fabrics 4 of Example 2 were laminated at a surface temperature of 6.
It was heated and pressed by a pressure roll at 0 ° C. under the condition of a linear pressure of 100 kg / cm to give a basis weight of 120 g / m 2 and a thickness of 0.2 g / m 2 .
2 mm, density 0.55 g / cm 3 , average pore size 2.2 μm
Was prepared.

【0020】実施例3 実施例2の不織布4と実施例1の不織布2を2枚積層し
たものを、100℃で約30秒間予備加熱した直後に、
表面温度100℃の加圧ロールにより、線圧20kg/
cmの条件で加熱加圧処理して、目付100g/m2
厚み0.23mm、密度0.43g/cm3、平均孔径
1.2μmの濾材を作製した。
Example 3 Immediately after preheating at 100 ° C. for about 30 seconds, two nonwoven fabrics 4 of Example 2 and nonwoven fabric 2 of Example 1 were laminated.
With a pressure roll with a surface temperature of 100 ° C, a linear pressure of 20 kg /
cm under heat and pressure conditions, the basis weight is 100 g / m 2 ,
A filter medium having a thickness of 0.23 mm, a density of 0.43 g / cm 3 and an average pore diameter of 1.2 μm was prepared.

【0021】比較例4 実施例1の不織布1を、表面温度60℃の加圧ロールに
より、線圧100kg/cmの条件で加熱加圧処理し
て、目付40g/m2、厚み0.09mm、密度0.4
4g/cm3の不織布6を作製した。実施例2の不織布
4と不織布6を積層したものを、表面温度60℃の加圧
ロールにより、線圧100kg/cmの条件で加熱加圧
処理して、目付100g/m2、厚み0.16mm、密
度0.63g/cm3、平均孔径1.1μmの濾材を作
製した。
Comparative Example 4 The nonwoven fabric 1 of Example 1 was heated and pressed by a pressing roll having a surface temperature of 60 ° C. under a linear pressure of 100 kg / cm to obtain a basis weight of 40 g / m 2 and a thickness of 0.09 mm. Density 0.4
A nonwoven fabric 6 of 4 g / cm 3 was produced. A laminate of the nonwoven fabric 4 and the nonwoven fabric 6 of Example 2 was heated and pressed by a pressure roll having a surface temperature of 60 ° C. under a linear pressure of 100 kg / cm to obtain a basis weight of 100 g / m 2 and a thickness of 0.16 mm. And a filter medium having a density of 0.63 g / cm 3 and an average pore diameter of 1.1 μm.

【0022】これらの各実施例及び比較例で得られた濾
材の濾過性能をつぎの方法で調べ、その結果を表1に示
した。
The filtration performance of the filter media obtained in each of these Examples and Comparative Examples was examined by the following method. The results are shown in Table 1.

【0023】(通水抵抗)水を濾材(有効面積51.5
cm2)に濾材の粗な側から流量3リットル/分で通水
したときの圧力損失を測定し、通水抵抗とした。 (除去粒子径)JIS11種の塵埃を水に分散した濃度
10ppmの試験液を均一に撹拌しながら、濾材(有効
面積51.5cm2)に濾材の粗な側から流量3リット
ル/分で通水して、通水開始1分後の濾液を採取し、こ
の濾液及び濾過前の試験液に含まれる粒子数を粒度分布
測定器を用いて各粒径別に計測し、それぞれの粒径にお
ける捕集効率を次式により求めた。100%の捕集効率
を示す粒子径のうち、最も小さな粒子径(μm)をその
濾材の除去粒子径とした。
(Water resistance) Water is filtered through a filter medium (effective area 51.5).
cm 2 ), the pressure loss when water was passed from the rough side of the filter medium at a flow rate of 3 liter / min was measured and defined as water flow resistance. (Removed particle diameter) While uniformly stirring a test solution having a concentration of 10 ppm in which JIS 11 dust is dispersed in water, water is passed through the filter medium (effective area 51.5 cm 2 ) at a flow rate of 3 liters / minute from the coarse side of the filter medium. One minute after the start of water flow, the filtrate was collected, and the number of particles contained in the filtrate and the test solution before filtration was measured for each particle size using a particle size distribution analyzer, and collected at each particle size. The efficiency was determined by the following equation. The smallest particle diameter (μm) among the particle diameters exhibiting a collection efficiency of 100% was defined as the particle diameter from which the filter medium was removed.

【0024】捕集効率(%)=(A−B)×100/A Aは濾過前の粒子数であり、Bは濾過後の粒子数であ
る。 (濾過寿命)JIS11種の塵埃を水に分散した濃度1
0ppmの試験液を均一に撹拌しながら、濾材(有効面
積51.5cm2)に濾材の粗な側から流量3リットル
/分で通水し、圧力損失を各通水量に対して順次測定
し、初期圧力との差圧が2kg/cm2になるまでに処
理された総通水量を濾過寿命とした。
Collection efficiency (%) = (AB) × 100 / A A is the number of particles before filtration, and B is the number of particles after filtration. (Filtration life) Concentration of JIS 11 dust dispersed in water 1
While uniformly stirring the test solution of 0 ppm, water was passed through the filter medium (effective area 51.5 cm 2 ) at a flow rate of 3 liter / min from the rough side of the filter medium, and the pressure loss was sequentially measured for each water flow rate. The total amount of water passed until the pressure difference from the initial pressure became 2 kg / cm 2 was defined as the filtration life.

【0025】[0025]

【表1】 通水抵抗 除去粒子径 濾過寿命 (kg/cm2) (μm) (L) 実施例1 0.25 2.0 120 比較例1 0.43 2.2 66 比較例2 0.39 2.3 72 実施例2 0.12 3.3 300 比較例3 0.23 3.1 183 実施例3 0.27 1.8 115 比較例4 0.42 2.2 65Table 1 Water flow resistance Removal particle diameter Filtration life (kg / cm 2 ) (μm) (L) Example 1 0.25 2.0 120 Comparative Example 1 0.43 2.2 66 Comparative Example 2 0.39 2.3 72 Example 2 0.12 3.3 300 Comparative Example 3 0.23 3.1 183 Example 3 0.27 1.8 115 Comparative Example 4 0.42 2.2 65

【0026】実施例1と比較例1、2、実施例2と比較
例3および実施例3と比較例4とを各々比較すると、実
施例1、2及び3の濾材は、粗密構造で、しかも、密度
が小さいため、濾過精度が高く、かつ、処理流量が大き
く、濾過寿命が長い。それに対して、比較例1、2、3
及び4は、それぞれ実施例1、2、3と同等な平均孔径
を有しているため、濾過精度は、この出願発明のものと
同等な値を示しているが、通水抵抗が大きく、目詰まり
しやすく、著しく濾過寿命が短かった。この出願発明の
濾材は、高い濾過精度を有する層と、それよりも粗い層
を有しているため、通液抵抗が低く、高流量の処理が可
能なうえ目詰まりしにくく、長寿命で捕集効率に優れて
いる。
Comparing Example 1 with Comparative Examples 1 and 2, Example 2 with Comparative Example 3, and Example 3 with Comparative Example 4, the filter media of Examples 1, 2 and 3 have a rough and dense structure, and Since the density is small, the filtration accuracy is high, the processing flow rate is large, and the filtration life is long. In contrast, Comparative Examples 1, 2, and 3
And 4 each have an average pore diameter equivalent to that of Examples 1, 2 and 3, so that the filtration accuracy shows a value equivalent to that of the invention of this application, but the water flow resistance is large, and It was easily clogged and had a remarkably short filtration life. Since the filter medium of the present invention has a layer having high filtration accuracy and a layer coarser than that, it has low liquid permeation resistance, can process at a high flow rate, is hardly clogged, and has a long service life. Excellent collection efficiency.

【0027】実施例4〜6、比較例5〜8(プリーツ型
カートリッジフィルタ) 実施例1〜3及び比較例1〜4で得られた濾材を、スパ
ンボンド法により作製した目付40g/m2、厚さ0.
34mmのポリプロピレン製スパンボンド不織布2枚の
間に挟み、これを折り幅15mmでプリーツ加工したも
のを円筒状の多孔性コアに濾材の山数が80山になるよ
うに1周巻いて、内径3cm、外径6.5cm、長さ2
5cmのプリーツ型カートリッジフィルターを作製し
た。これらのプリーツ型カートリッジフィルターを液体
濾過装置のハウジングに装着し、下記の方法で濾過性能
を調べ、その結果を表2に示した。 (通水抵抗)水をカートリッジフィルターに流量25リ
ットル/分で通水したときの圧力損失を測定し、通水抵
抗とした。 (除去粒子径)JIS11種の塵埃を水に分散した濃度
10ppmの試験液を均一に撹拌しながら、カートリッ
ジフィルターに流量25リットル/分で通水して、通水
開始1分後の濾液を採取し、この濾液及び濾過前の試験
液に含まれる粒子数を粒度分布測定器を用いて各粒子別
に計測し、それぞれの粒径における捕集効率を下記式に
より求めた。100%の捕集効率を示す粒子径のうち、
もっとも小さな粒子径(μm)をそのカートリッジフィ
ルターの除去粒子径とした。 捕集効率(%)=(A−B)×100/A ここで、Aは濾過前の粒子数で、Bは濾過後の粒子数で
ある。 (濾過寿命)JIS11種の塵埃を水に分散した濃度2
0ppmの試験液を均一に撹拌しながら、カートリッジ
フィルターに流量25リットル/分で通水して、圧力損
失を各通水量に対して順次測定し、初期圧力との差圧が
2kg/cm2になるまでに処理された総通水量を濾過
寿命とした。
Examples 4 to 6 and Comparative Examples 5 to 8 (pleated cartridge filters) The filter media obtained in Examples 1 to 3 and Comparative Examples 1 to 4 were prepared by a spun bond method with a basis weight of 40 g / m 2 , Thickness 0.
It is sandwiched between two 34 mm polypropylene spunbonded nonwoven fabrics, pleated with a folding width of 15 mm, and wrapped around a cylindrical porous core one round so that the number of filter media is 80, and the inner diameter is 3 cm. , 6.5cm outside diameter, length 2
A 5 cm pleated cartridge filter was prepared. These pleated cartridge filters were mounted on the housing of a liquid filtration device, and the filtration performance was examined by the following method. The results are shown in Table 2. (Water flow resistance) Pressure loss when water was passed through the cartridge filter at a flow rate of 25 liter / min was measured and defined as water flow resistance. (Removed particle size) While uniformly stirring a test solution having a concentration of 10 ppm in which JIS 11 kinds of dust is dispersed in water, water is passed through the cartridge filter at a flow rate of 25 L / min, and a filtrate one minute after the start of water flow is collected. Then, the number of particles contained in the filtrate and the test solution before filtration was measured for each particle using a particle size distribution analyzer, and the collection efficiency at each particle size was determined by the following equation. Among the particle diameters showing 100% collection efficiency,
The smallest particle size (μm) was taken as the particle size removed by the cartridge filter. Collection efficiency (%) = (AB) × 100 / A Here, A is the number of particles before filtration, and B is the number of particles after filtration. (Filtration life) Concentration 2 of JIS 11 dust dispersed in water
While uniformly stirring the test solution of 0 ppm, water was passed through the cartridge filter at a flow rate of 25 liters / minute, and the pressure loss was sequentially measured with respect to each flow rate, and the differential pressure from the initial pressure was 2 kg / cm 2 . The total amount of water that had been processed until this time was determined as the filtration life.

【0028】[0028]

【表2】 使用濾材 通水抵抗 除去粒子径 濾過寿命 [ kg/cm2 ] [ μm ] [ リットル ] 実施例4 実施例1の濾材 0.22 1.9 7980 比較例5 比較例1の濾材 0.45 2.2 3900 比較例6 比較例2の濾材 0.40 2.1 4400 実施例5 実施例2の濾材 0.14 3.2 10250 比較例7 比較例3の濾材 0.25 3.3 7460 実施例6 実施例3の濾材 0.25 1.7 8150 比較例8 比較例4の濾材 0.43 2.1 4100 表2から明らかなように、実施例4と比較例5、6、実
施例5と比較例7及び実施例6と比較例8を各々比較す
ると、この出願発明の濾材を使用した各実施例のプリー
ツ型カートリッジフィルタは、各比較例のものより捕集
能力の点で若干優れており、通水抵抗はより小さくて処
理流量が大きく、濾過寿命は非常に長いものである。
[Table 2] Filter media used Water flow resistance Removal particle size Filtration life [kg / cm 2 ] [μm] [liter] Example 4 Filter media of Example 1 0.22 1.9 7980 Comparative Example 5 Filter media of Comparative Example 1 0 .45 2.2 3900 Comparative Example 6 Filter Material of Comparative Example 2 0.40 2.1 4400 Example 5 Filter Material of Example 2 0.14 3.2 10250 Comparative Example 7 Filter Material of Comparative Example 3 0.25 3.3 7460 Example 6 Filter Material of Example 3 0.25 1.7 8150 Comparative Example 8 Filter Material of Comparative Example 4 0.43 2.1 4100 As is clear from Table 2, Example 4 and Comparative Examples 5, 6, and Comparing Example 5 with Comparative Example 7 and Example 6 with Comparative Example 8, the pleated cartridge filters of the respective examples using the filter medium of the present invention were slightly different from those of the respective comparative examples in terms of collection ability. Excellent, with lower flow resistance and higher flow rate , Filtration life is very long.

【0029】実施例7、8、比較例9〜11(ディプス
型カートリッジフィルター) メルトブロー法により、下記表3に示す濾材番号1及び
3〜8の平均孔径の異なる目付80g/m2の7種類の
ポリプロピレン製メトルブロー不織布を作製した。ま
た、濾材番号2には実施例1、3及び比較例1、2、4
で得られた濾材を使用した。これらの濾材を濾材番号順
に多孔性コアに順次巻回積層して、内径3cm、外径
6.4cm、長さ25cmのディプス型カートリッジフ
ィルターを作製した。
Examples 7 and 8, Comparative Examples 9 to 11 (Deep Type Cartridge Filters) Seven types of filter media Nos. 1 and 3 to 8 shown in Table 3 below having different basis weights of 80 g / m 2 having different average pore diameters by the melt blow method. A polypropylene mettleblown nonwoven fabric was produced. Further, the filter media No. 2 includes Examples 1 and 3 and Comparative Examples 1, 2, and 4.
Was used. These filter media were sequentially wound and laminated on a porous core in the order of the filter media number to produce a depth type cartridge filter having an inner diameter of 3 cm, an outer diameter of 6.4 cm, and a length of 25 cm.

【0030】[0030]

【表3】 濾材番号 1 2 3 4 5 6 7 8 平均孔径[μm] 70 1.0〜1.2 3 5 10 17 24 31 巻き長さ[cm] 180 60 60 60 40 40 40 30Table 3 Filter medium number 1 2 3 4 5 6 7 8 Average pore diameter [μm] 70 1.0 to 1.2 3 5 10 17 24 31 Roll length [cm] 180 60 60 60 40 40 40 40 30

【0031】実施例9、比較例12(ディプス型カート
リッジフィルター) メルトブロー法により、下記表4に示す濾材番号1及び
3〜8の平均孔径の異なる目付80g/m2の7種類の
ポリプロピレン製メトルブロー不織布を作製した。ま
た、濾材番号2には実施例2及び比較例3で得られた濾
材を使用した。これらの濾材を濾材番号順に多孔性コア
に順次巻回積層して、内径3cm、外径6.4cm、長
さ25cmのディプス型カートリッジフィルターを作製
した。
Example 9 and Comparative Example 12 (Deep type cartridge filter) Seven types of polypropylene non-woven fabric made of polypropylene having a basis weight of 80 g / m 2 and different average pore sizes of filter media Nos. 1 and 3 to 8 shown in Table 4 below by a melt blow method. Was prepared. In addition, the filter media obtained in Example 2 and Comparative Example 3 were used as the filter media No. 2. These filter media were sequentially wound and laminated on a porous core in the order of the filter media number to produce a depth type cartridge filter having an inner diameter of 3 cm, an outer diameter of 6.4 cm, and a length of 25 cm.

【0032】[0032]

【表4】 濾材番号 1 2 3 4 5 6 7 8 平均孔径[μm] 70 2.2〜2.3 5 10 17 24 31 62 巻き長さ[cm] 180 60 60 60 40 40 40 30 実施例7〜9、比較例9〜12のディスプ型カートリッ
ジフィルターを液体濾過装置のハウジングに装着し、下
記の方法で濾過性能を調べ、その結果を表5に示した。 (通水抵抗)水をカートリッジフィルターに流量10リ
ットル/分で通水した時の圧力損失を測定し通水抵抗と
した。 (除去粒子径)JIS11種の塵埃を水に分散した濃度
10ppmの試験液を均一に撹拌しながら、カートリッ
ジフィルターに流量10リットル/分で通水して、通水
開始1分後の濾液を採取し、この濾液及び濾過前の試験
液に含まれる粒子数を粒度分布測定器を用いて各粒子別
に計測し、それぞれの粒径における捕集効率を下記式に
より求めた。100%の捕集効率を示す粒子径のうち、
もっとも小さな粒子径(μm)をそのカートリッジフィ
ルターの除去粒子径とした。 捕集効率(%)=(A−B)×100/A ここで、Aは濾過前の粒子数で、Bは濾過後の粒子数で
ある。 (濾過寿命)JIS11種の塵埃を水に分散した濃度1
0ppmの試験液を均一に撹拌しながら、カートリッジ
フィルターに流量10リットル/分で通水して、圧力損
失を各通水量に対して順次測定し、初期圧力との差圧が
2kg/cm2になるまでに処理された総通水量を濾過
寿命とした。
Table 4 Filter medium number 1 2 3 4 5 6 7 8 Average pore diameter [μm] 70 2.2 to 2.3 5 10 17 24 31 62 Roll length [cm] 180 60 60 60 40 40 40 40 30 Examples 7 to 9 and comparison The display cartridge filters of Examples 9 to 12 were mounted on the housing of the liquid filtration apparatus, and the filtration performance was examined by the following method. The results are shown in Table 5. (Water flow resistance) Pressure loss when water was flowed through the cartridge filter at a flow rate of 10 liter / min was measured and defined as water flow resistance. (Removed particle size) While uniformly stirring a test solution having a concentration of 10 ppm in which JIS type 11 dust is dispersed in water, water is passed through the cartridge filter at a flow rate of 10 liter / minute, and the filtrate one minute after the start of water flow is collected. Then, the number of particles contained in the filtrate and the test solution before filtration was measured for each particle using a particle size distribution analyzer, and the collection efficiency at each particle size was determined by the following equation. Among the particle diameters showing 100% collection efficiency,
The smallest particle size (μm) was taken as the particle size removed by the cartridge filter. Collection efficiency (%) = (AB) × 100 / A Here, A is the number of particles before filtration, and B is the number of particles after filtration. (Filtration life) Concentration of JIS 11 dust dispersed in water 1
While uniformly stirring the test solution of 0 ppm, water was passed through the cartridge filter at a flow rate of 10 liters / minute, and the pressure loss was measured sequentially for each flow rate, and the differential pressure from the initial pressure was 2 kg / cm 2 . The total amount of water that had been processed until this time was determined as the filtration life.

【0033】[0033]

【表5】 濾材番号2に 通水抵抗 除去粒子径 濾過寿命 使用した濾材 [ kg/cm2 ] [ μm ] [ リットル ] 実施例7 実施例1の濾材 1.06 0.51 1850 比較例9 比較例1の濾材 1.59 0.53 1050 比較例10 比較例2の濾材 1.65 0.50 965 実施例8 実施例3の濾材 1.02 0.52 1920 比較例11 比較例4の濾材 1.64 0.51 980 実施例9 実施例2の濾材 0.80 0.92 2670 比較例12 比較例3の濾材 1.34 0.90 1425 表5から明らかなように、実施例7と比較例9、10、
実施例8と比較例11び実施例9と比較例12を各々比
較すると、この出願発明の濾材を使用した各実施例のデ
ィプス型カートリッジフィルタは、各比較例のものより
捕集能力の点では同等であるが、通水抵抗はより小さく
て処理流量が大きく、濾過寿命は非常に長いものであ
る。
[Table 5] Filter media No. 2 Water flow resistance Removal particle size Filtration life Filter media used [kg / cm 2 ] [μm] [liter] Example 7 Filter media of Example 1 1.06 0.51 1850 Comparative Example 9 Comparison Filter material of Example 1 1.59 0.53 1050 Comparative example 10 Filter material of Comparative example 2 1.65 0.50 965 Example 8 Filter material of Example 3 1.02 0.52 1920 Comparative example 11 Filter material 1 of Comparative example 4 .64 0.51 980 Example 9 Filter medium of Example 2 0.80 0.92 2670 Comparative Example 12 Filter medium of Comparative Example 3 1.34 0.90 1425 As is clear from Table 5, Example 7 and Comparative Example 9, 10,
Comparing Example 8 with Comparative Example 11 and Example 9 with Comparative Example 12, the depth type cartridge filter of each Example using the filter medium of the present invention is more excellent in the collecting ability than those of Comparative Examples. Equivalent, but with lower water flow resistance, higher throughput and very long filtration life.

【0034】[0034]

【発明の効果】 この出願発明の加圧処理条件で不織布
Aには小さい圧力しか加わらないので、不織布Aはあま
り緻密化されず、予め加圧加熱処理されている不織布B
と比較すると粗な状態となり、粗密差のある構造の濾材
が得られる。したがって、この出願発明の濾材は、粗密
構造であり、しかも、密度が小さいため、濾過精度が高
く、かつ、処理流量が大きく、濾過寿命が長い。また、
この出願発明の濾材は、高い濾過精度を有する層と、そ
れよりも粗い層を有しているため、目詰まりしにくく、
長寿命で捕集効率に優れている。とくに、この出願発明
の濾材は、プリーツカートリッジ用やディプスカートリ
ッジ用の濾材として用いると効果的であり、有用な素材
である。
Since only a small pressure is applied to the nonwoven fabric A under the pressure treatment conditions of the present invention, the nonwoven fabric A is not densified so much, and the nonwoven fabric B which has been previously subjected to pressure and heat treatment is used.
And a filter medium having a structure with a difference in density is obtained. Therefore, the filter medium of the present invention has a coarse-dense structure and a low density, so that the filtration accuracy is high, the processing flow rate is large, and the filtration life is long. Also,
Since the filter medium of the present invention has a layer having high filtration accuracy and a layer coarser than that, it is difficult to be clogged,
It has a long life and excellent collection efficiency. In particular, the filter medium of the present invention is effective and useful when used as a filter medium for a pleat cartridge or a depth cartridge.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−142421(JP,A) 特開 平4−313312(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 39/00 - 39/20 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-6-142421 (JP, A) JP-A-4-313312 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B01D 39/00-39/20

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 平均繊維径0.1〜10μmの繊維から
なる不織布Aと、平均繊維径0.1〜10μmの繊維か
らなる不織布を加熱加圧処理した不織布Bとを積層し、
加熱後、不織布Bの加熱加圧処理の加圧条件よりも小さ
い圧力条件で加圧処理されていることを特徴とする不織
布Aと不織布Bとが一体化された粗密構造を有する濾
材。
1. A nonwoven fabric A made of fibers having an average fiber diameter of 0.1 to 10 μm and a nonwoven fabric B obtained by heating and pressing a nonwoven fabric made of fibers having an average fiber diameter of 0.1 to 10 μm,
A non-woven fabric A and a non-woven fabric B having a dense and dense structure, wherein the non-woven fabric B and the non-woven fabric B are pressure-treated under a pressure condition smaller than that of the heating and pressure treatment of the non-woven fabric B after heating.
【請求項2】 不織布A及び/または不織布Bがメルト
ブロー不織布であることを特徴とする請求項1に記載の
濾材。
2. The filter medium according to claim 1, wherein the nonwoven fabric A and / or the nonwoven fabric B is a melt blown nonwoven fabric.
【請求項3】 不織布A及び/または不織布Bが分割性
繊維を主体とする水流絡合不織布であることを特徴とす
る請求項1に記載の濾材。
3. The filter medium according to claim 1, wherein the nonwoven fabric A and / or the nonwoven fabric B is a hydroentangled nonwoven fabric mainly composed of splittable fibers.
【請求項4】 不織布Aまたは不織布Bのいずれか一方
がメルトブロー不織布であり、他方が分割性繊維を主体
とする水流絡合不織布であることを特徴とする請求項1
に記載の濾材。
4. The non-woven fabric A or non-woven fabric B is one of a melt blown non-woven fabric and the other is a hydro-entangled non-woven fabric mainly composed of splittable fibers.
3. The filter medium according to item 1.
【請求項5】 不織布A及び/または不織布Bを構成す
る繊維の平均繊維径が0.5〜5μmであることを特徴
とする請求項1〜4のいずれかに記載の濾材。
5. The filter medium according to claim 1, wherein the fibers constituting the nonwoven fabric A and / or the nonwoven fabric B have an average fiber diameter of 0.5 to 5 μm.
【請求項6】 不織布Aと不織布Bの平均繊維径が同じ
かまたはほぼ同じであることを特徴とする請求項1〜5
のいずれかに記載の濾材。
6. The nonwoven fabric A and the nonwoven fabric B have the same or substantially the same average fiber diameter.
The filter medium according to any one of the above.
【請求項7】 平均繊維径0.1〜10μmの繊維から
なる不織布Aと、平均繊維径0.1〜10μmの繊維か
らなる不織布を加熱加圧処理した不織布Bとを積層し、
加熱後、不織布Bの加熱加圧処理の加圧条件よりも小さ
い圧力条件で加圧処理することを特徴とする不織布Aと
不織布Bとが一体化された粗密構造を有する濾材の製造
方法。
7. A nonwoven fabric A composed of fibers having an average fiber diameter of 0.1 to 10 μm and a nonwoven fabric B obtained by heating and pressing a nonwoven fabric composed of fibers having an average fiber diameter of 0.1 to 10 μm,
A method for producing a filter material having a dense and dense structure in which nonwoven fabric A and nonwoven fabric B are integrated, wherein after heating, nonwoven fabric B is subjected to pressure treatment under a pressure condition smaller than the pressure condition of the heat and pressure treatment.
JP33119995A 1995-11-28 1995-11-28 Filter media Expired - Lifetime JP3272928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33119995A JP3272928B2 (en) 1995-11-28 1995-11-28 Filter media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33119995A JP3272928B2 (en) 1995-11-28 1995-11-28 Filter media

Publications (2)

Publication Number Publication Date
JPH09150023A JPH09150023A (en) 1997-06-10
JP3272928B2 true JP3272928B2 (en) 2002-04-08

Family

ID=18241007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33119995A Expired - Lifetime JP3272928B2 (en) 1995-11-28 1995-11-28 Filter media

Country Status (1)

Country Link
JP (1) JP3272928B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10084397T1 (en) * 1999-03-30 2002-03-14 Chisso Corp filter cartridge
JP4464433B2 (en) * 2007-08-31 2010-05-19 日本バイリーン株式会社 Cylindrical filter
JP2009112887A (en) * 2007-11-01 2009-05-28 Daiwabo Co Ltd Filter medium, its manufacturing method, and cartridge filter
JP5836191B2 (en) * 2012-05-11 2015-12-24 ダイワボウホールディングス株式会社 Cylindrical filter

Also Published As

Publication number Publication date
JPH09150023A (en) 1997-06-10

Similar Documents

Publication Publication Date Title
US20040116026A1 (en) Charged synthetic nonwoven filtration media and method for producing same
KR101308756B1 (en) Filter medium for particulate filtration
JP6050752B2 (en) Cartridge filter including combination of depth filter and submicron filter and RO pretreatment method
EP1208900B1 (en) Process of manufacturing a triboelectrically charged nonwoven
CA2282856C (en) Air filter
JP4236284B2 (en) Cylindrical filter
KR100661322B1 (en) Multi-layer composite filter element for series filtration
JPH1190135A (en) Pleated filter
US20030226792A1 (en) Multilayer filter element
EP3023136A1 (en) Multilayer nonwovens incorporating differential cross-sections
JP2013034919A (en) Cartridge filter
JP3272928B2 (en) Filter media
CN112912157A (en) Filter medium for fluid filtration, method for producing a filter medium, and fluid filter
JP2009112887A (en) Filter medium, its manufacturing method, and cartridge filter
JP4751604B2 (en) Cylindrical filter and manufacturing method thereof
JP3994225B2 (en) Filter material and filtration method
DE202010009671U1 (en) Meltblown filter material, associated uses and uses
JP3712464B2 (en) Cartridge filter and manufacturing method thereof
JP3668368B2 (en) Manufacturing method of cylindrical filter
JP3404796B2 (en) Filter media
JPH07116428A (en) Parallel flow type laminated filter
JP3469296B2 (en) Multilayer filter
JPH0726460A (en) Filter material for liquid filter
JPH11165010A (en) Cylindrical filter
JP3677367B2 (en) Cylindrical filter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080125

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 12

EXPY Cancellation because of completion of term