WO2000057399A1 - Procede d'inclusion d'information additionnelle et dispositif a cet effet, et procede de decodage d'information additionnelle et dispositif a cet effet - Google Patents

Procede d'inclusion d'information additionnelle et dispositif a cet effet, et procede de decodage d'information additionnelle et dispositif a cet effet Download PDF

Info

Publication number
WO2000057399A1
WO2000057399A1 PCT/JP2000/001715 JP0001715W WO0057399A1 WO 2000057399 A1 WO2000057399 A1 WO 2000057399A1 JP 0001715 W JP0001715 W JP 0001715W WO 0057399 A1 WO0057399 A1 WO 0057399A1
Authority
WO
WIPO (PCT)
Prior art keywords
additional information
audio signal
shift
frequency
mdct
Prior art date
Application number
PCT/JP2000/001715
Other languages
English (en)
French (fr)
Inventor
Hideo Sato
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to US09/700,611 priority Critical patent/US7299189B1/en
Priority to DE60034520T priority patent/DE60034520T2/de
Priority to JP2000607199A priority patent/JP4470322B2/ja
Priority to EP00909771A priority patent/EP1087377B1/en
Publication of WO2000057399A1 publication Critical patent/WO2000057399A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/28Arrangements for simultaneous broadcast of plural pieces of information
    • H04H20/30Arrangements for simultaneous broadcast of plural pieces of information by a single channel
    • H04H20/31Arrangements for simultaneous broadcast of plural pieces of information by a single channel using in-band signals, e.g. subsonic or cue signal
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/018Audio watermarking, i.e. embedding inaudible data in the audio signal
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/0212Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders using orthogonal transformation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/00086Circuits for prevention of unauthorised reproduction or copying, e.g. piracy
    • G11B20/00884Circuits for prevention of unauthorised reproduction or copying, e.g. piracy involving a watermark, i.e. a barely perceptible transformation of the original data which can nevertheless be recognised by an algorithm
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10268Improvement or modification of read or write signals bit detection or demodulation methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/10Indexing; Addressing; Timing or synchronising; Measuring tape travel
    • G11B27/11Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information not detectable on the record carrier

Definitions

  • the present invention restricts the recording of audio signals to audio signals, or prohibits the transfer to other devices.
  • the present invention relates to an additional information embedding method and apparatus for embedding information or the like that can protect the benefits of the present invention as additional information, and further relates to a demodulation method and apparatus for demodulating additional information added to an audio signal.
  • BACKGROUND ART Conventionally, in order to protect content as an audio work, a technology that prohibits transfer of an audio signal to another device or embeds information that restricts recording of an audio signal as additional information in the audio information has been used. Have been. This kind of additional information is embedded in the audio signal as a warrior mark, and there are a digital warrior mark and an analog warrior mark.
  • LSB least significant bit
  • MDCT scatter cosine transform
  • the digital watermark mark can be read and written by superimposing the data for the watermark mark directly on the digital audio signal, the signal processing is facilitated.
  • the digital watermark is destroyed when the digital audio signal is demodulated into an analog audio signal.
  • the digital war symbol may be destroyed when the digital audio signal is converted to a different data format.
  • the Digital War Yu-Mark cannot restrict the repetitive recording of analog audio signals, that is, the duplication of analog audio signals, and protects the copyright interest of audio works sufficiently. Is no longer possible.
  • the analog war mark is embedded in a digital audio signal so that it can be detected in the form of an analog signal. Even after performing file format conversion, etc., the digital audio signal is converted to an analog signal. By demodulating to an audio signal, the watermark can be read again.
  • EMD electronic music distribution
  • Analog warfare embedded in digital audio signal compressed by EMD A digital audio signal cannot be read or written without demodulating the compressed digital audio signal into a PCM signal or analog signal. Therefore, in order for the user to record an audio signal on which the analog audio / video mark delivered by EMD is superimposed, p
  • An object of the present invention is to provide a novel additional information embedding method and apparatus, and a method of demodulating additional information and a demodulation apparatus thereof, which can solve the problems of the conventionally proposed technique of embedding additional information in an audio signal. With the goal.
  • Another object of the present invention is to provide an additional information embedding method and apparatus capable of embedding additional information in an audio signal without deteriorating the sound quality of reproduced sound.
  • An object of the present invention is to provide an additional information demodulation method and apparatus capable of demodulating additional information without causing deterioration of sound quality of an embedded audio signal.
  • the present invention is to embed additional information in an audio signal without being easily damaged even if the audio signal is demodulated from a digital signal to an analog signal, or the format of the data format is changed. It is an object of the present invention to provide a method and an apparatus for embedding additional information and a method for demodulating the additional information and a demodulating apparatus for the additional information.
  • Still another object of the present invention is to provide a method and an apparatus for embedding additional information that can easily embed additional information in an audio signal that has been compressed over time. It is an object of the present invention to provide a method of demodulating additional information that can be demodulated in a decompressed state, and a demodulation apparatus for the additional information.
  • the present invention provides an additional information embedding method for embedding additional information in an audio signal, comprising: an orthogonal transformation step of orthogonally transforming an audio signal to calculate an orthogonal transformation coefficient; And a shift-adding step of embedding the additional information by attenuating the orthogonal transform coefficients in the attenuation and frequency axis directions and adding the orthogonal transform coefficients to the original orthogonal transform coefficients.
  • the MDCT coefficient is calculated by performing an MDCT transform on the audio signal, and in the shift / addition step, the calculated The additional information is embedded by attenuating the MDCT coefficient and shifting it in the frequency axis direction and adding it to the original MDCT coefficient.
  • the present invention further includes a step of scrambling the signal calculated in the shift ′ adding step with a pseudo-random signal.
  • the additional information embedded in the audio signal is restriction information prohibiting the transfer of the audio signal, restriction information prohibiting the recording of the audio signal on the recording medium, and a copyrighted work corresponding to the audio signal. It is a night.
  • the shift / addition step adds the orthogonal transform coefficient shifted on the frequency axis to the original orthogonal transform coefficient so as to satisfy the frequency masking condition and the temporal masking condition. Furthermore, the shift ′ addition step performs the addition when the value obtained by adding the shifted orthogonal transform coefficient to the original orthogonal transform coefficient value is equal to or less than a predetermined value.
  • the shift / addition step inhibits the shift and the addition according to the polarity of the value obtained by adding the shifted orthogonal transform coefficient to the original value of the orthogonal transform coefficient.
  • the shift ′ addition step performs shift and addition when the audio signal is in the range from the upper limit to the lower limit.
  • the shift and addition step performs the shift and the addition when the audio signal is in a range from an upper limit value to a lower limit value set based on human hearing characteristics.
  • the shift ′ addition step shifts and adds the orthogonal transform coefficients within a predetermined frequency band.
  • the shift ′ adding step is performed for each of the divided frequency bands of the audio signal.
  • the shifting step the shift direction of the divided adjacent frequency band is reversed.
  • the shift ′ adding step shifts the MDCT coefficient toward the side where the frequency increases, and adds it to the original MDCT coefficient.
  • the shift 'addition process [the DCT coefficient is shifted by 2 ⁇ [(N is a natural number), so that the MDCT coefficient becomes ((sampling frequency / number of samples of MDCT coefficient)) X 2 N)
  • the frequency is increased by Hz
  • This shift 'addition process is substantially equal to the amplitude of the audio signal.
  • the MDCT coefficient is shifted on the side where the frequency decreases, and is added to the original MDCT coefficient.
  • the shift / addition process is performed by shifting the MDCT coefficient by 2N (N is a natural number), so that the MDCT coefficient is ((sample frequency / number of samples of MDCT coefficient) X 2N) Hz The minute frequency decreases.
  • the present invention provides an additional information embedding device for embedding additional information in an audio signal, comprising: an orthogonal transform means for orthogonally transforming the audio signal to calculate an orthogonal transform coefficient; And an adder for embedding the additional information by adding the original information to the original orthogonal transform coefficients.
  • the orthogonal transform means calculates MDCT coefficients by subjecting the audio signal to MDCT conversion, and the shift 'adding means attenuates the calculated MDCT coefficients and shifts them in the frequency axis direction to obtain the original MDCT coefficients. Additional information is embedded by adding it to the CT coefficient.
  • the additional information embedding device further includes means for scrambling the signal calculated by the shift / addition means with a pseudo-random signal.
  • the present invention relates to a demodulation method for receiving an audio signal in which additional information is embedded and demodulating the additional information, wherein the additional information is shifted by attenuating and shifting in a frequency axis direction and added to an audio signal on an original frequency axis. And a demodulating step of demodulating the additional information based on the polarity of the audio signal at predetermined intervals on the frequency axis of the received signal.
  • the audio signal in which the additional information is embedded is obtained by attenuating the orthogonal transform coefficient calculated by orthogonally transforming the audio signal, shifting it in the frequency axis direction, and adding it to the original orthogonal transform coefficient.
  • the audio signal embedded with additional information is received by attenuating the MDCT coefficient calculated by performing MDCT conversion on the audio signal, shifting the MDCT coefficient in the frequency axis direction, and adding the result to the original MDCT coefficient.
  • the receiving step receives an audio signal in which the additional information is embedded by amplitude modulation (AM modulation), and the demodulating step is based on the polarity of the audio signal at predetermined intervals on the frequency axis of the received signal. Demodulate additional information.
  • AM modulation amplitude modulation
  • the receiving step receives an audio signal in which additional information is embedded by FM modulation
  • the demodulating step recovers the additional information based on the polarity of the audio signal at predetermined intervals on the frequency axis of the received signal. Adjust.
  • the demodulation step demodulates the additional information based on the polarity of the audio signal at predetermined intervals on the frequency axis within a predetermined frequency band of the received signal.
  • the present invention provides a demodulator for receiving an audio signal in which additional information is embedded and demodulating the additional information, wherein the demodulation device attenuates the audio signal.
  • Receiving means for receiving the audio signal in which the additional information is embedded by shifting in the direction of the frequency axis and adding to the audio signal on the original frequency axis, and a frequency axis at predetermined intervals of the received signal.
  • Demodulating means for demodulating the additional information based on the polarity of the audio signal.
  • the receiving means used here attenuates the orthogonal transform coefficient calculated by orthogonally transforming the audio signal, shifts it in the frequency axis direction, and adds it to the original orthogonal transform coefficient to embed additional information.
  • the receiving means receives the audio signal in which the additional information is embedded by attenuating the MDCT coefficient calculated by performing the MDCT conversion on the audio signal, shifting the MDCT coefficient in the frequency axis direction, and adding the resultant to the original MDCT coefficient.
  • the receiving means receives the audio signal in which the additional information is embedded by AM modulation, and the demodulating means demodulates the additional information based on the polarity of the audio signal on the frequency axis at predetermined intervals of the received signal.
  • the receiving means receives the audio signal in which the additional information is embedded by FM modulation
  • the demodulating means receives the additional information based on the polarity of the audio signal on the frequency axis at predetermined intervals of the received signal. It will go back.
  • the demodulation means demodulates the additional information based on the polarity of the audio signal on the frequency axis at predetermined intervals within a predetermined frequency band of the received signal.
  • FIG. 1 is a diagram for explaining frequency masking of an audio signal.
  • FIG. 2A is a graph showing the result of MDCT conversion of an audio signal as a sine wave
  • FIG. 2B is a diagram showing the result of fast Fourier transform of an audio signal as a sine wave.
  • FIGS. 3A and 3B are graphs showing a state in which the MDCT coefficient is shifted in the frequency axis direction.
  • FIGS. 4A and 4B are graphs showing the frequency shift when the MDCT coefficient is shifted in the frequency axis direction. It is a graph which shows a change.
  • FIG. 5A and FIG. 5B are graphs showing the frequency selection processing of the watermarks embedded in audio signals.
  • FIG. 6A is a graph showing signal characteristics in the frequency domain of a signal in which an audio signal is amplitude-modulated by a sine wave
  • FIG. 6B is a graph showing an original audio signal
  • FIG. 6C is a graph showing an original audio signal.
  • 7B is a graph showing a signal obtained by amplitude-modulating the audio signal shown in FIG. 6B with a sine wave.
  • FIG. 7A is a graph showing signal characteristics in the frequency domain of a signal obtained by frequency-modulating an audio signal by a sine wave
  • FIG. 7B is a graph showing an original audio signal
  • FIG. 7C is a graph showing the original audio signal.
  • 7B is a graph showing a signal obtained by frequency-adjusting the audio signal shown in FIG. 7B with a sine wave.
  • FIG. 8A is a graph showing an example in which the watermark is embedded in the high frequency band side of the original audio signal
  • FIG. 8B is a graph showing the low frequency band side of the original audio signal
  • 9 is a graph showing an example in which a war mark is embedded.
  • FIG. 9 is a graph illustrating a method of calculating an MDCT coefficient.
  • FIGS. 10A and 10B are graphs showing replacement of MDCT coefficients.
  • Fig. 11A is a graph showing the MDCT coefficient of the original audio signal
  • Fig. 11B is the MDCT coefficient of the original audio signal plus the MDCT coefficient shifted in the frequency axis direction.
  • Fig. 11C is a graph showing how a polarity change that does not exist originally occurs when the MDCT coefficient shifted in the frequency axis direction is added to the MDCT coefficient of the original audio signal. It is a graph shown.
  • FIG. 12A is a graph showing how to select an MDCT coefficient in which a watermark is embedded according to the level of the MDCT coefficient.
  • FIG. 12B is a graph showing the vicinity of the MDCT coefficient selected by FIG. 12A.
  • FIG. 9 is a graph showing how additional information is embedded as a war mark in FIG.
  • FIG. 13A is a first graph showing an example of watermark frequency band limitation, and
  • FIG. 13B is a second graph showing an example of watermark frequency band limitation.
  • FIG. 14 is a graph showing an example in which multiple information is inserted with one or more marks in a plurality of layers.
  • FIG. 15A is a graph showing a first example of frequency band division into a plurality of frequency bands
  • FIG. 15B is a graph showing a second example of frequency band division into a plurality of frequency bands. It is.
  • FIG. 16 is a block diagram showing a codec for modulating by superimposing the additional information on the audio signal as a watermark and decoding the audio signal on which the additional information is superimposed.
  • FIG. 17 is a flowchart showing a procedure for superimposing additional information on an audio signal.
  • FIG. 18 is a graph showing a process of extracting additional information based on the Waryuichi mark embedded in an audio signal by resetting every second and detecting a bias in each section.
  • FIG. 19 is a first graph showing the operation of demodulating from the comparison of curves due to the difference in the shift amount of the MDCT coefficient in the frequency axis direction.
  • FIG. 20 is the first graph showing the shift amount of the MDCT coefficient in the frequency axis direction.
  • 7 is a second graph showing an operation of demodulating from a comparison of curves due to the difference in.
  • Fig. 21A is a graph showing how the frequency band is divided
  • Fig. 21 B is a graph showing the envelope in which the audio signals divided in Fig. 21A are modulated in opposite phases
  • 21C is a graph showing an error generated by Envelope
  • FIG. 21D is a graph showing a state of synthesis of band-division audio signals each modulated in opposite phase.
  • Fig. 22A is a graph showing the number of same polarity and different polarity between MDCT coefficients when frequency division is not performed
  • Fig. 22B is a block-by-block and synthesized MDCT when frequency division is not performed
  • 6 is a graph showing the number of homopolarities and different polarities between coefficients.
  • Figure 23A is a graph showing the number of homopolarities and different polarities between MDCT coefficients when frequency division is performed.
  • Figure 22B is a diagram showing the MDCT coefficients for each block and the combined MDCT coefficients when frequency division is performed. It is a graph which shows the number of the same polarity and different polarities between each other.
  • FIG. 24 is a block diagram illustrating another example of a codec that modulates the additional information by superimposing the additional information on the audio signal as a watermark and decodes the audio signal on which the additional information is superimposed.
  • FIG. 25 is a flowchart showing a procedure for superimposing additional information on an audio signal using the codec shown in FIG.
  • FIG. 26 is a block diagram illustrating still another example of a codec that modulates the audio signal by superimposing the additional information on the audio signal as a watermark, and decodes the audio signal on which the additional information is superimposed.
  • FIG. 27 is a block diagram showing a war-one-mark generating circuit based on the Hilbert transform.
  • FIG. 28 is a block diagram in which additional information is embedded as a warrior one mark in an audio signal using a warrior one mark generation circuit based on Hilbert transform.
  • the masking effect refers to a state in which human hearing does not respond to a sound below a sound pressure level whose frequency is shifted within a certain range with respect to a masker which is a sound above a predetermined sound pressure level at a certain frequency.
  • a sound WM below a sound pressure level indicated by a masking curve 1 in a certain frequency range B w shown in FIG. no response.
  • the sound WM below the sound pressure level shown in the figure does not respond to human hearing.
  • K The critical band width B w has frequency dependence, and as shown in FIG. 1, the frequency bandwidth gradually increases at 1 kHz or more.
  • a temporal masking effect is obtained by masking the masking sound WM that is below the sound pressure level indicated by the masking curve 1 in the time axis direction, as a mask that exceeds a predetermined sound pressure level at a certain frequency. If there is a difference in the time axis direction from the functioning sound As, it will be heard by some people. For example, some people hear that the sound WM, which is regarded as masking, is shifted about several milliseconds forward or several tens of milliseconds backward in the time axis direction from the sound As, which is the masking sound. Teshima o.
  • the masking effect described above is taken into consideration, and the audio signal with the highest power is within the sound pressure level indicated by the masking curve. It is necessary to add additional information within.
  • the additional information needs to take into account the temporal masking effect so that it does not greatly deviate in the time axis direction from the masking audio signal.
  • the audio signal includes a signal obtained by superimposing sine waves of various frequencies.
  • FFT Fast Fourier Transform
  • one spectrum (Fast Fourier Transform coefficient) is generated at a certain frequency as shown in Fig. 2A.
  • MDCT Modified Discrete Cosine Transform
  • Fig. 2B a plurality of bipolar MDCT coefficients are generated at a plurality of frequencies.
  • Figure 2B the four central MDCTs The coefficient accounts for about 90% of the whole.
  • the vertical axis indicates gain (or level).
  • the MDCT coefficients obtained by performing MDCT on a sine wave have the following properties.
  • the MDCT coefficient is converted into an inverse MDCT (IMDCT) by shifting the entire MDCT coefficient in the frequency axis direction by an even number, and the result is a PCM signal due to the properties of the MDCT and the inverse MDCT.
  • IMDCT inverse MDCT
  • This is the signal that has been frequency shifted above.
  • an audio signal of 1 kHz is sampled at a frequency of 44.1 kHz, and as shown in FIG. 3A, 1024 sample values are subjected to MDCT conversion, and the obtained MDCT coefficient is As shown in Fig. 3B, after shifting to the right by two on the frequency axis and performing inverse MDCT conversion, the 1 kHz audio signal shown in Fig.
  • a general audio signal is sampled at a frequency of 44.1 kHz, 1024 sample values are subjected to MDCT conversion, and a predetermined number of MDCT coefficients are obtained from the obtained MDCT coefficients as shown in FIG. 5A. Is selected and the selected MDCT coefficient is subjected to inverse MDCT conversion, thereby obtaining a frequency-limited modulation result.
  • This allows for example, as shown in Figure 5B, not the entire frequency of the audio signal.
  • additional information can be embedded as a watermark WM in a signal only in the 1.5 kHz to 5 kHz band.
  • an additional signal is directly generated from the audio signal itself, that is, a component of a constant frequency band wave included in the audio signal is generated.
  • this additional information is embedded as additional information within the range where the masking effect shown in FIG. 1 can be obtained as a wartime mark WM.
  • This AM modulation method performs processing as shown in FIGS. 6A, 6B, and 6C. That is, as shown in Fig. 6C, when the envelope of the signal (sine wave) of the specific frequency in the original audio signal in which the additional information is embedded is amplitude-modulated by the sine wave shown in Fig. 6B, As shown in FIG. 6A, a sideband signal SB appears on both sides of the original audio signal, and the sideband signal SB is made to fall within the range of the masking curve 1 shown in FIG. Using the sideband signal SB, additional information can be embedded in the audio signal as a watermark.
  • This FM modulation method performs processing as shown in FIGS. 7A, 7B, and 7C. That is, as shown in FIG. 7C, when a signal (sine wave) of a specific frequency in the audio signal in which the additional information is embedded is frequency-modulated by the sine wave shown in FIG. 7B, as shown in FIG. 7A, Sideband signals SB are obtained on both sides of the original audio signal so that the sideband signals SB fall within the range of the masking curve 1 shown in FIG. So By using this sideband signal SB, additional information can be embedded in the audio signal as a watermark.
  • the additional information when embedding additional information as a watermark in an audio signal, as shown in Fig. 8A, the higher frequency band of a signal of a specific frequency in the audio signal in which the additional information is embedded, or As shown in FIG. 8B, the additional information may be embedded in only one of the lower frequency bands of the signal of the specific frequency as the watermark WM.
  • the mark WM indicates that the gain is within the range of the masking curve 1 of the audio signal of the specific frequency. It is attenuated and embedded.
  • the MDCT coefficient of the audio signal is subjected to MDCT conversion, and the MDCT coefficient to be decoded is attenuated.
  • the MDCT coefficient is shifted in the frequency axis direction so that the audio signal has a mask within the masking curve 1 range.
  • a method of demodulating the additional information embedded as WM will be described.
  • the unit of the MDCT conversion at the time of modulation is 104
  • the unit of the inverse MDCT conversion at the time of demodulation is 104. If the 10 24 transform coefficients deviate, demodulation cannot be performed correctly. Therefore, when demodulating the additional information correctly, as shown in FIG. 9, it is necessary to perform 1,024 inverse MDCT conversions in which the transform coefficients are shifted one by one. Performing such a large number of inverse MDCT conversions is impractical considering the processing time and the operation speed, and the circuit scale becomes too large.
  • the MDCT coefficient obtained by converting the audio signal The additional information embedded in the audio signal by shifting in several axis directions has a correlation with the original audio signal. Therefore, the additional information embedded in the audio signal is demodulated using the property of the additional information. In this demodulation, additional information can be easily demodulated by adding the MDCT coefficient shifted in the frequency axis direction to the original MDCT coefficient obtained by subjecting the audio signal to MDCT conversion.
  • the MDCT coefficient shown in Fig. 10A obtained by performing MDCT conversion on the audio signal is shifted by four in the frequency axis direction, and added to the original MDCT coefficient.
  • the polarity of the original MDCT coefficient and the polarity of the added MDCT coefficient are likely to be in phase. That is, as shown in FIG. 10B, as for the MDCT coefficients added in the frequency axis direction, those having the same phase as the original MDCT coefficients increase and those having the opposite phase decrease. Therefore, the polarity is shifted by four in the frequency axis direction, and the polarity of the MDCT coefficient shown in Fig. 10B to which the MDCT coefficient is added is counted in in-phase or out-of-phase and statistically processed.
  • the MDCT coefficient is shifted by four in the frequency axis direction.
  • the present invention is not limited to this, and 2N (N is a natural number) ) You may shift by minutes.
  • the audio signal is transformed by MDCT.
  • MDCT coefficients shifted in the frequency axis direction that are added to or subtracted from the original MDCT coefficients that are decoded and decoded, some of them do not contribute to the increase or decrease in polarity. That is, of the MDCT coefficients shifted in the frequency axis direction, there are those whose polarity is not changed by being added or subtracted from the original MDCT coefficient.
  • the MDCT coefficient shifted by, for example, four in the frequency axis direction is added to the original MDCT coefficient shown in FIG. 11A obtained by converting the audio signal into the MDCT.
  • the added MDCT coefficient is added to the original MDCT coefficient with the gain reduced by a certain level, for example, about 30 dB, as shown in FIG. 11B.
  • the result of this addition is as shown in FIG. 11C.
  • the MDCT coefficient obtained by lowering the 30 dB gain is added to the original MDCT coefficient, it does not contribute to the reversal of the polarity of the original MDCT coefficient, but also has a predetermined frequency.
  • the audio signal in which the additional information is embedded is obtained by MDCT conversion.
  • MDCT coefficients used only those MDCT coefficients whose gain is below a certain level are used for embedding additional information. For a sound with a predetermined frequency, a sound with a frequency shifted above a certain sound pressure level cannot have an auditory masking effect. Due to such sound properties, as shown in Fig.
  • a threshold S is set for the gain and frequency of the MDCT coefficient used for additional information, and this threshold S (the following range Only the MDCT coefficients in (1) are used for embedding the additional information.
  • the MDCT coefficients selected here are shifted by four in the frequency axis direction, the gain is reduced, and the MDCT coefficients are added to the original MDCT coefficients.
  • the additional MD information is embedded on both sides of the original MDCT coefficient as a —- ⁇ mark WM.
  • a predetermined frequency It is possible to prevent additional information of a certain level or more from being embedded in a distant position, and to prevent generation of sound reproduced as a noise component in auditory sense.
  • the audio signal is reproduced.
  • the MDCT coefficient for the additional information is always embedded at a position separated from the MDCT coefficient of the predetermined frequency by a predetermined frequency
  • the audio signal is reproduced.
  • some noises are heard as auditory noises without being masked.
  • the frequency band in which the masking effect is obtained changes depending on the frequency
  • the additional information is added according to the frequency of the audio signal in which the additional information is embedded. Varying the frequency distance Hr to be embedded as the Waryuichi mark WM, for example, when embedding additional information as an audio signal of 1 kHz or less as the Waryuichi mark WM, as shown in FIG.
  • the original MDCT coefficient is shifted on the frequency axis so that the MDCT coefficient for additional information is embedded within the frequency distance Hr of 3 Hz.
  • the additional information is generated within the frequency distance H r of 86 Hz as shown in Fig. 13A.
  • the original MDCT coefficient is shifted on the frequency axis so that the MDCT coefficient is embedded.
  • the audio signal in which the additional information is embedded as the watermark WM is subjected to signal compression processing by compression quantization of the video signal, the audio signal may be destroyed. This is because the amplitude of each frequency component in the frequency band of the audio signal may be rounded down and reduced due to the limitation of the number of quantization steps in the process of signal compression.
  • the level of the additional information added to the audio signal may be secured to a certain level or more. For example, if the level of the additional information is set to about 16 to 130 dB with respect to the level of the audio signal of a predetermined frequency in which the additional information is embedded, the audio signal in which the additional information is embedded is quantized.
  • the tolerance of the additional information is guaranteed, and destruction can be prevented.
  • the MDCT coefficient attenuated by 30 dB or more from the original MDCT coefficient may not be used for the additional information.
  • the MDCT coefficient obtained by performing MDCT conversion on the audio signal is shifted in the frequency axis direction and the additional information is embedded as a power-on / one-off mark WM, the additional information to be embedded is as shown in FIG.
  • the frequency of each layer may be set exclusively.
  • the frequency band of the audio signal may be divided into predetermined frequency bands by data filtering, and then the audio signal may be subjected to MDCT conversion. It may be.
  • the components of such a frequency-divided area may be used directly as a layer.
  • FIG. 15A shows an example applied to an adaptive audio signal compression technique (ATRAC2; Adaptive Transform Acoustic Coding, a trademark of Sony Corporation), and shows an example of frequency division every 5 kHz.
  • Fig. 15B shows an example that uses the fact that the output from the subbandfill divided into 32 in the MDCT layer 13 is MDCT-converted.
  • the method of shifting the MDCT coefficient obtained by performing the MDCT conversion on the audio signal in the frequency axis direction and embedding the additional information in the audio signal as the war ichi mark WM uses the original MDCT coefficient
  • the level of the MDCT coefficient for generating additional information is determined by the match / mismatch of the polarity with the MDCT coefficient that is shifted by a predetermined number in the frequency axis direction and added. It does not directly affect the modulation intensity of the additional information.
  • both the MDCT coefficient and the high-level MDCT coefficient have the same data amount, when giving priority to the sound quality of the reproduced audio signal, the masking effect by the audio signal to which the additional information is added and the signal compression are performed. Considering the robustness of the additional information at the time, it is desirable to use the lowest possible MDCT coefficient level for generating the additional information.
  • the maximum level of the additional information can be reduced by limiting the level of the audio signal.
  • the amplitude can be set.
  • additional information that can be damaged by repeated conversion of the signal from a digital signal to an analog signal is generated.
  • a method of normalizing the output for each frequency band or for each filter bank described above is available.
  • the AGC circuit is provided after the polyphase quadrature filter (PQF), so the level adjustment is performed before the audio signal is converted to MDCT. Therefore, ATRAC 2 and ATRA C 3 can be used in the demodulation method of the present invention.
  • the number of MDCT coefficients effective for generating additional information added to the audio signal is counted, and an average constant number of MDCT coefficients is obtained. Automatically limits the level of MD CT coefficients that generate additional information to be added You may make it.
  • an additional information embedding device for embedding the additional information in the audio signal as a watermark and a demodulation device for demodulating the additional information embedded in the audio signal will be described.
  • the additional information embedding device and the additional information demodulation device are integrally formed as a codec 10 as shown in FIG.
  • the codec 10 converts the audio signal input via the audio signal input terminal 10a into a digital signal
  • the A / D converter 12 converts the audio signal into a digital signal using the A / D converter.
  • An MDCT conversion unit 14 is provided to convert the converted audio data into an MDCT (Modified Discrete Cosine Transform).
  • the MDCT conversion unit 14 performs a one-dimensional orthogonal transform on a one-dimensional audio signal, that is, a PCM signal, and converts the PCM signal into a one-dimensional MDCT to output MDCT coefficients.
  • a shift / addition unit 16 is provided to receive the MDCT coefficient calculated by the MDCT conversion unit 14 and to input additional information input through the additional information input terminal 10b.
  • the shift unit 16 shifts the MDCT coefficient supplied from the MDCT conversion unit 14 in the frequency axis direction, and performs polarity conversion of the original MDCT coefficient based on the additional information. Embed additional information in
  • the signal output from the shift 'adder 16 is input to the inverse MDCT converter 18.
  • the inverse MDCT conversion unit 18 performs an inverse modified discrete cosine conversion of the signal output from the shift ′ addition unit 16 with the MDCT conversion unit 14.
  • Additional information output as a digital signal from the inverse MDCT converter 18 The digital audio data in which the information is embedded is converted into an analog audio signal by the D / A converter 20 and output via the output terminal 21.
  • the audio signal output from the output terminal 21 is a signal in which additional information is embedded.
  • This codec 10 is also used as a demodulator for additional information, and has an additional information demodulator 22 that demodulates additional information embedded in an audio signal from MDCT coefficients output from the MDCT converter 14. It has.
  • the additional information demodulated by the additional information demodulation unit 22 is output to the outside of the device via the output terminal 21.
  • the additional information embedded as a watermark in the audio signal includes restriction information for inhibiting the transfer of the audio signal and restriction information for inhibiting the recording of the audio signal on another recording medium.
  • the copyrighted data is data for managing the copyright of music or the like corresponding to the audio signal, and includes a copyright holder code, a copyright management number, and the like.
  • a procedure for embedding the additional information in the audio signal using the codec 10 having the additional information embedding function shown in FIG. 16 will be described with reference to the flowchart shown in FIG.
  • an audio signal is input from the audio signal input terminal 10a in step S1
  • this audio signal is input to the A / D converter 12 and converted into a digital signal in step S2.
  • the audio signal converted to the digital signal is input to the MDCT converter 14.
  • the audio signal input to the MDCT conversion unit 14 is subjected to MDCT conversion in step S3 to calculate MDCT coefficients.
  • the MDCT coefficient calculated by the MDCT conversion unit 14 is input to the shift ′ addition unit 16.
  • step S4 it is determined whether or not additional information has been input to shift ′ adding section 16. That is, when the input of the additional information indicates “1”, the shift ′ adding unit 16 determines in step S5 the MDC MD coefficient input from the MDC ⁇ converting unit 14 by, for example, 2 in the frequency axis direction. Shift by one or four, add to the original MDC ⁇ coefficient, and embed additional information as a war ichi mark WM. Then, when no additional information is input, that is, when the additional information is “0”, shift / addition section 16 outputs the original MDCC coefficient without performing the above-described shift / addition.
  • the shift / addition unit 16 adds the MDCT coefficient shifted in the frequency axis direction to the original MDC ⁇ coefficient, and the additional information is “0”.
  • the device that receives or supplies the audio signal output from the additional information embedding device has “0” or “1” of the additional information. Can be detected.
  • the audio signal is sampled at a frequency of 44.1 kHz, and the MDCT coefficient is obtained by performing MDCT conversion with 1024 sample values as one block, additional information is obtained every 1024 samples. Can be embedded bit by bit. The number of samples is not limited to 1024.
  • the MDCT coefficients subjected to the predetermined processing by the shift 'adder 16 are subjected to inverse transform discrete cosine transform, which is the reverse of the MDCT transform in step S6, and then, in step S7, the analog audio signal And in step S8, the The audio signal is output as an audio signal.
  • the shift 'adder 16 shifts the MDCT coefficient by, for example, two or four in the frequency axis direction, adds the result to the original MDCT coefficient, and embeds the additional information as a watermark WM.
  • the polarity of the fourth coefficient on the left and right of any MDCT coefficient is reversed in a probabilistic manner by the additional information component embedded as a war mark, and the polarity is increased or decreased. Therefore, by accumulating the fourth coefficient on the left and right of the MDCT coefficient with the same polarity and different polarities, it is possible to detect a clear polarity bias in a section of a predetermined time, for example, in a section of 1 second.
  • the count is reset every second as shown in Fig. 18 and the bias of the polarity of each section is reset.
  • the data in each section is “1”, “1”, “0”. ”Can be transmitted and detected.
  • the signal whose MDCT coefficient of the same polarity simply increases When demodulating the signal, convert it to an analog signal and then perform MDCT conversion again. At this time, if the phase of the sample value is shifted, additional information may not be read out due to a combination of positive and negative polarities.
  • the MDCT coefficient when the MDCT coefficient is shifted in the frequency axis direction by, for example, four, and added to the original MDCT coefficient to embed the additional information as the word mark WM, if the phase of the sample value is shifted, The change in the number of matching polarities increases or decreases in the form of a cosine wave. Also, if the MDCT coefficient is shifted in the frequency axis direction by, for example, five, and added to the original MDCT coefficient to embed the additional information as the word mark WM, if the phase of the sample value is shifted, the polarity will change. The change in the number where coincides increases or decreases in the form of a sine wave.
  • the MDCT conversion is performed by using 128 sample values as one block and the phase of the MDCT coefficient is shifted by 128 sample values, the coefficient of the same polarity of the MDCT coefficient shifted in the frequency axis direction by four is used. Even if the total number of MDCT coefficients becomes zero, a sufficient number of MDCT coefficients with the same polarity can be obtained for the five MDCT coefficients shifted in the frequency axis direction. Can be demodulated.
  • This method is useful if you want to detect this in an easier way than the co-beacon control method, or in applications where the phase of the MDCT transform cannot be controlled.
  • the approximate position can be specified by examining the values of 4 and 5 of the MDCT coefficient, so that the correct phase can be determined without examining the phases of all the 10 2 4 sample values.
  • the phase at which the maximum gain (gain) of the 104 sample values may be obtained.
  • Figure 20 shows that the MDCT coefficients are shifted by eight in the frequency axis direction, When adding additional information to the MDCT coefficient and embedding the additional information as a word mark WM, shifting the MDCT coefficient by 9 in the frequency axis direction and adding it to the original MDCT coefficient This shows a case where the additional information is embedded as a war mark WM. Here, the distance is changed to 8 and 9 every 64 sample values. Also, the MDCT coefficient is shifted by eight in the frequency axis direction and added to the original MDCT coefficient to embed the additional information as a warrior mark WM. If the shift is performed by nine in the direction and added to the original MDCT coefficient to embed the additional information as the watermark WM, the coarse adjustment for finding the correct phase becomes easier.
  • the additional information demodulation unit 22 adds or subtracts the MDCT coefficient serving as additional information in the higher frequency direction of the original MDCT coefficient.
  • the additional information demodulation unit 22 adds or subtracts the MDCT coefficient serving as additional information in the direction of lower frequency of the original MDCT coefficient.
  • the frequency band can be limited by limiting the MDCT coefficient as shown in FIG. 5 described above.
  • the MDCT coefficient when the MDCT coefficient is shifted in the frequency axis direction and added to the original MDCT coefficient to embed additional information, the same signal as the additional information obtained here exists. Sometimes In such a case, it causes erroneous detection of the additional information.
  • the primary cause of such signal components is modulation that is in-phase or out-of-phase with the change that the envelope of the original audio signal seeks to modulate, as shown in Figure 21B.
  • audio signals often change in phase in each frequency band, resulting in very strong modulation.
  • Use of a large signal that cancels this causes a problem in sound quality. Therefore, in order to make it easy to distinguish the additional information from the original audio signal, as shown in Fig. 21A, the frequency band is divided into a work A and a work B so that the modulation directions are opposite to each other. I have.
  • 1.5 kHz to 5 kHz is divided into 1.5 kHz to 3 kHz and 3 kHz to 5 kHz.
  • FIGS. 22A and 22B are graphs showing the numbers of the same polarity and different polarities between MDCT coefficients without frequency division, and FIGS. 23A and 23B show the MDCT coefficients when frequency division is performed. It is a graph which shows the number of the same polarity and different polarity between coefficients. It can be seen that in the case of frequency division, the data rate and error rate can be reduced by minimizing a pattern that occurs accidentally in the audio signal.
  • selecting the frequency to be divided into octaves is to enhance the canceling effect. This is due to the nature of the music, and the components including the pitch are opposite on the octave. By working, the cancellation direction helps stochastically maintain the opposite phase. Alternatively, it is also effective to select the same number of MDCT coefficients included in blocks A and B of two frequency bands.
  • an ATRAC2 polyphase quadrature filter (PQF) division characteristic can be used.
  • PQF polyphase quadrature filter
  • the MDCT coefficient is shifted in the direction of the frequency axis, added to the original MDCT coefficient, and the additional information embedded as the Waryuichi mark WM must be separated even if it is subjected to an analog signal or fast Fourier transform. It has very high confidentiality. However, they can be attacked relatively easily if they are attacked using the MDCT transform.
  • the detection of the additional information embedded in the audio signal using the MDCT conversion is performed by using the original MDCT coefficient based on the audio signal and the frequency added to the original MDCT coefficient.
  • the distance of the MDCT coefficient shifted in the axial direction, that is, the number of shifts, is set, and the mutual polarities are used.
  • the pseudo-random signal used at this time can use a simple PN sequence or Gold code, and can use a complex DES or elliptical symbol. Can be. Alternatively, it may be an AC signal in which simple 1 and 0 signals are repeatedly inverted.
  • a pseudo signal is created from two kinds of ciphers, such as a gold code, and one is fixed, the other is changed for each individual terminal, and the combined cipher is changed for each terminal.
  • the confidentiality of the additional information can be improved.
  • the additional information embedding device and the additional information demodulation device are integrally configured as a codec 30 as shown in FIG.
  • the codec 30 includes an A / D converter 32 that converts an analog audio signal input from a predetermined sound source through the audio signal input terminal 30a into a digital signal, and an A / D converter 32.
  • An MDCT converter 34 is provided to convert the audio data converted into a digital signal by the D converter 32 into an MDCT (deformed discrete cosine transform).
  • the MDCT conversion unit 34 converts the PCM signal into an MDCT and outputs MDCT coefficients, and performs a one-dimensional discrete cosine transform that performs an orthogonal transform on a one-dimensional audio signal.
  • a shift 'adder 36 is provided to receive the MDCT coefficients calculated by the MDCT converter 34 and to receive additional information input via the additional information input terminal 30b.
  • This shift adder 36 shifts the MDCT coefficient obtained by converting the audio signal supplied from the MDCT converter 34 in the frequency axis direction, and also converts the original MDCT coefficient based on the additional information. Performs the polarity conversion of the coefficient Encode the coefficients and additional information.
  • the signal output by the MDCT converter 34 is input to the inverse MDCT converter 38.
  • the inverse MDCT converter 38 performs a modified discrete cosine transform of the signal output from the MDCT calculator 34, which is the inverse of the MDCT converter 34.
  • the digital audio data in which the additional information output as a digital signal from the inverse MDCT converter 38 is embedded is compression-coded by the compression processing circuit 40, and is output as a compression-coded signal via the output terminal 31.
  • the codec 30 is also used as a demodulator for additional information, and an additional information demodulator for demodulating additional information embedded in an audio signal from MDCT coefficients output from the MDCT converter 34. It has 3 8.
  • the additional information demodulated by the additional information demodulator 38 is output to the outside of the device via the output terminal 31.
  • restriction information for inhibiting transfer of the audio signal and restriction information for inhibiting recording of the audio signal on another recording medium are used. Further, it is copyrighted work data corresponding to an audio signal. This work is a work that manages the copyright of songs and the like corresponding to audio signals, and uses copyright holder codes and copyright management numbers.
  • the shift ′ adding unit 36 and the additional information demodulating unit 38 are configured as a unit circuit 35.
  • the shift adder 36 and the additional information demodulator 35 are configured as an integrated unit circuit 35, allowing external access for unauthorized purposes. You are restricted from doing so.
  • the 1 ⁇ 0 the conversion unit 34, the unit circuit 35, and the compression processing circuit 40 as an integrated circuit 33, access from the outside for an unauthorized purpose is restricted.
  • a circuit that executes ATRAC 2 can be used as the integrated circuit 33 used in the communication device 30. By providing such a configuration, the confidentiality of the codec 30 is improved and the codec 30 can be used. It is difficult to access the signal processing externally or illegally.
  • step S11 When an audio signal is input from the audio signal input terminal 30a in step S11, the audio signal is input to the 8/0 converter 32, and is converted into a digital signal in step S12. The audio signal converted into the digital signal is input to the MDCT conversion unit 34.
  • step S13 the audio signal input to the MDCT conversion unit 34 is subjected to MDCT conversion to calculate an MDCT coefficient.
  • the MDCT coefficient calculated by the MDCT conversion unit 34 is input to the shift / calo calculation unit 36.
  • step S14 it is determined whether or not additional information has been input to shift / addition unit 36. That is, when the input of the additional information indicates “1”, the shift ′ adding unit 36 determines in step S 15 that the MDCT coefficients input from the MDCT converting unit 34 are, for example, two in the frequency axis direction. Shifts by one or four, adds to the original MDCT coefficient, and embeds the additional information as a war ichi mark WM. When no additional information is input, that is, when the additional information is “0”, The shift 'adder 36 outputs the original MDCT coefficients without performing the shift' addition described above.
  • the shift ′ adder 36 adds the MDCT coefficient shifted in the frequency axis direction to the original MDCT coefficient, and the additional information is “0”.
  • the device receiving or supplying the audio signal output from the additional information embedding device can detect the presence or absence of the additional information. .
  • the audio signal is sampled at a frequency of 44.1 kHz and the MDCT coefficient is obtained by performing MDCT conversion with the 1024 sample value as one block, it is added every 1024 Information can be obtained bit by bit.
  • the sample value is not limited to 1,024.
  • the MDCT coefficients that have been subjected to the predetermined processing by the shift 'adder 36 are subjected to compression processing by the compression processing circuit 40 in step S16, for example, using the ATRAC 2 compression method. It is output from output terminal 31 as a digital audio signal in which additional information is embedded.
  • an analog audio signal input from the input terminal 30 a is converted into a digital signal by the D / A converter 32. It is converted to a digital signal by the D / A converter 32.
  • the MDCT conversion unit 34 performs an MDCT conversion on the digital signal output from the A / D converter 32 and outputs an MDCT coefficient.
  • the MDCT coefficient demodulates the additional information from the MDCT coefficient output from the additional information demodulation unit 38 and outputs it from the output terminal 31.
  • an additional information embedding device that embeds additional information as a short mark in a signal-compressed digital audio signal
  • a demodulation device that demodulates additional information embedded in a signal-compressed digital audio signal
  • An example will be described with reference to FIG. This device is useful, for example, when receiving and demodulating a digital audio signal distributed via a communication network.
  • the device shown in FIG. 26 also has an additional information embedding device and an additional information demodulation device integrally formed as a codec 50.
  • the codec 50 expands the compressed digital audio signal input via the input terminal 50a, and converts the expanded audio data into a modified discrete cosine transform (MDCT). It comprises a decompression processing section 52 and a shift / addition section 54 to which the MDCT coefficient calculated by the decompression processing section 52 is input and additional information input through the additional information input terminal 50b is input. .
  • MDCT modified discrete cosine transform
  • the shift / addition unit 54 shifts the MDCT coefficient obtained by performing MDCT conversion on the audio data supplied from the decompression processing unit 52 in the frequency axis direction, and outputs additional information input terminals 5
  • the polarity of the original MDCT coefficient is converted based on the additional information input from 0b, and the MDCT coefficient and the additional information are encoded.
  • the signal output from the shift 'adder 54 is input to the inverse MDCT converter 58.
  • the inverse MDCT conversion unit 58 performs an inverse modified discrete cosine transform on the digital data output from the shift addition unit 54. Data in which additional information output from the inverse MDCT converter 58 is embedded.
  • the audio data is converted to an analog audio signal by an A / D converter 60 and output from an output terminal 51.
  • This codec 50 is also used as a demodulator for additional information, and an additional information demodulation unit 5 for demodulating the additional information embedded in the audio signal from the MDCT coefficient output from the decompression processing unit 52 It has six.
  • the additional information demodulated by the additional information demodulation unit 56 is output to the outside of the device via the output terminal 61.
  • restriction information for inhibiting the transfer of the audio signal and restriction information for inhibiting the recording of the audio signal to another recording medium are used.
  • copyrighted work data corresponding to the audio signal is data that manages the copyright of songs and the like corresponding to audio signals, and uses copyright holder codes and copyright management numbers.
  • the shift / addition unit 54 and the additional information demodulation unit 56 are configured as a unitary circuit 53.
  • the shift adder 54 and the additional information demodulator 56 are configured as an integrated unit circuit 53, thereby restricting external access for unauthorized purposes.
  • the decompression processing section 52, the unit circuit 53, and the inverse MDCT circuit 58 are also configured as an integrated circuit 51, thereby restricting access from outside for unauthorized purposes.
  • the sideband signal SB can be formed on both sides of the original audio signal. Since the sideband signal SB functions as a watermark for the original audio signal, additional information can be embedded using the sideband signal SB.
  • the analog audio signal shown in FIG. 7B is replaced with the analog audio signal shown in FIG. 7C as described with reference to FIG. 7 described above.
  • a side band signal SB can be formed on both sides of the original audio signal as shown in FIG. 7A. Since this sideband signal SB functions as a short-term mark for the original audio signal, additional information can be embedded using this sideband signal SB.
  • the sideband signal SB by the above-described AM and FM modulation can be generated by Hilbert transform.
  • a sideband generation circuit 100 that generates a sideband signal SB into an audio signal using the Hilbert transform performs a Hilbert transform on a PCM signal, which is a digital audio signal input from the input terminal 101a.
  • a PCM signal which is a digital audio signal input from the input terminal 101a.
  • Real number of Hilbert transformer 102, modulation frequency generator 104 that generates modulation frequency from control signal such as frequency, gain, phase input from input terminal 101b, and Hilbert transformer 102 The imaginary part output of the Hilbert transformer 102 and the imaginary part output of the modulation frequency generator 104 Imaginary part multiplier 1 0 8
  • the output from the salient part multiplier 106 and the output from the imaginary part multiplier 108 are subtracted to generate an upper sideband signal SB on the higher frequency band side of the original audio signal, the PCM signal.
  • the output of the first adder 110, the output of the real part multiplier 106 and the output of the imaginary part multiplier 108 are added to lower the lower frequency band of the original audio signal PCM signal.
  • a second adder 112 for generating a sideband signal SB for generating a sideband signal SB.
  • the additional information can be embedded as a watermark using the sideband signal SB generated on the high frequency band side or the low frequency band side of the original audio signal PCM signal.
  • the modulation device 200 converts an MDCT converter 202 into which a PCM signal, which is an original audio signal, is input via an input terminal 201, and an audio signal of a predetermined frequency to which additional information is added. It has an audio signal extractor 204 to be extracted, an inverse MDCT converter 206, a Warrior one mark generator 208 by Hilbert transform, a timing adjustment delay unit 210, and a signal embedding circuit 211. .
  • the MDCT conversion unit 202 performs an MDCT conversion on an audio signal input as a PCM signal to calculate an MDCT coefficient.
  • the audio signal extraction circuit 204 extracts, from the MDCT coefficient, an audio signal of a predetermined frequency in which the additional information is embedded with a watermark.
  • the inverse MDCT conversion unit 206 performs inverse MDCT conversion on the PCM signal extracted by the audio signal extraction circuit 204.
  • the war-night mark generation circuit 208 based on the Hilbert transform has a configuration as shown in FIG. 28 described above, and has side bands on both sides of an audio signal of a predetermined frequency in which additional information is embedded as a war-night mark. Generate signal SB.
  • the evening adjustment delay circuit 210 converts the PCM audio signal input via the input terminal 201 into an MDCT converter 202, an audio signal extractor 204, and an inverse MDCT converter 206.
  • the time adjustment is performed with a time delay corresponding to a period of time during which the arithmetic processing is performed in the war and night mark generator 208 by the Hilbert transform.
  • the signal embedding circuit 211 is a side band signal generated in the upper or lower frequency band where the audio signal output from the timing adjustment delay circuit 210 can obtain a masking effect of this audio signal. Embedding SB as additional information as a war mark.
  • the modulator 200 that embeds additional information in the audio signal as a watermark using the Hilbert transform has a frequency band above and below an arbitrary frequency audio signal. Since the sideband signal SB can be generated in a short time, AM modulation and FM modulation can be performed by frequency shift by Hilbert transform. Also, as shown in Fig. 7A, the Hilbert transform can generate a sideband signal SB only in one of the upper and lower frequency bands of an audio signal of an arbitrary frequency. Additional information can be embedded in the frequency as a watermark.
  • the present invention embeds additional information by orthogonally transforming an audio signal to calculate orthogonal transform coefficients, attenuating the calculated orthogonal transform coefficients, shifting in the frequency axis direction and adding the original orthogonal transform coefficients to the original orthogonal transform coefficients.
  • the additional information can be embedded in the audio signal as a watermark, and even when the audio signal is compressed, the additional information embedded as the watermark can be reliably damaged. Can be prevented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Computational Linguistics (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Acoustics & Sound (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Security & Cryptography (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Editing Of Facsimile Originals (AREA)

Description

明細 : 付加情報埋め込み方法及びその装置並びに付加情報の復調方法及 びその復調装置 技術分野 本発明は、 オーディォ信号にこのオーディォ信号の記録を制限し、 あるいは他の機器へ転送を禁止し、 著作権者の利益を保護すること を可能とする情報などを付加情報として埋め込む付加情報埋め込み 方法及びその装置であり、 更にオーディォ信号に付加された付加情 報を復調する復調方法及びその装置に関する。 背景技術 従来、 オーディオ著作物としてのコンテンツの保護を図るため、 オーディオ信号の他の機器への転送を禁止し、 あるいはオーディオ 信号の記録を制限する情報を当該オーディオ情報に付加情報として 埋め込む技術が用いられている。 この種の付加情報は、 オーディオ 信号にウォー夕一マークとして埋め込まれるものであって、 デジ夕 ルウォー夕一マークとアナログウォー夕一マークがある。
デジ夕ルオーディオ信号にデジタルウォー夕一マークを埋め込む 技術として、 1 6ビッ トの P C Mオーディオ信号の最下位ビヅ ト ( L S B ) をウォー夕一マークのデータ用に用いるものが用いられ ている。 また、 圧縮符号化されたデジタルオーディオ信号の変形離 散コサイン変換 (M D C T ) 係数や、 サブバン ドの係数を操作して、 付加情報をウォー夕一マークとしてデジタルオーディォ信号に埋め 込む技術が用いられている。
デジタルウォー夕一マークは、 ウォー夕一マーク用のデ一夕を直 接デジタルォ一ディォ信号に重畳して読み書きすることができるの で、 信号処理が容易となる。 しかし、 デジタルゥォ一ターマークは、 デジタルオーディオ信号がアナログオーディオ信号に復調されたと き破壊されてしまう。 また、 デジタルウォー夕一マークは、 デジ夕 ルオーディォ信号が異なるデ一夕フォーマッ トに変換されたときに も破壊されてしまうことがある。 このため、 デジタルウォー夕一マ ークは、 アナログオーディオ信号の繰り返しの記録、 すなわちアナ 口グオーディォ信号の複写を制限するようなことができなくなり、 オーディオ著作物の著作者利益を十分に保護することができなくな つてしまう。
また、 アナログウォー夕一マークは、 アナログ信号の形態で検出 されるようにデジタルオーディオ信号に埋め込まれるもので、 ファ ィルフォーマツ 卜の変換などを行った後であっても、 デジ夕ルオー ディォ信号をアナログオーディオ信号に復調することによりウォー 夕—マークを再び読み取ることができる。 ところで、 楽曲などのオーディオ著作物を通信ネッ トワークを介 してユーザに配信する技術が提案されている。 この配信技術として デジタルオーディオ信号をデ一夕圧縮したデ一夕フォーマッ トで伝 送し、 記録を行うようにした電子音楽配信 (Electric Music Dis tribution、 E M D ) がある。 E M Dにより配信されるデ一夕圧縮さ れたデジタルオーディォ信号に埋め込まれたアナログウォー夕一マ —クは、 デ一夕圧縮されたデジ夕ルオーディォ信号を P C M信号や アナ口グ信号に復調しないと読み出しあるいは書き込むことができ ない。 そのため、 ユーザが、 E M Dにより配信されたアナログゥォ 一夕一マークが重畳されたオーディオ信号を記録するためには、 p
C M信号などに復調する必要がある。 圧縮されたデジ夕ルオーディ ォ信 を P C M信号などに復調するとデ一夕サイズが大きくなり、 記録媒体に効率よく記録することができなくなってしまう。 また、 ォ一ディォ信号の配信側においても、 アナログウォー夕一マークの 書き換えを行うには、 一旦デ一夕圧縮したオーディオ信号を P C M 信号などに復調する必要があり、 容易にアナログゥォ一夕一マーク を書き換えることができない。
アナログウォー夕一マークをオーディォ信号に埋め込む方法とし て、 スペク トラム拡散方式や位相変移変調 (P S K ) 方式が提案さ れている。 これらスペク トラム拡散方式や P S K方式は、 オーディ ォ信号を再生したとき聴感上のマスキング効果を利用して付加情報 をオーディオ信号に埋め込む方式であるが、 十分にマスキング効果 を得ることができず、 再生音響の音質の劣化を招くことなく付加情 報をオーディオ信号に埋め込むことが困難である。
発明の開示
本発明は、 従来提案されているオーディオ信号に付加情報を埋め 込む技術の問題点を解決することができる新規な付加情報埋め込み 方法及びその装置並びに付加情報の復調方法及びその復調装置を提 供することを目的とする。 また、 本発明は、 再生音響の音質の劣化を招くことなくオーディ ォ信号に付加情報を埋め込むことを可能とする付加情報埋め込み方 法及びその装置を提供することにあり、 さらに、 付加倩報が埋め込 まれたオーディオ信号を音質の劣化を招くことなく付加情報を復調 することができる付加愦報の復調方法及びその装置を提供すること を目的とする。
さらに、 本発明は、 オーディオ信号がデジタル信号からアナログ 信号に復調され、 あるいはデ一夕フォーマツ 卜の形式などが変更さ れた場合でも容易に損傷を受けることなく付加情報をオーディオ信 号に埋め込むことができる付加情報埋め込み方法及びその装置並び に付加情報の復調方法及びその復調装置を提供することを目的とす る。
さらにまた、 本発明は、 デ一夕圧縮されたオーディオ信号に容易 に付加情報を埋め込むことができる付加情報埋め込み方法及びその 装置を提供することにあり、 さらに、 この埋め込まれた付加情報を データ圧縮した状態で復調することができる付加情報の復調方法及 びその復調装置を提供することを目的とする。
上述のような目的を達成するために提案される本発明は、 オーデ ィォ信号に付加情報を埋め込む付加情報埋め込み方法において、 ォ 一ディォ信号を直交変換して直交変換係数を算出する直交変換工程 と、 直交変換係数を減衰及び周波数軸方向にシフ 卜して上記元の直 交変換係数に加算することにより上記付加情報を埋め込むシフ ト - 加算工程とを備える。
ここで、 直交変換工程は、 オーディオ信号を M D C T変換するこ とにより M D C T係数を算出し、 シフ ト ·加算工程は、 算出された M D C T係数を減衰及び周波数軸方向にシフ 卜して元の M D C T係 数に加算することにより付加情報を埋め込む。
本発明は、 更に、 シフ ト '加算工程により算出された信号に対し て疑似ランダム信号によるスクランブルをかける工程を有する。 ここで、 オーディオ信号に埋め込まれる付加情報は、 オーディオ 信号の転送を禁止する制限情報であり、 オーディオ信号の記録媒体 への記録を禁止する制限情報であり、 さらには、 オーディオ信号に 対応する著作物デ一夕である。
さらに、 本発明方法において、 シフ ト ·加算工程は、 周波数マス キング条件及びテンポラルマスキング条件を満たすように、 周波数 軸上でシフ 卜された直交変換係数を元の直交変換係数に加算する。 さらにまた、 シフ ト '加算工程は、 元の直交変換係数の値にシフ トされた直交変換係数が加算されたときの値が所定値以下にあると きに加算を行う。
さらにまた、 シフ ト ·加算工程は、 元の直交変換係数の値にシフ 卜された直交変換係数が加算されたときの値の極性に応じてシフ ト 及び加算を禁止する。
さらにまた、 シフ ト '加算工程は、 オーディオ信号が上限値から 下限値の範囲であるときシフ ト及び加算を行う。 ここで、 シフ ト . 加算工程は、 オーディオ信号が人の聴覚特性に基づいて設定される 上限値から下限値の範囲であるときシフ ト及び加算を行う。
さらにまた、 シフ ト '加算工程は、 所定の周波数帯域内の直交変 換係数のシフ ト及び加算を行う。
さらにまた、 シフ ト '加算工程は、 上記オーディオ信号の周波数 帯域を分割してそれぞれ分割した周波数帯域毎に行う。 ここでシフ ト ·加算工程は、 分割された隣接する周波数帯域のシフ ト方向を逆 にする。
さらにまた、 シフ ト '加算工程は、 周波数が増加する側に MD C T係数をずらして元の MD C T係数に加算する。 ここで、 シフ ト ' 加算工程では、 ]\ 0 ( 丁係数が2^[個 (Nは自然数) シフ トされる ことにより MDCT係数」 は ( (サンプリング周波数/ MD C T係 数のサンプル数) X 2 N) H z分周波数が増加する。 このシフ ト ' 加算工程は、 実質的にオーディオ信号の振幅に等しい。
また、 シフ ト '加算工程は、 MD C T係数を周波数が減少する側 シフ 卜して元の MD C T係数に加算する。 ここで、 シフ ト ·加算ェ 程は、 MDCT係数が 2N個 (Nは自然数) シフ トされることによ り、 MD CT係数は ( (サンプル周波数/ MD C T係数のサンプル 数) X 2N) Hz分周波数が減少する。
また、 本発明は、 オーディオ信号に付加情報を埋め込む付加情報 埋め込み装置において、 オーディオ信号を直交変換して直交変換係 数を算出する直交変換手段と、 直交変換係数を減衰及び周波数軸方 向にシフ トして元の直交変換係数に加算することにより付加情報を 埋め込むシフ ト ·加算手段とを備える。
ここで、 直交変換手段は、 オーディオ信号を MDCT変換するこ とにより MDCT係数を算出し、 シフ ト '加算手段は、 算出された MD C T係数を減衰及び周波数軸方向にシフ 卜して元の MD CT係 数に加算することにより付加情報を埋め込む。
本発明に係る付加情報埋め込み装置は、 更にシフ ト ·加算手段に より算出された信号に対して疑似ランダム信号によるスクランブル をかける手段を有する。 本発明は、 付加情報が埋め込まれたオーディォ信号を受信し付加 情報を復調する復調方法において、 減衰及び周波数軸方向にシフ ト して元の周波数軸上のオーディオ信号に加算することにより付加情 報が埋め込まれたオーディオ信号を受信する受信工程と、 受信され る信号の周波数軸上の所定間隔毎のオーディオ信 -の極性に基づい て付加情報を復調する復調工程とを有する。 ここで、 受信工程は、 オーディオ信号を直交変換して算出される直交変換係数を減衰して 周波数軸方向にシフ トして元の直交変換係数に加算することにより 付加情報が埋め込まれるオーディォ信号を受信する。 この受信工程 は、 オーディオ信号を M D C T変換して算出される M D C T係数を 減衰して周波数軸方向にシフ トし元の M D C T係数に加算すること により付加情報が埋め込まれたオーディオ信号を受信する。
さらに、 受信工程は、 振幅変調 (A M変調) により付加情報が埋 め込まれるオーディオ信号を受信し、 復調工程は、 受信される信号 の周波数軸上の所定間隔毎のオーディオ信号の極性に基づいて付加 情報を復調する。
さらにまた、 受信工程は、 F M変調により付加情報が埋め込まれ るオーディオ信号を受信し、 復調工程は、 受信される信号の周波数 軸上の所定間隔毎のオーディオ信号の極性に基づいて付加情報を復 調する。
さらにまた、 復調工程は、 受信される信号の所定周波数帯域内に おける周波数軸上の所定間隔毎のオーディオ信号の極性に基づいて 付加情報を復調する。
また、 本発明は、 付加情報が埋め込まれたオーディオ信号を受信 し付加情報を復調する復調装置において、 オーディオ信号を減衰及 び周波数軸方向にシフ 卜して元の周波数軸上のオーディォ信号に加 算することにより上記付加情報が埋め込まれる上記オーディオ信号 を受信する受信手段と、 受信される信号の所定間隔毎の周波数軸上 のオーディオ信号の極性に基づいて付加情報を復調する復調手段と を有する。 ここで用いられる受信手段は、 オーディオ信号を直交変 換して算出される直交変換係数を減衰して周波数軸方向にシフ ト し て元の直交変換係数に加算することにより付加情報が埋め込まれる 上記オーディオ信号を受信する。
また、 受信手段は、 オーディオ信号を M D C T変換して算出され る M D C T係数を減衰して周波数軸方向にシフ 卜し元の M D C T係 数に加算することにより付加情報が埋め込まれるオーディオ信号を 受信する。
さらに、 受信手段は、 A M変調により付加情報が埋め込まれるォ 一ディォ信号を受信し、 復調手段は、 受信される信号の所定間隔毎 の周波数軸上のオーディオ信号の極性に基づいて付加情報を復調す る。
さらに、 受信手段は、 F M変調により上記付加情報が埋め込まれ るオーディオ信号を受信し、 復調手段は、 受信される信号の所定間 隔毎の周波数軸上のオーディオ信号の極性に基づいて付加情報を復 調する。
さらにまた、 復調手段は、 受信される信号の所定周波数帯域内に おける所定間隔毎の周波数軸上のオーディオ信号の極性に基づいて 付加情報を復調する。
本発明の更に他の目的、 本発明によって得られる具体的な利点は、 以下に説明される実施例の説明から一層明らかにされるであろう。 図面の簡単な説明 図 1は、 オーディオ信号の周波数マスキングを説明するための図 である。
図 2 Aは、 サイン波としてオーディォ信号を M D C T変換した結 果を示すグラフであり、 図 2 Bは、 サイン波としてのオーディオ信 号を高速フーリエ変換した結果を示す図である。
図 3 A及び図 3 Bは、 M D C T係数を周波数軸方向にシフ 卜する 状態を示すグラフであり、 図 4 A及び図 4 Bは、 M D C T係数を周 波数軸方向にシフ 卜したときの周波数の変化を示すグラフである。 図 5 A及び図 5 Bは、 オーディオ信号に埋め込まれるウォー夕一 マークの周波数選択処理を示すグラフである。
図 6 Aは、 オーディオ信号がサイン波によって振幅変調された信 号の周波数領域での信号特性を示すグラフであり、 図 6 Bは、 元の オーディオ信号を示すグラフであり、 図 6 Cは、 図 6 Bに示すォー ディォ信号をサイン波で振幅変調した信号を示すグラフである。 図 7 Aは、 オーディオ信号がサイン波によって周波数変調された 信号の周波数領域での信号特性を示すグラフであり、 図 7 Bは、 元 のオーディオ信号を示すグラフであり、 図 7 Cは、 図 7 Bに示すォ 一ディォ信号をサイン波で周波数調した信号を示すグラフである。 図 8 Aは、 元のオーディオ信号の高域の周波数帯域側にウォー夕 一マークが埋め込まれる例を示すグラフであり、 図 8 Bは、 元のォ —ディォ信号の低域の周波数帯域側にウォー夕一マークが埋め込ま れる例を示すグラフである。 図 9は、 MD C T係数の算出方法を図解するグラフである。
図 10 Α及び図 1 0 Bは、 MD C T係数の置き換えを示すグラフ である。
図 1 1 Aは、 元オーディォ信号の MD C T係数を示すグラフであ り、 図 1 1 Bは、 元のオーディオ信号の MD C T係数に周波数軸方 向にシフ トされた MD CT係数を加算する様子を示すグラフであり、 図 1 1 Cは、 元のオーディオ信号の MD C T係数に周波数軸方向に シフ 卜された MD C T係数を加算したとき、 元々存在しない極性変 化が生じている様子を示すグラフである。
図 12 Aは、 MD C T係数のレベルに応じてウォー夕一マークが 埋め込まれる MD C T係数を選択する様子を示すグラフであり、 図 12 Bは、 図 12 Aにより選択された MD C T係数の周辺にウォー 夕一マークとして付加情報を埋め込む様子を示すグラフである。 図 13 Aは、 ウォーターマークの周波数帯域制限の例を示す第 1 のグラフであり、 図 13 Bは、 ウォーターマークの周波数帯域制限 の例を示す第 2のグラフである。
図 14は、 ウォー夕一マークを複数のレイヤ一にして多重の情報 を挿入する例を示すグラフである。
図 15 Aは、 複数の周波数帯域に分割する周波数帯域分割の第 1 の例を示すグラフであり、 図 1 5Bは、 複数の周波数帯域に分割す る周波数帯域分割の第 2の例を示すグラフである。
図 16は、 付加情報をウォー夕一マークとしてオーディオ信号に 重畳することにより変調し、 付加情報が重畳されたオーディオ信号 を復号するコ一デックを示すプロック図である。
図 17は、 オーディオ信号に付加情報を重畳する手順を示すフロ W
11
—チヤ一トである。
図 1 8は、 1秒おきにリセッ トして各区間の偏りを検出すること により、 オーディオ信号に埋め込まれたウォー夕一マークによる付 加情報を抽出する処理を示すグラフである。
図 1 9は、 MD C T係数の周波数軸方向のシフ ト量の相違による 曲線の比較から復調する動作を示す第 1のグラフであり、 図 20は、 MD C T係数の周波数軸方向のシフ ト量の相違による曲線の比較か ら復調する動作を示す第 2のグラフである。
図 2 1 Aは、 周波数帯域の分割の様子を示すグラフであり、 図 2 1 Bは、 図 2 1 Aで帯域分割したオーディオ信号が各々逆相で変調 されたエンベロープを示すグラフであり、 図 2 1 Cは、 ェンベロー プにより発生したエラーを示すグラフであり、 図 2 1 Dは、 各々逆 相で変調された帯域分割オーディオ信号の合成の様子を示すグラフ である。
図 22 Aは、 周波数分割をしないときの M DC T係数相互間の同 極性、 異極性の数を示すグラフであり、 図 22 Bは、 周波数分割を しないときのプロック毎及び合成された MD C T係数相互間の同極 性、 異極性の数を示すグラフである。
図 23 Aは、 周波数分割されたときの MDCT係数相互間の同極 性、 異極性の数を示すグラフであり、 図 22Bは、 周波数分割をし たときのプロック毎及び合成された MD C T係数相互間の同極性、 異極性の数を示すグラフである。
図 24は、 付加情報をウォー夕一マークとしてオーディオ信号に 重畳することにより変調し、 付加情報が重畳されたオーディオ信号 を復号するコーデックの他の例を示すプロック図である。 図 2 5は、 図 2 4に示すコーデックを用いてオーディオ信号に付 加情報を重畳する手順を示すフローチヤ一トである。
図 2 6は、 付加情報をウォー夕一マークとしてオーディオ信号に 重畳することにより変調し、 付加情報が重畳されたオーディオ信号 を復号するコーデックの更に他の例を示すプロック図である。 図 2 7は、 ヒルベルト変換によるウォー夕一マーク発生回路を示 すブロック図である。
図 2 8は、 ヒルベルト変換によるウォー夕一マーク発生回路を用 いて付加情報をウォー夕一マークとしてオーディォ信号に埋め込む ブロック図である。
発明を実施するための最良の形態 以下、 本発明に係る付加情報埋め込み方法及びその装置並びに付 加情報の復調方法及びその復調装置を図面を参照して説明する。 本発明の説明に先立って音のマスキング効果について説明する。 マスキング効果は、 ある周波数で所定の音圧レベル以上の音である マスカ一に対し、 一定の範囲内で周波数がずれた音圧レベル以下の 音に対し人の聴感は反応しない状態をいう。 ある周波数で所定の音 圧レベル以上の音 M sがあるとき、 図 1に示す一定の周波数領域 B w内にあってはマスキングカーブ 1で示す音圧レベル以下の音 WM は、 人の聴感は反応しない。 例えば、 1 k H z以下の周波数帯域に ある音 A sにあっては、 そオーディォ信号を中心にして 1 0 0 H z の範囲のクリティカルバン ド幅 B wの範囲にあってマスキングカー プ 1に示す音圧レベル以下の音 W Mは、 人の聴感は反応しない。 ク リティカルバン ド幅 B wは、 周波数依存性があり、 図 1に示すよう に、 1 k H z以上では徐々に周波数帯域幅が広くなる。
また、 マスキング効果には、 テンポラルマスキング効果と称され るものがある。 このテンポラルマスキング効果は、 時間軸方向のマ スキングカーブ 1で示す音圧レベル以下にあるマスクされるマスキ —である音 W Mであっても、 ある周波数で所定の音圧レベル以上の マスカ一として機能する音 A sに対して時間軸方向にずれがあると 人によっては聞こえてしまう。 例えば、 マスキーとされる音 W Mが、 マスカ一である音 A sに対し時間軸方向おいて前方に約数ミ リ秒ぁ るいは後方に約数十ミ リ秒ずれていると人によっては聞こえてしま o。
そこで、 オーディオ信号をマスカ一として付加情報をマスキーと して埋め込むには、 上述したようなマスキング効果を考慮し、 マス 力一となるオーディオ信号に対しマスキングカーブで示した音圧レ ベル以下の範囲内で付加情報を付加する必要がある。 また、 付加情 報は、 テンポラルマスキング効果を考慮して、 マスカ一となるォ一 ディォ信号に対し時間軸方向に大きくずれていないように必要があ る o
次に、 本発明において取り扱われるオーディオ信号を説明すると、 オーディオ信号は、 種々の周波数のサイン波を重畳したものがある。 このサイン波を高速フーリエ変換 (F F T ) すると、 図 2 Aに示す ように、 ある周波数に 1つのスペク トル (高速フーリエ変換係数) が生じる。 一方、 サイン波を M D C T (変形離散コサイン変換) 変 換すると、 図 2 Bに示すように、 複数の周波数に両極性の複数の M D C T係数が生じる。 図 2 Bに示すように、 中央の 4本の M D C T 係数が全体の 90 %程度を占める。 なお、 図 2 A及び図 2 Bにおい て、 縦軸はゲイン (又はレベル) を示す。
サイン波を M D C T変換して得られる M D C T係数には、 次のよ うな性質がある。 すなわち、 MD CT係数は、 MDCT係数の全体 を周波数軸方向に偶数個シフ トして逆 MD C T ( I MD C T) 変換 すると、 MD C Tと逆 MD C Tとの性質により、 その結果は P CM 信号上で周波数シフ トした信号になる。 例えば、 1 kH zのオーデ ィォ信号を 44. 1 k H zの周波数でサンプリングし、 図 3 Aに示 すように、 1024個のサンプル値を MD C T変換し、 得られる M D CT係数を、 図 3 Bに示すように、 周波数軸上で 2個分右にシフ トした後逆 MD CT変換すると、 図 4Aに示す 1 kH zのオーディ ォ信号は、 図 4Bに示すように、 43 H zだけ周波数を高く したも のとなる。 同様に、 得られる MD C T係数を周波数軸上で、 図 4B に示すように、 4個分右にシフ トした後、 逆 MDCT変換すると、 図 3 Bに示すように、 86 H zだけ周波数を高く したものとなる。 したがって、 上述したよう、 MD C T係数の全体を周波数軸方向に 2個分右にシフ トすると、 図 4Aに示す l kH zのオーディォ信号 をシフ トした図 4 Bに示す 1◦ 43 H zの信号が生成され、 4個分 シフ トすると、 図 4Bに示す 1086H zの信号が生成される。 そして、 一般のオーディオ信号を 44. 1 kHzの周波数でサン プリ ングし、 1024個のサンプル値を MD C T変換し、 図 5 Aに 示すように、 得られる MD C T係数から所定数の MD C T係数を選 択し、 この選択された MD C T係数を逆 MD C T変換することによ り、 周波数制限が加えれた変調結果を得ることができる。 これによ り、 オーディオ信号の周波数全体ではなく、 例えば、 図 5 Bに示す ように、 1 · 5 k H z〜 5 k H z帯のみの信号に付加情報をウォー 夕一マーク W Mとして埋め込むことができる。
また、 オーディオ信 ¾·に付加情報をウォー夕一マーク W Mとして 埋め込む方式として、 オーディオ信号そのものから付加倩報を直接 生成するものであって、 すなわち、 オーディオ信 に含まれる一定 周波数帯域波の成分を付加情報とし、 この付加情' を図 1に示すマ スキング効果が得られる範囲内にウォー夕一マーク W Mとして埋め 込む方式がある。
この方式の一つとして A M変調方式がある。 この A M変調方式は、 図 6 A、 図 6 B、 図 6 Cに示すような処理を行うものである。 すな わち、 図 6 Cに示すように、 付加情報が埋め込まれる元のオーディ ォ信号中の特定周波数の信号 (サイン波) のエンベロープを、 図 6 Bで示すサイン波で振幅変調すると、 図 6 Aに示すように、 元のォ 一ディォ信号の両側に、 サイ ドバン ド信号 S Bが現れ、 このサイ ド バン ド信号 S Bを図 1に示すマスキングカーブ 1の範囲内となるよ うにする。 そして、 このサイ ドバンド信号 S Bを利用して、 付加情 報をウォー夕一マークとしてオーディオ信号に埋め込むことができ る。
さらに、 他の方式として、 F M変調方式がある。 この F M変調方 式は、 図 7 A、 図 7 B、 図 7 Cに示すような処理を行うものである。 すなわち、 図 7 Cに示すように、 付加情報が埋め込まれるオーディ ォ信号中の特定周波数の信号 (サイン波) を、 図 7 Bに示すサイン 波で周波数変調すると、 図 7 Aに示すように、 元のオーディオ信号 の両側にサイ ドバン ド信号 S Bが得られ、 このサイ ドバン ド信号 S B、 図 1に示すマスキングカーブ 1の範囲内となるようにする。 そ して、 このサイ ドバン ド信号 S Bを利用して、 付加情報をウォー夕 —マークとしてオーディオ信号に埋め込むことができる。
さらに、 オーディオ信号に付加情報をウォー夕一マークとして埋 め込む場合、 図 8 Aに示すように、 付加情報が埋め込まれるオーデ ィォ信号中の特定周波数の信号の高域の周波数帯域、 又は図 8 Bに 示すように、 特定周波数の信号の低域の周波数帯域の一方にのみ付 加情報をウォー夕一マーク WMとして埋め込むようにしてもよい。 これら図 8 A及び図 8 Bに示す場合のいずれにおいても、 ゥォ一夕 —マーク WMは、 図 1に示すように、 特定周波数のオーディオ信号 のマスキングカーブ 1の範囲内となるようにゲインが減衰されて埋 め込まれる。
次に、 上述したように、 オーディオ信号を MD C T変換して復号 される MD C T係数を減衰させるとともに、 周波数軸方向へシフ 卜 し、 オーディォ信号のマスキングカーブ 1の範囲にウォー夕一マ一 ク WMとして埋め込まれた付加情報を復調する方法を説明する。 ところで、 オーディォ信号を MD C T変換して得られる MD C T 係数を復調する場合、 変調時における MD C T変換の単位である 1 0 2 4個のサンプルと、 復調時における逆 MD C T変換の単位であ る 1 0 24個の変換係数がずれると、 正しく復調することができな い。 したがって、 付加情報を正しく復調するとき、 図 9に示すよう に、 変換係数を一つずつ位相をずらした 1 024回の逆 MD C T変 換を行う必要がある。 このような多数回の逆 MD C T変換を行うこ とは処理時間や演算速度を考慮すると非現実的であり、 回路規模も 大きくなりすぎる。
オーディオ信号を MD C T変換して得られる MD C T係数を周波 数軸方向へシフ 卜してオーディォ信号に埋め込まれた付加情報は、 元のオーディオ信号と相関関係がある。 そこで、 この付加情報の性 質を利用して、 オーディオ信号に埋め込まれた付加情報の復調を行 う。 この復調では、 オーディオ信号を MD C T変換して得られる元 の MD C T係数に周波数軸方向にシフ ト した MD C T係数を加算す ることにより簡単に付加情報を復調することができる。
具体的には、 オーディオ信号を MD C T変換して得られる図 1 0 Aに示す MD C T係数を周波数軸方向に 4つ分シフ ト し、 元の MD C T係数に加算すると、 図 1 0 Bに示すように、 元の M D C T係数 係数の極性と加算された MD C T係数の極性は同相になる確率が高 くなる。 すなわち、 図 1 0 Bに示すように、 周波数軸方向に加算さ れた MD C T係数は、 元の MD C T係数と同相となるものが増加し、 逆相となるものが減少する。 そこで、 周波軸方向に 4つ分シフ トさ れ、 MD C T係数が加算された図 1 0 Bに示す MD C T係数の極性 を同相又は逆相で計数して統計処理することにより、 シフ トされた MD C T係数が同相として加算されたか逆相として加算されたかを 検出することで、 変調時における MD C T変換の単位である 1 02 4個のサンプルと、 復調時における逆 MD C T変換の単位である 1 02 4個の変換係数がずれたとしても、 多数回の逆 MD C T変換を 行うことなく、 簡単に変調されている付加情報を復調することがで きる。
ここでは、 MD C T係数の極性が同相になる確率を高くするため、 MD C T係数を周波数軸方向に 4つ分シフ 卜しているが、 これに限 らず、 2 N個 (Nは自然数) ) 分シフ トするようにしてよい。
ところで、 付加情報を復調する際、 オーディオ信号を MD C T変 換して復号される元の MD C T係数に加算又は減算される周波数軸 方向にシフ 卜された MD C T係数のうち、 極性の増減に寄与しない ものがある。 すなわち、 周波数軸方向にシフ トされた MD C T係数 のうち、 元の MD C T係数に加算又は減算されることにより極性が 変更されないものがある。
すなわち、 オーディォ信号を MD C T変換して られる図 1 1 A に示す元の MD C T係数に周波数軸方向に例えば 4っシフ トされた MD CT係数を加算する。 このとき、 加算される MD C T係数は、 図 1 1 Bに示すように、 ゲインを一定レベル、 例えば 30 d B程度 小さ く して元の MD C T係数に加算される。 この加算された結果は、 図 1 1 Cに示すようになる。 このように、 元の MDC T係数に対し 30 d Bゲインを低下させた MD C T係数を加算した場合であって も、 元の MD C T係数の極性の反転に寄与しないばかりか、 所定周 波数のオーディオ信号によるマスキングレベルを越えてしまいゥォ —夕—マークとして機能しなくなる MD C T係数があり、 再生音響 の音質を劣化させてしまうおそれがある。
このような問題点を解消するため、 元の MD CT係数のレベルよ り大きくかつ逆相の MD C T係数のみを加算することが考えられる。 しかし、 このような処理を完全に行ったとしても、 MDCT変換さ れたオーディオ信号をアナログ信号に変換し、 異なるサンプル値の プロックで再び MD C T変換を行ったとき、 オーディオ信号に埋め 込まれた付加情報を復調することができなくなるおそれがある。 す なわち、 アナログ信号に変換されたオーディォ信号を再度 MD C T 変換して得られる MD C T係数に、 周波数軸方向にシフ 卜した MD C T係数を上述したのと同様の処理を行って加算したとき、 付加情 報が失われるおそれがあるためである。
そこで、 オーディオ信号に埋め込まれた付加情報が損傷されてし まうことを防止しながら、 復調されたオーディオ信号の音質の劣化 を防止するために、 付加情報が埋め込まれるオーディオ信号を M D C T変換して得られる M D C T係数のうち、 ゲインが一定レベル以 下の M D C T係数のみを付加情報の埋め込みに用いることにする。 所定の周波数の音に対し、 周波数がずれたある音圧レベル以上の音 は聴感上のマスキング効果を得ることができない。 このような音の 性質から、 図 1 2 Aに示すように、 人の聴感上の観点から、 付加情 報に用いる M D C T係数のゲイン及び周波数に閾値 S ,を設け、 この 閾値 S (以下の範囲にある M D C T係数のみを付加情報の埋め込みに 用いる。 ここで選択された M D C T係数は、 周波数軸方向に 4つず らし、 ゲインを低下させて元の M D C T係数に加算することにより、 図 1 2 Bに示すように、 元の M D C T係数の両側に付加倩報がゥォ —夕一マーク W Mとして埋め込まれる。 このとき、 図 1 2 Bに示す ように、 所定周波数の元の M D C T係数に対し所定周波数離れた位 置に、 一定レベル以上の付加情報が埋め込まれることを防止でき、 聴感上雑音成分として再生される音の発生を防止できる。
また、 オーディオ信号に付加情報をウォー夕一マーク W Mとして 埋め込むとき、 所定周波数の M D C T係数に対し常に所定周波数離 れた位置に付加情報のための M D C T係数を埋め込むと、 オーディ ォ信号を再生したとき、 図 1を用いて説明したように、 マスキング されることなく聴感上雑音として聴取されるものがある。 マスキン グ効果が得られる周波数帯域は、 周波数により変化するので、 付加 情報が埋め込まれるオーディオ信号の周波数に応じて、 付加情報を ウォー夕一マーク W Mとして埋め込む周波数距離 H rを可変させる, 例えば、 1 k H z以下のオーディォ信号に付加情報をウォー夕一マ ーク W Mとして埋め込むときには、 図 1 3 Aに示すように、 4 3 H zの周波数距離 H r内で付加情報のための M D C T係数が埋め込ま れるように元の M D C T係数を周波数軸上でシフ トさせる。 また、 2 k H z以上のォ一ディォ信号に付加情報をウォー夕一マーク WM として埋め込むときには、 図 1 3 Aに示すように、 8 6 H zの周波 数距離 H r内で付加情報を生成する M D C T係数が埋め込まれるよ うに元の M D C T係数を周波数軸上をシフ 卜させる。
さらに、 オーディォ信号に付加情報をウォー夕一マーク W Mとし て埋め込むとき、 2 k H z以上のオーディオ信号に対しては、 付加 情報をウォー夕一マーク W Mとして埋め込める周波数距離 H rを大 きくすることができる。 そこで、 この周波数距離 H r内に、 図 1 3 Bに示すように、 付加情報のための M D C T係数を多重化して埋め 込むようにしてもよい。
上述したように、 付加情報がウォー夕一マーク WMとして埋め込 まれたオーディオ信号にビデオ信号に対する圧縮量子化による信号 圧縮処理を施すと破壊されてしまうおそれがある。 これは、 信号圧 縮の過程で量子化ステップ数の制限により、 オーディオ信号の周波 数帯域内の各周波数成分の振幅がまるめこまれて小さくなるものも あるためである。 このような問題点を解消するためには、 オーディ ォ信号に付加される付加情報のレベルを一定以上確保すればよい。 例えば、 付加情報が埋め込まれる所定周波数のオーディオ信号のレ ベルに対し、 付加情報のレベルを一 6〜一 3 0 d B程度とすれば確 保すれば、 付加情報が埋め込まれたオーディォ信号を量子化などに より信号圧縮しても、 付加情報の耐性 (torelance) を保証し、 破壊 を防止することができる。 信号圧縮したときの付加情報の破壊を防 止するためには、 元の MD C T係数に対し— 30 d B以上減衰され た MD C T係数を付加情報のために用いないようにしてもよい。 オーディォ信号を MD C T変換して得られる MD C T係数を周波 数軸方向へシフ 卜し、 付加情報をゥォ一夕一マーク WMとして埋め 込むとき、 埋め込まれる付加情報を、 図 14に示すように、 複数の レイヤー L - · · LNに多重化して埋め込む場合、 各レイヤ一 の周波数は排他的に設定すればよい。
また、 コーデックによっては、 図 1 5 A及び図 1 5 Bに示すよう に、 データフィル夕によってオーディオ信号の周波数帯域を所定周 波数帯域に分割してから、 オーディオ信号を MD C T変換をするよ うにしてもよい。 このような周波数分割された領域の成分を直接レ ィャ一として用いるようにしてもよい。 ここで、 図 15Aは、 適応 型オーディォ信号圧縮技術 ( A T R A C 2 ; Adaptive Transform Acoustic Coding, ソニー (株) の商標) に適用した例で、 5 kH zごとに周波数分割した例を示す。 図 1 5 Bは、 MDCTレイヤ一 3で 32に分割されたサブバン ドフィル夕からの出力が MD C T変 換されることを利用した例を示す。
上述のように、 オーディオ信号を MD C T変換して得られる MD C T係数を周波数軸方向へシフ トしてオーディオ信号に付加情報を ウォー夕一マーク WMとして埋め込む方法においては、 元の MD C T係数と周波数軸方向に所定個数シフ 卜されて加算される MD C T 係数と極性の一致、 不一致によって、 付加情報を生成ための MD C T係数のレベルが決まるので、 MD C T係数のレベルが高いことが 付加情報の変調強度に直接影響を与えない。 そして、 レベルの低い
MD C T係数もレベルの高い MD C T係数も同一のデータ量を有す るので、 再生されるオーディオ信号の音質を優先する場合、 付加情 報が付加されるオーディォ信号によるマスキング効果及び信号圧縮 されたときの付加情報の耐性を考慮して、 付加情報を生成する M D C T係数のレベルは、 できるだけ小さいものを用いることが望まし い。
そして、 オーディォ信号に付加される付加情報のレベルをオーデ ィォ信号のレベルに対して自動的に設定するようにした場合には、 オーディオ信号のレベルの加減を制限することにより、 付加情報の 最大振幅を設定することができる。 また、 オーディオ信号に付加さ れる付加情報のレベルの下限を設定することにより、 信号圧縮ゃデ ジ夕ル信号からアナ口グ信号への変換の繰り返しなどによって損傷 されてしまうような付加情報を生成しないようにすることもできる ( 付加情報が付加されるオーディオ信号のレベルを自動的に設定す るためには、 各周波数帯域毎、 あるいは上述したフィル夕 · バンク 毎の出力を正規化する方法が用いられる。 ATRAC 2、 ATRA C 3では、 ポリフエ一ズ ' クヮ ドラチヤ一フィル夕 (P QF) の後 段に AG C回路が設けられているので、 オーディオ信号を MD C T 変換する前にレベル調整が行われるので、 ATRAC 2、 ATRA C 3は、 本発明の復調方法にも用いることができる。
また、 オーディオ信号のレベルを自動的に設定する方法として、 オーディオ信号に付加される付加情報を生成するのに有効な MD C T係数の数を計数し、 平均的に一定の数の MD C T係数が加算され るように付加情報を生成する MD C T係数のレベルを自動的に制限 するようにしてもよい。
次に、 オーディオ信号に付加情報をウォーターマークとして埋め 込む付加情報埋め込み装置及びオーディオ信号に埋め込まれた付加 情報を復調する復調装置について説明する。
本発明においては、 付加情報埋め込み装置と付加情報の復調装置 は、 図 16に示すように、 コ一デック 1 0として一体に構成されて いる。 このコ一デック 1 0は、 オーディオ信号入力端子 1 0 aを介 して入力されるオーディォ信号をデジタル信号に変換する A/D変 換器 1 2と、 A/D変換器によりデジタル信号に変換されたオーデ ィォデ一夕を MD CT (変形離散コサイン変換) 変換する MDCT 変換部 14を備える。 この MD C T変換部 14は、 一次元のオーデ ィォデ一夕である P CM信号を一次元の直交変換を行うものであつ て、 P CM信号を一次元の MD C T変換して MD C T係数を出力す さらに、 MD C T変換部 14により算出された MD C T係数が入 力されるとともに付加情報入力端子 10 bを介して入力される付加 情報が入力されるシフ ト ·加算部 1 6を備える。 このシフ ト .加算 部 1 6は、 MDCT変換部14から供給される MDCT係数を周波 数軸方向にシフ 卜するとともに、 付加情報に基づいて元の MD CT 係数の極性変換を行い、 MD C T係数に付加情報を埋め込む。
シフ ト '加算部 1 6から出力される信号は、 逆 MD CT変換部 1 8に入力される。 逆 MD CT変換部 18は、 シフ ト '加算部 16か ら出力される信号を MD C T変換部 14とは逆変形離散コサイン変 換する。
逆 MD C T変換部 18からデジタル信号として出力される付加情 報が埋め込まれたデジタルオーディォデータは、 D /A変換器 2 0 によりアナログのオーディオ信号に変換されて出力端子 2 1を介し て出力される。 出力端子 2 1から出力されるオーディオ信号は、 付 加情報が埋め込まれた信号である。
このコーデック 1 0は、 付加情報の復調装置としても用いられる ものであって、 M D C T変換部 1 4から出力される M D C T係数か らオーディオ信号に埋め込まれた付加情報を復調する付加情報復調 部 2 2を備えている。 付加情報復調部 2 2により復調された付加情 報は、 出力端子 2 1を介して装置外部に出力される。
ここで、 オーディォ信号にウォー夕一マークとして埋め込まれる 付加情報には、 オーディオ信号の転送を禁止する制限情報や、 ォー ディォ信号の他の記録媒体への記録を禁止する制限情報があり、 さ らには、 オーディオ信号に対応する著作物データである。 この著作 物データとしては、 オーディオ信号に対応する楽曲などの著作権を 管理するデータであり、 著作権者コード、 著作権管理番号などがあ る。
図 1 6に示す付加情報の埋め込み機能を備えたコーデック 1 0を 用いて、 オーディオ信号に付加情報を埋め込む手順を図 1 7に示す フローチャートを参照しながら説明する。 ステップ S 1でオーディオ信号入力端子 1 0 aからオーディオ信 号が入力されると、 このオーディオ信号は、 A/ D変換器 1 2に入 力され、 ステップ S 2においてデジタル信号に変換される。 デジ夕 ル信号に変換されたオーディォ信号は、 M D C T変換部 1 4に入力 される。 M D C T変換部 1 4に入力されたオーディオ信号は、 ステ ップ S 3において、 M D C T変換され M D C T係数が算出される。 MD C T変換部 14で算出された MD C T係数は、 シフ ト '加算部 1 6に入力される。
ステップ S 4において、 シフ ト '加算部 1 6に付加情報が入力さ れたか否か判断される。 すなわち、 付加情報の入力が 「1」 を示す とき、 シフ ト '加算部 1 6は、 ステップ S 5において、 MD C Τ変 換部 14から入力された MD C Τ係数を周波数軸方向に例えば 2個 分あるいは 4個分シフ トし、 元の MD C Τ係数に加算して付加情報 をウォー夕一マーク WMとして埋め込む。 そして、 付加情報の入力 がないとき、 すなわち、 付加情報が 「0」 であるときには、 シフ ト •加算部 16は、 上述のシフ ト ·加算を行うことなく元の MD C Τ 係数を出力する。 このように、 シフ ト ·加算部 16は、 付加情報が 「 1」 のとき、 元の MD C Τ係数に周波数軸方向にシフ 卜した MD CT係数を加算し、 付加情報が 「0」 であるとき、 MDCT係数の シフ ト '加算を行わないことにより、 この付加情報埋め込み装置か ら出力されるオーディオ信号を受信しあるいは供給される機器側に おいて、 付加情報の 「0」 又は 「 1」 を検出することができる。 こ のとき、 オーディオ信号を 44. 1 kH ζの周波数でサンプリング し、 1024個のサンプル値を 1ブロックとして M D C T変換して MD CT係数を得るようにした場合には、 1024サンプル毎に付 加情報を 1ビッ トずつ埋め込むことができる。 なお、 サンプル数は、 1024に限定されるものではない。
シフ ト '加算部 1 6により所定の処理が施された MD C T係数は、 ステップ S 6で MD C T変換とは逆の逆変形離散コサイン変換が施 され、 その後ステップ S 7において、 アナログのオーディオ信号に 変換されて、 ステップ S 8において、 付加情報が埋め込まれたアナ 口グのオーディオ信号として出力される。
次に、 図 1 6に示すコ一デック 1 0を用いて、 オーディォ信号に ウォー夕一マークとして埋め込まれた付加情報を復調する場合を説 明する。
ところで、 シフ ト '加算部 1 6において、 M D C T係数を周波数 軸方向に例えば 2個分あるいは 4個分シフ トし、 元の M D C T係数 に加算して付加情報をウォー夕一マーク W Mとして埋め込むような 場合、 ウォー夕一マークとして埋め込まれた付加情報成分によって 任意の M D C T係数の左右の 4個目の係数の極性が確率的に多く反 転され、 極性の増減が行われている。 そこで、 M D C T係数の左右 の 4個目の係数を同極性、 異極性でそれぞれ累積させていく と、 所 定時間の区間、 例えば 1秒間の区間で明らか極性の偏りを検出する ことができる。
そこで、 M D C T係数の極性の偏りを用いて、 オーディオ信号に 埋め込まれた付加情報を検出するには、 図 1 8に示すように、 1秒 おきに計数をリセッ トし、 各区間の極性の偏りを調べることにより、 ウォーターマークとして埋め込まれた付加情報の検出が可能となる。 このとき、 極性が正方向に偏りを持つ場合と、 負方向に偏りを持つ 場合の組み合わせにより、 各区間のデ一夕を図 1 8に示すように、 「 1」 、 「 1」 、 「0」 のデ一夕列を伝送し、 検出することができ る。
また、 M D C T係数を周波数軸方向に例えば 4個分シフ トし、 元 の M D C T係数に加算して付加情報をウォー夕一マーク WMとして 埋め込むような場合、 単純に同極性の M D C T係数が増加する信号 を復調する際、 アナログ信号に変換してから再び M D C T変換を行 うとき、 サンプル値の位相にずれが生ずると、 正負の極性の組み合 わせによる付加情報の読み出しができなくなる場合がある。
ところで、 例えば M D C T係数を周波数軸方向に例えば 4個分シ フ ト し、 元の M D C T係数に加算して付加情報をウォー夕一マーク W Mとして埋め込んだような場合、 サンプル値の位相がずれると、 極性が一致する数の変化がコサイン波の形で増減する。 また、 M D C T係数を周波数軸方向に例えば 5個分シフ トし、 元の M D C T係 数に加算して付加情報をウォー夕一マーク W Mとして埋め込んだよ うな場合、 サンプル値の位相がずれると、 極性が一致する数の変化 がサイン波の形で増減する。 したがって、 1 0 2 4個のサンプル値 を 1 プロックとして M D C T変換した場合、 M D C T係数の位相が 1 2 8サンプル値分ずれると、 4個分周波数軸方向にシフ 卜した M D C T係数の同極性の係数の総計がゼロとなっても、 5個分周波数 軸方向にシフ トした M D C T係数の同極性の係数は十分な数を得る ことができるので、 ゥォ一夕一マークとして埋め込まれた付加情報 を復調することができる。
この方法は、 コビーコン トロールによる方法より容易な方法でこ れを検出したい場合、 あるいは M D C T変換の位相が制御できない 応用において有益な手法となる。
また、 正しい位相に合わせる同期処理においても、 M D C T係数 の 4の値と 5の値を調べることで大まかな位置を特定できるから、 1 0 2 4個のサンプル値全ての位相を調べなく とも正しい位相に同 期できる。 あるいは、 1 0 2 4個のサンプル値の最大のゲイン (利 得) が得られる位相を求めてもよい。
図 2 0は、 M D C T係数を周波数軸方向に 8個分シフ 卜し、 元の MD C T係数に加算して付加情報をウォー夕一マーク WMとして埋 め込んだような場合と、 MD C T係数を周波数軸方向に 9個分シフ トし、 元の MD C T係数に加算を行って付加情報をウォー夕一マ一 ク WMとして埋め込んだ場合を示す。 ここでは、 64サンプル値毎 に、 距離が 8と 9とに入れ代わつている。 また、 MD C T係数を周 波数軸方向に 8個分シフ トし、 元の MD C T係数に加算して付加情 報をウォー夕一マーク WMとして埋め込んだような場合と、 MD C T係数を周波数軸方向に 9個分シフ トし、 元の MD C T係数に加算 を行って付加情報をウォーターマーク W Mとして埋め込んだような 場合を組み合わせると正しい位相を求めるための粗調整が更に容易 となる。
この方式を多層のレイヤ一を持つようにする方法を次に述べる。 付加情報復調部 2 2において、 元の MD C T係数の周波数の高い 方向で付加情報となる MD C T係数を加算又は減算するようにする。 あるいは、 付加情報復調部 2 2において、 元の MD C T係数の周波 数の低い方向で付加情報となる MD C T係数を加算又は減算するよ うにする。 これら方法において、 元の MD C T係数のレベルと加減 算される MD C T係数のレベルの関係を設定することにより、 完全 に独立した 2種類のレイヤ一として利用できる。
また、 MD C T係数は、 周波数帯域に対応しているので、 前述し た図 5に示したように、 MD C T係数の制限により、 周波数帯域を 制限することができる。
また、 オーディオ信号の成分には、 MD C T係数を周波数軸方向 にシフ トし、 元の MD C T係数に加算を行って付加情報を埋め込ん だ場合、 ここで得られる付加情報と同じ信号が存在することがあり、 このような場合に付加情報の誤検出の原因となる。
このような信号成分が発生する一番の原因は、 図 2 1 Bに示すよ うな元のオーディォ信号のエンベロープが変調しょうとする変化と 同相、 あるいは逆相の変調になっている。 オーディオ信号では、 こ の場合、 各周波数帯域で同相で変化することが多いから、 非常に強 い変調になり、 これを打ち消すような大きな信号を用いると、 音質 に問題を引き起こす。 そこで、 付加情報を元のオーディオ信号と区 別しやすくするために、 図 2 1 Aに示すように、 周波数帯域をプロ ヅク Aとプロヅク Bに分割して変調方向を互いに逆になるようにし ている。 ここでは、 1. 5 kH z〜5 kH zを 1. 5 kH z〜3 k H zと 3 kHz〜5 kH zに分割している。
この 2つの周波数帯域のプロック A, Bを同方向に変調すると、 図 2 1 Cに示すようになるが、 互いに逆方向に変調すると、 図 2 1 Dに示すように、 元のオーディオ信号に含まれていた変調成分は低 い帯域と高い帯域とで逆相のデ一夕として復調されるので、 データ は同じ利得のままで誤信号のみをキャンセルできる。
図 22 A及び図 22 Bは、 周波数分割をしない MD C T係数相互 間の同極性、 異極性の数を示すグラフであり、 図 23 A及び図 23 Bは、 周波数分割を行った場合の MD C T係数相互間の同極性、 異 極性の数を示すグラフである。 周波数分割をした場合、 オーディオ 信号で偶然起こるパターンを極力回避することにより、 デ一タレ一 ト及びエラ一レートを低下させることができることが分かる。
また、 周波数分割する際、 分割する周波数をオクターブに選択す ることはキャンセル効果を高めることにある。 その理由は、 音楽の 性質からくるものであり、 音程を含む成分がオクターブ上で反対に 働くことにより、 キャンセル方向が確率的に逆相を保つのに役立つ。 あるいは、 2つの周波数帯域のブロック A, Bに含まれる MD C T 係数の個数を同程度に選ぶことも有効である。
また、 周波数帯域を分割する方法としては、 前述した図 1 5に示 したように、 更に細かく分割して確率的にキャンセル方法を用いる ことも可能である。
また、 音声圧縮の中に応用する場合、 上述した周波数分割の方法 としては、 例えば A T R A C 2のポリフェ一ズ · クヮ ドラチヤーフ ィル夕 (PQ F) の分割特性を利用することができる。 あるいは、 M P E Gレイヤ一 3のサブバンドフィル夕を利用することもできる。 ここで、 MD C T係数を周波数軸方向にシフ トし、 元の MD C T 係数に加算を行ってウォー夕一マーク WMとして埋め込まれた付加 情報は、 アナログ信号や高速フーリエ変換されても分離することが できない非常に高い秘匿性を有する。 しかし、 MD C T変換を用い て攻撃されると、 比較的容易に攻撃できる。 このような問題点を解 消するため、 MD C T変換を用いたオーディオ信号に埋め込まれた 付加情報の検出は、 オーディオ信号に基づく元の MD CT係数とこ の元の MD C T係数に加算された周波数軸方向にシフ 卜された MD CT係数の距離、 すなわちシフ ト数を設定してその互いの極性を用 いて行っている。 ところで、 各時間、 付加情報を生成する MD C T 係数ごとに極性を疑似ランダム信号などで反転させた場合、 第三者 が MD C T変換を用いて調べてもその信号が付加情報によって変調 されているか否かも分からなくなる。
このときに用いる疑似ランダム信号は、 簡単な P N系列やゴール ド符号を用いることができ、 さらに、 複雑な D E Sや楕円喑号を用 いることができる。 あるいは、 単なる 1, 0の信号が反転を繰り返 す AC信号でもよい。
また、 疑似信号を、 例えばゴールド符号のように 2種類の暗号同 士から作り、 1つを固定して他方を各個人の端末ごとに変化させ、 合成された暗号を各端末単位で変化させることにより、 付加情報の 秘匿性を高めることができる。
次に、 オーディオ信号に付加情報をウォー夕—マークとして埋め 込む付加情報埋め込み装置及びオーディォ信号に埋め込まれた付加 情報を復調する復調装置の他の例について説明する。
ここに示す装置も、 付加情報埋め込み装置と付加情報の復調装置 は、 図 24に示すように、 コ一デヅク 3 0として一体に構成されて いる。 このコ一デック 30は、 オーディオ信号入力端子 3 0 aを介 して所定の音源から入力されるアナログ信号のオーディォ信号をデ ジ夕ル信号に変換する A/D変換器 3 2と、 A/D変換器 3 2によ りデジタル信号に変換されたオーディォデ一夕を MD C T (変形離 散コサイン変換) 変換する MD C T変換部 34を備える。 この MD C T変換部 34は、 P CM信号を MD C T変換して MD C T係数を 出力するものであって、 一次元のオーディオ信号に対して直交変換 を行う一次元の離散コサイン変換する。
さらに、 MD C T変換部 34により算出された M D C T係数が入 力されるとともに付加情報入力端子 3 0 bを介して入力される付加 情報が入力されるシフ ト '加算部 3 6を備える。 このシフ ト .加算 部 3 6は、 MD C T変換部 34から供給されるオーディオ信号を変 換して得られる MD C T係数を周波数軸方向にシフ 卜するとともに、 付加情報に基づいて元の MD C T係数の極性変換を行い、 MD C T 係数と付加情報を符号化する。
M D C T変換部 3 4により出力される信号は、 逆 M D C T変換部 3 8に入力される。 逆 M D C T変換部 3 8は、 M D C T演算部 3 4 から出力される信号を M D C T変換部 3 4とは逆の変形離散コサイ ン変換を行う。
逆 M D C T変換部 3 8からデジタル信号として出力される付加情 報が埋め込まれたデジタルオーディオデータは、 圧縮処理回路 4 0 により圧縮符号化され、 圧縮符号化信号として出力端子 3 1を介し て出力される。
このコ一デック 3 0も、 付加情報の復調装置としても用いられる ものであって、 M D C T変換部 3 4から出力される M D C T係数か らオーディオ信号に埋め込まれた付加情報を復調する付加情報復調 部 3 8を備えている。 付加情報復調部 3 8により復調された付加情 報は、 出力端子 3 1を介して装置外部に出力される。
ここで、 オーディオ信号にウォー夕一マークとして埋め込まれる 付加情報には、 オーディオ信号の転送を禁止する制限情報や、 ォー ディォ信号の他の記録媒体への記録を禁止する制限情報が用いられ、 さらには、 オーディオ信号に対応する著作物データである。 この著 作物デ一夕としては、 オーディオ信号に対応する楽曲などの著作権 を管理するデ一夕であり、 著作権者コード、 著作権管理番号などが 用いられる。
図 2 4に示すコーデック 3 0にあっては、 シフ ト '加算部 3 6と 付加情報復調部 3 8がー体のュニッ ト回路 3 5として構成されてい る。 シフ ト '加算部 3 6と付加情報復調部 3 5は、 一体のュニッ ト 回路 3 5と構成されることにより、 外部から不正な目的でアクセス することを制限している。 さらに、 1^0 ( 丁変換部34、 ユニッ ト 回路 3 5、 圧縮処理回路 40も一体の回路 3 3として構成すること により、 外部から不正な目的でアクセスされることを制限している。 ここで用いる一体の回路 3 3には、 ATRAC 2を実行する回路を 用いることができる。 このような構成を備えることにより、 コ一デ ック 30の秘匿性が向上され、 コ一デック 3 0での信号処理に外部 か不正にアクセスすることを困難としている。
図 24に示す付加情報の埋め込み機能を備えたコ一デック 30を 用いて、 オーディオ信号に付加情報を埋め込む手順を図 2 5に示す フローチャートを参照しながら説明する。
ステップ S 1 1でオーディオ信号入力端子 3 0 aからオーディオ 信号が入力されると、 このオーディオ信号は、 八/0変換器32に 入力され、 ステップ S 1 2においてデジタル信号に変換される。 デ ジ夕ル信号に変換されたオーディオ信号は、 MD C T変換部 34に 入力される。 MD C T変換部 34に入力されたオーディオ信号は、 ステツプ S 1 3において、 MD C T変換して MD C T係数が算出す る。 MD C T変換部 34で算出された MD C T係数は、 シフ ト ·カロ 算部 3 6に入力される。
ステップ S 1 4において、 シフ ト ·加算部 3 6に付加情報が入力 されたか否か判断される。 すなわち、 付加情報の入力が 「 1」 を示 すとき、 シフ ト '加算部 3 6は、 ステツプ S 1 5において、 MD C T変換部 34から入力された MD C T係数を周波数軸方向に例えば 2個分あるいは 4個分シフ 卜し、 元の MD C T係数に加算を行って 付加情報をウォー夕一マーク WMとして埋め込む。 そして、 付加情 報の入力がないとき、 すなわち、 付加情報が 「 0」 であるときには、 シフ ト '加算部 3 6は、 上述のシフ 卜 '加算を行うことなく元の M D C T係数を出力する。 このように、 シフ ト '加算部 3 6は、 付加 情報が 「 1」 のとき、 元の MD C T係数に周波数軸方向にシフ 卜 し た MD C T係数を加算し、 付加情報が 「 0」 であるとき、 MD C T 係数のシフ ト '加算を行わないことにより、 この付加情報埋め込み 装置から出力されるオーディオ信号を受信しあるいは供給される機 器側において、 付加情報の有無を検出することができる。 このとき、 オーディオ信号を 44 · 1 k H zの周波数でサンプリングし、 1 0 24サンプル値を 1ブロックとして MD C T変換して MD C T係数 を得るようにした場合には、 1 0 24毎に付加情報を 1ビッ トずつ 得ることができる。 なお、 サンプル値は、 1 024に限定されるも のではない。
シフ ト '加算部 3 6により所定の処理が施された MD C T係数は、 ステップ S 1 6で圧縮処理回路 40により、 例えば A T R A C 2の 圧縮方式で圧縮処理が施され、 ステツフ° 1 7において、 付加情報が埋め 込まれたデジタルのオーディォ信号として出力端子 3 1から出力さ れる。
上述した図 24に示すコーデック 3 0を用いて、 オーディォ信号 にウォー夕一マークとして埋め込まれた付加情報を復調する場合を 説明する。
コーデヅク 30を復調器として用いる場合には、 入力端子 30 a から入力されたアナログのオーディオ信号を D/A変換器 3 2によ りデジタル信号に変換する。 D/ A変換器 32によりデジタル信号 に変換されする。 MD C T変換部 34は、 A/D変換器 3 2から出 力されたデジタル信号に MD C T変換して MD C T係数を出力する。 この MD C T係数は、 付加情報復調部 3 8から出力された MD C T 係数から付加情報を復調し、 出力端子 3 1から出力する。
次に、 信号圧縮されたデジタルのオーディオ信号に付加情報をゥ ォ一夕—マークとして埋め込む付加情報埋め込み装置及び信号圧縮 されたデジタルのオーディオ信号に埋め込まれた付加情報を復調す る復調装置の他の例を図 26を参照して説明する。 この装置は、 例 えば、 通信ネッ トワークを介して配信されるデジタルのオーディオ 信号を受信して復調する場合に用いて有用となる。
図 2 6に示す装置も、 付加情報埋め込み装置及び付加情報の復調 装置をコ一デック 5 0として一体に構成したものである。 このコ一 デック 50は、 入力端子 5 0 aを介して入力される信号圧縮された デジタルのオーディォ信号を伸張するとともに、 伸張されたオーデ ィォデ一夕を MD C T (変形離散コサイ ン変換) 変換する伸張処理 部 5 2と、 伸張処理部 5 2により算出された MD C T係数が入力さ れるとともに付加情報入力端子 50 bを介して入力される付加情報 が入力されるシフ ト ·加算部 54を備える。 このシフ ト ·加算部 5 4は、 伸張処理部 5 2から供給されるオーディオデ一夕を MD C T 変換して得られる MD C T係数を周波数軸方向にシフ トするととも に、 付加情報入力端子 5 0 bから入力される付加情報に基づいて元 の MD C T係数の極性変換を行い、 MD C T係数と付加情報を符号 化する。
シフ ト '加算部 54より出力される信号は、 逆 MD C T変換部 5 8に入力される。 逆 MD C T変換部 5 8は、 シフ ト .加算部 54か ら出力されるデジタルデータを逆の変形離散コサイン変換を行う。 逆 MD C T変換部 5 8から出力される付加情報が埋め込まれたデ ジ夕ルオーディォデ一夕は、 A / D変換器 6 0によりアナログのォ —ディォ信号に変換されて出力端子 5 1から出力される。
このコーデック 5 0も、 付加情報の復調装置としても用いられる ものであって、 伸張処理部 5 2から出力される M D C T係数からォ 一ディォ信号に埋め込まれた付加情報を復調する付加情報復調部 5 6を備えている。 付加情報復調部 5 6により復調された付加情報は、 出力端子 6 1を介して装置外部に出力される。
ここで、 ォ一ディォ信号にウォー夕一マークとして埋め込まれる 付加情報には、 オーディオ信号の転送を禁止する制限情報や、 ォー ディォ信号の他の記録媒体への記録を禁止する制限情報が用いられ、 さらには、 オーディオ信号に対応する著作物データである。 この著 作物データとしては、 オーディオ信号に対応する楽曲などの著作権 を管理するデ一夕であり、 著作権者コード、 著作権管理番号などが 用いられる。
図 2 6に示すコ一デヅク 5 0にあっては、 シフ ト ·加算部 5 4と 付加情報復調部 5 6がー体のュニッ ト回路 5 3として構成されてい る。 シフ ト '加算部 5 4と付加情報復調部 5 6は、 一体のュニヅ ト 回路 5 3と構成されることにより、 外部から不正な目的でアクセス することを制限している。 さらに、 伸張処理部 5 2、 ユニッ ト回路 5 3、 逆 M D C T回路 5 8も一体の回路 5 1 として構成することに より、 外部から不正な目的でアクセスされることを制限している。 ところで、 オーディオ信号に付加情報をウォー夕一マークとして 埋め込む場合に、 前述した図 6を参照して説明したように、 図 6 B に示すアナログのオーディォ信号のエンベロープを、 図 6 Cに示す ように、 直接サイン波で振幅 (A M ) 変調すると、 図 6 Aに示すよ うに、 元のオーディオ信号の両側にサイ ドバン ド信号 S Bを形成す ることができる。 このサイ ドバン ド信号 S Bは、 元のオーディオ信 号に対しウォーターマークとして機能するので、 このサイ ドバン ド 信号 S Bを利用して付加情報を埋め込むことができる。
また、 オーディオ信号に付加情報をウォー夕一マークとして埋め 込む場合に、 前述した図 7を参照して説明したように、 図 7 Bに示 すアナログのオーディオ信号を、 図 7 Cに示すように、 所定周波数 のサイン波で周波数 (F M ) 変調すると、 図 7 Aに示すように、 元 のオーディオ信号の両側にサイ ドバンド信号 S Bを形成することが できる。 このサイ ドバンド信号 S Bは、 元のオーディオ信号に対し ゥォ一夕一マークとして機能するので、 このサイ ドバン ド信号 S B を利用して付加情報を埋め込むことができる。
そこで、 上述した A M変調、 F M変調によるサイ ドバン ド信号 S Bをヒルベルト変換により生成することができる。
このヒルベルト変換により、 オーディオ信号にサイ ドバン ドを生 成する例を図 2 7を参照して説明する。
このヒルベルト変換を用いてオーディオ信号にサイ ドバン ド信号 S Bを生成するするサイ ドバン ド生成回路 1 0 0は、 入力端子 1 0 1 aから入力されるデジタルのオーディォ信号である P C M信号を ヒルベルト変換するヒルベルト変換器 1 0 2と、 入力端子 1 0 1 b から入力される周波数、 利得、 位相などの制御信号から変調周波数 を発生させる変調周波数発生器 1 0 4と、 ヒルベルト変換器 1 0 2 の実数部出力と、 変調周波数発生器 1 0 4の実数部出力を乗算する 実数部乗算器 1 0 6と、 ヒルベルト変換器 1 0 2の虚数部出力と変 調周波数発生器 1 0 4の虚数部出力を乗算する虚数部乗算器 1 0 8 と、 突数部乗算器 1 0 6からの出力と虚数部乗算器 1 08の出力を 減算して元のオーディォ信号である P CM信号の高い周波数帯域側 に上側サイ ドバン ド信号 S Bを生成する第 1の加算器 1 1 0と、 実 数部乗算器 1 0 6からの出力と虚数部乗算器 1 08の出力を加算し て元のオーディオ信号である P CM信号の低い周波数帯域側に下側 サイ ドバン ド信号 S Bを生成する第 2の加算器 1 1 2とを備える。 このように、 元のオーディオ信号である P CM信号の高い周波数 帯域側あるいは低い周波数帯域側に生成されるサイ ドバン ド信号 S Bを用いて付加情報をウォーターマークとして埋め込むことができ る。
このように元のォ一ディォ信号を AM変調あるいは FM変調し、 元のオーディオ信号の両側に生成されるサイ ドバン ド信号 S Bを用 いて付加情報をウォー夕一マークとして埋め込む変調装置 2 00の 例を図 2 7に示す。 この変調装置 2 0 0は、 元のオーディオ信号で ある P CM信号が入力端子 2 0 1を介して入力される MD C T変換 部 2 0 2と、 付加情報が付加される所定周波数のオーディオ信号を 抽出するオーディオ信号抽出器 2 04と、 逆 MD C T変換部 206 と、 ヒルベルト変換によるウォー夕一マーク発生器 2 08と、 タイ ミング調整遅延器 2 1 0と、 信号埋め込み回路 2 1 2とを有する。
MD C T変換部 2 02は、 P CM信号として入力されるオーディ ォ信号を MD C T変換して MD C T係数を算出する。 オーディオ信 号抽出回路 204は、 MD C T係数から付加情報がウォー夕一マー クが埋め込まれる所定周波数のオーディォ信号を抽出する。 逆 MD C T変換部 20 6は、 オーディオ信号抽出回路 2 04により抽出し た P CM信号について逆 MD C T変換を行う。 ヒルベル卜変換によるウォー夕一マーク発生回路 2 0 8は、 前述 した図 2 8に示すような構成を備え、 付加情報がウォー夕一マーク として埋め込まれる所定周波数のオーディオ信号の両側にサイ ドバ ン ド信号 S Bを生成する。
夕イ ミング調整遅延回路 2 1 0は、 入力端子 2 0 1を介して入力 された P C Mオーディオ信号を、 M D C T変換部 2 0 2、 オーディ ォ信号抽出器 2 0 4、 逆 M D C T変換部 2 0 6及びヒルベルト変換 によるウォー夕一マーク発生器 2 0 8における演算処理が行われて いる間に相当する時間遅延して、 夕イ ミング調整を行う。
信号埋め込み回路 2 1 2は、 タイ ミング調整遅延回路 2 1 0から 出力されたオーディォ信号にこのオーディオ信号のマスキング効果 を得ることができる上側又は下側の周波数帯域に生成されるサイ ド バン ド信号 S Bをウォー夕一マークとして付加情報として埋め込む。
ヒルベルト変換を用いてオーディオ信号に付加情報をウォー夕一 マークとして埋め込む変調装置 2 0 0は、 前述した図 6 A及び図 7 Aに示すように、 任意の周波数のオーディオ信号の上下の周波数帯 域にサイ ドバンド信号 S Bを生成することができるので、 ヒルベル ト変換による周波数シフ トによって A M変調や F M変調を行うこと ができる。 また、 ヒルベルト変換によって、 図 7 Aに示すように、 任意の周波数のオーディオ信号の上側又は下側の周波数帯域のいず れか一方にのみサイ ドバンド信号 S Bを生成することもできるので、 任意の周波数で付加情報をウォー夕一マークとして埋め込むことも できる。 産業上の利用可能性 本発明は、 オーディオ信号を直交変換して直交変換係数を算出し、 この算出した直交変換係数を減衰して周波数軸方向にシフ 卜して元 の直交変換係数に加算することにより付加情報を埋め込むようにし ているので、 付加情報をウォー夕一マークとしてオーディォ信号に 埋め込むことができ、 しかも、 オーディオ信号を圧縮したした場合 にもウォー夕一マークとして埋め込んだ付加情報が損傷されること を確実に防止できる。

Claims

請求の範囲
1 . オーディオ信号に付加情報を埋め込む付加情報埋め込み方法に おいて、
オーディオ信号を直交変換して直交変換係数を算出する直交変換 工程と、
上記直交変換係数を減衰して周波数軸方向にシフ トして上記元の 直交変換係数に加算することにより上記付加情報を埋め込むシフ 卜 •加算工程とを有する付加情報埋め込み方法。
2 . 上記直交変換工程は、 上記オーディオ信号を M D C T変換する ことにより M D C T係数を算出し、 上記シフ ト .加算工程は、 上記 算出された上記 M D C T係数を減衰して周波数軸方向にシフ トして 元の M D C T係数に加算することにより上記付加情報を埋め込む請 求の範囲第 1項記載の付加情報埋め込み方法。
3 . 上記シフ ト ·加算工程は、 周波数マスキング条件及びテンポラ ルマスキング条件を満たすように、 上記周波数軸上でシフ トされた 上記直交変換係数を上記元の直交変換係数に対して加算する請求の 範囲第 1項記載の付加情報埋め込み方法。
4 . 上記シフ ト '加算工程は、 上記元の直交変換係数の値に上記シ フ トされた直交変換係数が加算されたときの値が所定値以下にある とき、 上記加算を行う請求の範囲第 1項記載の付加情報埋め込み方 法。
5 . 上記シフ ト '加算工程は、 上記元の直交変換係数の値の値に上 記シフ トされた直交変換係数が加算されたときの値の極性に応じて 上記シフ 卜及び加算を禁止する請求の範囲第 1項記載の付加情報埋 め込み方法。
6 . 上記シフ ト ·加算工程は、 上記オーディオ信号が上限値から下 限値の範囲であるとき上記シフ ト及び加算を行う請求の範囲第 1項 記載の付加情報埋め込み方法。
7 . 上記シフ ト ·加算工程は、 上記オーディオ信号が人の聴覚特性 に基づいて設定される上記上限値から上記下限値の範囲であるとき 上記シフ ト及び加算を行う請求の範囲第 6項記載の付加情報埋め込 み方法。
8 . 上記シフ 卜 ·加算工程は、 所定の周波数帯域の上記直交変換係 数の上記シフ ト及び加算を行う請求の範囲第 1項記載の付加情報埋 め込み方法。
9 . 上記シフ ト '加算工程は、 所定の周波数帯域の上記 M D C T係 数の上記シフ ト及び加算を行う請求の範囲第 2項記載の付加情報埋 め込み方法。
1 0 . 上記シフ ト '加算工程は、 上記オーディオ信号の周波数帯域 を分割してそれぞれ分割した周波数帯域毎に行う請求の範囲第 1項 記載の付加情報埋め込み方法。
1 1 . 上記シフ ト ·加算工程は、 上記分割された隣接する周波数帯 域の上記シフ ト方向を逆にする請求の範囲第 1 0項記載の付加情報 埋め込み方法。
1 2 . 更に、 上記方法は、 上記シフ ト ·加算工程により算出された 信号に対して疑似ランダム信号によるスクランブルをかける工程を 有する請求の範囲第 1項記載の付加情報埋め込み方法。
1 3 . 上記シフ ト ·加算工程は、 周波数が増加する側に上記 M D C T係数をずらして上記元の MD C T係数に加算する請求の範囲第 2 項記載の付加情報埋め込み方法。
14. 上記シフ ト · 加算工程は、 上記 MD C T係数が 2 N個 (Nは 自然数) シフ トされることにより ( (サンプリング周波数/ MD C T係数のサンプル数) X 2N) H z分周波数が増加する請求の範囲 第 1 3項記載の付加情報埋め込み方法。
1 5. 上記シフ ト ·加算工程は、 実質的に上記オーディオ信号の振 幅に等しい請求の範囲第 14項記載の付加情報埋め込み方法。
1 6. 上記シフ 卜 ·加算工程は、 周波数が減少する側に上記元の M D C T係数に加算する請求の範囲第 2項記載の付加情報埋め込み方 法。
17. 上記シフ ト ·加算工程は、 上記 MD C T係数が 2 N個 (Nは 自然数) シフ トされることにより ( (サンプル周波数/ MD CT係 数のサンプル数) X 2 N) H z分周波数が減少する請求の範囲第 1 6項記載の付加情報埋め込み方法。
18. 上記シフ ト '加算工程は、 実質的にオーディオ信号の周波数 変調に等しい請求の範囲第 1 7項記載の付加情報埋め込み方法 19. 上記シフ ト ·加算工程は、 上記 MD C T係数を 2 N個 (Nは 自然数) シフ 卜する請求の範囲第 2項記載の付加情報埋め込み方法 ( 20. 上記シフ ト ·加算工程は、 上記 MD C T係数を 2 N— 1 (N は自然数) シフ 卜する請求の範囲第 2項記載の付加情報埋め込み方 法。
2 1. 上記シフ ト ·加算工程は、 上記元のオーディオ信号の MD C T係数の周波数マスキング領域のク リティカルバンド内に上記シフ 卜された MD C T係数を加算する請求の範囲第 2項記載の付加情報 埋め込み方法。
2 2 . 上記付加情報は、 上記オーディオ信号の転送を禁止する制限 情報である請求の範囲第 1項記載の付加情報埋め込み方法。
2 3 . 上記付加情報は、 上記オーディオ信号の記録媒体への記録を 禁止する制限情報である請求の範囲第 1項記載の付加情報埋め込み 方法。
2 4 . 上記付加情報は、 上記オーディオ信号に対応する著作物デー 夕である請求の範囲第 1項記載の付加情報埋め込み方法。
2 5 . オーディオ信号に付加情報を埋め込む付加情報埋め込み装置 において、
オーディオ信号を直交変換して直交変換係数を算出する直交変換 手段と、
上記直交変換係数を減衰して周波数軸方向にシフ トして上記元の 直交変換係数に加算することにより上記付加情報を埋め込むシフ ト •加算手段とを付加情報埋め込み装置。
2 6 . 上記直交変換手段は、 上記オーディオ信号を M D C T変換す ることにより M D C T係数を算出し、 上記シフ ト '加算手段は、 上 記算出された上記 M D C T係数を減衰して周波数軸方向にシフ トし て元の M D C T係数に加算することにより上記付加情報を埋め込む 請求の範囲第 2 5項記載の付加情報埋め込み装置。
2 7 . 上記シフ ト '加算手段は、 周波数マスキング条件及びテンポ ラルマスキング条件を満たすように、 上記周波数軸上でシフ 卜され た上記直交変換係数を上記元の直交変換係数に対して加算する請求 の範囲第 2 5項記載の付加情報埋め込み装置。
2 8 . 上記シフ ト '加算手段は、 上記元の直交変換係数の値に上記 シフ 卜された直交変換係数が加算されたときの値が所定値以下にあ るとき、 上記加算を行う請求の範囲第 2 5項記載の付加情報埋め込 み装置。
2 9 . 上記シフ ト '加算手段は、 上記元の直交変換係数の値の値に 上記シフ 卜された直交変換係数が加算されたときの値の極性に応じ て上記シフ 卜及び加算を禁止する :求の範囲第 2 5項記載の付加情 報埋め込み装置。
3 0 . 上記シフ ト '加算手段は、 上記オーディオ信号が上限値から 下限値の範囲であるとき上記シフ 卜及び加算を行う請求の範囲第 2 5項記載の付加情報埋め込み装置。
3 1 . 上記シフ ト '加算手段は、 上記オーディオ信号が人の聴覚特 性に基づいて設定される上記上限値から上記下限値の範囲であると き上記シフ ト及び加算を行う請求の範囲第 3 0項記載の付加情報埋 め込み装置。
3 2 . 上記シフ ト '加算手段は、 所定の周波数帯域の上記直交変換 係数の上記シフ ト及び加算を行う請求の範囲第 2 5項記載の付加情 報埋め込み装置。
3 3 . 上記シフ ト '加算手段は、 所定の周波数帯域の上記 M D C T 係数の上記シフ ト及び加算を行う請求の範囲第 2 6項記載の付加情 報埋め込み装置。
3 4 . 上記シフ ト '加算手段は、 上記オーディオ信号の周波数帯域 を分割してそれぞれ分割した周波数帯域毎に行う請求の範囲第 2 5 項記載の付加情報埋め込み装置。
3 5 . 上記シフ 卜 '加算手段は、 上記分割された隣接する周波数帯 域の上記シフ ト方向を逆にする請求の範囲第 3 4項記載の付加情報 埋め込み装置。
36 · 更に、 上記装置は、 上記シフ ト '加算手段により算出された 信号に対して疑似ランダム信号によるスクランブルをかける手段を 有する請求の範囲第 25項記載の付加情報埋め込み方法。
37. 上記シフ ト '加算手段は、 周波数が増加する側に上記 MD C T係数をずらして上記元の MD C T係数に加算する請求の範囲第 2 6項記載の付加情報埋め込み装置。
38. 上記シフ ト ·加算手段は、 上記 MD C T係数が 2 N個 (Nは 自然数) シフ トされることにより ( (サンプリング周波数/ MD C T係数のサンプル数) x 2N) H z分周波数が増加する請求の範囲 第 37項記載の付加情報埋め込み装置。
39. 上記シフ ト '加算手段は、 実質的に上記オーディオ信号の振 幅に等しい請求の範囲第 38項記載の付加情報埋め込み装置。
40. 上記シフ ト ·加算手段は、 周波数が減少する側に上記元の M D C T係数に加算する請求の範囲第 26項記載の付加情報埋め込み 1. 上記シフ ト ·加算手段は、 上記 MD C T係数が 2 N個 (Nは 自然数) シフ トされることにより ( (サンプル周波数/ MD C T係 数のサンプル数) x 2N) H z分周波数が減少する請求の範囲第 4 0項記載の付加情報埋め込み装置。
42. 上記シフ ト '加算手段は、 実質的にオーディオ信号の周波数 変調に等しい請求の範囲第 4 1項記載の付加情報埋め込み装置。 43. 上記シフ ト ·加算手段は、 上記 MD C T係数を 2 N個 (Nは 自然数) シフ トする請求の範囲第 26項記載の付加情報埋め込み装
4 4 . 上記シフ ト ·加算手段は、 上記 M D C T係数を 2 N— 1 ( N は自然数) シフ 卜する請求の範囲第 2 6項記載の付加情報埋め込み
4 5 . 上記シフ ト '加算手段は、 上記元のオーディオ信号の M D C T係数の周波数マスキング領域のクリティカルバンド内に上記シフ 卜された M D C T係数を加算する請求の範囲第 2 6項記載の付加情 報埋め込み装置。
4 6 . 上記直交変換手段と上記シフ ト及び加算手段とがー体に構成 されている請求の範囲第 2 5項記載の付加情報埋め込み装置。
4 7 . 上記付加情報は、 上記オーディオ信号の転送を禁止する制限 情報である請求の範囲第 2 5項記載の付加情報埋め込み装置。
4 8 . 上記付加情報は、 上記オーディオ信号の記録媒体への記録を 禁止する制限情報である請求の範囲第 2 5項記載の付加情報埋め込 み装置。
4 9 . 上記付加情報は、 上記オーディオ信号に対応する著作物デー 夕である請求の範囲第 2 5項記載の付加情報埋め込み装置。
5 0 . 付加情報が埋め込まれたオーディオ信号を受信し上記付加情 報を復調する復調方法において、
オーディオ信号を周波数変調すると共に減衰した周波数軸方向に シフ トして元の周波数軸上の上記オーディオ信号に加算することに より上記付加情報が埋め込まれる上記オーディオ信号を受信する受 信工程と、
上記受信される信号の所定間隔毎の上記周波数軸上のオーディオ 信号の極性に基づいて上記付加情報を復調する復調工程とを有する 復調方法。
5 1 . 上記受信工程は、 オーディオ信号を直交変換して算出される 直交変換係数を減衰して周波数軸方向にシフ トして元の直交変換係 数に加算することにより上記付加情報が埋め込まれる上記オーディ ォ信号を受信する請求の範囲第 5 0項記載の復調方法。
5 2 . 上記受信工程は、 オーディオ信号を M D C T変換して算出さ れる M D C T係数を減衰して周波数軸方向にシフ 卜し元の M D C T 係数に加算することにより上記付加情報が埋め込まれる上記オーデ ィォ信号を受信する請求の範囲第 5 1項記載の復調方法。
5 3 . 上記受信工程は、 A M変調により上記付加情報が埋め込まれ る上記オーディオ信号を受信し、 上記復調工程は、 上記受信される 信号の所定間隔毎の上記周波数軸上のオーディオ信号の極性に基づ いて上記付加情報を復調する請求の範囲第 5 0項記載の復調方法。 5 4 . 上記受信工程は、 F M変調により上記付加情報が埋め込まれ る上記オーディオ信号を受信し、 上記復調工程は、 上記受信される 信号の所定間隔毎の上記周波数軸上のオーディオ信号の極性に基づ いて上記付加情報を復調する請求の範囲第 5 0項記載の復調方法。 5 5 . 上記受信工程は、 ヒルベルト変換により上記付加情報が埋め 込まれる上記オーディオ信号を受信し、 上記復調工程は、 上記受信 される信号の所定間隔毎の上記周波数軸上のオーディオ信号に極性 に基づいて上記付加情報を復調する請求の範囲第 5 0項記載の復調 方 。
5 6 . 上記復調工程は、 上記受信される信号の所定周波数帯域内に おける所定間隔毎の上記周波数軸上のオーディオ信号の極性に基づ いて上記付加情報を復調する請求の範囲第 5 0項記載の復調方法。 5 7 . 上記付加情報は、 上記オーディオ信号の転送を禁止する制御 情報である請求の範囲第 5 0項記載の復調方法。
5 8 . 上記付加情報は、 上記オーディオ信号の記録媒体への記録を 禁止する制御情報である請求の範囲第 5 0項記載の復調方法。
5 9 . 上記付加情報は、 上記オーディオ信号に対応する著作物デー 夕である請求の範囲第 5 0項記載の復調方法。
6 0 . 付加情報が埋め込まれたオーディオ信号を受信し上記付加情 報を復調する復調装置において、
オーディオ信号を周波数変調すると共に減衰した周波数軸方向に シフ トして元の周波数軸上の上記オーディオ信号に加算することに より上記付加情報が埋め込まれる上記オーディオ信号を受信する受 信手段と、
上記受信される信号の所定間隔毎の上記周波数軸上のオーディオ 信号の極性に基づいて上記付加情報を復調する復調手段とを有する 復調装置。
6 1 . 上記受信手段は、 オーディオ信号を直交変換して算出される 直交変換係数を減衰して周波数軸方向にシフ トして元の直交変換係 数に加算することにより上記付加情報が埋め込まれる上記オーディ ォ信号を受信する請求の範囲第 6 0項記載の復調装置。
6 2 . 上記受信手段は、 オーディオ信号を M D C T変換して算出さ れる M D C T係数を減衰して周波数軸方向にシフ トし元の M D C T 係数に加算することにより上記付加情報が埋め込まれる上記オーデ ィォ信号を受信する請求の範囲第 6 1項記載の復調装置。
6 3 . 上記受信手段は、 A M変調により上記付加情報が埋め込まれ る上記オーディオ信号を受信し、 上記復調手段は、 上記受信される 信号の所定間隔毎の上記周波数軸上のオーディオ信号の極性に基づ いて上記付加情報を復調する請求の範囲第 6 0項記載の復調装置。 6 4 . 上記受信手段は、 F M変調により上記付加情報が埋め込まれ る上記オーディオ信号を受信し、 上記復調手段は、 上記受信される 信号の所定間隔毎の上記周波数軸上のオーディオ信号の極性に基づ いて上記付加情報を復調する請求の範囲第 6 0項記載の復調装置。 6 5 . 上記受信手段は、 ヒルペルト変換により上記付加情報が埋め 込まされる上記オーディオ信号を受信し、 上記復調手段は、 上記受 信される信号の所定間隔毎の上記周波数軸上のオーディォ信号の極 性に基づいて上記付加情報を復調する請求の範囲第 5 0項記載の復
6 6 . 上記復調手段は、 上記受信される信号の所定周波数帯域内に おける所定間隔毎の上記周波数軸上のオーディオ信号の極性に基づ いて上記付加情報を復調する請求の範囲第 6 0項記載の復調装置。 6 7 . 上記付加情報は、 上記オーディオ信号の転送を禁止する制御 情報である請求の範囲第 6 0項記載の復調装置。
6 8 . 上記付加情報は、 上記オーディオ信号の記録媒体への記録を 禁止する制御情報である請求の範囲第 6 0項記載の復調装置。 6 9 . 上記付加情報は、 上記オーディオ信号に対応する著作物デ一 夕である請求の範囲第 6 0項記載の復調装置。
PCT/JP2000/001715 1999-03-19 2000-03-21 Procede d'inclusion d'information additionnelle et dispositif a cet effet, et procede de decodage d'information additionnelle et dispositif a cet effet WO2000057399A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US09/700,611 US7299189B1 (en) 1999-03-19 2000-03-21 Additional information embedding method and it's device, and additional information decoding method and its decoding device
DE60034520T DE60034520T2 (de) 1999-03-19 2000-03-21 Vorrichtung und verfahren zur einbindung und vorrichtung und verfahren zur dekodierung von zusätzlichen informationen
JP2000607199A JP4470322B2 (ja) 1999-03-19 2000-03-21 付加情報埋め込み方法及びその装置並びに付加情報の復調方法及びその復調装置
EP00909771A EP1087377B1 (en) 1999-03-19 2000-03-21 Additional information embedding method and its device, and additional information decoding method and its decoding device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7694499 1999-03-19
JP11/76944 1999-03-19

Publications (1)

Publication Number Publication Date
WO2000057399A1 true WO2000057399A1 (fr) 2000-09-28

Family

ID=13619872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/001715 WO2000057399A1 (fr) 1999-03-19 2000-03-21 Procede d'inclusion d'information additionnelle et dispositif a cet effet, et procede de decodage d'information additionnelle et dispositif a cet effet

Country Status (7)

Country Link
US (1) US7299189B1 (ja)
EP (1) EP1087377B1 (ja)
JP (1) JP4470322B2 (ja)
KR (1) KR100632723B1 (ja)
CN (1) CN1129114C (ja)
DE (1) DE60034520T2 (ja)
WO (1) WO2000057399A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006243340A (ja) * 2005-03-03 2006-09-14 Dainippon Printing Co Ltd 音響信号に対する情報の埋め込み装置、音響信号からの情報の抽出装置、および音響信号再生装置
JP2006323182A (ja) * 2005-05-19 2006-11-30 Dainippon Printing Co Ltd 音響信号に対する情報の埋め込み装置、音響信号からの情報の抽出装置、および音響信号再生装置
JP2006323246A (ja) * 2005-05-20 2006-11-30 Dainippon Printing Co Ltd 音響信号に対する情報の埋め込み装置、音響信号からの情報の抽出装置、および音響信号再生装置
WO2007007666A1 (ja) * 2005-07-11 2007-01-18 Ntt Docomo, Inc. データ埋込装置、データ埋込方法、データ抽出装置、及び、データ抽出方法
JP2007171933A (ja) * 2005-10-28 2007-07-05 Sony United Kingdom Ltd オーディオ信号処理装置及び方法
JP2007322638A (ja) * 2006-05-31 2007-12-13 Dainippon Printing Co Ltd 音響信号に対する情報の埋め込み装置
JP2007322673A (ja) * 2006-05-31 2007-12-13 Dainippon Printing Co Ltd 音響信号に対する情報の埋め込み装置
JP2009104200A (ja) * 2009-02-12 2009-05-14 Fujitsu Ltd 音声符号変換方法及び装置
WO2015151678A1 (ja) * 2014-03-31 2015-10-08 培雄 唐沢 音響を用いた任意信号の伝達方法

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3576993B2 (ja) * 2001-04-24 2004-10-13 株式会社東芝 電子透かし埋め込み方法及び装置
CN100380493C (zh) * 2001-09-05 2008-04-09 皇家飞利浦电子股份有限公司 用于直接流数字信号的坚韧水印
RU2210858C2 (ru) * 2001-10-08 2003-08-20 Дунаев Игорь Борисович Способ помехоустойчивой передачи информации
DE10216261A1 (de) 2002-04-12 2003-11-06 Fraunhofer Ges Forschung Verfahren und Vorrichtung zum Einbetten von Wasserzeicheninformationen und Verfahren und Vorrichtung zum Extrahieren von eingebetteten Wasserzeicheninformationen
WO2005002200A2 (en) * 2003-06-13 2005-01-06 Nielsen Media Research, Inc. Methods and apparatus for embedding watermarks
KR101100811B1 (ko) * 2003-06-25 2012-01-02 톰슨 라이센싱 압축된 비디오 비트스트림에 워터마크를 삽입하기 위한인코딩 방법 및 장치
US7475255B1 (en) * 2003-11-03 2009-01-06 Guthery Scott B Analog physical signature devices and methods and systems for using such devices to secure the use of computer resources
US7539870B2 (en) * 2004-02-10 2009-05-26 Microsoft Corporation Media watermarking by biasing randomized statistics
JP4197307B2 (ja) * 2004-03-30 2008-12-17 インターナショナル・ビジネス・マシーンズ・コーポレーション 電子透かし検出装置、その検出方法及びプログラム
PL1684265T3 (pl) * 2005-01-21 2009-01-30 Unlimited Media Gmbh Sposób wstawiania cyfrowego znaku wodnego w sygnale użytecznym
CN101223579B (zh) * 2005-05-26 2013-02-06 Lg电子株式会社 用于对音频信号进行编码和解码的方法
US20080253476A1 (en) * 2005-09-16 2008-10-16 Koninklijke Philips Electronics, N.V. Method and System for Enabling Collusion Resistant Watermarking
EP1764780A1 (en) * 2005-09-16 2007-03-21 Deutsche Thomson-Brandt Gmbh Blind watermarking of audio signals by using phase modifications
FR2889347B1 (fr) * 2005-09-20 2007-09-21 Jean Daniel Pages Systeme de diffusion sonore
JP5103479B2 (ja) 2006-10-18 2012-12-19 デスティニー ソフトウェア プロダクションズ インコーポレイテッド メディアデータに電子透かしを付与する方法
US20090222251A1 (en) * 2006-10-31 2009-09-03 International Business Machines Corporation Structure For An Integrated Circuit That Employs Multiple Interfaces
CN101521011B (zh) * 2009-04-01 2011-09-21 西南交通大学 基于过零率的时间尺度不变的鲁棒音频水印方法
US8522032B2 (en) * 2010-03-30 2013-08-27 Disney Enterprises, Inc. System and method to prevent audio watermark detection
WO2012144128A1 (ja) * 2011-04-20 2012-10-26 パナソニック株式会社 音声音響符号化装置、音声音響復号装置、およびこれらの方法
EP2565667A1 (en) * 2011-08-31 2013-03-06 Friedrich-Alexander-Universität Erlangen-Nürnberg Direction of arrival estimation using watermarked audio signals and microphone arrays
US9357326B2 (en) * 2012-07-12 2016-05-31 Dolby Laboratories Licensing Corporation Embedding data in stereo audio using saturation parameter modulation
ES2635027T3 (es) * 2013-06-21 2017-10-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Aparato y método para el desvanecimiento de señales mejorado para sistemas de codificación de audio cambiados durante el ocultamiento de errores
US9620133B2 (en) * 2013-12-04 2017-04-11 Vixs Systems Inc. Watermark insertion in frequency domain for audio encoding/decoding/transcoding
CN104658542B (zh) * 2015-03-16 2018-01-12 武汉大学 基于正交的加性扩频音频水印嵌入方法、检测方法及系统
US20170153117A1 (en) * 2015-11-30 2017-06-01 Ricoh Company, Ltd. Information providing system, mounted apparatus, and information processing apparatus
JP6776645B2 (ja) * 2015-11-30 2020-10-28 株式会社リコー 情報提供システム、搭載装置、情報処理装置、情報提供方法、及びプログラム
US20180144755A1 (en) * 2016-11-24 2018-05-24 Electronics And Telecommunications Research Institute Method and apparatus for inserting watermark to audio signal and detecting watermark from audio signal
US10692496B2 (en) * 2018-05-22 2020-06-23 Google Llc Hotword suppression
JP7434792B2 (ja) 2019-10-01 2024-02-21 ソニーグループ株式会社 送信装置及び受信装置、並びに音響システム
TWI790682B (zh) * 2021-07-13 2023-01-21 宏碁股份有限公司 聲音浮水印的處理方法及語音通訊系統

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06232824A (ja) * 1993-02-08 1994-08-19 Matsushita Electric Ind Co Ltd 修正離散余弦変換とその逆変換方法及び装置
JPH07115369A (ja) * 1993-10-14 1995-05-02 Eibitsuto:Kk 高速演算高性能フィルターバンクの構成方法
JPH07297725A (ja) * 1994-04-21 1995-11-10 Fujitsu Ltd 帯域合成フィルタ
JPH0844399A (ja) * 1994-03-17 1996-02-16 Nippon Telegr & Teleph Corp <Ntt> 音響信号変換符号化方法および復号化方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3523809A1 (de) * 1985-05-21 1986-11-27 Polygram Gmbh, 2000 Hamburg Verfahren zur zeitkompression von informationen in digitaler form
US5841816A (en) 1992-10-22 1998-11-24 Ericsson Inc. Diversity Pi/4-DQPSK demodulation
GB9302982D0 (en) 1993-02-15 1993-03-31 Gerzon Michael A Data transmission method in digital waveform signal words
US5684920A (en) 1994-03-17 1997-11-04 Nippon Telegraph And Telephone Acoustic signal transform coding method and decoding method having a high efficiency envelope flattening method therein
DE69636084T2 (de) * 1995-09-28 2006-09-14 Nec Corp. Verfahren und Vorrichtung zum Einfügen eines Spreizspektrumwasserzeichens in Multimediadaten
US6061793A (en) * 1996-08-30 2000-05-09 Regents Of The University Of Minnesota Method and apparatus for embedding data, including watermarks, in human perceptible sounds
US5915027A (en) 1996-11-05 1999-06-22 Nec Research Institute Digital watermarking
JPH1132200A (ja) * 1997-07-09 1999-02-02 Matsushita Electric Ind Co Ltd 透かしデータ挿入方法及び透かしデータ検出方法
DE19738780A1 (de) 1997-09-04 1999-03-11 Thomson Brandt Gmbh Verfahren und Schaltungsanordnung zur Korrektur von Phasen- und/oder Frequenzfehlern digitaler Multicarrier-Signale
US6208735B1 (en) * 1997-09-10 2001-03-27 Nec Research Institute, Inc. Secure spread spectrum watermarking for multimedia data
US6154571A (en) * 1998-06-24 2000-11-28 Nec Research Institute, Inc. Robust digital watermarking
JP4000543B2 (ja) * 1998-08-03 2007-10-31 ソニー株式会社 信号処理装置及び信号処理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06232824A (ja) * 1993-02-08 1994-08-19 Matsushita Electric Ind Co Ltd 修正離散余弦変換とその逆変換方法及び装置
JPH07115369A (ja) * 1993-10-14 1995-05-02 Eibitsuto:Kk 高速演算高性能フィルターバンクの構成方法
JPH0844399A (ja) * 1994-03-17 1996-02-16 Nippon Telegr & Teleph Corp <Ntt> 音響信号変換符号化方法および復号化方法
JPH07297725A (ja) * 1994-04-21 1995-11-10 Fujitsu Ltd 帯域合成フィルタ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1087377A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006243340A (ja) * 2005-03-03 2006-09-14 Dainippon Printing Co Ltd 音響信号に対する情報の埋め込み装置、音響信号からの情報の抽出装置、および音響信号再生装置
JP4713181B2 (ja) * 2005-03-03 2011-06-29 大日本印刷株式会社 音響信号に対する情報の埋め込み装置、音響信号からの情報の抽出装置、および音響信号再生装置
JP4629495B2 (ja) * 2005-05-19 2011-02-09 大日本印刷株式会社 音響信号に対する情報の埋め込み装置および方法
JP2006323182A (ja) * 2005-05-19 2006-11-30 Dainippon Printing Co Ltd 音響信号に対する情報の埋め込み装置、音響信号からの情報の抽出装置、および音響信号再生装置
JP2006323246A (ja) * 2005-05-20 2006-11-30 Dainippon Printing Co Ltd 音響信号に対する情報の埋め込み装置、音響信号からの情報の抽出装置、および音響信号再生装置
JP4660275B2 (ja) * 2005-05-20 2011-03-30 大日本印刷株式会社 音響信号に対する情報の埋め込み装置および方法
WO2007007666A1 (ja) * 2005-07-11 2007-01-18 Ntt Docomo, Inc. データ埋込装置、データ埋込方法、データ抽出装置、及び、データ抽出方法
US8428756B2 (en) 2005-07-11 2013-04-23 Ntt Docomo, Inc. Data embedding device, data embedding method, data extraction device, and data extraction method
JP2007171933A (ja) * 2005-10-28 2007-07-05 Sony United Kingdom Ltd オーディオ信号処理装置及び方法
JP2007322673A (ja) * 2006-05-31 2007-12-13 Dainippon Printing Co Ltd 音響信号に対する情報の埋め込み装置
JP4760539B2 (ja) * 2006-05-31 2011-08-31 大日本印刷株式会社 音響信号に対する情報の埋め込み装置
JP4760540B2 (ja) * 2006-05-31 2011-08-31 大日本印刷株式会社 音響信号に対する情報の埋め込み装置
JP2007322638A (ja) * 2006-05-31 2007-12-13 Dainippon Printing Co Ltd 音響信号に対する情報の埋め込み装置
JP2009104200A (ja) * 2009-02-12 2009-05-14 Fujitsu Ltd 音声符号変換方法及び装置
WO2015151678A1 (ja) * 2014-03-31 2015-10-08 培雄 唐沢 音響を用いた任意信号の伝達方法
JP2015197497A (ja) * 2014-03-31 2015-11-09 培雄 唐沢 音響を用いた任意信号の伝達方法
US10134407B2 (en) 2014-03-31 2018-11-20 Masuo Karasawa Transmission method of signal using acoustic sound

Also Published As

Publication number Publication date
DE60034520T2 (de) 2007-12-27
CN1297560A (zh) 2001-05-30
CN1129114C (zh) 2003-11-26
EP1087377B1 (en) 2007-04-25
US7299189B1 (en) 2007-11-20
DE60034520D1 (de) 2007-06-06
EP1087377A1 (en) 2001-03-28
JP4470322B2 (ja) 2010-06-02
KR20010043700A (ko) 2001-05-25
KR100632723B1 (ko) 2006-10-16
EP1087377A4 (en) 2005-08-03

Similar Documents

Publication Publication Date Title
WO2000057399A1 (fr) Procede d&#39;inclusion d&#39;information additionnelle et dispositif a cet effet, et procede de decodage d&#39;information additionnelle et dispositif a cet effet
Boney et al. Digital watermarks for audio signals
Swanson et al. Robust audio watermarking using perceptual masking
US7606366B2 (en) Apparatus and method for embedding and extracting information in analog signals using distributed signal features and replica modulation
US6879652B1 (en) Method for encoding an input signal
Dutta et al. Data hiding in audio signal: A review
Hu et al. A DWT-based rational dither modulation scheme for effective blind audio watermarking
Hu et al. Incorporation of perceptually adaptive QIM with singular value decomposition for blind audio watermarking
Balgurgi et al. Intelligent processing: An approach of audio steganography
Chauhan et al. A survey: Digital audio watermarking techniques and applications
Hu et al. High-performance self-synchronous blind audio watermarking in a unified FFT framework
Sathya et al. Data hiding in audio signal, video signal text and JPEG images
Goenka et al. Overview of audio watermarking techniques
Petrovic Audio signal watermarking based on replica modulation
Petrovic et al. Data hiding within audio signals
Salcic Audio watermarking
Nahrstedt et al. Non-invertible watermarking methods for MPEG video and audio
Attari et al. Robust and blind audio watermarking in wavelet domain
Dhavale et al. Lossless audio watermarking based on the alpha statistic modulation
Silvestre et al. Informed audio watermarking scheme using digital chaotic signals
KR100392251B1 (ko) 디지털 오디오/비디오/멀티미디어의 디지털 워터마크삽입장치
Ravula Audio watermarking using transformation techniques
JP2003143390A (ja) 電子透かしの埋め込みおよび抽出
Trivedi et al. Audio masking for watermark embedding under time domain audio signals
JP4494784B2 (ja) 信号中の補助情報を符号化するシステム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00800363.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2000909771

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020007012919

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09700611

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000909771

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007012919

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020007012919

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2000909771

Country of ref document: EP