WO2000056784A1 - Saturated hydrocarbon polymer having functional group at end and process for producing the same - Google Patents

Saturated hydrocarbon polymer having functional group at end and process for producing the same Download PDF

Info

Publication number
WO2000056784A1
WO2000056784A1 PCT/JP1999/002693 JP9902693W WO0056784A1 WO 2000056784 A1 WO2000056784 A1 WO 2000056784A1 JP 9902693 W JP9902693 W JP 9902693W WO 0056784 A1 WO0056784 A1 WO 0056784A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
hydrocarbon
hydroxyl group
group
terminal
Prior art date
Application number
PCT/JP1999/002693
Other languages
French (fr)
Japanese (ja)
Inventor
Takeshi Chiba
Hidenari Tsunemi
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Publication of WO2000056784A1 publication Critical patent/WO2000056784A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis

Definitions

  • the present invention relates to a hydrocarbon-based polymer having a protected hydroxyl group at a terminal, a hydrocarbon-based polymer having a hydroxyl group at a terminal, and methods for producing these.
  • hydrogenated polybutadiene polyol and polyisoprene polyol synthesized by anionic polymerization can provide a saturated hydrocarbon polymer having a hydroxyl group at a terminal.
  • primary hydroxyl groups can be easily and quantitatively introduced into the terminal by reacting ethylene oxide after the polymerization.
  • hydroxyl-terminated polyols easily react with the isocyanate compound to give a urethane-based cured product. It is known that the use of this polymer improves the performance such as weather resistance and chemical resistance, which are problems in urethane compositions containing a polyether-based or polyester-based polyol as a component. However, the durability of urethane compositions using these hydroxyl-terminated polyols as raw materials is not yet sufficient. In addition, when producing a hydroxyl-terminated polyol, there is also a problem that it is necessary to go through a difficult step of hydrogenation.
  • polyisobutylene obtained by cation polymerization is known as a saturated hydrocarbon-based polymer expected to have high weather resistance.
  • a reaction for quantitatively introducing a functional group into the terminal of polybutylene by living cationic polymerization is known. J.P.Kennedy et al. First synthesized chlorine-terminated polyisobutylene by living cationic polymerization, and then performed dehydrochlorination of the terminal using 1'BuOK to convert the isopropyl group into a terminal isopropyl group.
  • this method requires that the chlorine-terminated polyisobutylene obtained by living cationic polymerization be converted to an olefinic terminal and then converted to a hydroxyl group. Furthermore, the raw materials used are very special, and this method is not suitable for producing a saturated hydrocarbon polyol on an industrial scale.
  • the present invention can be synthesized by a one-step reaction from the halogen terminal of a saturated hydrocarbon polymer obtained by cationic polymerization without using a special and expensive reagent such as a hydridoborane reagent. It is an object of the present invention to provide a hydrocarbon polymer having a protected main chain having a protected hydroxyl group at the terminal to give a hydroxyl group to the hydrocarbon chain, and a method for producing the same.
  • the present invention provides a compound obtained by reacting a halogen-terminated hydrocarbon polymer obtained by cationic polymerization forming a carbon-carbon single bond with a compound having a protected hydroxyl group and a carbon-carbon double bond.
  • the present invention relates to a hydrocarbon-based polymer in which a polymer main chain having a protected hydroxyl group at a terminal is a saturated hydrocarbon chain, and a method for producing the same. Furthermore, the polymer main chain having a hydroxyl group at the terminal obtained by deprotecting the obtained hydrocarbon-based polymer in which the obtained polymer main chain having a protected hydroxyl group at the terminal is a saturated hydrocarbon chain is obtained. It relates to a hydrocarbon polymer which is a saturated hydrocarbon chain.
  • the terminal becomes an aryl halide terminal which is expected to have high reactivity, and conversion to a terminal hydroxyl group by further deprotection or the like is expected.
  • hydroxyl-terminated polyisobutylene cannot be obtained from halogen-terminated polyisobutylene in one step.
  • the hydrocarbon-based polymer in which the main chain of the polymer is a saturated hydrocarbon chain is defined as having a C-C double bond in the main chain obtained by cationic polymerization forming a carbon-carbon single bond.
  • No (that is, saturated) means a hydrocarbon polymer, but the graft group hanging from the main chain may have a C—C double bond.
  • the polymerization initiator used in the cationic polymerization may have a C-C double bond.
  • the structure of a hydrocarbon polymer in which the main chain of the polymer having a protected hydroxyl group at the end is a saturated hydrocarbon chain is represented by the following formula (1):
  • R 1 is a monovalent to tetravalent hydrocarbon group containing a single ring or a plurality of aromatic rings
  • X is a chlorine group or a bromine group
  • a is an integer of 1 to 4.
  • A is one kind or two or more kinds.
  • A) is a polymer of a cationic polymerizable monomer, and when a is 2 or more, they may be the same or different.
  • R 2 represents hydrogen or a saturated hydrocarbon group having 1 to 18 carbon atoms
  • B represents a divalent hydrocarbon group having 1 to 30 carbon atoms
  • G represents a protecting group for a hydroxyl group.
  • the compound of the formula (2) includes a compound of the formula (3):
  • CH 2 C (R 2 ) one (CH 2 ) b — ⁇ — CH-CH— (CH 2 ) c ⁇ n -OG
  • R 2 represents hydrogen or a saturated or unsaturated monovalent hydrocarbon group having 1 to 18 carbon atoms
  • b and c are integers of 1 to 30 and may be the same or different.
  • n represents an integer of 0 to 5
  • G represents a hydroxyl-protecting group.
  • the hydrocarbon-based polymer obtained by this method in which the main chain of the protected hydroxyl-terminated polymer is a saturated hydrocarbon chain, is easily deprotected so that the hydroxyl-terminated polymer main chain is saturated. It can be converted to a hydrocarbon polymer that is a hydrogen chain.
  • the cationically polymerizable monomer in the above formula (1) is not particularly limited, but preferable monomers include, for example, isobutylene, indene, binene, styrene, methoxystyrene, chlorostyrene and the like.
  • the polymer of the present invention is used as a raw material of a curable composition, it is preferable to produce an isobutylene-based polymer which is in a liquid state before crosslinking and can give a rubber-like cured product after crosslinking.
  • all of the monomer units may be formed from isobutylene units, or the monomer unit having a copolymer with isobutylene is preferably 50% or less of the isobutylene-based polymer (by weight). %, The same applies hereinafter), more preferably 30% or less, particularly preferably 10% or less.
  • Such a monomer component examples include C4 to C12 olefins, vinyl ethers, aromatic vinyl compounds, vinylsilanes, and arylsilanes.
  • Such copolymer components include, for example, 1-butene, 2-butene , 2-methyl-1-butene, 3-methyl-1-butene, pentene, 4-methyl-1-pentene, hexene, vinylcyclohexene, methyl vinyl ether, ethyl vinyl ether, isoptyl vinyl ether, styrene, ⁇ —Methylstyrene, dimethylstyrene, monochlorostyrene, dichlorostyrene,) 3-vinylene, indene, pinyltrichlorosilane, vinylmethyldichlorosilane, vinyldimethylchlorosilane, vinyldimethylmethoxysilane, vinyltrimethylsilane, divinyldichlorosilane, divinyl Dimeth
  • a of the polymer of the formula (1) is preferably a hydrogen atom of 2 or 3 Saturated hydrocarbon polymers having terminal polyisobutylene are preferred.
  • the protecting group of the compound containing a protected hydroxyl group and a carbon-carbon double bond is not particularly limited as long as it provides a hydroxyl group by deprotection, but is usually an inorganic group having 0 to 54 carbon atoms or Organic group.
  • Preferred protecting groups that can be deprotected under mild conditions include the following.
  • R 3 and R ⁇ R 5 represent hydrogen or a saturated or unsaturated hydrocarbon group having 1 to 18 carbon atoms, and may be the same or different in a group containing a plurality of R.
  • X is a functional group selected from Cl, Br, and I.
  • M 1 is a monovalent metal selected from Li, Na, and M 2 is selected from Mg, Ca, Sr, and Ba.
  • divalent metal M 3 is B, a 1, 3-valent metal selected from G a, M 4 is T i, Z r, H f , S i, Ge, S n, 4 valent selected from P b Metal.
  • Alkyl groups, acyl groups, and RC (O) — groups (where R is a saturated group having 1 to 10 carbon atoms), because of the availability and the difficulty of separating the polymer from the protective group components after deprotection, etc.
  • a hydrocarbon group), a silyl group, and a metal alkoxide a methyl group, an ethyl group, n- and i-propyl groups, an n-, i- and t-butyl group, a formyl group, an acetyl group, a propionyl group; Even more preferred are a ptyryl group, a benzoyl group, a trimethylsilyl group, and a triphenylsilyl group, and it is particularly preferred that these protecting groups have 0 to 54 carbon atoms.
  • the compound represented by the above formula (2) which is a substrate to be reacted with the halogen-terminated hydrocarbon polymer, is preferably an olefin having a mono-substituted or 1,1′-monosubstituted terminal-protected hydroxyl group.
  • G is hydrogen in the above formula (2)
  • Lewis When reacting a compound containing a protected hydroxyl group and an elemental carbon double bond represented by the above formula (2) with a halogen-terminated hydrocarbon polymer obtained by cationic polymerization of the above formula (1), Lewis is used as a catalyst. It is possible to use acids. In this case is not particularly limited as long as Le chair acid, T i C l 4, A 1 C 1 3, BC 1 3, SnC 1 4 has a higher reaction activity, from the viewpoint selectivity is good preferable.
  • a single or mixed solvent arbitrarily selected from halogenated hydrocarbons, aromatic hydrocarbons, and aliphatic hydrocarbons as the reaction solvent.
  • the aromatic hydrocarbon is preferably toluene, and the aliphatic hydrocarbon is at least one component selected from pentane, n-hexane, cyclohexane, methylcyclohexane, and ethylcyclohexane. Is preferred.
  • toluene, ethylcyclohexane, or a mixed solvent thereof can be used as a reaction solvent that does not use a halogenated hydrocarbon, which is likely to have an adverse effect on the environment.
  • the deprotection reaction is not particularly limited, but preferred reactions include a hydrolysis reaction and a thermal decomposition reaction.
  • the hydrolysis reaction can be performed in either a solvent system or a non-solvent system.
  • the solvent used for the solvent-based reaction is not particularly limited. It is preferable to use a solvent for producing a saturated hydrocarbon polymer having the above.
  • the conditions for performing the hydrolysis may be either acidic or basic conditions, but it is preferable to perform the hydrolysis reaction using a basic aqueous solution in view of the efficiency of the hydrolysis reaction.
  • the reagent used for the hydrolysis under basic conditions is not particularly limited as long as it is an organic or inorganic basic compound used in a usual hydrolysis reaction.
  • Potassium, lithium hydroxide, calcium hydroxide, magnesium hydroxide, sodium carbonate, potassium carbonate, lithium carbonate, calcium carbonate, magnesium carbonate, sodium acetate, potassium acetate, lithium acetate, calcium acetate, magnesium acetate, potassium t-butoxide, Sodium t-butoxide, potassium methoxide, sodium methoxide and the like are particularly preferred.
  • the reaction can be efficiently advanced by adding a catalyst.
  • a catalyst any of organic and inorganic catalysts can be used for the reaction.
  • an organic salt is preferable because of the ease of the reaction, and a quaternary ammonium salt is particularly preferable.
  • Representative ammonium salts include triethylbenzylammonium chloride, tetramethylammonium chloride, triethylbenzylammonium bromide, trioctylmethylammonium chloride, tributylbenzylammonium chloride, trimethylbenzyl chloride.
  • Ammonia N-laurylpyridinium chloride, tetra-n-butylammonium hydroxide, tetramethylammonium hydroxide, trimethylbenzylammonium hydroxide, trimethylphenylammonium bromide, tetrabromide Methylammonium, tetraethylammonium bromide.
  • the production of the saturated hydrocarbon polymer having a protected hydroxyl group at the terminal according to the present invention is performed, for example, as follows. That is, 1 to 4 equivalents of a compound having a protected hydroxyl group and a carbon-carbon double bond represented by the formula (2) are added to a polymer having a halogen group at the terminal represented by the formula (1).
  • Methylene chloride, 1, 1 One selected from dichloroethane, 1,2-dichloroethane, n-propyl chloride, n-butyl chloride, toluene, pentane, n-hexane, cyclohexane, methyl cyclohexane, and ethylcyclohexane Dissolves in a solvent consisting of the above components.
  • electron donors such as pyridine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, 2,6-di-t-butylpyridine, etc., in the temperature range of 110 to 130: T i C 1 4, A 1 C 1 B
  • R 3 , R 4 , and R 5 are hydrogen or saturated or unsaturated having 1 to 18 carbon atoms. Represents a hydrocarbon group, and the groups containing a plurality of Rs may be the same or different.
  • X is a functional group selected from Cl, Br and I.
  • M 1 is a monovalent metal selected from Li, Na, and M 2 Mg, a divalent metal selected from Ca, Sr, and Ba, and a trivalent metal selected from M ⁇ B, A 1, and Ga. metal
  • M 4 is a tetravalent metal selected from among the T i, Z r, H f , S i, Ge, S n, P b.
  • the side reaction was suppressed by converting to.
  • Some hydroxyl protecting groups coordinate to Lewis acids. Since the coordination of the substrate to the catalyst reduces the reaction activity, it is preferable to use a Lewis acid in a molar number equivalent or more to the compound having a hydroxyl group and a carbon-carbon double bond during the addition reaction. Particularly preferred is 1 to 20 equivalents.
  • the Lewis acid used in the present invention can be used for living cationic polymerization by the inifer method.
  • a compound having a protected hydroxyl group and a carbon-carbon double bond a Lewis acid, By adding an electron donor or the like, a polymer having a protected hydroxyl group at the terminal can be obtained in one pot.
  • R 1 is a residue of a polymerization initiator, and is not particularly limited as long as it is a residue of a monofunctional to tetrafunctional initiator that can be used for the cation cationic polymerization by the inifer method.
  • the number of functional groups of the initiator is preferably 2 or 3.
  • the compounds having a substituent at the benzyl position shown below are preferable because of their high initiator efficiency during polymerization.
  • the solvent for the polymerization reaction is not particularly limited. However, after the polymerization reaction, the olefin compound may be produced in one pot after the polymerization reaction. Since it becomes possible, the solvent is preferably the same as the solvent for the reaction for introducing a protected hydroxyl group into the terminal.
  • a single or mixed solvent arbitrarily selected from halogenated hydrocarbons, aromatic hydrocarbons, and aliphatic hydrocarbons can be used as a reaction solvent common to the polymerization reaction and the reaction for introducing a hydroxyl group to a terminal.
  • halogenated hydrocarbons methylene chloride, chloroform, 1,1-dichloroethane, 1.2-dichloroethane, ⁇ -propyl chloride, and ⁇ -butyl chloride are used as halogenated hydrocarbons due to their solubility and reactivity under the polymerization conditions of the polymer.
  • it is at least one component selected from
  • toluene is preferred as the aromatic hydrocarbon
  • pentane, ⁇ -hexane, cyclohexane, methylcyclohexane, and ethylcyclohexane as the aliphatic hydrocarbon.
  • the thus-obtained hydrocarbon polymer having a protected hydroxyl-terminated polymer main chain and having a saturated main chain is easily hydrolyzed by a hydrolysis reaction. It can be converted into a union.
  • a thermal decomposition reaction is effective, and usually 50 to 250 * C
  • the deprotection reaction proceeds by heating under the conditions. In this reaction, the reaction can be made to proceed more easily by adding a catalyst as needed.
  • a hydrolysis reaction is effective as a reaction for generating a hydroxyl group by deprotection.
  • the hydrolysis reaction usually proceeds under acidic or basic conditions. At this time, the reaction can be carried out without using a solvent, but the reaction is carried out by dissolving the polymer in an organic solvent. Is preferred.
  • the reaction can be carried out at a temperature at which a normal hydrolysis reaction is carried out, and the reaction can be carried out at a temperature of from 170 "C to 200 by the presence of a salt and a reaction under a high pressure.
  • the reaction at 0 to 120 is preferable, and the reaction at 50 to 110 is more preferable, from the viewpoints of easy handling and good reactivity.
  • the reactivity changes depending on the base concentration.
  • Terms have reactivity is Chasse handling good, preferably 10 one 7-10 2 mode Renault L as the base concentration, 10- 6-10 1 mol ZL is more preferred.
  • the amount of the catalyst to be added is not particularly limited, but is preferably 0.0001 to 10 times, more preferably 0.01 to 1 times the mol of the hydrolysis substrate in view of the reaction rate and the ease of removing the catalyst. It is more preferred that there be.
  • a 50 Om 1 separable flask was purged with nitrogen by attaching a three-way cock, a thermocouple, and a stirrer with a vacuum seal.
  • 175m of toluene dehydrated with Molecular Sieves 3A and 21.7ml of ethylcyclohexane were added, and 1,4-bis (11-chloro-1-1-methylethyl) benzene (1.63g, After adding 7.04 mmo 1) and 2-methylpyridine (77.4 mg, 0.83 mmo 1), the mixture was cooled to 70 "C. After cooling, isobutylene monomer (35.5 ml, 598 mmo 1) was introduced.
  • titanium tetrachloride (0.98 m and 8.93 mmo 1) was added to initiate the polymerization, and at this time, the temperature was raised by about 15. The polymerization was completed in about 40 minutes (with the accompanying After the polymerization was completed, 10-acetoxy 1-decene (2.80 g, 14. lmmol) and titanium tetrachloride (5.7 ml, 51.7 mmol 1) were added. After time response Then, the reaction mixture was introduced into 300 ml of ion-exchanged water heated at 80, further transferred to a 1 L separating funnel and shaken.
  • the resultant was washed three times with 300 ml of ion-exchanged water, and then the organic layer was isolated. 1 L of acetone was added thereto to reprecipitate a polymer, thereby removing low-molecular compounds. The precipitate was further washed twice with 10 OmI of acetone. The precipitate was further dissolved in 5 OmI of hexane. The solution is transferred to a 300-ml eggplant-shaped flask, and the solvent is distilled off under reduced pressure (at the final l Torr or less) under heating conditions (at 180) in an oil bath, and the target protected hydroxyl group is present at the end. Polysoptylene was obtained.
  • the functionalization rate of the obtained polyisobutylene was analyzed using NMR.
  • Example 1 except that the amount of 10-acetoxy 1-decene was 5.60 g (28.2 mmo 1) and the amount of titanium tetrachloride added at the time of adding the compound was 11.4 ml (103.4 mmo 1). The same was done.
  • a 5000 ml separable flask was equipped with a three-way cock, a thermocouple, and a stirrer with a vacuum seal, and the atmosphere was replaced with nitrogen.
  • 1484 ml of toluene dehydrated with Molecular Sieves 3A and 184 ml of ethyl hexane were added, and 1,4_bis (1-chloro-1-methylethyl) benzene (1 3.87 g, 60. Ommo 1) and 2-methylpyridine (657.9 mg, 7.06 mmo 1) were added, and the mixture was cooled to 170.
  • isobutylene monomer (299 ml, 3.58 mol) was introduced, and at this temperature, titanium tetrachloride (8.33 ml, 76. Ommo 1) was added to initiate polymerization. At this time, the temperature was raised by about 15 °. The polymerization was completed in about 60 minutes (the exotherm of the reaction system was no longer observed). After completion of the polymerization, 4-acetoxy-2-methyl-1-butene (30.8 g, 24 Ommo 1) and titanium tetrachloride (44.4 ml, 406 mmo 1) were added. After the reaction for 5 hours, 1.5 L of ion-exchanged water heated at 80 was introduced into the reaction mixture, and the mixture was stirred for 20 minutes.
  • the functionalization rate of the obtained polyisobutylene was analyzed using NMR.
  • the signal of methylene adjacent to the terminal hydroxyl group was used. Is observed at 3.55 ppm).
  • the reaction was carried out in the same manner as in Example 3, except that the alkenyl compound to be added was changed from 10-acetoxy-1-decene to oxenyl acetate (4.74 g, 28.2 mmo 1).
  • Titanium chloride (2.52m and 23.Ommol) added during the polymerization reaction.
  • Oxenyl acetate (32.4 g, 193 mmo 1) and titanium tetrachloride (39.8 ml, 386 mmo 1) added during the alkenyl addition reaction.
  • a 20-Om 1 three-necked flask was purged with nitrogen by attaching a three-way cock, a thermocouple, and a stirrer with a vacuum seal.
  • 35 ml of toluene dehydrated with Molecular Sieves 3A and 4.3 ml of methylcyclohexane were added, and 2-methylpyridine (15.5 mg, 0.17 mmo 1) was further added, followed by cooling to 170.
  • 9-decene-1-ol (0.87 g, 5.6 mmol
  • titanium tetrachloride 1.3 ml, 11.8 mmol
  • the polymer obtained by the present invention is a novel saturated hydrocarbon polymer having a functional group which can be easily converted to a hydroxyl group by deprotection at the terminal, and after completion of polymerization, solvent exchange and catalyst removal. It is possible to efficiently introduce hydroxyl groups in one pot without special treatment such as the above.

Abstract

Saturated hydrocarbon polymers having hydroxyl groups incorporated at the ends are useful as materials for highly weatherable urethanes. For producing these polymers, a multistage reaction has been necessary in which after completion of polymerization, the polymer ends are converted to olefinic ends and then subjected to hydroboration. A halogen-terminated hydrocarbon polymer obtained by cationic polymerization is reacted with a compound containing both a protected hydroxyl group as a substituent and an unsaturated bond to thereby easily obtain a saturated hydrocarbon polymer having the protected hydroxyl group at each end. This compound can be easily converted into a hydroxyl-terminated polymer by hydrolysis.

Description

明細書 末端に官能基を有する飽和炭化水素系重合体及びその製造方法 技術分野  TECHNICAL FIELD The present invention relates to a saturated hydrocarbon polymer having a functional group at a terminal and a method for producing the same
本発明は、 保護された水酸基を末端に有する炭化水素系重合体及び水酸基を末 端に有する炭化水素系重合体、 及びこれらの製造方法に関する。 背景技術  The present invention relates to a hydrocarbon-based polymer having a protected hydroxyl group at a terminal, a hydrocarbon-based polymer having a hydroxyl group at a terminal, and methods for producing these. Background art
一般に、 ァニオン重合によって合成されるポリブタジエンポリオールおよびポ リイソプレンポリオールを水素添加することによって、 末端に水酸基を有する飽 和炭化水素系重合体が得られることが知られている。 リビングァニオン重合では 、 重合終了後にエチレンォキシドを作用させることにより、 1級の水酸基を容易 に末端に定量的に導入することが可能である。  It is generally known that hydrogenated polybutadiene polyol and polyisoprene polyol synthesized by anionic polymerization can provide a saturated hydrocarbon polymer having a hydroxyl group at a terminal. In living anion polymerization, primary hydroxyl groups can be easily and quantitatively introduced into the terminal by reacting ethylene oxide after the polymerization.
これらの水酸基末端ポリオールはイソシァネート化合物と容易に反応し、 ウレ タン系の硬化物を与える。 このポリマ一を用いることによって、 ポリエーテル系 あるいはポリエステル系ポリオールを成分とするウレ夕ン組成物で問題とされて いる、 耐候性、 耐薬品性等の性能を向上させることが知られている。 しかしこれ らの水酸基末端ポリオールを用いたウレ夕ン組成物の素材としての各種耐久性に ついては、 まだ十分とは言えない。 また水酸基末端ポリオールを製造する際には 、 水素添加という困難な工程を経る必要があるという問題もある。  These hydroxyl-terminated polyols easily react with the isocyanate compound to give a urethane-based cured product. It is known that the use of this polymer improves the performance such as weather resistance and chemical resistance, which are problems in urethane compositions containing a polyether-based or polyester-based polyol as a component. However, the durability of urethane compositions using these hydroxyl-terminated polyols as raw materials is not yet sufficient. In addition, when producing a hydroxyl-terminated polyol, there is also a problem that it is necessary to go through a difficult step of hydrogenation.
一方、 高耐候性が期待される飽和炭化水素系高分子重合体として、 カチオン重 合により得られるポリイソプチレンが知られている。 特にリビングカチオン重合 により、 定量的にポリィソプチレンの末端に官能基を導入する反応は知られてい る。 J . P . K e n n e d yらはリビングカチオン重合により塩素基を末端に有 するポリイソプチレンをまず合成し、 次いで①' B u O Kを用いて末端の脱塩酸 反応をおこなうことによりイソプロぺニル基末端基に誘導したり、 あるいは②四 塩化チタン存在下でァリルトリメチルシランを反応させることでァリル基末端の ポリイソブチレンを合成している。 そしてそのイソプロぺニル基末端基又はァリ ル基末端と、 BH3または 9— BBNといったヒドリド—ポラン試薬とを反応さ せてから、 過酸化水素を用いることによって、 定量的に末端に水酸基を導入する 方法を開示している (例えば B. Ivan, J. P. Kennedy, and V. S. C. Chang, J. Polym. Sci. , Polym. Chem, Ed. , 1980, 18. 3177および B. Ivan, and J. P. Kennedy, Polym. Mater. Sci. Eng. , 1988, 58, 866など) 。 さらに J . P. Ke nn e d yらは、 水酸基末端ポリイソプチレンとイソシァネー卜基を複 数有する化合物との反応によって得られたウレタン樹脂が高耐候性を示すことも 報告している。 On the other hand, polyisobutylene obtained by cation polymerization is known as a saturated hydrocarbon-based polymer expected to have high weather resistance. In particular, a reaction for quantitatively introducing a functional group into the terminal of polybutylene by living cationic polymerization is known. J.P.Kennedy et al. First synthesized chlorine-terminated polyisobutylene by living cationic polymerization, and then performed dehydrochlorination of the terminal using ①'BuOK to convert the isopropyl group into a terminal isopropyl group. Derivatives or the reaction of aryltrimethylsilane in the presence of titanium tetrachloride synthesizes polyarylbutylene-terminated polyisobutylene. And the isopropyl group end group or aryl A method is disclosed in which a hydroxyl group is quantitatively introduced into a terminal by reacting a hydrogen-terminated terminal with a hydride-poran reagent such as BH 3 or 9-BBN and then using hydrogen peroxide (for example, B Ivan, JP Kennedy, and VSC Chang, J. Polym. Sci., Polym. Chem, Ed., 1980, 18.3177 and B. Ivan, and JP Kennedy, Polym. Mater. Sci. Eng., 1988, 58. , 866). J. P. Kennedy et al. Also report that urethane resins obtained by the reaction of hydroxyl-terminated polyisobutylene with a compound having a plurality of isocyanate groups exhibit high weather resistance.
しかしながら、 この方法はリビングカチオン重合によって得られた塩素末端の ポリイソブチレンを、 いったんォレフィン末端に変換した後に、 それを水酸基に 変換する必要がある。 さらに、 用いる原料が極めて特殊であり、 この方法は工業 的スケールで飽和炭化水素系ポリオールを製造するには適していない。  However, this method requires that the chlorine-terminated polyisobutylene obtained by living cationic polymerization be converted to an olefinic terminal and then converted to a hydroxyl group. Furthermore, the raw materials used are very special, and this method is not suitable for producing a saturated hydrocarbon polyol on an industrial scale.
そこで、 本発明はヒドリドーボラン試薬のような特殊で高価な試薬を用いるこ となく、 カチオン重合によって得られる飽和炭化水素系重合体のハロゲン末端か ら一段反応で合成可能な、 脱保護によって容易に水酸基を与える保護された水酸 基を末端に有する重合体主鎖が飽和な炭化水素鎖である炭化水素系重合体とその 製法を提供することを踝題とする。 発明の要約  Therefore, the present invention can be synthesized by a one-step reaction from the halogen terminal of a saturated hydrocarbon polymer obtained by cationic polymerization without using a special and expensive reagent such as a hydridoborane reagent. It is an object of the present invention to provide a hydrocarbon polymer having a protected main chain having a protected hydroxyl group at the terminal to give a hydroxyl group to the hydrocarbon chain, and a method for producing the same. Summary of the Invention
本発明は、 炭素—炭素単結合を形成するカチオン重合によって得られるハロゲ ン末端炭化水素系重合体と、 保護された水酸基および炭素一炭素二重結合を有す る化合物との反応により得られる、 保護された水酸基を末端に有する重合体主鎖 が飽和な炭化水素鎖である炭化水素系重合体およびその製造方法に関する。 さらには得られた保護された水酸基を末端に有する重合体主鎖が飽和な炭化水 素鎖である炭化水素系重合体を脱保護する事によって得られる水酸基を末端に有 する重合体主鎖が飽和な炭化水素鎖である炭化水素系重合体に関する。 発明の詳細な開示  The present invention provides a compound obtained by reacting a halogen-terminated hydrocarbon polymer obtained by cationic polymerization forming a carbon-carbon single bond with a compound having a protected hydroxyl group and a carbon-carbon double bond. The present invention relates to a hydrocarbon-based polymer in which a polymer main chain having a protected hydroxyl group at a terminal is a saturated hydrocarbon chain, and a method for producing the same. Furthermore, the polymer main chain having a hydroxyl group at the terminal obtained by deprotecting the obtained hydrocarbon-based polymer in which the obtained polymer main chain having a protected hydroxyl group at the terminal is a saturated hydrocarbon chain is obtained. It relates to a hydrocarbon polymer which is a saturated hydrocarbon chain. Detailed Disclosure of the Invention
重合開始剤を用いるリビングカチオン重合 (ィニファー法) によって得られる テレケリックなポリィソブチレンのハロゲン基末端に他の基質を反応させること により、 末端を修飾する反応に関しては多くの報告がなされている。 ポリイソブ チレン末端の塩素一炭素間にォレフィンを揷入する方法として、 例えば塩化メチ レン へキサンの混合溶剤系、 一 8 0 ^〜一 3 0 においてルイス酸を触媒とし て用いることで、 共役又は非共役のジェンをポリマー末端に導入する系が知られ ている (例えば U S 5 2 1 2 2 4 8、 特開平 4一 2 8 8 3 0 9等) 。 例えばブ夕 ジェンなどの共役ジェンを反応させた系では高い反応性が期待されるハロゲン化 ァリル末端となり、 更なる脱保護等で末端水酸基への変換も期待される。 しかし ながら、 この方法ではハロゲン末端ポリイソプチレンから 1ステップで水酸基末 端ポリイソブチレンを得ることは出来ない。 そこで、 検討を重ね、 本発明をなす に至った。 Obtained by living cationic polymerization using polymerization initiator (Inifer method) There have been many reports on the reaction of modifying the terminal by reacting another substrate with the terminal of the halogen group of telechelic polyisobutylene. As a method for introducing olefins between chlorine and carbon at the terminal of polyisobutylene, for example, a mixed solvent system of methylene chloride and hexane, using a Lewis acid as a catalyst in 180 ^ to 130, can be used to conjugate or non-conjugate. A system for introducing a conjugated gen to the terminal of a polymer is known (for example, US Pat. No. 5,212,488, Japanese Patent Laid-Open No. 288,309, 1991). For example, in a system in which a conjugated gen such as bushugen is reacted, the terminal becomes an aryl halide terminal which is expected to have high reactivity, and conversion to a terminal hydroxyl group by further deprotection or the like is expected. However, in this method, hydroxyl-terminated polyisobutylene cannot be obtained from halogen-terminated polyisobutylene in one step. Thus, the present inventors have made repeated studies and have completed the present invention.
本発明における重合体主鎖が飽和な炭化水素鎖である炭化水素系重合体とは、 炭素一炭素単結合を形成するカチオン重合によって得られた主鎖中には C一 C二 重結合を有さない (すなわち飽和な) 炭化水素系重合体を意味するが、 主鎖にぶ ら下がったグラフト基には C— C二重結合を有していてもよい。 また、 カチオン 重合の際に用いる重合開始剤中には C一 C二重結合を有していても構わない。 保護された水酸基を末端に有する重合体主鎖が飽和な炭化水素鎖である炭化水 素系重合体の構造は、 カチオン重合によって得られるハロゲン末端炭化水素系重 合体が式 (1 ) :  In the present invention, the hydrocarbon-based polymer in which the main chain of the polymer is a saturated hydrocarbon chain is defined as having a C-C double bond in the main chain obtained by cationic polymerization forming a carbon-carbon single bond. No (that is, saturated) means a hydrocarbon polymer, but the graft group hanging from the main chain may have a C—C double bond. Further, the polymerization initiator used in the cationic polymerization may have a C-C double bond. The structure of a hydrocarbon polymer in which the main chain of the polymer having a protected hydroxyl group at the end is a saturated hydrocarbon chain is represented by the following formula (1):
R 1 (A - X) a ( 1 ) R 1 (A-X) a (1)
(式中、 R 1は単環または複数の芳香環を含む 1価から 4価までの炭化水素基、 Xは塩素基または臭素基、 aは 1から 4の整数。 Aは一種又は二種以上のカチォ ン重合性単量体の重合体で、 aが 2以上の時は同じでも異なっていてもよい。 ) で表され、 (Wherein, R 1 is a monovalent to tetravalent hydrocarbon group containing a single ring or a plurality of aromatic rings, X is a chlorine group or a bromine group, a is an integer of 1 to 4. A is one kind or two or more kinds. A) is a polymer of a cationic polymerizable monomer, and when a is 2 or more, they may be the same or different.
保護された水酸基および炭素一炭素二重結合を有する化合物が式 (2 ) : C H 2 = C ( R 2 ) 一 B— O G ( 2 ) A compound having a protected hydroxyl group and a carbon-carbon double bond is represented by the formula (2): CH 2 = C (R 2 ) -B—OG (2)
(式中、 R 2は水素または炭素数 1から 1 8の飽和炭化水素基を、 Bは炭素数 1 から 3 0の 2価の炭化水素基を、 Gは水酸基の保護基を表す。 ) (In the formula, R 2 represents hydrogen or a saturated hydrocarbon group having 1 to 18 carbon atoms, B represents a divalent hydrocarbon group having 1 to 30 carbon atoms, and G represents a protecting group for a hydroxyl group.)
で表されるものであることが好ましい。 なお式 (2〉 中の Bは、 炭素数 1から 30の 2価の炭化水素基であって、 0〜 5個の炭素一炭素二重結合 〔ただし CH2==C (R2) —基 (R2は上記と同じ) を有するものを除く〕 及び/又は 0〜3個の芳香環を有することが好ましい。 ま た、 式 (2) 中の Bは、 0~3個の—CH = CH—で表される 2価の基を有する ことがさらに好ましい。 It is preferable that they are represented by B in the formula (2) is a divalent hydrocarbon group having 1 to 30 carbon atoms, and has 0 to 5 carbon-carbon double bonds [however, CH 2 == C (R 2 ) — (R 2 is the same as above) and / or preferably has 0 to 3 aromatic rings, and B in the formula (2) represents 0 to 3 —CH = More preferably, it has a divalent group represented by CH—.
また前記式 (2) の化合物としては、 式 (3) :  The compound of the formula (2) includes a compound of the formula (3):
CH2 = C (R2) 一 (CH2) b— {— CH-CH— ( CH2) c} n-OG CH 2 = C (R 2 ) one (CH 2 ) b — {— CH-CH— (CH 2 ) c } n -OG
(3) (3)
(式中、 R 2は水素または炭素数 1から 18の飽和または不飽和の 1価の炭化水 素基を表し、 b及び cは 1から 30の整数であって同一であっても異なっていて も良く、 nは 0から 5の整数を、 Gは水酸基の保護基を表す。 ) (In the formula, R 2 represents hydrogen or a saturated or unsaturated monovalent hydrocarbon group having 1 to 18 carbon atoms, and b and c are integers of 1 to 30 and may be the same or different. And n represents an integer of 0 to 5, and G represents a hydroxyl-protecting group.)
で表されるものであることがより好ましい。 More preferably, it is represented by
この方法によって得られる保護した水酸基を末端に有する重合体主鎖が飽和な 炭化水素鎖である炭化水素系重合体は脱保護によって容易に水酸基を末端に有す る重合体主鎖が飽和な炭化水素鎖である炭化水素系重合体に変換することが可能 である。  The hydrocarbon-based polymer obtained by this method, in which the main chain of the protected hydroxyl-terminated polymer is a saturated hydrocarbon chain, is easily deprotected so that the hydroxyl-terminated polymer main chain is saturated. It can be converted to a hydrocarbon polymer that is a hydrogen chain.
前記式 (1) におけるカチオン重合性のモノマーには特に制限はないが、 好ま しいモノマーとしては、 例えばイソブチレン、 インデン、 ビネン、 スチレン、 メ トキシスチレン、 クロルスチレン等を挙げることができる。  The cationically polymerizable monomer in the above formula (1) is not particularly limited, but preferable monomers include, for example, isobutylene, indene, binene, styrene, methoxystyrene, chlorostyrene and the like.
また本発明の重合体を硬化性組成物の原料とする場合には、 架橋前には液状で あり、 架橋後にはゴム状の硬化物を与え得るイソブチレン系重合体を製造するの が好ましい。  When the polymer of the present invention is used as a raw material of a curable composition, it is preferable to produce an isobutylene-based polymer which is in a liquid state before crosslinking and can give a rubber-like cured product after crosslinking.
イソブチレン系重合体は、 単量体単位のすべてがィソプチレン単位から形成さ れていてもよいし, イソブチレンと共重合体を有する単量体単位をイソプチレン 系重合体中の好ましくは 50%以下 (重量%、 以下同じ) 、 さらに好ましくは 3 0%以下、 とくに好ましくは 10 %以下の範囲で含有してもよい。  In the isobutylene-based polymer, all of the monomer units may be formed from isobutylene units, or the monomer unit having a copolymer with isobutylene is preferably 50% or less of the isobutylene-based polymer (by weight). %, The same applies hereinafter), more preferably 30% or less, particularly preferably 10% or less.
このような単量体成分としては、 たとえば、 炭素数 4〜12のォレフィン、 ビ ニルエーテル、 芳香族ビニル化合物、 ビニルシラン類、 ァリルシラン類などがあ げられる。 このような共重合体成分としては、 たとえば 1—ブテン、 2—ブテン 、 2—メチルー 1—ブテン、 3—メチルー 1—ブテン、 ペンテン、 4ーメチルー 1—ベンテン、 へキセン、 ビニルシクロへキセン、 メチルビニルエーテル、 ェチ ルビ二ルェ一テル、 イソプチルビ二ルェ一テル、 スチレン、 α—メチルスチレン 、 ジメチルスチレン、 モノクロロスチレン、 ジクロロスチレン、 )3一ビネン、 ィ ンデン, ピニルトリクロロシラン、 ビニルメチルジクロロシラン、 ビニルジメチ ルクロロシラン、 ビニルジメチルメ卜キシシラン、 ビニル卜リメチルシラン、 ジ ビニルジクロロシラン、 ジビニルジメトキシシラン、 ジビニルジメチルシラン、 1 , 3—ジビニル一 1 , 1, 3 , 3—テ卜ラメチルジシロキサン、 トリピニルメ チルシラン、 テトラビエルシラン、 ァリルトリクロロシラン、 ァリルメチルジク ロロシラン、 ァリルジメチルクロロシラン、 ァリルジメチルメトキシシラン、 ァ リルトリメチルシラン、 ジァリルジクロロシラン、 ジァリルジメトキシシラン、 ジァリルジメチルシラン、 ァ一メ夕クリロイルォキシプロピルトリメトキシシラ ン、 了一メタクリロイルォキシプロピルメチルジメトキシシランなどがあげられ る。 Examples of such a monomer component include C4 to C12 olefins, vinyl ethers, aromatic vinyl compounds, vinylsilanes, and arylsilanes. Such copolymer components include, for example, 1-butene, 2-butene , 2-methyl-1-butene, 3-methyl-1-butene, pentene, 4-methyl-1-pentene, hexene, vinylcyclohexene, methyl vinyl ether, ethyl vinyl ether, isoptyl vinyl ether, styrene, α —Methylstyrene, dimethylstyrene, monochlorostyrene, dichlorostyrene,) 3-vinylene, indene, pinyltrichlorosilane, vinylmethyldichlorosilane, vinyldimethylchlorosilane, vinyldimethylmethoxysilane, vinyltrimethylsilane, divinyldichlorosilane, divinyl Dimethoxysilane, divinyldimethylsilane, 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, tripinylmethylsilane, tetrabiersilane, aryltrichlorosilane, arylmethyldichlorosilane , Aryldimethylchlorosilane, aryldimethylmethoxysilane, aryltrimethylsilane, diaryldichlorosilane, diaryldimethoxysilane, diaryldimethylsilane, acrylyloxypropyltrimethoxysilane, And methacryloyloxypropylmethyldimethoxysilane.
さらに、 架橋反応によって架橋性高分子化合物を得る際に充分な強度、 耐候性 、 ゲル分率等を達成するためには、 前記式 (1 ) の重合体の aが 2または 3の塩 素基末端ポリイソブチレンである飽和炭化水素系重合体が好ましい。  Further, in order to achieve sufficient strength, weather resistance, gel fraction, etc., when a crosslinkable polymer compound is obtained by a crosslinking reaction, a of the polymer of the formula (1) is preferably a hydrogen atom of 2 or 3 Saturated hydrocarbon polymers having terminal polyisobutylene are preferred.
保護した水酸基および炭素一炭素二重結合を含む化合物の保護基は脱保護によ つて水酸基を与えるものであれば特に限定されるものではないが、 通常、 炭素数 0〜 5 4の無機基又は有機基である。 また、 温和な条件下で脱保護が行える好ま しい保護基として、 下記のものを挙げることができる。 The protecting group of the compound containing a protected hydroxyl group and a carbon-carbon double bond is not particularly limited as long as it provides a hydroxyl group by deprotection, but is usually an inorganic group having 0 to 54 carbon atoms or Organic group. Preferred protecting groups that can be deprotected under mild conditions include the following.
R3- R¾00- R30- R^HCO- R 3 -R¾00- R 3 0- R ^ HCO-
R3-M2- 2 X- ' R 3 -M 2 - 2 X- '
R3 OR3 X R 3 OR 3 X
R4-M3- X-M3- R 4 -M 3 -XM 3-
R3 OR3 X R 3 OR 3 X
R -M4- ^- 4- 及び X-M4-R -M 4 - ^ - 4 - and XM 4 -
R5 OR5 X R 5 OR 5 X
(式中、 R3、 R\ R5は水素、 または炭素数 1から 18の飽和または不飽和の 炭化水素基を表し、 Rを複数含む基においては同一であっても異なっていてもよ い。 Xは C l、 B r、 Iから選ばれる官能基である。 M1は L i、 Na、 から 選ばれる 1価の金属、 M2は Mg、 C a、 S r、 B aから選ばれる 2価の金属、 M3は B、 A 1、 G aから選ばれる 3価の金属、 M4は T i、 Z r、 H f 、 S i 、 Ge、 S n、 P bから選ばれる 4価の金属である。 ) (In the formula, R 3 and R \ R 5 represent hydrogen or a saturated or unsaturated hydrocarbon group having 1 to 18 carbon atoms, and may be the same or different in a group containing a plurality of R. X is a functional group selected from Cl, Br, and I. M 1 is a monovalent metal selected from Li, Na, and M 2 is selected from Mg, Ca, Sr, and Ba. divalent metal, M 3 is B, a 1, 3-valent metal selected from G a, M 4 is T i, Z r, H f , S i, Ge, S n, 4 valent selected from P b Metal.)
保護基としては、 入手性や、 脱保護後の重合体と保護基成分の分離のしゃすさ などから、 アルキル基、 ァシル基、 RC (O) —基 (ただし Rは炭素数 1〜10 の飽和炭化水素基) 、 シリル基、 金属アルコキシドが好ましく、 メチル基、 ェチ ル基、 n-及び i-プロピル基、 n-、 i-および t-ブチル基、 ホルミル基、 ァ セチル基、 プロピオニル基、 プチリル基、 ベンゾィル基、 トリメチルシリル基、 トリフエニルシリル基がさらに好ましく、 これらの保護基が 0〜 54個の炭素原 子を有するものであることが特に好ましい。  Alkyl groups, acyl groups, and RC (O) — groups (where R is a saturated group having 1 to 10 carbon atoms), because of the availability and the difficulty of separating the polymer from the protective group components after deprotection, etc. A hydrocarbon group), a silyl group, and a metal alkoxide; a methyl group, an ethyl group, n- and i-propyl groups, an n-, i- and t-butyl group, a formyl group, an acetyl group, a propionyl group; Even more preferred are a ptyryl group, a benzoyl group, a trimethylsilyl group, and a triphenylsilyl group, and it is particularly preferred that these protecting groups have 0 to 54 carbon atoms.
ハロゲン末端炭化水素系重合体に反応させる基質である、 前記式 (2) で表さ れる化合物としては、 1置換あるいは 1, 1 ' 一 2置換の末端に保護した水酸基 を有するォレフィンであれば特に制限されるものではないが、 反応性の高さから 、 前記式 (2) において Gを水素としたときに、 ァリルアルコール、 メタリルァ ルコール、 3—ブテン一 1一オール、 3—メチル— 3—ブテン一 1一オール, 4 一ペンテン一 1—ォーリレ、 5—へキセン一 1—ォー jレ, 6—ヘプテン一 1—ォー ル、 7—ォクテン一 1—オール、 8—ノネンー 1一オール、 9ーデセン一 1—ォ —ルおよび 10—ゥンデセン— 1—ォ一ル、 2, 5—へキサジエノ一ル、 2, 6— ヘプ夕ジェノール、 3, 6—ヘプ夕ジェノール, 2, 7-ォクタジェノール、 3, 7 -ォクタジエノ一ル、 4, 7-ォク夕ジェノール、 2. 8-ノナジエノ一ル、 3, 8- ノナジエノ一ル、 4, 8-ノナジエノ一ル、 5, 8-ノナジエノール、 2, 9-デカジ ェノール、 3, 9-デカジエノール、 4, 9-デカジエノール、 5, 9-デカジエノー ルまたは 6, 9-デカジエノールから選ばれる化合物が好ましい。 The compound represented by the above formula (2), which is a substrate to be reacted with the halogen-terminated hydrocarbon polymer, is preferably an olefin having a mono-substituted or 1,1′-monosubstituted terminal-protected hydroxyl group. Although not limited, when G is hydrogen in the above formula (2), aryl alcohol, methallyl alcohol, 3-buten-l-l-ol, 3-methyl-3- Butene-1 1-all, 4 1-pentene 1-olyl, 5-hexene 1-ol j, 6-heptene 1-l, 7-octen 1-ol, 8-nonen-l-ol, 9-decene 1-l 1-ol, 2,5-hexadienol, 2,6-heppugenol, 3,6-heppugenol, 2,7-octagenol, 3,7-octadienol 4,7-octanegenol, 2.8-nonadienol, 3,8-nonadienol, 4,8-nonadienol, 5,8-nonadienol, 2,9-decadienol, 3, Compounds selected from 9-decadienol, 4, 9-decadienol, 5, 9-decadienol or 6,9-decadienol are preferred.
前記式 (1) のカチオン重合によって得られるハロゲン末端炭化水素系重合体 に前記式 (2) で表される保護した水酸基および素一炭素二重結合を含む化合物 を反応させる際に、 触媒としてルイス酸を用いることが可能である。 この場合ル イス酸であれば特に限定されるものではないが、 T i C l 4, A 1 C 13、 B C 13、 SnC 14が反応活性が高く、 選択性が良好である点から好ましい。 When reacting a compound containing a protected hydroxyl group and an elemental carbon double bond represented by the above formula (2) with a halogen-terminated hydrocarbon polymer obtained by cationic polymerization of the above formula (1), Lewis is used as a catalyst. It is possible to use acids. In this case is not particularly limited as long as Le chair acid, T i C l 4, A 1 C 1 3, BC 1 3, SnC 1 4 has a higher reaction activity, from the viewpoint selectivity is good preferable.
本発明において、 反応溶剤としてハロゲン化炭化水素、 芳香族炭化水素、 及び 脂肪族炭化水素から任意に選ばれる単独又は混合溶剤を用いることが可能である が、 ポリマーの重合条件下での溶解性や反応性からハロゲン化炭化水素として塩 化メチレン、 クロ口ホルム、 1, 1ージクロルェタン、 1, 2—ジクロルェ夕ン 、 n—プロピルクロライ ド、 n—ブチルクロライ ドのなかから選ばれる 1種以上 の成分であることが好ましい。 同様の理由で、 芳香族炭化水素はトルエンが好ま しく、 脂肪族炭化水素としてはペンタン、 n—へキサン、 シクロへキサン、 メチ ルシクロへキサン、 ェチルシクロへキサンのなかから選ばれる 1種以上の成分が 好ましい。  In the present invention, it is possible to use a single or mixed solvent arbitrarily selected from halogenated hydrocarbons, aromatic hydrocarbons, and aliphatic hydrocarbons as the reaction solvent. At least one component selected from methylene chloride, chloroform, 1,1-dichloroethane, 1,2-dichloroethane, n-propyl chloride, and n-butyl chloride as halogenated hydrocarbons due to their reactivity. It is preferred that For the same reason, the aromatic hydrocarbon is preferably toluene, and the aliphatic hydrocarbon is at least one component selected from pentane, n-hexane, cyclohexane, methylcyclohexane, and ethylcyclohexane. Is preferred.
環境への悪影響が心配されるハロゲン化炭化水素を用いない反応溶剤として、 例えばトルエン、 ェチルシクロへキサン、 あるいはこれらの混合溶剤を用いるこ とが可能である。  For example, toluene, ethylcyclohexane, or a mixed solvent thereof can be used as a reaction solvent that does not use a halogenated hydrocarbon, which is likely to have an adverse effect on the environment.
脱保護反応は特に制限されるものではないが、 好ましい反応としては加水分解 反応、 熱分解反応などがあげられる。  The deprotection reaction is not particularly limited, but preferred reactions include a hydrolysis reaction and a thermal decomposition reaction.
加水分解反応は溶剤系、 無溶剤系のどちらでも行うことが可能である。 溶剤系 の反応に用いる溶剤は特に限定されるものではないが、 保護された水酸基を末端 に有する飽和炭化水素系重合体を製造する溶剤を用いることが好ましい。 加水分 解を行う条件としては酸性、 塩基性条件のどちらでも可能であるが、 加水分解反 応の効率から塩基性水溶液を用いて加水分解反応を行うことが好ましい。 The hydrolysis reaction can be performed in either a solvent system or a non-solvent system. The solvent used for the solvent-based reaction is not particularly limited. It is preferable to use a solvent for producing a saturated hydrocarbon polymer having the above. The conditions for performing the hydrolysis may be either acidic or basic conditions, but it is preferable to perform the hydrolysis reaction using a basic aqueous solution in view of the efficiency of the hydrolysis reaction.
塩基条件下での加水分解に用いる試薬としては、 通常の加水分解反応に用いる 有機または無機の塩基化合物であれば特に制限されるものではないが、 取り扱い の容易さなどから水酸化ナトリウム、 水酸化カリウム、 水酸化リチウム、 水酸化 カルシウム、 水酸化マグネシウム、 炭酸ナトリウム、 炭酸カリウム、 炭酸リチウ ム、 炭酸カルシウム、 炭酸マグネシウム、 酢酸ナトリウム、 酢酸カリウム、 酢酸 リチウム、 酢酸カルシウム、 酢酸マグネシウム、 t -ブトキシカリウム、 t -ブト キシナトリウム、 カリウムメトキシド、 ナトリウムメトキシドなどが特に好まし い。  The reagent used for the hydrolysis under basic conditions is not particularly limited as long as it is an organic or inorganic basic compound used in a usual hydrolysis reaction. Potassium, lithium hydroxide, calcium hydroxide, magnesium hydroxide, sodium carbonate, potassium carbonate, lithium carbonate, calcium carbonate, magnesium carbonate, sodium acetate, potassium acetate, lithium acetate, calcium acetate, magnesium acetate, potassium t-butoxide, Sodium t-butoxide, potassium methoxide, sodium methoxide and the like are particularly preferred.
加水分解反応では、 触媒の添加を行うことによって、 効率的に反応を進行させ ることが可能である。 このような触媒としては有機および無機の触媒のいずれで も反応が可能であるが、 反応の容易さから有機塩が好ましく、 特に 4級アンモニ ゥム塩が好ましい。 代表的なアンモニゥム塩としては、 塩化トリェチルベンジル アンモニゥム、 塩化テトラメチルアンモニゥム、 臭化トリェチルベンジルアンモ 二ゥム、 塩化トリオクチルメチルアンモニゥム、 塩化トリブチルベンジルアンモ 二ゥム、 塩化トリメチルベンジルアンモニゥム、 塩化 N—ラウリルピリジニゥム 、 水酸化テトラ— n—プチルアンモニゥム、 水酸化テトラメチルアンモニゥム、 水酸化トリメチルベンジルアンモニゥム、 臭化トリメチルフエ二ルアンモニゥム 、 臭化テトラメチルアンモニゥム、 臭化テトラェチルアンモニゥム。 臭化テトラ 一 n _プチルアンモニゥム、 テトラプチルアンモニゥムハイドロゲンサルフエ一 ト、 N—べンジルピコリニゥムクロライド、 ヨウ化テトラメチルアンモニゥム、 ヨウかテトラ- n -ブチルアンモニゥム、 N—ラウリル— 4一ピコリニゥムクロラ イ ド、 N—ラウリルピコリニゥムクロライドなどが挙げられる。  In the hydrolysis reaction, the reaction can be efficiently advanced by adding a catalyst. As such a catalyst, any of organic and inorganic catalysts can be used for the reaction. However, an organic salt is preferable because of the ease of the reaction, and a quaternary ammonium salt is particularly preferable. Representative ammonium salts include triethylbenzylammonium chloride, tetramethylammonium chloride, triethylbenzylammonium bromide, trioctylmethylammonium chloride, tributylbenzylammonium chloride, trimethylbenzyl chloride. Ammonia, N-laurylpyridinium chloride, tetra-n-butylammonium hydroxide, tetramethylammonium hydroxide, trimethylbenzylammonium hydroxide, trimethylphenylammonium bromide, tetrabromide Methylammonium, tetraethylammonium bromide. Tetra-n-butylammonium bromide, tetrabutylammonium hydrogen sulfate, N-benzylpicolinium chloride, tetramethylammonium iodide, iodine or tetra-n-butylammonium , N-lauryl-41-picolinidum chloride, N-lauryl-picolinidum chloride and the like.
本発明にかかる保護された水酸基を末端に有する飽和炭化水素系重合体の製造 は、 例えば以下のようにして行われる。 すなわち, 式 (1 ) で示されるハロゲン 基を末端に有する重合体に 1〜4当量の式 (2 ) で表される保護された水酸基お よび炭素一炭素二重結合を有する化合物をクロ口ホルム、 塩化メチレン、 1 , 1 —ジクロルェタン、 1 , 2—ジクロルェタン、 n—プロピルクロライ ド、 n—ブ チルクロライド、 トルエン、 ペンタン、 n—へキサン、 シクロへキサン、 メチル シクロへキサン、 ェチルシクロへキサンのなかから選ばれる 1種以上の成分から なる溶剤に溶解する。 これに、 ピリジン、 2—メチルピリジン、 3—メチルピリ ジン、 4—メチルピリジン、 2 , 6 —ジー t —ブチルピリジン等のエレクトロン ドナ一共存下、 一 1 0 0 〜一 3 0 :の温度範囲で T i C 1 4、 A 1 C 1 BThe production of the saturated hydrocarbon polymer having a protected hydroxyl group at the terminal according to the present invention is performed, for example, as follows. That is, 1 to 4 equivalents of a compound having a protected hydroxyl group and a carbon-carbon double bond represented by the formula (2) are added to a polymer having a halogen group at the terminal represented by the formula (1). , Methylene chloride, 1, 1 —One selected from dichloroethane, 1,2-dichloroethane, n-propyl chloride, n-butyl chloride, toluene, pentane, n-hexane, cyclohexane, methyl cyclohexane, and ethylcyclohexane Dissolves in a solvent consisting of the above components. In the presence of electron donors such as pyridine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, 2,6-di-t-butylpyridine, etc., in the temperature range of 110 to 130: T i C 1 4, A 1 C 1 B
C 1 3、 S n C 1 4等のルイス酸触媒を添加し、 3 0分〜 5時間反応させること で、 目的とする水酸基を末端に有する飽和炭化水素系重合体が得られる。 Was added C 1 3, S n C 1 4 or the like Lewis acid catalyst, by reacting 3 0 minutes to 5 hours, saturated hydrocarbon polymer having a hydroxyl group of interest to the end is obtained.
ここで、 本発明に到達した過程について若干説明する。  Here, the process that has reached the present invention will be briefly described.
ルイス酸と水酸基を持つ化合物は反応することによってハロゲン化水素を与え ることが知られている。 水酸基末端のォレフィン化合物をルイス酸と接触させる とハロゲン化水素が生成し、 さらにォレフィンへのハロゲン化水素の付加反応が 進行することが検討の結果明らかになった。  It is known that a Lewis acid and a compound having a hydroxyl group give a hydrogen halide by reacting. Investigations have shown that contact of a hydroxyl-terminated olefin compound with a Lewis acid generates hydrogen halide, and the addition reaction of the hydrogen halide to the olefin proceeds.
そこで、 ォレフィン基質の末端を脱保護反応によって容易に水酸基に誘導する ことが可能な基で保護することにより、 H C 1が発生する副反応を抑えた。 すなわち水酸基を持つォレフィン化合物の水酸基の水素原子を以下の基  Thus, by protecting the terminal of the olefin substrate with a group which can be easily induced to a hydroxyl group by a deprotection reaction, a side reaction to generate HC1 was suppressed. That is, the hydrogen atom of the hydroxyl group of the olefin compound having a hydroxyl group is
R¾00- R30- R^HCO- R¾00- R 3 0- R ^ HCO-
M1 R3-M2- R^-M2- X-M2- M 1 R 3 -M 2 -R ^ -M 2 -XM 2-
R 3 OR 3 X R 3 OR 3 X
R4- 3- 3 X- 3- 4-
Figure imgf000011_0001
R 4 - 3 - 3 X- 3 - 4-
Figure imgf000011_0001
(式中、 R 3、 R 4、 R 5は水素、 または炭素数 1から 1 8の飽和または不飽和の 炭化水素基を表し、 Rを複数含む基においては同一であっても異なっていてもよ い。 Xは C l、 B r、 Iから選ばれる官能基である。 M1は L i、 Na、 から 選ばれる 1価の金属、 M2 Mg、 C a, S r、 B aから選ばれる 2価の金属、 M ¾B、 A 1 , G aから選ばれる 3価の金属、 M4は T i、 Z r、 H f , S i 、 Ge、 S n、 P bのなかから選ばれる 4価の金属である。 ) (Wherein, R 3 , R 4 , and R 5 are hydrogen or saturated or unsaturated having 1 to 18 carbon atoms. Represents a hydrocarbon group, and the groups containing a plurality of Rs may be the same or different. X is a functional group selected from Cl, Br and I. M 1 is a monovalent metal selected from Li, Na, and M 2 Mg, a divalent metal selected from Ca, Sr, and Ba, and a trivalent metal selected from M 価 B, A 1, and Ga. metal, M 4 is a tetravalent metal selected from among the T i, Z r, H f , S i, Ge, S n, P b. )
に変換することで副反応を抑制した。 The side reaction was suppressed by converting to.
水酸基の保護基によっては、 ルイス酸に配位するものもある。 基質の触媒への 配位は反応活性を低下させることから、 付加反応の際には水酸基および炭素一炭 素二重結合を有する化合物に対してモル数で当量以上のルイス酸を用いることが 好ましく、 特に好ましくは 1〜20当量である。  Some hydroxyl protecting groups coordinate to Lewis acids. Since the coordination of the substrate to the catalyst reduces the reaction activity, it is preferable to use a Lewis acid in a molar number equivalent or more to the compound having a hydroxyl group and a carbon-carbon double bond during the addition reaction. Particularly preferred is 1 to 20 equivalents.
本発明において用いるルイス酸は、 ィニファー法によるリビングカチオン重合 に用いることが可能である。 まず、 ィニファー法によりハロゲン基を末端に有す る重合体を得てから、 単離等の処理をすること無しに、 保護された水酸基および 炭素—炭素二重結合を有する化合物、 およびルイス酸、 エレクトロンドナー等を 加えることにより、 保護した水酸基を末端に有する重合体を 1ポッ卜で得ること が可能である。  The Lewis acid used in the present invention can be used for living cationic polymerization by the inifer method. First, after obtaining a polymer having a halogen group at the terminal by the inifer method, a compound having a protected hydroxyl group and a carbon-carbon double bond, a Lewis acid, By adding an electron donor or the like, a polymer having a protected hydroxyl group at the terminal can be obtained in one pot.
式 (1) における R1は重合開始剤の残基であり、 ィニファー法によるリピン グカチオン重合に用いることが出来る 1から 4官能の開始剤の残基であれば特に 制限されるものではない。 開始剤の官能基数は 2又は 3であることが好ましい。 このうち、 以下に示したベンジル位に置換基を有する化合物は、 重合時の開始剤 効率が高いので好ましい。 In the formula (1), R 1 is a residue of a polymerization initiator, and is not particularly limited as long as it is a residue of a monofunctional to tetrafunctional initiator that can be used for the cation cationic polymerization by the inifer method. The number of functional groups of the initiator is preferably 2 or 3. Among these, the compounds having a substituent at the benzyl position shown below are preferable because of their high initiator efficiency during polymerization.
Figure imgf000012_0001
(式中、 Yは塩素基、 臭素基、 ストキシ基、 ァセチル基を表す。 ) 重合反応の溶剤は特に制限されるものではないが、 重合反応の後、 1ポットで ォレフィン化合物を製造することも可能となることから, 末端に保護された水酸 基を導入する反応の溶剤と同じであることが好ましい。 重合反応と末端への水酸 基の導入反応と共通する反応溶剤としてハロゲン化炭化水素、 芳香族炭化水素、 及び脂肪族炭化水素から任意に選ばれる単独又は混合溶剤を用いることが可能で あるが、 ポリマーの重合条件下での溶解性や反応性からハロゲン化炭化水素とし て塩化メチレン、 クロ口ホルム、 1 , 1ージクロルェタン, 1 . 2—ジクロルェ タン、 η—プロピルクロライド、 η—ブチルクロライドのなかから選ばれる 1種 以上の成分であることが好ましい。 同様の理由で、 芳香族炭化水素がトルエンが 好ましく、 脂肪族炭化水素としてはペンタン、 η—へキサン、 シクロへキサン、 メチルシクロへキサン、 ェチルシクロへキサンのなかから選ばれる 1種以上の成 分が好ましい。
Figure imgf000012_0001
(In the formula, Y represents a chlorine group, a bromine group, a stoxy group, or an acetyl group.) The solvent for the polymerization reaction is not particularly limited. However, after the polymerization reaction, the olefin compound may be produced in one pot after the polymerization reaction. Since it becomes possible, the solvent is preferably the same as the solvent for the reaction for introducing a protected hydroxyl group into the terminal. A single or mixed solvent arbitrarily selected from halogenated hydrocarbons, aromatic hydrocarbons, and aliphatic hydrocarbons can be used as a reaction solvent common to the polymerization reaction and the reaction for introducing a hydroxyl group to a terminal. Among the halogenated hydrocarbons, methylene chloride, chloroform, 1,1-dichloroethane, 1.2-dichloroethane, η-propyl chloride, and η-butyl chloride are used as halogenated hydrocarbons due to their solubility and reactivity under the polymerization conditions of the polymer. Preferably, it is at least one component selected from For the same reason, toluene is preferred as the aromatic hydrocarbon, and at least one component selected from pentane, η-hexane, cyclohexane, methylcyclohexane, and ethylcyclohexane as the aliphatic hydrocarbon. preferable.
近年、 環境問題上、 非ハロゲン化が重要な技術となっているが、 本系に於いて もトルエンとェチルシクロへキサンの溶剤系を用いた場合、 リビングカチオン重 合で、 狭い分子量分布を有するポリマ一を得ることが可能であり、 この条件下で 保護された水酸基を有するォレフィン化合物の付加反応も速やかに進行する。 重 合性、 重合体の低温での溶解度の観点から、 溶剤の混合比率としてはトルエン: ェチルシクロへキサン = 6 : 4〜9 : 1 (重量比) が好ましい。  In recent years, non-halogenation has become an important technology due to environmental issues.However, even in this system, when a solvent system of toluene and ethylcyclohexane is used, a polymer having a narrow molecular weight distribution due to living cation polymerization is used. In this condition, the addition reaction of the protected olefin compound having a hydroxyl group proceeds rapidly. From the viewpoint of the polymerizability and the solubility of the polymer at a low temperature, the mixing ratio of the solvent is preferably toluene: ethylcyclohexane = 6: 4 to 9: 1 (weight ratio).
このようにして得られた保護された水酸基を末端に有する重合体主鎖が飽和な 炭化水素系重合体は加水分解反応によって容易に水酸基を末端に有する重合体主 鎖が飽和な炭化水素系重合体へと変換可能である。  The thus-obtained hydrocarbon polymer having a protected hydroxyl-terminated polymer main chain and having a saturated main chain is easily hydrolyzed by a hydrolysis reaction. It can be converted into a union.
式 (2 ) 又は式 (3 ) で表される化合物中の保護基 Gが炭素数 2以上のアルキ ル基である系では熱分解反応が有効であり、 通常 5 0から 2 5 0 *Cの条件下、 加 熱する事によって脱保護反応が進行する。 この反応に際しては必要に応じて触媒 を添加することで反応をより容易に進行させることが可能である。  In a system in which the protecting group G in the compound represented by the formula (2) or the formula (3) is an alkyl group having 2 or more carbon atoms, a thermal decomposition reaction is effective, and usually 50 to 250 * C The deprotection reaction proceeds by heating under the conditions. In this reaction, the reaction can be made to proceed more easily by adding a catalyst as needed.
また、 脱保護により水酸基を生成する反応としては、 加水分解反応が有効である 。 加水分解反応は、 通常酸性あるいは塩基性条件下で反応する。 この際に溶剤を 用いずに反応を行うことも可能であるが、 有機溶剤に重合体を溶解して反応を行 うことが好ましい。 As a reaction for generating a hydroxyl group by deprotection, a hydrolysis reaction is effective. The hydrolysis reaction usually proceeds under acidic or basic conditions. At this time, the reaction can be carried out without using a solvent, but the reaction is carried out by dissolving the polymer in an organic solvent. Is preferred.
反応は、 通常の加水分解反応を行う温度であれば行うことが可能であり、 塩の存 在及び高圧下での反応により一 70"Cから 200ででの反応が可能である。 ハン ドリング性 (すなわち取り扱いの容易さ) 及び反応性が良好である点から、 0 から 120ででの反応が好ましく、 50でから 110 での反応がさらに好まし い。 The reaction can be carried out at a temperature at which a normal hydrolysis reaction is carried out, and the reaction can be carried out at a temperature of from 170 "C to 200 by the presence of a salt and a reaction under a high pressure. The reaction at 0 to 120 is preferable, and the reaction at 50 to 110 is more preferable, from the viewpoints of easy handling and good reactivity.
塩基条件下でのの加水分解反応では、 塩基濃度によって反応性が変化する。 反 応性が良好でハンドリングしゃすい点から、 塩基濃度としては 10一7〜 102モ ルノ Lが好ましく、 10— 6〜 101モル ZLがさらに好ましい。 In the hydrolysis reaction under basic conditions, the reactivity changes depending on the base concentration. Terms have reactivity is Chasse handling good, preferably 10 one 7-10 2 mode Renault L as the base concentration, 10- 6-10 1 mol ZL is more preferred.
触媒の添加量は特に制限されるものではないが、 反応速度および触媒除去の容 易さから、 加水分解基質に対して 0. 0001〜 10倍モルが好ましく、 0. 0 1〜 1倍モルであることがさらに好ましい。 発明を実施するための最良の形態  The amount of the catalyst to be added is not particularly limited, but is preferably 0.0001 to 10 times, more preferably 0.01 to 1 times the mol of the hydrolysis substrate in view of the reaction rate and the ease of removing the catalyst. It is more preferred that there be. BEST MODE FOR CARRYING OUT THE INVENTION
次に実施例を挙げて、 本発明をより一層明らかにするが、 実施例により本発明 は何ら限定されるものではない。  Next, the present invention will be further clarified with reference to examples, but the present invention is not limited to the examples.
(実施例 1 ) (Example 1)
50 Om 1のセパラブルフラスコに三方コック、 熱電対、 および真空用シール 付き撹拌機をつけて窒素置換を行った。 これにモレキュラーシ一ブス 3 Aによつ て脱水したトルエン 175mし ェチルシクロへキサン 21. 7mlを加え、 さ らに 1, 4一ビス ( 1一クロル一 1—メチルェチル) ベンゼン (1. 63 g, 7 . 04mmo 1 ) 、 2—メチルピリジン ( 77. 4mg, 0. 83mmo 1 ) を 加えて— 70"Cに冷却した。 冷却後、 イソブチレンモノマ一 (35. 5ml , 5 98 mmo 1 ) を導入し、 さらに、 この温度で四塩化チタン (0. 98mし 8 . 93mmo 1 ) を添加し重合を開始した。 この際に約 15 昇温した。 約 40 分で重合は終了した (これに伴い反応系の発熱は観察されなくなった) 。 重合終 了後に 10—ァセトキシー 1—デセン (2. 80 g, 14. lmmo l) および 四塩化チタン (5. 7 ml , 51. 7mmo 1 ) を添加した。 5時間反応の後 に、 80でに加熱したイオン交換水 300m 1に反応混合物を導入し、 さらに、 1 Lの分液ロートに移液して振盪した。 水層を除去した後、 300m lのイオン 交換水で 3回水洗した後に、 有機層を単離し、 これに 1 Lのアセトンを加えて ポリマ一を再沈殿させ、 低分子化合物を除去した。 沈殿物をさらにアセトン 10 Om lで 2回洗浄し. さらにへキサン 5 Om Iに溶解した。 溶液を 300m lの なす型フラスコに移液し、 オイルバスによる加熱条件下 (180で) 、 減圧 (最 終 l To r r以下) によって溶媒留去を行い、 目的とする保護した水酸基を末端 に有するポリィソプチレンを得た。 A 50 Om 1 separable flask was purged with nitrogen by attaching a three-way cock, a thermocouple, and a stirrer with a vacuum seal. To this, 175m of toluene dehydrated with Molecular Sieves 3A and 21.7ml of ethylcyclohexane were added, and 1,4-bis (11-chloro-1-1-methylethyl) benzene (1.63g, After adding 7.04 mmo 1) and 2-methylpyridine (77.4 mg, 0.83 mmo 1), the mixture was cooled to 70 "C. After cooling, isobutylene monomer (35.5 ml, 598 mmo 1) was introduced. Further, at this temperature, titanium tetrachloride (0.98 m and 8.93 mmo 1) was added to initiate the polymerization, and at this time, the temperature was raised by about 15. The polymerization was completed in about 40 minutes (with the accompanying After the polymerization was completed, 10-acetoxy 1-decene (2.80 g, 14. lmmol) and titanium tetrachloride (5.7 ml, 51.7 mmol 1) were added. After time response Then, the reaction mixture was introduced into 300 ml of ion-exchanged water heated at 80, further transferred to a 1 L separating funnel and shaken. After removing the aqueous layer, the resultant was washed three times with 300 ml of ion-exchanged water, and then the organic layer was isolated. 1 L of acetone was added thereto to reprecipitate a polymer, thereby removing low-molecular compounds. The precipitate was further washed twice with 10 OmI of acetone. The precipitate was further dissolved in 5 OmI of hexane. The solution is transferred to a 300-ml eggplant-shaped flask, and the solvent is distilled off under reduced pressure (at the final l Torr or less) under heating conditions (at 180) in an oil bath, and the target protected hydroxyl group is present at the end. Polysoptylene was obtained.
得られたポリイソプチレンの官能化率の分析は NMRを用いて行った。  The functionalization rate of the obtained polyisobutylene was analyzed using NMR.
(NMR)  (NMR)
Va l i a n社製 Gem i n i— 300、 測定溶剤;四塩化炭素 重ァセト ン =4 1混合溶剤、 定量方法;開始剤残基のシグナル (7. 2 D prn) を基準 に末端のァセチル基に隣接するメチレンのシグナル (4. O O p pm) を比較し て定量化した。 Fn (CH2OCOMe) は重合体末端への官能基導入量であり 、 定量的に導入した時には今回用いた開始剤では 2. 0となる。 Gem ini-300, manufactured by Valian Co., Ltd., measuring solvent; carbon tetrachloride heavy acetate = 41 mixed solvent, quantification method; adjacent to the terminal acetyl group based on the signal of the initiator residue (7.2 D prn) Methylene signals (4.OO pm) were compared and quantified. Fn (CH 2 OCOMe) is the amount of the functional group introduced to the terminal of the polymer, and when introduced quantitatively, it becomes 2.0 with the initiator used this time.
実施例 1で得られたポリマーの保護された水酸基導入量は以下の通り ; Fn ( CH2OCOMe) = 1. 48。 The amount of protected hydroxyl groups introduced into the polymer obtained in Example 1 is as follows: Fn (CH 2 OCOMe) = 1.48.
(実施例 2 ) (Example 2)
1 0—ァセトキシー 1ーデセン添加時の四塩化チタン添加量を 2. 1m l (1 9. 2mmo 1) とした以外は実施例 1と同様に行った。 得られたポリマーの官 能基導入量は以下の通り ; F n (CH2OC〇Me) =0. 78。 The procedure was performed in the same manner as in Example 1 except that the addition amount of titanium tetrachloride at the time of addition of 10-acetoxy-1-decene was 2.1 ml (19.2 mmo 1). The amount of functional groups introduced into the obtained polymer is as follows: F n (CH 2 OC〇Me) = 0.78.
(実施例 3) (Example 3)
1 0—ァセ卜キシ— 1—デセンの量を 4. 1 9 g (21. 2 mm o 1 ) とした 以外は実施例 1と同様に行った。 得られたポリマーの官能基導入量は以下の通り : F n (CH2OCOMe) = 1. 62。 The procedure was performed in the same manner as in Example 1 except that the amount of 10-acetoxy-1-decene was changed to 4.19 g (21.2 mmo 1). The functional group introduction amount of the obtained polymer is as follows: F n (CH 2 OCOMe) = 1.62.
(実施例 4) 10—ァセトキシー 1ーデセン添加時の四塩化チタン添加量を l l . 4 m l ( 103. 4mmo 1 ) とした以外は実施例 1と同様に行った。 得られたポリマ 一の官能基導入量は以下の通り ; F n (CH2OCOMe) = 1. 43。 (Example 4) The procedure was performed in the same manner as in Example 1 except that the addition amount of titanium tetrachloride at the time of addition of 10-acetoxy 1-decene was 11 ml (103.4 mmo 1). The amount of functional groups introduced into the obtained polymer was as follows: F n (CH 2 OCOMe) = 1.43.
(実施例 5) (Example 5)
1 0—ァセトキシー 1ーデセン量を 5. 60 g (28. 2mmo 1 ) , 同化合 物添加時の四塩化チタン添加量を 1 1. 4m l (103. 4mmo 1 ) とした以 外は実施例 1と同様に行った。 得られたポリマーの官能基導入量は以下の通り : F n (CH2OCOMe) = 1. 96。 Example 1 except that the amount of 10-acetoxy 1-decene was 5.60 g (28.2 mmo 1) and the amount of titanium tetrachloride added at the time of adding the compound was 11.4 ml (103.4 mmo 1). The same was done. The functional group introduction amount of the obtained polymer is as follows: F n (CH 2 OCOMe) = 1.96.
(実施例 6) (Example 6)
5000m 1のセパラブルフラスコに三方コック、 熱電対、 および真空用シー ル付き撹拌機をつけて窒素置換を行った。 これにモレキュラーシ一ブス 3 Aによ つて脱水したトルエン 1484mし ェチルシク口へキサン 1 84m lを加え、 さらに 1, 4_ビス ( 1—クロル一 1ーメチルェチル) ベンゼン (1 3. 87 g , 60. Ommo 1 ) , 2—メチルピリジン ( 657. 9mg, 7. 06mmo 1 ) を加えて一 70でに冷却した。 冷却後、 イソブチレンモノマー (299m l , 3. 58mo 1 ) を導入し、 さらに、 この温度で四塩化チタン (8. 33m l 、 76. Ommo 1 ) を添加し重合を開始した。 この際に約 1 5で昇温した。 約 60分で重合は終了した (これに伴い反応系の発熱は観察されなくなった) 。 重 合終了後に 4ーァセトキシー 2—メチルー 1—ブテン (30. 8 g, 24 Omm o 1 ) および四塩化チタン (44. 4 m l , 406mmo 1 ) を添加した。 5 時間反応の後に、 80でに加熱したイオン交換水 1. 5 Lを反応混合物を導入し , 20分間攪拌を行った。 静置の後に水層を除去し、 1 Lの 4N水酸化ナトリウ ム水溶液及び臭化テトラプチルアンモニゥム 1 5. O gを添加し、 100 にて 12時間攪拌を行った。 反応終了後、 アルカリ水溶液を除去し、 1 Lのイオン交 換水で 3回水洗した後に、 有機層を単離した。 これに 10 Lのアセトンを加えて ポリマ一を再沈殿させ、 低分子化合物を除去した。 沈殿物をさらにアセトン 1 L で 2回洗浄し、 さらにへキサン 500m 1に溶解した。 溶液を 1 Lのなす型フラ スコに移液し、 オイルパスによる加熱条件下 (1 80 ) 、 減圧 (最終 1 To r r以下) によって溶媒留去を行い、 目的とする水酸基を末端に有するポリイソブ チレンを得た。 A 5000 ml separable flask was equipped with a three-way cock, a thermocouple, and a stirrer with a vacuum seal, and the atmosphere was replaced with nitrogen. To this, 1484 ml of toluene dehydrated with Molecular Sieves 3A and 184 ml of ethyl hexane were added, and 1,4_bis (1-chloro-1-methylethyl) benzene (1 3.87 g, 60. Ommo 1) and 2-methylpyridine (657.9 mg, 7.06 mmo 1) were added, and the mixture was cooled to 170. After cooling, isobutylene monomer (299 ml, 3.58 mol) was introduced, and at this temperature, titanium tetrachloride (8.33 ml, 76. Ommo 1) was added to initiate polymerization. At this time, the temperature was raised by about 15 °. The polymerization was completed in about 60 minutes (the exotherm of the reaction system was no longer observed). After completion of the polymerization, 4-acetoxy-2-methyl-1-butene (30.8 g, 24 Ommo 1) and titanium tetrachloride (44.4 ml, 406 mmo 1) were added. After the reaction for 5 hours, 1.5 L of ion-exchanged water heated at 80 was introduced into the reaction mixture, and the mixture was stirred for 20 minutes. After standing, the aqueous layer was removed, 1 L of a 4N aqueous sodium hydroxide solution and 1.5 g of tetrabutylammonium bromide were added, and the mixture was stirred at 100 for 12 hours. After the reaction was completed, the aqueous alkali solution was removed, and the mixture was washed three times with 1 L of ion exchanged water, and then the organic layer was isolated. To this, 10 L of acetone was added to reprecipitate the polymer to remove low molecular weight compounds. The precipitate was further washed twice with 1 L of acetone, and further dissolved in 500 ml of hexane. Make the solution 1 L The solution was transferred to a solvent, and the solvent was distilled off under reduced pressure (at a final pressure of 1 Torr or less) under a heating condition (180) with an oil path to obtain a polyisobutylene having a desired hydroxyl group at the terminal.
得られたポリイソプチレンの官能化率の分析は N M Rを用いて行った。 実施例 6で得られたポリマーの水酸基導入量は以下の通り : F n (CHzOH) = 1. 66 (分析方法は実施例 1と同様である。 なお、 末端水酸基に隣接するメチレン のシグナルは 3. 55 p pmに観察される) 。 The functionalization rate of the obtained polyisobutylene was analyzed using NMR. The amount of hydroxyl groups introduced into the polymer obtained in Example 6 is as follows: F n (CH z OH) = 1.66 (The analysis method is the same as in Example 1. In addition, the signal of methylene adjacent to the terminal hydroxyl group was used. Is observed at 3.55 ppm).
(実施例 7 ) (Example 7)
添加するアルケニル化合物を 10—ァセトキシー 1—デセンから酢酸ォク夕ジ ェニル (4. 74 g、 28. 2mmo 1 ) に変更した以外は実施例 3と同様に反 応を行った。 得られたポリマーの官能基導入量は以下の通り ; Fn (CH2OC OMe) = 1. 70 (分析方法は実施例 1と同様である。 なお、 ァセトキシ基に 隣接するメチレンのシグナルは 4. 20 p pmに観察される) 。 The reaction was carried out in the same manner as in Example 3, except that the alkenyl compound to be added was changed from 10-acetoxy-1-decene to oxenyl acetate (4.74 g, 28.2 mmo 1). The functional group introduction amount of the obtained polymer is as follows; Fn (CH 2 OCME) = 1.70 (The analysis method is the same as in Example 1. The signal of methylene adjacent to the acetoxyl group is 4. Observed at 20 ppm).
(実施例 8 ) (Example 8)
実施例 6において用いる試薬を量を以下のように変更して、 同様に反応を行つ た。  The reaction was carried out in the same manner except that the amounts of the reagents used in Example 6 were changed as follows.
トルエン 592m l、 ェチルシクロへキサン 73. 6m 1、 1, 4—ビス (1— クロル一 1—メチルェチル) ベンゼン (5. 56 g、 24. Ommo 1 ) , 2— メチルピリジン (264mg、 2. 83mmo 1 ) 、 イソブチレンモノマ一 (1 20m l , 1. 44mo 1 )  Toluene 592 ml, ethylcyclohexane 73.6 m1, 1,4-bis (1-chloro-1-1-methylethyl) benzene (5.56 g, 24. Ommo 1), 2-methylpyridine (264 mg, 2.83 mmo 1 ), Isobutylene monomer (1 20ml, 1.44mo1)
重合反応時添加の塩化チタン (2. 52mし 23. Ommo l ) 。  Titanium chloride (2.52m and 23.Ommol) added during the polymerization reaction.
アルケニル付加反応時添加の酢酸ォク夕ジェニル (32. 4 g, 193 mmo 1 ) 及び四塩化チタン (39. 8m l、 386 mm o 1 ) 。  Oxenyl acetate (32.4 g, 193 mmo 1) and titanium tetrachloride (39.8 ml, 386 mmo 1) added during the alkenyl addition reaction.
加水分解反応時添加の 2 N水酸化ナトリウム水溶液 1 Lおよび臭化テ卜ラブチル アンモニゥム 10. 0 g。  1 L of a 2 N aqueous sodium hydroxide solution added during the hydrolysis reaction and 10.0 g of tetrabutylammonium bromide.
得られたポリマーの水酸基導入量は以下の通り ; F n (CHzOH) = 1. 90 (分析方法は実施例 1と同様である。 なお、 末端水酸基に隣接するメチレンのシ グナルは 4. 00 p pmに観察される) 。 The amount of hydroxyl groups introduced into the obtained polymer is as follows: F n (CH z OH) = 1.90 (The analysis method is the same as in Example 1. The methylene ring adjacent to the terminal hydroxyl group was used. The signal is observed at 4.00 pm).
(比較例 1〉 アルケニルアルコールとルイス酸の反応によるォレフィンへのハ ロゲン化水素の付加反応の観察 (Comparative Example 1) Observation of addition reaction of hydrogen halide to olefin by reaction of alkenyl alcohol and Lewis acid
20 Om 1の 3口フラスコに三方コック、 熱電対、 および真空用シール付き撹 拌機をつけて窒素置換を行った。 これにモレキュラーシーブス 3 Aによって脱水 したトルエン 35mし ェチルシクロへキサン 4. 3m lを加え、 さらに 2—メ チルピリジン (1 5. 5mg, 0. 17mmo 1 ) を加えて一 70でに冷却した 。 冷却後、 9ーデセン一 1—オール (0. 87 g, 5. 6mmo l) および四塩 化チタン (1. 3m l , 1 1. 8mmo 1 ) を添加した。 2時間毎にサンプリン グを行い (最終 6時間) 、 サンプル中の四塩化チタンを純水にて失活した。 水層 を除去した後、 — NMRによって分析を行った。 測定溶剤;重クロ口ホルム 、 定量方法;末端の水酸基に隣接するメチレンのシグナル (3. 55 p pm, 3 重線、 2H) を基準にして新たに生成したォレフィンへの塩化水素付加物のシグ ナル (4. 05 p pm, 6重線、 1 H) のエリアを比較し定量化した。 9ーデセ ン— 1一オールの塩化水素付加化合物の生成量は以下のように時間とともに増加 していた。  A 20-Om 1 three-necked flask was purged with nitrogen by attaching a three-way cock, a thermocouple, and a stirrer with a vacuum seal. To this, 35 ml of toluene dehydrated with Molecular Sieves 3A and 4.3 ml of methylcyclohexane were added, and 2-methylpyridine (15.5 mg, 0.17 mmo 1) was further added, followed by cooling to 170. After cooling, 9-decene-1-ol (0.87 g, 5.6 mmol) and titanium tetrachloride (1.3 ml, 11.8 mmol) were added. Sampling was performed every 2 hours (final 6 hours), and titanium tetrachloride in the sample was deactivated with pure water. After removal of the aqueous layer, — analysis was performed by NMR. Solvent for measurement; form of heavy-mouth, determination method; sigma of hydrogen chloride adduct to newly generated olefins based on the signal of methylene adjacent to the terminal hydroxyl group (3.55 ppm, triplet, 2H) Areas of null (4.05 ppm, 6-fold, 1 H) were compared and quantified. The amount of 9-decen-1-ol hydrogen chloride adduct formed increased with time as follows.
表 1 アルケニルアルコール塩化水素付加体の生成量の経時変化
Figure imgf000018_0001
Table 1 Changes with time in the amount of alkenyl alcohol hydrogen chloride adduct formed
Figure imgf000018_0001
(比較例 2 ) 水酸基末端アルケニル化合物の重合基末端への付加反応 実施例 1において 10—ァセチルー 1ーデセンを添加する代わりに 9ーデセン 一 1一オール (2. 20 g, 14. lmmo 1 ) に変更した以外は実施例 1と同 様に行った。 (Comparative Example 2) Addition reaction of hydroxyl group-terminated alkenyl compound to polymer group terminal In Example 1, changed to 9-decene-1-1-ol (2.20 g, 14. lmmo 1) instead of adding 10-acetyl-1-decene The procedure was performed in the same manner as in Example 1 except for the above.
得られたポリィソプチレンの官能化率の分析は N M Rを用いて行つた。 測定溶 剤;四塩化炭素 重アセトン 混合溶剤、 定量方法:開始剤残基のシグナ ル (7. 2 p pm) を基準に末端の水酸基に隣接するメチレンのシグナル (3. 45 p pm) を比較して定量化した。 Fn (CH2OH) は重合体末端への官能 基導入量であり、 定量的に導入した時には今回用いた開始剤では 2. 0となる。 得られたポリマーの官能基導入量は以下の通り : F n (CH2OH) = 1. 2Analysis of the functionalization rate of the obtained polyisobutylene was performed using NMR. Measurement Agent: Carbon tetrachloride Deacetone mixed solvent, Quantitative method: Compare the signal of methylene adjacent to the terminal hydroxyl group (3.45 pm) based on the signal of the initiator residue (7.2 ppm). Quantified. Fn (CH 2 OH) is the amount of functional group introduced into the polymer terminal. When introduced quantitatively, it becomes 2.0 with the initiator used in this study. The functional group introduction amount of the obtained polymer is as follows: F n (CH 2 OH) = 1.2
1 産業上の利用可能性 1 Industrial applicability
本発明によって得られる重合体は末端に脱保護によって容易に水酸基に変換す ることが可能な官能基を有する新規な飽和炭化水素系重合体であり、 重合終了後 、 溶媒の交換、 触媒の除去等の特別な処理することなく、 1ポットで水酸基を効 率的に導入することが可能である。  The polymer obtained by the present invention is a novel saturated hydrocarbon polymer having a functional group which can be easily converted to a hydroxyl group by deprotection at the terminal, and after completion of polymerization, solvent exchange and catalyst removal. It is possible to efficiently introduce hydroxyl groups in one pot without special treatment such as the above.

Claims

請求の範囲 The scope of the claims
1. 炭素一炭素単結合を形成するカチオン重合によって得られるハロゲン末端 炭化水素系重合体と、 保護された水酸基および炭素一炭素二重結合を有する化合 物との反応により得られる, 保護された水酸基を末端に有し、 重合体主鎖が飽和 な炭化水素鎖である炭化水素系重合体。 1. A protected hydroxyl group obtained by the reaction of a halogen-terminated hydrocarbon polymer obtained by cationic polymerization forming a carbon-carbon single bond with a compound having a protected hydroxyl group and a carbon-carbon double bond. A hydrocarbon polymer having a terminal at the terminal and a main chain of the polymer being a saturated hydrocarbon chain.
2. 請求項 1記載の保護された水酸基を末端に有し, 重合体主鎖が飽和な炭化 水素鎖である炭化水素系重合体を脱保護する事によって得られる、 水酸基を末端 に有し、 重合体主鎖が飽和な炭化水素鎖である炭化水素系重合体。 2. Having a hydroxyl group at the terminal obtained by deprotecting a hydrocarbon polymer having the protected hydroxyl group at the terminal according to claim 1 and having a saturated hydrocarbon chain as a main chain of the polymer; A hydrocarbon polymer in which the polymer main chain is a saturated hydrocarbon chain.
3. カチオン重合によって得られるハロゲン末端炭化水素系重合体が式 (1) 3. The halogen-terminated hydrocarbon polymer obtained by cationic polymerization has the formula (1)
R1 (A-X) a (1) R 1 (AX) a (1)
(式中、 R1は単数または複数の芳香環を含む 1価から 4価までの炭化水素基、 Xは塩素基または臭素基、 aは 1から 4の整数。 Aは一種又は二種以上のカチォ ン重合性単量体を重合してなる重合体で、 aが 2以上の時は同じでも異なってい てもよい。 ) (Wherein, R 1 is a monovalent to tetravalent hydrocarbon group containing one or more aromatic rings, X is a chlorine group or a bromine group, a is an integer of 1 to 4. A is one kind or two or more kinds. A polymer obtained by polymerizing a cationic polymerizable monomer. When a is 2 or more, they may be the same or different.)
で表され、 Represented by
保護された水酸基および炭素一炭素二重結合を有する化合物が式 (2) : CH2==C (R2〉 -B-OG (2) A compound having a protected hydroxyl group and a carbon-carbon double bond is represented by the formula (2): CH 2 == C (R 2 ) -B-OG (2)
(式中、 Rzは水素または炭素数 1から 18の飽和炭化水素基を、 Bは炭素数 1 から 30の 2価の炭化水素基を、 Gは水酸基の保護基を表す。 ) (In the formula, R z represents hydrogen or a saturated hydrocarbon group having 1 to 18 carbon atoms, B represents a divalent hydrocarbon group having 1 to 30 carbon atoms, and G represents a hydroxyl-protecting group.)
で表される、 請求項 1記載の保護された水酸基を末端に有し、 重合体主鎖が飽和 な炭化水素鎖である炭化水素系重合体。  2. The hydrocarbon polymer according to claim 1, wherein the polymer has a protected hydroxyl group at its terminal, and the main chain of the polymer is a saturated hydrocarbon chain.
4. 請求項 3記載の保護された水酸基を末端に有し、 重合体主鎖が飽和な炭化 水素鎖である炭化水素系重合体を脱保護する事によって得られる、 水酸基を末端 に有し、 重合体主鎖が飽和な炭化水素鎖である炭化水素系重合体。 4. Having a protected hydroxyl group at the terminal according to claim 3 and having a hydroxyl group at the terminal obtained by deprotecting a hydrocarbon polymer in which the polymer main chain is a saturated hydrocarbon chain; A hydrocarbon polymer in which the polymer main chain is a saturated hydrocarbon chain.
5. 保護された水酸基および炭素一炭素二重結合を有する化合物が式 (3) : CH2 = C (R2) 一 (CH2) b— {-CH-CH- (CH2) c} n-OG 5. A compound having a protected hydroxyl group and a carbon-carbon double bond is represented by formula (3): CH 2 = C (R 2 ) 1 (CH 2 ) b — {-CH-CH- (CH 2 ) c } n -OG
(3) (3)
(式中、 R2は水素または炭素数 1から 1 8の飽和または不飽和の 1価の炭化水 素基を表し、 b及び cは 1から 30の整数であって同一であっても異なっていて も良く、 nは 0から 5の整数を、 Gは水酸基の保護基を表す。 ) (In the formula, R 2 represents hydrogen or a saturated or unsaturated monovalent hydrocarbon group having 1 to 18 carbon atoms, and b and c are integers of 1 to 30 and may be the same or different. N represents an integer of 0 to 5, and G represents a hydroxyl-protecting group.)
で表される請求項 3記載の保護された水酸基を末端に有し、 重合体主鎖が飽和な 炭化水素鎖である炭化水素系重合体。 4. The hydrocarbon-based polymer having a protected hydroxyl group at a terminal thereof according to claim 3, wherein the polymer main chain is a saturated hydrocarbon chain.
6. 請求項 5記載の保護された水酸基を末端に有し、 重合体主鎖が飽和な炭化 水素鎖である炭化水素系重合体を脱保護する事によって得られる、 水酸基を末端 に有し、 重合体主鎖が飽和な炭化水素鎖である炭化水素系重合体。 6. Having a protected hydroxyl group at the terminal according to claim 5 and having a hydroxyl group at the terminal obtained by deprotecting a hydrocarbon-based polymer in which the polymer main chain is a saturated hydrocarbon chain; A hydrocarbon polymer in which the polymer main chain is a saturated hydrocarbon chain.
7. 前記式 (1) のカチオン重合によって得られる炭化水素系重合体がイソブ チレン系重合体である請求項 3または 5記載の保護された水酸基を末端に有し、 重合体主鎖が飽和な炭化水素鎖である炭化水素系重合体。 7. The protected hydroxyl group-terminated terminal hydrocarbon according to claim 3 or 5, wherein the hydrocarbon-based polymer obtained by the cationic polymerization of the formula (1) is an isobutylene-based polymer, and the polymer main chain is saturated. A hydrocarbon polymer that is a hydrocarbon chain.
8. 請求項 7記載の保護された水酸基を末端に有し、 重合体主鎖が飽和な炭化 水素鎖である炭化水素系重合体を脱保護する事によって得られる、 水酸基を末端 に有し、 重合体主鎖が飽和な炭化水素鎖である炭化水素系重合体。 8. Having a protected hydroxyl group at the terminal of claim 7 and having a hydroxyl group at the terminal obtained by deprotecting a hydrocarbon polymer in which the polymer main chain is a saturated hydrocarbon chain; A hydrocarbon polymer in which the polymer main chain is a saturated hydrocarbon chain.
9. 前記式 (1) の aが 2または 3で、 Aがポリイソプチレンで、 Xが塩素で ある請求項 3または 5または 7記載の保護された水酸基を末端に有し、 重合体主 鎖が飽和な炭化水素鎖である炭化水素系重合体。 9. The protected hydroxyl group-terminated terminal polymer according to claim 3 or 5 or 7, wherein a in the formula (1) is 2 or 3, A is polyisobutylene, and X is chlorine. A hydrocarbon polymer that is a natural hydrocarbon chain.
10. 請求項 9記載の保護された水酸基を末端に有し、 重合体主鎖が飽和な炭 化水素鎖である炭化水素系重合体を脱保護する事によって得られる、 水酸基を末 端に有し、 重合体主鎖が飽和な炭化水素鎖である炭化水素系重合体。 前記式 (2) の Gが 10. Having a hydroxyl group at the terminal end obtained by deprotecting a hydrocarbon-based polymer having the protected hydroxyl group according to claim 9 at the terminal and the polymer main chain being a saturated hydrocarbon chain. And a hydrocarbon polymer wherein the polymer main chain is a saturated hydrocarbon chain. G in the above equation (2) is
R R¾00- R^- R^HCO-R R¾00- R ^-R ^ HCO-
4 Four
^ 3  ^ 3
M1 R3-M2- 2 2 M 1 R 3 -M 2 - 2 2
X-M  X-M
OR3 X OR 3 X
R'HD- 3- X-M3- R'HD- 3 -XM 3-
R
Figure imgf000022_0001
R5 OR5
R
Figure imgf000022_0001
R 5 OR 5
(式中、 R3、 R4、 R5は水素、 または炭素数 1から 18の飽和または不飽和の 炭化水素基を表し、 Rを複数含む基においては同一であっても異なっていてもよ い。 Xは C 1、 B r、 Iから選ばれる官能基である。 M4 L i、 Na、 から 選ばれる 1価の金属、 M2は Mg、 C a, S r、 B aから選ばれる 2価の金厲、 M^ B, A 1 , G aから選ばれる 3価の金属、 M4は T i、 Z r、 H f , S i 、 Ge、 S n、 P bから選ばれる 4価の金属である。 ) (Wherein, R 3 , R 4 , and R 5 represent hydrogen or a saturated or unsaturated hydrocarbon group having 1 to 18 carbon atoms, and may be the same or different in a group containing a plurality of Rs. There. 2 X is selected from C 1, B r, is a functional group selected from I. M4 L i, Na, 1 -valent metal selected from, M 2 is Mg, C a, S r, B a M 厲 is a trivalent metal selected from M ^ B, A 1, G a, and M 4 is a tetravalent metal selected from T i, Z r, H f, S i, Ge, Sn, and P b It is metal.)
からなる群から選択された基である請求項 3または 5または 7または 9記載の保 護された水酸基を末端に有し、 重合体主鎖が飽和な炭化水素鎖である炭化水素系 重合体。 1 2 . 請求項 1 1記載の保護された水酸基を末端に有し、 重合体主鎖が飽和な 炭化水素鎖である炭化水素系重合体を脱保護する事によって得られる、 水酸基を 末端に有し、 重合体主鎖が飽和な炭化水素鎖である炭化水素系重合体。 10. The hydrocarbon polymer according to claim 3, which is a group selected from the group consisting of: a protected hydroxyl group at the terminal, wherein the polymer main chain is a saturated hydrocarbon chain. 12. The hydroxyl-terminated terminal obtained by deprotecting a hydrocarbon polymer having the protected hydroxyl group according to claim 11 at the terminal and having a saturated hydrocarbon chain as a main chain of the polymer. And a hydrocarbon polymer wherein the polymer main chain is a saturated hydrocarbon chain.
1 3. 前記式 (2) で表される化合物が、 ァリルアルコール、 メタリルアルコ —ル、 3—ブテン一 1一オール、 3—メチルー 3—ブテン— 1—オール、 4—ぺ ンテン— 1一オール、 5—へキセン— 1一オール、 6—ヘプテン— 1一オール、 7—ォクテン一 1—オール、 8—ノネン一 1一オール、 9ーデセン一 1一オール 、 1 0—ゥンデセン— 1一オール, 2, 5—へキサジェノール、 2, 6—へプ夕ジ エノ一ル、 3, 6—ヘプ夕ジェノール、 2, 7-ォクタジェノール、 3, 7-ォク夕 ジエノ一ル、 4, 7-ォク夕ジエノ一ル、 2, 8-ノナジエノール、 3. 8-ノナジェ ノール、 4, 8-ノナジエノール、 5, 8-ノナジエノ一ル、 2, 9-デカジエノール 、 3, 9-デカジエノール、 4, 9-デカジエノール、 5, 9-デカジエノールおよび 6, 9 -デカジエノールからなる群より選ばれる化合物の水酸基 (OH基) を OG 基とした化合物群から選ばれる少なくとも 1種である請求項 3、 5、 7、 9又は 1 1記載の保護された水酸基を末端に有し、 重合体主鎖が飽和な炭化水素鎖であ る炭化水素系重合体。 1 3. When the compound represented by the formula (2) is an allylic alcohol or a methallyl alcohol 3-yl, 3-buten-1-ol, 3-methyl-3-butene-1-ol, 4-pentene-1-ol, 5-hexene-1-ol, 6-heptene-1-ol, 7- Octene 1-ol, 8-nonene 1-l-ol, 9-decene-l-l-ol, 10-undecene-l-l-ol, 2,5-hexagenol, 2,6-hexenol, 3 2,6-heptagenol, 2,7-octagenol, 3,7-octanedienol, 4,7-octanegenol, 2,8-nonadienol, 3.8-nonagenol, 4, The hydroxyl group of a compound selected from the group consisting of 8-nonadienol, 5, 8-nonadienol, 2, 9-decadienol, 3, 9-decadienol, 4, 9-decadienol, 5, 9-decadienol and 6, 9-decadienol (3) at least one compound selected from the group of compounds in which (OH group) is an OG group; 7, 9 or 1 1 has terminated a protected hydroxyl group according the polymer main chain saturated hydrocarbon chain der Ru hydrocarbon polymer.
14. 請求項 13記載の保護された水酸基を末端に有し、 重合体主鎖が飽和な 炭化水素鎖である炭化水素系重合体を脱保護する事によって得られる、 水酸基を 末端に有し、 重合体主鎖が飽和な炭化水素鎖である炭化水素系重合体。 14. Having a protected hydroxyl group at the terminal according to claim 13 and having a hydroxyl group at the terminal obtained by deprotecting a hydrocarbon polymer in which the polymer main chain is a saturated hydrocarbon chain; A hydrocarbon polymer in which the polymer main chain is a saturated hydrocarbon chain.
1 5. 炭素—炭素単結合を形成するカチオン重合によって得られるハロゲン末 端炭化水素系重合体と、 保護された水酸基および炭素一炭素二重結合を含む化合 物との反応の際に, 触媒としてルイス酸を用いる請求項 1、 3、 5、 7、 9、 11 5. As a catalyst in the reaction between a halogen-terminated hydrocarbon polymer obtained by cationic polymerization forming a carbon-carbon single bond and a compound containing a protected hydroxyl group and a carbon-carbon double bond. Claims 1, 3, 5, 7, 9, 1 using a Lewis acid
1又は 1 3記載の保遒された水酸基を末端に有し、 重合体主鎖が飽和な炭化水素 鎖である炭化水素系重合体の製造法。 14. A method for producing a hydrocarbon polymer having the hydroxyl group obtained at the terminal as described in 1 or 13 and having a polymer main chain of a saturated hydrocarbon chain.
1 6. 触媒が T i C 14、 A 1 C 13, B C 13及び S n C 14からなる群より 選ばれる 1種以上のルイス酸である請求項 1 5記載の保護された水酸基を末端に 有し、 重合体主鎖が飽和な炭化水素鎖である炭化水素系重合体の製造法。 1 6. The catalyst is T i C 1 4, A 1 C 1 3, BC 1 3 and S n C 1 4 is one or more Lewis acid selected from the group consisting of claims 1 5 protected hydroxy as described A method for producing a hydrocarbon-based polymer having a terminal at the terminal and a main chain of the polymer being a saturated hydrocarbon chain.
1 7. 反応溶剤が、 ハロゲン化炭化水素、 芳香族炭化水素及び脂肪族炭化水素 からなる群より選ばれる 1種又は 2種以上の溶剤からなる請求項 1 5または 1 6 記載の保護された水酸基を末端に有し、 重合体主鎖が飽和な炭化水素鎖である炭 化水素系重合体の製造法。 17. The reaction solvent according to claim 15, wherein the reaction solvent comprises one or more solvents selected from the group consisting of halogenated hydrocarbons, aromatic hydrocarbons, and aliphatic hydrocarbons. A method for producing a hydrocarbon-based polymer having the protected hydroxyl group at the terminal and a polymer main chain comprising a saturated hydrocarbon chain.
1 8 . ハロゲン化炭化水素がクロ口ホルム、 塩化メチレン、 1 , 1—ジクロル ェタン、 1, 2—ジクロルェタン、 n—プロビルク口ライド及び n —ブチルクロ ライドからなる群より選ばれる 1種以上の物質である請求項 1 7記載の保護され た水酸基を末端に有し、 重合体主鎖が飽和な炭化水素鎖である炭化水素系重合体 の製造法。 1 9 . 芳香族炭化水素がトルエンである請求項 1 7又は 1 8記載の保護された 水酸基を末端に有し、 重合体主鎖が飽和な炭化水素鎖である炭化水素系重合体の 製造法。 18. The halogenated hydrocarbon is at least one substance selected from the group consisting of chromate form, methylene chloride, 1,1-dichloroethane, 1,2-dichloroethane, n-propylic chloride and n-butyl chloride. 18. The process for producing a hydrocarbon polymer according to claim 17, wherein the polymer has a protected hydroxyl group at its terminal and the main chain of the polymer is a saturated hydrocarbon chain. 19. The process for producing a hydrocarbon-based polymer according to claim 17 or 18, wherein the aromatic hydrocarbon is toluene, wherein the protected hydroxyl group-terminated terminal polymer chain is a saturated hydrocarbon chain. .
2 0 . 脂肪族炭化水素がペンタン、 n—へキサン、 シクロへキサン、 メチルシ クロへキサン及びェチルシクロへキサンからなる群より選ばれる 1種以上の物質 である請求項 1 7、 1 8又は 1 9記載の保護された水酸基を末端に有し、 重合体 主鎖が飽和な炭化水素鎖である炭化水素系重合体の製造法。 20. The aliphatic hydrocarbon is at least one substance selected from the group consisting of pentane, n-hexane, cyclohexane, methylcyclohexane, and ethylcyclohexane. A method for producing a hydrocarbon-based polymer having a protected hydroxyl group at the end and a polymer having a main chain of a saturated hydrocarbon chain.
2 1 . 反応溶剤としてトルエンおよびェチルシクロへキサンの混合溶剤を用い る請求項 1 7記載の保護された水酸基を末端に有し、 重合体主鎖が飽和な炭化水 素鎖である炭化水素系重合体の製造法。 21. The hydrocarbon-based polymer according to claim 17, wherein a mixed solvent of toluene and ethylcyclohexane is used as a reaction solvent, wherein the polymer has a protected hydroxyl group at a terminal and a polymer main chain is a saturated hydrocarbon chain. Manufacturing method of coalescence.
PCT/JP1999/002693 1999-03-19 1999-05-21 Saturated hydrocarbon polymer having functional group at end and process for producing the same WO2000056784A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7508799 1999-03-19
JP11/75087 1999-03-19

Publications (1)

Publication Number Publication Date
WO2000056784A1 true WO2000056784A1 (en) 2000-09-28

Family

ID=13566048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/002693 WO2000056784A1 (en) 1999-03-19 1999-05-21 Saturated hydrocarbon polymer having functional group at end and process for producing the same

Country Status (1)

Country Link
WO (1) WO2000056784A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01103605A (en) * 1987-08-10 1989-04-20 General Electric Co <Ge> Telechelic polysisobutylene and block copolymer derivative

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01103605A (en) * 1987-08-10 1989-04-20 General Electric Co <Ge> Telechelic polysisobutylene and block copolymer derivative

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
B. IVAN, J.P. KENNEDY, V.S.C. CHANG., J. POLYM. SCI. POLYM. CHEM. ED.,, vol. 18, 1980, pages 3177 - 3191, XP002926329 *

Similar Documents

Publication Publication Date Title
JP6398015B2 (en) Organozinc compound containing polyolefin-polystyrene block copolymer and method for producing the same
KR101848781B1 (en) Polystyrene-polyolefin-polystyrene triblock copolymer and method for manufacturing the same
CN114380961B (en) Polyolefin-polystyrene multiblock copolymer, organozinc compound for preparing the same, and method for preparing the same
JP2001139647A (en) Star block copolymer
JP3388865B2 (en) Method for producing isobutylene polymer having olefin group
EP0464408B1 (en) Process for preparing star compounds
WO2000056784A1 (en) Saturated hydrocarbon polymer having functional group at end and process for producing the same
JP3092875B2 (en) Isobutylene polymer having vinyl group at terminal and method for producing the same
JP3157033B2 (en) Method for producing terminal-modified conjugated diene polymer
TW201134841A (en) Method for producing vinyl ether star polymer
JP3776626B2 (en) Saturated hydrocarbon polymer having a functional group at its terminal and method for producing the same
EP1225186B1 (en) Saturated hydrocarbon polymer having primary hydroxyl group at its end and process for producing the same
JP3776589B2 (en) Saturated hydrocarbon polymer having primary hydroxyl group at its terminal and process for producing the same
JP4287437B2 (en) Process for producing hydrocarbon-based polymer having a hydroxyl group at the terminal
JPH0641221A (en) Poly@(3754/24)3-methyl-4-hydroxystyrene) and its production
JP4294369B2 (en) Polymer having functional group at terminal and method for producing the same
JP2008527113A (en) End-capped polymer chains and their products
CN108699171B (en) Monofunctional or telechelic copolymers of 1, 3-dienes with ethylene or alpha-monoolefins
JP3816690B2 (en) Saturated hydrocarbon polymer having carboxylic acid group derivative at terminal and method for producing the same
US6281318B1 (en) Poly{1-(1-alkoxyalkoxy)-4-(1-methylethenyl)benzene} having narrow molecular weight distribution, its preparation process, and preparation process of poly{4-methylethenyl)phenol} having narrow molecular weight distribution
JPH01221404A (en) Polymer having functional group and its production
JPH11255820A (en) Preparation of narrow distribution poly(p-yydroxy-styrene)
JP3667074B2 (en) Narrowly dispersible poly {1- (1-alkoxyethoxy) -4- (1-methylethenyl) benzene} and process for producing the same
JP3388880B2 (en) Isobutylene polymer and method for producing the same
Hirao et al. Synthesis of well‐defined chain‐end‐and in‐chain‐functionalized polystyrenes with a definite number of benzyl chloride moieties and D‐glucose residues

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 606644

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase