WO1990015081A1 - Method of producing polymer terminated with reactive group - Google Patents

Method of producing polymer terminated with reactive group Download PDF

Info

Publication number
WO1990015081A1
WO1990015081A1 PCT/JP1990/000729 JP9000729W WO9015081A1 WO 1990015081 A1 WO1990015081 A1 WO 1990015081A1 JP 9000729 W JP9000729 W JP 9000729W WO 9015081 A1 WO9015081 A1 WO 9015081A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
isobutylene
general formula
polymer
polymerization
Prior art date
Application number
PCT/JP1990/000729
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Fujisawa
Koji Noda
Original Assignee
Kanegafuchi Kagaku Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Kagaku Kogyo Kabushiki Kaisha filed Critical Kanegafuchi Kagaku Kogyo Kabushiki Kaisha
Priority to CA002033328A priority Critical patent/CA2033328C/en
Publication of WO1990015081A1 publication Critical patent/WO1990015081A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/08Butenes
    • C08F10/10Isobutene

Definitions

  • the present invention relates to a method for producing an isobutylene-based polymer having an aryl terminal.
  • ⁇ -DCC 1,4-bis ( ⁇ -chloroisopropyl) benzene
  • ⁇ -DCC 1,4-bis ( ⁇ -chloroisopropyl) benzene
  • Another object of the present invention is to provide a method for producing an isobutylene-based polymer having an unsaturated terminal and having a high rate of introduction of unsaturated groups.
  • Another object of the present invention is to provide an inexpensive method for producing an isobutylene-based polymer having an unsaturated terminal.
  • Other objects and features of the present invention will be apparent from the following description.
  • the present inventor has made various studies in view of the present situation, and as a result, has found that the above object can be completely achieved by adopting a specific reaction method using a specific Lewis acid. . 'That is, the present invention
  • X represents a halogen atom, a RCO— group (R is a monovalent organic group, the same applies hereinafter) or a R—O— group.
  • R 3 represents a polyvalent aromatic ring group or a substituted or unsubstituted polyvalent aliphatic hydrocarbon group.
  • R 1 and R 2 are the same or different and represent a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group. However, when R 3 is a polyvalent aliphatic hydrocarbon group, R 1 and R 2 are not simultaneously hydrogen atoms.
  • R 4 , R 5 and R 6 are the same or different and each represents a group in which 1 to 3 carbon atoms in a monovalent organic group or a monovalent organic group are replaced with a gayne atom. .
  • the present invention relates to a method for producing an isobutylene-based polymer having an aryl terminal, which comprises mixing a compound represented by the formula: -
  • the method of the present invention is simple and inexpensive because of the use of inexpensive Lewis acid.
  • the method of the present invention also provides isobutylene. It has an excellent feature that the molecular weight distribution of the system polymer is narrower, and if the molecular weight distribution is narrower, the viscosity of the polymer becomes smaller and it is easier to handle such as easy to knead when preparing a compound. Further, when cross-linked and cured, there is an advantage that the cured product has excellent mechanical properties and the like.
  • the rate of polymerization can be controlled by adjusting the amount of the component (C) involved in the polymerization reaction, so that the rate of heat generation accompanying the polymerization reaction can be controlled. You can roll. By reducing the rate of heat generation, the polymerization rate can be increased without the need for a large-scale cooling device, especially when producing an isobutylene-based polymer having an aryl end on a large scale. It is economical because it is possible to control
  • the cation-polymerizable monomer containing isobutylene is not limited to a monomer consisting of only isobutylene, but may be 50% by weight of isobutylene (hereinafter simply referred to as “%”).
  • % 50% by weight of isobutylene
  • propylene, 1-butene, 2-butene, styrene, butylbenzene, isoprene, cyclopentene, and the like are preferable.
  • These cationically polymerizable monomers copolymerizable with isobutylene may be used alone or in combination of two or more with isobutylene.
  • Examples of the organic compound having a group represented by the above general formula (I), which is an initiator / chain transfer agent used in the present invention include, for example, a general formula (m):
  • R 7 and R 8 are the same or different and represent a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • n shows the integer of 1-6.
  • Ph— (CH 2) ⁇ — Ph group (Ph is a phenyl group, ⁇ is an integer of 1 to 10) and the like. These groups having an aromatic ring are those having 1 to 20 carbon atoms. It may be substituted by a linear or '(or) branched aliphatic hydrocarbon or a group having a functional group such as a hydroxyl group, an ether group, or a vinyl group.
  • ⁇ ⁇ ⁇ ⁇ in the compound represented by the general formula (V) represents a halogen atom such as F, C, Br, or I bonded to a tertiary carbon atom, an RC00— group or an R0— group;
  • is a hydrocarbon-based hydrocarbon having 4 to 40 carbon atoms.
  • An aliphatic hydrocarbon group preferably an aliphatic hydrocarbon group.
  • the carbon to which the RCO— or R—— groups are bonded is no longer a tertiary carbon atom, and the polymerization is less likely to proceed, making it unsuitable for use.
  • oligomers having a halostyrene unit include ⁇ -chlorostyrene oligomers, ⁇ -chlorostyrene and ⁇ -chlorostyrene. Oligomers copolymerized with a copolymerizable monomer are exemplified.
  • a compound having two or more bonded halogen atoms, RCOO— groups or RO— groups represented by the general formula (I), or a bonded halogen atom represented by the general formula (I) When a compound having an atom, an RC00-group or an R0-group and another reactive functional group is used as an initiator and a chain transfer agent, a polymer having both terminal functionalities, a so-called telechelic polymer This is very effective because it can increase the degree of terminal functionalization.
  • initiator and chain transfer agent include, for example, 0
  • These compounds are components used as an initiator and a chain transfer agent, and in the present invention, one kind or a mixture of two or more kinds is used. Further, by adjusting the amount of these compounds used, the molecular weight of the obtained polymer can be controlled.
  • the above compound is usually used in a ratio of about 0.01 to 25%, preferably about 0.1 to 15%, based on the cation-polymerizable monomer containing isobutylene. Good to use.
  • Lewis acid used in the present invention is a component used as a catalyst.
  • the Lewis acid as the Lewis acid, is a component used as a catalyst.
  • Sn C ⁇ 4 and T i C & 4 is used.
  • Particularly preferred are TiC ⁇ 4 and SnC4.
  • the amount of the Lewis acid to be used is from 0.00001 to the number of moles of X in the organic compound having a group represented by the general formula (I), which is the above initiator and chain transfer agent.
  • R 6 Wherein R 4 , R 5 and Re are the same as above.
  • the molar ratio of X in the organic compound having a group represented by the general formula (I) in the component (B) to the compound represented by the general formula (E) as the component (D) [(X) / (H), where (X) and ( ⁇ ) are the moles of X and compound (H). ] Is preferably in the range of 2.0 to 0.2.
  • examples of the solvent include a hydrocarbon solvent such as an aliphatic hydrocarbon and a haegenated hydrocarbon. Of these, halogenated hydrocarbons are preferred, and chlorinated hydrocarbons having chlorine atoms are more preferred. Specific examples of such aliphatic hydrocarbons include pentane and hexane, and specific examples of halogenated hydrocarbons include chloromethane, chloromethane, methylene chloride, and the like. Examples include 1,1-dichloroethane, black-holm, and 1,2-dichloroethane. These are used singly or as a mixture of two or more.
  • a hydrocarbon solvent such as an aliphatic hydrocarbon and a haegenated hydrocarbon.
  • halogenated hydrocarbons are preferred, and chlorinated hydrocarbons having chlorine atoms are more preferred.
  • Specific examples of such aliphatic hydrocarbons include pentane and hexane, and specific examples of halogenated hydrocarbons include chloromethane, chlor
  • a low temperature that is, +20 to 110 ° C.
  • a relatively high temperature that is, +10 to 140 ° C.
  • 0 ° C is more preferable.
  • the polymerization time is usually about 0.5 to 120 minutes, preferably about 1 to 60 minutes.
  • the monomer concentration during polymerization is preferably about 0.1 to 8 mol Z ⁇ , more preferably about 0.5 to 5 mol Z &.
  • the polymerization reaction may be performed in a batch system (batch system or semi-batch system), or the components (A), (B), (C) and (D) may be continuously placed in a polymerization vessel. It may be performed in a continuous manner.
  • an isobutylene-based polymer having a high rate of introduction of an unsaturated group into the terminal can be obtained at a low cost and in a simple manner.
  • an isobutylene-based polymer having a narrow molecular weight distribution can be obtained.
  • Example 1 Attach the three-way cock to the pressure-resistant glass polymerization vessel of 200 3 ⁇ , and dry the polymerization vessel evacuated using a vacuum line by heating it at 100 for 1 hour. After cooling, the pressure was returned to normal pressure with nitrogen using a three-way cock.
  • 1,1-dichloroethane 40 which was a main solvent dried by hydrocalcium treatment, was introduced into the polymerization vessel using an injector.
  • 5 mmol of distilled and purified arylmethyl silane was added thereto, and further a solution of 10 1,1 dichloroethane in which TCC (compound A) 2 millimol was dissolved was added.
  • a pressure-resistant glass liquefied gas sampling tube with a needle valve containing 7 g of isobutylene dehydrated by passing through a column filled with barium oxide was connected to a three-way cock using a pressure-resistant rubber tube. Thereafter, the container body was immersed in a dry eye bath at 170 ° C., and the inside of the polymerization container was cooled for 1 hour. After cooling, the internal pressure was reduced by a vacuum line, then the needle valve was opened, and isobutylene was introduced into the polymerization vessel from a pressure-resistant glass liquefied gas sampling tube. Then, after returning to normal pressure by flowing nitrogen from one of the three-way cocks, the pressure returned to 110.
  • reaction mixture was taken out into an eggplant-shaped flask, and unreacted isobutylene, 1,1-dichloroethane, aryltrimethylsilylane and methanol were distilled off. After dissolving in 0 W n-hexane, the solution was repeatedly washed with water until neutral. Thereafter, the n-hexane solution was concentrated to 20 and the concentrated solution was added to 300 * aceton, followed by stirring to separate and precipitate the polymer.
  • the polymer obtained in this way is dissolved again in 100 n-hexane, dried over anhydrous magnesium sulfate to separate solid components, and then n-hexane is distilled off under reduced pressure. As a result, an isobutylene-based polymer was obtained.
  • the yield was calculated from the yield of the obtained polymer, and w / n was determined by the GPC method, and the terminal structure was determined by 1 H-NMR (300 MHz) method. Table 2 shows the results.
  • the type and amount of the initiator / chain transfer agent, the catalyst, the additive solvent, and A polymer was produced and evaluated in the same manner as in Example 1 except that the polymerization temperature was changed as shown in Table 1. The results are shown in Table 2.
  • a polymer was prepared in the same manner as in Example 1 except that no aryltrimethylsilane was used, and the type and amount of the initiator / chain transfer agent, the catalyst, and the polymerization temperature were changed as shown in Table 1. Manufactured and evaluated. The results are shown in Table 2.
  • a polymer was produced and evaluated in the same manner as in Example 8 except that BC ⁇ 3 (10 mmol) was used as the Lewis acid. The results are shown in Table 2.
  • the initiators and transfer agents A to E in Table 1 are compounds represented by the following structural formulas.
  • A means compound A
  • B means compound B
  • C means compound C
  • D means compound D
  • E means compound E.
  • the reaction between the cationic group and the monomer (the growth reaction) and the reaction between the cationic group and the arylsilane (the termination reaction) occur.
  • the introduction of the aryl group occurs by directly attacking the cation, and does not mean that the chloro group and the aryl group are exchanged after the tertiary chloro terminal is formed.
  • a three-way cock was attached to a 200 ⁇ pressure-resistant glass container, and the polymerization container was dried by heating it at 100 ° C for 1 hour while evacuating with a vacuum line.After cooling to room temperature, The pressure was returned to normal pressure with nitrogen.
  • the polymerization solution was added to a 100% aqueous solution of saturated sodium bicarbonate, shaken together, and then the organic layer was washed twice with water 100.
  • the organic layer was concentrated to 10 and added to 300 acetone, followed by stirring to precipitate and separate the polymer.
  • the polymer thus obtained was dissolved in 80 n-hexane, dried over anhydrous magnesium sulfate, and the solid content was separated. Then, the n-hexane was distilled off under reduced pressure. An isobutylene-based polymer was obtained. The yield was calculated from the yield of the obtained polymer, n and wZn were determined by the GPC method, and the terminal structure was determined by the 1 H-NMR (300 MHz) method. The results are shown in Table 3 below.
  • a polymer having a high purity of the terminal aryl group could be obtained in good yield.
  • R 9, R 1C and R 11 are all polyisobutylene chains having an aryl group at the terminal, and the chain lengths of R 9 , R 10 , and R 11 are different even if they are the same. Is also good. ].
  • a polymer was produced in the same manner as in Example 17 except that no aryltrimethylsilane was added, and the results of structural analysis are also shown in Table 3.
  • a catalytic amount of tetrachloride In the case of using titanium, the yield was good, but the molecular weight distribution of the obtained polymer was wide and the terminal functional group species was not uniform.
  • a pressure-resistant glass-made liquefied gas sampling tube equipped with a dollar valve containing 330 g of isobutylene dehydrated by passing through a column filled with barium oxide was compressed using a pressure-resistant rubber tube.
  • the container body was immersed in a dry ice-aceton bath at 100 ° C., and cooled for 1 hour while stirring the inside of the polymerization container.
  • the internal pressure was reduced by a vacuum line, and then the needle valve was opened. Thereafter, the pressure was returned to normal pressure by flowing nitrogen from one of the three-way cocks, then immersed in a dry eye bath at 130 ° C for 1 hour, and the inside of the polymerization vessel was cooled to 130 ° C. ⁇ il ⁇
  • the polymer thus obtained was dissolved again in 100-n-hexane, dried over anhydrous magnesium sulfate to separate a solid component, and then n-hexane was distilled off under reduced pressure. An isobutylene polymer was obtained.
  • the yield was calculated from the yield of the obtained polymer, Mn and w / n were determined by the GPC method, and the terminal structure was determined by iH-NMR (300 MHz) method. Table 4 shows the results. '
  • the temperature at the start of the polymerization was set at 170 ° C. in order to avoid the danger of raising the temperature during the polymerization reaction by adding titanium tetrachloride 55 (500 millimoles) at once. Except for this, a polymer was produced in the same manner as in Example 19, and the structure was analyzed. The results are shown in Table 4. Example 20 Then, the temperature rise range was as high as 72, and the arylation rate was slightly reduced.
  • Example 20 From the results of Example 20, it is clear that the present polymerization reaction involves a large amount of heat generation. However, by using the method of Example 19, it was possible to keep the temperature rise during polymerization within 5 ° C.
  • a monomer solution (a) and a titanium tetrachloride solution (mouth) were prepared.
  • the monomer solution (a) is 80 g of isobutylene.
  • Titanium tetrachloride solution (mouth) is tetrachloride It is composed of titanium 1.1 (10 mmol, 50 mM) and methylene chloride 2003? Dried by hydrogenation-potassium treatment.
  • the monomer solution (a) and the titanium tetrachloride solution (mouth) were introduced into a glass polymerization tube as shown in Fig. 1 using a metering pump. At this time, the monomer solution (a) and the titanium tetrachloride solution (mouth) should be mixed only in the polymerization tube, and the monomer solution (a) should be mixed at a rate of about 10 ⁇ / min. The solution (mouth) was introduced at a rate of about 4 ⁇ per minute.
  • the polymerization tube used was a spirally wound glass tube with an inner diameter of 4 min and a total length of 1'0 m. I put it in the C asset bus.
  • the polymerization reaction is completed while the mixed solution of (a) and (mouth) passes through the inside of the polymerization tube, and the solution containing the produced isobutylene-based polymer is poured into sodium bicarbonate water from inside the polymerization tube. Transferred and stirred vigorously.
  • FIG. 1 is a schematic diagram of a continuous polymerization apparatus used in Example 21.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

A method of producing an allyl-terminated isobutylene polymer by polymerizing a mixture of: (A) a cationically polymerizable monomer containing isobutylene, (B) an organic compound serving as both an initiator and a chain transfer agent, represented by general formula (I), (C) at least one Lewis acid selected from the group consisting of (C2H5)2AlCl, (C2H5)AlCl2, SnCl4 and TiCl4, and (D) a compound serving as an end capping agent, represented by general formula (II).

Description

明 細 書  Specification
反応性末端基を有するポリ マーの製造法  Method for producing polymer having reactive terminal group
技 術 分 野  Technical field
本発明は、 ァリル末端を有するイ ソブチレ ン系ポリ マ —の製造法に関する。  The present invention relates to a method for producing an isobutylene-based polymer having an aryl terminal.
背 景 技 術  Background technology
末端官能性ポリマー、 例えば分子両末端に水酸基等が 導入されたポリマーは、 ポリ ウ レタ ン、 接着剤、 改質剤、 コーティ ング剤、 シー リ ング剤等の原料等と して有用で ある。  A terminal functional polymer, for example, a polymer having a hydroxyl group introduced at both ends of the molecule, is useful as a raw material of a polyurethane, an adhesive, a modifier, a coating agent, a sealing agent, and the like.
斯かる末端官能性ポリマーの例としては、 不飽和基末 端を有するイソブチレン系ポリマーが知られている。  As an example of such a terminal functional polymer, an isobutylene-based polymer having an unsaturated group terminal is known.
このよ うな末端官能性ィ ソブチレン系ポ リ マーの製造 法と しては、 例えば 1 , 4一ビス ( α—クロ口イ ソプロ ピル) ベンゼン (以下 「 ρ— D C C」 と記す) を開始剤 兼連鎖移動剤とし、 且つ B C 3 を触媒としてイ ソプチ レ ンをカチオ ン重合させるィニファー法 (米国特許第 4 2 7 6 3 9 4号明細書) で得られたク ロル末端を有す るポリ マーの脱 H C ^反応を行なう方法が報告されてい る (米国特許第 4 5 2 4 1 8 8号明細書) 。 As a method for producing such an end-functionalized isobutylene-based polymer, for example, 1,4-bis (α-chloroisopropyl) benzene (hereinafter referred to as “ρ-DCC”) is used as an initiator and also as an initiator. a chain transfer agent, poly-mer that and having a click Lol terminal obtained in BC 3 Inifa method for Kachio down polymerizing Lee Sopuchi les down as a catalyst (U.S. Pat. No. 4 2 7 6 3 9 4 Pat) A method has been reported for carrying out the HC ^ reaction of the compound (US Pat. No. 4,524,188).
しかしながら、 この方法は、 反応工程が多く、 簡便な 方法ではない。 更にク ロル末端を有するイソブチレン系ポリ マーに不 飽和基を導入する簡便な方法と しては、 斯かるィニフ ァ 一法で得られる両末端にク ロル基を有するイ ソプチレン 系ポリ マーを、 ルイス酸の存在下でァリルト リ メ チルシ ラ ンと反応させ:るこ とによ り両末端にァ リル基を有する ポリマーに変換する方法が知られている (特開昭 6 3— 1 0 5 0 0 5号公報) 。 However, this method has many reaction steps and is not a simple method. Further, as a simple method for introducing an unsaturated group into an isobutylene-based polymer having a chloro terminal, an isobutylene-based polymer having a chloro group at both ends obtained by the above-mentioned one-step method may be used. A method is known in which the compound is reacted with aryltrimethylsilane in the presence of an acid to convert the polymer into a polymer having an aryl group at both ends (see JP-A-63-150500). No. 5 publication).
しかるに、 本発明者の研究によれば、 特開昭 6 3 - 1 0 5 0 0 5号公報に記載されている方法を用いた場合、 ポリ マーの末端への不飽和基の導入率が低い、 高価な原 料を使用する必要がある等の問題点があることが判明し た。  However, according to the study of the present inventor, when the method described in Japanese Patent Application Laid-Open No. 63-150005 is used, the rate of introduction of unsaturated groups into the terminal of the polymer is low. However, it was found that there were problems such as the need to use expensive raw materials.
発 明 の 開 示  Disclosure of the invention
本発明の一つの目的は、 上記特開昭 6 3—  One object of the present invention is to provide
1 0 5 0 0 5号公報の方法と同じく簡便な不飽和基末端 を有するイ ソブチレン系ポリマーの製造法を提供するこ とにある。  It is another object of the present invention to provide a method for producing an isobutylene-based polymer having an unsaturated group terminal, which is the same as the method disclosed in Japanese Patent Application Publication No. 2005-005.
本発明の他の一つの目的は、 不飽和基の導入率が高い、 不飽和末端を有するイ ソブチレン系ポリマーの製造法を 提供することにある。  Another object of the present invention is to provide a method for producing an isobutylene-based polymer having an unsaturated terminal and having a high rate of introduction of unsaturated groups.
本発明の他の一つの目的は、 不飽和末端を有するイ ソ . ブチレン系ポリマーの安価な製造法を提供することにあ る o 本発明の他の目的及び特徴は、 以下の記載から明らか にされるであろう。 本発明者は、 斯かる現状に鑑み、 種々の研究を重ねた 結果、 特定のルイス酸を用いて特定の反応方法を採用す ることにより、 上記目的が悉く達成されることを見い出 した。 ' 即ち、 本発明は、 Another object of the present invention is to provide an inexpensive method for producing an isobutylene-based polymer having an unsaturated terminal. Other objects and features of the present invention will be apparent from the following description. The present inventor has made various studies in view of the present situation, and as a result, has found that the above object can be completely achieved by adopting a specific reaction method using a specific Lewis acid. . 'That is, the present invention
(A) イ ソブチ レンを含有するカチオン重合性モノ マー、 (B) 開始剤兼連鎖移動剤である一般式 ( I ) : (A) a cationically polymerizable monomer containing isobutylene; (B) a general formula (I) which is an initiator and a chain transfer agent:
R 1 R 1
I  I
R 3 — C一 X ( I ) R 3 — C-X (I)
I  I
R 2 R 2
〔式中、 Xはハロゲン原子、 R C O O—基 (Rは 1 価の有機基、 以下同じ) 又は R O—基を示す。 [In the formula, X represents a halogen atom, a RCO— group (R is a monovalent organic group, the same applies hereinafter) or a R—O— group.
R 3 は多価芳香環基又は置換もしく は非置換の多 価脂肪族炭化水素基を示す。 R 1 及び R 2 は、 同 一又は異なつて水素原子又は置換も しく は非置換 の 1価の炭化水素基を示す。 但し R 3 が多価脂肪 族炭化水素基の場合には、 R 1 及び R 2 は同時に 水素原子ではない。 〕 で表わされる基を有する有機化合物、 ( C) (C 2 H 5 ) 2 A £ C £ ^ R 3 represents a polyvalent aromatic ring group or a substituted or unsubstituted polyvalent aliphatic hydrocarbon group. R 1 and R 2 are the same or different and represent a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group. However, when R 3 is a polyvalent aliphatic hydrocarbon group, R 1 and R 2 are not simultaneously hydrogen atoms. An organic compound having a group represented by (C) (C 2 H 5 ) 2 A £ C £ ^
( C 2 H 5 ) A β C β 2 S n C ^ 4 及び T i C i 4 なる群より選ばれた少なく とも一種のル ィス酸、 及び (D) エン ドキャ ップ剤である一般式 (H) : (C 2 H 5) A β C β 2 SnC ^ 4 and at least one lysic acid selected from the group consisting of TiCi 4, and (D) a general formula which is an endcapping agent (H):
R 4 R 4
C H 2 = C H C H 2 S i - R 5 (Π) CH 2 = CHCH 2 S i-R 5 (Π)
I  I
R 6  R 6
〔式中、 R4 、 R 5 及び R 6 は、 同一又は異なって、 —価の有機基又は一価の有機基における炭素原子 のうちの 1〜 3個をゲイ素原子に置き換えた基を 示す。 〕 で表わされる化合物 を混合して上記のカチオン重合性モノマーを重合させる ことを特徵とするァリル末端を有するイ ソブチ レン系ポ リマーの製造法に係る。 - [In the formula, R 4 , R 5 and R 6 are the same or different and each represents a group in which 1 to 3 carbon atoms in a monovalent organic group or a monovalent organic group are replaced with a gayne atom. . ] The present invention relates to a method for producing an isobutylene-based polymer having an aryl terminal, which comprises mixing a compound represented by the formula: -
" 上記本発明の方法は、 簡便であり、 安価なルイ ス酸を 用いているので低コス トであり、 末端への不飽和基の導 入率が高いという特徵の他に、 得られるイソブチ レン系 ポリマーの分子量分布が狭く なるという優れた特徵を有 している。 分子量分布が狭いと、 ポリマーの粘度が小さ く なり、 配合物作成時に混練し易い等、 取扱いが容易と なり、 更に架橋硬化させた場合に、 硬化物の機械物性等 が優れたものになるという利点がある。 The method of the present invention is simple and inexpensive because of the use of inexpensive Lewis acid. In addition to the characteristic that the rate of introduction of unsaturated groups into the terminal is high, the method of the present invention also provides isobutylene. It has an excellent feature that the molecular weight distribution of the system polymer is narrower, and if the molecular weight distribution is narrower, the viscosity of the polymer becomes smaller and it is easier to handle such as easy to knead when preparing a compound. Further, when cross-linked and cured, there is an advantage that the cured product has excellent mechanical properties and the like.
更に本発明においては、 ( C ) 成分の使用量を少なく することが可能であり、 経済的である。 また重合反応に 関与する ( C ) 成分の使用量を調節するこ とによ り、 重 合速度をコ ン ト ロールするこ とが可能であることから、 重合反応に伴う発熱速度をコ ン ト ロールするこ とができ る。 発熱速度を遅く するこ と によ り、 ァ リル末端を有す るイ ソブチレン系ポ リ マーの大スケールでの製造時にお いて、 特に大規模な冷却装置を用いるこ とな く 、 重合速 度を制御するこ とが可能となるので、 経済的である。  Furthermore, in the present invention, it is possible to reduce the amount of the component (C) used, and it is economical. In addition, the rate of polymerization can be controlled by adjusting the amount of the component (C) involved in the polymerization reaction, so that the rate of heat generation accompanying the polymerization reaction can be controlled. You can roll. By reducing the rate of heat generation, the polymerization rate can be increased without the need for a large-scale cooling device, especially when producing an isobutylene-based polymer having an aryl end on a large scale. It is economical because it is possible to control
加えて、 本発明においては、 重合反応を一 4 0〜 1 0 °Cという比較的高温で行なった場合でも、 末端官能化度' の大きいイ ソブチ レン系ポリ マーが得られるという利点 も有している。  In addition, the present invention has an advantage that an isobutylene-based polymer having a large degree of terminal functionalization can be obtained even when the polymerization reaction is performed at a relatively high temperature of 140 to 10 ° C. ing.
本明細書において、 イ ソブチレンを含有するカチオ ン 重合性モノ マーとは、 イ ソプチレンのみからなるモノ マ 一に限定される ものではな く 、 イ ソプチレンの 5 0重量 % (以下単に 「%」 と記す) 以下をイソブチレンと共重 合し得るカチオン重合性モノ マーで置換したモノ マーを 意味する。  In the present specification, the cation-polymerizable monomer containing isobutylene is not limited to a monomer consisting of only isobutylene, but may be 50% by weight of isobutylene (hereinafter simply referred to as “%”). The following means a monomer substituted with a cationically polymerizable monomer capable of co-polymerizing with isobutylene.
イ ソブチレンと共重合し得るカチオン重合性モノ マー と しては、 例えば炭素数 3〜 1 2 のォレフ ィ ン類、 共役 ジェン類、 ビニルエーテル類、 芳香族ビニル化合物類、 ビニルシラ ン類等が挙げられる。 これらの中でも炭素数 3〜 1 2のォ レフィ ン類及び共役ジェン類等が好ま しい。 前記イ ソブチレンと共重合し得るカチオン重合性モノ マーの具体例と しては、 例えばプロ ピレン、 1 ーブテン、Cationic polymerizable monomer copolymerizable with isobutylene Examples thereof include olefins having 3 to 12 carbon atoms, conjugated gens, vinyl ethers, aromatic vinyl compounds, vinylsilanes, and the like. Among these, olefins having 3 to 12 carbon atoms and conjugated gens are preferred. Specific examples of the cationically polymerizable monomer copolymerizable with isobutylene include, for example, propylene, 1-butene,
2—ブテン、 2—メ チルー 1 ーブテン、 3—メ チル一 2 ーブテン、 ペンテン、 4一メ チル一 1一ペンテン、 へキ セン、 ビニルシク ロへキサン、 ブタ ジエン、 イ ソプレン、 シク ロペンタジェン、 メ チルビニルエーテノレ、 ェチルビ ニルエーテル、 イ ソプチルビニルエーテル、 スチレン、 α—メ チルスチレン、 ジメ チルスチレン、 モノ ク ロ ロス チ レン、 ジク ロロスチ レン、 ;9一ビネ ン、 イ ンデン、 ビ ニノレ ト リ ク ロ ロ シラ ン、 ビニノレメ チノレジク ロ ロ シラ ン、 ビニノレジメ チルク ロ ロ シラ ン、 ビニルジメ チノレメ トキシ シラ ン、 ビニル ト リ メ チルシラ ン、 ジビニルジク ロ 口 シ ラ ン、 ジビニルジメ トキシシラ ン、 ジビニルジメ チルシ ラ ン、 1 , 3—ジビニルー 1 , 1 , 3 , 3—テ ト ラメ チ ルジシロキサン、 ト リ ビニルメ チルシラ ン、 テ ト ラ ビ二 ルシラ ン、 7 —メ タ ク リ ロイルォキシプロ ピル ト リ メ ト キシシラ ン、 7 —メ 夕 ク リ ロイルォキシプロ ピルメ チル ジメ トキシシラ ン等が挙げられる。 これらの中で、 例え ばプロ ピレ ン、 1ーブテン、 2— _ブテン、 スチ レン、 ブ 夕 ジェン、 イ ソプレ ン、 シク ロペン夕 ジェン等が好適で ある。 これらイソブチレンと共重合し得るカチオン重合 性モノ マーは、 1種単独でイ ソプチレンと併用してもよ いし、 2種以上で併用してもよい。 2-butene, 2-methyl-1-butene, 3-methyl-2-butene, pentene, 4-methyl-11-pentene, hexene, vinylcyclohexane, butadiene, isoprene, cyclopentadiene, methyl Vinyl ether, ethyl vinyl ether, isobutyl vinyl ether, styrene, α-methyl styrene, dimethyl styrene, monochlorostyrene, dichlorostyrene, 9-vinylene, indene, vinylinoletrichlorosilane , Vinylinolemethine chlorosilane, vinylinolemethine chlorosilane, vinyldimethinolemethoxysilane, vinyltrimethylsilane, divinyldichloro mouth silane, divinyldimethoxysilane, divinyldimethylsilane, 1,3-divinyl 1, 1, 3, 3—Tetramethyl Rokisan, Application Benefits Binirume Chirushira down, Te doo La bi two Lucila emissions, 7 - meta click Li Roiruokishipuro pill Application Benefits main DOO Kishishira emissions, 7 - main evening click Li Roiruokishipuro Pirume chill dimethyl Tokishishira emissions, and the like. In these, for example For example, propylene, 1-butene, 2-butene, styrene, butylbenzene, isoprene, cyclopentene, and the like are preferable. These cationically polymerizable monomers copolymerizable with isobutylene may be used alone or in combination of two or more with isobutylene.
本発明に用いる開始剤兼連鎖移動剤である上記一般式 ( I ) で表わされる基を有する有機化合物の例と しては、 例えば一般式 (m) :  Examples of the organic compound having a group represented by the above general formula (I), which is an initiator / chain transfer agent used in the present invention, include, for example, a general formula (m):
A Y n (m) 〔式中、 Aは 1〜 4個の芳香環を有する基を示す。 Yは —般式 (W)  A Y n (m) wherein A represents a group having 1 to 4 aromatic rings. Y is — general formula (W)
R 7 R 7
一 C一 X (IV)  One C one X (IV)
R 8 R 8
(式中、 R7 及び R 8 は、 同一又は異なって水素原子 又は炭素数 1〜 2 0の 1価の炭化水素基を示す。 は F、 C β . B r、 Iの如きハロゲン原子、 R C O O— 基又は R O—基を示す。 ) で示される芳香環に結合し た基を示す。 nは 1〜 6の整数を示す。 〕 (Wherein R 7 and R 8 are the same or different and represent a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms. Is a halogen atom such as F, Cβ.Br, I, RCOO — Represents a group or an RO— group. n shows the integer of 1-6. ]
で表わされる化合物、  A compound represented by
一般式 (V) :  General formula (V):
B Z m (V) 〔式中、 Bは炭素数 4〜 4 0の炭化水素基を示す。 Zは 第 3級炭素原子に結合したハロゲン原子、 R C O O— 基又は R O—基を示す。 πΐは 1〜 4の整数を示す。 〕 で表わされる化合物及び ー ハロスチ レン単位を有する オ リ ゴマー等が挙げられるが、 これらに限定されるもの ではない。 これらの化合物は単独で用いてもよいし、 2 種以上併用してもよい。 BZ m (V) [In the formula, B represents a hydrocarbon group having 4 to 40 carbon atoms. Z represents a halogen atom, an RCOO— group or an RO— group bonded to a tertiary carbon atom. πΐ represents an integer of 1 to 4. And an oligomer having a -halostylene unit, but are not limited thereto. These compounds may be used alone or in combination of two or more.
一般式 (m) で表わされる化合物における 1〜 4個の 芳香環を有する基である Aは、 縮合反応により形成され たものでもよく、 非縮合系のものでもよい。 このような 芳香環を有する基の具体例としては、 例えば 1〜 6価の フエニル基、 ビフ エ二ル基、 ナフタ レン基、 アン トラセ ン基、 フ ヱナンス レン基、 ピレン基、  A, which is a group having 1 to 4 aromatic rings in the compound represented by the general formula (m), may be formed by a condensation reaction or may be a non-condensed one. Specific examples of the group having such an aromatic ring include, for example, a monovalent to hexavalent phenyl group, a biphenyl group, a naphthalene group, an anthracene group, a phenylene group, a pyrene group,
P h— ( C H 2 ) ^ — P h基 (P hはフエニル基、 ί は 1〜 1 0の整数) 等が挙げられ、 これらの芳香環を有す る基は炭素数 1〜 2 0の直鎖及び '(又は) 枝分れの脂肪 族炭化水素碁や、 水酸基、 エーテル基、 ビニル基等の官 能基を有する基で置換されていてもよい。  Ph— (CH 2) ^ — Ph group (Ph is a phenyl group, ί is an integer of 1 to 10) and the like. These groups having an aromatic ring are those having 1 to 20 carbon atoms. It may be substituted by a linear or '(or) branched aliphatic hydrocarbon or a group having a functional group such as a hydroxyl group, an ether group, or a vinyl group.
一方、 一般式 (V) で表わされる化合物における Ζは、 第 3級炭素原子に結合した F、 C 、 B r、 Iの如きハ ロゲン原子、 R C 00—基又は R 0—基であり、 一般式 (V) における Βは炭素数 4〜 4 0の炭化水素基の脂肪 族炭化水素基であり、 好ま しく は脂肪族炭化水素基であ り、 この炭素数が 4未満になるとハロゲン原子、 On the other hand, に お け る in the compound represented by the general formula (V) represents a halogen atom such as F, C, Br, or I bonded to a tertiary carbon atom, an RC00— group or an R0— group; In the formula (V), Β is a hydrocarbon-based hydrocarbon having 4 to 40 carbon atoms. An aliphatic hydrocarbon group, preferably an aliphatic hydrocarbon group. When the number of carbon atoms is less than 4, a halogen atom,
R C O O基又は R O—基の結合する炭素が第 3級炭素原 子でなく なり、 重合が進みにく くなつて使用するのに適 さなく なる。 The carbon to which the RCO— or R—— groups are bonded is no longer a tertiary carbon atom, and the polymerization is less likely to proceed, making it unsuitable for use.
開始剤兼連鎖移動剤と して用いるこ とができる な —ハ ロスチレン単位を有するオリ ゴマーと しては、 例えば α 一ク ロ ロスチ レンのオ リ ゴマーや、 α—ク ロ ロスチ レン とこれと共重合し得る単量体とを共重合させたオリ ゴマ 一等が挙げられる。  It cannot be used as an initiator and chain transfer agent. Examples of oligomers having a halostyrene unit include α-chlorostyrene oligomers, α-chlorostyrene and α-chlorostyrene. Oligomers copolymerized with a copolymerizable monomer are exemplified.
本発明の方法において、 一般式 ( I ) で表わされる結 合伏態のハロゲン原子、 R C O O—基、 又は R O—基を 2個以上有する化合物、 又は一般式 ( I ) で表わされる 結合状態のハロゲン原子、 R C 00—基又は R 0—基と 他の反応性官能基とを有する化合物を開始剤兼連鎖移動 剤と して用いると、 両末端官能性の重合体、 いわゆるテ レケリ ッ ク重合体を得るこ とができ、 その末端官能化度 を高く できるので非常に有効である。  In the method of the present invention, a compound having two or more bonded halogen atoms, RCOO— groups or RO— groups represented by the general formula (I), or a bonded halogen atom represented by the general formula (I) When a compound having an atom, an RC00-group or an R0-group and another reactive functional group is used as an initiator and a chain transfer agent, a polymer having both terminal functionalities, a so-called telechelic polymer This is very effective because it can increase the degree of terminal functionalization.
前記開始剤兼連鎖移動剤の具体例としては、 例えば 0
Figure imgf000012_0001
Specific examples of the initiator and chain transfer agent include, for example, 0
Figure imgf000012_0001
CH CH CH3 C X (C Hs ) 2
Figure imgf000012_0002
CH CH CH 3 CX (C Hs) 2
Figure imgf000012_0002
CHs C X (C Hs ) 2
Figure imgf000012_0003
CHs CX (C Hs) 2
Figure imgf000012_0003
C H CH C H CH
Figure imgf000012_0004
Figure imgf000012_0004
CH3 CH3 CH 3 CH 3
CH3 CH3
Figure imgf000012_0005
CH 3 CH 3
Figure imgf000012_0005
C Hs C Hs 1 C Hs C Hs 1
CH CH CH CH CH CH
X— C一 CH2 CH2 -C-X CH3 -C-X X— C-CH 2 CH 2 -CX CH 3 -CX
CH CH CH  CH CH CH
(n - C8 H1?) (n - C8 Hn) (n-C 8 H 1? ) (n-C 8 H n )
X— C一 CH2 CH2 CH2 CH2 -C-X X— C-CH2 CH 2 CH 2 CH 2 -CX
(n— C (n - Ca H17) (n— C (n-Ca H 17 )
CH CH CH3 CH CH CH 3
X-C-CHs CH2 一 C一 CH2 CH2 -C-X XC-CHs CH 2 1 C 1 CH 2 CH 2 -CX
CH X CH  CH X CH
cr—ク ロ ロスチ レンのォ リ ゴマーのよ うなハロゲン原子 含有有機化合物又は R C 00 -基含有有機化合物が挙げ られるが、 これらに限定される ものではない。 これら化 合物の中でも Examples include, but are not limited to, a halogen atom-containing organic compound or an R C00 -group-containing organic compound, such as a cr-chlorostyrene oligomer. Among these compounds
Figure imgf000013_0001
Figure imgf000013_0001
CH3 C C (CHs ) ≤
Figure imgf000014_0001
CH 3 CC (CHs) ≤
Figure imgf000014_0001
CHs C B r (CHs ) 2 CHs C Br (CHs) 2
Figure imgf000014_0002
Figure imgf000014_0002
CH C B r (CH3 ) 2CH CB r (CH 3 ) 2
Figure imgf000014_0003
Figure imgf000014_0003
CHs C (CHs ) 2 0 CH3 CHs C (CHs) 2 0 CH 3
0 0
Figure imgf000014_0004
Figure imgf000014_0004
CH3 C (CHs ) 2 0 C CH3 CH 3 C (CHs) 2 0 C CH 3
II  II
0 のような、 イ ンダン型骨格を副生しにく い構造の芳香族 系の化合物、 及び  Aromatic compounds having a structure that hardly produces an indane-type skeleton such as 0, and
CH3 CH3 CH 3 CH 3
I 1  I 1
C - C—— C一 C £ C-C—— C-C £
CHs CHs CH CH CH CHs CHs CH CH CH
C ^ - C- CH2 CH2 一 C— CH2 CH2 — C一 C C ^-C- CH 2 CH 2- C-CH 2 CH 2 -C-C
CH3 C i CH CH 3 C i CH
のような安定な炭素陽イオンを生成し易い  Easy to generate stable carbon cations such as
一 C ( C H 3 ) 2 C-.β又は一 C ( C H 3 ) 2 B rを有す るハロゲン原子含有有機化合物や、  A halogen atom-containing organic compound having one C (CH3) 2C-.beta or one C (CH3) 2Br,
0 CH CH CHs 0  0 CH CH CHs 0
CHs C O- C- CH C- CH5 — C一 0— C CHs CHs C O- C- CH C- CH 5 — C-1 0— C CHs
CH CH3 CHs CH CH 3 CHs
0 CH CH CH 0 0 CH CH CH 0
CHs CO-C- CHz - C - CH C-O- C CH  CHs CO-C- CHz-C-CH C-O- C CH
CH 0 CH  CH 0 CH
C = 0  C = 0
CH  CH
CH3 C H CH CH 3 CH CH
CH3 O-C- CH2 - C - C H 2 - C-0 CH3 CH 3 OC- CH2-C-CH 2-C-0 CH 3
CH CH CH のような化合物が好ま しい。 CH CH CH Compounds such as are preferred.
これらの化合物は、 開始剤兼連鎖移動剤と して使用さ れる成分であり、 本発明では、 1種又は 2種以上混合し て用いられる。 また、 これらの化合物の使用量を調節す ることにより、 得られるポリ マーの分子量をコン トロー ルすることができる。 本発明では、 上記の化合物を、 通 常イ ソブチレンを含有するカチォン重合性モノマーに対 して、 0. 0 1〜 2 5 %程度、 好ま しく は 0. 1〜: 1 5 %程度の割合で使用するのがよい。  These compounds are components used as an initiator and a chain transfer agent, and in the present invention, one kind or a mixture of two or more kinds is used. Further, by adjusting the amount of these compounds used, the molecular weight of the obtained polymer can be controlled. In the present invention, the above compound is usually used in a ratio of about 0.01 to 25%, preferably about 0.1 to 15%, based on the cation-polymerizable monomer containing isobutylene. Good to use.
本発明に用いるルイ ス酸は触媒と して使用される成分 である。 本発明では、 ルイス酸と しては、  Lewis acid used in the present invention is a component used as a catalyst. In the present invention, as the Lewis acid,
(C 2 H 5 ) 2 Α β C ^ (C 2 H 5 ) A i C ^ 2 . S n C β 4 及び T i C & 4 なる群より選ばれた少なく と も一種が用いられる。 特に好ま しいのは T i C β 4 や S n C 4 である。 ルイス酸の使用量は、 上記開始剤兼 連鎖移動剤である一般式 ( I ) で表わされる基を有する 有機化合物中の Xのモル数に対して 0. 0 0 0 1〜 At least one selected from the group consisting of (C 2 H 5 ) 2 Αβ C ^ (C 2 H 5 ) A i C ^ 2. Sn C β 4 and T i C & 4 is used. Particularly preferred are TiCβ4 and SnC4. The amount of the Lewis acid to be used is from 0.00001 to the number of moles of X in the organic compound having a group represented by the general formula (I), which is the above initiator and chain transfer agent.
0. 5倍当量が好ま しい。  0.5 equivalents are preferred.
本発明に用いるェン ドキャ ップ剤と しては、  As the end cap agent used in the present invention,
R 4 R 4
C H 2 = C H C H 2 S i - R5 (Π) CH 2 = CHCH 2 S i-R 5 (Π)
R 6 〔式中、 R4 、 R 5 及び Re は前記に同じ。 〕 で表わされる化合物、 例えば R 6 Wherein R 4 , R 5 and Re are the same as above. A compound represented by, for example,
^- S i (CHs ) 3 、 i-^ ^-S i (CHs) 3, i- ^
CH3
Figure imgf000017_0001
CH 3
Figure imgf000017_0001
CH  CH
S i (CH2 CH3 ) S i (CH 2 CH 3 )
S i (CH2 CH2 CHs ) 3 S i (CH 2 CH 2 CHs) 3
S i (CH2 CH2 CH2 CH3 )
Figure imgf000017_0002
S i (CH 2 CH 2 CH 2 CH 3 )
Figure imgf000017_0002
S i (CHs CHs ) 2 、 S i (CHs CHs) 2,
Figure imgf000017_0003
Figure imgf000017_0003
S i (CH2 CH2 CH3 ) 2 、 6 S i (CH 2 CH 2 CH 3 ) 2, 6
Figure imgf000018_0001
Figure imgf000018_0001
S i (CH2 CH2 CH2 CH3 ) 2 s IS i (CH 2 CH 2 CH 2 CH 3 ) 2 s I
1 • 1 •
Figure imgf000018_0002
Figure imgf000018_0002
CHs CH3
Figure imgf000018_0003
CHs CH 3
Figure imgf000018_0003
CHs CH3 CHs CH 3
CH CHCH CH
S CHS CH
CH3 CH 等がある。 CH 3 CH and others.
これらの化合物の中でも特に好ま しいものと して  Particularly preferred among these compounds
CH3 CH 3
^ _ S i (CH3 ) 3 、 S i -^ ^ _ S i (CH 3 ) 3, S i-^
CH
Figure imgf000019_0001
4
CH
Figure imgf000019_0001
Four
I I
CH3 が挙げられる。 本発明において (B) 成分中の一般式 ( I ) で表わされる基を有する有機化合物中の Xと、 (D) 成分である一般式 (E) で表わされる化合物のモ ル比 〔 (X) / (H) 、 但し (X) 及び (Π) は上記 X 及び化合物 (H) のモル数とする。 〕 は、 2. 0〜 0. 2の範囲内にあることが好ま しい。 CH 3, and the like. In the present invention, the molar ratio of X in the organic compound having a group represented by the general formula (I) in the component (B) to the compound represented by the general formula (E) as the component (D) [(X) / (H), where (X) and (Π) are the moles of X and compound (H). ] Is preferably in the range of 2.0 to 0.2.
本発明において、 溶媒と しては、 例えば脂肪族炭化水 素、 ハ口ゲン化炭化水素等の炭化水素溶媒等が挙げられ る。 この中でもハロゲン化炭化水素が好ま しく、 塩素原 子を有する塩素化炭化水素がより好ま しい。 斯かる脂肪 族炭化水素の具体例と しては、 ペンタ ン、 へキサン等を、 またハロゲン化炭化水素の具体例と しては、 ク ロ口メ タ ン、 クロ口ェタン、 塩化メ チレン、 1 , 1ージク ロロェ タ ン、 ク ロ口ホルム、 1 , 2—ジク ロ口エタ ン等を例示 できる。 これらは、 1種単独で、 又は 2種以上混合して 使用される。 更には少量の他の溶媒、 例えば酢酸ェチル 等の酢酸エステル、 ニ ト ロェタ ン等のニ トロ基を有する 有機化合物、 ジメ チルスルホキシ ド等のスルホキシ ド、 スルホ ン、 ジメ チルホルムア ミ ド、 ジメ チルァセ トア ミ ド等のア ミ ド基を有する有機化合物、 ァセ トニ ト リル等 の二 ト リル基を有する有機化合物を併用してもよい。 In the present invention, examples of the solvent include a hydrocarbon solvent such as an aliphatic hydrocarbon and a haegenated hydrocarbon. Of these, halogenated hydrocarbons are preferred, and chlorinated hydrocarbons having chlorine atoms are more preferred. Specific examples of such aliphatic hydrocarbons include pentane and hexane, and specific examples of halogenated hydrocarbons include chloromethane, chloromethane, methylene chloride, and the like. Examples include 1,1-dichloroethane, black-holm, and 1,2-dichloroethane. These are used singly or as a mixture of two or more. Furthermore, a small amount of other solvents, for example, acetates such as ethyl acetate, organic compounds having a nitro group such as nitrethane, sulfoxides such as dimethyl sulfoxide, An organic compound having an amide group such as sulfon, dimethylformamide, dimethylacetamide, or an organic compound having a ditolyl group such as acetonitrile may be used in combination.
本発明において重合温度と しては、 低温 (即ち + 2 0 〜一 1 0 0 °C ) が好ま しいが、 実際に製造する場合は、 比較的高い温度 (即ち + 1 0 °C〜一 4 0 °C ) が更に好ま しい。  In the present invention, as the polymerization temperature, a low temperature (that is, +20 to 110 ° C.) is preferable, but in actual production, a relatively high temperature (that is, +10 to 140 ° C.) is used. 0 ° C) is more preferable.
重合時間は通常 0 . 5〜 1 2 0分程度、 好ま しく は 1 〜 6 0分程度である。 また、 重合時のモノ マー濃度と し ては、 0 . 1〜 8 モル Z ^程度が好ま しく、 0 . 5〜 5 モル Z &程度がより好ま しい。  The polymerization time is usually about 0.5 to 120 minutes, preferably about 1 to 60 minutes. The monomer concentration during polymerization is preferably about 0.1 to 8 mol Z ^, more preferably about 0.5 to 5 mol Z &.
重合反応は、 バッチ式 (回分式又は半回分式) で行な つてもよいし、 (A ) 成分、 (B ) 成分、 (C ) 成分及 び (D ) 成分を連続的に重合容器内に加える連続式で行 なってもよい。  The polymerization reaction may be performed in a batch system (batch system or semi-batch system), or the components (A), (B), (C) and (D) may be continuously placed in a polymerization vessel. It may be performed in a continuous manner.
本発明の方法に従えば、 末端への不飽和基の導入率の 高いイソブチレン系ポリマーを安価に且つ簡便な方法で 得ることができる。 また本発明の方法によれば、 分子量 分布の狭いイ ソブチレン系ポリ マーを得ることができる。  According to the method of the present invention, an isobutylene-based polymer having a high rate of introduction of an unsaturated group into the terminal can be obtained at a low cost and in a simple manner. According to the method of the present invention, an isobutylene-based polymer having a narrow molecular weight distribution can be obtained.
実 施 例  Example
次に実施例を掲げて、 本発明をより一層明らかにする。 実施例 1 2 0 0 3^の耐圧ガラス製重合容器に三方コ ッ クを取付 けて、 真空ライ ンを用いて真空状態にした重合容器を 1 0 0でで 1時間加熱するこ とにより乾燥させ、 室温ま で冷却後三方コッ クを用いて窒素で常圧に戻した。 Next, the present invention will be further clarified with reference to examples. Example 1 Attach the three-way cock to the pressure-resistant glass polymerization vessel of 200 3 ^, and dry the polymerization vessel evacuated using a vacuum line by heating it at 100 for 1 hour. After cooling, the pressure was returned to normal pressure with nitrogen using a three-way cock.
その後、 三方コ ッ クの一方から窒素を流しながら、 注 射器を用いて重合容器中に水素化カルシゥム処理により 乾燥させた主溶媒である 1 , 1 ージク ロロェタ ン 4 0 を導入した。 次いで蒸留、 精製したァリルト リ メ チルシ ラ ン 5 mm o lを添加し、 更に T C C (化合物 A ) 2 ミ リ モ ルを溶解させた 1 0 の 1 , 1 ージクロロェタ ン溶液を 添加した。  Thereafter, while flowing nitrogen from one of the three-way cocks, 1,1-dichloroethane 40, which was a main solvent dried by hydrocalcium treatment, was introduced into the polymerization vessel using an injector. Next, 5 mmol of distilled and purified arylmethyl silane was added thereto, and further a solution of 10 1,1 dichloroethane in which TCC (compound A) 2 millimol was dissolved was added.
次に、 酸化バリ ウムを充填したカラムを通過させるこ とにより脱水したイ ソブチレンが 7 g入っているニー ド ルバルブ付耐圧ガラス製液化ガス採取管を耐圧ゴム管を 用いて三方コッ クに接続した後、 容器本体を一 7 0での ドライ アイ スーァセ ト ンバスに浸潰し、 重合容器内部を 1時間冷却した。 冷却後、 真空ライ ンにより内部を減圧 にした後、 ニー ドルバルブを開け、 イ ソブチレンを耐圧 ガラス製液化ガス採取管から重合容器中に導入した。 そ の後三方コ ッ クの一方から窒素を流すことにより常圧に 戻した後、 一 1 0。Cの ドライアイス一アセ ト ンバス中に 1時間浸漬して重合容器内を一 1 0 aCまで昇温した。 次に、 T i C ^ 4 1. 9 g ( 1 0 ミ リモル) を注射器 を用いて三方コ ッ クから添加して重合も開始きせ、 6 0 分経過した時点で予め 0 °C以下に冷却しておいたメ タノ —ルを添加することにより、 反応を完結させた。 Next, a pressure-resistant glass liquefied gas sampling tube with a needle valve containing 7 g of isobutylene dehydrated by passing through a column filled with barium oxide was connected to a three-way cock using a pressure-resistant rubber tube. Thereafter, the container body was immersed in a dry eye bath at 170 ° C., and the inside of the polymerization container was cooled for 1 hour. After cooling, the internal pressure was reduced by a vacuum line, then the needle valve was opened, and isobutylene was introduced into the polymerization vessel from a pressure-resistant glass liquefied gas sampling tube. Then, after returning to normal pressure by flowing nitrogen from one of the three-way cocks, the pressure returned to 110. The C 1 hour immersion to the polymerization vessel in dry ice one acetate bets Nbasu the temperature was raised to one 1 0 a C. Next, 1.9 g (10 millimoles) of TiC ^ 4 was added from a three-way cock using a syringe to initiate polymerization, and after 60 minutes had elapsed, it was cooled to 0 ° C or less in advance. The reaction was completed by the addition of the previously prepared methanol.
その後、 反応混合物をナス型フラスコに取出し、 未反 応のイ ソブチレン、 1 , 1ー ジク ロ ロェタ ン、 ァ リ ル ト リ メ チルシラ ン及びメ タノールを留去し、 残ったポリマ —を 1 0 0 Wの n—へキサンに溶解後、 中性になるまで この溶液の水洗を繰返した。 その後、 この n—へキサン 溶液を 2 0 まで濃縮し、 3 00 * のアセ ト ンにこの濃 縮溶液を加えた後、 攢拌するこ とによりポリマーを沈澱 分離させた。  Thereafter, the reaction mixture was taken out into an eggplant-shaped flask, and unreacted isobutylene, 1,1-dichloroethane, aryltrimethylsilylane and methanol were distilled off. After dissolving in 0 W n-hexane, the solution was repeatedly washed with water until neutral. Thereafter, the n-hexane solution was concentrated to 20 and the concentrated solution was added to 300 * aceton, followed by stirring to separate and precipitate the polymer.
このよ う にして得られたポリマ一を再び 1 0 0 の n —へキサンに溶解させ、 無水硫酸マグネシウムで乾燥さ せ固型分を 別した後、 n —へキサンを減圧留去するこ とにより、 イソブチレン系ポリマーを得た。  The polymer obtained in this way is dissolved again in 100 n-hexane, dried over anhydrous magnesium sulfate to separate solid components, and then n-hexane is distilled off under reduced pressure. As a result, an isobutylene-based polymer was obtained.
得られたポリマーの収量より収率を算出すると共に、 及び w/ nを G P C法により、 また末端構造を 1 H - NMR ( 3 00 MH z ) 法により求めた。 結果を 第 2表に示す。  The yield was calculated from the yield of the obtained polymer, and w / n was determined by the GPC method, and the terminal structure was determined by 1 H-NMR (300 MHz) method. Table 2 shows the results.
実施例 2〜 1 6  Examples 2 to 16
開始剤兼連鎖移動剤、 触媒、 添加溶媒の種類や量及び、 重合温度を第 1表に示すよ う に変更した以外は、 実施例 1 と同様にしてポリ マーを製造し、 評価した。 結果を第 2表に併せて示す。 The type and amount of the initiator / chain transfer agent, the catalyst, the additive solvent, and A polymer was produced and evaluated in the same manner as in Example 1 except that the polymerization temperature was changed as shown in Table 1. The results are shown in Table 2.
比較例 7 Comparative Example 7
ァ リル ト リ メチルシラ ンを使用せず、 また開始剤兼連 鎖移動剤、 触媒の種類や量及び重合温度を第 1表に示す ように変更した以外は、 実施例 1 と同様にしてポリマー を製造し、 評価した。 結果を第 2表に併せて示す。  A polymer was prepared in the same manner as in Example 1 except that no aryltrimethylsilane was used, and the type and amount of the initiator / chain transfer agent, the catalyst, and the polymerization temperature were changed as shown in Table 1. Manufactured and evaluated. The results are shown in Table 2.
比較例 8 Comparative Example 8
ルイス酸と して B C ^ 3 (1 0 ミ リモル) を用いる以 外は実施例 8 と同様にしてポリマーを製造し、 評価した, 結果を第 2表に併せて示す。 A polymer was produced and evaluated in the same manner as in Example 8 except that BC ^ 3 (10 mmol) was used as the Lewis acid. The results are shown in Table 2.
尚、 第 1表における開始剤兼連鑌移動剤 A〜Eは、 以 下の構造式で表わされる化合物である。  The initiators and transfer agents A to E in Table 1 are compounds represented by the following structural formulas.
化合物 A : C £ ~ C)Compound A: C £ ~ C)
Figure imgf000023_0001
Figure imgf000023_0001
CH3 C C ^ (CH3 ) 2 CH 3 CC ^ (CH 3 ) 2
CH3 CH3 化合物 B :CH 3 CH 3 compound B:
Figure imgf000023_0002
Figure imgf000023_0002
CH CH 化合物 C : C ーCH CH Compound C: C ー
Figure imgf000024_0001
Figure imgf000024_0001
CHs C C (CH3 ) 2 CHs CC (CH 3 ) 2
CH3 CHs 化合物 D : C H 3 ' C 0 - C-ζΛ- C - 0 C C H CH 3 CHs Compound D: CH 3 'C 0-C-ζΛ- C-0 CCH
II I I II  II I I II
0 CH3 CH3 0 0 CH 3 CH 3 0
CHs CH3 化合物 E : C H 3 0— -O CHCHs CH 3 compound E : CH 3 0— -O CH
Figure imgf000024_0002
Figure imgf000024_0002
CHs CH3 CHs CH 3
1 1
Figure imgf000025_0001
Figure imgf000025_0001
第 1 表 (続き) Table 1 (continued)
Figure imgf000026_0001
Figure imgf000026_0001
上記表における Aは化合物 Aを、 Bは化合物 Bを、 Cは化合物 Cを、 Dは化^物 Dを、 Eは化合物 Eをそれぞれ意味する。 In the above table, A means compound A, B means compound B, C means compound C, D means compound D, and E means compound E.
2 官 能 基 の 量 * 実施例 収率 数平均 分子: S分布 CH3 2 Amount of functional group * Example Yield Number average molecule: S distribution CH 3
Ho. (X) 分子量 w/Mn 一 υ j一 Clip CH = CH2 ^ ォレフィ インダニ  Ho. (X) molecular weight w / Mn υ j 一 Clip CH = CH2 ^
Mn CH3 ン基 ル基Mn CH 3 group
1 90 2900 1. 30 2. 8 0. 2 01 90 2900 1.30 2.8 0.20
2 90 3000 1, 15 2. 9 0. 1 02 90 3000 1, 15 2.9 0.10
3 65 2600 1. 10 3. 0 0 03 65 2600 1.10 3.0.0 0 0
4 90 3300 1. 25 2. 8 0. 2 04 90 3300 1.25 2.8 0.20
5 90 2800 1. 30 2. 9 0. 1 05 90 2800 1.30 2.9 0.10
6 95 3100 1. 40 2. 9 0. 1 06 95 3 100 1.40 2.90.10
7 85 3600 1. 28 1. 8 0. 1 0. 17 85 3600 1.28 1.80.0.10.1
8 90 3800 1. 20 1. 9 0 0. 1 8 90 3800 1.20 1.90 0 0.1
2 表 (^Π 5) 官 能 基 の 暈 * 実施例 収率 数平均 分子量分布 CH3 X M 2 Table (^ Π5) Halo of functional group * Example Yield Number average molecular weight distribution CH 3 XM
No. (X) 分子量 Mw/ n -C-CH2 CH=CH2基 ォレフィ インダニ No. (X) Molecular weight Mw / n -C-CH 2 CH = CH 2 group
1  1
Mil CH3 ン ル基Mil CH 3
9 70 3400 1. 15 2. 0 0 09 70 3400 1.15 2.0.0 0 0
10 95 2800 1. 50 1. 9 0 0. 110 95 2800 1.50 1.9 0 0.1
11 95 3000 1. 30 1. 95 0 0. 0511 95 3000 1.30 1.95 0 0.05
12 95 4000 1, 25 1. 9 0. 1 012 95 4000 1, 25 1.9 0.10
13 90 3900 1. 20 2. 0 0 013 90 3900 1.20 2.0.0 0 0
14 60 3400 1, 15 2. 0 0 014 60 3400 1, 15 2.00 00
15 85 3200 1. 35 1. 9 0 0. 115 85 3200 1.35 1.9 0 0.1
16 95 3500 1. 45 1. 9 0 0. 1 16 95 3500 1.45 1.9 0 0.1
第 2 表(続き) Table 2 (continued)
Figure imgf000029_0001
Figure imgf000029_0001
¾ ポリマ一 1分子量当りの個数。 個数 Polymer number per 1 molecular weight.
x 58 ォレフィン基とは一 C = CH2及び— CH = C— CH3を意味する < x 58 olefin group means one C = CH 2 and —CH = C—CH 3 <
CH3 CH3 CH 3 CH 3
第 2表の結果から次のことが明らかである。 即ち本発 明の方法によれば、 特定のルイス酸を用いた場合、 種々 の開始剤兼連鎖移動剤を甩いても了 リルシラ ンを重合系 中に予め存在させておく と、 種々の副反応が抑制され、 末端ァ リル基の導入率が高く分子量分布の狭いォ リ ゴマ 一が、 比較的高温でも収率よく得られる (実施例 1 〜 1 8及び比較例 1 〜 9 ) 。 The following is clear from the results in Table 2. That is, according to the method of the present invention, when a specific Lewis acid is used, even if various initiators and chain transfer agents are used, various side reactions can be caused by pre-existing silane in the polymerization system. Thus, oligomers having a high terminal aryl group introduction rate and a narrow molecular weight distribution can be obtained with high yield even at relatively high temperatures (Examples 1 to 18 and Comparative Examples 1 to 9).
比較例 1 、 3及び 9 (後述) では重合停止時に脱プロ ト ンによる停止が起こ り、 末端ォレフィ ン (イソプロべ ニル及び内部ォレフ ィ ン) が優先的に生成し、 ク ロル末 端は殆んど得られない。 同様に比較例 6及び 7では重合 停止時にプロ ト ン化及びアルキル化により  In Comparative Examples 1, 3 and 9 (described later), the polymerization was stopped by deprotonation when the polymerization was stopped, and terminal olefins (isoproenyl and internal olefin) were preferentially generated, and the chlorinated terminal was almost completely removed. I can hardly get it. Similarly, in Comparative Examples 6 and 7, when polymerization was stopped,
C H 3 'C H 3  C H 3 'C H 3
'vw し一 n, /vw C ~ C 2 Η 5 'vw shiichi n, / vw C ~ C 2 Η 5
C Η 3 C Η 3  C Η 3 C Η 3
基等の生成が優先的に起こり、 ク bル末端は殆んど得ら れない (低分子モデル化合物を用いて同様の反応を行な い、 G A S— M A S S分析を行なってごの挙動を確認し フ^ o リ o The formation of groups and the like occurs preferentially, and almost no quenched terminal is obtained. (Similar reaction is carried out using a low-molecular model compound, and the behavior is confirmed by GAS-MASS analysis. O o o
従って比較例 1 〜 9の上記の挙動と実施例 1 〜 1 8の 結果から次のことが言える。  Therefore, the following can be said from the above behaviors of Comparative Examples 1 to 9 and the results of Examples 1 to 18.
つま り本発明の方法のようにァ リルト リ メ チルシラ ン を予め重合系中に存在させた系での重合においては、 力 チオン種とモノ マーとの反応 (生長反応) と競争して、 カチオン種とァ リルシラ ンとの反応 (停止反応) も起こ つている。 即ち、 ァ リル基の導入は直接カチオンを攻撃 して起こっており、 第 3級ク ロル末端が生成した後、 ク ロル基とァ リル基が交換しているわけではないと言える。 That is, as in the method of the present invention, In the polymerization in a system in which is present in the polymerization system in advance, the reaction between the cationic group and the monomer (the growth reaction) and the reaction between the cationic group and the arylsilane (the termination reaction) occur. I have. In other words, it can be said that the introduction of the aryl group occurs by directly attacking the cation, and does not mean that the chloro group and the aryl group are exchanged after the tertiary chloro terminal is formed.
このこ とは、 前記した特開昭 6 3— 1 0 5 0 0 5号公 報で述べられている機構 (第 3級ク ロル基を経由する機 構) とは明らかに違う機構で、 このァ リル基を有するィ ソブチレン系ポリ マ一が得られていることを示唆してい る。  This is a mechanism that is clearly different from the mechanism described in the above-mentioned Japanese Patent Application Laid-Open No. 63-050505 (a mechanism via a tertiary chloro group). This suggests that an isobutylene-based polymer having an aryl group has been obtained.
実施例 1 Ί  Example 1
2 0 0 ^の耐圧ガラス製容器に、 三方コ ッ クを取付け て、 真空ライ ンで真空に引きながら重合容器を 1 0 0 °C で 1時間加熱することにより乾燥させ、 室温まで冷却後、 窒素で常圧に戻した。  A three-way cock was attached to a 200 ^ pressure-resistant glass container, and the polymerization container was dried by heating it at 100 ° C for 1 hour while evacuating with a vacuum line.After cooling to room temperature, The pressure was returned to normal pressure with nitrogen.
その後、 三方コ ッ クの一方から窒素を流しながらォー 卜ク レープ中に T C C (化合物 A) 0. 3 0 8 g ( 1 ミ リモル) を水素化カルシウム処理により乾燥させた重合 溶媒である塩化メ チ レ ン 3 0 ^に溶かした溶液及びァ リ ル ト リ メ チルシラ ン 0. 5 1 ( 3. 2 ミ リ モル) を注 射器を用いて加えた。 次に、 酸化バリ ゥムを充填したカラムを通過させるこ とにより脱水したイソブチレンが 5 g入っているニー ド ルバルブ付耐圧ガラス製液化ガス採取管を三方コックに 耐圧ゴム管を用いて接続した後、 容器本体を一 3 0 °Cの ドライ アイ ス一アセ ト ンバスに浸潰し、 重合容器内部を 攪拌しながら 1時間冷却した。 冷却後、 真空ライ ンによ り内部を減圧にした後、 ニー ドルバルブを開け、 イソブ チレンを耐圧ガラス製液化ガス採取管から重合容器に導 入した。 その後三方コ ッ クの一方から窒素を流すことに より常圧に戻した。 Then, while flowing nitrogen from one side of the three-way cock, 0.308 g (1 mimol) of TCC (Compound A) was dried in the autocrepe by treatment with calcium hydride. The solution dissolved in methylene 30 ^ and allyltrimethylsilyl 0.51 (3.2 mmol) were added using a syringe. Next, after connecting a pressure-resistant glass liquefied gas sampling tube with a needle valve containing 5 g of isobutylene dehydrated by passing through a column filled with oxidized barium to a three-way cock using a pressure-resistant rubber tube, Then, the vessel body was immersed in a dry ice-acetone bath at 130 ° C., and the inside of the polymerization vessel was cooled for 1 hour while stirring. After cooling, the internal pressure was reduced by a vacuum line, and then the needle valve was opened to introduce isobutylene into the polymerization vessel from a pressure-resistant glass liquefied gas sampling tube. Thereafter, the pressure was returned to normal pressure by flowing nitrogen from one of the three-way cocks.
次に四塩化チタ ン 0 . 0 5 5 ( 0 . 5 ミ リ モル) を 塩化メ チ レ ン 5 で稀釈した溶液を注射器を用いて添加 し、 重合反応を開始した。  Next, a solution obtained by diluting 0.055 (0.5 mmol) of titanium tetrachloride with methylene chloride was added using a syringe to initiate a polymerization reaction.
6 0分後に重合溶液を 1 0 0 ^の飽和炭酸水素ナ ト リ ゥム水溶液中に加え、 共に振盪した後、 有機層を水 1 0 0 で 2回洗浄した。 有機層を 1 0 に濃縮し、 3 0 0 のァセ ト ン中にこれを加えた後、 攪拌すること によりポリマーを沈殿分離させた。  After 60 minutes, the polymerization solution was added to a 100% aqueous solution of saturated sodium bicarbonate, shaken together, and then the organic layer was washed twice with water 100. The organic layer was concentrated to 10 and added to 300 acetone, followed by stirring to precipitate and separate the polymer.
このようにして得られたポリマーを 8 0 の n—へキ サンに溶解させ、 無水硫酸マグネシウムで乾燥させ、 固 型分を^別した後、 n —へキサンを減圧留去することに より、 イ ソブチレン系ポ リ マーを得た。 得られたポリ マ一の収量より収率を算出すると共に、 n及び wZ nを G P C法により、 また末端構造を 1 H-NMR ( 3 0 0 MH z ) 法により求めた。 結果を 下記第 3表に示す。 The polymer thus obtained was dissolved in 80 n-hexane, dried over anhydrous magnesium sulfate, and the solid content was separated. Then, the n-hexane was distilled off under reduced pressure. An isobutylene-based polymer was obtained. The yield was calculated from the yield of the obtained polymer, n and wZn were determined by the GPC method, and the terminal structure was determined by the 1 H-NMR (300 MHz) method. The results are shown in Table 3 below.
末端のァ リル基の純度の高いポリマーを収率良く得る ことができた。  A polymer having a high purity of the terminal aryl group could be obtained in good yield.
本実施例で得られた末端にァ リル基を持つポ リ ィ ソブ チレンの構造式は一般式 (VI) :  The structural formula of the polybutylene having an aryl group at the terminal obtained in this example is represented by the general formula (VI):
CH CH CH CH
Figure imgf000033_0001
〔式中 R 9 、 R1C)及び R11は、 いずれも末端にァ リル基 を持つポリ イソブチレン鎖であり、 これら R 9 , R 10, R 11の鎖長は同じであっても異なっていてもよい。 〕 で表わされるものである。
Figure imgf000033_0001
(In the formula, R 9, R 1C) and R 11 are all polyisobutylene chains having an aryl group at the terminal, and the chain lengths of R 9 , R 10 , and R 11 are different even if they are the same. Is also good. ].
比較例 9  Comparative Example 9
ァ リル ト リ メチルシラ ンを添加しないこと以外は実施 例 17と同様にしてポリ マーを製造し、 構造を分析した 結果を第 3表に併せて示す。 このよ う に触媒量の四塩化 チタ ンを用いた場合、 収率は良好であつたが、 得られた ポリ マーの分子量分布が広く、 末端の官能基種も揃って いない。 A polymer was produced in the same manner as in Example 17 except that no aryltrimethylsilane was added, and the results of structural analysis are also shown in Table 3. Thus, a catalytic amount of tetrachloride In the case of using titanium, the yield was good, but the molecular weight distribution of the obtained polymer was wide and the terminal functional group species was not uniform.
比較例 1 0 Comparative Example 10
重合反応終了後にァリルト リ メチルシラ ン 0 . 5 1 ( 3 . 2 ミ リモル) を加え、 窒素棼囲気下、 室温で 6時 間反応液を攪拌する以外は比較例 8 と同様にしてポリマ 一を製造し、 評価した。 結果を第 3表に併せて示す。 得 られるポ リマーは、 末端ァ リル化率が低く、 分子量分布 も大きいことがわかる。  After the polymerization reaction was completed, a polymer was produced in the same manner as in Comparative Example 8 except that 0.51 (3.2 mmol) of arylmethylsilane was added and the reaction solution was stirred at room temperature for 6 hours under a nitrogen atmosphere. And evaluated. The results are shown in Table 3. It can be seen that the resulting polymer has a low terminal arylation rate and a large molecular weight distribution.
実施例 1 8 Example 18
ァ リ ノレ ト リ メ チルシラ ン量を 0 . 7 1 ^ ( 4 . 5 ミ リ モル) にする以外は、 実施例 1 7 と同様にしてポ リマー を製造し、 構造を分析した。 結果を第 3表に併せて示す。 ァリルト リ メチルシラ ン量を多く した結果、 数平均分子 量は低下したが、 ポリマーのモル数は、 実施例 1 7で得 られたものとほぼ同じである。 このことは、 ァリノレト リ メチルシラ ンが重合停止剤と して作用していることを意 味している。 第 3 表 A polymer was produced and the structure was analyzed in the same manner as in Example 17 except that the amount of arylintrimethylsilyl was changed to 0.71 ^ (4.5 mmol). The results are shown in Table 3. Although the number average molecular weight decreased as a result of increasing the amount of arylmethylsilane, the number of moles of the polymer was almost the same as that obtained in Example 17. This means that arinoretrimethylsilane is acting as a polymerization terminator. Table 3
収率 1) G P C N M R - 2} %) Mn Mw/Hn Fn (ァリル) Fn (ク Dル) Fn" -才レフイン) Fn (2-ォレフィン) 実施例 17 100 4600 1. 7 2. 8 0. 1 0. 1 0 実施例 18 46 2400 1. 3 2. 9 0 0. 1 0 比較例 9 100 '4500 4. 7 0. 8 0. 7 1. 6 比較例 10 100 46.00 4. 5 0. 6 0. 2 0. 8 1. 5 Yield 1) GPCNMR-2}%) Mn Mw / Hn Fn (aryl) Fn (k Dl) Fn "-(lefin) Fn (2-olefin) Example 17 100 4600 1.7 2.80.1 0.10 Example 18 46 2400 1.3 2.90 0 0.10 Comparative example 9 100 '4500 4.0.7 0.8.0.7 1.6 Comparative example 10 100 46.00 4.5.0.60 . 2 0. 8 1.5
1) モノ マー収率 1) Monomer yield
2)ァ リ ル末端 2) Terminal of aryl
CH3 p I B^CH2 一 C一 C H2 CH = CH2 CH 3 p IB ^ CH 2 1 C 1 C H2 CH = CH 2
CH3 CH 3
ク 口ル末端  K terminal
CH  CH
Ρ I β Λ / C Ηク - C - C Ρ I β Λ / C--C-C
CH CH
1 ーォ レフィ ン  1-refine
CH CH
I C H 2 - C I C H 2-C
CH  CH
2ーォレフ ィ ン  2-refin
CH CH
Figure imgf000036_0001
Figure imgf000036_0001
CH3 実施例 1 9 CH 3 Example 1 9
3 反応フラスコに攪拌用羽根、 三方コッ ク及び真空 ライ ンを取付けて、 真空ライ ンで真空に引きながら重合 容器を 1 0 0 °Cで 1時間加熱することにより乾燥させ、 室温まで冷却後三方コ ッ クを用いて窒素で常圧に戻した。 その後、 三方コ ッ クの一方から窒素を流しながら、 注 射器を用いてォー ト ク レーブに水素化カルシゥム処理に より乾燥させた溶媒である 1 , 1 ージクロロェタ ン 1 7 0 0 3 ^を導入した。 次いで蒸留、 精製したァ リル ト リ メチルシラン 3 5 . 5 ( 2 2 4 ミ リモル) を加え、 更に T C C (化合物 A ) 2 1 . 3 g ( 6 9 ミ リ モル) の 1 , 1 —ジクロロェタ ン溶液を添加した。 3 Attach the stirring blade, three-way cock and vacuum line to the reaction flask, dry the polymerization vessel by heating it at 100 ° C for 1 hour while evacuating with the vacuum line, and cool to room temperature. The pressure was returned to normal pressure with nitrogen using a cock. After that, while flowing nitrogen from one of the three-way cocks, the injector was used for autoclave hydrogen calcium treatment. A more dried solvent, 1,1, dichloroethane 170,3 ^ was introduced. Then, 35.5 (224 millimoles) of distilled and purified allyltrimethylsilane was added, and a solution of 21.3 g (69 millimoles) of TCC (compound A) in 1,1-dichloroethane was further added. Was added.
次に、 酸化バリ ゥ厶を充填したカラムを通過させるこ とにより脱水したイ ソブチレンが 3 3 0 g入っている二 一 ドルバルブ付耐圧ガラス製液化ガス採取管を耐圧ゴム 管を用いて三方コ ッ クに接続した後、 容器本体を一 Ί 0 °Cの ドライアイス一ァセ ト ンバスに浸漬し、 重合容器内 部を攪拌しながら 1時間冷却した。 冷却後、 真空ライ ン により内部を減圧にした後、 ニー ドルバルブを開け、 ィ ソブチレンを耐圧ガラス製液化ガス採取管から重合容器 に導入した。 その後三方コ ッ クの一方から窒素を流すこ とにより常圧に戻した後、 一 3 0 °Cの ドライ アイ スーァ セ ト ンバス中に 1時間浸漬し、 重合容器内を一 3 0 °Cま 昇 ¾ilした ο  Next, a pressure-resistant glass-made liquefied gas sampling tube equipped with a dollar valve containing 330 g of isobutylene dehydrated by passing through a column filled with barium oxide was compressed using a pressure-resistant rubber tube. After the connection, the container body was immersed in a dry ice-aceton bath at 100 ° C., and cooled for 1 hour while stirring the inside of the polymerization container. After cooling, the internal pressure was reduced by a vacuum line, and then the needle valve was opened. Thereafter, the pressure was returned to normal pressure by flowing nitrogen from one of the three-way cocks, then immersed in a dry eye bath at 130 ° C for 1 hour, and the inside of the polymerization vessel was cooled to 130 ° C.昇 il ο
次に重合温度が一 3 0 °C〜一 2 5 °C間を保つように、 四塩化チタ ン 3 . 9 ( 3 5 ミ リモル) の 1, 1 ージク ロロェタ ン溶液 5 0 を、 一定の速度で、 3 0分かけて 滴下した。 その後重合溶液を— 3 0 eCで 1時間撹拌した 後、 炭酸水素ナ ト リ ウムの飽和水溶液 2 と共に激しく 撹拌した。 Next, a 1,1-dichloroethane solution 50 of 3.9 (35 mmol) of titanium tetrachloride was added at a constant rate so that the polymerization temperature was kept between 130 ° C and 125 ° C. The solution was dropped over 30 minutes. After that, the polymerization solution was stirred at −30 e C for 1 hour, and then vigorously mixed with a saturated aqueous solution of sodium hydrogen carbonate 2. Stirred.
その後、 有機層をナス型フラスコに取出し、 未反応の イ ソプチ レン、 1 , 1ージク ロ ロェタ ン、 ァ リ ノレ ト リ メ チルシラ ンを留去し、 残ったポリ マーを 1 5 0 0 の n 一へキサンに溶解後、 中性になるまでこの溶液の水洗を 繰返した。 その後、 この n—へキサン溶液を 6 0 0 ま で濃縮し、 3 のアセ ト ンにこの濃縮溶液を加えた後、 攪拌するこ とによ りポリマーを沈緞分離させた。  Thereafter, the organic layer was taken out into an eggplant-shaped flask, and unreacted isobutylene, 1,1-dichloroethane, and arylinotrimethylsilylane were distilled off, and the remaining polymer was removed at 150 n After dissolving in 1-hexane, the solution was repeatedly washed with water until the solution became neutral. Thereafter, the n-hexane solution was concentrated to 600, the concentrated solution was added to the acetate of No. 3, and the polymer was sedimented by stirring.
このようにして得られたポリマ一を再び 1 0 0 0 の n—へキサンに溶解させ、 無水硫酸マグネシウムで乾燥 させ固型分を 別した後、 n—へキサンを減圧留去する ことにより、 イソブチレン系ポリマーを得た。  The polymer thus obtained was dissolved again in 100-n-hexane, dried over anhydrous magnesium sulfate to separate a solid component, and then n-hexane was distilled off under reduced pressure. An isobutylene polymer was obtained.
得られたポリマーの収量より収率を算出すると共に、 M n及び w/ nを G P C法により、 また末端構造を i H— NMR (3 0 0 MH z ) 法により求めた。 結果を 第 4表に示す。 '  The yield was calculated from the yield of the obtained polymer, Mn and w / n were determined by the GPC method, and the terminal structure was determined by iH-NMR (300 MHz) method. Table 4 shows the results. '
実施例 2 0  Example 20
本実施例では四塩化チタ ン 5 5 ( 5 00 ミ リモル) を一度に加えたことと、 重合反応中の昇温による危険を 回避するために、 重合開始時の温度を一 7 0 °Cと したこ と以外は実施例 1 9と同様にしてポリ マーを製造し、 構 造を解析した。 結果を第 4表に併せて示す。 実施例 2 0 では昇温幅は 7 2でにもなり、 ァリル化率が少し低下し た。 In this example, the temperature at the start of the polymerization was set at 170 ° C. in order to avoid the danger of raising the temperature during the polymerization reaction by adding titanium tetrachloride 55 (500 millimoles) at once. Except for this, a polymer was produced in the same manner as in Example 19, and the structure was analyzed. The results are shown in Table 4. Example 20 Then, the temperature rise range was as high as 72, and the arylation rate was slightly reduced.
第 4 表  Table 4
Figure imgf000039_0001
実施例 2 0の結果より本重合反応が多量の発熱を伴う ことは明らかである。 しかし、 実施例 1 9の方法を用い ることにより重合時の昇温幅を 5 °C以内に押さえるこ と が可能となった。
Figure imgf000039_0001
From the results of Example 20, it is clear that the present polymerization reaction involves a large amount of heat generation. However, by using the method of Example 19, it was possible to keep the temperature rise during polymerization within 5 ° C.
実施例 2 1  Example 2 1
まず最初にモノマー溶液 (ィ) と四塩化チタ ン溶液 (口) を調製した。  First, a monomer solution (a) and a titanium tetrachloride solution (mouth) were prepared.
モノ マー溶液 (ィ) は、 イ ソブチレン 8 0 g  The monomer solution (a) is 80 g of isobutylene.
( 1 4 3 0 ミ リ モル、 2. 8 6 M) 、 ト リ ク ミ ルク ロ ラ イ ド 5. 2 4 g ( 1 7 ミ リモル、 3 4 mM) 、 ァ リ ル ト リ メ チルシラ ン 9. 4 ( 6 0 ミ リ モル、 1 2 0 mM) 及び水素化カルシゥム処理により乾燥させた塩化メチレ ン 4 0 0 ¾ よりなる。 四塩化チタ ン溶液 (口) は四塩化 チタン 1 . 1 ( 1 0 ミ リ モル、 5 0 m M ) 及び水素化 力ルシゥム処理によ り乾燥させた塩化メ チレ ン 2 0 0 3? よりなる。 (144 Millimol, 2.86 M), Trimicmillolide 5.24 g (17 Mimol, 34 mM), Aryltrimethylsilyl 9 .4 (600 mmol, 120 mM) and 400 ml of methylene chloride dried by calcium hydride treatment. Titanium tetrachloride solution (mouth) is tetrachloride It is composed of titanium 1.1 (10 mmol, 50 mM) and methylene chloride 2003? Dried by hydrogenation-potassium treatment.
上記モノ マー溶液 (ィ) 及び四塩化チタ ン溶液 (口) を定量ポンプを用いて、 第 1図に示すようなガラス製の 重合管中に導入した。 この時、 モノ マー溶液 (ィ) と四 塩化チタ ン溶液 (口) は重合管中でのみ混合するように し、 モノマー溶液 (ィ) は毎分 1 0 ^程度の速度で、 四 塩化チタ ン溶液 (口) は毎分 4 ^程度の速度で導入した。 重合管は内径 4 min、 全長 1' 0 mのガラス管を螺旋状に巻 いたものを用い、 一 3 5。Cのアセ ト ンバス中につけた。  The monomer solution (a) and the titanium tetrachloride solution (mouth) were introduced into a glass polymerization tube as shown in Fig. 1 using a metering pump. At this time, the monomer solution (a) and the titanium tetrachloride solution (mouth) should be mixed only in the polymerization tube, and the monomer solution (a) should be mixed at a rate of about 10 ^ / min. The solution (mouth) was introduced at a rate of about 4 ^ per minute. The polymerization tube used was a spirally wound glass tube with an inner diameter of 4 min and a total length of 1'0 m. I put it in the C asset bus.
重合反応は、 (ィ) と (口) の混合溶液が、 重合管内 を通過する間に終了し、 生成したイソブチ レン系ポ リマ 一を含む溶液は、 重合管内から炭酸水素ナ ト リ ウム水中 に移され、 激しく撹拌される。  The polymerization reaction is completed while the mixed solution of (a) and (mouth) passes through the inside of the polymerization tube, and the solution containing the produced isobutylene-based polymer is poured into sodium bicarbonate water from inside the polymerization tube. Transferred and stirred vigorously.
この後は、 実施例 1 9 と同様にして、 ポリ マーを精製 し、 構造を解析した。 結果を第 5表に示す。 5 収 率 G P C N M .R Thereafter, in the same manner as in Example 19, the polymer was purified and the structure was analyzed. Table 5 shows the results. 5 Yield GPCNM .R
Mn Mw/Mn Fn (ァリル) F n (クロル +卜ォレフ +2 -ォレフイン) 実施冽 21 100 4700 1. 4 3. 0 0. 1 Mn Mw / Mn Fn (Aryl) F n (Chlor + Toref +2 -Ref) Implemented cool 21 100 4700 1.4 3. 0 0.1
第 5表の結果より、 本発明の方法を連続重合法で実施 した場合も、 分子量の揃ったァ リル末端の導入率の高い ポリ マーをよい収率で得ることができることが明らかに なった o From the results in Table 5, it was revealed that even when the method of the present invention was carried out by a continuous polymerization method, a polymer having a uniform introduction of an aryl terminal having a uniform molecular weight could be obtained in good yield.o
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 実施例 2 1で使用される連続重合装置の概 略図である。  FIG. 1 is a schematic diagram of a continuous polymerization apparatus used in Example 21.

Claims

請 求 の 範 囲 (A) イ ソブチ レ ンを含有する カチオ ン重合性モノ マ Scope of request (A) Cationic polymerizable monomer containing isobutylene
(B) 開始剤兼連鎖移動剤である一般式 ( I ) : R 1 (B) General formula (I) which is an initiator / chain transfer agent: R 1
R 3 - C - X ( I ) R 3 -C-X (I)
I  I
R 2 R 2
〔式中、 Xはハロゲン原子、 R C 00—基 (Rは 1 価の有機基、 以下同じ) 又は R 0—基を示す。 R 3 は多価芳香葶基又は置換もしく は非置換の多 価脂肪族炭化水素基を示す。 R 1 及び R 2 は、 同 一又は異なつて水素原子又は置換もしく は非置換 の 1価の炭化水素基を示す。 但し R 3 が多価脂肪 族炭化水素基の場合には、 R 1 及び R 2 は同時に 水素原子ではない。 〕 で表わされる基を有する有機化合物、 [In the formula, X represents a halogen atom, an RC00- group (R is a monovalent organic group, the same applies hereinafter) or an R0- group. R 3 represents a polyvalent aromatic group or a substituted or unsubstituted polyvalent aliphatic hydrocarbon group. R 1 and R 2 are the same or different and represent a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group. However, when R 3 is a polyvalent aliphatic hydrocarbon group, R 1 and R 2 are not simultaneously hydrogen atoms. An organic compound having a group represented by
(C) (C 2 H 5 ) 2 A C (C) (C 2 H 5 ) 2 AC
(C 2 H 5 ) A β C β 2 ^ S n C 4 及び T i C β 4 なる群より選ばれた少なく とも一種のル ィス酸、 及び At least one lysic acid selected from the group consisting of (C 2 H 5 ) A β C β 2 ^ Sn C 4 and Ti C β 4, and
(D) エン ドキャ ップ剤である一般式 (H) : R 4 (D) General formula (H) which is an endcap agent: R 4
C H2 = C H C H2 S i - R5 ( E) CH 2 = CHCH 2 S i-R 5 (E)
R 6 R 6
〔式中、 R4 、 R 5 及び Re は、 同一又は異なって、 一価の有機基又は一価の有機基における炭素原子 のうちの 1〜 3個をゲイ素原子に置き換えた基を 示す。 〕 [In the formula, R 4 , R 5 and R e are the same or different and represent a monovalent organic group or a group in which 1 to 3 carbon atoms in a monovalent organic group are replaced with a gayne atom. . ]
で表わされる化合物  Compound represented by
を混合して上記のィ ソブチレンを含有するカチオン重 合性モノマーを重合させることを特徵とするァリル末 端を有するイ ソブチレン系ポ リ マーの製造法。  A method for producing an isobutylene-based polymer having an aryl terminal, characterized by polymerizing the above-mentioned isobutylene-containing cationic polymerizable monomer by mixing the above.
② (C) 成分を (B) 成分である一般式 ( I ) で表わ される基を有する有機化合物中の Xに対して  (2) The component (C) is converted to X in the organic compound having the group represented by the general formula (I) which is the component (B).
0. 0 0 0 1〜 0. 5当量用いる請求項①記載のァ リ ル末端を有するイ ソブチレン系ポリマーの製造法。  The process for producing an isobutylene-based polymer having an aryl terminal according to claim 1, wherein the amount is from 0.001 to 0.5 equivalent.
③ (D) 成分である一般式 (Π) で表わされる化合物 が、  ③ The compound represented by the general formula (Π), which is the component (D),
CH3 . S i (CH3 ) 3 、 ^- S i-^ CH 3 .S i (CH 3 ) 3, ^-S i- ^
I I
CH3 S i-^ 及び S i - ^) 4 CH3 からなる群より選ばれた少なく と も一種であることを 特徵とする請求項①記載のァ リル末端を有するイ ソブ チレン系ポリマーの製造法。 CH 3 S i-^ and S i - ^) preparation of Lee Su Wu styrene-based polymer having a § drill end according to claim ①, wherein the Toku徵that kind also less selected from the group consisting of 4 CH 3.
重合反応を一 4 0〜 1 0°Cで行なう請求項①記載の ァ リ ル末端を有するイ ソブチ レン系ポリ マーの製造法  The method for producing an arylene-terminated isobutylene-based polymer according to claim 1, wherein the polymerization reaction is carried out at a temperature of 140 to 10 ° C.
PCT/JP1990/000729 1989-06-06 1990-06-05 Method of producing polymer terminated with reactive group WO1990015081A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA002033328A CA2033328C (en) 1989-06-06 1990-06-05 Process for preparation of a polymer having reactive terminal group

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP1/144634 1989-06-06
JP14463489 1989-06-06
JP1/281331 1989-10-27
JP28133189 1989-10-27
JP9906790 1990-04-13
JP2/99067 1990-04-13

Publications (1)

Publication Number Publication Date
WO1990015081A1 true WO1990015081A1 (en) 1990-12-13

Family

ID=27308852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1990/000729 WO1990015081A1 (en) 1989-06-06 1990-06-05 Method of producing polymer terminated with reactive group

Country Status (2)

Country Link
CA (1) CA2033328C (en)
WO (1) WO1990015081A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5350819A (en) * 1993-02-19 1994-09-27 Exxon Chemical Patents Inc. Carbocationic catalysts and process for using said catalysts
US5506316A (en) * 1993-02-19 1996-04-09 Exxon Chemical Patents Inc. Carbocationic catalysts and process for using said catalysts
JP2015091993A (en) * 2009-01-16 2015-05-14 ザ・ユニバーシティー・オブ・サザン・ミシシッピ Functionalization of polyolefins with phenoxy derivatives
WO2019070037A1 (en) * 2017-10-04 2019-04-11 株式会社カネカ Allyl group-terminated styrene-isobutylene block copolymer, composition thereof, and methods for producing these

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62127301A (en) * 1985-11-23 1987-06-09 バイエル・アクチエンゲゼルシヤフト Manufacture of polymer by cationic polymerization
JPS63105005A (en) * 1986-10-16 1988-05-10 ダウ・コーニング・コーポレーシヨン Aryl terminated polyisobutylene polymer and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62127301A (en) * 1985-11-23 1987-06-09 バイエル・アクチエンゲゼルシヤフト Manufacture of polymer by cationic polymerization
JPS63105005A (en) * 1986-10-16 1988-05-10 ダウ・コーニング・コーポレーシヨン Aryl terminated polyisobutylene polymer and its production

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5350819A (en) * 1993-02-19 1994-09-27 Exxon Chemical Patents Inc. Carbocationic catalysts and process for using said catalysts
US5506316A (en) * 1993-02-19 1996-04-09 Exxon Chemical Patents Inc. Carbocationic catalysts and process for using said catalysts
JP2015091993A (en) * 2009-01-16 2015-05-14 ザ・ユニバーシティー・オブ・サザン・ミシシッピ Functionalization of polyolefins with phenoxy derivatives
JP2018031023A (en) * 2009-01-16 2018-03-01 ザ・ユニバーシティー・オブ・サザン・ミシシッピ Functionalization of polyolefins with phenoxy derivatives
WO2019070037A1 (en) * 2017-10-04 2019-04-11 株式会社カネカ Allyl group-terminated styrene-isobutylene block copolymer, composition thereof, and methods for producing these

Also Published As

Publication number Publication date
CA2033328A1 (en) 1990-12-07
CA2033328C (en) 2002-04-02

Similar Documents

Publication Publication Date Title
EP0452875B1 (en) Isobutylene polymer having unsaturated group and preparation thereof
US5247021A (en) Process for preparation of a polymer having reactive terminal group
JP3154529B2 (en) Isobutylene polymer having functional group and method for producing the same
JPH0651752B2 (en) Process for producing isobutylene-based polymer having functional end
EP1243600B1 (en) Process for producing isobutylene polymers
JPH04183702A (en) Production of isobutylene polymer having functional end
JP2969470B2 (en) Isobutylene polymer having allyl group at terminal and method for producing the same
JP3092875B2 (en) Isobutylene polymer having vinyl group at terminal and method for producing the same
JP2929245B2 (en) Isobutylene-based polymer having unsaturated group and method for producing the same
WO1990015081A1 (en) Method of producing polymer terminated with reactive group
JPH06345821A (en) Production of isobutylene-based polymer having unsaturated group
JPH0236204A (en) Production of isobutylene-based polymer having functional terminal
JP2775056B2 (en) Method for producing isobutylene-based polymer having functional end
JP2936414B2 (en) Isobutylene-based polymer with functional end
JP2890133B2 (en) Method for producing isobutylene polymer
JP2523408B2 (en) Method for producing polymers having reactive end groups
JP2733683B2 (en) Method for producing isobutylene-based polymer having functional end
JPH04288308A (en) Functional isobutylene polymer and production thereof
JPH0687914A (en) Unsaturated group-containing isobutylene-based polymer and its production
JPH0687920A (en) Unsaturated group-containing isobutylene-based polymer and its production
JP2711297B2 (en) Method for producing isobutylene-based polymer having functional end
JP3274197B2 (en) Isobutylene polymer having functional group and method for producing the same
JP2807835B2 (en) Method for producing isobutylene-based polymer having functional end
JPH08337615A (en) Production of isobutene polymer
JPH06145250A (en) Functional group-containing isobutylene-based polymer and its production

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

WWE Wipo information: entry into national phase

Ref document number: 2033328

Country of ref document: CA