WO2000055495A1 - Fuel feed pump - Google Patents

Fuel feed pump Download PDF

Info

Publication number
WO2000055495A1
WO2000055495A1 PCT/JP1999/001317 JP9901317W WO0055495A1 WO 2000055495 A1 WO2000055495 A1 WO 2000055495A1 JP 9901317 W JP9901317 W JP 9901317W WO 0055495 A1 WO0055495 A1 WO 0055495A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
passage
valve
oscillating
pressure
Prior art date
Application number
PCT/JP1999/001317
Other languages
French (fr)
Japanese (ja)
Inventor
Kunihiko Takao
Isao Hayase
Yuuzou Kadomukai
Hiroyuki Yamada
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP1999/001317 priority Critical patent/WO2000055495A1/en
Publication of WO2000055495A1 publication Critical patent/WO2000055495A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/04Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by special arrangement of cylinders with respect to piston-driving shaft, e.g. arranged parallel to that shaft or swash-plate type pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/10Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive
    • F02M59/102Mechanical drive, e.g. tappets or cams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/02Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical
    • F04B9/04Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms
    • F04B9/045Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms the means being eccentrics

Definitions

  • the present invention relates to a pump for supplying fuel to a fuel injection valve of an internal combustion engine, and more particularly to a fuel supply pump for pumping fuel to a high pressure.
  • a conventional high-pressure fuel supply pump for example, there is a single cylinder plunger type as described in Japanese Patent Application Laid-Open No. H8-14140.
  • a cylinder is attached to a head cover which is a part of an engine housing, and a plunger is reciprocally and slidably fitted in the cylinder.
  • the lower end of the plunger is connected to a tut, which is pressed against the cam surface by a return spring and is in sliding contact with the cam. Therefore, when the cam is rotated by the rotation of the camshaft, the plunger is reciprocated through the tappet, and the fuel in the fuel pressurizing chamber is pressurized and supplied to the injection valve (injector) through the discharge valve and the common rail.
  • the above-described high-pressure fuel supply pump has the following technical problems because it employs a force-driven system as a reciprocating mechanism of the plunger.
  • the lower end of the plunger is connected to a valve seat, and this valve seat is connected to the slider by a return spring. It is imposed.
  • the slider has a cam roller, and the cam roller comes into sliding contact with the cam. Therefore, friction loss and reliability are improved because the cam roller is in rolling contact with the cam surface.However, since there is a return spring, The contact load is still working.
  • components such as a slider and a roller are added, and new problems such as a longer pump body in the axial direction of the plunger arise.
  • An object of the present invention is to provide a fuel supply pump having high mechanical efficiency and high reliability by configuring a compact fuel supply pump and reducing frictional force by reducing the force acting on the plunger (piston) during the compression process. It is to provide a supply pump.
  • a fuel supply pump according to the present invention includes a supply passage for supplying fuel, a discharge passage for discharging fuel to an injection valve side, and a booster for increasing fuel pressure between the supply passage and the discharge passage. And a swing piston that swings with the swing cylinder and reciprocates in the swing cylinder while swinging with the swing cylinder. It is composed of:
  • the fuel supply pump can be made compact by combining the oscillating cylinder and the oscillating biston for crank pin drive, and the spring for pressing the piston against the cam during the suction stroke can be eliminated. Accordingly, in the compression step, the force of the spring does not act on the piston, so that the friction loss can be reduced.
  • FIG. 1 is a sectional view showing a fuel supply pump according to one embodiment of the present invention.
  • FIG. 2 is a diagram showing a configuration of a fuel injection system using the present embodiment.
  • FIG. 3 is a sectional view of a fuel supply pump according to another embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a fuel supply pump according to another embodiment of the present invention, which is the same as FIG.
  • FIG. 5 is a diagram showing a cross section and a system configuration of a fuel supply pump according to another embodiment of the present invention.
  • FIG. 6 is a diagram showing a cross section and a system configuration of a fuel supply pump according to another embodiment of the present invention.
  • FIG. 7 is a view showing a cross section of a fuel supply pump according to another embodiment of the present invention.
  • FIG. 1 is a sectional view showing a fuel supply pump according to an embodiment of the present invention
  • FIG. 2 is a diagram showing a configuration of a fuel injection system using the present embodiment.
  • a pump body 21 is fixed to a casing 20.
  • the pump body 21 has a fuel supply passage 22, a discharge passage 23, and a pump chamber.
  • the fuel supply passage 22 and the discharge passage 23 are provided with a suction valve 25 and a discharge valve 26, respectively.
  • the discharge valve 26 is a holding member 26 c which holds a ball valve 26 a, a valve seat 26 b, and a ball valve 26 a slidably in the discharge passage 23.
  • the suction valve 25 is composed of a valve body 25a, a valve seat 25b, a spring 25c for urging the valve body 25a in a direction opposite to that of the discharge valve, and a holding member 25d.
  • the discharge valve 26 it is a check valve that restricts the fuel flow direction.
  • the solenoid valve 27 is fitted into the pump body 21, and an engagement member 28 and a spring 29 are provided inside the solenoid valve 27.
  • an urging force is applied to the engagement member 28 in a direction to open the suction valve 25 by the spring 29. Since the biasing force of the spring 29 is greater than the biasing force of the spring 25c of the suction valve 25, when the solenoid valve 27 is OFF, the suction valve 5 is in the open state as shown in Fig. 1. Has become.
  • the pump main body 21 is formed with a spherical support portion 30 that opens to the pump chamber 24.
  • a swing cylinder 31 is fitted to the spherical support portion 30, and a spherical support member 32 is provided.
  • the pump body 21 is swingably connected to the pump body 21.
  • a pressure chamber 34 is provided on the head side of the swing piston 33 of the swing cylinder 31.
  • the pressurizing chamber 34 and the pump chamber 24 communicate with each other via a communication passage 35 provided at the tip of the oscillating cylinder 31.
  • the opening area of the pump chamber 24 on the side of the communication passage 35 is formed to be smaller than the cross-sectional area of the sliding bore portion 31a.
  • an escape groove 36 is provided at an end of the sliding bore portion 31a on the communication passage 35 side.
  • the oscillating piston 33 is formed integrally with a piston portion 33a that slides in a sliding bore portion 31a of the oscillating cylinder 31 and a ring portion 33b that transmits rotational power.
  • the ring portion 33b is, for example, an eccentric shaft center of a crankshaft 37 (a valve camshaft may be a crankshaft 37) connected to a valve camshaft for opening and closing an intake / exhaust valve (not shown). It slides freely on the crank pin part 38 having
  • an engine (not shown) is provided with an injection valve 2 corresponding to a combustion chamber of each cylinder, and fuel is injected from the injection valve 2 to the engine (not shown) for injection control. Controlled by ON-OFF of solenoid valve (not shown).
  • the injection valve 2 is connected to a common rail 3 common to the cylinders, and while the injection control solenoid valve (not shown) is open, the fuel in the common rail 3 is sent from the injection valve 2 to the engine (not shown). ). Therefore, the common rail 3 continuously corresponds to the fuel injection pressure. It is necessary to accumulate a high predetermined pressure.
  • the high-pressure fuel supply pump 1 is connected via the supply pipe 4.
  • the high-pressure fuel supply pump 1 of the present embodiment operates as a variable discharge type high-pressure fuel supply pump.
  • the high-pressure fuel supply pump 1 regulates the pressure of the fuel from a fuel tank 5 to a constant pressure by a known low-pressure fuel supply pump 6 and a pressure regulator 7, and controls the pressure of the sucked fuel to a high level.
  • a relief valve 9 is provided between the suction pipe 8 of the high-pressure fuel supply pump 1 and the common rail 3, and is opened when the pressure in the common rail 3 exceeds a predetermined value. To prevent damage.
  • the electronic control unit (ECU) 10 that controls this system receives information on the number of revolutions and load from, for example, a sensor 11 that detects the engine revolution and a sensor 12 that detects the load.
  • the ECU 10 outputs a control signal to an injection control solenoid valve (not shown) so that the optimum injection timing and injection amount are determined according to the engine operation state and the like determined as described above.
  • the ECU 10 outputs a control signal to the high-pressure fuel supply pump 1 so that the fuel injection pressure becomes an optimum value according to the rotation speed and the load.
  • a pressure sensor 13 for detecting the pressure in the common rail 3 is installed on the common rail 3 so that the signal of the pressure sensor 13 becomes an optimum value set in advance according to the engine speed and load.
  • the discharge amount of the high-pressure fuel supply pump 1 is controlled during the operation.
  • the crank pin 37 having an eccentric shaft center rotates with respect to the shaft center of the crank shaft 37 with the rotation of the crankshaft 37, so that the ring of the oscillating piston 33 is formed.
  • the part 33 b rotates and slides with respect to the crank pin part 38, and the piston part 33 a reciprocates in the sliding bore part 31 a of the swing cylinder 31.
  • the driving cylinder 31 swings with respect to the pump body 21 by the spherical support portion 30 and the spherical support member 32. Therefore, the piston part 33a reciprocates while sliding in the sliding bore part 31a of the swing cylinder 31.
  • the solenoid valve 27 When the oscillating piston 33 moves from the top dead center to the bottom dead center (fuel intake stroke), the solenoid valve 27 is not energized (at the time of OFF). The engaging member 28 is engaged with the suction valve 25, and the suction valve 25 is opened. Therefore, the low-pressure fuel flows into the pump chamber 24 through the fuel inlet 22 a and the fuel supply passage 22 and the suction valve 25, and is further supplied to the pressurizing chamber 34. At this time, the discharge valve 26 is closed.
  • the ball valve 26a separates from the valve seat 26b, and the discharge valve 26 is opened to discharge the pressurized fuel gas in the pressurizing chamber 34 and the pump chamber 24. It is discharged to the common rail 3 through the passage 23 and the supply pipe 4.
  • the timing of energizing the solenoid valve 27 and the energizing period are controlled to reduce the amount of fuel discharged to the common rail. Can be controlled.
  • a crankpin drive system is used as the power of the crankshaft 37, so that the cam drive system does not require a return spring that must be provided.
  • the rotational power of the crank pin 38 is supported by the ring portion 33b of the oscillating piston, and the two form a sliding bearing. Therefore, the contact load between the crank pin 38 and the ring portion 33b of the oscillating biston can be significantly reduced, and the contact form between the two can be a surface contact, so that fluid lubrication is easily established.
  • the opening area on the communication passage 35 side of the pump chamber 24 provided at the tip of the oscillating cylinder 31 is provided at the side end of the sliding bore 31 a of the oscillating cylinder 31. Since the sectional area is smaller than that of the groove 36, the spherical portion of the swing cylinder 31 is always pressed against the spherical support portion 30 of the pump body 21 by the internal pressure of the pressurizing chamber 34. Therefore, the spherical portion of the oscillating cylinder 31 and the spherical support portion 30 are in close contact with each other, so that leakage of high-pressure fuel between the two can be prevented.
  • FIG. 3 is a cross-sectional view of the fuel supply pump showing a suction step and FIG. 4 shows a pressurization / discharge step.
  • FIG. 4 shows a pressurization / discharge step.
  • a feature of the present embodiment is that a suction passage is formed to reach the pressurizing chamber 34 through the crankshaft 37, the crankpin 38, and the swing piston 33. That is, a crankshaft suction passage 40 is formed in the axial direction near the center of the shaft of the crankshaft 37, and the crankpin 38 is connected to the crankpin 38 so as to communicate with the crankshaft suction passage 40. A passage 41 is provided. The crankpin intake passage 41 is formed over substantially half of the periphery of the crank section of the crankpin.
  • a piston piston passage 33 is provided in the center of the piston portion 33a of the oscillating piston 33, and one end thereof communicates with the crankpin suction passage 41 only during a suction stroke.
  • crank pin 38 not only functions to transmit the rotational power to the swing piston 33 but also functions as a suction valve that opens and closes the communication between the crank pin suction passage 41 and the piston suction passage 39. Has both.
  • the piston suction passage 39 is formed in the piston portion 33 a of the oscillating piston 33, the oscillating piston is increased by an amount obtained by multiplying the passage area by the pressure. 33 The load acting on the head can be reduced.
  • the crank pin 38 is connected to the crank pin suction passage 41 and the piston suction port. Since it functions as a suction valve for opening and closing the communication of the entrance passage 39, the suction valve is not required, and the fuel suction efficiency is increased.
  • the shape of the head which is the center of swing of the swing cylinder, is a spherical shape.
  • the present invention is not limited to this shape. Good.
  • an electromagnetic valve that engages an engaging member having an urging force to hold the intake valve in the opening direction and controls the opening and closing of the intake valve with the operation timing of the actuator has been described.
  • the present invention is not limited to this.
  • the above-described effects can be obtained even when a solenoid valve is directly attached to the actuator and the solenoid valve closes the suction passage when the solenoid valve is closed. Can be demonstrated.
  • the high-pressure fuel supply pump 1 operates as a variable discharge rate type.
  • FIG. 5 is a diagram showing a cross section of the fuel supply pump and a system configuration.
  • components denoted by the same reference numerals as those of the embodiment shown in FIGS. 1 and 2 perform the same operation.
  • the casing 20 fixed to the pump body 21 is omitted.
  • a feature of the present embodiment is that a check valve is used as the suction valve 42 and a pressure adjusting valve 14 is provided to adjust the pressure in the common rail. That is, a suction valve 42 is provided in each of the fuel supply passages 22 communicating with the suction-side piping 8.
  • the suction valve 42 includes a ball member 42 a, a valve seat 42 b, and a holding member 42 c that holds the ball valve 42 a so as to be able to reciprocate in the fuel supply passage 22. It is composed of a spring 42d that urges the ball valve 42a and the holding member 42c in the direction of the valve seat 42b, and serves as a check valve that restricts the fuel flow direction.
  • the common rail 3 is provided with a pressure regulating valve 14, which is opened when the pressure in the common rail 3 exceeds a predetermined value, and is connected to a fuel tank (not shown) via a pipe 15. It is configured to return. Therefore, in this case, the relief valve 9 shown in FIG. 2 becomes unnecessary.
  • the suction valve 42 opens, so low-pressure fuel flows into the pump chamber 24 through the suction pipe 8, the fuel supply passage 22, and the suction valve 25, and It is supplied to the pressurizing chamber 34.
  • the discharge valve 26 is closed.
  • the suction valve 42 is closed, so that the fuel in the pressurizing chamber 34 is pressurized by the swing piston 33.
  • the ball valve 26 a moves away from the valve seat 26 b.
  • the discharge valve 26 is opened, and the pressurized fuel in the pressurizing chamber 34 and the pump chamber 24 flows into the discharge passage 23 and the supply pipe 4.
  • the pressure in the common rail 3 is adjusted and maintained at a certain set value by the pressure adjustment valve 14
  • the solenoid valve does not need to be used, so that the size of the pump body can be reduced, and the pressure in the common rail 3 can be reduced by the pressure regulating valve. It can be adjusted and maintained at a certain set value.
  • the high-pressure fuel supply pump 1 operates as a fixed discharge rate type.
  • FIG. 6 is a diagram showing a cross section of the fuel supply pump and a system configuration.
  • components having the same reference numerals as those in the embodiment shown in FIGS. 3, 4 and 2 perform the same operation.
  • the casing 20 fixed to the pump body 21 is omitted.
  • the pump chamber 24 formed in the pump body 21 includes a crankshaft suction passage 40 formed near the center of the crankshaft 37 and a crankpin suction passage 41 provided in the crankpin 38.
  • the oscillating piston 33 communicates with the suction side pipe 8 through a piston suction passage 39 and a pressurizing chamber 34 formed in the center of the piston portion 33a.
  • the pump chamber 24 communicates with the common rail 3 via a discharge valve 42 having a check valve function, a discharge passage 23 and a supply pipe 4.
  • the common rail 3 is provided with a pressure regulating valve 14. When the pressure in the common rail 3 exceeds a predetermined value, the valve is opened and a fuel tank (not shown) is connected via a pipe 15. It is configured to return to.
  • the solenoid valve and the suction valve do not need to be used, so that the pump body can be further reduced in size and size, and the pressure in the common rail 3 is adjusted to a certain set value by the pressure regulating valve. ⁇ Can be maintained.
  • a relief valve 9 is provided between the suction pipe 8 of the high-pressure fuel supply pump 1 and the common rail 3 so that the high-pressure fuel supply pump can be used as a fixed displacement. Can also be applied, and the effects described above can be exerted.
  • FIG. 3 is a diagram showing a cross section of a fuel supply pump.
  • components denoted by the same reference numerals as those of the embodiment shown in FIG. 1 perform the same operation.
  • the casing 20 fixed to the pump body 21 is omitted.
  • the feature of the present embodiment relates to a method of connecting the spherical portion of the oscillating cylinder 31 and the spherical support portion 30 formed on the pump body 21. That is, as shown in the enlarged view (part A) of FIG. 7, the pump body 21 is provided with a housing 21a having a ring-shaped recess 21b. A flange 21c is formed at the end of the driving piston 33 on the side of the piston.
  • the support ring 43 is made of an elastic material, and is composed of a spherical portion 43a and an engagement portion 43b in a ring shape so that the cylindrical portion of the swing cylinder 31 is inserted. Some of them are notched (not shown).
  • the support ring 43 is inserted into the oscillating cylinder 31 via a notch (not shown) of the support ring 43, and the spherical portion of the oscillating cylinder 31 is attached to the spherical surface of the pump body 21.
  • the support ring 43 is pushed in while being pressed against the support part 30, the spherical part 43a of the support ring 43 comes into contact with the spherical part of the swing cylinder 31 and the engaging part 4 3b is fitted into the recess 21b, and the engaging portion 43b is engaged with the collar 21c, whereby the swing cylinder 31 is freely movably connected to the pump body 21. .
  • the swing cylinder 31 can be swingably fitted to the pump body 21 with a simple configuration and reliably.
  • the swing cylinder 31 and the pump body 21 are connected by the support ring 43.
  • the present invention is not limited to this. It is also possible to employ a method such as plastic coupling or caulking in which the parts are plastically flowed and fitted.
  • the high-pressure fuel supply pump 1 operates as a variable discharge rate type.
  • the fuel supply pump can be made compact by combining the oscillating cylinder and the oscillating piston to perform crank pin driving, and the spring for pressing the piston against the cam during the suction stroke is eliminated.
  • the force acting on the piston by the pressure of the pressurized fuel can be reduced to reduce the friction loss.
  • a suction passage is formed in the crankpin and the oscillating piston, it also acts as a suction valve that opens and closes the communication between the crankpin suction passage and the biston suction passage. Efficiency increases.
  • the contact form at the portion where the rotational power is changed to reciprocating motion can be surface contact, fluid lubrication is easily achieved, and a highly efficient and reliable fuel supply pump can be obtained.

Abstract

A fuel feed pump capable of compactly forming a fuel pressurizing means, reducing a contact load at an area where a rotating power is converted to a reciprocating one, and changing a contacting form to a surface contact so as to provide high efficiency and reliability, wherein an oscillating cylinder and an oscillating piston are combined with each other so as to form a crank pin drive, a spring for pressing the piston against a cam in an intake stroke is eliminated, and an intake path is formed in a crank pin and the oscillating piston so as to provide an action as an intake valve to open and close a communication between the crank pin intake path and the piston intake path.

Description

明 細 書  Specification
燃料供給ポ ンプ  Fuel supply pump
技術分野 Technical field
本発明は、 内燃機関の燃料噴射弁に燃料を供給するポンプに係り、 特に燃 料を高圧に圧送する燃料供給ポンプに関する。  The present invention relates to a pump for supplying fuel to a fuel injection valve of an internal combustion engine, and more particularly to a fuel supply pump for pumping fuel to a high pressure.
背景技術 Background art
従来の高圧燃料供給ポンプとしては、 例えば、 特開平 8-14140号公報に 記載のような単筒プランジャタイプのものがある。この高圧燃料供給ポンプ は、 エンジンハウジングの一部であるへッドカバ一にシリンダが取り付けら れており、 このシリンダ内にプランジャが往復動かつ摺動自在に嵌挿されて いる。 プランジャの下端はタぺッ卜に連結されており、 このタぺッ卜は復帰 用スプリングによってカム面に押し付けられるとともに、 カムに摺接してい る。 したがって、 カム軸の回転によりカムが回転すると、 タペットを介して プランジャが往復駆動されて、 燃料加圧室の燃料が加圧されて、 吐出弁およ びコモンレールを通じて噴射弁(ィンジヱクタ)に供給される。  As a conventional high-pressure fuel supply pump, for example, there is a single cylinder plunger type as described in Japanese Patent Application Laid-Open No. H8-14140. In this high-pressure fuel supply pump, a cylinder is attached to a head cover which is a part of an engine housing, and a plunger is reciprocally and slidably fitted in the cylinder. The lower end of the plunger is connected to a tut, which is pressed against the cam surface by a return spring and is in sliding contact with the cam. Therefore, when the cam is rotated by the rotation of the camshaft, the plunger is reciprocated through the tappet, and the fuel in the fuel pressurizing chamber is pressurized and supplied to the injection valve (injector) through the discharge valve and the common rail. You.
上記した高圧燃料供給ポンプにお ヽては、 プランジャの往復動機構として 力ム駆動方式を採つていることから、 以下のような技術的課題がある。  The above-described high-pressure fuel supply pump has the following technical problems because it employs a force-driven system as a reciprocating mechanism of the plunger.
吸入行程でプランジャをカム面に押し付けるために設けられた復帰用スプ リングのばね力によるタぺッ 卜とカム面の摺動に関わる信頼性と摩擦損失の 問題である。 つまり、 圧縮行程では上記燃料加圧室の燃料圧力によるプラン ジャを押し下げる方向に働く力と上記復帰用スプリングのばね力がタぺット とカム面に作用することになる。 復帰用スプリングのばね力は、 カム軸が高 速で回転したときでもカム面からタぺッ 卜が離脱しないようにするために大 きくする必要があり、 その結果、 接触荷重が大きくなる。 また、 タぺッ卜と カム面の接触形態が線接触であることから流体潤滑が成立しがたく、 また、 面圧が大きくなりカムおよびタぺッ卜の信頼性、 特にタぺッ卜の信頼性が問 題となる。  This is a problem of reliability and friction loss related to sliding of the cam and the tap due to the spring force of the return spring provided to press the plunger against the cam surface during the suction stroke. That is, in the compression stroke, the force acting in the direction of pushing down the plunger due to the fuel pressure in the fuel pressurizing chamber and the spring force of the return spring act on the tut and the cam surface. The spring force of the return spring needs to be large so that the tut does not separate from the cam surface even when the camshaft rotates at high speed, and as a result, the contact load increases. Also, since the contact form between the tip and the cam surface is a line contact, it is difficult to achieve fluid lubrication, and the surface pressure increases, and the reliability of the cam and the stick, especially the Reliability is a problem.
さらに、 カム外周が長いことや上記した接触荷重が大きいことにより、 タ ぺッ卜とカム面での摩擦損失が大きくなる (機械効率が低下する) 。  Further, since the cam outer periphery is long and the above-mentioned contact load is large, friction loss between the pad and the cam surface increases (mechanical efficiency decreases).
上記課題を解決する手段として、 例えば、 特開昭 64-73166号公報に記 載のように、 プランジャの下端部は弁座に連結されており、 この弁座は復帰 用スプリングによって摺動子に押し付けられている。 摺動子はカムローラを 有し、 このカムローラがカムに摺接する構成としている。 したがって、 カム ローラとカム面とが転がり接触となっていることから摩擦損失や信頼性にお いて改善されているが、 復帰用スプリングがあるため、 スプリング力による 接触荷重は依然として作用している。 また、 この従来技術では、 摺動子や力 ムローラ等の部品が追加されるとともに、 プランジャーの軸方向にポンプ本 体が長くなるなどの新たな課題が発生することになる。 As means for solving the above problems, for example, as described in JP-A-64-73166, the lower end of the plunger is connected to a valve seat, and this valve seat is connected to the slider by a return spring. It is imposed. The slider has a cam roller, and the cam roller comes into sliding contact with the cam. Therefore, friction loss and reliability are improved because the cam roller is in rolling contact with the cam surface.However, since there is a return spring, The contact load is still working. In addition, in this conventional technique, components such as a slider and a roller are added, and new problems such as a longer pump body in the axial direction of the plunger arise.
発明の開示 Disclosure of the invention
本発明の目的は、 燃料供給ポンプをコンパク卜に構成し、 圧縮工程時にプ ランジャ (ピストン) に作用する力を減少して摩擦損失を減少することによ り、 機械効率および信頼性の高い燃料供給ポンプを提供することにある。 上記目的を達成するため、 本発明の燃料供給ポンプは、 燃料を供給する供 給通路と、 燃料を噴射弁側へ吐出する吐出通路と、 供給通路と吐出通路との 間に燃料を昇圧する昇圧手段とを備えた燃料供給ポンプにおいて、 昇圧手段 を、 燃料供給ポンプ本体に対して揺動運動する揺動シリンダと、 揺動シリン ダと共に揺動しながら揺動シリンダ内を往復動する揺動ビストンより構成さ れる。  An object of the present invention is to provide a fuel supply pump having high mechanical efficiency and high reliability by configuring a compact fuel supply pump and reducing frictional force by reducing the force acting on the plunger (piston) during the compression process. It is to provide a supply pump. In order to achieve the above object, a fuel supply pump according to the present invention includes a supply passage for supplying fuel, a discharge passage for discharging fuel to an injection valve side, and a booster for increasing fuel pressure between the supply passage and the discharge passage. And a swing piston that swings with the swing cylinder and reciprocates in the swing cylinder while swinging with the swing cylinder. It is composed of:
本発明によれば、 揺動シリンダと揺動ビストンを組み合わせてクランクピ ン駆動とすることによって、 燃料供給ポンプをコンパク卜に構成でき、 吸入 行程でピストンをカムに押し付けるばねを廃止することができる。 従って、 圧縮工程ではビストンに前記ばねの力が作用しないため摩擦損失を減少する ことができる。  According to the present invention, the fuel supply pump can be made compact by combining the oscillating cylinder and the oscillating biston for crank pin drive, and the spring for pressing the piston against the cam during the suction stroke can be eliminated. Accordingly, in the compression step, the force of the spring does not act on the piston, so that the friction loss can be reduced.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の 1実施形態である燃料供給ポンプを示す断面図である。 第 2図は、 本実施例を用いた燃料噴射システム構成を示す図である。  FIG. 1 is a sectional view showing a fuel supply pump according to one embodiment of the present invention. FIG. 2 is a diagram showing a configuration of a fuel injection system using the present embodiment.
第 3図は、 本発明の他の実施形態に係る燃料供給ポンプの断面図である。 第 4図は、 第 3図と同じ本発明の他の実施形態に係る燃料供給ポンプの断 面図である。  FIG. 3 is a sectional view of a fuel supply pump according to another embodiment of the present invention. FIG. 4 is a cross-sectional view of a fuel supply pump according to another embodiment of the present invention, which is the same as FIG.
第 5図は、 本発明の他の実施形態に係る燃料供給ポンプの断面およびシス テム構成を示す図である。  FIG. 5 is a diagram showing a cross section and a system configuration of a fuel supply pump according to another embodiment of the present invention.
第 6図は、 本発明の他の実施形態に係る燃料供給ポンプの断面およびシス テム構成を示す図である。  FIG. 6 is a diagram showing a cross section and a system configuration of a fuel supply pump according to another embodiment of the present invention.
第 7図は、 本発明の他の実施形態に係る燃料供給ポンプの断面を示す図で ある。  FIG. 7 is a view showing a cross section of a fuel supply pump according to another embodiment of the present invention.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の一実施の形態を図を用いて説明する。 第 1図は本発明の 1 実施形態である燃料供給ポンプを示す断面図、 第 2図は本実施例を用いた燃 料噴射システム構成を示す図である。  Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view showing a fuel supply pump according to an embodiment of the present invention, and FIG. 2 is a diagram showing a configuration of a fuel injection system using the present embodiment.
第 1図に示すように、 ケーシング 2 0にはポンプ本体 2 1が固定されてお り、 前記ポンプ本体 2 1には、 燃料供給通路 2 2、 吐出通路 2 3、 ポンプ室 2 4が形成されるとともに、 燃料供給通路 2 2および吐出通路 2 3には、 そ れぞれ吸入弁 2 5および吐出弁 2 6が設けられている。 吐出弁 2 6は、 弁体 であるボール弁 2 6 a、 弁座 2 6 b、 ボール弁 2 6 aを吐出通路 2 3内で往 復摺動可能に保持している保持部材 2 6 c、 ボール弁 2 6 aおよび保持部材 2 6 cを弁座 2 6 b方向に付勢するばね 2 6 d、 弁座 2 6 bを支持するとと もにその中央部に燃料通路を形成した支持部材 2 6 eから構成されており、 燃料の流れ方向を制限する逆止弁となっている。 一方、 吸入弁 2 5は、 弁体 2 5 a , 弁座 2 5 b、 弁体 2 5 aを吐出弁とは逆方向に付勢するばね 2 5 c および保持部材 2 5 dより構成されており、 吐出弁 2 6と同様に燃料の流れ 方向を制限する逆止弁となっている。 As shown in FIG. 1, a pump body 21 is fixed to a casing 20. The pump body 21 has a fuel supply passage 22, a discharge passage 23, and a pump chamber. The fuel supply passage 22 and the discharge passage 23 are provided with a suction valve 25 and a discharge valve 26, respectively. The discharge valve 26 is a holding member 26 c which holds a ball valve 26 a, a valve seat 26 b, and a ball valve 26 a slidably in the discharge passage 23. A spring 26d for urging the ball valve 26a and the holding member 26c in the direction of the valve seat 26b, a supporting member 2 supporting the valve seat 26b and forming a fuel passage in the center thereof. 6e, which is a check valve that restricts the fuel flow direction. On the other hand, the suction valve 25 is composed of a valve body 25a, a valve seat 25b, a spring 25c for urging the valve body 25a in a direction opposite to that of the discharge valve, and a holding member 25d. As with the discharge valve 26, it is a check valve that restricts the fuel flow direction.
電磁弁 2 7はポンプ本体 2 1に嵌揷されており、 電磁弁 2 7の内部には、 係合部材 2 8およびばね 2 9が設けられている。 係合部材 2 8は、 電磁弁 2 7が OFF時には、 ばね 2 9よって吸入弁 2 5を開弁する方向に付勢力がかけ られている。 ばね 2 9の付勢力は、 吸入弁 2 5のばね 2 5 cの付勢力より大 きくなつているため、 電磁弁 2 7 OFF時は、 第 1図のように吸入弁 5は開弁 状態となっている。  The solenoid valve 27 is fitted into the pump body 21, and an engagement member 28 and a spring 29 are provided inside the solenoid valve 27. When the solenoid valve 27 is turned off, an urging force is applied to the engagement member 28 in a direction to open the suction valve 25 by the spring 29. Since the biasing force of the spring 29 is greater than the biasing force of the spring 25c of the suction valve 25, when the solenoid valve 27 is OFF, the suction valve 5 is in the open state as shown in Fig. 1. Has become.
ポンプ本体 2 1には、 前記ポンプ室 2 4に開口する球面支持部 3 0が形成 されており、 該球面支持部 3 0には揺動シリンダ 3 1が嵌合され、 球面支持 部材 3 2によってポンプ本体 2 1に揺動自在に結合されている。 揺動シリン ダ 3 1の揺動ピストン 3 3の頭部側には加圧室 3 4が設けられている。 該加 圧室 3 4と前記ポンプ室 2 4とは、 揺動シリンダ 3 1の先端部に設けられた 連通路 3 5を介して連通している。 ここで、 前記ポンプ室 2 4の前記連通路 3 5側の開口面積は、 前記摺動ボア部 3 1 aの断面積より小さくなるように 形成されている。 さらに、 前記摺動ボア部 3 1 aの連通路 3 5側端部には、 逃げ溝 3 6が設けれている。  The pump main body 21 is formed with a spherical support portion 30 that opens to the pump chamber 24. A swing cylinder 31 is fitted to the spherical support portion 30, and a spherical support member 32 is provided. The pump body 21 is swingably connected to the pump body 21. A pressure chamber 34 is provided on the head side of the swing piston 33 of the swing cylinder 31. The pressurizing chamber 34 and the pump chamber 24 communicate with each other via a communication passage 35 provided at the tip of the oscillating cylinder 31. Here, the opening area of the pump chamber 24 on the side of the communication passage 35 is formed to be smaller than the cross-sectional area of the sliding bore portion 31a. Further, an escape groove 36 is provided at an end of the sliding bore portion 31a on the communication passage 35 side.
揺動ピストン 3 3は、 揺動シリンダ 3 1の摺動ボア部 3 1 a内を摺動する ピストン部 3 3 aと回転動力を伝達するリング部 3 3 bにより一体に構成さ れている。 リング部 3 3 bは、 例えば、 図示しない吸排気バルブを開閉駆動 するバルブカムシャフトなどに連結したクランクシャフト 3 7 (バルブカム シャフトをクランクシャフト 3 7としてもよい) の軸中心より偏心した軸中 心を有するクランクピン部 3 8に回転自在に摺動する。  The oscillating piston 33 is formed integrally with a piston portion 33a that slides in a sliding bore portion 31a of the oscillating cylinder 31 and a ring portion 33b that transmits rotational power. The ring portion 33b is, for example, an eccentric shaft center of a crankshaft 37 (a valve camshaft may be a crankshaft 37) connected to a valve camshaft for opening and closing an intake / exhaust valve (not shown). It slides freely on the crank pin part 38 having
第 2図において、 エンジン(図示せず)には各気筒の燃焼室に対応して噴射 弁 2が配設され、 噴射弁 2からエンジン(図示せず)への燃料の噴射は、 噴射 制御用電磁弁 (図示せず)の ON— OFFにより制御される。 噴射弁 2は各気筒共 通のコモンレール 3に接続されており、 噴射制御用電磁弁 (図示せず)が開弁 している間、 コモンレール 3内の燃料が噴射弁 2よりェンジン(図示せず)に 噴射される。 したがって、 コモンレール 3には連続的に燃料噴射圧に相当す る高い所定圧が蓄圧される必要があり、 そのために供給配管 4を経て高圧燃 料供給ポンプ 1が接続される。 本実施形態の高圧燃料供給ポンプ 1は可変吐 出量式高圧燃料供給ポンプとして動作する。 In FIG. 2, an engine (not shown) is provided with an injection valve 2 corresponding to a combustion chamber of each cylinder, and fuel is injected from the injection valve 2 to the engine (not shown) for injection control. Controlled by ON-OFF of solenoid valve (not shown). The injection valve 2 is connected to a common rail 3 common to the cylinders, and while the injection control solenoid valve (not shown) is open, the fuel in the common rail 3 is sent from the injection valve 2 to the engine (not shown). ). Therefore, the common rail 3 continuously corresponds to the fuel injection pressure. It is necessary to accumulate a high predetermined pressure. For this purpose, the high-pressure fuel supply pump 1 is connected via the supply pipe 4. The high-pressure fuel supply pump 1 of the present embodiment operates as a variable discharge type high-pressure fuel supply pump.
高圧燃料供給ポンプ 1は、 燃料タンク 5から公知の低圧燃料供給ポンプ 6 および圧力調整器 7にて一定の圧力に調圧されて吸入された燃料を高圧に制 御維持するものである。 また、 高圧燃料供給ポンプ 1の吸入側配管 8とコモ ンレール 3との間には、 リリーフ弁 9が設けられており、 コモンレール 3内 の圧力が所定値を超えた際に開弁して配管系の破損を防止する。  The high-pressure fuel supply pump 1 regulates the pressure of the fuel from a fuel tank 5 to a constant pressure by a known low-pressure fuel supply pump 6 and a pressure regulator 7, and controls the pressure of the sucked fuel to a high level. In addition, a relief valve 9 is provided between the suction pipe 8 of the high-pressure fuel supply pump 1 and the common rail 3, and is opened when the pressure in the common rail 3 exceeds a predetermined value. To prevent damage.
このシステムを制御する電子制御ュニッ ト(ECU) l 0は、 例えばエンジン の回転数を検出するセンサ 1 1および負荷を検出するセンサ 1 2より、 回転 数と負荷の情報が入力され、 これらの信号より判断されるェンジン運転状態 等に応じて決定される最適の噴射時期、 噴射量となるように ECU 1 0は、 噴 射制御用電磁弁 (図示せず)に制御信号を出力する。 同時に、 ECU 1 0は回転 数や負荷に応じて燃料噴射圧が最適値になるように高圧燃料供給ポンプ 1に 制御信号を出力する。  The electronic control unit (ECU) 10 that controls this system receives information on the number of revolutions and load from, for example, a sensor 11 that detects the engine revolution and a sensor 12 that detects the load. The ECU 10 outputs a control signal to an injection control solenoid valve (not shown) so that the optimum injection timing and injection amount are determined according to the engine operation state and the like determined as described above. At the same time, the ECU 10 outputs a control signal to the high-pressure fuel supply pump 1 so that the fuel injection pressure becomes an optimum value according to the rotation speed and the load.
さらに、 より好ましくは、 コモンレール 3内の圧力を検出する圧力センサ 1 3をコモンレール 3に設置し、 圧力センサ 1 3の信号が予めエンジンの回 転数や負荷に応じて設定した最適値となるように高圧燃料供給ポンプ 1の吐 出量を制御する。  More preferably, a pressure sensor 13 for detecting the pressure in the common rail 3 is installed on the common rail 3 so that the signal of the pressure sensor 13 becomes an optimum value set in advance according to the engine speed and load. The discharge amount of the high-pressure fuel supply pump 1 is controlled during the operation.
次に、 高圧燃料供給ポンプ 1の作動について説明する。  Next, the operation of the high-pressure fuel supply pump 1 will be described.
第 1図において、 クランクシャフト 3 7の回転に伴って、 偏心した軸中心 を有するクランクピン部 3 8がクランクシャフ卜 3 7の軸中心に対して回転 することにより、 揺動ピストン 3 3のリング部 3 3 bは、 クランクピン部 3 8に対して回転摺動するとともに、 ピストン部 3 3 aは、 揺動シリンダ 3 1 の摺動ボア部 3 1 a内を往復摺動する。 この時、 摇動シリンダ 3 1は、 球面 支持部 3 0および球面支持部材 3 2によってポンプ本体 2 1に対し揺動する。 したがって、 ピストン部 3 3 aは揺動シリンダ 3 1の摺動ボア部 3 1 a内を 揺動運動しながら往復摺動することになる。  In FIG. 1, the crank pin 37 having an eccentric shaft center rotates with respect to the shaft center of the crank shaft 37 with the rotation of the crankshaft 37, so that the ring of the oscillating piston 33 is formed. The part 33 b rotates and slides with respect to the crank pin part 38, and the piston part 33 a reciprocates in the sliding bore part 31 a of the swing cylinder 31. At this time, the driving cylinder 31 swings with respect to the pump body 21 by the spherical support portion 30 and the spherical support member 32. Therefore, the piston part 33a reciprocates while sliding in the sliding bore part 31a of the swing cylinder 31.
揺動ピストン 3 3が上死点から下死点に移動する (燃料の吸入行程) とき は、 電磁弁 2 7に通電されていないため (OFF時)、 ばね 2 9の付勢力によつ て係合部材 2 8が吸入弁 2 5に係合し、 吸入弁 2 5を開弁する。 したがって、 低圧の燃料は、 燃料吸入口部 2 2 a燃料供給通路 2 2および吸入弁 2 5を介 してポンプ室 2 4に流入され、 さらに加圧室 3 4へと供給される。 このとき、 吐出弁 2 6は閉弁している。  When the oscillating piston 33 moves from the top dead center to the bottom dead center (fuel intake stroke), the solenoid valve 27 is not energized (at the time of OFF). The engaging member 28 is engaged with the suction valve 25, and the suction valve 25 is opened. Therefore, the low-pressure fuel flows into the pump chamber 24 through the fuel inlet 22 a and the fuel supply passage 22 and the suction valve 25, and is further supplied to the pressurizing chamber 34. At this time, the discharge valve 26 is closed.
揺動ピストン 3 3が下死点から上死点方向に移動する (燃料の加圧 ·吐出 行程) 場合、 まず、 電磁弁 2 7に通電されていない (OFF)時は、 ポンプ室 2 4の圧力が燃料吸入口部 2 2 aとほぼ同等の低圧状態を保っため、 吐出弁 2 6を開弁することができず、 吸入弁 2 5が開弁しているので加圧室 3 4内に 流入した燃料は、 ポンプ室 2 4、 吸入弁 2 5、 燃料供給通路 2 2および燃料 吸入口部 2 2 aを介して吸入側配管 8へ戻される。 When the oscillating piston 3 3 moves from the bottom dead center to the top dead center (fuel pressurization / discharge stroke), first, when the solenoid valve 27 is not energized (OFF), the pump chamber 24 Since the pressure is maintained at a low pressure almost equal to that of the fuel inlet port 2 2a, the discharge valve 2 6 cannot be opened and the suction valve 25 is open, so the fuel that has flowed into the pressurizing chamber 34 is pumped by the pump chamber 24, the suction valve 25, the fuel supply passage 22 and the fuel. It is returned to the suction side pipe 8 through the suction port 22a.
つぎに、 電磁弁 2 7が通電された (ON)時は、 ばね 2 9の付勢力以上の電磁 力が発生するため、 係合部材 2 8を電磁弁 2 7側に引き寄せるため、 係合部 材 2 8と吸入弁 2 5は分離される。 そして、 ばね 2 5 cの付勢力により弁体 2 5 aが弁座 2 5 bに当接するため、 吸入弁 2 5は閉弁される。 その結果、 揺動ピストン 3 3による加圧室 3 4内の燃料の加圧が開始され、 加圧室 3 4 およびポンプ室 2 4内の燃料圧力が吐出弁 2 6のばね 2 6 dの付勢力に打ち 勝つとボール弁 2 6 aが弁座 2 6 bから離れて、 吐出弁 2 6が開弁されて、 加圧室 3 4およびポンプ室 2 4内の加圧された燃料カ^ 吐出通路 2 3および 供給配管 4を経てコモンレール 3に吐出される。  Next, when the solenoid valve 27 is energized (ON), an electromagnetic force greater than the urging force of the spring 29 is generated, and the engaging member 28 is pulled toward the solenoid valve 27 side. Material 28 and suction valve 25 are separated. Then, the valve body 25a comes into contact with the valve seat 25b by the urging force of the spring 25c, so that the suction valve 25 is closed. As a result, the pressurization of the fuel in the pressurizing chamber 34 by the oscillating piston 33 starts, and the fuel pressure in the pressurizing chamber 34 and the pump chamber 24 increases with the spring 26 d of the discharge valve 26. When the power is overcome, the ball valve 26a separates from the valve seat 26b, and the discharge valve 26 is opened to discharge the pressurized fuel gas in the pressurizing chamber 34 and the pump chamber 24. It is discharged to the common rail 3 through the passage 23 and the supply pipe 4.
このように、 揺動ピストン 3 3が下死点から上死点方向に移動する行程に おいて、 電磁弁 2 7に通電するタイミングゃ通電期間を制御することでコモ ンレールへの燃料吐出量を制御することができる。  In this way, in the process in which the oscillating piston 33 moves from the bottom dead center to the top dead center, the timing of energizing the solenoid valve 27 and the energizing period are controlled to reduce the amount of fuel discharged to the common rail. Can be controlled.
本実施形態における高圧燃料供給ポンプにおいては、 クランクシャフト 3 7の動力 としてクランクピン駆動方式を採っているため、 カム駆動方式 では必ず設けなければならない復帰用スプリングが不要となる。 つまり、 ク ランクピン 3 8の回転動力は、 揺動ピストンのリング部 3 3 bで支持するこ ととなり、 両者によってすベり軸受の構成となっている。 したがって、 クラ ンクピン 3 8と揺動ビストンのリング部 3 3 bとの接触荷重を大幅に低減す ることができるとともに、 両者の接触形態を面接触とすることができるので 流体潤滑が成立し易くなる。  In the high-pressure fuel supply pump according to the present embodiment, a crankpin drive system is used as the power of the crankshaft 37, so that the cam drive system does not require a return spring that must be provided. In other words, the rotational power of the crank pin 38 is supported by the ring portion 33b of the oscillating piston, and the two form a sliding bearing. Therefore, the contact load between the crank pin 38 and the ring portion 33b of the oscillating biston can be significantly reduced, and the contact form between the two can be a surface contact, so that fluid lubrication is easily established. Become.
また、 揺動シリンダ 3 1の先端部に設けられたポンプ室 2 4の連通路 3 5 側の開口面積を、 揺動シリンダ 3 1の摺動ボア部 3 1 aの側端部に形成した 逃げ溝 3 6の断面積より小さくしているため、 加圧室 3 4の内圧によって常 に揺動シリンダ 3 1の球面部がポンプ本体 2 1の球面支持部 3 0に押圧され る。 このため、 揺動シリンダ 3 1の球面部と球面支持部 3 0とが密着するの で両者間での高圧燃料の漏れを阻止することができる。  The opening area on the communication passage 35 side of the pump chamber 24 provided at the tip of the oscillating cylinder 31 is provided at the side end of the sliding bore 31 a of the oscillating cylinder 31. Since the sectional area is smaller than that of the groove 36, the spherical portion of the swing cylinder 31 is always pressed against the spherical support portion 30 of the pump body 21 by the internal pressure of the pressurizing chamber 34. Therefore, the spherical portion of the oscillating cylinder 31 and the spherical support portion 30 are in close contact with each other, so that leakage of high-pressure fuel between the two can be prevented.
さらに、 揺動シリンダと揺動ピストンの組み合わせにより燃料を加圧する 手段を採っているため、 従来のカム駆動方式においては加圧行程でシリンダ とピストン間に生じる側圧力をほぼゼロとすることができるので、 シリンダ とビストン間の摺動損失が低減されるとともに、 同部での信頼性が改善され つぎに、 本発明の他の実施形態について第 3図及び第 4図を用いて説明す る。 第 3図は吸入工程を、 第 4図は加圧 ·吐出工程をそれぞれ示す燃料供給 ポンプの断面図である。 ここで、 第 1図に示した実施形態と比較して同一番 号を付記したものは同一の作用をなす。 Furthermore, since the means for pressurizing the fuel by the combination of the oscillating cylinder and the oscillating piston is adopted, in the conventional cam drive system, the side pressure generated between the cylinder and the piston during the pressurizing process can be made almost zero. Therefore, the sliding loss between the cylinder and the piston is reduced, and the reliability at the same portion is improved. Next, another embodiment of the present invention will be described with reference to FIGS. 3 and 4. FIG. FIG. 3 is a cross-sectional view of the fuel supply pump showing a suction step and FIG. 4 shows a pressurization / discharge step. Here, compared to the embodiment shown in FIG. Those with numbers have the same function.
本実施の形態の特徵は、 クランクシャフト 3 7、 クランクピン 3 8および 揺動ピストン 3 3を通じて加圧室 3 4に至る吸入通路を形成したものである。 つまり、 クランクシャフト 3 7の軸中心付近には軸方向にクランクシャフト 吸入通路 4 0が形成されており、 該クランクシャフト吸入通路 4 0に連通す るように、 クランクピン 3 8にはクランクピン吸入通路 4 1が設けられてい る。 該クランクピン吸入通路 4 1は、 クランクピンのクランク区分の周囲の 概略半分にわたって形成されている。 一方、 揺動ピストン 3 3のピストン部 3 3 aの中央部にはビストン吸入通路 3 9が設孔されており、 一端が吸入行 程の期間だけ上記クランクピン吸入通路 4 1に連通し、 他端は前記加圧室 3 4にそれぞれ連通している。 ここで、 図示していないが、 前記クランクシャ フト吸入通路 4 0は前記吸入側配管 8に連通していることは言うまでもない。 次に、 本実施形態の動作について説明する。 第 3図において、 吸入行程に あるときは、 クランクピン吸入通路 4 1とビストン吸入通路 3 9が連通する ため、 クランクシャフト吸入通路 4 0を介して低圧燃料が加圧室 3 4内に流 入する。 また、 この時、 電磁弁 2 7に通電されていないため (OFF時)吸入弁 2 5が開弁しているので、 同時に低圧の燃料は、 燃料吸入口部 2 2 a, 燃料 供給通路 2 2および吸入弁 2 5を介してポンプ室 2 4に流入され、 さらに加 圧室 3 4へと供給される。  A feature of the present embodiment is that a suction passage is formed to reach the pressurizing chamber 34 through the crankshaft 37, the crankpin 38, and the swing piston 33. That is, a crankshaft suction passage 40 is formed in the axial direction near the center of the shaft of the crankshaft 37, and the crankpin 38 is connected to the crankpin 38 so as to communicate with the crankshaft suction passage 40. A passage 41 is provided. The crankpin intake passage 41 is formed over substantially half of the periphery of the crank section of the crankpin. On the other hand, a piston piston passage 33 is provided in the center of the piston portion 33a of the oscillating piston 33, and one end thereof communicates with the crankpin suction passage 41 only during a suction stroke. The ends communicate with the pressure chambers 34, respectively. Here, although not shown, it goes without saying that the crankshaft suction passage 40 communicates with the suction side pipe 8. Next, the operation of the present embodiment will be described. In FIG. 3, during the suction stroke, the low pressure fuel flows into the pressurizing chamber 34 via the crankshaft suction passage 40 because the crankpin suction passage 41 communicates with the biston suction passage 39. I do. At this time, since the solenoid valve 27 is not energized (at the time of OFF), the suction valve 25 is opened, and at the same time, the low-pressure fuel is supplied to the fuel suction port 22 a and the fuel supply passage 22. Then, the gas flows into the pump chamber 24 via the suction valve 25, and is further supplied to the pressurizing chamber 34.
第 4図において、 加圧 ·吐出行程にあるときは、 クランクピン吸入通路 4 1とピストン吸入通路 3 9の連通がクランクピン 3 8により遮断されるため、 クランクシャフト吸入通路 4 0を介しての低圧燃料の供給が停止する。 した がって、 クランクピン吸入通路 4 1、 加圧室 3 4およびポンプ室 2 4は閉じ られた空間となるため、 摇動ピストン 3 3により加圧が開始される。 このと き、 電磁弁 2 7に通電されていない (OFF)時は、 吐出弁 2 6が閉弁しており、 吸入弁 2 5が開弁しているので上記密閉空間内に流入した燃料は、 吸入弁 2 5、 燃料供給通路 2 2および燃料吸入口部 2 2 aを介して吸入側配管 8へ戻 される。 また、 電磁弁 2 7が通電された (ON)時は、 吸入弁 2 5が閉弁される ので、 燃料の加圧が開始され吐出弁 2 6が開弁されて、 吐出通路 2 3および 供給配管 4経てコモンレール 3に吐出される。  In FIG. 4, during the pressurization / discharge stroke, the communication between the crankpin suction passage 41 and the piston suction passage 39 is cut off by the crankpin 38, so that the communication between the crankpin suction passage 41 and the crankshaft suction passage 40 is performed. The supply of low-pressure fuel is stopped. Accordingly, since the crankpin suction passage 41, the pressurizing chamber 34 and the pump chamber 24 are closed spaces, pressurization is started by the driving piston 33. At this time, when the solenoid valve 27 is not energized (OFF), the discharge valve 26 is closed and the suction valve 25 is open. The fuel is returned to the suction side pipe 8 through the suction valve 25, the fuel supply passage 22, and the fuel suction port 22a. Also, when the solenoid valve 27 is energized (ON), the suction valve 25 is closed, so fuel pressurization is started and the discharge valve 26 is opened, and the discharge passage 23 and supply Discharged to common rail 3 via pipe 4.
このように、 クランクピン 3 8は、 揺動ピストン 3 3に回転動力を伝達す る作用のほかに、 クランクピン吸入通路 4 1とピストン吸入通路 3 9の連通 を開閉する吸入弁としての作用を兼ね備えている。  As described above, the crank pin 38 not only functions to transmit the rotational power to the swing piston 33 but also functions as a suction valve that opens and closes the communication between the crank pin suction passage 41 and the piston suction passage 39. Has both.
本実施形態における高圧燃料供給ポンプ 1においては、 揺動ビストン 3 3 のピストン部 3 3 aにピストン吸入通路 3 9を形成しているため、 その通路 面積に圧力を乗じた量だけ、 揺動ピストン 3 3の頭部に作用する荷重を低減 できる。 また、 クランクピン 3 8をクランクピン吸入通路 4 1とピストン吸 入通路 3 9の連通を開閉する吸入弁としての作用をもたしているため、 吸入 弁が不要となり燃料の吸入効率が高くなる。 In the high-pressure fuel supply pump 1 of the present embodiment, since the piston suction passage 39 is formed in the piston portion 33 a of the oscillating piston 33, the oscillating piston is increased by an amount obtained by multiplying the passage area by the pressure. 33 The load acting on the head can be reduced. Also, the crank pin 38 is connected to the crank pin suction passage 41 and the piston suction port. Since it functions as a suction valve for opening and closing the communication of the entrance passage 39, the suction valve is not required, and the fuel suction efficiency is increased.
以上に述べた実施の形態おいては、 揺動シリンダの揺動中心となる頭部の 形状を球面としいるが、 本発明においてはこれに限ったものではなく、 例え ば、 円筒面形状としてもよい。 また、 吸入弁に開口方向に保持する付勢力を 持った係合部材を係合し、 この係合部材をァクチユエ一夕の動作タイミング により、 吸入弁を開閉制御する電磁弁について説明したが、 本発明において はこれに限ったものではなく、 例えば、 ァクチユエ一夕に直接吸入弁体を取 り付けて、 電磁弁が閉弁時に吸入通路を閉塞するような電磁弁であつても上 記した効果を発揮することができる。  In the embodiment described above, the shape of the head, which is the center of swing of the swing cylinder, is a spherical shape. However, the present invention is not limited to this shape. Good. Also, an electromagnetic valve that engages an engaging member having an urging force to hold the intake valve in the opening direction and controls the opening and closing of the intake valve with the operation timing of the actuator has been described. However, the present invention is not limited to this. For example, the above-described effects can be obtained even when a solenoid valve is directly attached to the actuator and the solenoid valve closes the suction passage when the solenoid valve is closed. Can be demonstrated.
本実施形態においても、 高圧燃料供給ポンプ 1は可変吐出量式として動作 する。  Also in the present embodiment, the high-pressure fuel supply pump 1 operates as a variable discharge rate type.
つぎに、 本発明の他の実施形態について第 5図を用いて説明する。 第 5図 は燃料供給ポンプの断面およびシステム構成を示す図である。 ここで、 第 1 図および第 2図に示した実施形態と比較して同一番号を付記したものは同一 の作用をなす。 なお、 ポンプ本体 2 1に固定されたケーシング 2 0は省略し ている。  Next, another embodiment of the present invention will be described with reference to FIG. FIG. 5 is a diagram showing a cross section of the fuel supply pump and a system configuration. Here, components denoted by the same reference numerals as those of the embodiment shown in FIGS. 1 and 2 perform the same operation. The casing 20 fixed to the pump body 21 is omitted.
本実施の形態の特徴は、 吸入弁 4 2には逆止弁を使用し、 コモンレール内 の圧力を調整するために圧力調整弁 1 4を設けたものである。 つまり、 吸入 側配管 8に連通する燃料供給通路 2 2には、 それぞれ吸入弁 4 2が設けられ ている。 吸入弁 4 2は、 弁体であるボール弁 4 2 a、 弁座 4 2 b、 ボール弁 4 2 aを燃料供給通路 2 2内で往復摺動可能に保持している保持部材 4 2 c、 ボール弁 4 2 aおよび保持部材 4 2 cを弁座 4 2 b方向に付勢するばね 4 2 dから構成されており、 燃料の流れ方向を制限する逆止弁となっている。 また、 コモンレール 3には圧力調整弁 1 4が設けられており、 コモンレー ル 3内の圧力が所定値を超えた際に開弁して、 配管 1 5を介して燃料タンク (図示せず)に戻す構成としている。 したがって、 この場合には第 2図に示し たリリーフ弁 9は不要となる。  A feature of the present embodiment is that a check valve is used as the suction valve 42 and a pressure adjusting valve 14 is provided to adjust the pressure in the common rail. That is, a suction valve 42 is provided in each of the fuel supply passages 22 communicating with the suction-side piping 8. The suction valve 42 includes a ball member 42 a, a valve seat 42 b, and a holding member 42 c that holds the ball valve 42 a so as to be able to reciprocate in the fuel supply passage 22. It is composed of a spring 42d that urges the ball valve 42a and the holding member 42c in the direction of the valve seat 42b, and serves as a check valve that restricts the fuel flow direction. The common rail 3 is provided with a pressure regulating valve 14, which is opened when the pressure in the common rail 3 exceeds a predetermined value, and is connected to a fuel tank (not shown) via a pipe 15. It is configured to return. Therefore, in this case, the relief valve 9 shown in FIG. 2 becomes unnecessary.
次に、 本実施形態の動作について説明する。 吸入行程のときは、 吸入弁 4 2が開弁するので、 低圧の燃料は、 吸入側配管 8、 燃料供給通路 2 2および 吸'入弁 2 5を介してポンプ室 2 4に流入され、 さらに加圧室 3 4へと供給さ れる。 このとき、 吐出弁 2 6は閉弁している。 揺動ピストン 3 3が下死点か ら上死点方向に移動するときは、 吸入弁 4 2が閉弁されるので、 揺動ピスト ン 3 3による加圧室 3 4内の燃料の加圧が開始され、 加圧室 3 4およびポン プ室 2 4内の燃料圧力が吐出弁 2 6のばね 2 6 dの付勢力に打ち勝つとボ一 ル弁 2 6 aが弁座 2 6 bから離れて、 吐出弁 2 6が開弁されて、 加圧室 3 4 およびポンプ室 2 4内の加圧された燃料が、 吐出通路 2 3および供給配管 4 を経てコモンレール 3に吐出される。 コモンレール 3内の圧力は圧力調整弁 1 4にて、 ある設定値に調整 ·維持される Next, the operation of the present embodiment will be described. During the suction stroke, the suction valve 42 opens, so low-pressure fuel flows into the pump chamber 24 through the suction pipe 8, the fuel supply passage 22, and the suction valve 25, and It is supplied to the pressurizing chamber 34. At this time, the discharge valve 26 is closed. When the swing piston 33 moves from the bottom dead center to the top dead center, the suction valve 42 is closed, so that the fuel in the pressurizing chamber 34 is pressurized by the swing piston 33. Starts, and when the fuel pressure in the pressurizing chamber 34 and the pump chamber 24 overcomes the urging force of the spring 26 d of the discharge valve 26, the ball valve 26 a moves away from the valve seat 26 b. Then, the discharge valve 26 is opened, and the pressurized fuel in the pressurizing chamber 34 and the pump chamber 24 flows into the discharge passage 23 and the supply pipe 4. Through the common rail 3. The pressure in the common rail 3 is adjusted and maintained at a certain set value by the pressure adjustment valve 14
本実施形態における高圧燃料供給ポンプおよびそれを用いた燃料供給シス テムにおいては、 電磁弁を使用しなくてもよいので、 ポンプ本体の小型化が 図れるとともに、 圧力調整弁によりコモンレール 3内の圧力をある設定値に 調整 ·維持することができる。  In the high-pressure fuel supply pump and the fuel supply system using the same according to the present embodiment, the solenoid valve does not need to be used, so that the size of the pump body can be reduced, and the pressure in the common rail 3 can be reduced by the pressure regulating valve. It can be adjusted and maintained at a certain set value.
本実施形態においては、 高圧燃料供給ポンプ 1は固定吐出量式として動作 する。  In the present embodiment, the high-pressure fuel supply pump 1 operates as a fixed discharge rate type.
つぎに、 本発明の他の実施形態について第 6図を用いて説明する。 第 6図 は燃料供給ポンプの断面およびシステム構成を示す図である。 ここで、 第 3 図、 第 4図および第 2図に示した実施形態と比較して同一番号を付記したも のは同一の作用をなす。 なお、 ポンプ本体 2 1に固定されたケーシング 2 0 は省略している。  Next, another embodiment of the present invention will be described with reference to FIG. FIG. 6 is a diagram showing a cross section of the fuel supply pump and a system configuration. Here, components having the same reference numerals as those in the embodiment shown in FIGS. 3, 4 and 2 perform the same operation. The casing 20 fixed to the pump body 21 is omitted.
本実施の形態の特徴は、 吸入弁および逆止弁を廃止し、 コモンレール内の 圧力を調整するために圧力調整弁 1 4を設けたものである。 つまり、 ポンプ 本体 2 1に形成されたポンプ室 2 4は、 クランクシャフト 3 7の軸中心付近 に形成されクランクシャフ卜吸入通路 4 0、 クランクピン 3 8に設けられた クランクピン吸入通路 4 1、 揺動ピストン 3 3のピストン部 3 3 aの中央部 に設孔されたピストン吸入通路 3 9および加圧室 3 4によって、 図示してい ないが、 前記吸入側配管 8に連通している。 また、 ポンプ室 2 4は、 逆止弁 の機能を有した吐出弁 4 2、 吐出通路 2 3 および供給配管 4を経てコモン レール 3に連通している。 そして、 コモンレール 3には圧力調整弁 1 4が設 けられており、 コモンレール 3内の圧力が所定値を超えた際に開弁して、 配 管 1 5を介して燃料タンク(図示せず)に戻す構成としている。  The feature of the present embodiment is that the suction valve and the check valve are eliminated, and a pressure regulating valve 14 is provided to regulate the pressure in the common rail. In other words, the pump chamber 24 formed in the pump body 21 includes a crankshaft suction passage 40 formed near the center of the crankshaft 37 and a crankpin suction passage 41 provided in the crankpin 38. Although not shown, the oscillating piston 33 communicates with the suction side pipe 8 through a piston suction passage 39 and a pressurizing chamber 34 formed in the center of the piston portion 33a. The pump chamber 24 communicates with the common rail 3 via a discharge valve 42 having a check valve function, a discharge passage 23 and a supply pipe 4. The common rail 3 is provided with a pressure regulating valve 14. When the pressure in the common rail 3 exceeds a predetermined value, the valve is opened and a fuel tank (not shown) is connected via a pipe 15. It is configured to return to.
上記構成とすることによって、 電磁弁および吸入弁を使用しなくてもよい ので、 さらにポンプ本体の小型化 ·コンパクト化が図れるとともに、 圧力調 整弁によりコモンレール 3内の圧力をある設定値に調整 ·維持することがで さる。  With the above configuration, the solenoid valve and the suction valve do not need to be used, so that the pump body can be further reduced in size and size, and the pressure in the common rail 3 is adjusted to a certain set value by the pressure regulating valve. · Can be maintained.
以上に述べた実施の形態は、 コモンレール 3に圧力調整弁 1 4を設けたシ ステム構成について説明したが、 本発明においてはこれに限ったものではな く、 例えば、 調整弁を無くして、 第 2図に示したように、 高圧燃料供給ボン プ 1の吸入側配管 8とコモンレール 3との間には、 リリーフ弁 9を設けた構 成として、 高圧燃料供給ポンプを固定容量として使用する場合にも適用がで き、 上記した効果を発揮することができる。  In the embodiment described above, the system configuration in which the common rail 3 is provided with the pressure regulating valve 14 is described. However, the present invention is not limited to this. As shown in Fig. 2, a relief valve 9 is provided between the suction pipe 8 of the high-pressure fuel supply pump 1 and the common rail 3 so that the high-pressure fuel supply pump can be used as a fixed displacement. Can also be applied, and the effects described above can be exerted.
本実施形態において、 高圧燃料供給ポンプ 1は固定吐出量式として動作す つぎに、 本発明の他の実施形態について第 7図を用いて説明する。 第 7図 は燃料供給ポンプの断面を示す図である。 ここで、 第 1図に示した実施形態 と比較して同一番号を付記したものは同一の作用をなす。 なお、 ポンプ本体 2 1に固定されたケ一シング 2 0は省略している。 In the present embodiment, the high-pressure fuel supply pump 1 operates as a fixed discharge rate type. Next, another embodiment of the present invention will be described with reference to FIG. Fig. 7 FIG. 3 is a diagram showing a cross section of a fuel supply pump. Here, components denoted by the same reference numerals as those of the embodiment shown in FIG. 1 perform the same operation. The casing 20 fixed to the pump body 21 is omitted.
本実施の形態の特徴は、 揺動シリンダ 3 1の球面部とポンプ本体 2 1に形 成した球面支持部 3 0との結合方法に関するものである。 つまり、 第 7図の 拡大図(A部)に示したようにポンプ本体 2 1には、 リング状の凹所部 2 1 b を有するハウジング 2 1 aが設けられており、 該ハウジング 2 1 aの摇動ピ ストン 3 3側端部には、 つば部 2 1 cが形成されている。 一方、 支持リング 4 3は、 弾性材料でできており、 リング状に球面部 4 3 aと係合部 4 3 bと からそれぞれ構成されていて、 揺動シリンダ 3 1の円筒部が入るようにその 一部が切り欠いて(図示せず)ある。  The feature of the present embodiment relates to a method of connecting the spherical portion of the oscillating cylinder 31 and the spherical support portion 30 formed on the pump body 21. That is, as shown in the enlarged view (part A) of FIG. 7, the pump body 21 is provided with a housing 21a having a ring-shaped recess 21b. A flange 21c is formed at the end of the driving piston 33 on the side of the piston. On the other hand, the support ring 43 is made of an elastic material, and is composed of a spherical portion 43a and an engagement portion 43b in a ring shape so that the cylindrical portion of the swing cylinder 31 is inserted. Some of them are notched (not shown).
したがって、 支持リング 4 3の切り欠き部 (図示せず)を介して、 支持リン グ 4 3を揺動シリンダ 3 1に挿入し、 揺動シリンダ 3 1の球面部をポンプ本 体 2 1の球面支持部 3 0に押し当てながら、 支持リング 4 3を押し込んでい くと、 支持リング 4 3の球面部 4 3 aが揺動シリンダ 3 1の球面部に当接す るとともに、 係合部 4 3 bが凹所部 2 1 bに嵌まり、 係合部 4 3 bがつば部 2 1 cに係合することで、 揺動シリンダ 3 1がポンプ本体 2 1に摇動自在に 結合される。  Therefore, the support ring 43 is inserted into the oscillating cylinder 31 via a notch (not shown) of the support ring 43, and the spherical portion of the oscillating cylinder 31 is attached to the spherical surface of the pump body 21. When the support ring 43 is pushed in while being pressed against the support part 30, the spherical part 43a of the support ring 43 comes into contact with the spherical part of the swing cylinder 31 and the engaging part 4 3b is fitted into the recess 21b, and the engaging portion 43b is engaged with the collar 21c, whereby the swing cylinder 31 is freely movably connected to the pump body 21. .
上記構成とすることによって、 簡単な構成でしかも確実に揺動シリンダ 3 1をポンプ本体 2 1に揺動自在に嵌合することができる。  With the above configuration, the swing cylinder 31 can be swingably fitted to the pump body 21 with a simple configuration and reliably.
なお、 本実施形態では揺動シリンダ 3 1とポンプ本体 2 1の結合を支持リ ング 4 3で行なっているが、 本発明においてはこれに限ったものではなく、 例えば、 ポンプ本体 2 1の一部を塑性流動させて嵌合させる塑性結合やかし めなどの方法 よっても良 、。  In the present embodiment, the swing cylinder 31 and the pump body 21 are connected by the support ring 43. However, the present invention is not limited to this. It is also possible to employ a method such as plastic coupling or caulking in which the parts are plastically flowed and fitted.
本実施形態において、 高圧燃料供給ポンプ 1は可変吐出量式として動作す る。  In the present embodiment, the high-pressure fuel supply pump 1 operates as a variable discharge rate type.
上述の各実施例によれば、 揺動シリンダと揺動ピストンを組み合わせてク ランクピン駆動とすることによって、 燃料供給ポンプをコンパク卜に構成で き、 吸入行程でピストンをカムに押し付けるばねを廃止するとともに、 加圧 燃料の圧力によるビストンに作用する力を減少して摩擦損失を減少すること ができる。 また、 クランクピンおよび揺動ピストンに吸入通路を形成すると ともに、 クランクピン吸入通路とビストン吸入通路の連通を開閉する吸入弁 としての作用をもたしているため、 吸入弁が不要となり燃料の吸入効率が高 くなる。 さらに、 回転動力を往復動に変える部分での接触形態を面接触とす ることができるので流体潤滑が成立し易くなるので、 効率および信頼性の高 I、燃料供給ポンプを得ることができる。  According to each of the above-described embodiments, the fuel supply pump can be made compact by combining the oscillating cylinder and the oscillating piston to perform crank pin driving, and the spring for pressing the piston against the cam during the suction stroke is eliminated. At the same time, the force acting on the piston by the pressure of the pressurized fuel can be reduced to reduce the friction loss. In addition, since a suction passage is formed in the crankpin and the oscillating piston, it also acts as a suction valve that opens and closes the communication between the crankpin suction passage and the biston suction passage. Efficiency increases. Furthermore, since the contact form at the portion where the rotational power is changed to reciprocating motion can be surface contact, fluid lubrication is easily achieved, and a highly efficient and reliable fuel supply pump can be obtained.

Claims

請求の範囲 The scope of the claims
1 . 燃料を供給する供給通路と、 燃料を噴射弁側へ所定の圧力で吐出する 通路と、 前記供給通路と前記吐出通路との間に燃料を昇圧する手段とを備え た燃料供給ポンプにおいて、 前記昇圧手段を、 その頭部を揺動中心として揺 動する揺動シリンダと、 該摇動シリンダと共に揺動しながら前記揺動シリン ダ内を往復動する揺動ビストンより構成したことを特徴とする燃料供給ボン プ。  1. A fuel supply pump comprising: a supply passage for supplying fuel; a passage for discharging fuel to the injection valve side at a predetermined pressure; and means for increasing the pressure of fuel between the supply passage and the discharge passage. The pressure raising means is constituted by a swing cylinder that swings with its head as a swing center, and a swing piston that reciprocates in the swing cylinder while swinging together with the swing cylinder. Fuel supply pump.
2 . 燃料を供給する供給通路と、 燃料を噴射弁側へ吐出する通路と、 前記 供給通路と前記吐出通路との間に燃料を昇圧する手段と、 前記吐出通路に所 定の圧力で開弁する吐出弁とを備えた燃料供給ポンプにおいて、 前記昇圧手 段を、 その頭部を揺動中心として揺動する揺動シリンダと、 該揺動シリンダ と共に揺動しながら前記揺動シリンダ内を往復動する揺動ピストンより構成 したことを特徴とする燃料供給ポンプ。  2. A supply passage for supplying fuel, a passage for discharging fuel to the injection valve side, means for increasing the pressure of the fuel between the supply passage and the discharge passage, and opening the discharge passage at a predetermined pressure. A fuel supply pump having a discharge valve that performs a reciprocating motion in the oscillating cylinder while oscillating with the oscillating cylinder, the oscillating cylinder being oscillated about the head thereof. A fuel supply pump comprising a moving oscillating piston.
3 . 燃料を供給する供給通路と、 燃料を噴射弁側へ吐出する通路と、 前記供 給通路と前記吐出通路との間に燃料を昇圧する手段と、 前記吐出通路に所定 の圧力で開弁する吐出側弁とを備えた燃料供給ポンプにお t、て、 前記昇圧手 段を、 駆動軸に対して偏心したクランクピンと、 該クランクピンに回転自在 に係合する揺動ビストンと、 内壁には該揺動ビストンを摺動可能に支持する 摺動ボア部が形成され、 頭部には揺動中心となる球面部または円筒面部を有 した揺動シリンダより構成したことを特徴とする燃料供給ポンプ。  3. A supply passage for supplying fuel, a passage for discharging fuel to the injection valve side, means for increasing the pressure of fuel between the supply passage and the discharge passage, and opening the discharge passage at a predetermined pressure. A fuel supply pump provided with a discharge side valve that performs the above operation. The fuel pump includes a crankpin eccentric to a drive shaft, a swing piston rotatably engaged with the crankpin, and an inner wall. The fuel supply is characterized in that a sliding bore portion is formed to slidably support the oscillating biston, and the head is constituted by an oscillating cylinder having a spherical portion or a cylindrical surface portion serving as an oscillating center. pump.
4 . 燃料を供給する供給通路と、 燃料を噴射弁側へ吐出する通路と、 前記供 給通路と前記吐出通路との間に燃料を昇圧する手段と、 前記吐出通路に所定 の圧力で開弁する吐出弁とを備えた燃料供給ポンプにおいて、 前記昇圧手段 を、 その頭部を揺動中心として揺動する摇動シリンダと、 該揺動シリンダと 共に揺動しながら前記揺動シリンダ内を往復動する揺動ビス卜ンより構成し、 前記供給通路の少なくとも一部として前記揺動ビストンの内部に吸入通路を 設けたことを特徴とする燃料供給ポンプ。  4. A supply passage for supplying fuel, a passage for discharging fuel to the injection valve side, means for increasing the pressure of the fuel between the supply passage and the discharge passage, and opening the discharge passage at a predetermined pressure. A fuel supply pump provided with a discharge valve that performs a reciprocating motion in the oscillating cylinder while oscillating together with the oscillating cylinder. A fuel supply pump comprising a oscillating piston, wherein a suction passage is provided inside the oscillating piston as at least a part of the supply passage.
5 . 燃料を供給する供給通路と、 燃料を噴射弁側へ吐出する通路と、 前記供 給通路と前記吐出通路との間に燃料を昇圧する手段と、 前記吐出通路に所定 の圧力で開弁する吐出弁とを備えた燃料供給ポンプにおいて、 前記昇圧手段 を、 駆動軸に対して偏心したクランクピンと、 該クランクピンに回転自在に 係合する揺動ビストンと、 内壁には該揺動ビストンを摺動可能に支持する摺 動ボア部が形成され、 頭部には揺動中心となる球面部または円筒面部を有し た揺動シリンダょり構成するとともに、 前記供給通路の少なくとも一部とし て前記揺動ビストンの内部に吸入通路を設けたことを特徴とする燃料供給ポ ンプ。  5. A supply passage for supplying fuel, a passage for discharging fuel to the injection valve side, means for increasing the pressure of the fuel between the supply passage and the discharge passage, and opening the discharge passage at a predetermined pressure. A fuel supply pump provided with a discharge valve that rotates the crankshaft eccentrically with respect to a drive shaft; a swing piston that rotatably engages with the crankpin; and a swing piston that is rotatable on an inner wall. A slidable bore portion is formed to slidably support the oscillating cylinder. The oscillating cylinder has a spherical surface portion or a cylindrical surface portion as a oscillating center in a head portion, and at least a part of the supply passage. A fuel supply pump, wherein a suction passage is provided inside the oscillating piston.
6 . 前記揺動シリンダの摺動ボア部の内部の揺動ビストン頭部側には加圧室 が設けられ、 該加圧室と前記吐出通路とを連通する連通路を揺動シリンダの 頭部が揺動運動の際当接する固定壁面に開口し、 該連通路の開口面積を前記 揺動シリンダの摺動ボアの断面積より小としたことを特徴とする請求項 1な いし 5に記載の燃料供給ポンプ。 6. The pressurizing chamber is located on the head side of the oscillating piston inside the sliding bore of the oscillating cylinder. A communication passage communicating the pressurizing chamber and the discharge passage is opened on a fixed wall surface with which the head of the oscillating cylinder abuts during the oscillating movement, and an opening area of the communication passage is defined by the oscillating cylinder. 6. The fuel supply pump according to claim 1, wherein a sectional area of the sliding bore is smaller than that of the sliding bore.
7. 前記揺動シリンダの摺動ボア部の先端部に逃げ溝を設けたことを特徴と する請求項 1ないし 5に記載の燃料供給ポンプ。 7. The fuel supply pump according to claim 1, wherein a relief groove is provided at a tip of a sliding bore of the swing cylinder.
8. 前記供給通路内に吸入弁を設け、 該吸入弁をァクチユエ一夕により開閉 するように構成したことを特徴とする請求項 1ないし 5に記載の燃料供給ポ ンプ。  8. The fuel supply pump according to claim 1, wherein a suction valve is provided in the supply passage, and the suction valve is opened and closed by the actuator.
9. 前記供給通路内に吸入弁を設け、 該吸入弁の前後の圧力差によって吸入 弁が開閉するように構成したことを特徴とする請求項 1ないし 5に記載の燃 料供給ポンプ。 9. The fuel supply pump according to claim 1, wherein a suction valve is provided in the supply passage, and the suction valve is opened and closed by a pressure difference between before and after the suction valve.
1 0. 前記供給通路内に弁の前後の圧力差によって開閉する吸入弁を設ける とともに、 前記吐出通路に圧力調整弁を設置したことを特徴とする請求項 1 ないし 5に記載の燃料供給ポンプ。  10. The fuel supply pump according to claim 1, wherein a suction valve that opens and closes according to a pressure difference between the front and rear of the valve is provided in the supply passage, and a pressure adjustment valve is provided in the discharge passage.
1 1 . 前記吐出通路に圧力調整弁を設置したことを特徴とする請求項 4ない し 5に記載の燃料供給ポンプ。  11. The fuel supply pump according to claim 4, wherein a pressure regulating valve is provided in the discharge passage.
1 2. 加圧燃料を蓄圧するコモンレールと、 このコモンレール内の燃料を内 燃機関の各気筒に噴射し、 電気信号に応答して燃料噴射を断続する噴射ノズ ルと、 燃料を供給する供給通路と、 燃料をコモンレールへ吐出する通路と、 前記吐出通路に所定の圧力で開弁する吐出弁と、 前記供給通路と前記吐出通 路とを連通する通路に設けられ、 開弁時に前記供給通路と前記吐出通路とを 連通させる電磁弁と、 その頭部を揺動中心として揺動する揺動シリンダと、 該揺動シリンダと共に揺動しながら前記揺動シリンダ内を往復動する摇動ピ ストンとを備えたことを特徴とする燃料供給ポンプ。  1 2. A common rail that accumulates pressurized fuel, an injection nozzle that injects fuel in the common rail into each cylinder of the internal combustion engine, and intermittently injects fuel in response to electric signals, and a supply passage that supplies fuel A passage that discharges fuel to a common rail; a discharge valve that opens the discharge passage at a predetermined pressure; and a passage that communicates the supply passage and the discharge passage. An electromagnetic valve that communicates with the discharge passage, a swing cylinder that swings around its head as a swing center, and a pivot piston that reciprocates in the swing cylinder while swinging with the swing cylinder. A fuel supply pump comprising:
PCT/JP1999/001317 1999-03-17 1999-03-17 Fuel feed pump WO2000055495A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/001317 WO2000055495A1 (en) 1999-03-17 1999-03-17 Fuel feed pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/001317 WO2000055495A1 (en) 1999-03-17 1999-03-17 Fuel feed pump

Publications (1)

Publication Number Publication Date
WO2000055495A1 true WO2000055495A1 (en) 2000-09-21

Family

ID=14235208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/001317 WO2000055495A1 (en) 1999-03-17 1999-03-17 Fuel feed pump

Country Status (1)

Country Link
WO (1) WO2000055495A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7040288B2 (en) 2004-03-31 2006-05-09 Mitsubishi Fuso Truck And Bus Corporation Fuel injection system
JP2009185613A (en) * 2008-02-04 2009-08-20 Hitachi Ltd High-pressure fuel pump
JP2012211583A (en) * 2011-03-30 2012-11-01 Denso Corp Pump
CN104074700A (en) * 2013-03-26 2014-10-01 东亚Dkk株式会社 Liquid feeding pump
JPWO2016051909A1 (en) * 2014-09-29 2017-08-10 日立オートモティブシステムズ株式会社 Valve mechanism and high-pressure fuel supply pump provided with this valve mechanism as a discharge valve mechanism

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49135652U (en) * 1973-03-23 1974-11-21
JPH08334076A (en) * 1995-05-26 1996-12-17 Robert Bosch Gmbh Fuel feeder for feeding internal combustion engine with fueland operating method of internal combustion engine
JPH10299557A (en) * 1997-02-21 1998-11-10 Toyota Motor Corp Fuel injection device for internal combustion engine
JPH1172053A (en) * 1997-08-29 1999-03-16 Denso Corp Fuel supply device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49135652U (en) * 1973-03-23 1974-11-21
JPH08334076A (en) * 1995-05-26 1996-12-17 Robert Bosch Gmbh Fuel feeder for feeding internal combustion engine with fueland operating method of internal combustion engine
JPH10299557A (en) * 1997-02-21 1998-11-10 Toyota Motor Corp Fuel injection device for internal combustion engine
JPH1172053A (en) * 1997-08-29 1999-03-16 Denso Corp Fuel supply device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7040288B2 (en) 2004-03-31 2006-05-09 Mitsubishi Fuso Truck And Bus Corporation Fuel injection system
JP2009185613A (en) * 2008-02-04 2009-08-20 Hitachi Ltd High-pressure fuel pump
JP2012211583A (en) * 2011-03-30 2012-11-01 Denso Corp Pump
CN104074700A (en) * 2013-03-26 2014-10-01 东亚Dkk株式会社 Liquid feeding pump
JPWO2016051909A1 (en) * 2014-09-29 2017-08-10 日立オートモティブシステムズ株式会社 Valve mechanism and high-pressure fuel supply pump provided with this valve mechanism as a discharge valve mechanism

Similar Documents

Publication Publication Date Title
JP4395534B2 (en) High pressure pumps, especially for fuel injection devices of internal combustion engines
JP4036197B2 (en) Fuel supply pump
US20130022484A1 (en) High-pressure pump
JP2003527516A (en) Radial piston pump for high pressure fuel generation
JP2000186649A (en) Variable discharge quantity control type high pressure fuel pump
JP4010175B2 (en) Internal combustion engine fuel pump
JP2000515600A (en) Fuel injection pump with built-in electromagnetic control valve for bypass
JP2002115623A (en) Variable discharge-amount fuel supply device
US6874474B2 (en) Single-die injection pump for a common rail fuel injection system
US7850435B2 (en) Fuel injection device for an internal combustion engine
JP2001248527A (en) Variable discharge rate fuel supplying device
WO2000055495A1 (en) Fuel feed pump
US6807951B2 (en) High-pressure fuel pump with integrated blocking-vane prefeed pump
JP3560711B2 (en) Injection timing control device for fuel injection pump
US6676389B2 (en) Piston pump for increasing pressure, comprising a transfer piston and a pressure-control piston
JP4787444B2 (en) Radial piston pump
WO2005111406A1 (en) High-pressure fuel pump
JP2004324546A (en) Pump for fuel supply
JP3597532B2 (en) Variable valve timing system
JP2001248514A (en) Fuel supplying pump and fuel injection system
JPH10184494A (en) Fuel booster pump for internal combustion engine
JP2000145618A (en) Axial plunger pump
JPS6054502B2 (en) distribution type fuel injection pump
KR101393524B1 (en) high-pressure fuel pump
KR100216826B1 (en) Super charger for automotive engines

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 605095

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase